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2 Waypoint navigation with obstacle avoidance for MAV's

Summary

Inspection of large plants and infrastructures done by humans takes time and can be dangerous.
Inspection sites can be hard to reach. The use of MAV's has become popular over the last years
and has made these kinds of inspections easier. However, controlling an MAV requires a skilled
pilot.

During this project a system will be designed for an MAV that is equipped with an inertial
measurement unit (IMU) and a stereocamera. The goal of this system is to enable the MAV to fly
itself to a desired inspection site. An inspection expert will be able to do the inspection from the
ground without the need of piloting skills.

The system is divided in several parts. The goal of this assignment is to write an algorithm that
can be used to plan a path for an MAV and that is capable of planning the fastest route from its
current location to a certain waypoint while avoiding any obstacles. This algorithm will be tested
in a simulation program and not on the hexacopter itself. The inputs will be a 6 DoF pose
estimation of the current pose and a 3-dimensional waypoint location. The output will be an
array of 3-dimensional waypoints which form the path to the goal. This output is then used as an
input for the controller.

An algorithm based on the A*-algorithm was designed to find the shortest path from the current
location of the MAV to a destination while avoiding any obstacles. The first implementation did
cause some problems. With some optimization, the final algorithm has provided us with good
results on our own PC's. However, the results received from the challenge stated that the system
had not settled during the testing by EuRoC. The overall score for the path-planning part of the
challenge was satisfactory.

Even though the algorithm did function satisfactory given the time that was available, there is
still room for improvement. Some experiments have been done with adding a second algorithm
as an extra safeguard but was not added. This will reduce the chance of a collision. Secondly, the
algorithm sometimes creates an illogical path where a straight line would be sufficient. This
indicates an error in the algorithm and should be looked into.
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1. Introduction

1.1 Context

Inspection of large plants and infrastructures done by humans takes time and can be dangerous.
Inspection sites can be hard to reach. The use of MAV's has become popular over the last years
and makes this a whole lot easier. However, controlling an MAV requires a skilled pilot.

Since an MAV is a naturally unstable platform and will be used inside as well as outside, the
designed control system has to be robust since MAV's are easily destroyed. The system has to be
able to independently fly the platform around without the need of interference by a person such
that an inspection expert can completely focus on the inspection.

1.1.1 Project structure

This challenge is part of the European Robotics Challenges (EuRoC) and is carried out by team
LEO. LEO is a collaboration of regional corporations and universities that want to transmit their
skills and knowledge in service robotics around the world. The challenge is divided into three
stages:

1. Simulation stage: the teams have to use the provided simulation environment to test
their algorithms for localization, mapping, controlling and navigation. The fifteen best
teams will team up with end users and technology developers and come up with a fifteen
page proposal.

2. Realistic labs: the five best teams of the previous stage will participate in an end user-
driven task which will be aimed at showcasing customizability under realistic conditions.

3. Field test: the best three teams of the previous stage will do real-life experiments at an
end user site to test their solution. After this stage, the winner of EuRoC is determined.

The simulation stage is carried out in a simulated environment provided by EuRoC. Two Ubuntu
virtual machines are provided by EuRoC, one challenger virtual machine and one simulation
virtual machine, with ROS (Robot Operating System) combined with all needed packages and
Gazebo pre-installed, refer figure 1.1. The simulation virtual machine contains a model of the
MAV which is the same for all participants and is not to be changed. The solutions can be
programmed in the client virtual machine.

Ramon Jansen University of Twente
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Figure 1.1: Simulation virtual machine and challenger virtual machine

The simulation stage is divided in two tracks with each two different tasks. Each track is divided
in two teams, one for each task. The two teams within a track have to have good communication,
since ultimately they will depend on each other's data. Each track has a small team of students
from Saxion and University of Twente working on it accompanied and supported by PhD-
students and professors of the RaM-group. Below follows the division of the simulation stage:

Track 1

L.

II.

Task 1: Localization of the MAV

The goal of this task is localizing the MAV and tracking its movement to estimate its
position at all times as accurately as possible with the use of two generic 6-DoF pose
sensors and an IMU.

Task 2: Environment mapping

The goal of this task is mapping the environment and all obstacles within as accurately as
possible with use of a virtual-inertial SLAM-sensor.

Track 2

[1I.

IV.

Task 3: Hovering control

The goal of this task is designing a controller for the MAV to assure stable hovering in
situations with no disturbances as well as in situations with constant and random
disturbances.

Task 4: Path planning and navigation
The goal of this task is planning the fastest route from the current location of the MAV to

a certain waypoint while avoiding possible obstacles and navigating the MAV with the
use of an OctoMap provided by EuRoC.

University of Twente Ramon Jansen



1.1.2 Track 2 structure

Figure 1.2 shows the structure of track 2 and the dependencies of the different tasks. As stated
before, track 2 is divided in two teams; one for task 3 and one for task 4. It is important for both
teams to have good communication since both tasks depend on each other's data as seen in
figure 1.2.

Below a short description of the connection between each fraction of track 2 is given.

The simulation provides real time acceleration data which can be requested at all times. The
Kalman filter uses this acceleration data provided by the simulation to estimate the current
position and angle of the MAV.

For path planning and navigation, a 6 DOF vector containing the current state of the MAV, a
target waypoint and an occupancy map of the environment is received as inputs. The target
waypoint is provided by the simulation software as a 3D waypoint. An Octomap provides
occupancy information about the environment with a resolution of 0.25m.

The controller receives a 3D waypoint array from the path planner. This data is processed
together with the current position data from the Kalman filter and ultimately the six rotors of
the MAYV are controlled by sending a 6 DOF vector to the simulation software.

Simulation environment Task 3: State estimation and control
6 DOF vector Controller -+
MAV model sensors and |¢ | *
actuators | My )
Qeceeraon > Ka lman fllter
6 DOF pose
estimation
Occupancy & DOF pose estimation 3-dimensional
Octomap map waypoint array
Task 4: Path planning and
navigation
Target waypoint :-E: Path planning algorithm
30 "
way point

Figure 1.2: Block diagram of track 2
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1.1.3 Thesis assignment

This assignment contributes to path planning and navigation. The goal of this assignment is to
write an algorithm that can be used to plan a path for an MAV and that is capable of planning the
fastest route from its current location to a certain waypoint while avoiding any obstacles.

Task 1 till task 4 are all divided in different subtasks. For each of these subtasks with increasing
complexity, points can be scored based on several criteria in the final evaluation. For task 4, the
subtasks are stated in table 1.1.

Subtask description Criteria Maximum score
Subtask 4.1: Waypoint navigation Settling time 2
The goal is to plan a path from a starting Accuracy

point to a random waypoint. There will

be no obstacles present. Energy efficiency 2
Subtask 4.2: Switching sensor input Settling time 3
The goal is to plan a path from a starting

point to a random waypoint while one of | Accuracy 3
th.e sensor inputs is failing. Again there Energy efficiency 3
will be no obstacles present.

Subtask 4.3: Navigation with obstacle | Settling time 5
avoidance

The goal is to plan a path from a starting | Accuracy 5
point to a random waypoint while -

avoiding collisions with obstacles. Energy efficiency >

Table 1.1: Task 4 scoring table

1.2 Goals

The goal of this project is to develop a path planner that is exploring the design space provided
by EuRoC and provides a collision-free path to a random waypoint within this design space.

The first part of this assignment is focused on finding background information about path
planning algorithms and comparing them to select the algorithm best suited for this project.

The second part is the implementation of the selected path planning algorithm.

1.3 Approach

The focus is on scoring in every subtask, refer table 1.1. After having a basic functioning
algorithm which is able to complete subtasks 4.1 and 4.2, the focus will be on the obstacle
avoiding algorithm so that there will be a score on every subtask. After being able to score points
on every subtask, improvements then can be made to the algorithm in order to achieve better
scores.

University of Twente Ramon Jansen




1.4 Report structure

Chapter 2 treats the comparison between six possible and most suitable path planning
algorithms as a result of a literature study. The comparison is made based on several
requirements.

Chapter 3 shows the design and implementation of the final algorithm.

Chapter 4 discusses the results of intermediate tests and the final results of the challenge based
on the criteria shown in table 1.1 and table 3.7.

Chapter 5 evaluates the final algorithm and gives conclusions and recommendations for future
development.

Ramon Jansen University of Twente
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2. Analysis

As stated in chapter 1, the first goal is to at least score points on every subtask. The primary
requirements for achieving this within the given time are stated below. The algorithm should

- always finds a collision-free path, a single collision will result in 0 points for subtask 4.3.

- be easy to implement, so that quick results are obtained from within the given time, an
so that there is probably time left to improve the algorithm. Please not that the scoring
on this requirement is somewhat subjective.

- function well with at least a 3 DoF platform, i.e. is able to provide 3D vectors for
movement along the x, y and z-axis.

The secondary requirements which would provide for a good algorithm are:

- It has to be efficient in calculating a path in a 3 dimensional environment. Fast
computation of a path means that the total time needed for path planning and navigation
is lower. This is one of the scoring criteria of EuRoC, refer table 1.1 (settling time).

- It should always try to find the shortest/quickest path to the target. The MAV will reach
its destination quicker, this results in a lower settling time as well. Also, this is more
energy efficient.

- It should aim for a smooth flight, no stuttering or difficult maneuvers if not necessary.
The more straight the path is, the less maneuvering is needed. Maneuvering costs
energy, so less maneuvering means more energy efficiency.

For designing and developing a suitable algorithm for subtask 4.3, a comparison is made
between six obstacle avoiding algorithms. In this section, the working of each algorithm will be
described briefly and the algorithm is evaluated based on the requirements stated above. Then a
comparison between these six algorithms is made, refer section 3.2.7, and one is chosen as the
base of the final algorithm.

2.1 Dijkstra’s shortest path algorithm

This algorithm will expand outwards equally in every direction as can be seen in figure 3.1. It
will put the neighboring nodes of the current node in a list. Each node will get a score depending
on the cost of travelling to that node from the starting node. Then, the cheapest node is chosen
and that will become the new ‘current node’. The old current node is set as the parent of the new
current node. When there are multiple nodes with the same score, they are all examined.

Figure 3.1 a) Expansion of Dijkstra's algorithm with b) and without obstacle. The red tile is the
starting point, the purple tile is the goal. (Source: Stanford, A* algorithm)

University of Twente Ramon Jansen
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The score of a node is based on the previous node, or its ‘parent’-node. When a node can be
reached via a cheaper path, that node will get a new parent. Let’s say that all paths have equal
costs and nodel has node2 as its parent. Node3 is examined, and has node1 as its neighbor. But
the score of node3 is lower than the score of node2. That means that nodel can be reached
quicker via node3. So the algorithm will reset nodel’s parent to node3. When two possible
parents have the same score, one of them will be chosen at random. After all, both paths will
most likely have the same length. [Correll, Nikolaus (2011)]

When the algorithm has reached the goal, the path will be found simply by noting each nodes
parent working backwards starting at the goal.

Requirements Rating

Collision-free path Yes, when forbidden areas are well stated
Implementation difficulty Easy/Medium/Hard

3 DoF functionality Will work, but mostly used in 2D

Other criteria

Path finding speed in 3D environment Slow/Medium /Fast

Shortest path Yes

Smooth flight Grid-based, limited directions
Table 3.1: Dijkstra’'s shortest path

Dijkstra's algorithm will always find a collision-free path if the coordinates of the obstacles, the
forbidden areas, are provided correctly. It is easy to implement and will always find the shortest
path available due to the fact that it will check a wide amount of possibilities.

Because this algorithm expands in all directions, it is very slow in finding a path in 3D
environments. This is also called the curse of dimensionality. Dijkstra's algorithm is mostly used
in 2D environments. But when adding a third dimension, the number of computations needed to
find a path increases significantly. For example, if we have a 2D design space of 10x10 nodes,
there is a total of 100 possible nodes. If a third dimension is added, the total number of nodes
increases by another factor 10, so that the total number of nodes is 10x10x10=1000 nodes. This
generally means that to find a path, the number of computations needed also increases by a
factor 10 in this example.

2.2 Best-first search algorithm

This algorithm does not use the distance from the starting node, but uses an estimate value
called ‘heuristic’ to calculate the cost for each node. This heuristic value can be calculated in
different ways depending on the application, these are visualized in figure 3.2.

The red line shows the Manhattan distance between point A and point B. The difference in the x-
direction and the difference in the y direction between point A and point B are summed up. For
three dimensions, the difference in the z-direction is added.

The orange line shows the diagonal distance. Diagonal movement is allowed. A diagonal step
usually has a value of 1.4 times the step size (V1 + 1 = 1.4).

Ramon Jansen University of Twente
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= Manhattan distance
= Diagonal distance

Figure 3.2: Heuristic value determination

The green line shows the Euclidean distance. This is the absolute distance between point A and
point B, and is calculated by:

H=/x?+y?
or by:
H= T ¥yie s
for a three dimensional grid. [Red blob games, Heuristics]

Figure 3.3 shows how greedy best-first search will develop and what path it calculates in the
same configuration as showed with Dijkstra’s algorithm in the previous chapter. In this
configuration, the Manhattan-distance is used to calculate the heuristic value.

Figure 3.3 a) Expansion of the greedy best-first search algorithm with b) and without obstacle.
The red tile is the starting point, the purple tile is the goal. (Source: Stanford, A* algorithm)

The algorithm works the same way as Dijkstra’s, each node will have the heuristic value as its
score. The neighboring nodes of the current node are stored in a list with their score. The
cheapest one is chosen, that node will become the next ‘current node’, with the current node as
its parent. If a node has two possible parents with the same score, one of them will be chosen as
the parent since both resulting paths will have the same length. The algorithm stops when the
goal is found or when no possible path is found. In the former case, the path is reconstructed by
noting each nodes parent working backward from the goal node. [Stanford, A* algorithm]

University of Twente Ramon Jansen
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Requirements Rating

Collision-free path Yes, when forbidden areas are well stated
Implementation difficulty Easy/Medium/Hard

3 DoF functionality Will work, but mostly used in 2D

Other criteria

Path finding speed in 3D environment Slow/Medium /Fast
Shortest path Not guaranteed
Smooth flight Grid-based, limited directions

Table 3.2: Best first search

The principle of this algorithm is the same as Dijkstra's algorithm with just minor differences
and is also easy to implement. Compare the figure 3.3a) with 3.1a). As can be seen immediately,
the path found by best-first search is longer than the path found with Dijkstra's algorithm. This
is because each node is scored based on its distance from the goal instead of the distance to the
starting point. Therefore, the closer a node is to the goal, the lower the score. The algorithm thus
tends to go straight to the goal, and when an obstacle is found the path is redirected around this
obstacle. With Dijkstra's algorithm, all nodes on the same radius from the starting point have
the same score and thus a better path is found.

Compare 3.3a) with 3.2a). This algorithm checks a lot less nodes than Dijkstra's algorithm when
no obstacle is in the way. This is because each node is scored based on its distance from the goal
instead of the distance to the starting point. Since the nodes going towards the goal will have a
lower score than the nodes away from the goal, the algorithm will always try to expand in the
direction of the goal. Dijkstra's algorithm does not have information about the direction of the
goal and thus expands in all directions.

Best-first search is more efficient when no obstacles are obstructing the ideal path. When this
ideal path is obstructed, a less optimal path is found than with Dijkstra's algorithm.

2.3 A-star

This algorithm combines the best from the two algorithms discussed above. It takes into the

account the heuristic distance to the goal as well as the distance from the starting point. This
way, the algorithm will always find a shortest path. That is, when a path is available and with
respecting the angle restrictions.

The algorithm starts with examining the neighbors of the current node. Each node will get two
scores: one for heuristic and one for travelling cost from the starting point to that node. Let's call
the heuristic score H, the travel cost score G. The total score F for a certain node is then:

F=H+G

The closer a node is to the goal, the lower the heuristic score H. The closer a node is to the
starting point, the lower the travel cost score G. The nature of the algorithm depends on which
score has a bigger weight. If for example the H score has a bigger weight (by for example
incrementing with 5 points for every step), the nature of this algorithm is more like best-first
search, while if the G score has a bigger weight the nature is more like Dijkstra's algorithm.

Ramon Jansen University of Twente
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In figure 3.4, the expansion of the A-star algorithm is shown. Figure 3.4 a) shows the expansion
with an obstacle between the starting point and goal. Figure 3.4 b) shows the expansion when no
obstacle is present between the starting point and the goal.

[Red blob games (2009), Introduction to A*], [Winands, Mark (2004)]

Figure 3.4 a) Expansion of the A-star algorithm with b) and without obstacles. The red tile is the starting
point, the purple tile is the goal. (Source: Stanford, A* algorithm)

The working of this algorithm is as follows: all the neighbors are stored in a list, after which the
node with the lowest total score F is chosen. When two nodes have the same lowest score, one of
them is chosen at random as the parent since both resulting paths will have the same length. The
current node is set to be this nodes parent. This continues until the goal is reached or when no
path is found. That path is generated by tracing back each nodes parent, starting from the goal.

Requirements Rating

Collision-free path Yes, when forbidden areas are well stated
Implementation difficulty Easy/Medium/Hard

3 DoF functionality Will work, but mostly used in 2D

Other criteria

Path finding speed in 3D environment Slow/Medium/Fast

Shortest path Yes

Smooth flight Grid-based, limited directions

Table 3.3: A-star

A-star is a combination of Dijkstra's shortest path algorithm and best-first search algorithm.
Benefits of both algorithms can be seen in figure 3.4. It will always find the shortest path to the
goal like Dijkstra's (and unlike best-first search), but it will only scan nodes in the direction of
the goal if possible like best-first search (and unlike Dijkstra's). The former guarantees that the
shortest path is found, the latter makes the algorithm more efficient. This algorithm is a little
more complex and is somewhat harder to implement than Dijkstra's or best-first search since it
is a combination of the two algorithms.

University of Twente Ramon Jansen
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2.4 Potential fields

This algorithm creates virtual forces that are acting on the object. The goal has acts as an
attractive force on the object, and obstacles will act as repulsive forces. It can be compared to a
marble rolling down the graph shown in figure 5.

Figure 3.5: Visualization of a potential field (Source: Safadi, H. (2007))
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The highest point is the starting point, the lowest point is the goal. When the marble rolls down
this hill, it will automatically go around the pillars and get to the goal without crashing directly
into the pillars. Another analogy would be a magnet being pulled towards the goal while being

repulsed by obstacles, which will have the same polarization as the magnet.

0-30

Figure 3.6: Visualization of a potential field with local minimum

The advantage of potential fields is that it can be used to navigate around obstacles during flight
as a dynamic path planning algorithm, since the MAV will automatically be repulsed by obstacles

before hitting them.

However, there is one big downside: while the previous types of algorithms will always find a
path when there is one available, potential field can fail to find a path. This is because the
algorithm can get stuck in a local minimum, for example the one shown in figure 3.6. This can be
countered by adding random backward movement when the algorithm is stuck, but no

distinction can be made between a local minimum and the absence of a path.

[Safadi, H. (2007)], [Vas&dk, J. (2007)], [Slideshare, Dynamic Path Planning]

Ramon Jansen
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Requirements Rating

Collision-free path Not always finding path due to local minima
Implementation difficulty Easy/Medium/Hard

3 DoF functionality Yes

Other criteria

Path finding speed in 3D environment Slow/Medium/Fast
Shortest path Not guaranteed
Smooth flight Not guaranteed

Table 3.4: Potential fields

Potential fields are very well suited for 3D environments. It can even be used as a dynamic path
planner, meaning that it can also avoid obstacles and find a path in an unknown environment
while flying around. This will come in very handy in a lot of cases, since the complete
environment is often unknown. Even when it has to plan a path before flight, it will be very fast
in determining a path.

However, the big issue with potential fields is local minima. Therefore it is not always
guaranteed that a path is found, even though one is available. If a path is found, it is not
guaranteed to find the shortest path. It seemed to be more complex to implement, and few
implementations are found on the internet or in books.

2.5 Harmonic potential fields
As stated in section A.4, potential fields can suffer from local minima which results in the
algorithm failing to find a path. Harmonic potential field method is also an artificial function
based on harmonic functions, which overcomes the limitations of potential field methods.
Harmonic functions are solutions to the Laplaces equation (eq. A.1), the so-called harmonic
equations (hence the name harmonic potential fields). The most important property of harmonic
functions is that they are free from local minima. The core idea of this method lies in creation of
only one minimum in the working environment i.e, the global minimum which is represented by
the goal. If the goal is represented by a global minimum and no other minimum exists in the
environment then the robot will arrive at the goal location always. Harmonic potential fields
provide a solution to this.
daf? | df? | df?

V2f=Af=d—2+%+d—};=0 (A1)
In equation A.1, fis a scalar function and in this case describes the space in which has to be
navigated. The goal is to find a function f for which the divergence of the gradient is zero
everywhere except at goal. The gradient of fis in the direction of the goal, since the goal has an
attractive force. The divergence of is a measure for sources and sinks within the space described
by f. If the divergence of the gradient of fis zero everywhere except for the goal, then there is
certainly no local minimum. The goal will be a global minimum, and this way a path is always
found if one is available.

Some nice papers about implementations using this method can be found, see references stated
below.

[Daily, Robert and David M. Bevly (2008)], [Masoud, Ahmad A. (2008)]

University of Twente Ramon Jansen
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Requirements Rating
Collision-free path Yes

Implementation difficulty Easy/Medium/Hard
3 DoF functionality Yes

Other criteria

Path finding speed in 3D environment Slow/Medium /Fast
Shortest path Yes
Smooth flight Yes

Table 3.5: Harmonic potential fields

Harmonic potential fields are guaranteed to always find a path if there is one available, this will
also be the shortest path. It will be a little bit slower than normal potential field algorithms since
more calculations have to be done. Opposing to normal potential fields, harmonic potential fields
cannot be used for dynamic in-flight obstacle avoidance and path planning since the whole
environment needs to be known in order to calculate the harmonic potential field.

The problem with harmonic potential fields is that the algorithms are often very complex and
there is very little information to be found about this path planning method. Because of this, it
will be a risk to try and implement a working harmonic potential field algorithm before the
deadline.

Ramon Jansen University of Twente
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2.6 Rapidly exploring random tree search algorithms

This algorithm is based on quick (random) exploration of a certain configuration space by filling
it up with a ‘tree’. The example in figure 3.8 start at the top left corner, this is the ‘base’ of the
tree. It will continue to grow until it has found the goal, which is circled in green.

3%

[ A

Figure 3.8: Example of the result of a Rapidly Exploring Random Tree algorithm

This kind of algorithm is quick and suitable for high-dimensional problems while the tree will
explore the configuration space randomly. This means that this algorithm may find the goal just
as quick in a large configuration space as in a smaller configuration space. The increment value
that is used (so in figure 4 the distance between two dots) has a great influence on the working
of the algorithm. When the increment value is too large, the search will be quick, but obstacles
may cause the algorithm to fail. When this value is too small, it will take longer to cover a certain
area.

The downside of this algorithm that the chance of finding the best path is very small. This is
already clear in figure 4. There are no obstacles between the starting point and the goal, so the
optimal path would be a straight line. In complex environments, the path may become even less
efficient. For example, when a path could have been planned between two obstacles, the tree
may only have found a path around the obstacles.

[Rodriguez, S., Xinyu Tang, [yh-Ming Lien, Nancy M. Amato, An Obstacle-Based Rapidly-Exploring
Random Tree]
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Requirements Rating
Collision-free path Yes, if a path is found
Implementation difficulty Easy/Medium/Hard
3 DoF functionality Yes

Other criteria

Path finding speed in 3D environment Slow/Medium /Fast, depending on step size
Shortest path Almost never
Smooth flight Almost never

Table 3.6: Rapidly exploring random tree

Rapidly exploring random tree algorithm is probably the quickest way to generate a path to the
target. It works very well in 2D as well as in 3D environments.

The downside is that this algorithm will not always find a path, even if one is available. This is
because the expansion of this algorithm is random, and when all branches hit a dead end, the
algorithm will conclude that no path is available. When a path is found, it will practically never
be the shortest/quickest path and also will not provide a smooth path. It also doesn't seem easy
to implement.

2.7 Comparison

In table 3.7 on the next page a total scoring is given for all algorithms. The scores used for the
requirements are 0, 2 or 6 points. The scores used for the other criteria are 0, 1 and 3 points,
since these criteria are less important than the requirements. Again, please note that the scoring
for 'Implementation difficulty' is somewhat subjective.

2.8 Decision

From Table 3.7 is concluded that A-star is the best algorithm for our purposes. It guarantees a
collision-free path, can be made to work in 3D environments and the probability of a working
algorithm before the deadline is high. It seems to be quick enough for use in this challenge, will
always find the shortest path and also provide a smooth flight.
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Collision-free 6 6 6 2 6 2

path

Implementation 6 6 6 0 0 2

difficulty

3 DoF 0 2 2 6 6 6

functionality

Path finding 0 1 1 2 2 2

speed in 3D

environment

Shortest path 2 1 2 1 2 0

Smooth flight 2 1 2 1 2 0

Total score 16 17 19 12 18 12

Table 3.7: Scoring table for comparing algorithms based on requirements
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3. Design and implementation

This chapter will show the process of developing the path planning algorithm with obstacle
avoidance. An algorithm based on A-star is designed and implemented. Finally, improvements
are made, leading to the final version of the algorithm. The full implementation of the algorithm
is found in appendix B.

3.1 Design

For designing the algorithm, a pseudo code implementation is made based on research done on
A-star. A flowchart of this pseudo code is found in figure 3.1. The pseudo code is found in
appendix A.

Define the open set and the closed set
Open set initially contains starting node
Closed set is empty

Yes
[No path available }-1 Is open set empty? +

No

*

[ Select node X with lowest total score ] [ PutX in closed set I'

F Y

Is chosen node target node? Reconstruct path

Compute H score, G score & total score Fof Xn
Put Xn in open list
F 9

[Examine surrounding nodes Xn}

Skip Xn
Go to next node

Is Xn occupied?

Is Xn in open set? Is Xn in closed set?

If a shorter path is possible to Xn, update the
G-score and the F-score of Xn

If a shorter path is possible to

Xn, update the G-score and the
F-score of Xn Put Xn in the open list

Figure 3.1: Flowchart A-star algorithm
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3.2 Implementation

This section explains the implementation of the final algorithm. First, an implementation is made
based on the flowchart found in figure 3.1. Due to problems with this implementation,
improvements are made. These are described and added to the flowchart.

3.2.1 Basic A-star implementation

Refer figure 3.1. On initiation, the open set and the closed set are defined. The open set contains
the nodes that are examined at a certain time by the algorithm, excluding nodes that belong to
an obstacle. The closed set contains all nodes that have been examined already by the algorithm.
Initially, the open set contains the starting node and the closed set is empty.

As long as the open set is not empty, the open set is checked for the node with the lowest F score,
let's call this node X. Initially, the open set only contains the starting node and thus this becomes
node X. If the node with the lowest F score is the target node, the algorithm stops and the path is
reconstructed. Else the neighboring nodes of X, let's call them Xn, are each examined, refer figure
3.2. The numbers represent the distance to node X of each node Xn. First, each node Xn is
checked for occupancy.

If Xn is occupied, this node is skipped and the next node Xn is examined. An occupied node can
never be part of the final path.

If a neighboring node has not yet been examined before, the F-score of this node has to be
calculated. The G-score of this node is calculated by: Gx,=Gx + distance to X. The H-score of each
node Xn is calculated by using the Manhattan distance to the goal, refer section 2.2. This is the
easiest method to implement, and is sufficient to meet the requirements stated in chapter 2.

o © o
1 14
Lig & o
172 14 - 172
-
14 1 14
-3 —% o
i X - 1
o b e o
14 1] - 14
o |
172} 1ay 172}
4l 1) 4
14 |1 TN
172 . 4l . 72l
& 1) 172}

Figure 2.2: Nodes examined around node X. The numbers represent the distance to node X of each node.

It is also possible that a neighboring node Xn has already been examined before, but a shorter
path to this node is found. This is true if the G-score of that node Xn that has just been calculated
is lower than the G-score that was calculated on previous examination. In this case, the G-score
and the F-score of this node Xn are updated and the node is put in the open set.

If all nodes Xn have been given a score and are put in the open set, node X is put in the closed set.
This way the algorithm will know that this node already has been the center node X. After this,
the open list is again checked for nodes and the process described above is repeated. If a path is
found, each node contributing to the path is sent to the controller one by one. If the MAV gets
within a distance of 0.1 m to the current presented node, the next node is presented. This way,
the MAV will remain a constant speed during flight.
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When testing this algorithm, it became clear that there were two issues. The first issue is seen in
figure 3.3a. The path is planned alongside the walls, which would result in a collision of the MAV.
By testing whether the error came from the algorithm or the Octomap, it was found out that the
nodes queried for occupancy in the octomap are not in the center of a block, but at one of the
corners, refer 3.3b. This means that for instance when the green node is queried, the Octomap
will return unoccupied because the block belongs to the red node. Therefore, if a node is said to
be unoccupied, there is a chance that this node is on the edge of an occupied node. In the
simulation this will result in a collision. Section 3.2.2 provides a solution to the wall hugging
issue.

Figure 3.3 a) Wall hugging issue b) Node position in Octomap

The second issue was that the algorithm sometimes would plan an illogical path where a straight
line would be sufficient, refer figure 3.4. The red line is a 2D example of what such an illogical
path might look like. The green line shows the optimal path between point A and point B. This
only occurs when a path is planned close to an obstacle. The cause of this is unknown.

L T
L Nes

L

Figure 3.4: 2D example of an illogical path between point A and B. The green line is the optimal path.
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3.2.2 Wall hugging issue

As stated in section 3.4, the algorithm would plan a path that has virtually no distance from the
obstacles which would definitely result in a collision. In order to solve this, the 3x3x3 matrix is
resized to 7x7x7. This adds two nodes in all directions that is evaluated. For every next node this
7x7x7-matrix is formed and the occupancy of all surrounding nodes is queried and stored.

For choosing the next node, the original 3x3x3 matrix is still evaluated but now one extra step is
added. A 5x5x5-matrix around every node Xn of the 3x3x3-matrix is evaluated, refer figure 3.5
for a 2D example. The current center node is X, the 3x3x3-matrix is formed by nodes Xn and the
5x5x5 matrix used for the extra step is formed by nodes B. For a node Xn to be stored as a
possible successor, all the B-nodes around this node Xn and of course the Xn-node itself should
be unoccupied. This assures that the is at least a distance of two nodes between the MAV and an
obstacle.

KanrBWB B

¥n ¥n B B B B B

Xn| Xn| Xn BE|B|B|B|B

Figure 3.5: Node checking procedure

This solution was also tested with a 5x5x5-matrix and even though this also solved the wall
hugging issue, this would not leave a big margin of error. A 7x7x7-matrix provides a safety
margin.

3.2.3 Illogical path issue

The cause of this issue has not been found. Since this issue does not cause any significant
problems and does not occur every time, the choice was made to leave this issue as it is and
focus on optimizing the algorithm for better results.

3.2.4 Removing straight-line nodes

Since a PID-controller is used for the control, it can be assumed that when waypoint is received
by the controller, it will fly the MAV to that waypoint in a straight line. This means that if there is
a straight line in the path, all the nodes between the beginning and the end of this line can be
discarded and only the end-node has to be sent to the controller. After the path is created, the
path is checked for straight lines and in-between nodes are removed if possible.

Since the output of a PID-controller depends on the error presented at the input, this will
increase the speed of the MAV along these straight parts of the path, and thus the MAV will reach
its goal significantly faster, refer figure 3.6.
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Speed ——»

& - L
Distance ——»

Figure 3.6: Speed of the MAV with (green line) and without removing straight line nodes (red line)

3.2.5 Optimizing the path

As stated before, the algorithm used has only a limited choice of directions, that is only straight
or diagonal. Therefore the path is often not as direct as it could be. Especially in tasks 4.1 and
4.2, where the optimal path is always a straight line. Instead of a straight line, a less optimal path
like the one in figure 2.1 is often created.

In order to optimize this, there is a function available within the Octomap. This function draws a
straight line between a given start- and end point and will check whether the line is interrupted
by an obstacle or not. However, this function only checks for occupancy along this line. The
dimensions of the MAV are not taken into account. Therefore, this function is only used to
determine whether a shorter path is available between the starting point and the target node. If
no obstacles are found, all in-between nodes are discarded and only the target node is presented
to the controller.

For tasks 4.1 and 4.2 this will always result in just the target node being published to the
controller since there are no obstacles present. This decreases the time in which tasks 4.1 and
4.2 are completed, and might result in a better score due to lower settling time.
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4. Evaluation

In this chapter the results of task 4 will be discussed. The last section will show the overall
results of team LEO in the European Robotics challenge.

4.1 Evaluation

By using the 7x7x7-matrix, the wall hugging issue is permanently solved. The time needed for
the algorithm to find a path has increased due to the extra nodes that have to be processed.
Though the total settling time of the system, i.e. from receiving a target waypoint to reaching the
target waypoint, is still within the benchmarks of EuRoC and thus the final scoring for settling
time has not changed.

Concerning the issue of generating an illogical sub-optimal path, this issue still remains since the
cause has not been found. This issue has not caused big problems and did not have significant
influence on performance of the algorithm and thus the focus was on optimizing the algorithm
for better results.

By checking the path for straight lines and removing all the nodes between the beginning and
the end of this line, the MAV reaches its destination quicker and the flight is smoother as
expected. The controller is handling this very well and this has surely improved the algorithm.

By immediately checking if a straight line is possible between the start and the goal, the settling
time in tasks 4.1 and 4.2 has decreased as expected. The algorithm just publishes the target
waypoint, the controller makes sure that the MAV gets to this target in a straight line and settles
again when the target is reached.

Since the function used within the Octomap to optimize the path only checks the nodes along a
line (so 1D), it is not safe to assume that the optimized path is obstacle-free. The function can
plan a new path too close past obstacles without this being checked since there is no margin, this
will result in a collision. Therefore, this function is only used once to check if a straight line is
possible between start and target. Though this has not shown any issues, theoretically the
chance of a collision is still there. Looking for another solution is advised.

An additional issue was also found in the algorithm, namely that not all waypoints generated by
the path planner were received by the controller. Finding the source of this issue has taken some
time, but eventually this was solved by adding a small delay between publishing the waypoints
to the event handler. This was thanks to Geert Folkertsma, who came up with this solution.

4.2 EuRoC results

4.2.1 Task 4 results
In table 5.1 the results of the final algorithm are shown. The left column shows the results of the
tests performed on our own PC's, the right column shows the results received from EuRoC.

As stated before, the algorithm is tested in a 3D environment along with the controller
implemented in task 3. So both systems have to work well together in order to get good results.
The algorithm is tested by EuRoC in within the same Octomap as was provided by EuRoC, so
testing the algorithm on our own PC's should give a good idea of how well the algorithm
performs.
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Results on own PC Results from EuRoC
Task 4.1: Waypoint
navigation (no obstacles)
Accuracy 1.5/2 0.5/2
Settling time 1.5/2 1.5/2
Energy-efficiency 1.5/2 0.5/2
Task 4.2: Sensor failure (no
obstacles)
Accuracy 2/3 2/3
Settling time 2/3 2/3
Energy-efficiency 2/3 2/3
Task 4.3: Navigation with
obstacle avoidance
Accuracy 3.5/5
Settling time 1.5/5 0/15
Energy-efficiency 3.5/5 (system did not settle)

Table 5.1: Results final algorithm

As can be seen in table 5.1 the results received from EuRoC are quite different than the results
that were obtained on our own PC's. It was already discovered that the results of the simulation
may differ depending on how fast the used PC is. Assuming that the algorithm was tested by
EuRoC on a faster PC than the ones we used, this might explain the difference in some of the
results.

Also, the system did not settle is task 4.3 when evaluated by EuRoC. No collision was reported by
EuRoC, but one explanation might be that the algorithm failed to find a path to the goal. Though
this has never happened when testing on our own PC's.

4.2.2 Team LEO results

In order to keep track on where each task stands, a status table was set up in which intermediate
testing scores were posted. The last known results before handing in the complete solution for
every task can be found in table 5.2. In table 5.3 the results of the European Robotics Challenge
for team LEO can be found.

Perception Control
Task 1: localization Task 2: Mapping Task 3: Hovering Task 4: Navigation
1.1: 5/8 2.1: 5/8 3.1: 6/9 4.1: 45/6
1.2: 6.5/10 2.2: 5/10 3.2: 3/4.5 4.2: 6/9
1.3: 5/8 2.3: 5/8 3.3: 5/9 4.3: 85/15

Table 5.2: Last known intermediate test results for each task
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Perception Control
Task 1: localization Task 2: Mapping Task 3: Hovering Task 4: Navigation
1.1: 3/8 2.1: 3/8 3.1: 4.5/9 4.1: 2/6
1.2:  3.5/10 2.2: 3.5/10 32: 15/45 4.2: 6/9
1.3: 3/8 2.3: 3/8 3.3: 4/9 4.3: 0/15

Table 5.3: Team LEO results European Robotics Challenge

The results on our own PC's were obviously better than the results received from EuRoC.
Despite that, these results were good enough for rank 12 out of 35 in the EuRoC challenge which
of course is a great achievement. The fifteen best teams proceeded to the next round, and thus
team LEO as well.
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5. Conclusions and recommendations

5.1 Conclusions

The goal of this assignment was to ultimately implement a working algorithm for navigation
with obstacle avoidance. Choosing A-star as a base has proven to be a good choice. After the
changes and optimizations described in chapter 3, the algorithm has always provided a collision-
free path in a satisfactory short time. Due to the creation of an illogical path at some points, the
path created has not always been the smoothest and shortest, but this did not result in a
significant decrease in performance. The results from our own pc's show that the goal of this
assignment is met, but optimization in terms of robustness is advised.

The issue of creating an illogical path has not been solved during the project. Together with the
result from EuRoC where the system did not settle, this shows that the algorithm is not entirely
bug-free.

5.2 Recommendations
For future research and development, some improvements are suggested.

1. Adding a local potential field as an extra safeguard while flying is suggested to decrease
the risk of collision even further.

2. The function used within the Octomap to optimize the path only checks the nodes along a
line (so 1D), it is not safe to assume that the optimized path is obstacle-free. The function
can plan a new path too close past obstacles without this being checked since there is no
margin, this will result in a collision. Looking for another solution is advised.

3. [Itis suggested to check the algorithm further for robustness. Illogical paths together with
the system not settling when tested by EuRoC show that there are still some issues that
need some work.

4. For 3D-environments, one might want to look at harmonic potential fields. This
algorithm takes more effort to implement due to the mathematics involved, but if this
algorithm is implemented correctly, it might prove to perform better than A-star.
Especially in a 3D environment.
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Appendix A: Pseudo code for A-star

function A*(start, goal)

closedSet := {} // The set of nodes already evaluated.

openSet := {start} //The set of currently discovered nodes still to be evaluated. Initially, only

the start node is known.
cameFrom := the empty map //for back tracking the path

gScore := map with default value of Infinity ~ // For each node, the cost of getting from the start
node to that node.

gScore[start] := 0 // The cost of going from start to start is zero.

fScore := map with default value of Infinity // For each node, the total cost of getting from the

start node to the goal.

fScore[start] := heuristic_cost_estimate(start, goal) // For the first node, that value is completely
heuristic.

while openSet is not empty{ // If there are still nodes in the open set

current := the node in openSet having the lowest fScore[] value

if current = goal {
return reconstruct_path(cameFrom, current)

end algorithm

}
openSet.Remove(current)
closedSet. Add(current)
for each neighbor of current {

if neighbor in closedSet {

if currently calculated neighbor F score is lower than saved neighbor F score {
Recompute H score, G score and F score

Put neighbor in open set

}
tentative_gScore := gScore[current] + dist_between(current, neighbor) // The distance from

start to a neighbor
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if neighbor not in openSet {
openSet.Add(neighbor) // Discover a new node
} else if tentative_F-score >= F-score[neighbor] {
continue // This is not a better path.
}
// This path is the best until now. Record it!
cameFrom[neighbor] := current
gScore[neighbor] := tentative_gScore

fScore[neighbor] := gScore[neighbor] + heuristic_cost_estimate(neighbor, goal)

}

return failure

function reconstruct_path(cameFrom, current) {
total_path := [current]
while current in cameFrom.Keys: {
current := cameFrom/[current]
total_path.append(current)

}

return total_path

}
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Appendix B: Implementation final algorithm

#include "euroc track 2 nodes/euroc_path planner.h"

‘=

3 #include <string>

4 finclude <iostream?>

5 #include <algorithm:

&

7 #include <visualization msgs/Marker.h>

9 #define DEBUG 1

10 [H/*

11 * Coordinate system: double coordinate[3] = {x, v, 2}:
12 =

13 # field i= a Tx7x7 matrix that keeps track of the occupancy probability of
14 the nodes surrounding the current position

1L * field[1][2][3]

16 ¥ TODD: update wvalues

17 # 1: x-axis (-0.5, -0.25, 0, +0.25 + 0.5)

¥ 2. y—axis (see x—axis)

[T =

¥ 3. z—axis (sees x—axis)
* Where numbers in () represent the difference with the ggnter of the field.
The difference iz 0.25 meters, because this is the rescolution of the

-]

S/ Initialize wvariables.
bool Pathplanner::init(std::string pub topic)

0w o

2

21

22 * oohoman, thus each node is 0.25 meters apart.
23 L &S

24

25 // Constructor.

26 Pathplanner: :Pathplanner {(std: :string path)
27 rtree (path)

28 i

29

30 H

3z // Destructor.

33 Pathplanner: :~Pathplanner ()

3 i

S5

3 }

4

=

=

:

=K

1 ROS INFO("Initializing pathplannsn”);

2

3] ros: :NodeHandle node handle;

44

45 std::string file path:

46

47 wayvpoint_pub = node handle.advertise<mav_msgs::CommandIrajectory>(pub topic, 10}
48 marker pub = node handle.advertise<visualization msgs: :Marker>("markexr", 10}
49 a a B
S0 f/f Set the old goal (inif position).
51 old goal.=x = O
52 old goal.y = C;
&) old goal.z = 1;
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=}

J/ Ser dif to 0.

old_goal.dif x = 0}
old goal.dif v = 0;
old goal.dif z = 0

S/ An array to help with shifting the field. This array concains che difference

//between nodes as described at the start of this file,

diff0] = -0.25;
dif[i] = 0,07
dALff2] = 0,257

=tep[0] = -0.75;
stepl] = 0.3
step[?] = -0.25;
acep{3] = 0.0;
atep[i] = 0.
stepli] = 0.5;
atep[s] = 0.75;

4 R
L1

ROS INFO("euroc path planner imitialized®):
retarn troe;

ff Handles incoming HAYRIADLS -
void Pachplanner::wplallback{consc mav mags::CommandIrajectoryConscicr &wp)

Bt

Mods start, goal:

// Wew pach, so clear list.
closed lisc.clear():
1llegal list.clear{);

ff Ger goal position.

goal.x = wp-»positicn[l];
goal.y = wp—»position[l]:
goal.z = wp->positicnfi]:

S/ Scarc planning from the previous goal.
start = old goal:

scarc.g = 07

scart,.f = [;

Ramon Jansen
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// Plan initial path.

bool success = planPath(start, goal, closed list);

RO5S INFO("Generated path from [$L[|FL[FL] to [2L|FL[%L]. Total nodes traversed

{start and end included): %d \tCost: %f", start.x, start.y, startc.z=,

cloged list.back().x, closed list.back().y, closed list.back().z, closed list.size{),
closed list.back().g):

if{success)
int old size = closed list.size():
J/ Cptimize path. Cost may be incorrect.
optimizePath() :
ROS_INFQ("Path has been optimized, %d nodes were removed.
HNew path consists of %d nodes. Total cost: %f", old size - closed list.size(),
closed list.size(), closed list.back().g):

old =zize = closed list.size();

ff Clean path
cleanPath(closed list):

ROS: INFO("Fath cleaned, %d nodes were removed. New path consists of %d nodes”,
old =ize - closed list.size(), closed list.size()):
// old goal is set sSo that it will function as new Start when a new yavpgint is

ffreceived.
old goal = goal;

[f Set dif to 0.

old goal.dif x = 0;
old goal.dif y 1
old goal.dif =z = O;

publishWaypoints() :

// Draw path for ryiz visualization. Cnly for debug.
if (DEEUG)
drawPath (closed_list);

-1

kool Pathplanner::planPath(Node start, Node& goal, std::vector<Node>& path)
=R
double dx, dy, dz;
Hode a»

// Calculate difference between goal and start. Has to be positive, hence the fzabs().

dx = fabs(goal.x - start.x);
dy = fabs(goal.y - start.y):
dz = fabs(goal.z - start.z):

S/ 52t h, g and £. f and g are 0 because this iz the first node.
start.h = dx + dy + dz:

// Push the start node to the open listc.
open list.push back(start):

// End not reached.
bool end = false;

// Imitialize the occupancy field with the start node as ggnger.
initField(staxt):
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// While there are successors available and the end has not been reached.

// TODO: Fix deadlock that occurs when there are no successora but the end has not
{//been reached.

while {!end)

= q

if{lopen list.empty())

d {

/J/ Find the successor with the lowest £ value.

g = findWNextNode()

J/ Adjust the pecupancy field to the mew: genter.
initField(q):

[/ Generate the successor node.
end = generateSuccessors (g, goal, path):;

// Push g to the closed list.
path.push back(qg) ;

f// If the goal is reached push the goal to the closed list.
if (end)

I

path.push back(goal):

M Ll R b

= }

B
1B5 else
ige o {
187 f/ TODO: Solve path
188 path.pop back{);
189 end = generateSuccessors(path.back(), goal, path):
180 ROS INFO{"™Mo successors could be crearted. Stepping back one node™):
sl il £ ROS INFO("No path found. Check xyiz for path visualization"):
152 £ return falzse;
193 = }
104 -}
195 return truoe;
1896 -}
1497
158 wold Pathplanner::optimizePath()
133 H{
200 std::vector<Node>::reverse_ iterator it:
201 std: :vector<Node>»::iterator cur it
202 =td: :vector<Node> path;
203
204 Node cur, goal;
205 double old goal g
206
207 cur it = closed list.begin();
208 cur = ¥cur it;
209
210 while(cur != closed list.back(})
211 = {
212 for(it = closed list.rbegin(); it != closed list.rend(); it++)
213 = {
214 goal = *it;
215
218 // No faster path possible, go to the next node in the closed list.
217 if(goal = cur)
218 [ {
215 Node new_cur = *(ic - 1);
220 'z new cur.g = new _cur.g - old goal g + cur.g:;
221 cur = new_cur;
222 break:
223 - ¥
224
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225 // Limit for castRav() (otherwisze the ray will continue to the edge of the map).
226 double distance = sgrt({pow({goal.x — cur.x, 2Z) + pow{goal.y — cur.yv, 2}

227 + pow{goal.z — cur.z, 2)):

228

229 // castRay() requires the usage of ggtomap::point3d.

230 octomap: :point3d scart point(cur.x, cur.y, cur.z), goal point(goal.x, goal.y,
231 goal.z), obstacle(d, 0, 0):

232

2 // Check if a direct path between current and goal exists.

234 if(!tree.castRay(start point, goal point, obstacle, false, distance})

235 [H {

238 // castBRay{) 2al=n return=s fal=e ({(no occupied node it} on unknown space.
23T ffCheck: 1if unknown space was hit.

238 if{tree.search{obstacle)} != NOLL)}

2 =) {

2 old goal g = goal.g:

28

243 F/ Plana new path between current ‘and goal.:

=43 planPath{cur, goal, path):

2454

235 !/ Remove goal from closed list, otherwise it will result in a duplicate
246 //node in closed list (with incorrect cost).

Fan closed list.erase(--(it.base(})):

248

2498 !/ Remove old path between cur and goal and insert the new path.

259 closed list.erase(cur it, ——{it.base(})):

253 closed list.insert{cur it, path.begin{), path.end{}):

252

AL cur = goal;

254

255 break;

256 5 }

257 - }

258 — H

235 = -}

280 =Y

261

262 volid Pathplanner::cleanPath({=std: :vector<Node> &path)

263 H{

264 ztd: ::vector<Node>»::iterator it;

265 Node prewvw, cur, next;

266

267 for(it = path.begin():; it !'= path.end(): )}

2eg H {

263 cur = %it;

270 Jf Skip the first node and last node, since you will be checking one node before
271 Ff{it — 1) and after (it + 1) the current position (it).

272 if{it '= path.begin() && it '= path.end())

272 O {

274 next = % (it + 1)

275 f/ Check if the gdifs (x, v, z) of the nodes are equal, if they are, remove the
276 S /fourrent node (it) from the closed list and set

277 // the parent of the next node (it + 1) to the previous node (it - 1)

278 if(prev.dif % == cur.dif = && prev.dif x = next.dif x &&

278 prev.dif y = cur.dif y && prev.dif y =— next.dif y &&

280 prev.dif z = cur.dif z && prev.dif z = next.dif z)

281 H {

282 next.parent = &prev;

283 path.eraze (it - 1)
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// Before gensrating new successors, clear the open list (removing the successors of

8 /fthe previous g).
q open list.clear():

284 = 1

285 else

286 it
287 = }

288 else

288 it++;

290

o prev = cur;
292 = ik

293 b=}

254

285 bool Pathplanner: :generateSuccessors {(Node parent, Hode& goal, std::vector<Node> path)
298 i

2

2

5,.

for{int. x = 0; X < 3; X++)
{
Tfor{int v = 0; v < 3; y+t)
{
for{int:z- = 0; 2L 372+
i {
// Check if the successor node is occupied.
3 if(field[x] [v][=2] <= 0.11%2 E& IcheckNeighbours (parent, X, ¥, Z})
3t =] {
3 /{ Create successor and set the fields.
3 Hode successor:
3 successor.parent = &parent;
3 successor.X — parent.x + dif[x]:;
3 successor.y = parent.y + dif[vy]:
3 successor.z — parent.z + dif[z]:;
319 f/ Check if the node has already been created or used before moving on.
320 //Buccessor can't be egqual to parent.
321 if('nodellreadylUsed (successor, path) && successor != parent)
322 = {
= successor.h = fabs(goal.x - successor.x) + fabs(goal.y - successor.y)
324 + fabs({goal.z - =success0or.Zz);
=S successor.g = sgrt (fabs(dif[x]) + fabs(dif[y]) + fabs(dif[z]})) + parent.gs
326 successor.f = successor.h + successor.g;
327
328 successor.dif x = x;
329 successor.dif y = vy;
330 successor.dif z = z;
332 if(successor == goal)
333 H i
IR goal = successor;
A return truoe;
336 = 1
338 open list.push back(successor);
2EE = H
340 = 1
341 = }
342 4 }
S F o}
ST return false;
s =]
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Pathplanner: :Node Pathplanner::findNextHode ()
=R
Hode =mallest;
=std: :vector<Pathplanner: :Node>: :iterator it;

it = std:imin element(open list.begin(), open list.end(), smallsst);
smallest = *it;

open list.erase(it);

return smallest;

=1

e T

bool Pathplanner: :nodeBlreadylUsed{const Node& node, std::wvector<Node> path)
=R

L
oy

(7= L I % R

if(std::find if(open list.begin(), open lisc.end(), node) != open list.end())
return troe;
else if{std::find if(illegal list.begin(), illegal list.end(), node} !I=
illegal list.end())
retorn truoe:
el=se if(std::find if(path.begin(}, path.end(), node) != path.end())

e AR = A

retuorn troe;

a

else

return false:

L

void Pathplanner: :publishWaypoints ()

=R
std: :vector<Node>: :iterator itc;
mav msgs::CommandTrajectory waypolnt;
for{it = closed lizt.begin{); it != closed lisc.end(); it++)
B A
Hode node = %*it;
B3 waypoint.position[0] = node.x;
38 wayvpolnt.position[l] = node.y;
384 waypoint.position[2] = node.z;
385
386 waypolint pub.publish(waypoint)
387 F o}
3848 “}
389

wvoid Pathplanner::printField{con=st Node& center)

3591 1

392 for{int = = 0; = < 7; =xt+)

393 {

394 for(int v = 0; v < 7; yv++)

385 {

396 for(int =z = 0; =z < 7; Z++)

36T = {

3938 std:iicout << " (" << center.x + step[x] << " " << center.y + stepyv] << """ <=
L center.z + step[z] << "|" << field[x][v][=] << ") ";
400 i 1

401 std: :cout << std::endl;

402 - }

403 std: :cout << std:: endl;

404 F o}

405 L3

University of Twente Ramon Jansen



39

407 wvoid Pathplanner: :drawPath{std: :vector<Node> path)
4 B
visualization msgs::Marker line;
1 line.header.frame id = "map";
4313 line.header.=stamp = ros::Time: tnow () ;
413 line.ns = "1i ;
414 line.action = wisualization msags: :Marker: :ADD;
435 line.pose.orientation.w = 1.0;
418
417 line.pose.position.x = 0;
41g line.pose.positiocn.y = 07
459 line.poge.po3ition.z = O;
427 line.id = 0;
422 line.type = visualization msgs::Marker::LINE STRIF;
423 line.scale.x = ©.05;
435 line.color.r = 1.0;
426 line.color.a = 1.0;
420 line.lifetime = ros::Duration({0):
424
438 std: :vector<Node>: :iterator it;
431 for{it = path.begin{):; it != path.end(): ict+s)
432 H {
433 geometry msgs: :Point p;
434 Hode n = #it;
435 pD.X = N.X;
436 D.¥V = n.y;
437 pD.Z = N.Z;
43g
430 line.points.push back{p):
440 R
5471 marker pub.publish(line};
442 =}
4435
444 vold Pathplanner::initField(const Node& center)
445 {
145 for({int = = 0; ® < 7; =++)
447 for(int vy = 0; ¥ < 7; yi+i)
448 for{int z = 0; =z < 7; zZ++)
449 field[x][¥][2] = tree.search(center.x + step[x], center.y + stepl[v],
450 center.z + ztep[z]) -»getlccupancy ()
451 }
452
453 kool Pathplanner::checkNeighbours (const Node center, int step X, int step y, int step z)
454 H{
455 for(int ® = SCep X! X <€ Step X + 57 X++4)
456 for(int v = step v; v < step v + 5; v+)
457 for(int z = step _z; z < step_z + 5 Z++4)
458 // Make sure the coordinates are in the field (between 0 and &) .
4593 if(x > -1 && v > -1 && z > -] & x <€ 7 &k v < 7 K& =z < 7)
450 F/f If the field entry has higher occupancy probability then the minimum the
461 J/node should be considered occupiesd.
462 if(field[x][¥][=z] > O.1185z2
463 retorn truoe:
464
465 // This point is only reached if none of the neighbours was occupied.
466 retaorn false;
467 }
468 &
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Appendix C: Other experiments

C.1.1 First solution to direct path planning

As can be seen from table 1.1, subtasks 4.1 and 4.2 are about waypoint navigation without
obstacle avoidance. Basically, this means going from point A to point B as straight as possible..
The algorithm treated this chapter has not been used in the final solution, since the final
algorithm used for obstacle avoidance was also capable of planning a direct path to a given
waypoint.

In order to make sure the algorithm will complete subtasks 4.1 and 4.2, a set of demands is
determined. The algorithm has to:

- Determine the direction of the target waypoint
- Find the best path towards the target waypoint
- Deliver the right information to the controller

The first goal was to have a working algorithm that plans a path to a target and delivers the right
information to the controller. When this base algorithm is working, improvements can be made.

The first design is based on a 3D-grid. Only discrete steps can be made within this grid, the step
size can be set with one parameter. The step size was initially set to 1m. The pseudo code of this
algorithm can be found at the end of this appendix.

The algorithm will check the retrieve data about position of the MAV from the simulation tool
itself as a (x,y,z)-vector. Next, the coordinates of the target are retrieved in the same format and
compared to the current position of the MAV. As long as the goal is not reached, a new
subwaypoint is created and stored in the array that will contain the final path.

The coordinates of this subwaypoint depend on whether the difference between the current
position of the MAV and the goal in the x-, y- and z-direction is zero or not. If the x-value of the
previous waypoint is not equal to the goal’s x-coordinate, the x-coordinate of the previous
subwaypoint is incremented or decremented by the step size. Same goes for the y-coordinate
and the z-coordinate.

When the goal is reached, that is when the created subwaypoint has the same coordinates as the
target waypoint, the path is published to the controller. The subwaypoints will be published one
at a time. When the MAV gets within 0.25m of the published waypoint, this waypoint is
discarded and the next waypoint is published, until the target waypoint is reached.

A resulting path created by this algorithm is shown in figure 2.1. The blue line shows the path
the MAV will follow. Each intersection with a red line represents the coordinate of a sub-
waypoint. The starting position of the MAV is the coordinate given by the vector (1,1,2). The
coordinates of the target is given by the vector (9,6,4).

The sub-waypoints that were created by the algorithm and represented by the red and blue line
intersections are respectively (2,2,3), (3,3,4), (4,4,4), (5,5,4), (6,6,4), (7,6,4), (8,6,4) and (9,6,4).
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Figure 3.1: Resulting path of the direct path planning algorithm

The reason why this path is not a straight line (which would be the optimal path) is that the idea
was to combine this algorithm with the algorithm used for obstacle avoidance. An Octomap of a
power plant was provided by EuRoC, and because it wasn't sure yet whether the Octomap
should be queried discretely (so by respecting the resolution) or if every possible coordinate
could be queried for occupation. Therefore, this way was chosen as a safe base to start with. This
algorithm would compute a path, and every sub-waypoint would be checked for any occupation.
If a sub-waypoint is occupied, in other words an obstacle is found, the obstacle avoidance
algorithm would take over.

C.1.2 Direct path planning pseudo code

Check position: while goal is not reached {

If(difference between previous x and goal x is not 0){

New x=Increment or decrement previous x by step size

}
If(difference between previous y and goal y is not 0){

New y=Increment or decrement previous y by step size

}

If(difference between previous z and goal z is not 0){

New z=Increment or decrement previous z by step size

}

Store subwaypoint (New x, New y, New z)

}
Publish path
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C.1.3 Direct path planning algorithm

#include <iostream>
#include <vector>

-
3 #include <fstream>
g
5 nsing namespace std;
&
7 [Hstruct Chkpts {
8 double x;
g double vy
10 double =z;
11 double seq;
12 double yaw;
13 L} check:
14
15 [Hint main () {
16
17 double ®x po=s, ¥ pos, £ pos, x goal, v goal, Z_goal;
18 cout<<"It i=s only allowed to fill in coordinates equal to or bigger than 0 0 0."<<endl:;
15 cout<<"Enter the starting coordinates x v z: ";
20
21 J{ //starting position can be retrieved from the sensors/localization
22 cin>»x posS>>y posSkrFZ_pos;
23 cout << "N-start: " << x pos << endl << "Y-start: " << y _pos << endl <<
24 "Z-start: " << z_pos << endl;
25
26 // Listen to firefly/waypoint (mav _msgs/ControlTrajectory) and use the published waynRoink
27 cout << "Enter goal coordinates x v z: ";
28
25 cin>»>x goal>>y goal>»z_goal;
30 cout << "H-goal: " << = goal << endl << "Y-goal: " << y goal << endl << "I-goal: "
31 << z_goal << endl;
32
e // Calculate the difference between start and goal on sach axis
34 doukle x dif=x goal-x_pos;
i) doukble y dif=y goal-y pos;
36 double z dif=z goal-z_pos:
38 double k=0;
= wvector<Chkpts> points;
4
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ff A= long a=s difference is not zero, so the goal is not reached...
= while(x difl=0 || y_dif!=0 || z_difl=0){
k++;

check.seg=k; //keeping track of sequence numbers to make sure yavpoints are sent in
//right order
check. yaw="0;

ff If x dif is not zero, the next yavpeink will have a component in the x-direction

=] 1f(x_dif1=0){

¥ _pos=x_pos+(x_dif>0) - (x_dif<0) /{=should be incremented by the step/grid
f{=ize, now =et to 1

x dif=x goal-x pos;

check.x=x pos;

- }
= if(y_dif!=0){
v¥_pos=y_pos+(v_dif>0)-(y_dif<0); /{=should be incremented by the step/grid
f/size
y_dif=y goal-y_pos;
check.y=y_pos:
- }
= if(z_dif!=0){
2z _pos=z pos+(z_dif>0)-(z_dif<0); //should be incremented by the step/grid
f/size
z dif=z goal-z pos;
check.z=z pos;
- }

// Bdd the new waypoint to the listc
points.push back {check) ;

/f Waypoinkts are written to a text file that can be plotted by Matlab, this will be
//changed to publishing the waypeints so the controller receives them
vector<Chkpts>::iterator it:;

ofstream myfile;
myfile.open("Checkpoints.fxL",ios: out) ;

= for{it=points.begin(); itl=points.end(): it++){ //read cut wvector

Chkpts ch = *it; //it doesn't have the SLrugh properties. So we make a new object of
//Ghknrs which will have the gLrugh properties.

cout <<ch.seg<<", "<<ch.x <<", "<<ch.y <<", "<< ch.z <<", "<< ch.vaw << endl:;

//write data to Checkpoints.gzg
myfile <<ch.x <<", "<<ch.y <<", "<< ch.z << endl;

r }

myfile.clase()

//we now have a vector (of girucks) with all the checkpoints the hexacopker has to fly
//towards (wvector 'points')

cin.ignore():

cin.get():

retarn O;

}
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C.2.1 Adding a local potential field

As some kind of extra safeguard, a local potential field has been added for in-flight obstacle
avoidance, refer Appendix C.3. If for some reason the MAV would come to close to an obstacle, a
force opposite to the direction of the obstacle will be applied. To give an image of what this
'force field' around an obstacle looks like, refer to figure 4.2. The closer the MAV gets to the
obstacle, the bigger the repulsive force.
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Figure 4.2: Force field around obstacle as seen by the MAV

To achieve this, a 7x7x7-matrix is present around the MAV when it is following the path. The
matrix is shifted each time the next node is published. The new nodes are checked for
occupancy, and if a node is found to be occupied the repulsive force is calculated as function of
the distance to the MAV. This force is then added to the output of the PID-controller. The
resulting force vector is sent to the MAV in the simulation, which will process this force vector
and move according to it.
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C.2.2 Local potential field algorithm

2o void Control::calculateRepulsion{Node center, double &fxz, double &fyz, double E&kfz=z
258  H{
2583 [ f Array with the distance from genter wvalues.
2a0 double shifc[7]:
261
262 // Vector with occupied nodes.
2&63 std: :vector<Node> cccupied;
264
265 S/ Fill the shiftr array with wvalues from -0.75 to 0.75.
266 for{int-1 = 0; 1. .< T 1+H)
287 shiftfi] = =0.75 F 1% 25;
268
269
278 // Fill the occupied vector with all the occupied nodes surrounding the gepper.
271 for{int == 0; X < 7; Xt+t+)
272 =] i
273 for{int v = 0; v < 7; vit)
274 {
275 for{int =z = 0; =< 7} 2H)
278 =] {
237 if{{center.x + shift[x]}) > ©.0 k& (center.wvw + shiftv]) > 2.0 &&
2TE {center.z 4+ shift[z]) > 2.8}
278 |H {
280 J/ Check if the neighbour node is occupied, If it is, add it to the
281 // occupied wvector.
if{(tree.secarch{center.x + shift[x], center.y + shift[y]l.
center.z + shift[z])->getOccupancy{)) > 0.1122)
2E4  [H H
285 RCS_ INFO("FOUND") ;
286 HNode neighbour:
287
288 neighbour.x = center.x + shift[x]:
289 neighbour.y = center.y + shift[y]:
2908 neighbour.z = center.z + shifcf=]:
283
Z02 occupied.push back(neighbour);
253 b= H
294 - }
285 = }
286 = H
297 Fo}
298
299 f/ Btart calculating the repulsive forces.
300 std: :vector<Node>»: :iterator it:
301
302 f/f if(occupied.size() > 0)
303 i ROS5_INFC ("Occupied nodes; %d", occupied.size()):
304
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=
1

[
Lr

J] for(it = occupied.begin():; it != occupied.end(): itc++)
E=

-]

doulkle dx, dy, dz, fInit, magnitude;
Hode neighbour;

I |

[ Y - B

neighbour = *it;
12 fInit = 3;
14 dx = neighbour.x - center.x;
5 dy = neighbour.y - center.y;
16 dz = neighbour.z - center.z;

magnitude = sgrt(pow(dx, 2.0} + pow(dy, 2.0) + pow(d=z, 2.0})});

[T - R -]

fx = fx + ((—-fInit * dx) / magnitude) * (0.75 - magnitude) ;
fy = fv - ({(-fInit * dy) / magnitude) * (0.75 - magnitude) ;
fz = fz + ((-fInit * dz) / magnitude) * (0.75 - magnitude)

[ WU S B L T % o T T L T Y T ¥ B L T % N L T ' T % IO ¥ T o T 'L N L TR % B 1 ]
5 5 PR 5 5 5

University of Twente Ramon Jansen



47

References

Carsten, Joseph (2006), 3D Field D*: Improved Path Planning and Replanning in Three
Dimensions
http://ri.cmu.edu/pub_files/pub4/carsten_joseph_2006_1/carsten_joseph_2006_1.pdf

Correll, Nikolaus (2011), Introduction to pathplanning for robotics
http://correll.cs.colorado.edu/?p=965

Daily, Robert and David M. Bevly (2008), Harmonic Potential Field Path Planning for High Speed
Vehicles
http://www.nt.ntnu.no/users/skoge/prost/proceedings/acc08/data/papers/0383.pdf

Masoud, Ahmad A. (2008), Planning with Discrete Harmonic Potential Fields
http://cdn.intechopen.com/pdfs-wm/5366.pdf

Panati, S., Bayanjargal Baasandorj, Kil To Chong (2015), Autonomous Mobile Robot Navigation
Using Harmonic Potential Field
http://iopscience.iop.org/article/10.1088/1757-899X/83/1/012018/pdf

Prestes, Edson, Silva Jr., Paulo M. Engel, Marcelo Trevisan, Marco A.P. Idiart (2002), Exploration
method using harmonic functions
http://inf.ufrgs.br/~prestes/publicacoes/RAS02.pdf

Red blob games (2009), Introduction to A*
http://www.redblobgames.com/pathfinding/a-star/introduction.html

Red blob games, Heuristics
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html

Rodriguez, S., Xinyu Tang, Jyh-Ming Lien, Nancy M. Amato, An Obstacle-Based Rapidly-Exploring
Random Tree
https://parasol.tamu.edu/publications/download.php?file_id=525

Safadi, Hani (2007), Local Path Planning using Virtual Potential Field
http://www.cs.mcgill.ca/~hsafad /robotics/

Siegwart, R., Autonomous Mobile Robots
http://slideplayer.com/slide/5784565/

Slideshare, Dynamic Path Planning
http://www.slideshare.net/dareZ2kreate/dynamic-path-planning

Stanford, A* algorithm
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Vascak, Jan (2007), Navigation of Mobile Robots Using Potential Fields and Computational
Intelligence Means
https://uni-obuda.hu/journal /Vascak_9.pdf

Winands, Mark (2004), Informed Search in Complex Games, chapters 4,5 & 7
https://dke.maastrichtuniversity.nl/m.winands/documents/informed_search.pdf

Ramon Jansen University of Twente



48 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen



