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Abstract—Face recognition is a biometric technique with the
potential to identify non cooperating human beings in uncon-
trolled environments. Illumination conditions and head poses are
unknown in these situations, causing the performance of state
of the art face recognition techniques to drop significantly. An
extensively investigated solution for this problem is to transform
non frontal facial images into images with a frontal pose,
increasing the performance of these FR algorithms. This requires
accurate estimation of the head pose.

This paper is about a head pose estimation algorithm based
on a mathematical model of the human nose. Pixel intensity
values, i.e. texture, of the nose region are calculated based on
this model. The camera and the light source are modeled at
various positions, resulting in a set of pixel vectors. Pixels in
the nose region of geometrically normalized probe images are
compared with these pixel vectors, after which the head pose
and the light source position are estimated. Two different error
measures were used. The algorithm shows promising results for
head poses within the range of ±15◦ relative to the frontal
view, but performs disappointingly for larger angles. Several
improvements are suggested.

Index Terms—Face recognition, head pose estimation, Lam-
bertian reflection

I. INTRODUCTION

Face recognition has been an important research topic
within the field of biometrics during the last decades. Contrary
to techniques as iris and fingerprint scanning, face recognition
has the potential to be successful without cooperative subjects
and in uncontrolled environments. This is also called face
recognition in the wild.

The most well-known application of face recognition in the
wild is the recognition of criminals filmed by surveillance
cameras. Images captured by these cameras suffer from vary-
ing illumination conditions and head poses, which complicates
the recognition [1]. Another characteristic of images captured
by surveillance cameras is their low resolution. Faces of
persons to be recognized frequently consist of less than 32×32
pixels, which is why it is considered a Low Resolution Face
Recognition (LR FR) problem [2].

Being able to estimate the head pose unlocks to the possibil-
ity of compensation or normalization. Viewpoint transformed
FR approaches, for example, use estimated pose parameters to
warp non-frontal probe images into a pose similar to the pose
of a gallery image [3, 4].

In this paper, head pose estimation on LR facial images
is discussed. Using a 2D model of the human nose, pixel

intensity values are calculated for various head poses and
(point) light source positions. The last is done in order to
account for differences in illumination among probe images.
The texture of the nose region of a probe image is compared
with these synthesized pixels, after which the actual estimation
of both head pose and light source position (abbreviated as
light source estimation) is performed. This is done using a
winner-takes-it-all approach. In order to simplify the problem,
only rotations between ±30◦ around the vertical axis, yaw,
are considered. Figure 1 shows which rotations determine the
pose of a human head, or any other object, in real life. The
research question on which this paper is based reads:

Is it possible to correctly estimate the head pose of low
resolution facial images with varying illumination conditions

by only using a mathematical model of the human nose?

The structure of this paper is as follows. Related research
on (LR) head pose estimation is discussed in section II. The
working principle of the proposed algorithm is explained in
section III. This is followed by sections on the conducted ex-
periments (IV) and their results (V). An answer on the research
question is given in section VI, as well as recommendations
for further research.

Fig. 1: The pose of a head is determined by rotations around
three axes[5]
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II. RELATED RESEARCH

A. Head Pose Estimation

Head pose estimation has been investigated extensively
during the last decades. E. Murphy-Chutorian and M.M.
Trivedi categorized current head pose estimation methods in
8 categories based on their fundamental approach [5]. The
method most related to the one described in this paper is the
’Appearance Template Method’. X. Zhang et al. subdivided
this category in 2 subcategories: holistic approaches and local
approaches [1]. In holistic approaches, a probe image is
compared with a set of gallery images, each labeled with
a pose. The pose of the probe image is then assumed to
be the same as the pose of the most similar gallery image.
Misalignment of the facial images has a big influence on the
outcome of the pose estimation, though. Local approaches
like the algorithm proposed in this paper, consider small
sub-regions of the face, instead of the entire face image. A
disadvantage of both approaches is the need for a large number
of gallery images.

Geometric approaches are the most intuitive. After detection
of facial landmarks such as the eyes, nose and mouth, their
positions are used to do an estimate on the head pose. An
example is the work of A. Gee and R. Cipolla, who tried to
estimate the pose by considering the location of the nose tip
relative to the symmetry axis of the face [6]. The disadvantage
of this, and other geometrical methods, is that it is very
difficult to apply them to low resolution images.

J. Chen et al. used a ’Nonlinear Regression Method’ to
estimate the head pose of images of 10× 10, 5× 5 and 3× 3
pixels [7]. After the extraction of HoG features from the facial
images, SVR was applied. The ’mean ± standard deviation’
of the absolute error for yaw was 9.9± 12.4◦ in the 10× 10
case.

Another frequently used approach is the implementation of
Neural Networks. N. Gourier et al. trained an auto-associative
network for each pose in a discrete set of poses [8]. The pose
of a probe image was estimated by selecting the network with
the highest score. Yaw was estimated correctly in 61.3% of
the cases, and in 90% of the cases with a precision of 15◦.

B. Image Transformation

Although not considered in this paper, some research on im-
age transformations is presented as well. The main reason for
head pose estimation is the transformation of non frontal im-
ages into a frontal view, so that already existing FR algorithms
can be used. The work of C. Sanderson et al. is one of the
many examples of such a transformation [9]. J.Y. Guillemaut
et al. presented a complete face recognition system, including
pose correction using an AAM based approach [10].

III. ALGORITHM WORKING PRINCIPLE

A schematic overview of the proposed head pose estimation
algorithm is depicted in figure 2. The first step is the derivation
of a model of the human nose. This model is used to compose a
set of light intensity profiles. These profiles are dependent on 2
parameters: head pose and illumination. Each intensity profile

is then transformed into a set of 5 ’pixel vectors’: vectors
containing the intensity values of a certain number of pixels.
The texture extracted from the nose region of the probe image
is compared with these pixel vectors. The parameter values
belonging to the model-based vector most similar to the probe
image texture are assigned to the probe image. These steps are
explained in more detail in the following subsections.

Fig. 2: Schematic overview of the head pose estimation
algorithm

A. Nose Model Derivation
The 2D nose model was derived from a 3D model of a

human head from the PV3D database. MeshLab was used to
take a horizontal cross section at nose height (figure 3a). Only
the frontal part of the head, i.e. the face, was used, since this
part is relatively identical for most human beings, while the
back of the head is mostly covered with hair. The useful part
of the cross section is shown in 3b.

MATLAB R2015b was used for further processing of the
model. A polynomial fit was performed on the data points
of the cross section. The polynomial allows for derivative
calculation at every desired point, which is necessary in order
to find the points that have a direct line of sight with the
camera and/or light source. A 14th order polynomial was
considered to match the data well enough.

(a) Cross section position [11] (b) Cross section

Fig. 3: Cross Section of 3D model
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B. Intensity Profile Calculation

The probe image characteristics to be estimated are head
pose and light source position, meaning that these should both
be included in the model. Intensity profiles were calculated
for various values of these parameters, using the following
assumptions:

1) The head is illuminated by a single point light source.
2) The light source is located infinitely far away from the

head, meaning the light is collimated.
3) Light reflects diffusely on the skin of a human head.
4) The diffuse reflectivity is constant for every point on the

skin located at the height of the cross section.
To simplify the calculations, the configuration of the nose

model was fixed while the the camera and the light source
were modeled at various positions, indicated by θC and θL
respectively. For both parameters, a rotation of 0 degrees
corresponds to a frontal view. Counterclockwise rotations were
considered positive. This is visualized in figure 4.

Fig. 4: Definitions of camera and light source angles

The intensity of the diffuse reflected light seen by the
camera is given by the Lambertian reflectance model:

Id = rdIs(~l · ~sn) (1)

where rd is the diffuse reflection coefficient and Is is the
intensity of the point light source. ~l is the normalized vector
pointing from a point on the surface to the point light source.
~sn is the normalized vector normal to the surface. In a 2D
case like this, the surface is replaced by a curve: the cross-
section of the nose. Id was normalized by setting both rd and
Is to 1. The intensity profile Id(x) is obtained by calculating
Id for every point of the cross section and setting it to zero
for points which cannot be reached by the light because of
self-occlusion by the nose or cheek:

Id(x) = rdIs(~l(x) · ~sn(x)) (2)

Figure 5 shows the influences of θC and θL on the intensity
profile. The figure shows the profiles for angles of −30◦, 0◦

and 30◦ for both parameters.

Fig. 5: Influences of θC and θL on the intensity profiles

C. Pixel Value Derivation

The next step of the algorithm is to convert the intensity
profiles to sets of pixel vectors. To achieve a reliable com-
parison, the number of model-based pixels representing the
nose region, Np εN1, should be equal to the number of pixels
representing the nose region in the probe image. The pixel
intensities are calculated as in equations 3 to 7.

S =
max(x)−min(x)

Np + 1
(3)

i ∈ {1, 2, 3, . . . , Np − 1, Np} (4)

j ∈ {1, 2, 3, 4, 5} (5)

li,j = min(x) + (i− 1)S +
(j − 1)S

4
(6)

Pj,i =
1

S

∫ li,j+S

li,j

Id(x)dx (7)

S is the width of the segments of Id(x). The average of
Id(x) within one segment, calculated with the integral in equa-
tion 7, determines the intensity of 1 pixel. Since this integral
cannot be calculated analytically, it was implemented as a
summation. This causes small errors, but these are negligible,
since the resolution of Id(x) was such that every pixel value
was determined by at least 10 points. The parameter i is used
to loop through the entire intensity profile. The shift introduced
by (j− 1)S/4 accounts for possible sub-pixel misalignments:
the nose tip of a face in a probe image could either be captured
in 1 or in 2 pixels, resulting in different pixel patterns. It
was therefore decided to calculate the pixel intensities for 5
different start positions ranging from min(x) to min(x) + S
in steps of S/4.
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The result of these equations, P , is a 5 × Np matrix of
which every row represents a pixel vector. Figure 6 shows the
intensity profile for θC = θL = 0◦ and its corresponding gray
scale pixels for Np = 18. The grid in the graph shows the
intervals of for j = 3.

Fig. 6: Intensity profile and its corresponding gray scale pixels

Equations 8 and 9 show the separation of P in the 5 pixel
vectors r1 upto r5. These row vectors are put in a column
vector V . Calculating V for m values of θL and n values of
θC results in a matrix Umb containing all the model based
pixel vectors, as shown in equation 10.

rγ = {Pγ,1, Pγ,2, . . . , Pγ,Np} (8)

V =


r1
r2
...
r5

 (9)

Umb =


θC1

θC2
. . . θCn

θL1
V1,1 V1,2 . . . V1,n

θL2
V2,1 V2,2 . . . V2,n

...
...

...
. . .

...
θLm Vm,1 Vm,2 . . . Vm,n

 (10)

D. Probe Image Preprocessing

In order to do an accurate estimation on the head pose and
the light source position, the useful information, i.e. pixels
representing the surroundings of the nose, has to be extracted
from the probe images. Only faces successfully detected by
a face detector were considered, meaning that the position
of the nose was the same for all images. Figure 7 shows 3
examples of facial images1 after face detection. The Region Of
Interest is marked by the red rectangles. Its coordinates were
determined heuristically to be as in equation 11, where xtl
and ytl are the coordinates of the top left corner, and w and h
the width and height respectively. Wpi and Hpi are measures
for the resolution of the probe image. All these values are
rounded to their nearest integer. The pixels in this region are
averaged along the vertical dimension, resulting in a 1 × w
vector, called vpi.

[xtl, ytl, w, h] =

[
Wpi

8
,
11

24
Hpi,

3

4
Wpi,

1

12
Hpi

]
(11)

1Original images were taken from CMU Multi-PIE database

(a) θC = 0◦ (b) θC = 30◦ (c) θC = −15◦

Fig. 7: Region Of Interest for pose estimation

It can be seen that the circumvented pixels of the non-
frontal images not only represent a face, but also a part of
the background. This is harmful for the vector comparison,
since the background is not included in the nose model. This
could have been solved by decreasing the Region Of Interest,
but this would result in a loss of useful information. It was
therefore decided to account for it by making Np dependent
on θc, as shown in equation 12. This equation was determined
heuristically.

Np = round

((
1− |θC |

135

)
× w

)
(12)

E. Vector Comparison

The final step of the algorithm is the actual head pose
and light source estimation of a certain probe image. vpi is
compared with every vector in Umb and the parameter values
belonging to the vector with smallest error are assigned to the
probe image. To prevent vector dimension mismatches, only
the first Np pixels of vpi are compared with model based
vectors belonging to values of θC < 0, while only the last Np
pixels are used for values of θC > 0. The vector containing
the Np useful pixels of vpi is called vu.

To decrease the influence of brightness differences between
the model based pixel vectors and vu, the model based vectors
were adapted using the approach of G. Li et al. [12], which
is shown in equation 13.

rγ =
σvu
σrγ

(rγ − µrγ ) + µvu (13)

µrγ and σrγ are the mean and the standard deviation of the
of the pixel values in rγ respectively. µvu and σvu are the
mean and standard deviation of the pixels in vu.

The head pose estimation is a winner-takes-it-all process:
the pixel vector with the lowest error ’wins’. Two error
measures were used:

1) Euclidean Distance (ED)

Eed =
1

Np

Np∑
n=1

(rγ(n)− vu(n))
2 (14)

2) Normalized Cross-Correlation (NCC)

Encc =
1

Np

Np∑
n=1

(rγ(n)− µrγ )(vu(n)− µvu)

σvuσrγ
(15)

The normalized cross correlation is defined in such a way
that the normalization of equation 13 has no effect, since the
pixels are divided by their mean and standard deviation.
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It is important to note that the Euclidean distance gives
lower values for more similar vectors, while the normalized
cross-correlation gives values between −1 and 1, where a
higher value indicates more similarities. The benefit of the
second method is that it is less sensitive to the exact pixel
intensity values than the Euclidean distance, but more to the
pixel patterns. This could appear to be a disadvantage as well,
since an outlier in vu messing up the pattern, causes the score
to be unreliable.

This last part of the algorithm was implemented in two
steps. After the errors of all vectors were calculated, the vector
with the smallest error is taken out for each V in Umb, so that
each (θL, θC) coordinate contained 1 pixel vector. Out of these
m× n vectors, the lowest one was chosen.

IV. EXPERIMENTS

A. Database

Validation of the algorithm was done using facial images
of the CMU Multi PIE database. This database contains
more than 750.000 facial images of 337 different people
under varying Poses, Illumination conditions and with different
Expressions [13]. The images were taken using 15 different
cameras of which 13 at head height. Both camera and flash
light angles vary from −90◦ to 90◦ relative to the frontal view,
with intervals of 15◦. The images have an RGB format with
a resolution of 640 × 480 pixels. To keep the experiments
manageable, a small database of 1000 images was composed,
containing 40 persons for each combination of 5 different
poses and 5 different illumination conditions (both camera and
flashlights located between [−30◦, 30◦], with intervals of 15◦).

In order to simulate images of surveillance cameras, the
images were preprocessed using the following steps. The result
is shown in figure 8.

1) Face detection using the Viola and Jones object detector,
built-in in the Computer Vision System Toolbox for
MATLAB versions newer than R2012a

2) Cropping the image to the detected face region
3) Downsampling to a resolution of 24× 24 pixels
4) RGB to gray scale conversion

Fig. 8: Original and preprocessed face image

B. Setup

Table I gives an overview of the experiments that where
conducted. The number of vectors in Umb was varied by
changing the range of θL. In experiment 2, the light source
angle is used as an input parameter. Its value was set equal to

the angle of the flashlight F ◦
pi in the probe image. In real life

situations, especially outdoors and during daytime, the main
light source is the sun, of which the position is known. Using
a variable light source position in these cases is unnecessary
and complicates the head pose estimation. The performance
of both error measures, Euclidean Distance and Normalized
Cross Correlation, is compared for both experiments.

TABLE I: Overview of experiments

θC θL

Range Interval Range Interval

1 [−30◦, 30◦] 7.5◦ [−30◦, 30◦] 7.5◦

2 [−30◦, 30◦] 7.5◦ [F ◦
pi] -

V. RESULTS & DISCUSSION

A. Experiment 1

The results of experiment 1 are shown in figure 9. The per-
centage of correctly estimated head poses is shown for every
probe image parameter combination (light source position and
head pose). A brighter pixel represents a higher percentage, as
visualized by the color bars. Figures 9a and 9b show results
for the NCC method, while figure 9c and 9d show those for
the Euclidean Distance. For figures 9a and 9c, the estimation
was considered correct if the (θL, θC) coordinate of the lowest
error corresponds exactly with the head pose and flash light
characteristics of the probe image. For figures 9b and 9d,
the (θL, θC) coordinate of the lowest error was allowed to
be one interval off, in this case 7.5◦, for one or both of the
characteristics.

(a) NCC, perfect estimates (b) NCC, 7.5◦ deviation allowed

(c) ED, perfect estimates (d) ED, 7.5◦ deviation allowed

Fig. 9: Algorithm performance, 7.5◦ intervals for θC and θL
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It can be seen that there is no significant difference between
the two error measures. Besides that, it is clear that, assuming
a deviation of 7.5◦ is acceptable, frontal images are estimated
correctly in at least 70 % of the cases, with some positive
outliers up to 100% in case of the ED method. In general, the
performance drops for ’larger’ head poses, i.e. larger angles
with respect to the frontal view. The extremities of the diagonal
are positive exceptions, since 50% to 65% is estimated exactly
correct or with a deviation of 1 interval. This is most likely
caused by the fact that the camera and the light source are
modeled at the same positions for these coordinates, meaning
that parts which cannot be reached by the light, and therefore
result in dark pixels, are not captured by the camera. The effect
of mistakes caused by the point light source assumption are
therefore minimized.

Another observation is that all images in figure 9 are 180◦

point symmetric in their center. This was expected, since it
means that the algorithm performance is equal for images with,
for example, a head pose of 15◦ and a flash light angle of −30◦
and images with a head pose of −15◦ and a flash light angle
of 30◦.

Finally, when averaging over all light source conditions, it
can be said that results are promising for head poses between
−15◦ and 15◦. For larger angles, the performance drops
significantly. Images with a smaller head pose resolution are
required to determine these limits more precisely. These are
not in the CMU Multi-PIE database.

B. Experiment 2

In the second experiment, the flash light angle was used as
an input parameter for θL. Intervals for θC were the same as in
experiment 1: 7.5◦. Figure 10 shows the results for both error
measures. Only estimates exactly equal to the actual probe
image characteristics are considered correct.

(a) NCC, perfect estimates (b) ED, perfect estimates

Fig. 10: Algorithm performance, θL = F ◦
pi

Frontal poses are estimated correctly in 77.5% to 87.5% of
the cases when using the NCC error measure, and between
72.5% and 82.5% for the ED method. However, only 40
images per parameter combination were used. By repeating
the experiment with more images, it can be verified whether
the NCC method indeed outperforms the ED error measure.

The extremities of the antidiagonals show that the estimates
for images with the corresponding characteristics are almost
always incorrect. Performance figures for these images range
between 0% and 5%. Since there were only 9 model based

vectors to choose from for each image, 11% of the estimates
would be correct in case the estimation would be performed
randomly. This raises the expectation that the estimates follow
a certain, incorrect, pattern. In the next subsection, the errors
are analyzed in more detail.

C. Error analysis
Based on the experiments it can be said that the performance

of the algorithm is disappointing, especially for angles larger
than 15◦. It was taken into account that the assumptions listed
in section III-B would cause small errors, as well as the
polynomial fit and the fact that the nose model was derived
from another model. This subsection is aimed at showing that
these are not the main sources for the low performance.

In order to determine whether there is a pattern in the
wrong estimates, all the estimates belonging to one specific
probe image parameter combination were considered. Figure
11 shows the estimation distribution belonging to images with
a head pose of 15◦ and a flash light angle of 0◦, as well as
three representative error landscapes for images photographed
under these conditions. The desired coordinate is marked
with a green rectangle. The red numbers in the estimation
distribution (figure 11a) sum up to 40. Each number shows the
number of times that specific coordinate was estimated. The
intensities of the underlying pixels serve as a clarification. The
higher the number, the brighter the pixel. For the three error
landscapes, brighter pixels represent a larger error, calculated
using the Euclidean Distance. The red dotted circles indicate
local minima in the error landscapes. The yellow circles show
the lowest error of the entire landscape, and thus the estimated
coordinate.

(a) Estimation distribution (b) Landscape 1

(c) Landscape 2 (d) Landscape 3

Fig. 11: Estimation distribution and three representative error
landscapes. Desired coordinate (θL, θC) = (0◦, 15◦)

The error landscapes in figures 11b upto 11d all contain 2
local minima. Landscape 1 can be seen as the desired case:
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There is a local minimum next to the desired coordinate,
and, although there is another one, this minimum is also
the global minimum, meaning the estimation was correct,
assuming a deviation of 7.5◦ is allowed. The positions of
the minima in landscape 2 are close to those of landscape
1. The ’correct minimum’ is located at exactly the desired
coordinate. This minimum is not the global minimum, though,
meaning the estimation was incorrect. Landscape 3 again
contains 2 minima, but both located at undesired coordinates.
The estimation distribution shows that these 3 landscapes are
indeed representative for all images with these characteristics.
27 out of the 40 estimates are located on or next to the desired
coordinate. In most of the other cases, the global minimum
appeared to be at, or close to, the positions of the undesired
minima present in landscapes 1 and 2.

Figure 12 shows the pixel vectors corresponding to the land-
scape of figure 11c. There might be a lot to win, performance-
wise, in cases like these. Figure 12a shows the probe image
based pixels. The 2 left-most pixels are not part of the person’s
face, but of the background. Figure 12b shows the pixels
corresponding to the desired coordinate. The pixels belonging
to the global minimum are shown in figure 12c. The vectors
are aligned in such a way that pixels that are compared with
each other are all on the same vertical line.

(a) Probe image based pixels vpi

(b) Desired pixel vector, (θL, θC) = (0◦, 15◦)

(c) Lowest error pixel vector (θL, θC) = (15◦,−15◦)

Fig. 12: Pixel vectors, desired (θL, θC) = (0◦, 15◦)

Both vectors in figures 12b and 12c show many similarities
to the one in figure 12a, at least to the human eye. This is
confirmed by their errors. The error of the desired pixel vector
is only 0.7% higher than the one of the pixel vector with the
lowest error, which causes the estimation to be incorrect.

Two causes for this mistake can be derived from these
images. The most important one is the fact that a part of the
probe image vector represents background instead of facial
texture. These pixels are relatively dark with respect to the rest.
Vectors corresponding to coordinates in the down-left corner
appear to have this pattern as well, but these vectors are purely
based on the nose model. By decreasing the width of the ROI,
as shown in equation 11, in a way that only facial information
is extracted from the probe images, this problem could be
solved. The width of the nose model should be decreased
accordingly.

The second cause of the mistakes is the scaling of the
pixels. The width of the segments of the intensity profile which
determine the pixel values is currently constant as shown in
3. This causes a problem, since the dark region in the middle
of the desired pixel vector seems to be a little bit ’too wide’.
This could be solved by making S dependent of x.

The same kind of images are shown in figures 13 and
14. The desired coordinate for these images was (θL, θC) =
(−30◦, 30◦). Figure 13a shows that all 40 estimates are in
the correct corner of the coordinate system, but that the θC
component of the coordinate of the global maximum is 15◦

too low. Figure 13b shows a typical example of the error
landscapes of the images with these characteristics.

(a) Estimation distribution (b) Error Landscape

Fig. 13: Estimation distribution and a representative error
landscape. Desired coordinate (θL, θC) = (−30◦, 30◦)

The vectors in figure 14 show that the scaling, i.e. the value
of Np, is the main problem. The pattern of both vectors in
figures 14b and 14c correspond quite well with the pattern
of the vector in figure 14a. By squeezing the desired vector
to 13 instead of 14 pixels and keeping the right-most pixels
aligned, the matching of the patterns is improved. However,
the results of both experiments show that the scaling in its
current form results in an acceptable performance for frontal
head poses. It can therefore be concluded that equation 12,
which is used to calculated Np, needs to be changed, most
likely into a non-linear equation. The exact relation requires
further research.

(a) Probe image based pixels vpi

(b) Desired pixel vector, (θL, θC) = (−30◦, 30◦)

(c) Lowest error pixel vector (θL, θC) = (−30◦, 15◦)

Fig. 14: Pixel vectors, desired (θL, θC) = (−30◦, 30◦)

VI. CONCLUSION

A head pose estimation algorithm based on a mathematical
nose model was proposed in this paper. The algorithm was de-
signed for gray scale, geometrically normalized, facial images
with a low resolution. Pixels from the nose region of a probe
image are compared with a set of pixel vectors derived from
a nose model. The head pose estimation is based on the best
match. Scores were calculated using two error measures.

The research question mentioned in section I can not be
answered with a clear yes or no. Promising results were
achieved for head poses between ±15◦, but for larger angles
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the performance dropped significantly. The two main reasons
for this are the fact that the ROI was too wide and that the
scaling of the vectors was wrong, especially for head poses
larger than 15◦ with respect to the frontal view.

A. Recommendations

Based on the previous subsection, it can be said that the
revision of the equations used to calculate Np and S is very
important, as well as decreasing the width of the ROI of the
probe images, and thus of the model itself. Besides that, the
nose model could be derived for multiple heights. The current
implementation averages pixels in the ROI of probe images in
the vertical direction. This results in a loss of information. By
comparing each pixel row from the ROI with a nose model
of the corresponding height, all the available information is
used.
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