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Management Summary

Twence is a company that produces raw materials and energy from waste and biomass.
The costs of not providing energy is signi�cantly high, so it is important that Twence
always produces at 100% of their capacity. Since the economic crisis, the waste market
became more unpredictable. This made Twence decide that a big bulk storage called TOP
should be constructed to ensure producing at maximum capacity. Now, a couple of years
later, the supply of waste is stable and Twence still has a lot of stock in TOP.

The objective of this research is to give Twence more insight into their supply chain.
Twence suspects that the amount of stock in TOP is too high and since the waste in stock
needs to be produced within three years, TOP also leads to a lot of costs. The objective
of the research is translated to the following main research question:

How can Twence improve their internal supply chain in order to optimize the

performances of their processes, while minimizing the costs of idle time of the machines

and of internal transport?

Current situation and research approach

This research starts with an analysis of the current situation at Twence. We �nd that, over
an entire year, the TOP inventory stays almost constant and the total supply of waste �ts
with the requirements. However, the daily pattern shows that the daily supply of waste
is unpredictable and thus, the risk arises that there is not enough supply of waste to the
bu�ers of the incineration lines. Deciding to use TOP for diverting or retrieving waste
is based on human estimation, whether the bu�er for the incinerator contains too much
or too little waste. On a daily basis, the requirements for Twence to continue process-
ing the entire day, consist of the amount of waste that can be incinerated in a day. We
�nd that this amount correlates with the calori�c value of the waste. We suggest that
the supply of waste, as well as decisions about diverting or retrieving waste can be made
based on calori�c value of waste. We �nd an equation that determines the processing
time for a given amount of mass of waste with a given calori�c value. A literature study
is performed in which we �nd the model of Obrou£ka et al. (2015), which is suitable for
composing batches of waste to retrieve based on the calori�c value.

We set up di�erent decision structures about diverting and retrieving waste, which we
then implement in our simulation model. Experimental factors we vary are:

• Amount of TOP capacity. When selecting a TOP capacity, we make the assumption
that the initial TOP inventory is 80% of the capacity.

• Contract restrictions. Clients are restricted to supply within a speci�ed margin,
based on either the mass, calori�c value or processing time of waste.

• Decision conditions. The decisions conditions currently only include mass, so the
level of waste in the bu�er is expressed in mass. We examine the e�ect when calori�c
value is also included, such that the level of waste in the bu�er can be expressed in
processing time.
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• The bu�er levels on which diverting or retrieving needs to be done. We vary with
low and high thresholds to determine when to retrieve or divert.

Results

When keeping contract restrictions and decision conditions similar to the current situa-
tion, we �nd that increasing the bu�er levels, at which retrieving should be done, from
15% for both bu�er 1+2 and bu�er 3 to 45% for bu�er 1+2 and 20-25% for bu�er 3, and
decreasing the TOP inventory from 80 Kton to 32 Kton, leads to an average costs per
week of e3.283,27, where in the current situation these costs are e10.414,81 (savings of
67%). Even lower costs can be attained when Twence restricts the clients not only on
the mass, but also on the calori�c value, by means of restricting to a margin on the sup-
plied processing time. The TOP inventory could then be even lower (5 Kton capacity, 4
Kton average inventory), which would lead to costs per week of e2.440,17 (savings of 75%).

We perform a sensitivity analysis to examine the impact of several assumptions we made.
From our results we �nd that 40 Kton is the optimal TOP capacity when given the choice
between 5, 40 or 80 Kton. We �nd that the costs per week could be lower when choosing
a TOP capacity that was not within the experimental factors: a 25 Kton TOP capacity
yields the lowest costs per week.

Twence has another incinerator just for biomass, which consists mainly of wood already
on speci�cation and unbroken wood that needs to be made to speci�cations �rst at extra
costs. The current costs per week of the biomass incinerator are e28.095,14 (validated in
the model as e27.775,19). We �nd that with the changes of: (i) increasing the bu�er level
from 15% to 25%, (ii) including calori�c value in the decision conditions, (iii) lowering
the woodbank capacity (TOP for biomass) to 15 Kton, and (iv) increasing the ratio of
wood on speci�cations versus unbroken wood to 3:1, costs per week of e21.566,84 can be
attained. This would be a reduction of almost 23%.

Conclusions and recommendations

We conclude that Twence could save up to 67% and 23% on the costs per week for re-
spectively the waste and wood incinerator. These cost reductions seem large, but this is
mainly caused by the fact that with a lower TOP inventory and a higher minimum bu�er
level, there is less need for retrieving and less risk on idle time. In our model we assume
that the clients of Twence respect the allowed margin of ±10% for the weekly supplies.
Currently, this is not the case, so already a large part of the cost savings can be achieved
by making the clients respect the allowed margins.

The current TOP inventory of 90 Kton should be reduced to about 20 Kton, when Twence

keeps the contract restrictions purely on the mass of the waste. Twence should perform

more research on how the calori�c value of waste can be more easily determined. Currently

this is only done after incineration, but when it is possible to determine this clearly before

incineration, Twence should put restrictions in the contracts on the calori�c value as well,

such that the processing time can be better controlled and cost savings can be increased

for the waste incinerator up to 75%. The TOP inventory can then be reduced even further

to about 16 Kton.
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List of Abbreviations

AEC Waste Energy Plant
BEC Biomass Energy Plant
Calo Calori�c value of waste/biomass (in KJ/h)
Kton Kilo ton (1000 tons)
M&S Marketing and Sales department
Mass Mass of waste/biomass (in tons)
TOP Temporary Storage
TAS Twence Waste Sorting
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1 | Introduction

In this chapter, we introduce the main problems that are treated in this thesis. First
the motivation for this research is discussed in Section 1.1, followed by the problem
statement in Section 1.2. After that, we state our project goal (Section 1.3) and
research questions (Section 1.4). At the end of this chapter, we discuss the scope of
the project in Section 1.5 and our approach in Section 1.6.

1.1 Motivation

Twence is a company that produces raw materials and energy from waste and
biomass. They contribute to reducing CO2 emissions, reintroducing raw materials,
and reducing the use of fossil fuels. They extract raw materials from waste supplied
by customers in the Netherlands, Germany and the United Kingdom. There are
therefore customers that sign a contract with Twence to get rid of their waste and
biomass but also customers that sign a contract for buying energy.

In 2011, Twence made the decision to start a project called "Waste Mining". Due
to the economic crisis, the expectation was that the supply of waste could be in
danger, which would lead to stagnant machinery. It would be bene�cial for Twence
to ensure supply by digging up waste from land�lls. Twence has a lot of space avail-
able for storage, so a plan was made to dig up waste in order to gain inventory. This
provided Twence with security about the supply of raw materials for their processes.

Twence now has about 100 kilo tons (Kton) of waste in their bulk storage, enough
for almost 60 days of processing without supply. Because of rules and regulations,
all waste that is in storage can only be kept there for at most 3 years. This roughly
means that in a year on average 33 Kton waste needs to be retrieved from storage.
This causes a lot of costs and Twence does not know if these costs outweigh the
bene�ts of having this amount of inventory. They wonder whether they could work
with, for example, half of their current amount of bulk storage or even without it.
In this study, we therefore explore the e�ects of these di�erent scenarios.

1.2 Problem Statement

First of all it is important to understand the current way of working at Twence.
In Section 1.2.1 we describe the waste �ows and give more insight in the physical
movements of the waste. After that we explain more about the quality of waste in
Section 1.2.2. In Section 1.2.3 we conclude the problem statement in which we state
the main topic of this research.

1



Chapter 1. Introduction

1.2.1 Waste �ows

There are several types of waste arriving at Twence. In this research we focus on
the largest stream, the combustible waste.

Figure 1.1: Flow from waste to AEC

In Figure 1.1 we see the path that combustible waste follows when arriving at
Twence. A truck arrives at Twence where it is weighed in. Next the truck gets
directions towards either the Waste Energy Plant (AEC) or the Temporary Storage
(TOP). When the bu�er of the AEC has room, the truck is sent to the AEC to
drop the waste in the bu�er. If the bu�er is full, the truck needs to be diverted and
delivers its waste at the TOP, which serves as bulk storage.

The most cost e�ective route for Twence is when the client is sent directly towards
the AEC. This is because the client then pays for the transportation to the machines.
When clients are diverted to TOP, Twence eventually has to transport the waste
from TOP to the AEC themselves, which leads to internal transport (red arrow
in Figure 1.1) with associated costs. The probability of the occurrence of these
costs need to be taken into consideration when making decisions about contracting
supply. When the supply is more than the requirements it could be the case that
the waste of many clients end up in the bulk storage, which leads to additional
costs.

1.2.2 Quality

The waste that Twence processes is used for generating energy. This process works
best when the incineration is done as constant as possible. This can be achieved by
having a constant homogeneous mix of waste. The characteristics of the waste that
in�uence the incineration process can be seen as the quality of the waste.

To give an example, waste with high moisture content is more di�cult to incinerate.
This is because of the fact that it takes a lot of energy to evaporate the water from
the waste. This means that when trying to incinerate wet waste, the �re is not
as powerful as with incinerating dry waste. Therefore, more waste is needed to
maintain the same level of �re power as when having waste with low moisture
content. These characteristics of waste need to be taken into consideration when
making a decision about which waste to incinerate. Seasonal e�ects could be that
waste, that is stored at the bulk-storage, gets wet from rain. The waste still needs
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1.3. Project Goal

to be incinerated, so Twence needs to make decisions about what mixture of high
and low quality raw material is needed in order to achieve a constant performance
level. It is not only the opinion of Twence, but also our opinion that a lot can be
gained from making decisions based on the calori�c value of the waste.

1.2.3 Problem

The way in which decisions are made, on what ground they are made, and when they
are made are key factors in this research. Twence diverts almost 12% of their supplies
to the bulk storage, and is currently making decisions only based on quantities.
Together with the amount of supplies that already lies in bulk storage, this results
in an average storage costs of e600.000 per year including the costs for the storage
location, diverting, and retrieving. In order to reduce the amount of supplies that
need to be diverted to the bulk storage, Twence could stop accepting new contracts.
However, a trade o� needs to be made between having costs for diverting supplies,
or having the risk of costs for stagnant machines. When decisions are also based on
the quality of the supplies, the percentage of diverted supplies could be even higher,
because a perfect mix of di�erent qualities of waste could be more important than
the costs for diverting. These trade-o�s are examined in this research in order to
give Twence more insight in their supply chain and current way of working.

1.3 Project Goal

In the section about the motivation for this research we re�ected upon the amount
of inventory that Twence holds. This leads to additional costs from transporting
the waste to the machines. The question is whether it is worth to have assurance
of supply if this leads to high costs.

Apart from retrieval of waste due to rules and regulations, also a mismatch be-
tween supply and requirements is a cause of costs for transporting supplies to the
machines. The amount of supply that is contracted should closely follow from the
given requirements, otherwise the AEC can not process the amount of incoming
waste and Twence is forced to redirect the arriving supplies.

Figure 1.2: Twence Supply Chain

Twence wants to gain more insight in the supply chain, which is de�ned in Figure 1.2.
To achieve this, Twence has set up the following project goal:

3



Chapter 1. Introduction

�Analyse the current supply chain elements and design interventions to achieve an

e�cient and cost e�ective supply chain, which is characterized by clear decision

making, e�ective planning, optimal inventory control, and good quality

performances.�

To determine what kind of interventions need to be made, we need to analyze all
decisions that are made in this supply chain. When all these decisions are clear, a
model can be designed to give insight into the e�ects that these decisions have.

By cost e�ective we mean that we want to minimize the costs, given the choices
Twence makes. This involves the costs that are made as a consequence of the deci-
sions made. So when Twence decides that it wants to operate without bulk storage,
the costs that occur due to stagnant machines should be minimized. When they do
make use of bulk storage for combustible waste, they want to minimize the costs
regarding the replenishment from bulk storage.

For this research we derive a more tangible project goal based on the goal set by
Twence, which is the following:

Analyze the decisions that are involved with diverting and retrieving
waste and provide insight about how Twence can improve their internal

supply chain while minimizing costs.

From the project goal, we derive a couple of performance indicators. These are
summarized in our research goal by stating that costs need to be minimized. All
performance indicators in the goal of Twence can be reduced to minimizing costs. An
e�ective planning ensures that there is always enough supply as is required. When
this does not match, costs arise. The same holds for the term optimal inventory
control. Goal of this research is therefor to provide insight into the trade-o�s that
need to be made while taking into account the costs that arise with each decision
made.

1.4 Research Questions

To keep focus on the project goal, we formulate research questions. First we state
our main research question:

How can Twence improve their internal supply chain in order to
optimize the performances of their processes, while minimizing the

costs of idle time of the machines and of internal transport?

We formulate the following subquestions in order to provide a good answer to the
main research question. All these subquestions are answered in a separate chapter.

1. What is the current situation of the internal supply chain at Twence?
In the Chapter 2, we discuss the current situation. We describe the di�erent
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1.5. Scope

processes at Twence. We state which decisions are made and who are respon-
sible for these decisions. The performance of di�erent processes is shown as
well as the e�ects of having a large inventory.

2. What can be found in academic literature to support this research?
In the academic literature a lot can be found about supply chain performances.
We perform a search regarding the available academic literature about optimal
inventory control in combination with waste processing in Chapter 3.

3. What models can we construct that support optimal decision making?
With a well-structured model, we provide insight in the logical steps that
need to be made while taking decisions. In Chapter 4, we design a conceptual
model of which the results are evaluated later on.

4. What are possible interventions to improve the internal supply chain?
In Chapter 5, we design di�erent scenarios that involve changes in the way of
planning and variation in the size of the bulk storage. Possible interventions
are that the quality of the waste should be included in the planning or that
the bulk storage is not used, such that deliveries should be just-in-time.

5. What performance can be expected when using the designed model and pro-
posed interventions versus the current performance?
We evaluate di�erent scenarios by means of programmed version of our model
in Chapter 6. We make conclusions about the proposed interventions and
perform a sensitivity analysis.

6. How can we use these �ndings in order to improve similar entities at Twence,
such as the Biomass Energy Plant?
For clarity of our research, the Waste Energy Plant is the main point of
attention. We adapt our model to �t with this other entity . We evaluate this
in a separate case study about the Biomass Energy Plant in Chapter 7.

7. How can Twence implement these interventions in their current supply chain?
To make sure the proposed interventions are correctly implemented, we pro-
vide suggestions about how Twence can adopt these interventions and �t them
into their current supply chain in Chapter 8.

1.5 Scope

To clarify the scope of this research, we �rst give a simpli�ed illustration of the
internal waste �ows in Figure 1.3.
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Chapter 1. Introduction

Figure 1.3: Internal waste �ows of Twence simpli�ed, based on (Nijkamp, 2016)

In Figure 1.3 we see 3 incoming waste �ows from the left, namely:
• Waste supply for the Waste Energy Plant (AEC)
• Unsorted waste for Twence Waste Sorting (TAS)
• Wood supply for the Biomass Energy Plant (BEC)

These are the largest incoming supply �ows. The waste supply for the AEC is the
included in our scope and is the main subject of this research. The wood supply for
the BEC is discussed in a separate case study conducted after the main research.
The unsorted waste �ow is not included in our scope. As output from the TAS
there are the sorted recyclable materials, of which some is also wood and com-
bustible waste as output. The TAS therefore functions as an internal supplier for
the AEC and BEC. For this research we focus on all incoming waste �ows towards
the AEC, which means that the output of the TAS is taken as given and will be
added to the total supplied amount of waste for the AEC.

The processes in the main entity, the AEC, will mostly be seen as a black box oper-
ation. As discussed earlier in Section 1.2.2, the quality of the waste and in�uences
the process. The quality in�uences the throughput that can be achieved in the
AEC. This corresponds with the third block of the supply chain seen in Figure 1.2.
We do not take into account all the supplementary products that need to be added
to execute the process, but we treat the entity such that we have supply going in,
and products coming out, not caring about what the precise operation in the en-
tity itself is. The only thing we focus on, is the e�ect that the quality of the raw
materials has on the process time. When it would be the case that some outcomes
will have a positive e�ect on the lifetime of the incinerator or on the e�ciency of
the process in terms of supplementary products, this will only in�uence the results
in a case of almost equal costs.

For the arrival of supplies, the original intention is to not take into account the time
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1.6. Research Approach

of arrival. Twence does not want to work with time-slots, therefore, we only look at
the arrivals on a daily basis. The amount per day can be regulated in some cases by
the Marketing and Sales department (M&S) and it is interesting to see what e�ects
this could have.

The last part of our scope is about the planning process, which refers to the second
block in Figure 1.2. Here decisions are made about the supply for that day or week
and we focus on optimizing this process. These decisions are de�ned as short-term
decisions. We might also need to look at the long-term decisions, since these provide
the room that clients have to deviate from their agreed deliveries. We explain this
extensively in Section 2.3.

The degradation of the machinery, due to the consistency of the raw materials, is
something that is out of the scope of this research. Also the transportation of the
outgoing products, for example energy or heat is out of the scope of this research.
This is because it is not possible to make changes in the way of transporting these
without making costly changes. We do look at the quality of the raw material which
should be at a certain level such that good quality outgoing products are ensured.

Summarizing, the following subjects are included in the scope of this research:
• Incoming supply of combustible waste.
• Decisions regarding:

� Choice of incineration line.
� Retrieving/Diverting supply.
� Deviation agreements in contracts.
� Capacity of bulk storage.
� Taking quality into account.

The following subjects are out of the scope of this research:
• Speci�c arrival times of incoming supply during a day.
• Incoming supply of unsorted waste.
• Incoming supply of biomass. (Separate Case study)
• Degradation of machinery.
• Outgoing products.
• Financial rates in contracts.
• Exact working of the incinerators (incl: Supplementary materials).

1.6 Research Approach

The main goal of this research is to provide insight about how Twence can optimize
their supply chain. In order to achieve an optimal solution, a lot of possibilities
should be taken under consideration. A lot of factors are taken into account in the
current decisions-making process, but for example quality is a factor that is not one
of them. In this research, we aim to give an overview of all major factors that can
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Chapter 1. Introduction

play a role in the decision-making at Twence and how they in�uence their supply
chain in order to �nd an optimal situation.

Our research starts with the gathering of data about the current performance and
which decisions play a key role in the decision making, which is presented in Chap-
ter 2. After that we perform a literature study in Chapter 3 about how typical
characteristics in the waste energy management in�uence the process, which inven-
tory control models are available, and what types of models are suitable for this
type of research. We present a conceptual model in Chapter 4, which is followed by
Chapter 5, in which we program our conceptual model and design our experiments.
In Chapter 6 we present our numerical results and analyze our �ndings. In Chap-
ter 7, we follow up with a case study about the other main entity of Twence, the
BEC.

In our case, we are dealing with a lot of information and a lot of relations, which
makes it di�cult to use a mathematical model without becoming too complex. Sim-
ulation models have the advantage that input can be easily generated and di�erent
experiments can be modeled with few alterations. Because we want to �nd what
the in�uence is of the di�erent factors that play a role in the decision-making, we
need to analyze a lot of di�erent possibilities whereby we constantly make the de-
cisions depend on di�erent combinations of factors. To achieve a clear overview
of the e�ects of all major factors that play a role in the decision-making, we use
discrete-event simulation. Law and Kelton (2000) state that discrete-event simula-
tion concerns the modeling of a system as it evolves over time by a representation in
which the state variables change instantaneously at separate points in time, which
is a suitable choice for modeling our situation.
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2 | Current Situation

To get more acquainted with the di�erent operations that take place at Twence, we
start the chapter with a brief process description in Section 2.1, where we discuss
what happens when supplies arrive at Twence. A more detailed explanation about
the di�erent facilities can be found in Appendix A. After the process description we
discuss the current performance on di�erent areas in Section 2.2. We end this chap-
ter with Section 2.3, where we discuss di�erent decisions that are made regarding
the supply chain at Twence.

2.1 Process description
Before analyzing the current situation we �rst describe the processes that occur at
Twence regarding the supply chain. We pretend we are tagging along with a delivery
which will go through all the steps, starting from the point where it leaves the client.

When a delivery arives at Twence it must �rst be weighed and some information
must be given at the entrance checkpoint. At that point, Twence just knows three
things, namely: the amount, the type of supply (combustible waste, unsorted waste,
etc.), and the client who supplies. In this case, we assume that we are following a
delivery of combustible waste. In a pre-assignment plan is written on which incin-
eration line the deliveries of a certain client need to be incinerated. So regardless of
the amount and quality of the current delivery, we are send to a certain incineration
line. The delivery arrives at the incinerator, and is dumped in a bu�er. A crane
mixes all the waste that is currently in the bu�er. The crane drops the waste into
a funnel where it is incinerated. A schematic view of this is given in Figure 2.1.

Figure 2.1: A schematic view of the journey to incineration

As said, in the plan it is stated which client is assigned to which incineration line.
Sometimes on-line interventions need to be done in order prevent problems. If the
amount of waste in the bu�er of the incinerator (Figure 2.1) is above a certain level,
things like mixing the waste and accepting all deliveries become impossible. In that
case, the planner makes a modi�cation in the plan and informs the checkpoint about
this new plan. This could mean that only deliveries of a certain client need to be
sent to another incineration line, or even to the bulk-storage. But this could also
mean that deliveries of all clients need to be sent to bulk-storage.
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When the bu�er of an incinerator begins to run low, extra supply needs to be
scheduled. The �rst option is, that clients from the other incineration line are
scheduled on the low running line, in which case the checkpoint needs to be informed.
The other option is that supply is retrieved from bulk storage, in which case the
internal transport department needs to be informed. In the current situation it
does not matter which option is chosen, and decisions are based on amounts and
the limits of what is possible.

2.2 Supply chain performance

In the current situation, a number of things have in�uence on the performance.
We discuss these in the same order as how the waste arrives at Twence. We start
with client statistics in Section 2.2.1 followed by Section 2.2.2 about how good the
supplies are matching with the requirements. After that, we discuss the inventory
development of the last years at Twence (Section 2.2.3). Subsequently we review
the related costs in Section 2.2.4.

In the current situation, decisions are not based on the quality of waste. Never-
theless, we �nish the performance section by analyzing some quality factors of the
current situation in Section 2.2.5.

2.2.1 Client Statistics

The supply chain of Twence starts with the clients that provide the supplies. Twence
has a lot of di�erent clients varying from small clients that deliver waste only once a
month to large clients that deliver multiple batches of waste per day. We illustrate
the distribution of these types of clients in Figure 2.2.

Figure 2.2: Distribution of small clients and large clients

We recognize the Pareto principle in this chart, because we can see that 20% of the
clients provide 88,88% of the deliveries (35541 of 39982 deliveries) and even 92% of
the volume. We are interested in which day of the week most of the deliveries take
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place. Because deliveries almost never take place in the weekend, we suspect that
more deliveries take place at the beginning of each week. We show the results in
Figure 2.3.

(a) Average number of deliveries (b) Total number of deliveries
Figure 2.3: Amount of deliveries per day of the week

We see that, opposed to what we suspected, Monday is not the most popular day
for the deliveries. Most deliveries are done on Tuesday and Wednesday. If we look
at the �ve clients with the most deliveries in Table 2.1, these patterns also occur.

Monday Tuesday Wednesday Thursday Friday

Twente Milieu N.V. HHA 18,5% 21,4% 20,6% 20,3% 19,2%
Avalex B.V. 19,1% 21,4% 22,0% 19,5% 17,9%
Seneca Environmental 20,7% 23,0% 20,1% 17,6% 18,6%
ATTERO B.V. 19,2% 19,4% 20,3% 21,4% 19,7%
Van Gansewinkel Nederland B.V. 18,9% 21,2% 19,1% 18,5% 22,3%
Average 19,31% 21,27% 20,41% 19,47% 19,54%

Table 2.1: Distribution of deliveries op the top 5 clients

We see that the di�erences are very small and the deliveries are almost equally
divided over the weekdays.

2.2.2 Contracts versus Requirements

Matching the supplies of the clients with demand is important for Twence. In the
�rst place, Twence does not want to have under-supply because this causes idle time
in the incinerators. On the other hand, when Twence has structural over-supply,
the holding costs of all those supplies increase rapidly. The e�ect that idle time in
the incinerators and the amount of inventory has on the costs is discussed in Sec-
tion 2.2.4. In this section we give an indication about how Twence has performed
on matching the acquiring of contracts and thus supplies, with the requirements of
the processing facilities in order to achieve maximum production.

In Figure 2.4 we see the combined chart of realized supplies and requirements.
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Figure 2.4: Realized di�erences at AEC

We see that over an entire year, the supplies and the requirements do not di�er
much from each other. However, this is after an entire year, so we can not see any
�uctuations that happen during the year. In Figure 2.5 we show the daily supplies
and how much the forecast was. These results are from the year 2015.

Figure 2.5: Daily Supplies (Twence BV, 2015)

If we zoom in on an entire year and look at the supply on a daily basis, we see a
lot of deviation from the forecast. In Figure 2.5 we see the prognosed (based on
contract agreements) and realized daily supply and we see that there is a reasonable
amount of deviation. The big drops in supply can be explained by unscheduled stops
that required the supply to stop. But apart from that, the amount of deviation in
the regular periods results in a lot of work for the planner group that monitors
the requirements and the supplies on a daily basis. The short term planning must
be executed very precisely because of the �uctuation in supply. When the planner
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group does not take into account any form of safety margins, it could happen that
the bu�er of the AEC becomes empty and the incinerators stop working. Therefore,
this research focuses on the improvement of the decisions that are made on the short
term.

When we look at the requirements (i.e., throughput) shown in Figure 2.6, we no-
tice that these are relatively stable. Again, the few interruptions that causes the
throughput to drop to zero are due to short unscheduled stops.

Figure 2.6: Daily Throughput of Line 1+2, and 3 (Twence BV, 2015)

The forecast for Lines 1+2 and 3 are straight lines and with the only exception that
Line 1+2 is interrupted once due to a scheduled stop. Straight line forecasts have a
big in�uence on the daily planning. If the forecast for the throughput indicates that
on a daily basis 900 tons of waste is processed, but in reality line 1+2 processes 1000
tons per week, there is a shortage of 100 tons per day. This would lead to retrieval
of waste from TOP, that could have been prevented by having a safety margin of
waste in the bu�er to cover the time it takes to adjust the amount of waste supplied
by the clients.

2.2.3 Inventory development

One of the triggers for this research is the amount of inventory at Twence. In Ta-
ble 2.2 information about the bu�ers and TOP is shown.

In Table 2.2, we see some �gures about the possible levels of waste in the bu�ers.
In the weekends, there will not be any external suppliers, so on Fridays at the end
of the day, according to Numan (2013) the desired level in the bu�ers should be at
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Minimum Maximum Fridays

Bu�er Line 1&2 1.500 5.500 4.500
Bu�er Line 3 2.000 10.000 3.000
TOP 0 200.000 n.a.

Table 2.2: Capacities of TOP and bu�ers (Numan, 2013)

a minimum of respectively 4500, and 6000 tons for Line 1&2, and Line 3. The min-
imum of the bu�ers in the table is based on the daily throughput plus an additional
1000 tons. This is because the bottom layer in the bu�er is of very bad quality and
causes trouble when being incinerated, so it should be mixed with new waste. The
maximum is based on the available space.

In the current situation, the minimum of the bu�er is just for the daily throughput.
This could also be used for the �uctuations in supply, but this is accommodated by
the bulk-storage (TOP). To ensure a stable incineration process, the waste in the
bu�ers needs to be mixed such that a homogeneous mass is formed. This mixing is
done best, when the bu�ers are not �lled up to their maximum. The ideal bu�er
levels are therefore when the bu�er is �lled to a maximum of about 85%.

In the desired situation, Twence would know by looking at the amount of waste
in the bu�ers whether diverting or retrieving is necessary. These lower and up-
per levels are therefore very important because those should prevent idle time or
mandatory diverting. This research will therefore also provide insight on what the
optimal levels are at which reaction of Twence is required.

TOP development over the years
In 2011, Twence made the decision to start a project called "Waste Mining". Due
to the economic crisis, the expectation was that the supply of waste could be in
danger, which would lead to stagnant machinery. As can be seen in Figure 2.7 this
led to a big increase of the inventory of waste.

When only looking at the inventory development over an entire year, we can not
conclude that Twence also can manage their process with less inventory. One must
keep in mind that this inventory is only needed when the bu�ers of the incineration
lines are beneath a certain threshold, which indicates that the risks of not having
enough waste to incinerate is too high. Therefore, we should also look at the inven-
tory development of the bu�ers of the AEC on a daily basis. Unfortunately, data
on the weekly or daily amount of inventory in the bu�ers of earlier years is poorly
registered. Therefore we use another method to �nd out the �uctuations in the bulk
storage, TOP.

To �nd out if the risks of not having enough waste or wood to incinerate is too high,
we look at the number of times that waste was retrieved from TOP. In the current
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Figure 2.7: Inventory development

situation, when there is a shortage in the bu�er and risk of downtime occurs, waste
needs to be retrieved. So retrieval is an indication of risk of downtime, and we can
use this to �nd out whether there was a lot of risk of downtime in 2015 and a big
bulk storage, TOP, was necessary. In Figure 2.8, we see the amount of waste that
is retrieved from TOP and see the total inventory per day expressed in the number
of days that is needed to process the entire inventory.

Figure 2.8: Top inventory in days work per day in 2015

When looking at the mutation of TOP inventory over the entire year, we can con-
clude that given the average amount of retrieval per day, the amount of bulk inven-
tory is rather high.

2.2.4 Costs

In this subsection we discuss the most important costs that are a�ected by the
decision making process. First, the costs for diverting and retrieving waste are dis-
cussed, followed by the costs for stagnant incinerators.

Costs for Bulk-storage
We want to know what the costs are for having waste in bulk storage. The site of
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Twence is large enough and Twence has a permit to store supplies until a maximum
of 200.000 tons of waste. Only when that maximum is exceeded extra costs are
made, because of a new rampart that needs to be build.

A recent calculation has been made about the costs of transporting 1 ton of waste
to and from there respective bulk storages (Nijkamp, 2016). In Table 2.3 we see the
total amount of retrieved and diverted waste per year. The total costs for diverting
a ton of waste and then retrieving that same ton of waste are also given. This leads
to a average costs per week for diverting and retrieving of e10.414,81 for the last
4 years, and even e11.447,69 for the last year. Refreshed waste is the amount of
waste that is replaced in TOP with new waste. So it is equal to the minimum of
the diverted and retrieved waste in a year, divided by the TOP inventory. We see
that the percentage of refreshed waste is more than the on average required 33%
per year. It is not bad to refresh more waste in a year, however, we see that this is
a trend over the last years.

2012 2013 2014 2015 Average

Retrieved Waste (tons) 51.139 50.764 60.512 37.729 50.036
Diverted Waste (tons) 51.140 70.233 45.765 51.202 54.585
Total Costs (e/ton) 10,69 7,02 12,99 14,19 11,22
Percentage refreshed 52,97% 65,52% 56,47% 53,73% 57,17%

Table 2.3: Total transport to/from bulk storage and associated costs

Costs for Idle time
Apart from the planned maintenance stops, Twence always have to run at full ca-
pacity, so with the incinerators burning at all time. This ensures the maximum of
electricity and heat that can be produced and gives a constant supply of energy.
Therefore, there always needs to be enough fuel in the form of combustible waste
for the AEC, to keep the incinerators running on full capacity. Because they run
on full capacity, any unplanned stop or drop in throughput can not be recovered.
Lower throughput or downtime are both included in the availability, which then
drops. The costs for every hour of downtime are summarized in Table 2.4.

Summer Winter Average

Incineration Line 1&2 2.380 2.620 2.500
Incineration Line 3 2.420 2.780 2.600

Table 2.4: Downtime costs per hour (e)(Bloemhof, 2015)

The di�erence between summer and winter is because the energy consumption is
higher in winter. We see that the costs can increase rapidly when the incinerators
are out of waste to incinerate. Therefore, it is of the utmost importance to make
sure that always enough waste is available to incinerate.
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2.2.5 Quality control

In the current situation, Twence does not take into account the quality of the waste
as much as they would want to do it. One of the reasons for this is that it is hard
to determine the quality of a certain batch of waste. Twence now has a couple of
quality inspectors. Their job is to approve the waste based on visual inspection.
For example, mattresses are not preferred within batches of waste with destination
TAS or AEC.

Apart from the visual aspects, waste also has some non-visual characteristics. A
very important one is the calori�c value. Calori�c value is expressed in MegaJoule
per Kilogram, which means that the higher the calori�c value, the more energy can
be won. As said, Twence has two incineration lines which have as di�erence that
line 1+2 is more suitable for waste with low calori�c value (around 9MJ/Kg), and
line 3 for high calori�c waste (around 11MJ/Kg). Incinerating a stream of waste
with constant calori�c value reduces costs through the more e�cient use of adju-
vants. Currently, a start is made on analyzing the e�ect of the calori�c value on the
throughput. Twence is working on a contribution margin model, which indicates
the e�ects on the costs of incinerating waste of a certain customer on a certain
incineration line.

It is not only the opinion of Twence, but also our opinion that a lot can be gained
from making decisions based on the calori�c value of the waste. Twence already
monitors the calori�c value after the incineration, but does not base any decisions
on it. From the data on calori�c value, we analyzed the e�ect of the calori�c value
of waste on the throughput of the incineration lines. The results are shown in Fig-
ure 2.9

The throughput that is used in this graph is based on the amount of waste that is
processed on a given day. The operator of the incineration line has the job to always
make sure that a constant amount of steam is produced in order to ensure the best
quality output of electricity and heat. The higher the throughput, the higher the
amount of waste was, that was needed to ensure this constant production of steam.

It can be seen in Figure 2.9 that, apart from some outliers, a linear relation oc-
curs between the calori�c value and the throughput of a certain incineration line.
From Figure 2.9, we can conclude that per incineration line, the calori�c value is
negatively correlated with the throughput, a low calori�c value results in a high
throughput, i.e., more waste is needed to achieve the same level of output. It could
be that a given calori�c value leads to a level of throughput when multiplied by
a factor (due to the possible linear relation). When we divide the throughput by
the calori�c values, the factors for incineration lines 1+2 and 3 seem to be around
about 19 for line 1+2 and 10 for line 3. We �t a normal distribution for the factor
that, when multiplied with the calori�c value, gives us the expected throughput.
The results are shown in Table 2.5.
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Figure 2.9: Correlation between Calori�c value and Throughput

Factor Distribution

FactorLine1 Multimodal with p(x) =
0,533·Normal[x; 19,0950 ; 0,0399] +
0,467·Normal[x; 19,5774 ; 0,0565]

FactorLine2 Normal[19,5890 ; 0,0778]
FactorLine3 Normal[10,3462 ; 0,0747]

Table 2.5: Fitted distributions for the factor (Throughput/Calori�c value)
Explanation on the �tting of distributions can be found in Appendix B

The waste is used as fuel for the incinerators. Twence gets paid to incinerate waste,
therefore it is logical that Twence wants to incinerate as much waste as possible
whilst keeping the AEC processing. This means that Twence would want to incin-
erate mainly waste with low calori�c value, because this leads to high throughput
and the need for a lot of fuel.

For example, waste with a high moisture content has a low calori�c value, so one
would think that Twence could simply wet the waste. But a high moisture content
also leads to faster corrosion and unburned residu, which leads to additional main-
tenance costs and even unplanned downtime, so this is not pro�table at all.
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When the calori�c value of a ton of waste is known, the factor from Table 2.5 can
be used to determine the total time needed to process this ton of waste by using
Equation 2.1.

Factor · Calorificvalue ·Mass = Processingtime; (2.1)

Knowing the calori�c value of arriving waste leads to two advantages. The �rst is
that Twence could pay attention to making sure the incinerator lines have a con-
stant calori�c value as input. As stated before, a constant calori�c value reduces
the costs for incineration because of less need for adjuvants. This does not mean
that the calori�c value should be at a certain level. The second is that with the
combination of calori�c value, mass and our calculated factor, Twence knows how
much process time is needed and how long it will take before the incinerator line
becomes idle.

Now Twence only knows the amount of mass that is currently in the bu�ers of the
incineration lines. Ideally, Twence also knows the calori�c value of the content in
the bu�er. Then Twence can decide per arriving client, which incineration line is
more suitable to go to, based on the match between the calori�c value of the content
currently in the bu�er and the batch of waste with a certain calori�c value, to which
incineration line this client should be send.

Therefore, it would be convenient for Twence to know the calori�c value of waste
per client. Unfortunately, there is currently not enough data available to deter-
mine this seperately for each client. We only have data on the calori�c value of the
seperate incineration lines and therefore, we analyze whether the calori�c value of
the supplies of all clients combined on a speci�c incineration line follows a certain
distribution. We analyze the results obtained from the measurements and calcula-
tions that are done after waste is burned. This is the same data on which we based
Figure 2.9. A summary of the analysis is given in Table 2.6.

Line Distribution

CalorificvalueLine1 Normal[8,705 ; 0,460]
CalorificvalueLine2 Normal[8,736 ; 0,528]
CalorificvalueLine3 Normal[10,229 ; 0,810]

Table 2.6: Fitted distributions for the calori�c value

First we tried to �t a distribution for line 1 and 2 together, because the waste is also
scheduled for these lines together and the lines share a bu�er so no distinction on
forehand can be made. With the combined data, a normal distribution did not give
a proper �t although the data did have signs of being normally distributed. We also
tried to �t the normal distribution for the lines apart from each other. This gave a
good enough value to conclude that we are dealing with a normal distribution for
the three separate lines with the parameters as shown in Table 2.6.
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2.3 Decision making

In order to provide a clear overview of all the decisions that need to be made in
the internal supply chain of Twence, we distinguish between long-term and short-
term decisions. As stated in Section 1.6, we want to design di�erent scenarios and
every scenario includes di�erent decisions. Therefore, we �rst discuss all the long-
(Section 2.3.1) and short-term decisions (Section 2.3.2) that are key to the current
situation. After that, we take summarize these decisions in Section 2.3.3 and point
out which decisions could also be taken into consideration.

2.3.1 Long-term decision making

To make sure that machines are always running, Twence has to ensure supply. In
the current situation, M&S is responsible for ensuring the external supply. This
means that they have to contract enough supply of waste and wood in order to
utilize the full capacity of the machines. For the long-term decisions, we look at a
period of one to �ve years ahead.

In Figure 2.10 we see the relations between the supply planning and the supply
requirements and who is responsible for it. The Operations department (Opera-
tions) is responsible for making a requirements planning. This planning is given to
M&S from which they can conclude how many supply they should contract for the
upcoming period. The requirements planning is based on the capacity of the ma-
chines, however, in a year Twence has to cope with planned stops for maintenance.
Bases on this information the requirements for a certain year are determined which
is communicated to M&S. They provide a year plan for the supply in the extent to
which this is possible. This leads to a forecast at the start of a year for the supply
and the requirements on a weekly basis.

We state the long term decisions in the current situation as being:

• How much ton waste is needed to keep the incinerators running at full capacity?
• How much ton waste is supplied based on the acquired contracts?
• How much bulk storage capacity should be available for this year?
• How much deviation in agreed quantities should be allowed per week?

For the current situation, the decisions are taken as presented in Table 2.7. For all
these decisions, the timespan is the upcoming year.

In Table 2.7, by a possible deviation of ±10% is meant that a client can deviate
from their weekly agreed amount with at most 10%. A client agrees on supplying
1.0 Kton per week, this means that he could supply an amount of 1.1 Kton one week
and 0.9 Kton the next week. Whenever a client exceeds these boundaries, Twence
calls the client and discusses a new amount to be supplied in the upcoming weeks
in order to get the average back within the ±10%.
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Figure 2.10: Relations between Supply and Requirements

Decision AEC

Required Waste for full capacity 600 Kton
Acquired contracts 610 Kton
Capacity of Bulk-storage 100 Kton
Possible deviation ±10% per week

Table 2.7: Taken decisions in current situation

2.3.2 Short-term decision making

With short-term decisions we mean decisions that need to be made for the upcoming
days, weeks or months to at most a year ahead. During the year, it happens that
the requirements change due to for example the quality of the waste. This change
should be compensated by decreasing or increasing the supply. However, sometimes
M&S can not change the pace of the supply due to the contracts with the clients.
When this is the case, there are three possible situations:

• Unable to decrease supply
Over�ow: The supply is higher than the requirements which leads to an in-
crease in the utilization of the bu�er. If the bu�er is full, the waste needs to
be diverted to TOP or send to an alternative location (competitors).
• Unable to increase supply (Current Situation)
Under�ow: The supply is lower than the requirements which leads to an
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decrease in the utilization of the bu�er. If the bu�er is empty, the waste
needs to be retrieved from TOP, which in the current situation is possible.
• Unable to increase supply (Situation without TOP)
Under�ow: The supply is lower than the requirements which leads to an
decrease in the utilization of the bu�er. If the bu�er is empty, the incinerator
will stop, which leads to costs as shown in Table 2.4. Supplies should be
increased as soon as possible.

As said, Twence has contracts with its clients that provide them with a margin of
10% by which they can over- or under supply the agreed amount over the entire year.
The decisions about whether to divert or retrieve the incoming waste and wood is
made in a consultation with all involved employees. This consultation takes place
two times per week and consists of a delegation from M&S and a delegation from
Operations. Together they take care of the planning of the internal logistics. In the
current situation these planners have the responsibility to ensure an e�cient �ow of
waste or wood towards the desired destination, while making sure that the entities
are neither over supplied as under supplied.

In Figure 2.11 we see the decisions that need to be made regarding orders that are
planned in. The �gure gives an overview of the situation in which Twence has to
deal with a possible over�ow.

Figure 2.11: Decisions when waste arrives at Twence
Same structure holds for line 3 (interchange A and B)

From Figure 2.11 we can conclude that in the situation of over�ow, we have three
options. We state the decisions for deliveries planned on line 3. The decisions are
the same with planned deliveries on line 1+2, only the lines need to be interchanged
in the following statements.

• Delivery is planned on incineration line 3, but risk of over�ow arises:

1. Reschedule delivery to line 1+2
2. Adjust delivery amount in consultation with client
3. Divert delivery to TOP
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With little modi�cations we can immediately list the decisions in a situation of
under�ow:

• Delivery is planned on incineration line 3, but risk of under�ow
on incineration line 1+2 arises:

1. Reschedule delivery to line 1+2
2. Adjust delivery amount of line 1+2 planned deliveries in consultation

with client
3. Retrieve waste from TOP

In the current situation, these are the decisions that are made and they are based on
mass. Just as with the long term decisions, we will point-wise state these decisions:

• On which line should the waste be scheduled?
• When is diverting necessary based on the level of waste in the bu�er?
• When is retrieving necessary based on the level of waste in the bu�er?
• When is retrieving necessary based on the age of the waste in TOP?
• When should waste be rescheduled to the other line?
• When should waste be send to an alternative location?

Also the short term decisions can be summarized for the current situation. The
results are shown in Table 2.8.

Decision AEC

Schedule waste on which line Line 1+2 or Line 3
Diverting If the level of tons of waste in the bu�ers is above 85% of the total capacity
Retrieving If the level of tons of waste in the bu�ers is below 15% of the total capacity

or if TOP Waste is about to become older than 3 years
Rescheduling If the level of tons of waste in one of the bu�ers is

above 85% or below 15% of the total capacity
Alternative location If bu�ers and TOP are full

or if diverting capacity is reached

Table 2.8: Taken decisions in current situation

As discussed in Section 2.2.3 about the inventory development, the thresholds, rep-
resented by 85% and 15% in Table 2.8, are very important. In the current situation,
there is no clear view on what these optimal thresholds are. We discussed some of
the �ndings from a report by Numan, but these �ndings also do not provide clear
guidelines. From personal observations we concluded that the thresholds are now
mainly based on human estimates. When the bu�er is almost full (85%) we divert,
and when it looks almost empty (15%), we retrieve. In our opinion, with a clear
research about what the optimal thresholds are, Twence could save a lot of costs
from unnecessary diverting or retrieving.
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2.3.3 Optional decisions

In the previous sections we discussed decisions that are applicable to the current sit-
uation at Twence. These decisions already give room to experiment with, but there
are some optional decisions, which could be inplemented in the planning process or
even replace some of the current decisions. We list a number of optional decisions:

• Should calori�c value be restricted in the contract?
• How much deviation in agreed calori�c value should be allowed?
• When is retrieving necessary based on the amount of processing time in the
bu�er?
• Should retrieved waste be selected by calori�c value?
• Should waste be rescheduled to the other line, due to the average calori�c
value of the waste in the bu�er?

As mentioned in Section 2.2.5, the calori�c value has e�ect on the process e�ency
by means of the amount of adjuvants needed for incineration. With the calori�c
value it is also possible to determine the processing time of a ton of waste. The
additional decisions we listed all include the calori�c value in the decision making
and have in�uence on the costs and e�ciency of the supply chain at Twence.

2.3.4 Recap on current situation

Throughout Chapter 2, we highlighted a number of remarkable things, indicating
that there are some things that could be improved regarding the decision making.

First of all in Section 2.2.2, we noticed that the supplies and requirements matched
over an entire year. However, during the year, a lot of �uctuation was found in the
weekly supplies. Therefore it is important to determine proper thresholds in the
bu�ers to cope with the �uctuation in the weekly supplies. Currently the thresholds
are around 15% and 85% and based on the mass of the waste. The forecasts for the
throughput of the di�erent incineration lines were straight lines, whereas the real
throughputs had more �uctuation. The calori�c value is something that could be
taken into consideration in order to achieve a proper forecast for the throughput.

In Section 2.2.3, we presented the inventory development of the bulk storages. Those
were constant, indicating that during a year there is not much �uctuation in the
bulk storages. So in order to save costs, the maximum capacity of the bulk storages
could be lowered.

In Section 2.2.4, the costs associated with having too much or too less supplies
were presented. The costs for downtime, shown in Table 2.4, are so high, that the
most important goal of Twence is to never have unscheduled downtime. The storage
costs do not outweigh the cost of downtime, but are still a reasonable amount of the
entire rate that Twence receives for combustible waste. Currently a lot more waste
is diverted and retrieved than is required based on the expiration date. This leads
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to a average costs per week for diverting and retrieving of e10.414,81 for the last 4
years, and even e11.447,69 for the last year. We use the costs per week as our �rst
performance indicator.

We have shown in Section 2.2.5, that there is a correlation between the calori�c value
of waste and the throughput. Calori�c value e�ects the throughput, so Twence could
also consider to determine the requirements based on the calori�c value. With that
Twence can make better forecasts about the throughput, because when only look-
ing at the mass of the waste, equal portions of waste with di�erent calori�c values
will give di�erent throughputs. We stated that having a constant calori�c value
as input increases the process e�ciency. Currently, the standard deviation of the
calori�c value is 0,491 and 0,810 for resp. incinerator lines 1+2 and 3. E�cient
processing is something that Twence desires and although we do not have insight in
the costs of variations in calori�c value, we still use the standard deviation of the
calori�c value in the bu�er as our second (but less important) performance indicator.

To get a clear idea about the next steps in this research and �nd out how decisions on
these subject are commonly approached, we perform a literature study in Chapter 3.
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In this research it is important to know what the conditions are under which Twence
should decide to divert to or retrieve from bulk-storage, which can be seen as a kind
of safety storage. We therefore, look at di�erent inventory models to see how this
is handled in general (Section 3.1). Another issue we addressed, was the quality of
the waste. We want to know if the e�ect of the quality is really that important or
that Twence does not need to take the quality into account while making decisions
(Section 3.2). The last part of our literature study is about ways in which we can
analyze and model all these di�erent variables in the most e�cient way (Section 3.3).

3.1 Inventory policies safety stocks

There exists lots of academic literature about inventory policies working with safety
stocks. Natarajan and Goyal (1994) point out that there are two kinds of uncer-
tainty to deal with, namely, demand-side and supply-side uncertainty. Inventory
models deal with these uncertainties by introducing a distribution for lead time and
for the demand as is done in Van der Heijden and De Kok (1992). In their research
a (R, S) inventory system is used where the lead time of an order has a probability
distribution function as well as the demand per customer. (R, S) inventory systems
are widely used and discussed in for example Hadley and Whitin (1963) and Peter-
son and Silver (1979).

Rawata and Altiokb (2008) introduce three policies for inventory control. All work
with the same review period, but di�er on other parameters. One has a safety stock
level equal to the order up to level. So whenever the inventory level drops blow
the safety stock, it is replenished back to the safety stock level. The second policy
works with a dynamic safety stock based on the intensity of demand. The last policy
has an order up to level higher than safety stock, which is calculated every S periods.

When working with di�erent product types or varying product qualities the heuris-
tics of Zhou et al. (2011) can be studied. They introduce a pull policy with and
without sorting of the di�erent types of products that are used for remanufacturing.
In the policy without sorting, if the inventory level is below the safety stock, the
inventory is supplemented with returned products, ignoring their quality. In the
policy with sorting, �rst the returned products with the lowest remanufacturing
costs are used. This means when looking at the way in which the safety stock is
maintained, it does not matter how many products of each quality are available. In
the case described in Zhou et al. (2011) it would be best to have as much returned
products with a quality that results in low remanufacturing costs.
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In our research, we are dealing with a client that needs to be served all the time
(i.e., Service level 100%). Also the demand is known, when the calori�c value
is known. The most important thing is to prevent stockout. In all previously
mentioned literature, and especially in Graves (1996) and Moinzadeh and Aggarwal
(1997), it is stated that the amount of safety stock should be enough to reduce the
probability of stockout to the desired level. We can not use policies directly found
from these articles. However, the general idea we found about that more safety
stock is needed for less probability of stockout, is useful for our research and we
determine the situations in which stockout could occur in order to determine the
safety stock.

3.2 The e�ect of calori�c value

Calori�c value is the value that indicates how much energy can be gained from a
certain object. For Waste-to-Energy plants this is of importance because most of
the time they have a target energy level they need to achieve. We �rst discuss the
e�ect of variation in the input of calori�c value after which we discuss some possi-
bilities to counteract on this variation.

Figure 3.1: Optimal range of calori�c value for incinera-
tion(Bujak, 2015)

Several articles discuss the need
of knowing the calori�c value
of waste to ensure a sta-
ble combustion process. Tou²
et al. (2014) and Fordham
et al. (2003) state that a vari-
ation in the input of calori�c
value causes variation in the
steam parameters and results in
an irregular production of en-
ergy.

In the article of Bujak (2015)
di�erent types of waste, par-
tially based on their calori�c
value, are examined to investi-
gate how much additional fuel
is needed to incinerate these
di�erent types. With conditions set to speci�c points, they show what the e�ect
of calori�c value is on the waste �ux in Figure 3.1. Based on calori�c value, an
optimal area can be determined where no additional fuel needs to be added in order
to attain a proper combustion process. Therefore it would be convenient to reduce
the variation or increase the predictability of the calori�c value of the input.
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Figure 3.2: Deviation of calori�c value relative
to its desired value when using selected batches
(Obrou£ka et al., 2015)

To counteract upon the variation in
calori�c value, di�erent solutions have
been proposed. Van Kessel et al. (2002)
suggests the use of an on-line control
system, that determines the calori�c
value of the waste that is put into the in-
cinerator. This system could be used to
alter other input parameters to obtain
optimal combustion conditions with the
given calori�c value. Calabrò (2010) ex-
amines the e�ect of waste separation on
the calori�c value. He concludes that
the reduction in energy available in the
residual waste is linked to mass reduc-
tion of the residual waste due to sepa-
rate collection. Obrou£ka et al. (2015) conduct research about batch formation of
the waste for incineration plants. They state that the best way to have a constant
steam output is to make sure that all input characteristics are stable and therefore,
when these characteristics are known, di�erent batches should be made separating
di�erent groups of input characteristics.

All suggested counteracts are agreeing about one main feature. The calori�c value
needs to be known on forehand to ensure the most e�cient combustion process.
However the problem is that in general the calori�c value is calculated during
(Van Kessel et al., 2002) or after the incineration. Obrou£ka et al. (2015) use
numerical simulation to recreate the separate batches with di�erent calori�c val-
ues they use, but suggest that long-term surveys of municipal waste composition
could give an indication about the characteristics of di�erent loads of waste. This
is mainly useful within our research, since we are dealing with di�erent clients from
which mean characteristics could be determined.

3.3 Decision support models

To optimize the decision making, the direct consequences of decisions need to be
known and therefor also the e�ect of the input characteristics on these outcomes
needs to be known. We discuss two options where a model is suggested to control
these input characteristics of the waste. First we discuss two options that concern
the collaboration between the treatment facility and the supplier. After that we
address three works that consider the supply as a given, and suggest solutions to
work with this in an e�cient way.
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3.3.1 Models concerning collaboration

Zhang et al. (2014) and �omplák et al. (2014) focus on the companies or municipal-
ities that bring their waste to Waste-to-Energy plants.

Figure 3.3: Multi-echelon network of solid
waste management (Zhang et al., 2014)

Zhang et al. (2014) develop a multi-
echelon supply chain model which
includes not only the waste incin-
erator, but also the waste collec-
tors and the distribution centers as
shown in Figure 3.3. �omplák
et al. (2014) develop a model that
considers multiple incineration facili-
ties. When a client wants to de-
liver waste to an incinerator, a gate
fee needs to be paid. In the
model of �omplák et al. (2014), the
gate fee depends on several things
including the capacity of the facil-
ity. In this way, waste is dis-
tributed evenly over the di�erent facili-
ties.

Both models are however not applicable
to our research. The model of Zhang
et al. (2014) has just a few amount of suppliers whereas in our situation we have
104 di�erent clients who most of the time also have di�erent suppliers. This would be
too large and complex to implement in the model. Also the model of �omplák et al.
(2014) is not applicable because in our research there is only one waste incinerator.

3.3.2 Models with given supply

In Leskens et al. (2005), Asthana et al. (2010), and Obrou£ka et al. (2015) we �nd
three models that provide solutions for dealing with a given supply in the most
e�cient way.

Leskens et al. (2005) and Asthana et al. (2010) both provide mathematical models
that simulate the waste incineration process and its input settings. The aim in
Leskens et al. (2005) is to use the model for predictive control of the process. They
endorse the fact that a stable process is the most pro�table, but point out that the
economic, i.e., maximization of waste throughput, and environmental objectives,
i.e., the con�nement of some �ue gas components, are sometimes con�icting with
each other. Leskens et al. (2005) use a predictive control model that is implement in
the incineration system. The model calculates the deviation of the current trajec-
tory and the desired trajectory and provides the system with the input parameters
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to minimize this deviation. The same can be said about Asthana et al. (2010), who
also provide a mathematical model that provides insight into the e�ects of several
operation parameters. Their model could serve as a basis for additional research
about the in�uence of operating parameters.

Obrou£ka et al. (2015) provide two mathematical models for batch production of
incinerated waste. They distinguish two di�erent options. The �rst is where the
waste is supplied in containers. The containers are gathered and contain a certain
amount of waste and need to be included in their entirety when chosen to be part
of a batch. With a mathematical model, a score is determined for each combination
of containers based on the weighted priority and urgency of the containers. The
priority is determined by giving weights to the di�erent variables that they moni-
tor (calori�c value, sulfur and chlorine content). The urgency is determined by an
equation that takes into account the age of the waste.

The second option is where the waste supplied and then is sorted and stored in
boxes. These boxes have their own characteristics, coherent with the monitored
variables. These boxes are at certain moments in time replenished and a combi-
nation needs to be made from the boxes, to get a batch of waste for incineration.
In their mathematical model, Obrou£ka et al. set a maximum of 800Kg per batch
which should consist of partials of 100Kg, selected from the various boxes (For
example 400 from A, 300 from B, 100 from C). In this option, the mathematical
model does not work with an equation for the urgency. This is due to the lim-
ited number of boxes, and the batch size the model uses is too small such that
not all the required waste can be used in a single batch. As a solution for this,
Obrou£ka et al. state two conditions that need to be ful�lled. These are that when
a box is �lled to 85% of its capacity or the box was not part of the batch for 5 times.

Both mathematical models are used to evaluate all possible combinations of contain-
ers or parts from di�erent batches in order to �nd the optimal combination. The
score of a batch is determined by the priority of the monintored variables which
should match the desired value. Further away from the desired score, means a
higher score, where the batch with the lowest score is the optimal batch to pick.

When looking at the models that take the supply as a given, which is also the
case in our situation, we conclude that only the model introduced by Obrou£ka
et al. (2015) is applicable for our situation. Especialy the �rst option Obrou£ka
et al. discuss, could be altered to match our situation. Leskens et al. (2005) and
Asthana et al. (2010) both focus too much on the input parameters of the entire
combustion process, which is out of the scope of our research. Just as with the model
of Obrou£ka et al. (2015), we could separate the supplies into di�erent groups based
on their calori�c value. With their model we could provide a predictable calori�c
value input which would lead to a predictable output. In the next subsection we
extensively discuss the �rst mathematical model introduced by Obrou£ka et al.
(2015).
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3.3.3 Mathematical model by Obrou£ka et al.

When we discuss the model by Obrou£ka et al., we come across a couple of indices
and variables. We describe these indices and variables in Table 3.1.

Input

N Number of containers
Pv Number of monitored thermo-chemical quantities
Limit The time limit after which a container is considered to be over-aged
Step The number of times that the period after which a container

becomes at an appreciably age �ts within Limit

Indices

j Container (1,...,N)
i Monitored variable (1,...,Pv)

Input parameters

qod Lower limit of batch weight of waste (Kg)
qdo Upper limit of batch weight of waste (Kg)
mj Weight of container j content (Kg)
anj 1 when container j content is part of the batch, 0 otherwise
wi Weight of variable i
hi Weighted average of monitored variable in the previous batches
κij Value of variable i in container j

priorityi Importance of monitored variable i (0,...,100)
maxi Maximum value of output variable i
urgentj Variable characterizing the age of container j
uj The age of container j

Table 3.1: Variables from the model by Obrou£ka et al.

The mathematical model of Obrou£ka et al. has the goal to �nd the optimal com-
position of the next batch of waste to incinerate, for every time period by selecting
di�erent storage containers with waste. This is done by the goal function shown in
Equation 3.1.

minKr =

{∑Pv
i=1w

j ·
[
hi −

∑N
j=1 κ

i
j ·mj ·anj∑N

j=1mj ·anj

]2}
·
∑N

j=1(1−anj)·(1+urgentj)∑N
j=1(1−anj)

(3.1)

Equation 3.1 gives the value for Kr by which the optimal batch can be determined.
�The criterion Kr is a dimensionless expression of conformance of the batch pa-

rameters currently compiled from the previous batch. The combination of batch that

has the lowest value of Kr is considered to be optimal.� (Obrou£ka et al., 2015) We
discuss Equation 3.1 step by step in order to clarify the workings of the model.
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All the total weight of a composed batch is bounded by a lower weight limit qod and
upper weight limit qdo, shown in Equation 3.2.

qod ≤
N∑
j=1

mj · anj ≤ qdo (3.2)

Equation 3.2 ensures that the sum of the weight of all containers that are included
in the batch perfectly matches the capacity of the incinerator.

Equation 3.1 starts with the sum over all wj. This stands for the importance of
di�erent monitored variables i. In the case of Obrou£ka et al. these monitored
variables are:

1. Calori�c value, priority1 = 80%

2. Sulfur content, priority2 = 10%

3. Chlorine content, priority3 = 10%

The sum of the priorities of all i should be equal to 100%, as is also the case with
Obrou£ka et al.. The importance is then calculated by Equation 3.3.

wi =
priorityi

100
·

(
1000

maxi

)2

(3.3)

The part in the square brackets in Equation 3.1 determines how much the value of
the composed batch deviates from the desired value. For all containers, κij is mul-
tiplied with the weight (mj) of its container and is only taken into account when
the container is part of the composed batch (anj). This is then divided by the sum
of the weights of all containers present in the composed batch, in order to �nd the
weighted average of variable i in the composed batch. hi is the weighted average
value of all previous batches, and the goal is to maintain an as constant as possible
waste in�ow based on several variables. The weighted average of variable i in the
composed batch is subtracted from hi to determine the deviation. The deviation is
then multiplied by its importance, which concludes the �rst part of Equation 3.1.

The last part of Equation 3.1 addresses the urgency of a container. As is also
the case in our research, over-aging of the waste should be prevented. The model
determines the urgency of a container by Equation 3.4.

urgentj =

[
max

{
uj −

limit

step
; 0

}]2
(3.4)

The number of periods that a container is waiting is given by uj. Step is the
number of periods until container j becomes at an appreciably age and Limit is the
maximum age of a container. To give a small example about the workings of this
equation we assume the following values:
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• u1 = 17 months old, u2 = 24 months old

• Step = 3 (So from 36
3
months the age becomes appreciably evident)

• Limit = 36 months

From Equation 3.4 follows the urgency of both containers:

• urgent1 = (max{17−36
3

; 0})2= 25

• urgent2 = (max{24−36
3

; 0})2 = 144

We see that container 2 gets the highest urgency which is also the correct outcome
because container 2 is older than container 1.

The urgency is used in the goal function, which brings us to the last part of Equa-
tion 3.1. We separate the last part of the goal function in Equation 3.5, to provide
some clarity about this part.∑N

j=1(1− anj) · (1 + urgentj)∑N
j=1(1− anj)

(3.5)

The composition of containers with the lowest value from the goal function is the
composition that is optimal to add as the next batch. In Equation 3.5 we will see
that leaving out the box with a high urgency, results in a high value for Kr. We
continue with the example given before, and use this as input for Equation 3.5.

In our example, we still have the previously mentioned containers 1 and 2, and we
want to �nd out what a better composition is: a batch consisting only of container
1, or a batch consisting only of container 2. Looking at Equation 3.5, we see that in
the denominator we need to take the sum of the urgencies of all containers that are
not part of the composition. By dividing this by the total amount of containers that
are not part of the composed batch, we get the average urgency of the containers
left out of the composition.

• Composition 1: Only container 1
This means that for Equation 3.5 we get a value of 144+1

1

• Composition 2: Only container 2
This means that for Equation 3.5 we get a value of 25+1

1

Again the equation provides the correct output. The value of the urgency in the
goal function when excluding an older batch from the composition becomes higher
than when the oldest container is included in the batch. A higher value, will lead
to a higher value for Kr and is thus a sign that this composition is not optimal.

We can perform a simulation that includes the model by Obrou£ka et al., in order to
�nd out what the e�ects could be of keeping a close watch on the average calori�c
value in the bu�ers of the incinerators of Twence.
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3.4 Conclusions from the literature study

In the literature about inventory policies we discovered that with most of the avail-
able inventory policies, the safety stock increases when the target service level in-
creases. Because no literature is available that describes our situation, where we
can make a homogeneous mix of our stock which heavily a�ects the demand, we are
limited to the general knowledge found about the relation between safety stock and
service level. This leads to the main �nding that the safety stock depends on the
target probability of stockout, which is in our case very close to zero.

In the second part of our literature study we examined the e�ect of calori�c value.
All literature found on this subject supports the idea that the calori�c value of
the waste used in incinerators should be as constant as possible to obtain the best
performance. This adds another positive e�ect to our idea that with a constant
calori�c value, the demand of the incinerator can be much better predicted.

From the part about the decision support models, we found a relevant study by
Obrou£ka et al. They perform a small simulation study, but our aim is to incorpo-
rate their model in our bigger simulation model combined with the guidelines from
Law and Kelton (2000) in order to test di�erent scenarios. Their idea of taking
calori�c value into account when composing a batch of waste to incinerate is di-
rectly applicable to the situation at Twence. We only need to alter the model in
such way that the containers or boxes used in their models represent the situation
with TOP.

In the next Chapters we �rst design a conceptual model, mainly based on the model
by Obrou£ka et al.. After that we program this model, turning it in a simulation
model in order to test di�erent scenarios.
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Based on the current situation and insights we found from our literature study, we
design our conceptual model. To examine di�erent scenarios we develop a simulation
model for which we introduce our approach in Section 4.1. After that we discuss in
Section 4.2 the concept of restricting clients to a range of supplied mass per week,
or otherwise to a range of supplied calori�c value or processing time per week. After
the concepts for the supply are determined, we need to make decisions about how
to handle these supplies. A decision model is set up for the two main decisions that
need to be taken when looking at the incoming supplies, the �rst being when to
divert waste, the second when to retrieve waste. Both will be discussed in a separate
Section (4.3 and 4.4).

4.1 Approach

In this research we develop a simulation model. From our literature study we found
that Law and Kelton provide a series of steps for a sound simulation study. The
steps are shown in Figure 4.1.

Figure 4.1: Steps in a simulation study (Law and Kelton, 2000)

Step 1 was done in Chapter 1 and in this chapter we discuss the steps 2 and 3,
although a part of step 2 (Collect data) was done in Chapter 2. We design con-
ceptual decision models suitable for the situation at Twence. The main focus for
the decisions that need to be made are about the restrictions on the arriving sup-
plies, the diverting of waste, and the retrieving of waste. After we designed our
conceptual models, we translate these models into a programmed simulation model
in Chapter 5.

4.2 Restrictions on supplies

In Chapter 2 we concluded that Twence only makes decisions based on the mass
of the waste. At the end of Chapter 2 we made a �rst suggestion towards making
decisions based on calori�c value of the waste in order to improve the predictability
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about how much waste is needed to keep both incinerators running at full capacity.
In Chapter 3 we found that a constant calori�c value in�ow leads to a more e�cient
incineration process. In our conceptual model we make use of the fact that when
working with a more constant in�ow of calori�c value is desired, it could be more
convenient to restrict clients to deliver supplies within a margin for the calori�c
value in stead of the mass. Currently, this is only done to a small extent because it
is not yet possible to accurately determine the calori�c value of waste before inciner-
ation. Therefore, we make an assumption about the knowledge of the calori�c value.

Assumption 4.1: Calori�c value of incoming waste is known upon arrival.

Restricting the clients on a certain range of calori�c value will be implemented in
the same way as the current restriction on the mass of waste, so on a weekly basis.

The e�ects of restricting the clients to a certain calori�c value and not to an amount
of mass results in a less predictable mass of waste that is supplied, but for the mass
that is supplied, the prediction about the processing time is more reliable. We
choose a margin of ±5% and not 10%, because the current deviation in calori�c
value is already most of the time within 10%. We expect that with a better pre-
diction of the calori�c value, better predictions can be made about the processing
time and therefore, better decisions can be made about what to do with the current
incoming delivery.

Apart from limiting clients to either the mass of the calori�c value, one would sus-
pect it would be even better to limit clients on both. Therefore, we design a third
option, where we restrict the client to a range of expected processing time as calcu-
lated from Equation 2.1, i.e. more mass in case of low calori�c value and vice versa.

In Chapter 5 we explain more about the workings of these restrictions. To test the
results of these contract restrictions on the supplies, we design scenarios in which
we implement these restrictions. After evaluating the results of simulating these
scenarios, we are able to answer the questions that arised at the end of Chapter 2
about the optional decisions of restricting the clients on the calori�c value or even
processing time in the contracts.

In Figure 4.2 we show the current situation and our proposed new situations.

Figure 4.2: Three possibilities for restricting supplies
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4.3 Diverting

When supplied waste can not be brought to the bu�er of the incinerator, it needs
to be diverted to the bulk-storage (TOP) or the delivery needs to be adjusted,
which we already discussed in Section 2.3.2. For our decision model we assume that
whenever supplies arrive at Twence, nothing can be adjusted anymore and Twence
accepts the delivery.

Assumption 4.2: Twence cannot adjust deliveries and has to accept all sup-
plies arriving at Twence.

Assumption 4.3: A maximum of 1500 tons can be diverted per week due to
truck capacity.

To design a decision model for diverting waste, we need to take a closer look at
part A and B in Figure 2.11. In order to prevent unnecessary diverting, a couple of
things need to be speci�ed:

• On which line should the waste be scheduled?
• When is diverting necessary based on the level of waste in the bu�er?
• Should waste be rescheduled to the other line?
• Should waste be send to an alternative location?

The �rst question is one that is already determined on forehand by making two
more assumptions about the arriving supplies.

Assumption 4.4: All supplies arrive at the start of the day and no distinction
is made between the clients.

Assumption 4.5: All the waste that is supplied has already been pre-assigned
to incinerating line 1+2 or incinerating line 3.

The pre-assignment of an incineration line is needed for the regular �ow of waste.
When bu�er levels increase or decrease too much, it is an option to switch waste to
another incineration line. The other three questions need to be answered for all the
arriving supplies.

Preferably, the bu�er of the incinerator is not �lled to its maximum capacity, which
is due to the need of spare capacity in case of retrieving and the room needed for
mixing the waste in the bu�er. When the waste is properly mixed, the incinera-
tor receives a constant calori�c value, which leads to a more e�cient incineration.
Therefore, we can not just use the capacity limit as a threshold for when waste
needs to be diverted, but we need to create some spare capacity.
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We design a decision model in order to determine a threshold, that stands for the
bu�er level at which actions need to be taken. We �rst make an assumption about
the amount of waste that is examined at once.

Assumption 4.6: 10 ton of waste is examined at once, due to crane capacity.

Chunks of 10 ton can be easily taken from trucks and thus we can make decisions for
these amounts of waste. Now we can set up the decision model for diverting waste,
shown in Figure 4.3. We examine the situation in which all supply has arrived at
Twence and then by chunks of 10 ton a decision is made about whether to send
the waste to its scheduled incinerator line or perform another option. The level of
waste in the bu�er is determined before adding the new 10 ton.

Figure 4.3: Decisions model for diverting waste

For this example, we set the threshold to 85% of the bu�er. Experiments should
indicate what the optimal threshold is. In our experiments we base the potential
values of the threshold on the probability of the bu�er becoming full. A more ex-
tensive explanation about the choice for potential thresholds follows in Chapter 5
where we design a programmed version of our model and design our experiments.
We base the potential values for the desired total amount of processing time on an
upper bound for the supplies, which we determine also in Chapter 5.

When diverting is not possible
It could be the case that the outcome of our decision models results in the decision
to start diverting. However, it could be the case that diverting is not possible. This
happens when the capacity of TOP is reached, or the maximum amount of diverted
waste for that week is reached due to truck capacity. The solution for this is that,
when diverting is not possible, we check whether one of the bu�ers still has room
for the waste (i.e., is not full). When bu�ers are completely full mixing waste in
the bu�er and retrieving waste is not possible, which is not desirable. When the
bu�ers are full and diverting is also not possible, the waste needs to be sent to an
alternative location (competitors) which leads to extra costs. The situation when
diverting is not possible is shown in Figure 4.4.
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Figure 4.4: When diverting is not possible

4.4 Retrieving

Retrieving waste is done to prevent waste in bulk-storage from over-aging, and to
prevent the incinerators from becoming stagnant. In the model we check every day
whether waste is over-aging within one month which is long enough due to the fol-
lowing assumption.

Assumption 4.7: Due to truck capacity, 2400 tons of over-aging waste can be
retrieved per week, which is done in batches of 600 tons.

This assumption justi�es the idea that with one month ahead we are always on
time to retrieve over-aging waste. Following from Assumption 4.3 and 4.7, the to-
tal combined truck capacity for diverting is lower than the total combined truck
capacity for retrieving according to Twence. Therefore, there could never be more
waste diverted to TOP than there could be retrieved and thus it is always possible
to retrieve fast enough to prevent over-aging. At the start of a weekday, TOP is
checked for over-aging waste. If there is waste in TOP that expires within a month,
retrieving is initiated according to Figure 4.5. If retrieving is not possible due to
full bu�ers, a competitor needs to be contacted to incinerate the waste for Twence.

In the current situation, Twence uses human estimation about whether the bu�er
level is too low when making the decision to retrieve or not. The current decision
model used at Twence is shown in Figure 4.5.

In Figure 4.5, the human estimation about the low bu�er level is shown in the �gure
as 15% of the storage capacity and as with diverting, an optimal level should be
determined by means of our programmed model. When the result of the decision
model is to start retrieving, the retrieval process is initiated.

Include calori�c value into decisions
In the current situation, only the mass of the waste is taken into account and so,
retrieving currently works with the following agreements:

• The selection of the waste that needs to be retrieved is by means of FIFO
(First In First Out). So the oldest waste is retrieved �rst.
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Figure 4.5: Decision model of retrieving in current situation

• The waste is separated in di�erent heaps to distinguish the age.
• It is preferred to retrieve as much waste as possible in a single drive, such that
transport utilization is maximized.
• When waste is over-aged and retrieving is not possible due to full bu�ers, the
waste is send to competitors.

In our research we examine the possibilities of taking the calori�c value into account
in two ways. The �rst is to take the calori�c value into account when waste is al-
ready in the bu�er of an incinerator. The second is to select the waste that needs
to be retrieved not solely on the age, but also on the calori�c value.

We already discussed in Section 2.2.5 that with the calori�c value, the processing
time of waste can be determined. When Twence knows the average calori�c value
and the mass that is currently in the bu�er, the total processing time can be deter-
mined. We design an alternative decision model for retrieving waste regarding the
level in the bu�er by taking calori�c value into account. The only alteration that
needs to be made to Figure 4.5, is that the 15% of the bu�er capacity should be
replaced with: a desired amount of processing time which is chosen such that the

probability of idle time is small enough.

We also want to examine the possibility of selecting waste for retrieving not solely
based on age, but also on calori�c value. An additional advantage of this, is that the
e�ciency of the incineration process could be increased. From our literature study
we found an interesting model that we apply to the situation of Twence. The model
of Obrou£ka et al. could be a good alternative way to determine what waste to
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retrieve at Twence. In the literature study we discussed their mathematical model,
and now we convert this to the situation of Twence.

Application of the model to our situation
For the model of Obrou£ka et al. to be applicable to the situation at Twence, we
need to convert the model to our situation. To do this, we adapt all equations
necessary in order to get a model suitable for our situation.

To adapt the goal function in Equation 3.1 in a proper way, we follow the same
order as used with describing the model of Obrou£ka et al.. Thus, we start with
Equation 3.2 where Obrou£ka et al. determines the total weight of the batch to be
used. We set up the following rules for determining the total weight of a batch for
our situation:

• The maximum mass in a batch waste that can be retrieved is 600 tons.
The total retrieving capacity is 2400 tons, which is done in batches of 600 tons

just as in the current situation. This corresponds with full truck load amounts.

• Waste is stored in 5 di�erent locations in TOP, based on the calori�c value.
So on every location waste of the same calori�c value is stored, also separated

into di�erent heaps according to age.

• The maximum mass from a single location is bounded by 600 tons divided by
the number of locations used in the batch. So in a batch composed from 4
locations, the mass from each location is bounded by 600

4
= 150 tons.

This limits the number of possibilities that need to be examined, which other-

wise would be 6005

• Spare room in a batch that occurs when a location has not enough waste to
reach the upper bound, can be used by other locations.
First it is checked whether more waste is needed to be retrieved. If so, the

remaining capacity is �lled with waste from the other locations

With these rules we rewrite Equation 3.2, to Equation 4.1.

anj ≤ mj · anj ≤
600∑N
j=1 anj

∀j, anj ∈ 0or1 (4.1)

So when anj is 0, the total retrieved mass from that location is 0. When anj is 1,
at least 1 ton of waste is used in the batch.

Next we take a look at Equation 3.3. Because in our situation, we have only one
monitored variable, namely the calori�c value, we skip Equation 3.3 in our model.

The Equation 3.4 about the urgency of the waste in a speci�c container, or in our
case location, is used directly in our model. Limit is in our case 3 years, and for
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Step we take a value of 6 months. Also Equation 3.5 can be implemented directly,
which leads to the following goal function for our situation, shown in Equation 4.2.

minKr =

[
hi −

∑N
j=1 κ

i
j ·mj ·anj∑N

j=1mj ·anj

]2
·
∑N

j=1(1−anj)·(1+urgentj)∑N
j=1(1−anj)

(4.2)

So Equation 4.2 examines, how much the weighted average monitored variable
(calori�c value) deviates from the desired value hi, in our situation the average
calori�c value of the current bu�er content. This deviation is squared and multi-
plied with the average urgency of the left out locations. The urgency gets higher
when waste of a location is becomes older. When evaluating the values for Kr,
explained by Obrou£ka et al. as a dimensionless expression of conformance of the
batch parameters currently compiled, we are looking for the lowest value and thus
a combination of locations such that the weighted calori�c value is closely to the
desired calori�c value and the urgency of the left out locations is not that high.

Model example
Situation 1: The bu�erlevel of bu�er 1+2 is determined to be lower than 15% of

its capacity after adding the expected supplies of today, and there is also not enough

waste expected to be supplied to reschedule from the other incineration line. This

means retrieving is necessary.

• Low thres. buf. 1+2 = 825 tons
• Low thres. buf. 3 = 1.500 tons
• Calori�c value of buf. 1+2 content =
9,25

• Exp. lvl of buf. 1+2 = 600 tons
• Exp. lvl of buf. 3 = 1.500 tons
• Calori�c value of buf. 3 content =
10,86

We only need to retrieve waste for bu�er 1+2 and we see that one batch is enough.
Now we need to �nd out which composition of TOP waste we want to retrieve. First
we state some example characteristics of TOP.

• Loc. 1 calori�c value = 8,11
• Loc. 2 calori�c value = 9,31
• Loc. 3 calori�c value = 10,77
• All loc. contain 600 ton waste.

• Loc. 1 oldest waste = 14 months
• Loc. 2 oldest waste = 7 months
• Loc. 3 oldest waste = 3 months

Next we examine all possible compositions in Table 4.1. We de�ned anj as a vari-
able that determines whether a location is used in the composition (1) or not (0).
mj is the mass of the waste used from that location, calculated with Equation 4.1.
The compositions using none or all of the locations are left out because this would
give a guaranteed 0 from Equation 4.2.

Now we want to calculate the score of each composition using Equation 4.2. The
�rst part of the equation contains hi and κj, which are in this example de�ned as:

• hBuf1+2 = Calori�c value of buf. 1+2 content = 9,25
• κ1 = Loc. 1 calori�c value = 8,11
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Comp anj mj

Nr. an1 an2 an3 m1 m2 m3

1 1 0 0 600 0 0
2 0 1 0 0 600 0
3 0 0 1 0 0 600
4 1 1 0 300 300 0
5 0 1 1 0 300 300
6 1 0 1 300 0 300

Table 4.1: All possible combinations

• κ2 = Loc. 2 calori�c value = 9,31
• κ3 = Loc. 3 calori�c value = 10,77

The second part of Equation 4.2 takes the urgency urgentj into account. urgentj
is calculated from Equation 3.4, where we take step 6 months and limit 34 months.
The values for urgentj for every location becomes:

• urgent1 = 69,44
• urgent2 = 1,78
• urgent3 = 0 (since waste in location 3 is not older than the step value)

In Table 4.2 we show the outcome of Equation 4.2 for every composition (the bold
values are best). We �rst de�ne two other situations to show the di�erence in results.

Situation 2: Waste in the locations is resp. 5, 30 and 30 months old

Situation 3: Calori�c value of waste in location 1 is 4,00

Comp Kr

Nr. Sit. 1 Sit. 2 Sit. 3

1 2,45 770,81 52,06
2 0,13 1,07 0,13

3 84,59 686,32 84,59
4 0,29 172,95 6,73
5 43,96 0,62 43,96
6 0,10 21,41 9,66

Table 4.2: Results from Equation 4.2

We see that in situation 1, it is important to choose location 1, because it is the
oldest. To compensate for the calori�c value, the model selects the composition
that also includes location 3, such that the average calori�c value approaches the
target of 9.25. In situation 2, the age of the waste in location 2 and 3 almost reaches
the maximum, therefore the model selects composition 5, that consists of location
2 and 3, although the average calori�c value is 10.04 (�9.25). In situation 3, the
model does not want to select location 1 due to the low calori�c value. Since it now
has nothing to compensate for the high calori�c value of location 3, it selects the
composition only consisting of location 2.
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4.5 Recapitulate on the conceptual model

In this chapter we presented our conceptual model. In Section 4.2 we stated our
ideas about the possibilities to restrict clients on their supplies. We found three
options, which are:

• Restrict clients on the supplied mass of the waste.
This means that the clients need to keep the mass of the waste in a delivery
within a speci�ed margin.

• Restrict clients on the supplied calori�c value of the waste.
This means that the clients need to keep the calori�c value of the waste in a
delivery within a speci�ed margin.

• Restrict clients on the supplied processing time
This means that the clients need to keep the calori�c value of the waste and the
mass of the waste in balance such that the processing time is with a speci�ed
margin.

In Section 4.3 and 4.4 we discussed the decision models for diverting and retriev-
ing. For both actions, certain thresholds need to be determined. These thresholds
indicate the moment from when one of both decisions needs to be taken.

In the current situation, the decision models for diverting and retrieving both only
work with the mass of waste. Our decision model uses the total processing time,
that can be calculated with the calori�c value, to determine whether retrieving is
necessary. To determine which waste needs to be retrieved, we adapted the model
from Obrou£ka et al. that determines which composition of di�erent locations with
waste having di�erent calori�c values is needed to get the optimal batch of waste
to retrieve.

Just as with the models in the current situation, our decision models work with
thresholds that indicate from when actions need to be made. In Chapter 5 we
program our conceptual model. This leads to a simulation model and with that
model we perform a variety of experiments to test di�erent scenarios and to answer
the following questions:

• Should clients be restricted on mass, calori�c value, or processing time?
• At what threshold should waste be diverted?
• At what threshold should waste be retrieved?
• Should decisions about when to retrieve and what to retrieve include calori�c
value?

The results of these experiments will be evaluated by means of the performance
indicators we found in Chapter 2, which are:

• Costs per week. (e10.414,81)
• Standard deviation of calori�c value in both bu�ers. (0,491 and 0,810)
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In this chapter we present our simulation model. We perform steps 4 to 7 from
Figure 4.1 in this chapter. We start with a model description in Section 5.1. After
describing the working of the model we present the model input in Section 5.2. In
Section 5.3 we validate the model and we end this chapter in Section 5.4 with our
experimental design.

5.1 Model description

In this section we present our simulation model by providing a short model descrip-
tion and an overview of the modeling assumptions. The technical description of the
model can be found in Appendix C.

5.1.1 Process description

In Figure 5.1 we show a simpli�ed representation of the process we are modeling.

Figure 5.1: Simpli�ed representation of modeled process

We discuss all parts of the process and, where possible, show how we implement
our conceptual model in our simulation model.

1. Arrival Process
The simulation starts at the beginning of each week with determining the supplies
of that week. After that, the supplies are divided over the weekdays according to
an empirical distribution explained later on. The incoming supply is already pre-
assigned to an incineration line and has a calori�c value. In our conceptual model
we discussed the possible restrictions for clients for their supplies (Section 4.2) and
concluded that for the arrival process we have three possibilities, namely:

• Restrict the clients on the amount of mass of the waste (current situation)
• Restrict the clients on the calori�c value of the waste (alternative 1)
• Restrict the clients on the supplied processing time (alternative 2)
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We implement these possibilities in the model as shown in Table 5.1.

Designed from historical data
Mass of supplies per week Calori�c value of supply per week

Contract
restrictions on
Mass

Uniformly distributed with
mean amount ± 10%

Normally distributed (Table 2.6)

Designed for experiments
Mass of supplies per week Calori�c value of supply per week

Contract
restrictions on
Calori�c Value

Normally distributed by
N(µ; 0, 1µ)

Uniformly distributed with mean
value ± 5%

Contract
restrictions on
Processing Time

Follows from Equation 2.1
Uniformly distributed with mean

value ± 5%

Table 5.1: Supply set-ups

The goal of these 3 possible contract restrictions is as follows. The �rst, contract
restrictions on Mass, is a resemblance of the current situation. These settings are
based on historical data. The second, contract restrictions on Calori�c value, is our
�rst alternative for the current situation. In this situation, we assume that restrict-
ing the clients on calori�c value and not on mass of waste, leads to less �uctuation
in the calori�c value of waste that is supplied, but more �uctuation in the mass
of waste that is supplied. Therefore, we use distributions that have a bigger stan-
dard deviation than in the current situation for the mass, and a smaller standard
deviation for the calori�c value. In the second alternative to the current situation,
contract restrictions on both the mass and the calori�c value, the aim is to control
the supplied processing time. In Section 2.2.5 we found that the processing time
can be determined when the mass and the calori�c value is known. So when we
make contract restrictions on both the mass and the calori�c value of the waste, we
indirectly restrict clients on the processing time they supply.

To make contract restrictions on the processing time, we use Equation 2.1. This
equation calculates the processing time by multiplying the mass with the calori�c
value with a factor depending on the incineration line. Given that we pre-assign
waste to an incineration line, we use the average of the corresponding factor. In our
situation, this will be as follows:

• 604800 seconds of processing time needed per week for lines 1, 2 and 3
• Processing time waste for line 1 = 19,32 * Calori�c value * Mass
• Processing time waste for line 2 = 19,59 * Calori�c value * Mass
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• Processing time waste for line 3 = 10,35 * Calori�c value * Mass

Because waste for incineration lines 1 and 2 come together as being for incineration
line 1+2, we add the processing time for a week, and take the average of the factor.
This leads to the following equations:

• Proc. time waste for line 1+2 = 1.209.600 = 19,455 * Calori�c value * Mass
• Proc. time waste for line 3 = 604.800 = 10,35 * Calori�c value * Mass

So when we say we restrict the client in their contract on the processing time, we
actually restrict them on the mass as well as the calori�c value. We restrict clients
to a range of ± 5% on the processing time, and we model this such that a processing
time and calori�c value are drawn from the uniform distribution and both lead to
a speci�c amount of mass. The mean calori�c value that we use for the uniform
distribution, is the historical mean.

At the beginning of each week in the simulation model, depending on the restric-
tions of the contracts, an amount of supplies for that week is determined using the
distribution of Table 5.1. This is done for incineration line 1+2 and incineration
line 3 because of the earlier mentioned pre-assigned incinerators that clients have.
This week amount is divided over the week by using an empirical distribution. From
historic data we select all weeks without holidays in order to get a selection with
week distributions. This selection counts as a representative sample of all weeks.
From this sample we randomly select a week distribution and use that for the cur-
rent week. The week distributions can be found in Appendix D. The motivation for
this distribution is the fact that when we use a separate distribution per weekday
for the percentage of supplies that arrives, the last day becomes dependent of the
other days.

On each day the waste scheduled for that day is created, where every 10 tons of
waste has a pre-assigned calori�c value according to the contract restrictions and
the incineration line that is pre-assigned.

2. Weigh In
The weigh in is the place where the supplies arrive at Twence. Waste arriving at the
weigh o�ce initiates the planning and decision making about what the next desti-
nation should be of the waste. At the weigh in itself nothing special is happening.

3. Panning & Decision making
In the planning department decisions are made about the next destination of the
arriving waste, but the department also controls the bu�er levels. The planning
department is triggered by every 10 ton of waste that arrives at the weigh in. First
we describe the implementation of the model for the diverting, and then we do the
same for the retrieving.
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3a. Panning & Decision making: Diverting
For the decision model, the planning department checks for every 10 ton of waste
whether it �ts in the bu�er of its scheduled incinerator. So when the waste is pre-
assigned to go to incinerator line 1+2, the planning department checks the level of
waste in the bu�er only taking the mass of that waste into account. When the level
of waste in the bu�er is above a chosen threshold, the planning department checks
whether the level of waste in the bu�er of the other incineration line is also above
its threshold. If so, the waste needs to be diverted if possible, and otherwise the
waste is send to the other incineration line. If diverting is not possible, the planning
department checks whether the bu�ers have any room and if not, the waste is sent
to an alternative incineration company. We display the course of the decisions in
Algorithm 1. The bu�ers of the incineration lines we discuss in the algorithms are
a shared bu�er for incineration line 1+2, and a bu�er for incineration line 3.

When a batch of waste arrives at Twence.

if Level of mass in bu�er of pre-assigned incineration line > High Threshold then

if Level of mass in bu�er of other incineration line > High Threshold then

if TOP Capacity reached OR Diverting limit reached then

if Both bu�ers are full then
Sent waste to an alternative incinerator.

else
Sent waste to a bu�er that is not full. (preferably bu�er of
pre-assigned incineration line

end

else
Divert waste to TOP.

end

else
Sent waste to bu�er of other incineration line.

end

else
Sent waste to bu�er of pre-assigned incineration line

end

Algorithm 1: Course of decisions for diverting; Based on Figure 4.3

3b. Panning & Decision making: Retrieving
The planners also need to decide when waste needs to be retrieved. As said, every
time that waste arrives at the weigh o�ce, the planning department is informed.
When the levels in the bu�er do not exceed the threshold for diverting, it could be
the case that retrieving is necessary. Then, again a similar course of decisions is ini-
tiated in our simulation model. In Algorithm 2 we show the decisions for retrieving
for the current situation, so the situation in which the decisions are purely based
on the mass.

In our conceptual model for retrieving, we include the calori�c value in the decision
making. As said, with the calori�c value we can determine the processing time and
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When a batch of waste arrives at Twence.

if Level of mass in bu�er of pre-assigned incineration line < Low Threshold then

if Level of mass in bu�er of other incineration line < Low Threshold then

if TOP is empty OR Retrieving limit reached then
Sent waste to bu�er of pre-assigned incineration line.

else
Sent waste to bu�er of pre-assigned incineration line.
Initiate Retrieving

end

else
Sent waste to bu�er of pre-assigned incineration line

end

else

if Level of mass in bu�er of other incineration line < Low Threshold then
Sent waste to bu�er of other incineration line.

else
Sent waste to bu�er of pre-assigned incineration line.

end

end

Algorithm 2: Course of decisions for retrieving. Based on Figure 4.5

thus, we can calculate the total processing time present in the bu�er and base the
decision to retrieve or not on that. This is because of the simple fact that it does not
matter how much waste is in the bu�er, as long as the processing time of that waste
is long enough to keep the incinerator burning until the next delivery. Because in
the model we have a delivery every day of the week, the maximum days without
a delivery that needs to be bridged is two days. Thus for our conceptual model,
Algorithm 2 is only altered in the �rst two if statements, and we state the changes
shortly in Algorithm 3.

if Level of Total Processing Time in bu�er of scheduled incinerator < Low

Threshold then
if Level Total Processing Time in bu�er of other incinerator < Low Threshold

then...
end

...
end

Algorithm 3: Changes relative to Algorithm 2

Apart from checking for the need of retrieving at every arrival of waste, the planning
department can also be triggered due to the over-aging of waste already stored in
TOP. At the start of each day we check the age of the waste in TOP, and when it is
near the 3 year mark, retrieving is initiated. The implementation of the retrieving
process is more extensively discussed at the description of the TOP Storage.
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4. Incinerator lines
In the simulation model, the part of the incinerators includes 3 incinerator lines
of which the �rst two share their bu�er (line 1+2). When waste arrives at the
incinerator, it is stored in a bu�er after which it is processed by the incinerator.
Since the new waste is mixed with the waste currently in the bu�er, the calori�c
value of the waste in the bu�er is redetermined. The processing time of the waste
is determined as soon as it leaves the bu�er. To determine the processing time, we
take the calori�c value of the waste and multiply this with a factor (Equation 2.1).
This process is visualized in Figure 5.2.

Figure 5.2: Process from bu�er to incineration

5. TOP Storage
In TOP Storage we distinguish two situations, namely, incoming waste and outgo-
ing waste. We discuss both situations, starting with the ingoing waste.

5a. TOP Storage: Ingoing waste.
TOP receives incoming waste whenever the planning department decides that di-
verting is needed. The way in which waste is stored depends on the way in which
the planning department makes their decisions. There are two options:

• Making decisions, not taking the calori�c value into account
(Current situation) Waste is stored on a large location in heaps separated by
age (week of arrival).
• Making decisions, taking calori�c value into account
(Alternative situation) Waste is stored on �ve di�erent locations in heaps
separated by age (week of arrival), being arranged for waste with:

1. Calori�c value ≤ 8
2. Calori�c value ≤ 9
3. Calori�c value ≤ 10
4. Calori�c value ≤ 11
5. Calori�c value > 11

When waste arrives at its arranged location, the time of arrival is registered in order
to determine the duration of being in TOP Storage.

5b. TOP Storage: Outgoing waste.
Whenever waste needs to be retrieved, the same two situations as with the ingoing
waste are distinguished. When the planning department makes decisions based on
purely the mass of waste (Figure 4.5), the waste is stored in one big location and
then retrieving just is done by selecting waste to a maximum of 600 tons per batch,
from oldest to newest.
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When the planning department does take the calori�c value into account, the waste
is stored in the �ve arranged locations. Retrieving is then done, following our
adapted model based on Obrou£ka et al. (2015) as discussed in Section 3.3.3 and 4.4.
So a batch of waste is composed by combining waste from the di�erent locations,
according to the optimal composition found by the adapted model of Obrou£ka et al..

At the beginning of each weekday, the age of the waste in TOP is checked. The
register that is used is arranged with the oldest ton of waste in the top line, so
only that line needs to be checked. Obviously, for the situation in which the waste
in stored at 5 locations, the age of the oldest waste at each location needs to be
checked. Whenever the age of the waste reaches the over-aging limit, retrieving is
initiated according to the situations discussed before.

When waste leaves TOP, the calori�c value of the waste could be lower due to the
weather conditions and the length of stay in TOP. The amount of decrease is based
on a deterministic process whereas a certain age of the waste that leaves TOP,
results in a certain amount of decrease in calori�c value. Equation 5.1 is used in
the model to determine the decrease. A more detailed explanation of the equation
is shown in Appendix E.

Decrease = 0, 00001 · (12 ·Ageinyears)2 + 0, 0014 · (12 ·Ageinyears)− 0, 0936; (5.1)

6. Output
In the output of the process itself, nothing special happens. The waste is inciner-
ated and is drained from the model. In Section 2.3.4, we listed our performance
indicators, the costs per week and the standard deviation of the calori�c value in
the bu�ers. We discuss how these are gathered.
• Average costs per week
At the end of every week, the amount of diverted and retrieved waste, the

amount of waste sent to an alternative incinerator, and the amount of idle

time of the incinerators are multiplied by their respective costs. At the end of

a run, the average over all weeks is taken.

• Both standard deviations in caloric value of contents of bu�ers. This provides
us with an average of the weekly made costs and by comparing this with the
current average costs per week, we determine which settings are optimal for
Twence.
At the end of the week, the average calori�c value in a bu�er is saved and at the

end of a run the standard deviation is calculated. This gives us an indication

about the �uctuation in calori�c value that is incinerated. Because we know

that the input of constant calori�c value is positive for the e�ciency of the

incineration, we would like to know which experiments provide the optimal

settings in order to achieve the lowest standard deviation of calori�c value

that is incinerated.
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5.1.2 Assumptions

In Chapter 4 we already came across some assumptions. These assumptions were
mostly used for the conceptual models we designed. Here we list all assumptions
we make to have a clear overview. The assumptions include the already stated
assumptions from Chapter 4 and are supplemented with some assumptions for our
simulation model. We state the assumptions, separated by categorizing themes.

Client arrival assumptions
• Calori�c value of all incoming waste becomes known upon arrival.
• Holidays are not taken into account.
• Processing continues 7 days a week, but arrivals are only on weekdays.
• Opening hours of Twence are not taken into consideration, all supply arrives
at the start of a day.
• No distinction is made between clients. All scheduled arrivals for an inciner-
ation line are combined.
• Based on the results found in Figure 2.9 and Table 2.6, when contracts are
restricted on mass, the calori�c values of waste are drawn from a normal dis-
tribution shown in the model input discussed in Section 5.2.

Planning assumptions
• The bu�er levels can be checked every day in real time.
• Decisions made by the planning department are executed immediately.
• In the model for the current situation, all supply is accepted by Twence.
• All the waste that is supplied has already been pre-assigned to incinerating
line 1+2 or incinerating line 3.
• 10 ton of waste is examined at once, due to crane capacity.

Storage assumptions
• When decision conditions include calori�c value, the waste is separated in
storage in 5 classes.
• When working with a certain TOP Capacity, the initial average inventory is
set to 80% of the capacity.
• Calori�c value decreases because of rainfall according to a deterministic pro-
cess as shown in Equation 5.1.
• Transportation time between TOP and the incinerators is negligible.
• A maximum of 1500 tons of waste can be diverted to TOP per week.
• A maximum of 2400 tons of waste can be retrieved from TOP per week.

Process assumptions
• There are no failures or maintenance shutdowns scheduled in our experiments.
• Processing times are based on calori�c value, mass and factor (Equation 2.1).
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• Although it is preferred that waste is incinerated on its scheduled line, no
other e�ects or costs occur when incinerating waste on an incinerator other
than the scheduled one.

5.2 Model input

In this section, we state all data that is used as input for our simulation model. All
parts of the process (Figure 5.1), are addressed separately. We start with de�ning
the variables in Table 5.2.

Input parameters: Contract restrictions: Mass
MassLine1+2 Uniform[6.435 ; 7.865]
MassLine3 Uniform[5.175 ; 6.325]
CalorificvalueLine1 Normal[8,705 ; 0,460] *
CalorificvalueLine2 Normal[8,736 ; 0,528] *
CalorificvalueLine3 Normal[10,229 ; 0,810]
Input parameters: Contract restrictions: Calori�c value
MassLine1+2 Normal[7.150 ; 715]
MassLine3 Normal[5.750 ; 575]
CalorificvalueLine1 Uniform[8,2698 ; 9,1403]*
CalorificvalueLine2 Uniform[8,992 ; 9,1728]*
CalorificvalueLine3 Uniform[9,7176 ; 10,7405]
Input parameters: Contract restrictions: Processing time

MassLine1+2
(Uniform[29.548 ; 32.637] /
CalorificvalueLine1) +
(Uniform[29.530 ; 32.618] /

CalorificvalueLine2)
MassLine3 Uniform[55.933 ; 61.779] / CalorificvalueLine3
CalorificvalueLine1 Uniform[8,2698 ; 9,1403]*
CalorificvalueLine2 Uniform[8,992 ; 9,1728]*
CalorificvalueLine3 Uniform[9,7176 ; 10,7405]
Input parameters: Costs
CDiverting e7,29 per ton**
CRetrieving e6,31 per ton**
CAlternative e25,00 per ton**
CIdleT imeLine1 e0,69 per second (Table 2.4)
CIdleT imeLine2 e0,69 per second (Table 2.4)
CIdleT imeLine3 e0,72 per second (Table 2.4)
Input parameters: Processing time
FactorLine1 Multimodal with p(x) =

0,533·Normal[x; 19,0950 ; 0,0399] +
0,467·Normal[x; 19,5774 ; 0,0565]

FactorLine2 Normal[19,5890 ; 0,0778]
FactorLine3 Normal[10,3462 ; 0,0747]
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Input parameters: Other
Legally determined max. age 3 years
80K TOP, age of each ton Uniform[ 0 days ; 1.054,00 days ]
40K TOP, age of each ton Uniform[ 0 days ; 925,93 days ]
5K TOP, age of each ton Uniform[ 0 days ; 181,40 days ]

Table 5.2: Model input for the simulation model
*Since waste arrives for incineration line 1+2, and both lines have the same processing capacity,
the calori�c value is assigned by taking the distribution chosen for line 1 or 2 with a probability
of 50% for each.
** Calculated from data found in Nijkamp (2016)

Motivation for the choice for the distributions can be found in Appendix B.

5.3 Veri�cation and validation

Before we start with designing experiments, we need to verify and validate the
model. Veri�cation is to check whether the model is correctly implemented and the
input is done right. Validation is to make sure that the outcome of the model does
not strike with reality and that the model transforms the input to output in a correct
way. To make sure we make a good veri�cation and validation, we need to compare
our model with historical data. For this, we use the model input with contracts
based on mass as seen in Table 5.2, but we change the mass that arrives such that
it matches the historical data exactly. That way, we can determine whether the
model reacts in the same way as in reality.

5.3.1 Veri�cation

To check the correctness of the model, we �rst made sure that the model was work-
ing properly. We examined the animation of the model and debugged it while
programming it. By making several pilot runs we checked the correctness of the
model by looking at several factors, such as the throughput and calori�c value. We
summarize this in Table 5.3.

Historical Model
Mean stDev Mean stDev

Supply per week Line 1+2 6.788 897 6.788 897
Supply per week Line 3 5.776 1.432 5.776 1.432
Calori�c value (1+2) 8,75 0,56 8,72 0,50
Calori�c value (3) 10,23 0,81 10,24 0,83

Table 5.3: Ver�cation of historical data and model data

The results in Table 5.3 approach the historical values closely. Because the distri-
butions are based on the historical data, the calori�c values would exactly match
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eventually when we would take a in�nite run length. The values for the supply
match perfectly as they were directly implemented as input.

5.3.2 Validation

To validate the model with reality, we use data from 2015, provided by the Planning
department of Twence. From these data we know the arrivals and the amount of
diverted and retrieved waste for every week and we edit the model to follow these
amounts. If we keep the arrivals and the amount of diverted and retrieved waste
per week the same, we can validate the way in which we de�ne our processing time
(Equation 2.1). For the second part of our validation, we no longer use the historical
data on the amount of waste diverted and retrieved, and let the model decide when
to do this.

The planning department made a forecast about the amount of mass in the bu�ers
for all incinerators combined for 2015. We validate the model by comparing the
amount of mass in the bu�ers combined following from the model with the forecast.
The results are shown in Figure 5.3.

Figure 5.3: Combined bu�erlevels (1+2 & 3), Forecast versus Model

In Figure 5.3 we see that the model follows the forecast very well. From Table 5.2
and Equation 2.1, we know that the determination of the calori�c value and therefore
also the processing time is based on a stochastic process. Therefore, the processing
time of the waste will never be a 100% �t with the historical data and that explains
the small di�erences in Figure 5.3.

In Figure 5.3 we only validated the processing of the waste, this because we used the
same amounts for diverting and retrieving as in the data from 2015. If we want to
validate whether our model also reacts on similar moments in time about diverting
or retrieving, we need to let the model make these decisions. So instead of copying
the data from 2015 about diverting and retrieving, we now let the model decide
when to divert or retrieve waste based on the conceptual models from Figure 4.3
and 4.5. In Table 5.4 we show the thresholds used in the decision models, set to a
level that corresponds with the current situation.
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Utilization Utilization

HighThresholdLine1+2 85% HighThresholdLine3 85%
LowThresholdLine1+2 15% LowThresholdLine3 15%

Table 5.4: Thresholds used for validation

Apart from the amount of mass in the bu�er, retrieving could also be initiated when
waste in TOP is almost over-aging. Because we do not know exactly what the age
of every individual ton of waste in TOP was at the start of 2015, we do not take
the over-aging of waste into account. Therefore, we expect that the model has a
lower average amount of waste in the bu�ers, due to the absence of the mandatory
retrievals. The results are shown in Figure 5.4.

Figure 5.4: Combined bu�erlevels (1+2 & 3), Forecast versus Model (Model decides when to
divert or retrieve

We see in Figure 5.4 that, just as we suspected, the average amount of waste in the
bu�ers is lower than in the forecast. However, the model follows the same �ow as
the forecast, indicating that the model reacts in the right way.

In the end we see that the model approaches the forecast. Reason for this is the di-
verting and retrieving to prevent over-aging. In the forecast, almost every week, an
amount of 1400 tons is retrieved. From week 5 onwards, 1500 tons are also diverted
in the forecast. This means that in the beginning the historical bu�er levels are
supplemented with 4 times 1400 tons of waste, which leads to a di�erence of 5600.
After this, every week a di�erence of 100 tons is recovered (1500 diverting minus
1400 retrieving). Therefore, in the beginning, the di�erence is about 5600 tons and
in the end around 900 tons which originates from the 47 weeks times 100 tons.

At this point, we validated the model in two ways, the �rst with diverting and re-
trieving amounts based on historical data and the second where the model decided
the amounts for diverting and retrieving. Both times, the model performed the way
we expected it to do, and it corresponded with reality.

Lastly, we need to validate the arrival process and costs in order to make sure we
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make a good comparison. To do this, we run the model, that makes the decisions
itself, 20 times and for a period of 30 years to ensure reliability. We then take the
average over the results to compare these with the costs we found for the current
situation. We �rst show the comparison between the realized arrivals and the ar-
rivals from our model in Figure 5.5.

Figure 5.5: Comparison between model arrivals and real arrivals

We see that the arrivals look similar to the real arrivals. In Table 5.5 we show the
characteristics of the model run versus the realization.
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Real Mass Mass 1.359,15 1.084,30 372,87 355,75 5.016,27 4.933,42 465,12 0 10.414,81
Model Mass Mass 1.421,90 1.150,01 301,01 273,47 4.874,01 4.573,52 425,64 70,84 9.944,01

Table 5.5: Performance indicator validation. *All arrivals are per day

We see that the costs per week are a bit lower, which can be explained by the
fact that the model has a lower standard deviation than the real arrivals. Twence
aims to have the clients supply their waste within a 10% margin of a speci�ed
mass. Currently this is not executed perfectly by the clients. We decide to keep the
arrival process the same for now, since we then can examine the situation Twence has
when clients stick to the contracted agreements. We later on perform a sensitivity
analysis on the deviation from these margins to see what the e�ect is on the best
found solution.
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5.4 Design of experiments

In this section we introduce our experiments. We show the experimental factors in
Figure 5.6.

Figure 5.6: All di�erent groups in which experimental factors arise

Start Scenario
First we design three scenarios, which are based on the level of bulk-storage. In the
current situation, Twence has 80.000 tons of waste in bulk-storage, they expect that
the overall costs arising in the supply chain is much lower when the amount of waste
in bulk-storage is much lower and suggested that it should be around 5 Kton. A
bulk-storage of 5 Kton results in an almost just-in-time situation where the coordi-
nation between Twence and its suppliers must be perfect. Another option could be
that the optimal amount of bulk-storage lies between these extremes, which is why
we designed these three scenarios, being a capacity of 80 Kton, 40 Kton and 5 Kton.

As mentioned in the assumptions in Section 5.1.2, when we choose for a TOP ca-
pacity, we examine the e�ect of having always around the 80% of the capacity as
averagel inventory. This leads to starting inventories of respectively 64 Kton, 32
Kton and 4 Kton. We limit the TOP to a speci�c capacity because we want to
be clear about the required space and capacity needed for the di�erent scenarios.
Because it is not logical to start with a TOP �lled to its capacity, we made the
assumption of starting at a level of 80%.

• Start scenario: TOP Capacity 80 Kton
The TOP is limited to 80 Kton. The initial inventory will be 64 Kton.
• Start scenario: TOP Capacity 40 Kton
The TOP is limited to 40 Kton. The initial inventory will be 32 Kton.
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• Start scenario: TOP Capacity 5 Kton
The TOP is limited to 5 Kton. The initial inventory will be 4 Kton.

Contract restrictions
The second part is about the restrictions stated in the contracts about the sup-
plies, that can follow the current situation or our designed options. The contracts
of the clients are currently based on an amount of mass of waste. Over an entire
year, a client needs to supply this amount of mass evenly over the year and in total
they may deviate 10%. Because the processing time of the waste is determined by
the calori�c value of the waste it might be logical to base a contract on a speci�c
calori�c value or even a speci�c processing time, such that less unnecessary diverting
or retrieving occurs. In Table 5.2 we displayed the input for this experimental factor.

Decision conditions
The third experimental factor is about the decision conditions. In Chapter 4 we
designed our conceptual model, which included decisions models about diverting
and retrieving. This experimental factor can be set to make decisions based on
mass, whereas the simulation model uses the models from Figure 4.3 for diverting
and Figure 4.5 for retrieving. The other setting is that the decision conditions
also include the calori�c value. The simulation model will then use the proposed
decisions models for retrieving. In short we state the di�erences:
• Decision conditions: Mass
Diverting decision: based on level of mass of the waste being above a certain
percentage of the capacity (high threshold).
Retrieving decision: based on level of mass of the waste being below a certain
percentage of the capacity (low threshold).
Retrieve from TOP: based purely on age, a batch is taken from TOP.
• Decision conditions: Mass, Calori�c value
Diverting decision: based on level of mass of the waste being above a certain
percentage of the capacity (high threshold).
Retrieving decision: based on level of mass of the waste being below a certain
amount of processing time (low threshold).
Retrieve from TOP: based on the Obroucka model, a composed batch is taken
from TOP.

Moments of intervention
We want the supply chain to be cost e�ective, so the causes of costs need to be
minimized. The moments of actions are de�ned as thresholds that represent a per-
centage of the bu�er level expressed in mass or in total processing time. The goal
is to �nd the optimal thresholds at which actions take place. So at the optimal
minimal bu�er level of bu�er 1+2, actions need to be done in order to make sure
that the incinerator does not end up without waste. At the same time, there needs
to be a maximum level such that enough space is reserved for mixing waste or for
mandatory retrieving. This group will have a lot of e�ect on the amount of experi-
ments that we are going to do, because we could examine all combinations from 0
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to 100%. To keep the number of experiments to a reasonable amount, we calculate
what logical thresholds would be. The results are shown in Table 5.6 and the cal-
culations can be found in Appendix G.

Low
ThresholdLine1+2

High
ThresholdLine1+2*

Low
ThresholdLine3

High
ThresholdLine3*

35% 60% 15% 60%
40% 65% 20% 65%
45% 70% 25% 70%

75% 75%
80% 80%

Table 5.6: Thresholds used during experiments
*High Thresholds are always the same for both bu�ers, motivation in Appendix G

Our experimental design consists out of four phases:

• Phase 1: Examine which e�ects supplies and starting inventory have on the
development of TOP.
• Phase 2: Examine the results when we vary all experimental factors.
• Phase 3: Examine the most promising results for a longer period of time.
• Phase 4: Examine the e�ects of assumptions and model input by means of
a sensitivity analysis.

These phases are explained in the next subsections.

5.4.1 Experimental design phase 1:

Supplies and inventory conditions

If we want the results of our experiments to depend solely on the experimental
factors we choose, we need to make sure that the starting conditions no longer have
in�uence on the results. There two things that could impede this process, namely:

• Amount of supplies.
• Initial conditions of the TOP waste.

We want to examine what the costs are of having di�erent amounts of initial TOP
inventory. However, to yield stable results, i.e., performance not heavily depending
on a run length, the TOP inventory should be at an almost constant level through-
out the entire experiment. If we examine a TOP inventory of 40.000 tons, which
after �ve years is just 5.000 tons, we cannot make a proper comparison. Also, the
initial conditions of the starting TOP waste can in�uence the costs. If we set the
initial conditions such that all the starting TOP waste is almost over-aging, a lot
of retrieving needs to be done directly from the start, and we can not make a fair
evaluation of the strategy chosen for an experiment.
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In phase 1 we examine, for all combinations of contract restrictions and decision
conditions, what the amount of supplies should be, for which the TOP approaches
steady state. The running time of the simulation model is very long, therefore,
in phase 1, we just want to examine when the TOP inventories reach steady state.
When this happens, we look at the conditions of the waste in TOP so we know what
conditions lead to steady state behavior. For phase 2, we set the initial conditions
of the starting TOP inventory to the values we found in phase 1 that led to steady
state. In Table 5.7 we see the experimental settings for phase 1. The low thresholds
for bu�er 1+2 and bu�er 3 are respectively 35% and 15%, the high threshold is 80%
for both. We make 30 runs with a length of 15 years.

TOP
Capacity

Contract
restrictions

Decision
conditions

Amounts of supply
(tons/week)

80K, 40K, 5K Mass Mass 12850, 12900, 12950
80K, 40K, 5K Mass Calo. Value 12850, 12900, 12950
80K, 40K, 5K Calo. Value Mass 12850, 12900, 12950
80K, 40K, 5K Calo. Value Calo. Value 12850, 12900, 12950
80K, 40K, 5K Both Mass 12850, 12900, 12950
80K, 40K, 5K Both Calo. Value 12850, 12900, 12950

Table 5.7: Experimental settings for phase 1

The extensive results from these experiments can be found in Appendix F. A sum-
mary of these results is shown in Table 6.1.

5.4.2 Experimental design phase 2:

All experiments

In phase 2, we take the results from phase 1 about the supplies and use these for
the experiments used in phase 2. We combine all experimental factors that we
earlier explained into experiments. We run these experiments for a shorter period
than desired since it takes a lot of computational time to reach steady state. Since
from phase 1 we will �nd the conditions of the TOP inventory and the amount of
supplies needed for steady state, we use these conditions and supplies in phase 2
without warm up. After we examined the results from phase 2, we take the most
promising experiments, which we then run for a longer period of time excluding a
certain warm-up period (phase 3).

Number of experiments
From the experimental factors, we can derive the total amount of experiments that
we need to do:

• Group 1: TOP Capacity (3 Options)

• Group 2: Contract restrictions (3 Options)

• Group 3: Decision conditions (2 Options)
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• Group 4: Moments of interventions (45 Options)

We keep the high thresholds for both bu�ers the same, because incoming waste
will mainly be distributed �rst over the two bu�ers before being send to TOP (mo-
tivation in Appendix G). This leaves us with 3 · 3 · 5 = 45 combinations for the
thresholds. This leads to a total of 3 · 3 · 2 · 45 = 810 experiments. A summary of
the amount of experiments is shown in Figure 5.7.

Figure 5.7: All combinations of di�erent experimental factors for phase 2

Number of replications and run length

We need to de�ne the number of replications and the run length of the simulation
experiments. First we discuss the type of simulation which is then followed by the
number of replications and run length.

In this simulation study we are dealing with a plant that is (preferably) running 24
hours a day. Therefore we do not have a natural event that ends the simulation and
we are dealing with a non-terminating simulation. In a non-terminating simulation
it is preferred to �nd a steady state from which we can read the performance. In the
�rst two phases, we do not work with a warmp up period because we �rst determine
the conditions under which steady state arises in phase 1, and �nd promising results
in phase 2. In phase 3, we do work with a warm up period.

We want reliable values for our performance measurement, therefore we need to
make sure that the con�dence intervals for these measures do not get too wide.
From Law and Kelton (2000) we found two strategies for constructing point esti-
mates and con�dence intervals. The �rst is the �xed-sample-size procedure, where a
single simulation run of an arbitrary �xed length is made, and then one of a number
of available procedures is used to construct a con�dence interval from the available
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data. The second is the sequential procedure, where the length of a simulation run
is sequentially increased until an acceptable con�dence interval can be constructed.

We choose to use the �xed-sample-size procedure, in combination with the repli-
cation/deletion approach as proposed by Law and Kelton, but without the warm
up period for our �rst two experimental phases. We have to make n independent
replications of length m observations (weeks). We chose a run length of 780 weeks
(15 years) and determine the smallest number of replications n such that:

tn−1,1−α/2
√
S2
n/n

X̄n

≤ γ′.

We compute X̄n, the average of the n replications, and S2
n, the variance in the n

replications. tn−1,1−α/2 is the student t-value for (n − 1) degrees of freedom and a
con�dence interval of (1− α) and γ′ is the corrected relative error.

The required number of replications is determined for the performance measure
costs per week, and for every initial TOP inventory the number of replications is
determined separately. In Appendix H a more detailed explanation is given about
what the required number of replications are when using a con�dence interval of
90% and a relative error of 10%. In Table 5.8 this information is summarized.

Start Scenario
Minimum number of
replications needed

Number of
replications used

80.000 Tons 12 20
40.000 Tons 23 25
5.000 Tons >30 100

Table 5.8: Required number of replications

The number of replications increases a lot when we start with a TOP capacity of 5
Kton (inventory of 4 Kton). This is due to the big e�ect that the costs for idle time
have. With a 5 Kton TOP capacity, the probability of having idle time becomes
larger, and thus more often costs for idle time will occur. Because these costs are
substantially higher than other costs, the costs per week are unstable and more
replications are needed to gain con�dence.

5.4.3 Experimental design phase 3:

Most promising results

In phase 3 we take the most promising results from phase 2 and perform longer sim-
ulation runs for these experiments. We determine a warm-up by using the Welch
method and take this into account whilst extracting the results from these longer
experiments. We de�ne �most promising� by looking at two criteria for the results
within the categories de�ned in Table 5.9.
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TOP Capacity
Contract
restrictions

Decision conditions

80K, 40K, 5K Mass Mass
80K, 40K, 5K Mass Calo. Value
80K, 40K, 5K Calo. Value Mass
80K, 40K, 5K Calo. Value Calo. Value
80K, 40K, 5K Both Mass
80K, 40K, 5K Both Calo. Value

Table 5.9: Categories for phase 3

• Best within own category
It is not unexpected that the results will heavily depend on the chosen con-
tract restrictions. We do not want to restrict ourselves to just looking at a
single type of contract restriction and therefore, we divided our experiments
in di�erent categories, as shown in Table 5.9. In Phase 3, we examine the best
results within each category.

• Better than current situation
Because we want to gain insight on how to improve the supply chain of Twence,
we conclude that it is not necessary to examine experiments that are already
best in their category but still have higher costs per week than in the current
situation.

5.4.4 Experimental design phase 4:

Sensitivity analysis.

After examining the results from phase 3, we select the experiments with the best
results and perform a sensitivity analysis. We made assumptions in this research
that might e�ect the results or assume situations that are not realistic.

The following assumptions shall be subjected to our sensitivity analysis:

• Section 6.4.1: The choice for a TOP capacity of 5, 40 and 80 Kton.

• Section 6.4.2: The deviation for the uniform distribution in contracts.

• Section 6.4.3: All supply arrives at the start of a day.

• Section 6.4.4: Calori�c value decreases because of rainfall.

• Section 6.4.5: No costs or other e�ects occur when not incinerating waste on
its scheduled incinerator.

With our sensitivity analysis, we hope to provide more insight on the e�ect of cer-
tain assumptions made on the results we found from phases 1-3.
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5.5 Conclusions

In this chapter we presented our simulation model. We gave a model description
and explained the model input. After that, we veri�ed and validated the model and
concluded that the results of the di�erent interventions from the model, represent
reality su�ciently accurate.

We presented our experimental design, which consists out of four phases. In phase 1
the goal is to �nd with which amount of weekly supplies leads to a steady TOP
inventory. When a steady state is reached, we determine the age distribution of all
waste in TOP. We take the found weekly supplies amount and age of waste in TOP
as initial conditions for phase 2. After analyzing these results, we examine the most
promising results for a longer period of time in phase 3 and perform a sensitivity
analysis in phase 4. The results of the four phases are shown in Chapter 6.
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6 | Numerical Results

In this chapter we present the results of our simulation experiments. We �rst discuss
the results for phase 1 in Section 6.1. In Section 6.2 we single out the top three
results based on the costs per week per TOP capacity, contract restrictions and
decision conditions (phase 2). The results for phase 3 are discussed in Section 6.3.
For phase 4, we perform a small sensitivity analysis on our results in Section 6.4
after which we make our �nal conclusions about the results in Section 6.5.

6.1 Experimental results phase 1:

Supplies and inventory conditions

In phase 1 we want to �nd the amount of supplies that would lead to an almost
constant level of TOP inventory throughout an entire experiment. This is to yield
stable results, i.e., performance not heavily depending on the run length. We want
to �nd an average weekly amount of supplies that leads to a stable TOP inventory
whether we start with an initial inventory of 64 Kton, 32 Kton, or 4 Kton. This is
because the experiments can no longer be compared when some experiments need
to process more waste than others, since then there is a higher probability of making
costs. Therefore, we use the same amount of weekly supplies for every experiment.

In Table 6.1 we present the results for the amount of supplies needed to keep a rela-
tively constant level of TOP inventory. In Table 6.1 we also state the conditions of
the waste in TOP whenever TOP reaches steady state. A more detailed explanation
of these results can be �nd in Appendix F.

Supplies for Line 1+2 7.150 tons/week
Supplies for Line 3 5.750 tons/week
Intial conditions 80K TOP: age of the waste Uniform[ 0 days ; 1.054,00 days ]
Intial conditions 40K TOP: age of the waste Uniform[ 115,74 days ; 1.041,67 days ]
Intial conditions 5K TOP: age of the waste Uniform[ 640,60 days ; 822,00 days ]

Table 6.1: Results from phase 1

The results from phase 1 will be used as input for the next phases.
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6.2 Experimental results phase 2:

All experiments

We present our results in three tables, one for each TOP capacity. Each table
shows the top three results for the di�erent combinations of contract restrictions
and decision conditions.

• Table 6.2: Results for experiments with TOP capacity of 5 Kton.
• Table 6.3: Results for experiments with TOP capacity of 40 Kton.
• Table 6.4: Results for experiments with TOP capacity of 80 Kton.

Results for TOP capacity of 5 Kton (init. & avg. inventory 4 Kton)
First we show the results of the di�erent con�gurations used with a TOP capacity
of 5 Kton.
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Mass Mass 0,45 0,25 0,80 5000 0,99 0,24 186,54 166,86 404,63 3.908,74 4.666,76
Mass Mass 0,45 0,25 0,75 5000 0,98 0,24 204,49 181,21 405,09 3.893,69 4.684,48
Mass Mass 0,45 0,20 0,80 5000 0,76 0,85 182,98 163,57 403,14 3.939,39 4.689,06

Mass Calo 0,45 0,25 0,80 5000 0,93 0,71 234,58 208,95 415,82 4.073,54 4.932,89
Mass Calo 0,50 0,25 0,80 5000 0,80 0,90 238,65 212,29 418,45 4.077,49 4.946,88
Mass Calo 0,45 0,25 0,75 5000 0,98 0,69 258,10 228,14 418,64 4.050,45 4.955,33

Calo Mass 0,55 0,25 0,80 5000 1,51 1,48 253,64 228,44 731,28 14.332,88 15.546,24
Calo Mass 0,55 0,25 0,75 5000 1,51 1,46 294,86 263,02 732,49 14.330,93 15.621,30
Calo Mass 0,55 0,25 0,70 5000 1,50 1,44 350,86 310,38 733,30 14.282,68 15.677,22

Calo Calo 0,45 0,25 0,80 5000 2,02 1,32 270,62 240,55 808,57 16.483,05 17.802,79
Calo Calo 0,45 0,20 0,80 5000 1,84 1,58 263,78 234,32 811,06 16.833,70 18.142,85
Calo Calo 0,45 0,15 0,80 5000 1,68 1,76 264,28 234,15 823,99 17.463,25 18.785,67

Both Mass 0,40 0,15 0,75 5000 0,14 0,34 195,39 175,85 94,18 550,03 1.015,45
Both Mass 0,50 0,20 0,70 5000 0,14 0,35 217,23 192,19 113,23 614,71 1.137,37
Both Mass 0,45 0,20 0,70 5000 0,26 0,35 207,61 190,33 80,36 688,50 1.166,80

Both Calo 0,45 0,15 0,75 5000 0,07 0,32 284,64 251,01 119,27 446,07 1.100,98
Both Calo 0,40 0,25 0,75 5000 0,25 0,14 271,17 242,01 118,15 594,68 1.226,01
Both Calo 0,45 0,15 0,70 5000 0,10 0,41 266,27 238,96 90,12 644,49 1.239,85

Table 6.2: Top 3 results per category for experiments with TOP capacity of 5 Kton

In Table 6.2 we see that when have a TOP capacity of 5 Kton (and thus an av-
erage inventory of 4 Kton), the costs per week are lowest with contracts restricted
on both the mass and the calori�c value (processing time). To attain the lowest
costs per week with these restrictions, Twence should not take the calori�c value
into account when making decisions. The total costs per week consist of the costs
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for diverting, retrieving, sending waste to an alternative location, and the costs for
idle time. The big di�erences in costs are mainly caused by the way in which the
contracts are restricted. When only restricted on the calori�c value, the amount
of waste that is supplied per week is the most uncertain. When having just 4Kton
on average in the inventory (less than 2 days of processing), we see that this leads
to a lot of costs for idle time. At the same time, with just a maximum of 5Kton
for storage, the capacity for processing over-supply is small. This is shown in the
costs for sending waste to an alternative location (competitors), which is also higher
when the supplies are more uncertain.

Results for TOP capacity of 40 Kton (init. & avg. inventory 32 Kton)
Secondly, we show results for experiments with a TOP capacity of 40 Kton.
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Mass Mass 0,45 0,20 0,80 40000 0,12 0,06 1.582,34 1.379,70 207,25 3,20 3.172,48
Mass Mass 0,45 0,25 0,80 40000 0,12 0,06 1.582,33 1.379,66 207,61 3,24 3.172,84
Mass Mass 0,45 0,15 0,80 40000 0,12 0,08 1.582,15 1.379,70 207,43 11,40 3.180,68

Mass Calo 0,45 0,25 0,80 40000 0,18 0,07 3.091,15 2.695,11 373,59 18,20 6.178,05
Mass Calo 0,45 0,20 0,80 40000 0,18 0,07 3.091,54 2.695,05 373,37 18,58 6.178,54
Mass Calo 0,45 0,15 0,80 40000 0,18 0,08 3.090,71 2.694,14 373,19 25,44 6.183,48

Calo Mass 0,45 0,25 0,80 40000 1,27 0,13 1.439,19 1.305,68 419,68 3.092,16 6.256,71
Calo Mass 0,45 0,20 0,80 40000 1,22 0,38 1.438,97 1.305,62 420,08 3.164,65 6.329,33
Calo Mass 0,45 0,25 0,75 40000 1,37 0,12 1.493,61 1.346,47 422,80 3.467,56 6.730,43

Calo Calo 0,45 0,25 0,80 40000 1,39 0,33 2.409,56 2.150,36 584,93 4.704,22 9.849,06
Calo Calo 0,45 0,20 0,80 40000 1,36 0,48 2.409,02 2.150,23 588,20 4.949,58 10.097,03
Calo Calo 0,45 0,25 0,75 40000 1,54 0,30 2.533,35 2.246,70 574,83 5.209,81 10.564,70

Both Mass 0,45 0,20 0,80 40000 0,06 0,05 1.558,28 1.352,77 50,64 0,00 2.961,68
Both Mass 0,45 0,25 0,80 40000 0,06 0,05 1.561,41 1.355,32 50,64 0,00 2.967,37
Both Mass 0,45 0,15 0,80 40000 0,06 0,05 1.565,28 1.357,86 50,64 0,00 2.973,78

Both Calo 0,40 0,25 0,80 40000 0,09 0,06 2.853,39 2.468,89 72,61 8,31 5.403,20*
Both Calo 0,40 0,20 0,80 40000 0,09 0,06 2.853,39 2.468,89 72,61 8,31 5.403,20*
Both Calo 0,40 0,15 0,80 40000 0,09 0,06 2.853,39 2.468,89 72,61 8,31 5.403,20*

Table 6.3: Top 3 results per category for experiments with TOP capacity of 40 Kton
*Exactly same costs occur since bu�er contents are always between low and high thresholds.

In Table 6.3 we can clearly see the e�ect of the adapted Obroucka model in the
results. The model is used in the experiments where the decision conditions include
the calori�c value. This means for the retrieving that not always the oldest waste is
selected �rst. Since on average every year about 10 Kton waste needs to be retrieved
from TOP due to over-aging, there is not much room for not taking the oldest waste
�rst. Although the adapted Obrouka model takes the over-aging into account, we

68



6.2. Experimental results phase 2:
All experiments

still see in the results that the costs for retrieving but also diverting (TOP is still
constant on average) are in some cases almost 2 times higher when the decision
conditions include the calori�c value. The best results are again found from the
experiments with restrictions on both the mass and calori�c value. As already ex-
plained, because of the higher costs for retrieving and diverting, the lowest costs per
week can be attained by not including the calori�c value into the decision conditions.

Results for TOP capacity of 80 Kton (init. & avg. inventory 64 Kton)
Lastly we present the results for experiments with a TOP capacity of 80 Kton.
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Mass Mass 0,45 0,25 0,80 80000 0,10 0,06 3.198,28 2.750,67 51,15 0,50 6.000,61
Mass Mass 0,45 0,15 0,80 80000 0,10 0,06 3.198,63 2.751,16 51,15 0,50 6.001,45
Mass Mass 0,45 0,20 0,80 80000 0,10 0,06 3.198,68 2.751,16 51,15 0,50 6.001,50

Mass Calo 0,40 0,25 0,80 80000 0,15 0,07 6.263,33 5.444,87 476,06 34,52 12.218,78
Mass Calo 0,40 0,15 0,80 80000 0,15 0,07 6.263,33 5.444,87 476,06 34,52 12.218,78
Mass Calo 0,40 0,20 0,80 80000 0,15 0,07 6.263,33 5.444,87 476,06 34,52 12.218,78

Calo Mass 0,45 0,25 0,80 80000 0,87 0,08 3.167,44 2.778,34 358,13 1.175,46 7.479,37
Calo Mass 0,45 0,20 0,80 80000 0,86 0,16 3.169,10 2.778,34 365,54 1.256,70 7.569,69
Calo Mass 0,45 0,15 0,80 80000 0,89 0,29 3.173,15 2.781,25 369,28 1.485,70 7.809,38

Calo Calo 0,45 0,25 0,80 80000 0,95 0,10 5.047,38 4.479,86 817,95 1.857,34 12.202,52
Calo Calo 0,45 0,20 0,80 80000 0,97 0,17 5.036,02 4.470,44 825,74 1.901,08 12.233,27
Calo Calo 0,45 0,15 0,80 80000 0,98 0,23 5.039,11 4.470,36 826,38 2.191,80 12.527,65

Both Mass 0,45 0,20 0,80 80000 0,07 0,05 3.155,02 2.725,56 0,00 0,00 5.880,58*
Both Mass 0,45 0,15 0,80 80000 0,07 0,05 3.155,02 2.725,56 0,00 0,00 5.880,58*
Both Mass 0,45 0,25 0,80 80000 0,07 0,05 3.155,02 2.725,56 0,00 0,00 5.880,58*

Both Calo 0,45 0,20 0,80 80000 0,08 0,07 6.173,24 5.295,83 72,27 0,00 11.541,34*
Both Calo 0,45 0,15 0,80 80000 0,08 0,07 6.173,24 5.295,83 72,27 0,00 11.541,34*
Both Calo 0,45 0,25 0,80 80000 0,08 0,07 6.173,24 5.295,83 72,27 0,00 11.541,34*

Table 6.4: Top 3 results per category for experiments with TOP capacity of 80 Kton
*Exactly same costs occur since bu�er contents are always between low and high thresholds.

The results of the experiments with the largest TOP con�guration again show the
di�erence in costs a�ected by the adapted Obroucka model for retrieving waste.
Again we see, that when the decisions conditions include the calori�c value, the
costs for retrieving (and thus diverting) increase. The costs for idle time are in
almost all cases lower than with the other TOP con�gurations, which is logical
since with more TOP inventory, there is more obligatory retrieving and thus there
is less chance of the bu�ers getting empty. With the 80Kton TOP capacity and thus
the average TOP inventory of 64Kton, the lowest costs per week can be attained
again by means of restricting the clients on both the mass and the calori�c value
(so on processing time).
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E�ect of including calori�c value into decision conditions.
As explained before, we noticed that the results for the experiments where the
calori�c value was included in the decision conditions were always worse than the
experiments where the calori�c value was not included. We explained that this was
probably because the adapted model of Obroucka does not always take the oldest
waste from TOP. We mean by this that for example, if waste is retrieved in week 7,
and it is not the oldest waste, it could be the case that in week 8, overaged waste
needs to be retrieved and so twice as much retrieving is done. This is an extreme
example since the model of Obroucka does take the over-aging into account, but it
is still the case that more waste needs to be retrieved due to over-aging.

In Figure 6.1 we show the amount of times that the model has requested retrieving
due to over-aging of waste during 20 simulation run replications. The red line repre-
sents the experiment where only the mass is included in the decision conditions, the
blue line represents the experiment where also the calori�c value is included. The
�rst graph is for a TOP capacity of 5 Kton, the second for 40 Kton and the bottom
is for 80 Kton TOP capacity. The horizontal axis shows the di�erent weeks and the
vertical axis shows the number of times retrieving is requested due to over-aging.
We see that the graphs show that for the 40 Kton and 80 Kton TOP capacity,
the blue line is almost always above the red line. This indicates that with these
settings the �Calo� variant, in which decision conditions include calori�c value and
the adapted Obroucka model for retrieving is used, has more obligatory retrieving.

Figure 6.1: Amount of times retrieving is requested due to over-aging

E�ect of the di�erent thresholds.
In Appendix G we explain more about the choice for the di�erent thresholds we
use in our experiments. When looking at the low thresholds for bu�er 1+2 that
mostly occur between the best results, we see that for all TOP capacities this is 0,45.
When decision conditions do not include the calori�c value, this number stand for
the percentage of capacity that should be �lled in the bu�er and otherwise retrieving
is initiated. When decision conditions include calori�c value, this number stands
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for the percentage of 10 days of processing time that should be in the bu�er, and
otherwise retrieving is initiated. So in most cases, for bu�er 1+2 there should be at
least 2475 tons of waste or in the other case 4.5 days of processing time available.

Figure 6.2 shows the e�ect of the di�erent thresholds we used. For every TOP
capacity, contract restrictions and decision conditions combination we had 27 com-
binations of thresholds. In Figure 6.2 we show the results for 80 Kton TOP capacity,
with contract restrictions and decision conditions set to �Mass�. In Figure 6.2 we
see all 27 combinations of thresholds with their associated costs per week. For ex-
ample, a certain experiment results in a costs per week of e7020,91 (not shown in
Table 6.4) and has the following thresholds: Bu�er 1+2 low 35%, Bu�er 3 low 20%,
and the high threshold is 70%. All these thresholds are shown in Figure 6.2 with
the green dots. This is done for all 27 combinations of thresholds. For every com-
bination of TOP capacity, contract restrictions and decision conditions, we created
similar �gures but we only show one here.

Figure 6.2: E�ect of di�erent thresholds for 80 Kton TOP capacity, contract restrictions and
decision conditions set to �Mass�

From Figure 6.2 we conclude that the low threshold for bu�er 1+2 is important, as
well as the high threshold. Both show that a higher value for the threshold shows a
lower costs per week. The low threshold of bu�er 3 does not show a clear preference
for a certain threshold. The other results are shortly summarized without showing
the similar �gures.

For the 5 Kton TOP capacity experiments, we notice that no big di�erences occur
in the costs when only the thresholds change slightly. From all results we concluded
that the low threshold of bu�er 1+2 for the 5 Kton TOP capacity experiments was
sometimes even too low. We therefore also performed another set of experiments
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where the low threshold could increase to 0,50 or even 0,55. This is why these
thresholds sometimes show up as being the best, although they originally were not
within the range of that experimental factor (Table 5.6).

For the experiments with 40 Kton and 80 Kton TOP capacity we also examined
whether we needed to increase the range of the experimental factors but overall
results showed that this was not necessary. Within the best results of the 40 Kton
and 80 Kton TOP capacity experiments we mainly see that only the low threshold
of bu�er 1+2 is of importance. Within con�gurations, this is the threshold that
is always the same for the top three results, whereas the low threshold of bu�er 3
takes all values possible within the given range but has almost no in�uence on the
costs per week.

The high threshold is 0,80 with most of the best experiments but we chose not to
increase this threshold because this would interfere with the wishes of Twence to
save room for mixing the waste in the bu�ers.

Comparing with the current situation.
In the current situation, Twence works with contract restrictions on mass, and de-
cision conditions exist solely of mass. If we compare all the experiments where we
have the same combination, we get the results as shown in Table 6.5.
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Mass Mass 0,45 0,20 0,80 40000 0,12 0,06 1.582,34 1.379,70 207,25 3,20 3.172,48
Mass Mass 0,45 0,25 0,80 40000 0,12 0,06 1.582,33 1.379,66 207,61 3,24 3.172,84
Mass Mass 0,45 0,15 0,80 40000 0,12 0,08 1.582,15 1.379,70 207,43 11,40 3.180,68

Mass Mass 0,45 0,25 0,80 5000 0,99 0,24 186,54 166,86 404,63 3.908,74 4.666,76
Mass Mass 0,45 0,25 0,75 5000 0,98 0,24 204,49 181,21 405,09 3.893,69 4.684,48
Mass Mass 0,45 0,20 0,80 5000 0,76 0,85 182,98 163,57 403,14 3.939,39 4.689,06

Mass Mass 0,45 0,25 0,80 80000 0,10 0,06 3.198,28 2.750,67 51,15 0,50 6.000,61
Mass Mass 0,45 0,15 0,80 80000 0,10 0,06 3.198,63 2.751,16 51,15 0,50 6.001,45
Mass Mass 0,45 0,20 0,80 80000 0,10 0,06 3.198,68 2.751,16 51,15 0,50 6.001,50

Table 6.5: Results for experiments similar to the current situation

We see that the lowest costs per week are attained when lowering the TOP capacity
(and thus the average inventory) to 40 Kton (32 Kton). This is because with too
much TOP inventory, the costs for diverting and retrieving become larger, and with
too less TOP inventory, the costs for idle time become larger. It is interesting to
�nd out whether there is an even better inventory level possible. We examine this
in Section 6.4, where we perform a sensitivity analysis on this subject.
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We also see that compared to costs per week in the current situation(e10.414,81),
the costs per week in our experiments are already much better. There are two rea-
sons for this. The �rst reason is that the TOP inventory that we examine in our
experiments is lower than the TOP inventory in the current situation. For the past
two years the average TOP inventory of Twence was around 90 Kton (Figure 2.7).
When we assume that 1/3rd of this inventory needs to be refreshed in a year, at
the costs of e7,29 per ton (diverting) and e6,31 per ton (retrieving), the minimum
costs, when no idle time occurs and no waste is sent to competitors, is already
e7.846 per week.

The second reason is that currently, more waste is diverted and retrieved than
necessary. Looking at the calculation we just made, it shows that the minimal costs
per week for diverting and retrieving are respectively e4.205,77 and e3.640,38.
Looking at the �gures we showed in Table 5.5 in Section 5.3 about the validation,
we see that currently the costs per week for diverting and retrieving are together
around e2.100 more. Our model does not have incentive to divert or retrieve more
waste than necessary. This is why the results will most of the time approach the
minimal costs for diverting and retrieving for a given amount of TOP inventory.

6.3 Experimental results phase 3:

Most promising results

In this section, we provide the results of phase 3 of our experiments. In Table 5.9
we de�ned in which categories we search for the most promising results. Since we
already made this selection when showing the results in the previous selection, we
now only need to determine which of these experiments have lower costs than the
current situation (e10.414,81). For these experiments we determined a warm up
period for which an extensive explanation is shown in Appendix I. In Table 6.6 we
show the results of phase 3.

In Table 6.6 we separated the experiments by their TOP capacity and their combi-
nation of contract restrictions and decision conditions. For Twence it could be the
case that the choice for a certain scenario is not only based on its costs per week. In
our experiments we charge no costs for the TOP capacity since the space is already
available. But it could also be the case that unused capacity leads to gains by start-
ing other projects. Therefore, Twence should make a trade-o� between the amount
of TOP capacity they want to use and possible other uses of the TOP capacity.

Within every category of TOP capacities, we see that the experiments yield the
lowest costs per week when the contract restrictions are set on both the mass and
the calori�c value, to try and control the supplied processing time. Only with a
TOP capacity of 5 Kton, and thus an average inventory in TOP of 4 Kton, the
experiments where decision conditions include the calori�c value come close to the
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Mass Mass 0,45 0,25 0,80 5000 1,18 0,36 198,52 173,92 409,59 3.672,65 4.454,68
Mass Mass 0,45 0,20 0,80 5000 0,92 1,05 196,32 172,19 409,29 3.721,47 4.499,27
Mass Mass 0,45 0,25 0,75 5000 1,18 0,37 216,73 189,74 407,61 3.693,38 4.507,46

Mass Calo 0,50 0,25 0,80 5000 0,95 1,06 271,06 236,81 412,77 3.781,76 4.702,40
Mass Calo 0,45 0,25 0,80 5000 1,10 0,84 272,78 238,19 414,45 3.795,56 4.720,98
Mass Calo 0,45 0,25 0,75 5000 1,13 0,85 295,54 258,01 411,85 3.825,11 4.790,51

Both Mass 0,50 0,20 0,70 5000 0,48 0,89 181,74 158,86 124,86 1.974,71 2.440,17
Both Mass 0,40 0,15 0,75 5000 0,42 0,95 171,09 149,94 123,77 2.156,43 2.601,23
Both Mass 0,45 0,20 0,70 5000 0,78 0,86 176,80 152,89 109,55 2.322,62 2.761,87

Both Calo 0,45 0,15 0,75 5000 0,13 0,86 250,78 218,57 124,56 1.617,30 2.211,20
Both Calo 0,45 0,15 0,70 5000 0,16 0,88 274,64 238,04 137,08 1.778,55 2.428,31
Both Calo 0,40 0,25 0,75 5000 0,95 0,37 237,58 205,96 132,14 2.138,55 2.714,23

Mass Mass 0,45 0,20 0,80 40000 0,16 0,12 1.547,43 1.345,52 301,75 88,57 3.283,27
Mass Mass 0,45 0,25 0,80 40000 0,17 0,08 1.553,79 1.351,83 306,42 71,35 3.283,40
Mass Mass 0,45 0,15 0,80 40000 0,15 0,19 1.552,07 1.349,54 303,00 131,25 3.335,86

Mass Calo 0,45 0,20 0,80 40000 0,28 0,19 3.149,49 2.733,78 368,59 225,95 6.477,80
Mass Calo 0,45 0,25 0,80 40000 0,29 0,13 3.194,79 2.773,14 368,84 215,33 6.552,10
Mass Calo 0,45 0,15 0,80 40000 0,24 0,25 3.182,48 2.762,08 369,65 248,76 6.562,97

Calo Mass 0,45 0,25 0,80 40000 1,64 0,61 1.038,24 903,92 244,26 8.212,32 10.398,74
Calo Mass 0,45 0,20 0,80 40000 1,53 1,04 1.032,63 899,13 247,26 8.389,86 10.568,87
Calo Mass 0,45 0,25 0,75 40000 1,70 0,57 1.113,79 969,31 250,06 8.301,25 10.634,41

Calo Calo 0,45 0,25 0,80 40000 1,79 0,85 1.651,15 1.436,07 330,51 9.815,55 13.233,28
Calo Calo 0,45 0,20 0,80 40000 1,70 1,06 1.692,11 1.470,34 331,51 10.070,36 13.564,32

Both Mass 0,45 0,25 0,80 40000 0,10 0,06 1.470,22 1.281,86 84,97 42,64 2.879,68
Both Mass 0,45 0,15 0,80 40000 0,06 0,15 1.434,36 1.251,25 84,86 148,06 2.918,52
Both Mass 0,45 0,20 0,80 40000 0,16 0,17 1.534,79 1.332,23 95,23 483,05 3.445,28

Both Calo 0,40 0,20 0,80 40000 0,09 0,08 2.858,17 2.482,46 149,08 0,63 5.490,33
Both Calo 0,40 0,25 0,80 40000 0,13 0,08 2.836,34 2.464,30 149,08 66,28 5.515,99
Both Calo 0,40 0,15 0,80 40000 0,11 0,17 2.866,49 2.488,83 149,64 147,48 5.652,44

Mass Mass 0,45 0,20 0,80 80000 0,12 0,08 3.417,57 2.961,47 309,87 4,31 6.693,22
Mass Mass 0,45 0,25 0,80 80000 0,12 0,08 3.416,41 2.961,11 310,97 5,68 6.694,17
Mass Mass 0,45 0,15 0,80 80000 0,11 0,11 3.419,57 2.963,90 310,60 17,15 6.711,22

Calo Mass 0,45 0,25 0,80 80000 1,32 0,31 2.089,11 1.840,42 219,21 4.416,02 8.564,75
Calo Mass 0,45 0,20 0,80 80000 1,27 0,61 2.078,66 1.832,05 219,85 4.455,88 8.586,43
Calo Mass 0,45 0,15 0,80 80000 1,17 0,91 2.146,92 1.887,94 223,92 4.925,43 9.184,22

Both Mass 0,45 0,20 0,80 80000 0,07 0,07 3.316,04 2.866,60 73,12 0,00 6.255,76
Both Mass 0,45 0,15 0,80 80000 0,07 0,07 3.337,86 2.883,46 74,70 0,00 6.296,02
Both Mass 0,45 0,25 0,80 80000 0,07 0,07 3.359,97 2.903,36 73,22 0,00 6.336,54

Table 6.6: Results for all experiments from phase 3
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costs per week attained when not including the calori�c value in the decisions con-
ditions. In two occasions the costs per week are even lower. The costs per week for
the experiments with a 5Kton capacity consist mainly of the costs for idle time.

Looking at the experiments with a TOP capacity of 40 Kton, and thus an average
inventory of 32 Kton, we can conclude that including the calori�c value in the de-
cision conditions always lead to higher costs per week. Surprisingly, the costs per
week rise above the costs per week in the current situation in four occasions. These
are all four when the contract only has restrictions on the calori�c value. These
costs per week are again mainly caused by the costs for idle time.

The experiments with a 80 Kton TOP capacity (64 Kton average TOP inventory)
also show that the best con�guration for the contract restrictions is where the restric-
tions are set on both the mass and the calori�c value. Again, when the restrictions
are solely set to the calori�c value, the supplies are more uncertain, which shows
in the costs for idle time. Even with a TOP inventory of 64 Kton it can be the
case that the bu�ers become empty, since the retrieving capacity in a week could
be reached.

Reaching steady state.
As we can see in Appendix I, even after a warm up period of 20 years, some exper-
iments did not reach steady state regarding the costs per week. These experiments
tend to need even more than 100 years for a warm up period to reach steady state,
which would take too much running time. This causes the experiments to be de-
pendent on the run length. Unfortunately, since the running time is too long take
make even longer runs, we need to be careful in making conclusions about some of
the results we found. To show the extent to which some of the results are adversely
a�ected by the failure to achieve steady state, we provide a con�dence interval
(α=0,1) for the costs per week found for each experiment. An experiment with a
wider con�dence interval indicates that the costs per week achieved a less steady
state than experiments with a narrow con�dence interval.

In Table 6.7 we quickly see which experiments did not reach steady state. These
experiments most of the time have a broad con�dence interval. This is caused by
the irregular costs occurring for idle time. These costs are too large in comparison
with the costs for diverting, retrieving or sending waste to an alternative location.
So whenever idle time occurs, the average costs per week are heavily a�ected. Typ-
ical experiments with a high probability of having high costs for idle time are the
experiments with a TOP capacity of 5 Kton and the experiments with contract
restrictions only on calori�c value. Due to the low costs per week, the experiments
with contract restrictions on both the mass and the calori�c value also have a broad
con�dence interval relative to their average costs per week. However, with these
experiments we mostly see that even the high end of the 90%-con�dence interval is
smaller than the costs per week of experiments with the same TOP capacity and
inventory.
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Mass Mass 0,45 0,25 0,80 5000 4.454,68 3.612,26 5.298,17
Mass Mass 0,45 0,20 0,80 5000 4.499,27 3.636,32 5.355,92
Mass Mass 0,45 0,25 0,75 5000 4.507,46 3.646,48 5.369,49

Mass Calo 0,50 0,25 0,80 5000 4.702,40 3.845,12 5.554,14
Mass Calo 0,45 0,25 0,80 5000 4.720,98 3.883,67 5.554,33
Mass Calo 0,45 0,25 0,75 5000 4.790,51 3.946,82 5.630,20

Both Mass 0,50 0,20 0,70 5000 2.440,17 1.633,18 3.247,49
Both Mass 0,40 0,15 0,75 5000 2.601,23 1.708,45 3.494,52
Both Mass 0,45 0,20 0,70 5000 2.761,87 1.862,22 3.661,64

Both Calo 0,45 0,15 0,75 5000 2.211,20 1.703,82 2.718,72
Both Calo 0,45 0,15 0,70 5000 2.428,31 1.506,38 3.350,49
Both Calo 0,40 0,25 0,75 5000 2.714,23 2.086,05 3.342,78

Mass Mass 0,45 0,20 0,80 40000 3.283,27 3.116,04 3.447,62
Mass Mass 0,45 0,25 0,80 40000 3.283,40 3.108,01 3.456,39
Mass Mass 0,45 0,15 0,80 40000 3.335,86 3.173,91 3.495,31

Mass Calo 0,45 0,20 0,80 40000 6.477,80 6.120,67 6.830,82
Mass Calo 0,45 0,25 0,80 40000 6.552,10 6.200,50 6.899,51
Mass Calo 0,45 0,15 0,80 40000 6.562,97 6.214,96 6.906,72

Calo Mass 0,45 0,25 0,80 40000 10.398,74 8.345,93 12.449,81
Calo Mass 0,45 0,20 0,80 40000 10.568,87 8.443,25 12.684,42
Calo Mass 0,45 0,25 0,75 40000 10.634,41 8.606,28 12.661,97

Calo Calo 0,45 0,25 0,80 40000 13.233,28 11.433,02 15.028,00
Calo Calo 0,45 0,20 0,80 40000 13.564,32 11.793,10 15.330,05

Both Mass 0,45 0,25 0,80 40000 2.879,68 2.588,08 3.166,03
Both Mass 0,45 0,15 0,80 40000 2.918,52 2.636,30 3.195,59
Both Mass 0,45 0,20 0,80 40000 3.445,28 2.946,39 3.939,11

Both Calo 0,40 0,20 0,80 40000 5.490,33 4.938,73 6.037,70
Both Calo 0,40 0,25 0,80 40000 5.515,99 4.993,25 6.034,56
Both Calo 0,40 0,15 0,80 40000 5.652,44 5.241,06 6.059,66

Mass Mass 0,45 0,20 0,80 80000 6.693,22 6.446,63 6.935,64
Mass Mass 0,45 0,25 0,80 80000 6.694,17 6.456,31 6.927,79
Mass Mass 0,45 0,15 0,80 80000 6.711,22 6.480,01 6.938,40

Calo Mass 0,45 0,25 0,80 80000 8.564,75 7.298,54 9.827,33
Calo Mass 0,45 0,20 0,80 80000 8.586,43 7.322,57 9.847,24
Calo Mass 0,45 0,15 0,80 80000 9.184,22 7.989,48 10.375,60

Both Mass 0,45 0,20 0,80 80000 6.255,76 5.847,90 6.658,72
Both Mass 0,45 0,15 0,80 80000 6.296,02 5.897,54 6.689,59
Both Mass 0,45 0,25 0,80 80000 6.336,54 5.982,24 6.685,89

Table 6.7: Con�dence intervals for all experiments from phase 3
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Best experiments
From phase 2 to phase 3, only the top three results are examined for every category
(de�ned in Table 5.9) and only if they have lower costs per week than the costs per
week in the current situation. For our sensitivity analysis we again make a selection
of the remaining results. First we point-wise state some short statements about
phase 3:
• In almost every experiment, the variant where calori�c value is included in
the decision conditions, results in higher costs per week.
• Within every TOP capacity category, the experiments with the contract re-
strictions on both mass and calori�c value have the lowest costs per week.
• Restricting contracts only on calori�c value always yield the highest costs per
week.

Based on these statements we make a selection of experiments. These experiments
can be seen as the best results following from the �rst three phases and are stated
in Table 6.8.
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Mass Mass 0,45 0,25 0,80 5000 1,18 0,36 198,52 173,92 409,59 3.672,65 4.454,68
Both Mass 0,50 0,20 0,70 5000 0,48 0,89 181,74 158,86 124,86 1.974,71 2.440,17
Mass Mass 0,45 0,20 0,80 40000 0,16 0,12 1.547,43 1.345,52 301,75 88,57 3.283,27
Both Mass 0,45 0,25 0,80 40000 0,10 0,06 1.470,22 1.281,86 84,97 42,64 2.879,68
Mass Mass 0,45 0,20 0,80 80000 0,12 0,08 3.417,57 2.961,47 309,87 4,31 6.693,22
Both Mass 0,45 0,20 0,80 80000 0,07 0,07 3.316,04 2.866,60 73,12 0,00 6.255,76

Table 6.8: Selection of the best experiments following from the �rst three phases

6.4 Experimental results phase 4:

Sensitivity analysis

In this research we made a number of assumptions for the input of the simulation
model. We want to examine the impact of these assumptions by means of a sensi-
tivity analysis. First we made an analysis on the choices we made when designing
our experiments. These feature the following topics:

• Section 6.4.1: The choice for other TOP capacities.

• Section 6.4.2: The deviation for the uniform distribution in contracts.
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After this, we continue with performing sensitivity analysis on some modeling as-
sumptions, for which we use the best experimental settings, as shown in Table 6.8.
These include the following topics:

• Section 6.4.3: All supply arrives at the start of a day or not.

• Section 6.4.4: Calori�c value decrease because of rainfall.

• Section 6.4.5: No costs or other e�ects occur when not incinerating waste on
its scheduled incinerator.

In �gures we present in Sections 6.4.3- 6.4.5, we make use of the abbreviation �MM�
and �BM�, which stand for the combination of contract restrictions and decision
conditions (so Mass, Mass, and Both, Mass).

6.4.1 Examining di�erent TOP sizes

To di�erentiate between di�erent amounts of TOP capacity without examining too
many options, we chose to work with 80 Kton (current), 5 Kton (expected best by
board) and 40 Kton (in between) for the capacity of TOP. We found that the lowest
costs per week are achieved with a TOP capacity of 5 Kton (and thus an average
inventory of 4 Kton) when restricting clients on both the mass and calori�c value.
When only restricting the clients on the supplied mass, the lowest costs per week
are attained with a TOP capacity of 40 Kton (Table 6.8). We are interested in
the development of the costs per week when varying only the chosen TOP capacity.
Therefore, we plot three lines, all based on a di�erent contract restriction. The
result is a graph that shows the optimal TOP capacity for the �xed settings. The
result is shown in Figure 6.3 for the experiments with restrictions on mass and on
both mass and calori�c value, and in Figure 6.4 for the experiments with contract
restrictions only on the calori�c value. We use two separate �gures to emphasize
the di�erences. The mark on the lines in the graphs shows at what level of TOP
the minimum costs per week occur.

Figure 6.3: The costs per week for di�erent TOP capacities with �xed settings
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Figure 6.4: The costs per week for di�erent TOP capacities with �xed settings (only calori�c
value restrictions)

We know that the amount of work that is supplied in a week is the most uncertain
when the contract restrictions are just on the calori�c value. Figure 6.3 shows that
the more certain the amount of work that is supplied is, the lower the costs and the
TOP inventory can be.

6.4.2 Examining di�erent margins

for the contract restrictions

In Table 5.1 we stated the set-ups for the modeling of our contract restrictions.
The situation where the contracts are restricted on mass is based on the current
situation at Twence. In the validation we did, we concluded that although Twence
wants to keep the clients within the ±10% margin, this does not always happen and
the variability in the supplies is actually a bit larger.

In Figure 6.5 we show the e�ect of the margin we set for the uniform distribution of
the weekly supplies. As explained earlier, when contract restrictions are solely on
mass, the clients are provided with a margin in which their weekly supplies should
be. The weekly supplies are in the model distributed over the days according to an
empirical distribution. In Figure 6.5 we have the horizontal orange and gray lines,
that respectively stand for the standard deviation in the daily supplies for inciner-
ation line 1+2 and incineration line 3. The bars in Figure 6.5 show the resulting
daily standard deviation, for the possible margins used for the weekly supplies on
the x-axis.

Figure 6.5 shows that although Twence would like to restrict the clients to a 10%
margin on a weekly basis, the current situation indicates that the margin is rather
around 17,5%. Now we need to �nd out what the e�ect of this is on the desired
amount of TOP inventory.

We already concluded in Section 6.4.1 that when there is more uncertainty about
the supplies, the costs per week become larger. We now want to �nd out what the
e�ect is of the margin that Twence sets for its clients. So in Figure 6.6 we show,
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Figure 6.5: The resulting standard deviation on a daily basis, when having an X% range in the
uniform distribution for the weekly supplies

how the costs per week per di�erent TOP size develop when the margin increases
from ±0% to ±20%.

Figure 6.6: The costs per week for di�erent TOP capacities and di�erent margins

We see that with a margin on the allowed weekly supplied of 0-7,5% a TOP capacity
of 5 Kton is best, with a margin of 10-12,5% the 40 Kton TOP capacity is best,
and with a 15% or higher margin the experiments with a TOP capacity of 80 Kton
were best.

For a small TOP inventory, the conclusion can be made that with more certainty
about the supplies, the costs per week can be lower. In the situation where Twence
has just a small TOP inventory, which is the case when the TOP capacity is 5 Kton
and the average inventory is 4 Kton, the costs increase very rapidly when the un-
certainty increases. All these costs occur mainly due to idle time in the incinerator
lines. With the 40 Kton and 80 Kton variant, we �rst notice a small decrease before
we see an increase. In Appendix J we depicted the costs speci�cations to explain the
development of the cost per week when increasing the margin on the restrictions on
mass. In Figure J.1a and J.1c we see that when the margin on the allowed weekly
supplies is increased, the costs for diverting and retrieving decreases and the costs
for sending waste to an alternative location (competitors) increases. We designed
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the average supplied waste such that it would lead to an almost constant level of
TOP inventory throughout an entire experiment. Since every ton of waste that is
sent to an alternative location is not coming back, on average, the TOP inventory
will decrease when more waste is sent away. With a TOP capacity of 5 Kton (less
than three days of supplies) this does not show in the costs, because in this situation
the TOP inventory is already more sensitive to the deviation in the supplies. With a
larger TOP inventory, over time this will show, since, as said, the waste that is sent
away does not come back. The costs for diverting and retrieving therefore decrease
due to less TOP inventory, and in the beginning this decrease in costs outweighs
the costs for idle time as shown in Figure J.1b.

The overall conclusion for increasing the margin on the allowed weekly supplies, is
that the e�ect is heavily depending on the costs for idle time. The probability of
idle time is the largest when having a small TOP inventory and thus the negative
e�ect of a bigger margin in the contract restrictions, is also bigger.

6.4.3 Arrivals spread over the entire day

In the current situation, Twence gives the clients no restrictions on the time of
arrival other than their opening hours. Currently most clients are at the gate of
Twence at the start of Twence its opening hours, causing a lot of supplies to come
in at the same time.

Our current setting makes no distinction between clients and lets all supplies arrive
at the start of the day. Although Twence does not prefer working with time slots,
we want to examine the e�ect of spreading the arrivals over the entire day.

To spread the arrivals over the entire day, after determining the amount of supplies
that arrive on a day, we divide the total amount of seconds in a day by the amount
of arriving mass in tons. We multiply this interarrival time by 10 because we made
the assumption that we look at chunks of 10 tons. We show an example in Table 6.9
and the results are shown in Figure 6.7.

Day MassLine1+2 MassLine3 Inter-Arrival time in seconds (1+2 ; 3)

Monday 2.100 1.770 411,4 ; 488,1
Tuesday 1.420 1.190 608,5 ; 726,1
Wednesday 1.550 800 557,4 ; 1.080,0
Thursday 1.540 880 561,0 ; 981,8
Friday 1.230 1.070 702,4 ; 807,5

Table 6.9: Example of the inter arrival times

When the arrivals are spread over the day, the level of waste in the bu�ers is also
at a more constant level. This means that the necessity of retrieving and diverting
waste decreases, since the bu�er levels are less likely to reach the thresholds. A
negative e�ect of this can be seen in Appendix J, where we have made a speci�-
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Figure 6.7: Comparison of costs per week for spread arrivals

cation of the costs in Figure J.2. We see in Figure J.2a a slight increase in the
costs for diverting and retrieving, and in Figure J.2b we see a large decrease in the
costs for idle time. The costs for sending waste to competitors in Figure J.2c show
a large increase. The reason for these increases and decrease in the costs, can be
explained by the earlier mentioned necessity of retrieving and diverting. The lack
of this necessity is shown in the costs for idle time, which for the �rst experiment
are cut in half and for the other experiments are even 0. This does mean that the
main reason for retrieving waste from TOP comes from the over-aging. This is the
reason that the costs for sending waste to an alternative location increase so much,
since the level of waste in the bu�ers is now on a more constant and higher level so
it is not always possible to �t the retrieved waste into the bu�ers.

From the comparison of spreading the arrivals versus having all arrivals at the start
of the day, we can conclude that whenever the TOP inventory is at a low level, the
costs are reduced. Whenever the TOP inventory is at a higher level, such as 32
Kton or 64 Kton, it is important to keep refreshing the waste in TOP on a regular
basis. Waiting for the waste to over-age leads to obligatory retrieving, which is
not always convenient. So spreading the arrivals only leads to lower costs per week
when having a low TOP inventory or when refreshing the waste in TOP is done on
a regular basis.

6.4.4 Decrease of calori�c value by rainfall

When calculating the amount rainfall in a year, we make use of yearly averages
whereas it is logical that during the summer it rains less than during the fall. So
when we use a formula for the decrease of calori�c value due to rainfall, where only
the time of being in storage, apart from the time of year, is important, the results
may di�er from reality. We therefore examine two other situations, namely:

• No rain: In this situation we examine the e�ect of not taking into account
the rain at all. We discard the equation that decreases the calori�c value after
the waste leaves TOP.
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• Winter rain: In this situation we assume that during the summer period
(week 13 to 39), there is no rain and thus no e�ect on the calori�c value.
However, in the other weeks, it rains twice as much. Therefore the e�ect on
the calori�c value is in these weeks twice as high.

The results are shown in Figure 6.8.

Figure 6.8: Comparison of costs per week for di�erent weather behaviour

We see in Figure 6.8 that the decrease in calori�c value caused by the rain, does
not have a big impact on the results. We see for all situations, that the values are
closely together and that there is no clear pattern. This makes us believe that the
di�erences shown in Figure 6.8 are because of stochastic �uctuation.

6.4.5 Process e�ciency

We assumed that no extra costs or e�ects occur when waste, scheduled for incin-
eration line 1+2 (usually low calori�c value), is incinerated on incineration line 3
(usually for high calori�c value). However, in Chapter 3 we found that having a
constant input causes a more e�cient incineration process. We want to examine
the impact of allowing waste to be incinerated on an other incinerator instead of
its scheduled one. In Figure 6.9 we see the impact of only incinerating waste on its
scheduled line.

Figure 6.9: Comparison of costs per week when not allowing to switch between lines
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Only for the MM 80 Kton TOP capacity experiment, we see a decrease in the
costs per week. Since with a low TOP capacity and inventory, the incineration
lines mostly depend on the supplies from clients, the costs per week increase when
switching between lines is not allowed. When the possibility to compensate for less
supplies on one of the incineration lines is prohibited, we see the costs per week
increase. Looking at the cost speci�cation, we see that the costs for idle time are
the main cause of this increase, which are shown in Figure 6.10.

Figure 6.10: Comparison of costs for idle time when not allowing to switch between lines

The extra costs that could occur by not incinerating waste on its scheduled incin-
eration line mainly comes from the fact that the standard deviation of the charac-
teristics of the waste becomes too large. In that case, a lot of monitoring needs to
be done and adjuvants need to be added in order to keep the incineration as e�-
cient as possible. To see whether prohibiting switching between incineration lines
actually helps on that, we compare the standard deviation of the calori�c value in
both bu�ers in Figure 6.11. We exclude the results from the 5 Kton TOP capac-
ity experiments, since the standard deviation is not very representative due to the
amount of idle time.

(a) (b)
Figure 6.11: Comparison of standard deviation in both bu�ers
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6.5. Conclusions

As expected, the standard deviation of the calori�c value in both bu�ers decreases,
when the incineration lines only accept their own waste. It is up to Twence to
decide whether having higher standard deviation at lower costs per week is better
than reducing the standard deviation at a higher costs per week.

6.5 Conclusions

In this chapter we presented the numerical results of our experiments. Our experi-
mental design consisted of four phases.

Experimental results phase 1
In phase 1, we found that the TOP inventories are stable when the supplies are on
average 12900 tons per week.

Experimental results phase 2
In phase 2, we used the results from phase 1 as input, such that we started all
experiments we de�ned in Figure 5.7 with the conditions that lead to steady state
behaviour.

Phase 2 showed that a 40 Kton TOP capacity (32 Kton avg inventory) yielded
the most promising results when adopting the currently used contract restrictions.
When changing the contract restrictions to both mass and calori�c value (processing
time), a 5 Kton TOP capacity yielded the best results. When the adapted model of
Obroucka is used, often an increase in the costs for diverting and retrieving occurs,
due to the over-aging of the waste from large TOP inventories. The thresholds only
have a moderate e�ect on the costs per week relative to the contract restrictions,
decision conditions, and the TOP inventory.

Experimental results phase 3
In phase 3 we concluded that the best experiments were the experiments with con-
tract restrictions on both the mass and the calori�c value. Because for some of our
experiments, the average costs per week did not reach steady state, we provided
a 90%-con�dence interval for all experiments to show to which extend the results
were a�ected. From the three TOP options we examined, we saw that for that
con�guration, a TOP capacity of 5 Kton and average TOP inventory of 4 Kton
yielded the lowest costs per week.

Experimental results phase 4
In phase 4 we performed a sensitivity analysis. We �rst examined some of our more
general chosen inputs. These showed that the amount of TOP capacity and inven-
tory that leads to the lowest costs is lower, when the predictability of the supplies
increases. After that we performed a sensitivity analysis on a selection of the best
results from phase 3 as shown in Table 6.8.
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Chapter 6. Numerical Results

From the sensitivity analysis on the selection of experiments we concluded the fol-
lowing:

• When the margin on the allowed weekly supplies is increased, the need for
more TOP inventory increases.

• Spreading the arrivals over the entire day leads to lower costs per week when
working with a low TOP inventory. For a high TOP inventory, spreading the
arrivals over the entire day only leads to lower or equal costs per week when
the TOP inventory is refreshed on a regular basis.

• The decrease in calori�c value due to the rainfall during the year has no e�ect
on the costs per week.

• If switching between incineration lines is not allowed, the costs per week in-
crease when working with a low TOP inventory, but the standard deviation
of the calori�c value in the bu�ers decreases. When working with a high TOP
inventory the e�ect of allowing switching between incineration lines is moder-
ately visible, but would not lead to a big decrease in the costs per week.

In Chapter 7 we take our designed model and simulation model from Chapter 4 and 5
and apply these to a similar situation; namely, the other incinerator at Twence, the
Biomass Energy Plant.
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7 | Case Study:
Biomass Energy Plant

Apart from processing waste, Twence also processes biomass. The goal of this case
study is to adapt the current model to make it suitable for the biomass incinerator.
There is also a bulk-storage for the biomass, so we could use the model again to
�nd the optimal way of working for the Biomass incinerator.

Main information
Biomass consists mainly out of wooden parts. There are certain speci�cations re-
garding the wooden parts. The parts should be within a given size to be labeled as
"on speci�cation" (on spec). Otherwise it must be shreddered into smaller pieces
�rst. The wooden parts that are already on spec are brought directly to the Biomass
Energy Plant (BEC). Only in extreme cases, wood on spec is brought to the bulk-
storage, because due to the weather the wood could get outside of speci�cations.
The wood that is not on spec is called unbroken wood. Unbroken wood is brought
to the woodbank, which also serves as a bulk storage. In the woodbank, unbroken
wood is shreddered after which it is stored until it is transferred to the BEC. In
Figure 7.1 we see the �ow for the wooden parts. In the rest of this case study, we
refer to biomass as wood.

Figure 7.1: Flow from wood to BEC

Just as for the AEC, we summarize the performance indicators from the current
situation for comparison. This is done in Table 7.1.

Performance Indicators Value

Average costs per week for diverting/retreiving e28.095,14
Ratio wood on speci�cation versus unbroken wood 2,05 : 1

Table 7.1: Performance indicators

Input changes
To adapt the model to the situation of the wood incinerator, we �rst need to gather
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some key information needed as input for the model. This information is summa-
rized in Table 7.2.

Input parameters: Contracts based on Mass
MassOnSpec Ratio · Uniform[3.020 ; 3.691]*
MassUnbroken (1-Ratio) · Uniform[3.020 ; 3.691]*
CalorificvalueBEC Normal[11,7994 ; 0,63864]

Input parameters: Costs & Revenues
CDivertingOnSpec e2,29 per ton
CDivertingUnbroken e10,91 per ton
CRetrieving e6,11 per ton
CAlternative e25,00 per ton
CIdleT imeBEC e0,53 per second
RevenuesOnSpec e-21,81 per ton
RevenuesUnbroken e-5,44 per ton

Input parameters: Processing time
FactorBEC Multimodal with p(x) =

0.5·Normal[x; 14,5225 ; 0,7323] +
0.5·Normal[x; 16,6867 ; 0,5965]*

Input parameters: Other
Legally determined max. age 3 years
BEC Bu�er Capacity 3.500 tons

Table 7.2: Input for the adapted model
*This is determined similar as for the AEC

Since for the AEC we only have one type of arrivals, only the costs are of in�uence.
For the BEC we have the distinction between unbroken wood and wood on spec.
Both have di�erent costs and revenues. The balance between acquiring unbroken
wood or wood on spec is something we include in our experimental factors. We
validated the model in the same way as the model for the AEC. This results in
costs per week of e27.775,19.

Model and experiment changes
Contrary to the AEC, the BEC consists of a single incinerator and therefore also a
single bu�er. Thus in the model we also implement only one bu�er and we delete
the control rules about shifting deliveries from one bu�er to another.

The experimental factors change in such a way that we only have one bu�er to
be concerned about. Recalling the groups of experimental factors from the regular
model (Figure 5.6), we adapt these as shown in Figure 7.2. To keep the number
of experiments limited, we do not vary the contract restrictions and only use a
restriction on the mass just as in the current situation. We have shown in the
results for the AEC, that contract restrictions only on calori�c values always give
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higher costs per week, and contract restrictions on both the mass and the calori�c
value always gives lower costs per week.

Figure 7.2: All combinations of di�erent experimental factors for the BEC

We check three low thresholds and two high thresholds and we experiment with
three di�erent ratios between the arrivals of unbroken wood relative to wood on
spec. This results in a total of (3*3*2*3=) 54 experiments for this case study.

Results and conclusions
After performing all experiments, we show for each Woodbank capacity what the
best performing experiments are, based on costs per week or process e�ciency. The
best performing experiments are shown in Table 7.3.
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5000 Mass Calo 0,25 0,90 0,75 3.277,21 1,184 22.204,75
15000 Mass Calo 0,25 0,90 0,75 3.307,24 1,207 21.566,84
25000 Mass Calo 0,25 0,90 0,75 3.318,11 1,222 21.943,33

Table 7.3: Best results for the BEC

The costs per week in the current situation were e28.095,14 with a Woodbank ca-
pacity of 30 Kton (inventory at 24 Kton). We see that all experiments have lower
costs per week than in the current situation. The experiment with a Woodbank
capacity of 15 Kton and thus an average inventory of 12 Kton, has the lowest costs
per week of all experiments.

Looking at all results at once, we notice that the ratio is always set to 0.75. This
means that 75% of the supplies consists of wood on speci�cations. This is also the
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main reason for the decrease in the costs per week. We see that since 25% of the
supplies automatically go to the Woodbank, the e�ect of having more or less in-
ventory is moderate. Having a higher percentage of wood going to the Woodbank,
leads to more costs per week.

For the thresholds, we conclude that the high threshold should be 90% and the
low threshold 25%. Because of all experiments the decision conditions include the
calori�c value, this means that the low threshold should be set to 2.5 days of pro-
cessing time.

The ratio that Twence currently uses is almost 2:1 (0.67), but from the experiments
we can conclude that increasing this ratio to 3:1 (0.75) already leads to a decrease
in the costs. Because all experiments show the highest ratio as the best, it would
make sense to perform more research on di�erent ratios and test whether this is the
best ratio or Twence should increase the ratio even more.
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8 | Conclusions and
recommendations

In this Chapter we present the conclusions of our research (Section 8.1), followed
by recommendations for Twence (Section 8.2). We also make some suggestions for
further research.

8.1 Conclusions

The goal of this research was to give Twence more insight in their supply chain. In
Chapter 1 we translated the goal into a main research question namely:

How can Twence improve their internal supply chain in order to optimize the

performances of their processes, while minimizing the costs of idle time of the

machines and of internal transport?

We designed subquestions to help us answer the main research question. Chapter 2
gave us the answer to the subquestion What is the current situation of the internal

supply chain at Twence? A lot of �uctuation in the supplies occurs on a daily basis.
The inventory of the bulk-storage, called TOP, increased a lot in 2011 and since
then, the TOP inventory stays rather constant. Because of the over-aging of waste,
TOP inventory needs to be processed within three years, which causes mandatory
retrieving. We conclude that Twence could do with less TOP inventory. We found
that the calori�c value of waste has a direct link with the throughput and thus the
requirements of Twence. To cope with the �uctuation in the supplies and the risk
of not having enough waste to incinerate, the calori�c value of waste could be used
to make better forecasts. The costs per week in the current situation are e10.414,81.

In Chapter 3 we performed a literature study about safety stocks, waste incineration
e�ciency and decision support models for waste incinerators. This answers our sec-
ond subquestion What can be found in academic literature to support this research?

The amount of safety stock should be such that the probability of stockout is at the
desired level. We found that the process of waste incineration is most e�cient when
the input parameters are as constant as possible. The model described by Obrou£ka
et al. (2015) can be applied to the situation of Twence, since it not only looks at
the amount of waste that is selected for incineration, but also takes characteristics
like calori�c value into account.

What models can we construct that support optimal decision making? was the third
subquestion, which we answered in Chapter 4. We set up models for diverting and
retrieving for two situations. The �rst being the same as the current situation,
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where decision conditions only include mass, the second where they also include
calori�c value. For the latter model, we adapted the model of Obrou£ka et al. for
the retrieving part. We suggested three types of contract restrictions, namely on
mass, calori�c value or processing time. The models we set up described what to
do in certain situations, but not when to do it. Therefore we needed to perform
a simulation study in which we tested what the level of waste in the bu�er of the
incinerator should be before Twence should start diverting or retrieving.

In Chapter 5 we designed our simulation model. We set up our experimental de-
sign, that answers the subquestion: What are possible interventions to improve the

internal supply chain? Our experimental design consists of four phases. In the �rst
phase we determine the level of supplies needed to have a constant TOP inventory.
In the second phase we perform experiments according to Figure 5.7. We select the
most promising results for the third phase of our experimental design, which we ran
for a longer period of time in order to get more reliable results. In the fourth phase
we perform a sensitivity analysis.

The results of our experiments were presented in Chapter 6, answering the sub-
question: What performance can be expected when using the designed model and

proposed interventions versus the current performance? In Table 8.1 we show for
three TOP capacities the best results, when having contract restrictions only on
mass, and contract restrictions on both the mass and the calori�c value.
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Mass Mass 0,45 0,25 0,80 5000 1,18 0,36 198,52 173,92 409,59 3.672,65 4.454,68
Both Mass 0,50 0,20 0,70 5000 0,48 0,89 181,74 158,86 124,86 1.974,71 2.440,17
Mass Mass 0,45 0,20 0,80 40000 0,16 0,12 1.547,43 1.345,52 301,75 88,57 3.283,27
Both Mass 0,45 0,25 0,80 40000 0,10 0,06 1.470,22 1.281,86 84,97 42,64 2.879,68
Mass Mass 0,45 0,20 0,80 80000 0,12 0,08 3.417,57 2.961,47 309,87 4,31 6.693,22
Both Mass 0,45 0,20 0,80 80000 0,07 0,07 3.316,04 2.866,60 73,12 0,00 6.255,76

Table 8.1: Selection of the best experiments following from the �rst three phases

Since currently the possibilities of evaluating the calori�c value of a large batch of
waste before incineration are limited, we also presented the results in which the
contract restrictions do not change relative to the current situation. We concluded
that a cost savings of 67% per week can be realized, when the TOP inventory is
reduced to about 32 Kton and the margin of ±10% in the contract restrictions is
respected. When evaluating calori�c value becomes easier, the contract restrictions
should be altered to restricting clients on both the mass and the calori�c value. The
cost savings could increase to about 75% when TOP inventory is reduced to about
4 Kton, when contract restrictions are respected.
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8.2. Recommendations on implementations
and further research

In phase four, we examined the impact of our assumptions. Spreading the arrivals
over the entire day leads to lower costs per week when working with a low TOP
inventory. The decrease in calori�c value due to the rainfall during the year has no
signi�cant e�ect on the costs per week. If switching between incineration lines is
not allowed, the costs per week increases when working with a low TOP inventory,
and the standard deviation of the calori�c value in the bu�ers decreases.

We looked at the in�uence of the margin within which the clients can vary their
supplies and looked at TOP capacities and inventories in steps of 5000 ton. We
conclude that Twence can reduce their costs per week the most when the TOP ca-
pacity is 25 Kton (inventory 20 Kton), when restricting clients on both mass and
calori�c value.

In Chapter 7 we considered a case study: How can we use these �ndings in order to

improve similar entities at Twence, such as the Biomass Energy Plant? We adapted
our model to �t the characteristics of the BEC and varied the same experimental
factors with the addition of the ratio between unbroken wood and wood on speci�ca-
tion. We conclude that it is most pro�table for Twence if they contract more wood
on speci�cation than unbroken wood. We suggest keeping the woodbank capacity
around 15 Kton.

8.2 Recommendations on implementations

and further research

The only subquestion we did not answer yet is How can Twence implement these

interventions in the current supply chain? We provide some recommendations re-
garding all experimental factors on how to use these results.

TOP and Woodbank capacity

For the AEC, we saw in the results that the lowest costs per week can be achieved
by reducing the TOP inventory to a level of 20 Kton. For the woodbank inventory,
we recommend reducing this to about 12 Kton. This is more convenient regarding
the available space but it also brings down the costs per week. For the AEC as well
as the BEC holds that this should be achieved by temporarily reducing the amount
of supplies, since the incinerators are running on full capacity as much as possible.
The only problem is that the contracts with clients are usually set for a period of
more than 5 years. This means that these implementations may take a while before
they can take place.

The further research regarding the bulk-storages should focus on reducing the costs
for diverting and retrieving.
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Contract restrictions

When the possibilities of evaluating calori�c value are improved, the contract re-
strictions for clients for the AEC should be on both the mass and the calori�c value.
Currently Twence states that they use a ±10% margin in their contracts but they
need to focus on keeping clients to that restriction, because this margin currently is
higher. When the current contract restrictions are better respected and clients stay
within the margin of ±10%, cost savings of 67% per week could also be achieved
with the current contract restrictions. For the BEC, more wood on speci�cation
should be contracted.

Twence must perform further research on how to evaluate the calori�c value of waste
before incinerating it. When the calori�c value of a batch of waste can be evaluated
beforehand, restrictions could be set on the allowed calori�c value that should be
supplied. This provides more insight in the supplied processing time and allows
Twence to reduce their TOP inventory.

Decision conditions

We recommend to include only the mass in the decision conditions for the AEC. For
the BEC the results showed that the decisions conditions should also include the
calori�c value. Basing the decisions on calori�c value would mean that the layout
of the woodbank needs to be altered such that a distinction can be made between
the di�erent qualities of stored wood.

We recommend to perform more research on the bene�ts of optimizing the process
e�ciency, since the addition of adjuvants could possibly be reduced and in our
research we did not take any costs for this into account.

Thresholds

The thresholds we found from our best experiments can guide as an indication. We
do recommend to make use of a lower threshold of 40% and 20% for respectively the
bu�er 1+2 and bu�er 3 for the incineration lines of the AEC. The upper thresholds
always came out to be 80%, which was the highest option we examined. This could
indicate that the optimal thresholds are even higher. We recommend keeping the
upper thresholds at the level of 80%, since this does not interfere with the mixing
of the waste.

For the BEC, there is no clear indication on how much capacity is available in the
bu�er. This bu�er is a big hall, with the incinerator in the middle. We recommend
to clarify how much of the capacity is used and how much is available in the bu�er
of the BEC. When this is known, the thresholds we found could be applied, which
would be about 30% for the lower, and 90% for the upper threshold.
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A | Facilities at Twence

Twence is a company that specializes in processing waste �ows and biomass. They
process these materials into raw materials and energy. Twence brings these prod-
ucts back in circulation and provides sustainable energy. By doing this, Twence
contributes to reducing the use of fossil fuels and a reduction of CO2 emissions.

Twence is located in Hengelo and is an important economic powerhouse in the
region. They are the biggest producer of sustainable energy in the provence of
Overijssel and belong to the top of the sustainable energy producers of the Nether-
lands. The waste �ows that Twence processes are not only from the Netherlands,
but also from Germany and the United Kingdom. At Twence, sustainability has a
high priority and they also want to contribute to projects that involve nature con-
servation, environmental education and culture. The ultimate goal of Twence is to
have a waste-free society with optimal reuse of goods and recovery of raw materials.
Eventually all energy should be produced from renewable sources, but until this has
been realized Twence will commit to using non-reusable waste for the production of
energy.

A.1 Twence Waste Sorting

Twence Waste Sorting (TAS) is the department where mixed waste streams are di-
vided in re-usable sub-streams. A lot of waste that comes in contains materials that
are recyclable. The mixed waste streams that are processed by TAS consists of large
domestic waste, dry industrial waste and construction and demolition waste. The
TAS has a processing capacity of about 120.000 tons of waste a year. Even before
the real processing starts, the waste is separated into three streams, namely, waste
that is too big to process, waste which is already suitable for reuse, and the waste
that needs processing. Waste from the latter category is dropped on a conveyor
belt and is passed through a sieve, which prevents parts that are too big and could
get stuck in the installation. The remaining parts move on to an automated sorting
line that consists of magnets and blowers that separate di�erent types of waste.

Figure A.1: Streams in/out TAS

After passing the automated sorting
line, the remainder is passed through
the sorting cabine. Here a manual sep-
aration takes place, where remaining
waste like wood, paper, metals and foils
are sorted.

In Fig A.1 we see a schematic view of
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the streams which TAS has in�uence on. As said, di�erent types of waste enter the
sorting department, where they are sorted out and split up into di�erent streams.
The following substreams are being sorted in TAS:

• Paper
• Wood
• Debris
• Metals

• Carpet
• Drywall
• Plastics
• Cardboard

All of the combustible waste and wood that is output from TAS is processed by
Twence, the other materials are made suitable for reuse by external parties.

A.2 Waste Energy Plant

Waste that is not suitable for reuse, but that is �ammable, is processed by Twence
in the Waste Energy Plant (AEC). By burning this waste, Twence generates energy.
The AEC processes more than 600.000 tons of waste per year.

Figure A.2: Waste streams to AEC

In Fig A.2 we see a schematic view of the stream towards the AEC. Incoming waste
is �rst checked on whether it meets the agreed arrangements and is then rejected
or send onwards. We notice a couple of streams from other entities that are also
directed towards the AEC and see where in the �owchart the temporary storage is
located. After that we have the AEC and the SOI, which stands for `slag work-up
installation'. In the SOI, the residues of the incineration, better known as slag, are
processed. In the rest of this section, the working of the AEC is explained further.

The waste stream that enters the AEC is checked by sampling on a conveyor belt.
It is checked whether the waste complies with a strict set of criteria and is suitable
for the combustion process. After the check, the waste is transported into a bunker
in which it is mixed. The reason that all the waste in the bunker is mixed together
is because of the fact that it serves as fuel for the AEC. By mixing it, the fuel will be
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of the same composition and is of equal calori�c value. This is important because
when waste has a low calori�c value, it is harder to burn properly and it takes the
AEC more time to process it, with as a result that the processing capacity drops.
Also �uctuations in the calori�c value of the waste in the AEC leads to undesirable
peaks and lows in the energy production.

Twence has three incineration lines that each consist of the following parts:

• Kettle
• Turbine
• Exhaust gas cleaning

The waste is going through a funnel after which it arrives in the kettle where the
incineration takes place. This takes about 45 minutes and is done with a tempera-
ture of between 850 and 1.100 degrees Celsius.

The kettle has hollow walls that contain water. The heat of the incineration process
makes the water evaporate causing steam. This steam is guided through hollow
pipes that lead to a turbine that powers a generator, which produces electricity.
Twence supplies this electricity to the municipalities in Twente and the public power
grid. Also some low pressure steam is used by a neighbour of Twence, AkzoNobel,
and the residual heat is used for a part of the heat network of Enschede.

The exhaust gas cleaning is the biggest and most important part of the AEC. Here
the exhaust gases are cleaned by a series of �lters. This ensures a minimal emission
of harmful substances and is well within the stringent standards that apply. When
looking at the facility of Twence, a big chimney is visible. The plume of gas that
arises from it, consists mainly of water vapour.

The lines are tradionally split up in two groups namely, Line 1+2 and Line 3. This
is because of two main di�erences between these groups. The �rst di�erence is
about the age of the technology that is used. When Twence was founded, only line
1 and 2 were built. With the technology that was known at that time, purifying
the exhaust gasses was di�cult to do. Lots of processes were needed to comply
with regulations . Later, when line 3 was built, technology had improved and easier
methods for cleaning exhausts gasses were discovered and used in this line.

The second di�erence is about the calori�c value of the waste. Line 1+2 works
best with waste that has a low calori�c value. This has to do with the e�ect that
low calori�c waste has on the machine but also the type of exhaust gasses and
residues that low calori�c waste usually gives. Forecasts about the rise in calori�c
value of waste, due to for example waste separation, was one of the reasons for
the construction of an installation that could handle this better, which eventually
became line 3.
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Appendix A. Facilities at Twence

A.3 Biomass Energy Plant

In the Biomass Energy Plant (BEC), di�erent kinds of wood are processed. Twence
uses scrap wood, mainly so called B-wood (which is wood that has been painted or
treated), woody parts that are non-compostable and the coarse parts from the green
waste. The electricity that the BEC produces is 100% green and provides enough
electricity for 44.000 households, which is equivalent to a city of 85.000 people.

In Fig A.3 we see a �owchart of the waste streams that are directed towards the
BEC. The wood that is not on speci�cation is called unbroken wood. In the �owchart
we see that unbroken wood is directed towards the woodbank where it is made to
speci�cation. Here we also have the temporary storage location for unbroken wood.
In the bioconversion, the big parts are sieved, which is called sieve over�ow and this
is transported to the BEC. Because sieve over�ow is usually wet material, it is not
so good for the machinery in the BEC. therefore, the guideline is that a mix of raw
materials for the BEC is made, which consists up to 15% of sieve over�ow.

Figure A.3: Flow regarding BEC

If the wooden parts are too big for the BEC, they are shreddered �rst. After this,
the wooden parts are between 10 and 50 centimeters in size. In the bunker of the
BEC all the shreddered wood is mixed with the non-compostable and green waste
parts. This homogeneous mass, biomass, is placed on a shifting �oor where the mass
is transferred onto a conveyor belt that brings it to a �lter. In this �lter, magnets
remove all the metal parts from the biomass. After passing the �lter the mass is
transported up to about 25 meters where it is placed in a bu�er from which the
mass is dosed on the grid of the incinerator.

In the oven, the biomass is incinerated at a temperature of about 1.000 degrees
Celsius, which takes about 45 minutes. The �re heats a big kettle and a system of
water-�lled pipes that creates steam. Just like with the AEC, the steam drives a
turbine that produces power.

Also the BEC has an exhaust gas cleaning section that �lters all harmful substances
from the emission. The exhaust gases pass a couple of components where di�erent
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A.3. Biomass Energy Plant

kinds of operations take place. The �y ashes are separated, and after that excipients
are blown into the �ue gas stream. The gas passes a cloth �lter that �lters out all
kinds of �ne particles. The last step is the passing of the DeNOx installation and
after this the gases leave through the chimney which at the end has all di�erent
types of measuring equipment. Emissions from the BEC remain well within the
limits of the strict laws and regulations.

Isolation is done by having a impermeable layer on the bottom. This consists of a
layer of sand-bentonite, a material that when it comes into contact with moisture
expands and becomes impenetrable. In addition, a layer of foil is placed on top of
that. When the maximal height is reached, the same layer covers the top in reversed
order, followed by a layer of cover ground.

Gases and �uids that escape from the big pile of waste are collected by drainage and
gas pipes. The �uids are puri�ed and used for the di�erent processes that happen
within Twence. The gases are transformed into electricity and heat.

Beneath the protective layer, also a system of drainage pipes is placed. These pipes
are just for control and can be used to check whether leakage has occurred in the
protective layer.

Twence has the responsibility for the eternal aftercare of the dump sites. This means
that also in the far future, Twence must ensure that the sites are compliant with
the IBC-criteria.
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B | Determining Distributions

Throughout the entire report, a lot of distributions have been used. We provide an
overview in Table B.1, in which we show the �tted distribution and the �gure in
which we show the �t.

Distributions

CalorificvalueLine1 Normal[8,705 ; 0,460] B.1a
CalorificvalueLine2 Normal[8,736 ; 0,528] B.1b
CalorificvalueLine3 Normal[10,229 ; 0,810] B.1c
CalorificvalueBEC Normal[11,7994 ; 0,63864] B.1d
FactorLine1 Multimodal with p(x) = B.2a

0,533·Normal[x; 19,0950 ; 0,0399] +
0,467·Normal[x; 19,5774 ; 0,0565]

FactorLine2 Normal[19,5890 ; 0,0778] B.2b
FactorLine3 Normal[10,3462 ; 0,0747] B.2c
FactorBEC Multimodal with p(x) = B.2d

0,5·Normal[x; 14,5225 ; 0,7323] +
0,5·Normal[x; 16,6867 ; 0,5965]*

Table B.1: All �tted distributions

For all distributions of the calori�c values, we performed a Chi-Square test. The
values all pass the test, as their test value is lower than the Chi-Square value as
can be seen in Table B.2. For the factor distribution, we did not �nd a theoretical
distribution that would �t with the data. The distributions we used, were the clos-
est match and we validated them by using them as input for Section 5.3. In that
Section, we veri�cate and validate our model, in which �rst, the only di�erences
with the reality were these distributions. The results closely matched the reality so
we can assume that the distributions we chose, are a close enough �t.

Fit for data from Distributions Test value Chi-Square

CalorificvalueLine1 Normal[8,705 ; 0,460] 28,568 28,869
CalorificvalueLine2 Normal[8,736 ; 0,528] 39,785 44,985
CalorificvalueLine3 Normal[10,229 ; 0,810] 28,706 28,869
CalorificvalueBEC Normal[11,7994 ; 0,63864] 38,075 38,885

Table B.2: Chi-Square test for calori�c value distributions
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(a) Calori�c value for waste on line 1 (b) Calori�c value for waste on line 2

(c) Calori�c value for waste on line 3 (d) Calori�c value for wood

Figure B.1: All �tted distributions for the calori�c value

(a) Calori�c value for waste on line 1 (b) Calori�c value for waste on line 2

(c) Calori�c value for waste on line 3 (d) Calori�c value for wood

Figure B.2: All �tted distributions for the factor
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C | Simulation Model

In Chapter 5 we already discussed the pocesses of the model. In this Appendix we
discuss the methods and tables. First we show an overview of the simulation model
in Figure C.1 and the technical underlay in Figure C.2.

Figure C.1: Overview of the model.

Figure C.2: Technical view of the model

Here we provide a list of all methods that are used, and we discuss them directly.

• Day Control: Init, Init_Day, End_Day
In Init we clear all variables, delete all moveables, and set up the upcoming
run with the settings determined by the ExperimentManager. The Init_day
method is activated at the start of each day. It creates the amounts of waste
scheduled for each line as stated in table WeekProp. Also in Init_day, the
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age of the waste in TOP is checked by looking at the tables TOP_Stats and
Sorted_TOP_Stats.
End_Day is triggered at the end of each day and triggers Init_Day to start
the new day. It also checks whether a week is past and if so WeekStats is
triggered as well.

• Arrivals: Characteristics
The Characteristics method is triggered by arriving waste in Arrive_12 and
Arrive_3 makes sure that every waste part gets a calori�c value assigned.
Depending on the basis for the supplies, the calori�c value is determined by
a uniform distribution or by a normal distribution as discussed in Chapter 4
and 5.

• Planning Dep.: Planner
In the planner method our conceptual models about diverting and retriev-
ing are implemented (Algorithm 1 and 2). The planner method is triggered
either by waste passing through the WeighOffice or by Init_Day due to
over-aging inventory. When retrieving is needed and the decisions are based
also on calori�c value, the method Obroucka is triggered.

• Conceptual Model: Obroucka
In the Obroucka method, we state all equations regarding the Obroucka
model adapted to our situation. The score for all batches is put in the table
Opt_Batch which can then be consulted by the planner method to pick the
right batch.

• Incinerators: Inc_Control
Inc_Control draws the factor from the distribution as determined in Ap-
pendix B. With that factor, the processing time of the waste is determined.
Inc_Control controls all movements in the incinerator. It moves the waste
from the bu�er to the incinerators but also from the incinerators to the exit.
The statistics of the bu�ers are also monitored by Inc_Control and saved in
table Inc_Stats.

• Bulk-Storage: Register, Unregister
When waste is diverted it arrives at TOP . There it triggers the method
Register, which is used to keep track of the amount of waste in TOP but
also the date of arrival. When decisions are based on mass only, the table
TOP_Stats is used. When decisions are also based on calori�c value, the di-
verted waste is sorted into seperate locations, which is registered in the table
Sorted_TOP_Stats.

• Statistics: Weekstats
In WeekStats the statistics of that week are logged. These are saved in the
table W_Results.

105



D | Week distributions

0.218844333 0.246258888 0.217195525 0.167913704 0.149787551
0.128631445 0.215671908 0.276627812 0.191058315 0.18801052
0.235463871 0.228847913 0.190972222 0.146371078 0.198344916
0.189105883 0.221906724 0.209622754 0.219603646 0.159760992
0.242524576 0.241942498 0.185956851 0.15713371 0.172442366
0.157784715 0.22364672 0.2230574 0.235855639 0.159655526
0.228845001 0.223935692 0.199183031 0.184687453 0.163348823
0.202390056 0.231193674 0.189009107 0.17069949 0.206707672
0.141560971 0.210816271 0.222645484 0.206787585 0.218189689
0.254622201 0.260062058 0.18641713 0.158751013 0.140147597
0.165763793 0.183251229 0.236405863 0.238651095 0.17592802
0.28468455 0.182873133 0.182000651 0.177821327 0.172620339
0.173134677 0.183748291 0.252978736 0.189944736 0.200193561
0.213923469 0.232657671 0.219116273 0.185136126 0.14916646
0.202053393 0.202405425 0.213852278 0.205465398 0.176223506
0.192875099 0.219570268 0.199493312 0.245280889 0.142780431
0.215125629 0.18891397 0.193735523 0.248407324 0.153817554
0.236826842 0.248253795 0.18661092 0.176995456 0.151312986
0.190734285 0.248754871 0.209289153 0.19449897 0.156722722
0.144931337 0.192083576 0.235969442 0.290163473 0.136852173
0.151610594 0.146125999 0.246677747 0.281343523 0.174242137
0.239259588 0.137014804 0.169897122 0.216711382 0.237117103
0.237778412 0.275689217 0.190945434 0.156975235 0.138611702
0.163200815 0.234627269 0.207881075 0.22247995 0.171810891
0.203191467 0.230486969 0.205109835 0.193043441 0.168168288
0.267783079 0.180691267 0.197343978 0.196903904 0.157277772
0.217301542 0.286451374 0.21388012 0.158477811 0.123889154
0.198587676 0.277288223 0.109041167 0.206282408 0.208800527
0.312863929 0.245555103 0.177811974 0.164855286 0.098913708
0.114786354 0.21804628 0.070747573 0.293151178 0.303268615
0.29420722 0.186336822 0.136564776 0.203915251 0.178975932
0.190738948 0.205909097 0.240465506 0.165085761 0.197800688
0.202852195 0.218091974 0.216251488 0.197506421 0.165297922
0.16899069 0.215153193 0.171199364 0.192100528 0.252556225
0.217967989 0.207027761 0.203190315 0.205824174 0.165989761
0.221602193 0.223377268 0.191252482 0.191483718 0.172284339
0.175567598 0.249060808 0.220543798 0.237067155 0.11776064
0.09038579 0.208466936 0.180240746 0.286109671 0.234796857
0.139574064 0.244153129 0.200670715 0.196043628 0.219558463
0.178904018 0.203580047 0.206262835 0.164638891 0.24661421
0.246244375 0.227799237 0.15906107 0.202634884 0.164260434
0.185343995 0.149111629 0.15805271 0.255030679 0.252460987
0.174303941 0.192117641 0.168921987 0.254279072 0.210377358
0.201482501 0.221285403 0.16651307 0.156420161 0.254298865
0.224844915 0.23083136 0.228181086 0.182690168 0.133452471

Table D.1: Week distributions for line 1+2
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0.134817219 0.173085665 0.219609717 0.205441134 0.267046265
0.288148168 0.189864908 0.185192251 0.160978018 0.175816655
0.231628636 0.163991133 0.193521385 0.185941979 0.224916867
0.239786048 0.222077188 0.213590541 0.198079875 0.126466349
0.130790652 0.087274345 0.255509036 0.252226337 0.274199631
0.274770983 0.154776642 0.214494394 0.211014042 0.144943939
0.146714025 0.150489668 0.218688966 0.230668475 0.253438865
0.227680784 0.19870411 0.227210846 0.178758794 0.167645467
0.21535498 0.219630546 0.164656486 0.191148914 0.209209073
0.166193013 0.165714143 0.246208161 0.243250433 0.17863425
0.287009891 0.204284489 0.182483751 0.172739458 0.153482411
0.067194286 0.21926107 0.27839651 0.213242396 0.221905738
0.309219344 0.208606584 0.13995326 0.154968343 0.18725247
0.207536077 0.221462248 0.200963016 0.177515658 0.192523
0.238409446 0.121362134 0.199635026 0.272312082 0.168281312
0.173913774 0.174949476 0.150328028 0.242048133 0.258760588
0.264874937 0.289604156 0.177198192 0.080655729 0.187666987
0.161593066 0.176746491 0.206405648 0.226597174 0.228657622
0.236237819 0.114651273 0.20105151 0.244442858 0.203616541
0.267178382 0.160744155 0.248574508 0.150819611 0.172683344
0.282404697 0.28246975 0.145959374 0.151220563 0.137945615
0.17429109 0.235615244 0.251171276 0.180292312 0.158630078
0.165486848 0.138942756 0.216300449 0.272399539 0.206870407
0.234107259 0.200004195 0.200994148 0.176522159 0.188372239
0.206518226 0.142086101 0.182934787 0.248818389 0.219642498
0.203497085 0.155074041 0.220714785 0.204105545 0.216608544
0.249786918 0.172285507 0.179325854 0.196228447 0.202373274
0.312222669 0.221769802 0.228381885 0.111780401 0.125845243
0.175441552 0.178036385 0.230072827 0.198493993 0.217955243
0.289645941 0.189177288 0.292050367 0.132949371 0.096177033
0.121582309 0.243674929 0.313236826 0.17373811 0.147767826
0.219054402 0.243442474 0.190581678 0.235509417 0.111412029
0.205846411 0.201089773 0.213870821 0.205711059 0.173481936
0.245010248 0.198186978 0.19568816 0.254875453 0.106239161
0.18697263 0.292832932 0.193856799 0.183031312 0.143306328
0.211726915 0.215792577 0.186377008 0.219928801 0.166174699
0.140998468 0.202673494 0.210375003 0.146223742 0.299729293
0.152639441 0.234840615 0.160939675 0.214838578 0.236741691
0.240891166 0.228729039 0.186534878 0.192966896 0.150878021
0.141442036 0.21923859 0.21120133 0.229116863 0.199001182
0.236045861 0.249938436 0.205657451 0.18920639 0.119151862
0.115448064 0.134527984 0.263589631 0.275616269 0.210818052
0.213027873 0.22337566 0.16046341 0.166865745 0.236267313
0.196541261 0.193816666 0.213223071 0.210528862 0.18589014

Table D.2: Week distributions for line 1+2
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E | Storage

Twence did calculations to �nd out the e�ect of moisture on the calori�c value. The
results were that the water itself has a calori�c value of -2,7 MJ/Kg. With that,
a calculation can be made about the average decrease in calori�c value if water is
added to 1 Kg of waste. The results are shown in Figure E.1. Where on the X-axis
we have the number of periods that it takes for the proportion of water to reach the
% found in Table E.1.

(a) Decrease function �t for waste (b) Decrease function �t for wood

Figure E.1: Decrease function �ts

From information about the average amount of rainfall and evaporation of the rain
(KNMI, 2010), we found that on average in a year there is a rain surplus of 240
liters of water per m2.

Max. Tons Max. Area Surplus rainwater

TOP 200.000 77.500 9,3%
Woodbank 60.000 70.600 28,24%

Table E.1: Tons of waste/wood per m2

Table E.1 shows how much waste or wood is stored in the bulk storage per m2. In
a year, 0,240 tons rainwater per m2 is added on top of 2,58 tons of waste and 0,850
tons of wood. This means that in a year the percentage of water that is added is
9,3% for waste and 28,24% for wood, which result in the following equations for the
drop in the calori�c value when adding the time proportion in years.

DecreaseWaste = 0, 00001 · (12 ·Ageinyears)2 + 0, 0014 · (12 ·Ageinyears)− 0, 0936;

DecreaseWood = 0, 00001 · (35 · Ageinyears)2 + 0, 0016 · (35 · Ageinyears)− 0, 095;

Therefore, when supplies are retrieved from TOP, the time spent on TOP is calcu-
lated and the e�ect on the calori�c value is determined and adjusted.
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F | Experimental phase 1

In phase 1 we examine, for all combinations of Supplies and Decisions bases, what
the amount of supplies is, for which the TOP approaches steady state. We perform
these experiments with the broad thresholds such that the development of TOP
mainly depends on the supplies. In Table 5.7 the model input for phase 1 can be
found. For this phase we vary the amount of supplies as shown in Table F.1

Lines Range Steps

SuppliesLine1+2 7.000 - 7.300 per week 25
SuppliesLine3 5.600 - 5.900 per week 25

Table F.1: Range of supplies

The results are shown in graphs, from which we want to determine what the right
amount of supplies is, to reach a steady state for the TOP inventory. Preferably,
we �nd one value for each combination of model input shown in Table 5.7, this to
ensure that we can make a fair comparison between the experiments.

In Figure F.1 we see the resuts for all con�gurations with three amounts of supplies
that we have selected. All the TOP Capacity options are combined per [Mass,Mass],
[Mass,Calo], [Calo,Mass], [Calo,Calo] ([Basis for Supplies, Basis for Decisions]). In
Table F.2 we what the lines in the graphs represent.

Red line Supply of 7.175 and 5.775
Green line Supply of 7.150 and 5.750
Blue line Supply of 7.125 and 5.725
Y-axis Amount of TOP inventory
X-axis Weeks

Table F.2: Explanation of Graphs in Figure F.1

In Figure F.1 we show for each con�guration and each initial TOP Capacity three
lines that correspond with three amounts of supplies that give a clear image of the
e�ects.

• Red line: Usually approached the TOP capacity. Only with the [Calo,Calo]
con�guration, the line seems stable.
• Green line: In all situations this line stays stable. Again only with the
[Calo,Calo] con�guration as exception, where the green line has a descend-
ing trend.
• Blue line: This line is in every situation descending.
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Appendix F. Experimental phase 1

(a) TOP Development 5K, 40K, 80K, Mass-Mass

(b) TOP Development 5K, 40K, 80K, Mass-Calo

(c) TOP Development 5K, 40K, 80K, Calo-Mass

(d) TOP Development 5K, 40K, 80K, Calo-Calo

Figure F.1: TOP Development 5K, 40K, 80K
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Since we want to make a fair comparison, we choose as input for our model the
supply amounts used for the green line. Although the line does not result in the
steady state we would like for the [Calo,Calo] con�guration, the TOP still is above
the 40K so we should be able to still make a constructive conclusion about the
amount of TOP inventory.

From Figure F.1a, F.1b it is clear, but also in Figure F.1c and F.1d we see that
the initial conditions of the TOP inventory has a big in�uence. In week 156, the
lines have a small hick-up, which is not surprisingly right after the �rst 3 years. For
every initial TOP amount we looked at the distribution of the age of the waste. In
Figure F.2 we show the sorted ages (y-axis) of the TOP waste (x-axis).

(a) TOP Ages (5K) (b) TOP Ages (40K) (c) TOP Ages (80K)

Figure F.2: TOP Age 5K, 40K, 80K

In Figure F.2 we see a di�erent spread for the di�erent ages among the TOP in-
ventory. We notice a jump in the ages in Figure F.2a (large jump) and F.2b (small
jump), from which we can conclude that it the amount of time that it costs to
refresh all waste in TOP is shorter then three years. Especially with the 5K TOP,
where we see a jump in age of more than 600 days. Since we need to get into steady
state �rst, we can not exactly determine at which moment in time this jump starts.
We �t a uniform distribution in which we take into account the spread of the age
of the waste after the jump. We use this distribution in our experiments so that
the waste in TOP starts as young as possible given the amount of time it takes to
refresh within three years. The results are shown in Table F.3.

Intial conditions 80K TOP Uniform[ 0 days ; 1.054,00 days ]
Intial conditions 40K TOP Uniform[ 0 days ; 925,93 days ]
Intial conditions 5K TOP Uniform[ 0 days ; 181,40 days ]

Table F.3: Range of Ages
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G | Experimental factors:
Thresholds

Because we can not test for all possible thresholds, we need to make a good estima-
tion about what should be the optimal thresholds. From Section 3.1 we know that
safety stock is used to prevent stockouts, and thus that the safety stock should at
a level such that the probability of a stockout is beneath the desired level.

We want to prevent stockout, so we need to bridge two days without supplies. Bu�er
1+2 therefore needs to bridge four days, and bu�er 3 just the two days. We need to
set the threshold such that at any time, the amount of waste in the bu�er is higher
than respectively four and two days of incinerating.

When we calculate the maximum amount of work present in a bu�er, we use the
mean for the calori�c value and the factor. This because the capacity is respec-
tively 5500 and 10000, which is enough to assume the mean is a correct estimation.
The maximum amount of work present in a bu�er is calculated by Equations G.1
and G.2.

AmountofWorkBuffer1+2 = 19, 45456 · 8, 7205 · 5.500 = 10days20hours; (G.1)

AmountofWorkBuffer3 = 10, 3462 · 10, 2290 · 10.000 = 12days6hours; (G.2)

For the low bounds of the thresholds we need to use the distributions we found for
the factors and the calori�c value. We want to choose the value such that 95% of
the distribution is higher than our value.

In Table G.1 we show the distributions for both the con�guration in which supplies
are based on mass, and in which supplies are based on calori�c value.

With the 0.05 percentile values for the calori�c values and the factors, we can de-
termine a kind of low bound for the amount of work present in the bu�er by using
these values in Equations G.1 and G.2. To determine what the threshold needs
to be, we divide the amount of days that the bu�er needs to bridge by the total
amount of work in the bu�er. We summarize the results in Table G.2.

For the low thresholds we thus experiment with [35%, 40%, 45%] and [15%, 20%, 25%]
for respectively bu�er 1+2 and bu�er 3.

In our experiments, we assume that the TOP inventory is in a steady state so we
can assume that the amount of waste supplied in a week is on average equal to
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Which line Distribution 0,05 percentile

CalorificvalueLine1 Normal[8,705 ; 0,460] 7,9457
CalorificvalueLine2 Normal[8,736 ; 0,528] 7,8642*
CalorificvalueLine3 Normal[10,229 ; 0,810] 8,8773
CalorificvalueLine1 Uniform[7,8345 ; 9,5755] 7,9216*
CalorificvalueLine2 Uniform[7,8624 ; 9,6096] 7,9498
CalorificvalueLine3 Uniform[9,2061 ; 11,2519] 9,3084
FactorLine1 Multimodal with p(x) = 19,028*

0,533·Normal[x; 19,0950 ; 0,0399] +
0,467·Normal[x; 19,5774 ; 0,0565]

FactorLine2 Normal[19,5890 ; 0,0778] 19,461
FactorLine3 Normal[10,3462 ; 0,0747] 10,223

Table G.1: 0.05 percentile values for calori�c values and factors
*We take the lowest of the two values for Line 1 and Line 2

Bu�er Average LB Mass LB Calo

1+2 260 hours (36,92%) 228 hours (42,11%) 230 hours (41,74%)
3 294 hours (16,33%) 252 hours (19,05%) 264 hours (18,18%)

Table G.2: Maximum amount of work in the bu�er (percentage for 4 or 2 days)

the amount of waste to be processed in a week. Because on only �ve of the seven
weekdays waste is supplied, roughly every day (7/5) of the daily needs are supplied.
Because of the range for our supplies we could have more supplies than needed in a
week. We therefore look at the 0.95 percentile to determine the high threshold, as
shown in Table G.3.

Supplies based on Monday Tuesday Wednesday Thursday Friday

Mass Supplied 1,526 1,526 1,526 1,526 1,526
Processed 1 1 1 1 1

Calo Supplied 1,6303 1,6303 1,6303 1,6303 1,6303
Processed 1 1 1 1 1

Table G.3: 0.95 percentile for the supplies

So the �rst four days a surplus of 2,104 and 2,5212 arises. Thus at the start of
Friday there should be room in the bu�er for that surplus and the waste supplied
on friday. This means for the di�erent supply bases, that there should be room for
2,104+1,526

7
[Mass] and 2,5212+1,6303

7
[Calo] percent of the arrivals.

The average supplied amount per week is set to 12.900. The surplus for which space
should be reserverd than would be respectively 6.690 and 7.651. Because we want
to prevent sending waste to an alternative incinerator, we can subtract the amount
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Appendix G. Experimental factors:
Thresholds

of waste that can be diverted in a week which is 1.500 at maximum. In Table G.4
we summarize this information.

Supplies based on Surplus Maximum diverting Total bu�er capacity Surplus−Diverting
Totalcapacity

Mass 6.690 1.500 15.500 33,48%
Calo 7.651 1.500 15.500 39,68%

Table G.4: Determing % to reserve

Because in our conceptual model, if one bu�er is above its threshold we send the
waste to the other bu�er, in percentage terms it does not matter whether we take
di�erent high thresholds for both bu�ers. When both bu�ers are �lled to their high
threshold, the total bu�er capacity is used for the average of the two high thresholds.
Therefore for convenience we say that we choose one threshold for both bu�ers. The
high thresholds we thus experiment with are [60%, 65%, 70%, 75%, 80%].
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H | Determine number
of replications

As discussed in Section 5.4.2, we give some more explanation about the determina-
tion of the number of replications. We explained why we do not exclude our warm
up for our �rst phase. In Figure H.1 we see the test in which we determine the num-
ber of replications needed. Unfortunately, 30 replications were not enough for the
experiments with a TOP Capacity of 5K. Therefore we chose to do 100 replications.
Because of the running time of the model, this is the maximum number of replica-
tions we can perform in order to keep the running time acceptable. The advantage
of performing our experiments in multiple phases, is that we perform longer runs
for the most promising experiments, so when the experiments with a TOP Capacity
of 5K are within this group, we test again for the number of replications.

Figure H.1: Test for number of replications
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I | Experimental phase 3

For phase 3 we want to perform much longer runs with excluding the warm up pe-
riod in order to get very reliable results. We check with the welch method what the
appropriate warm up period should be. We test this with the 12 worst performing
experiments by looking at the TOP inventory and the costs per week. First we
show the settings of the experiments with which we tested for the warm up period,
and after that, the welch graphs are shown.

Settings
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1+
2
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ow
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h
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3

H
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T
h
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3

T
O
P

C
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acity

1 Mass Mass 0,40 0,60 0,25 0,60 40000
2 Mass Mass 0,45 0,60 0,20 0,60 80000
3 Mass Mass 0,35 0,60 0,25 0,60 5000

4 Mass Calo 0,35 0,60 0,25 0,60 5000
5 Mass Calo 0,45 0,60 0,25 0,60 40000
6 Mass Calo 0,45 0,60 0,25 0,60 80000

7 Calo Mass 0,35 0,65 0,15 0,65 40000
8 Calo Mass 0,35 0,60 0,20 0,60 80000
9 Calo Mass 0,35 0,60 0,25 0,60 5000

10 Calo Calo 0,35 0,60 0,25 0,60 40000
11 Calo Calo 0,35 0,60 0,25 0,60 80000
12 Calo Calo 0,35 0,70 0,15 0,70 5000

Table I.1: Experiments for the Welch method

Unfortunately, even with a run length of 100 years, we still have a few experiments
that do not provide a steady state when we look at the costs per week in Figure I.1a.
In Figure I.1b we notice just a single experiment in which the TOP inventory seems
to not be in a steady state. From the lines that do achieve steady state we can
determine that the warm-up period lasts for almost 1040 weeks (20 years). So for
our extra long runs we decide to take 20 years for the warm-up period, and a total
run length of 120 years.

From Figure I.1a we can easily see that 6 of these 12 experiments have much higher
costs per week than the other experiments. These are all experiments with calori�c
value as the basis for the supplies. Therefore we can almost already conclude that
these experiments will not come out on top, even if the other settings are opti-
mal. Since we now took the 12 worst experiments of the 36 best experiments, the
di�erences will be small and therefore, no big movements are expected. We also
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(a) Welch Method for the costs per week

(b) Welch Method for the amount of TOP inventory

Figure I.1: Welch Method

determine the number of replications again, of which the results are in Table I.2.

Start Scenario
Minimum number of
replications needed

Number of replications
done

80.000 Tons 6 15
40.000 Tons 11 15
5.000 Tons >25 70

Table I.2: Required number of replications for phase 3
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J | Sensativity analysis

(a) Costs per week for diverting and retrieving

(b) Costs per week for idle time

(c) Costs per week for sending to competitors

Figure J.1: Costs speci�cation for varying the margin
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(a) Costs per week for diverting and retrieving

(b) Costs per week for idle time

(c) Costs per week for sending to competitors

Figure J.2: Costs speci�cation for spread arrivals
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