

2 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Summary
Inspection of large plants and infrastructures done by humans takes time and can be dangerous.
Inspection sites can be hard to reach. The use of MAV's has become popular over the last years
and has made these kinds of inspections easier. However, controlling an MAV requires a skilled
pilot.

During this project a system will be designed for an MAV that is equipped with an inertial
measurement unit (IMU) and a stereocamera. The goal of this system is to enable the MAV to fly
itself to a desired inspection site. An inspection expert will be able to do the inspection from the
ground without the need of piloting skills.

The system is divided in several parts. The goal of this assignment is to write an algorithm that
can be used to plan a path for an MAV and that is capable of planning the fastest route from its
current location to a certain waypoint while avoiding any obstacles. This algorithm will be tested
in a simulation program and not on the hexacopter itself. The inputs will be a 6 DoF pose
estimation of the current pose and a 3-dimensional waypoint location. The output will be an
array of 3-dimensional waypoints which form the path to the goal. This output is then used as an
input for the controller.

An algorithm based on the A*-algorithm was designed to find the shortest path from the current
location of the MAV to a destination while avoiding any obstacles. The first implementation did
cause some problems. With some optimization, the final algorithm has provided us with good
results on our own PC's. However, the results received from the challenge stated that the system
had not settled during the testing by EuRoC. The overall score for the path-planning part of the
challenge was satisfactory.

Even though the algorithm did function satisfactory given the time that was available, there is
still room for improvement . Some experiments have been done with adding a second algorithm
as an extra safeguard but was not added. This will reduce the chance of a collision. Secondly, the
algorithm sometimes creates an illogical path where a straight line would be sufficient. This
indicates an error in the algorithm and should be looked into.

3

 Ramon Jansen University of Twente

Acknowledgments
I would like to thank Douwe Dresscher for letting me be a part of this team, for supervising me
during my assignment, and, together with Geert Folkertsma, for supporting and thinking with
the team during the challenge. I would also like to thank Matteo Fumagalli for coordinating team
LEO during the challenge and for putting a lot of effort in this challenge. And of course I also
want to thank the other members of my team Hengameh, Evytar, Roald and Mohamed. It was
great to be a part of such a motivated team that as determined to get everything working no
matter what, and it was really satisfying to get some good results.

4 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Table of contents

1. INTRODUCTION 5

1.1 CONTEXT 5
1.2 GOALS 8
1.3 APPROACH 8
1.4 REPORT STRUCTURE 9

2. ANALYSIS 10

2.1 DIJKSTRA'S SHORTEST PATH ALGORITHM 10
2.2 BEST-FIRST SEARCH ALGORITHM 11
2.3 A-STAR 13
2.4 POTENTIAL FIELDS 15
2.5 HARMONIC POTENTIAL FIELDS 16
2.6 RAPIDLY EXPLORING RANDOM TREE SEARCH ALGORITHMS 18
2.7 COMPARISON 19
2.8 DECISION 19

3. DESIGN AND IMPLEMENTATION 21

3.1 DESIGN 21
3.2 IMPLEMENTATION 22

4. EVALUATION 26

5. CONCLUSIONS AND RECOMMENDATIONS 29

5.1 CONCLUSIONS 29
5.2 RECOMMENDATIONS 29

APPENDIX A: PSEUDO CODE FOR A-STAR 30

APPENDIX B: IMPLEMENTATION FINAL ALGORITHM 32

APPENDIX C: OTHER EXPERIMENTS 40

C.1.1 FIRST SOLUTION TO DIRECT PATH PLANNING 40
C.1.2 DIRECT PATH PLANNING PSEUDO CODE 41
C.1.3 DIRECT PATH PLANNING ALGORITHM 42
C.2.1 ADDING A LOCAL POTENTIAL FIELD 44
C.2.2 LOCAL POTENTIAL FIELD ALGORITHM 45

REFERENCES 47

5

 Ramon Jansen University of Twente

1. Introduction

1.1 Context
Inspection of large plants and infrastructures done by humans takes time and can be dangerous.
Inspection sites can be hard to reach. The use of MAV's has become popular over the last years
and makes this a whole lot easier. However, controlling an MAV requires a skilled pilot.

Since an MAV is a naturally unstable platform and will be used inside as well as outside, the
designed control system has to be robust since MAV's are easily destroyed. The system has to be
able to independently fly the platform around without the need of interference by a person such
that an inspection expert can completely focus on the inspection.

1.1.1 Project structure
This challenge is part of the European Robotics Challenges (EuRoC) and is carried out by team
LEO. LEO is a collaboration of regional corporations and universities that want to transmit their
skills and knowledge in service robotics around the world. The challenge is divided into three
stages:

1. Simulation stage: the teams have to use the provided simulation environment to test
their algorithms for localization, mapping, controlling and navigation. The fifteen best
teams will team up with end users and technology developers and come up with a fifteen
page proposal.

2. Realistic labs: the five best teams of the previous stage will participate in an end user-
driven task which will be aimed at showcasing customizability under realistic conditions.

3. Field test: the best three teams of the previous stage will do real-life experiments at an
end user site to test their solution. After this stage, the winner of EuRoC is determined.

The simulation stage is carried out in a simulated environment provided by EuRoC. Two Ubuntu
virtual machines are provided by EuRoC, one challenger virtual machine and one simulation
virtual machine, with ROS (Robot Operating System) combined with all needed packages and
Gazebo pre-installed, refer figure 1.1. The simulation virtual machine contains a model of the
MAV which is the same for all participants and is not to be changed. The solutions can be
programmed in the client virtual machine.

6 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Figure 1.1: Simulation virtual machine and challenger virtual machine

The simulation stage is divided in two tracks with each two different tasks. Each track is divided
in two teams, one for each task. The two teams within a track have to have good communication,
since ultimately they will depend on each other's data. Each track has a small team of students
from Saxion and University of Twente working on it accompanied and supported by PhD-
students and professors of the RaM-group. Below follows the division of the simulation stage:

Track 1

I. Task 1: Localization of the MAV

The goal of this task is localizing the MAV and tracking its movement to estimate its
position at all times as accurately as possible with the use of two generic 6-DoF pose
sensors and an IMU.

II. Task 2: Environment mapping

The goal of this task is mapping the environment and all obstacles within as accurately as
possible with use of a virtual-inertial SLAM-sensor.

Track 2

III. Task 3: Hovering control

The goal of this task is designing a controller for the MAV to assure stable hovering in
situations with no disturbances as well as in situations with constant and random
disturbances.

IV. Task 4: Path planning and navigation

The goal of this task is planning the fastest route from the current location of the MAV to
a certain waypoint while avoiding possible obstacles and navigating the MAV with the
use of an OctoMap provided by EuRoC.

7

 Ramon Jansen University of Twente

1.1.2 Track 2 structure
Figure 1.2 shows the structure of track 2 and the dependencies of the different tasks. As stated
before, track 2 is divided in two teams; one for task 3 and one for task 4. It is important for both
teams to have good communication since both tasks depend on each other's data as seen in
figure 1.2.

Below a short description of the connection between each fraction of track 2 is given.

The simulation provides real time acceleration data which can be requested at all times. The
Kalman filter uses this acceleration data provided by the simulation to estimate the current
position and angle of the MAV.

For path planning and navigation, a 6 DOF vector containing the current state of the MAV, a
target waypoint and an occupancy map of the environment is received as inputs. The target
waypoint is provided by the simulation software as a 3D waypoint. An Octomap provides
occupancy information about the environment with a resolution of 0.25m.

The controller receives a 3D waypoint array from the path planner. This data is processed
together with the current position data from the Kalman filter and ultimately the six rotors of
the MAV are controlled by sending a 6 DOF vector to the simulation software.

Figure 1.2: Block diagram of track 2

8 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

1.1.3 Thesis assignment
This assignment contributes to path planning and navigation. The goal of this assignment is to
write an algorithm that can be used to plan a path for an MAV and that is capable of planning the
fastest route from its current location to a certain waypoint while avoiding any obstacles.

Task 1 till task 4 are all divided in different subtasks. For each of these subtasks with increasing
complexity, points can be scored based on several criteria in the final evaluation. For task 4, the
subtasks are stated in table 1.1.

Subtask description Criteria Maximum score
Subtask 4.1: Waypoint navigation
The goal is to plan a path from a starting
point to a random waypoint. There will
be no obstacles present.

Settling time 2

Accuracy 2

Energy efficiency 2

Subtask 4.2: Switching sensor input
The goal is to plan a path from a starting
point to a random waypoint while one of
the sensor inputs is failing. Again there
will be no obstacles present.

Settling time 3

Accuracy 3

Energy efficiency 3

Subtask 4.3: Navigation with obstacle
avoidance
The goal is to plan a path from a starting
point to a random waypoint while
avoiding collisions with obstacles.

Settling time 5

Accuracy 5

Energy efficiency 5

Table 1.1: Task 4 scoring table

1.2 Goals
The goal of this project is to develop a path planner that is exploring the design space provided
by EuRoC and provides a collision-free path to a random waypoint within this design space.

The first part of this assignment is focused on finding background information about path
planning algorithms and comparing them to select the algorithm best suited for this project.

The second part is the implementation of the selected path planning algorithm.

1.3 Approach
The focus is on scoring in every subtask, refer table 1.1. After having a basic functioning
algorithm which is able to complete subtasks 4.1 and 4.2, the focus will be on the obstacle
avoiding algorithm so that there will be a score on every subtask. After being able to score points
on every subtask, improvements then can be made to the algorithm in order to achieve better
scores.

9

 Ramon Jansen University of Twente

1.4 Report structure
Chapter 2 treats the comparison between six possible and most suitable path planning
algorithms as a result of a literature study. The comparison is made based on several
requirements.

Chapter 3 shows the design and implementation of the final algorithm.

Chapter 4 discusses the results of intermediate tests and the final results of the challenge based
on the criteria shown in table 1.1 and table 3.7.

Chapter 5 evaluates the final algorithm and gives conclusions and recommendations for future
development.

10 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

2. Analysis
As stated in chapter 1, the first goal is to at least score points on every subtask. The primary
requirements for achieving this within the given time are stated below. The algorithm should

- always finds a collision-free path, a single collision will result in 0 points for subtask 4.3.
- be easy to implement, so that quick results are obtained from within the given time, an

so that there is probably time left to improve the algorithm. Please not that the scoring
on this requirement is somewhat subjective.

- function well with at least a 3 DoF platform, i.e. is able to provide 3D vectors for
movement along the x, y and z-axis.

The secondary requirements which would provide for a good algorithm are:

- It has to be efficient in calculating a path in a 3 dimensional environment. Fast
computation of a path means that the total time needed for path planning and navigation
is lower. This is one of the scoring criteria of EuRoC, refer table 1.1 (settling time).

- It should always try to find the shortest/quickest path to the target. The MAV will reach
its destination quicker, this results in a lower settling time as well. Also, this is more
energy efficient.

- It should aim for a smooth flight, no stuttering or difficult maneuvers if not necessary.
The more straight the path is, the less maneuvering is needed. Maneuvering costs
energy, so less maneuvering means more energy efficiency.

For designing and developing a suitable algorithm for subtask 4.3, a comparison is made
between six obstacle avoiding algorithms. In this section, the working of each algorithm will be
described briefly and the algorithm is evaluated based on the requirements stated above. Then a
comparison between these six algorithms is made, refer section 3.2.7, and one is chosen as the
base of the final algorithm.

2.1 Dijkstra's shortest path algorithm
This algorithm will expand outwards equally in every direction as can be seen in figure 3.1. It
will put the neighboring nodes of the current node in a list. Each node will get a score depending
on the cost of travelling to that node from the starting node. Then, the cheapest node is chosen
�ƒ�•�†���–�Š�ƒ�–���™�‹�Ž�Ž���„�‡�…�‘�•�‡���–�Š�‡���•�‡�™���î�…�—�”�”�‡�•�–���•�‘�†�‡�ï�ä�����Š�‡���‘�Ž�†���…�—�”�”�‡�•�–���•�‘�†�‡���‹�•���•�‡�–���ƒ�•���–�Š�‡���’�ƒ�”�‡�•�–���‘�ˆ���–�Š�‡���•�‡�™��
current node. When there are multiple nodes with the same score, they are all examined.

Figure 3.1 a) Expansion of Dijkstra's algorithm with b) and without obstacle. The red tile is the
starting point, the purple tile is the goal. (Source: Stanford, A* algorithm)

11

 Ramon Jansen University of Twente

���Š�‡�� �•�…�‘�”�‡�� �‘�ˆ�� �ƒ�� �•�‘�†�‡�� �‹�•�� �„�ƒ�•�‡�†�� �‘�•�� �–�Š�‡�� �’�”�‡�˜�‹�‘�—�•�� �•�‘�†�‡�á�� �‘�”�� �‹�–�•�� �î�’�ƒ�”�‡�•�–�ï-node. When a node can be
�”�‡�ƒ�…�Š�‡�†�� �˜�‹�ƒ�� �ƒ�� �…�Š�‡�ƒ�’�‡�”�� �’�ƒ�–�Š�á�� �–�Š�ƒ�–�� �•�‘�†�‡�� �™�‹�Ž�Ž���‰�‡�–���ƒ�� �•�‡�™���’�ƒ�”�‡�•�–�ä�� ���‡�–�ï�•���•�ƒ�›�� �–�Š�ƒ�–���ƒ�Ž�Ž�� �’�ƒ�–�Šs have equal
costs and node1 has node2 as its parent. Node3 is examined, and has node1 as its neighbor. But
the score of node3 is lower than the score of node2. That means that node1 can be reached
�“�—�‹�…�•�‡�”�� �˜�‹�ƒ�� �•�‘�†�‡�u�ä�� ���‘�� �–�Š�‡�� �ƒ�Ž�‰�‘�”�‹�–�Š�•�� �™�‹�Ž�Ž�� �”�‡�•�‡�–�� �•�‘�†�‡�s�ï�•�� �’�ƒ�”ent to node3. When two possible
parents have the same score, one of them will be chosen at random. After all, both paths will
most likely have the same length. [Correll, Nikolaus (2011)]

When the algorithm has reached the goal, the path will be found simply by noting each nodes
parent working backwards starting at the goal.

Requirements Rating
Collision-free path Yes, when forbidden areas are well stated
Implementation difficulty Easy/Medium/Hard
3 DoF functionality Will work, but mostly used in 2D

Other criteria

Path finding speed in 3D environment Slow/Medium/Fast
Shortest path Yes
Smooth flight Grid-based, limited directions

Table 3.1: Dijkstra's shortest path

Dijkstra's algorithm will always find a collision-free path if the coordinates of the obstacles, the
forbidden areas, are provided correctly. It is easy to implement and will always find the shortest
path available due to the fact that it will check a wide amount of possibilities.

Because this algorithm expands in all directions, it is very slow in finding a path in 3D
environments. This is also called the curse of dimensionality. Dijkstra's algorithm is mostly used
in 2D environments. But when adding a third dimension, the number of computations needed to
find a path increases significantly. For example, if we have a 2D design space of 10x10 nodes,
there is a total of 100 possible nodes. If a third dimension is added, the total number of nodes
increases by another factor 10, so that the total number of nodes is 10x10x10=1000 nodes. This
generally means that to find a path, the number of computations needed also increases by a
factor 10 in this example.

2.2 Best-first search algorithm
This algorithm does not use the distance from the starting node, but uses an estimate value
�…�ƒ�Ž�Ž�‡�†�� �î�Š�‡�—�”�‹�•�–�‹�…�ï�� �–�‘�� �…�ƒ�Ž�…�—�Ž�ƒ�–�‡�� �–�Š�‡�� �…�‘�•�–�� �ˆ�‘�”�� �‡�ƒ�…�Š�� �•�‘�†�‡�ä��This heuristic value can be calculated in
different ways depending on the application, these are visualized in figure 3.2.

The red line shows the Manhattan distance between point A and point B. The difference in the x-
direction and the difference in the y direction between point A and point B are summed up. For
three dimensions, the difference in the z-direction is added.

The orange line shows the diagonal distance. Diagonal movement is allowed. A diagonal step

usually has a value of 1.4 times the step size (�¾�s
E �s
N �s�ä�v).

12 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Figure 3.2: Heuristic value determination

The green line shows the Euclidean distance. This is the absolute distance between point A and
point B, and is calculated by:

�*
L
¥�T�6
E �U�6

or by:

�*
L
¥�T�6
E �U�6
E �V�6

for a three dimensional grid. [Red blob games, Heuristics]

Figure 3.3 shows how greedy best-first search will develop and what path it calculates in the
�•�ƒ�•�‡�� �…�‘�•�ˆ�‹�‰�—�”�ƒ�–�‹�‘�•�� �ƒ�•�� �•�Š�‘�™�‡�†�� �™�‹�–�Š�� ���‹�Œ�•�•�–�”�ƒ�ï�•�� �ƒ�Ž�‰�‘�”�‹�–�Š�•�� �‹�•�� �–�Š�‡�� �’�”�‡�˜�‹�‘�—�•�� �…�Š�ƒ�’�–�‡�”�ä�� ���•�� �–�Š�‹�•��
configuration, the Manhattan-distance is used to calculate the heuristic value.

Figure 3.3 a) Expansion of the greedy best-first search algorithm with b) and without obstacle.
The red tile is the starting point, the purple tile is the goal. (Source: Stanford, A* algorithm)

���Š�‡�� �ƒ�Ž�‰�‘�”�‹�–�Š�•�� �™�‘�”�•�•�� �–�Š�‡�� �•�ƒ�•�‡�� �™�ƒ�›�� �ƒ�•�� ���‹�Œ�•�•�–�”�ƒ�ï�•�á�� �‡�ƒ�…�Š node will have the heuristic value as its
score. The neighboring nodes of the current node are stored in a list with their score. The
�…�Š�‡�ƒ�’�‡�•�–���‘�•�‡���‹�•���…�Š�‘�•�‡�•�á���–�Š�ƒ�–���•�‘�†�‡���™�‹�Ž�Ž���„�‡�…�‘�•�‡���–�Š�‡���•�‡�š�–���î�…�—�”�”�‡�•�–���•�‘�†�‡�ï�á���™�‹�–�Š���–�Š�‡���…�—�”�”�‡�•�–���•�‘�†�‡���ƒ�•��
its parent. If a node has two possible parents with the same score, one of them will be chosen as
the parent since both resulting paths will have the same length. The algorithm stops when the
goal is found or when no possible path is found. In the former case, the path is reconstructed by
noting each nodes parent working backward from the goal node. [Stanford, A* algorithm]

13

 Ramon Jansen University of Twente

Requirements Rating
Collision-free path Yes, when forbidden areas are well stated
Implementation difficulty Easy/Medium/Hard
3 DoF functionality Will work, but mostly used in 2D

Other criteria

Path finding speed in 3D environment Slow/ Medium /Fast
Shortest path Not guaranteed
Smooth flight Grid-based, limited directions

Table 3.2: Best first search

The principle of this algorithm is the same as Dijkstra's algorithm with just minor differences
and is also easy to implement. Compare the figure 3.3a) with 3.1a). As can be seen immediately,
the path found by best-first search is longer than the path found with Dijkstra's algorithm. This
is because each node is scored based on its distance from the goal instead of the distance to the
starting point. Therefore, the closer a node is to the goal, the lower the score. The algorithm thus
tends to go straight to the goal, and when an obstacle is found the path is redirected around this
obstacle. With Dijkstra's algorithm, all nodes on the same radius from the starting point have
the same score and thus a better path is found.

Compare 3.3a) with 3.2a). This algorithm checks a lot less nodes than Dijkstra's algorithm when
no obstacle is in the way. This is because each node is scored based on its distance from the goal
instead of the distance to the starting point. Since the nodes going towards the goal will have a
lower score than the nodes away from the goal, the algorithm will always try to expand in the
direction of the goal. Dijkstra's algorithm does not have information about the direction of the
goal and thus expands in all directions.

Best-first search is more efficient when no obstacles are obstructing the ideal path. When this
ideal path is obstructed, a less optimal path is found than with Dijkstra's algorithm.

2.3 A-star
This algorithm combines the best from the two algorithms discussed above. It takes into the
account the heuristic distance to the goal as well as the distance from the starting point. This
way, the algorithm will always find a shortest path. That is, when a path is available and with
respecting the angle restrictions.

The algorithm starts with examining the neighbors of the current node. Each node will get two
scores: one for heuristic and one for travelling cost from the starting point to that node. Let's call
the heuristic score H, the travel cost score G. The total score F for a certain node is then:

�(
L �*
E �)

The closer a node is to the goal, the lower the heuristic score H. The closer a node is to the
starting point, the lower the travel cost score G. The nature of the algorithm depends on which
score has a bigger weight. If for example the H score has a bigger weight (by for example
incrementing with 5 points for every step), the nature of this algorithm is more like best-first
search, while if the G score has a bigger weight the nature is more like Dijkstra's algorithm.

14 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

In figure 3.4, the expansion of the A-star algorithm is shown. Figure 3.4 a) shows the expansion
with an obstacle between the starting point and goal. Figure 3.4 b) shows the expansion when no
obstacle is present between the starting point and the goal.

 [Red blob games (2009), Introduction to A*], [Winands, Mark (2004)]

Figure 3.4 a) Expansion of the A-star algorithm with b) and without obstacles. The red tile is the starting
point, the purple tile is the goal. (Source: Stanford, A* algorith m)

The working of this algorithm is as follows: all the neighbors are stored in a list, after which the
node with the lowest total score F is chosen. When two nodes have the same lowest score, one of
them is chosen at random as the parent since both resulting paths will have the same length. The
current node is set to be this nodes parent. This continues until the goal is reached or when no
path is found. That path is generated by tracing back each nodes parent, starting from the goal.

Requirements Rating
Collision-free path Yes, when forbidden areas are well stated
Implementation difficulty Easy/ Medium /Hard
3 DoF functionality Will work, but mostly used in 2D

Other criteria

Path finding speed in 3D environment Slow/Medium /Fast
Shortest path Yes
Smooth flight Grid-based, limited directions

Table 3.3: A-star

A-star is a combination of Dijkstra's shortest path algorithm and best-first search algorithm.
Benefits of both algorithms can be seen in figure 3.4. It will always find the shortest path to the
goal like Dijkstra's (and unlike best-first search), but it will only scan nodes in the direction of
the goal if possible like best-first search (and unlike Dijkstra's). The former guarantees that the
shortest path is found, the latter makes the algorithm more efficient. This algorithm is a little
more complex and is somewhat harder to implement than Dijkstra's or best-first search since it
is a combination of the two algorithms.

15

 Ramon Jansen University of Twente

2.4 Potential fields
This algorithm creates virtual forces that are acting on the object. The goal has acts as an
attractive force on the object, and obstacles will act as repulsive forces. It can be compared to a
marble rolling down the graph shown in figure 5.

Figure 3 .5: Visualization of a potential field (Source: Safadi, H . (2007))

The highest point is the starting point, the lowest point is the goal. When the marble rolls down
this hill, it will automatically go around the pillars and get to the goal without crashing directly
into the pillars. Another analogy would be a magnet being pulled towards the goal while being
repulsed by obstacles, which will have the same polarization as the magnet.

Figure 3.6: Visualization of a potential field with local minimum

The advantage of potential fields is that it can be used to navigate around obstacles during flight
as a dynamic path planning algorithm, since the MAV will automatically be repulsed by obstacles
before hitting them.

However, there is one big downside: while the previous types of algorithms will always find a
path when there is one available, potential field can fail to find a path. This is because the
algorithm can get stuck in a local minimum, for example the one shown in figure 3.6. This can be
countered by adding random backward movement when the algorithm is stuck, but no
distinction can be made between a local minimum and the absence of a path.

[Safadi, H. (2007)], [���ƒ�æ�«�ž�•�á���
. (2007)], [Slideshare, Dynamic Path Planning]

16 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Requirements Rating
Collision-free path Not always finding path due to local minima
Implementation difficulty Easy/Medium/ Hard
3 DoF functionality Yes

Other criteria

Path finding speed in 3D environment Slow/Medium/ Fast
Shortest path Not guaranteed
Smooth flight Not guaranteed

Table 3.4: Potential fields

Potential fields are very well suited for 3D environments. It can even be used as a dynamic path
planner, meaning that it can also avoid obstacles and find a path in an unknown environment
while flying around. This will come in very handy in a lot of cases, since the complete
environment is often unknown. Even when it has to plan a path before flight, it will be very fast
in determining a path.

However, the big issue with potential fields is local minima. Therefore it is not always
guaranteed that a path is found, even though one is available. If a path is found, it is not
guaranteed to find the shortest path. It seemed to be more complex to implement, and few
implementations are found on the internet or in books.

2.5 Harmonic potential fields
As stated in section A.4, potential fields can suffer from local minima which results in the
algorithm failing to find a path. Harmonic potential field method is also an artificial function
based on harmonic functions, which overcomes the limitations of potential field methods.
Harmonic functions are solutions to the Laplaces equation (eq. A.1), the so-called harmonic
equations (hence the name harmonic potential fields). The most important property of harmonic
functions is that they are free from local minima. The core idea of this method lies in creation of
only one minimum in the working environment i.e, the global minimum which is represented by
the goal. If the goal is represented by a global minimum and no other minimum exists in the
environment then the robot will arrive at the goal location always. Harmonic potential fields
provide a solution to this.

�Ï �6�B
L �¿�B
L
�×�Ù�.

�×�ë

E

�×�Ù�.

�×�ì

E

�×�Ù�.

�×�í

L �r (A.1)

In equation A.1, f is a scalar function and in this case describes the space in which has to be
navigated. The goal is to find a function f for which the divergence of the gradient is zero
everywhere except at goal. The gradient of f is in the direction of the goal, since the goal has an
attractive force. The divergence of is a measure for sources and sinks within the space described
by f. If the divergence of the gradient of f is zero everywhere except for the goal, then there is
certainly no local minimum. The goal will be a global minimum, and this way a path is always
found if one is available.

Some nice papers about implementations using this method can be found, see references stated
below.

[Daily, Robert and David M. Bevly (2008)], [Masoud, Ahmad A. (2008)]

17

 Ramon Jansen University of Twente

Requirements Rating
Collision-free path Yes
Implementation difficulty Easy/Medium/ Hard
3 DoF functionality Yes

Other criteria

Path finding speed in 3D environment Slow/Medium / Fast
Shortest path Yes
Smooth flight Yes

Table 3.5: Harmonic potential fields

Harmonic potential fields are guaranteed to always find a path if there is one available, this will
also be the shortest path. It will be a little bit slower than normal potential field algorithms since
more calculations have to be done. Opposing to normal potential fields, harmonic potential fields
cannot be used for dynamic in-flight obstacle avoidance and path planning since the whole
environment needs to be known in order to calculate the harmonic potential field.

The problem with harmonic potential fields is that the algorithms are often very complex and
there is very little information to be found about this path planning method. Because of this, it
will be a risk to try and implement a working harmonic potential field algorithm before the
deadline.

18 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

2.6 Rapidly exploring random tree search algorithms
This algorithm is based on quick (random) exploration of a certain configuration space by filling
�‹�–�� �—�’�� �™�‹�–�Š�� �ƒ�� �î�–�”�‡�‡�ï�ä�����Š�‡�� �‡�š�ƒ�•�’�Ž�‡���‹�•�� �ˆ�‹�‰�—�”�‡�� �u�ä�z�� �•�–�ƒ�”�–���ƒ�–�� �–�Š�‡�� �–�‘�’�� �Ž�‡�ˆ�–�� �…�‘�”�•�‡�”�á�� �–�Š�‹�•�� �‹�•�� �–�Š�‡�� �î�„�ƒ�•�‡�ï�� �‘�ˆ�� �–�Š�‡��
tree. It will continue to grow until it has found the goal, which is circled in green.

Figure 3.8: Example of the result of a Rapidly Exploring Random Tree algorithm

This kind of algorithm is quick and suitable for high-dimensional problems while the tree will
explore the configuration space randomly. This means that this algorithm may find the goal just
as quick in a large configuration space as in a smaller configuration space. The increment value
that is used (so in figure 4 the distance between two dots) has a great influence on the working
of the algorithm. When the increment value is too large, the search will be quick, but obstacles
may cause the algorithm to fail. When this value is too small, it will take longer to cover a certain
area.

The downside of this algorithm that the chance of finding the best path is very small. This is
already clear in figure 4. There are no obstacles between the starting point and the goal, so the
optimal path would be a straight line. In complex environments, the path may become even less
efficient. For example, when a path could have been planned between two obstacles, the tree
may only have found a path around the obstacles.

[Rodriguez, S., Xinyu Tang, Jyh-Ming Lien, Nancy M. Amato, An Obstacle-Based Rapidly-Exploring
Random Tree]

19

 Ramon Jansen University of Twente

Requirements Rating
Collision-free path Yes, if a path is found
Implementation difficulty Easy/Medium /Hard
3 DoF functionality Yes

Other criteria

Path finding speed in 3D environment Slow/Medium/ Fast, depending on step size
Shortest path Almost never
Smooth flight Almost never

Table 3.6: Rapidly exploring random tree

Rapidly exploring random tree algorithm is probably the quickest way to generate a path to the
target. It works very well in 2D as well as in 3D environments.

The downside is that this algorithm will not always find a path, even if one is available. This is
because the expansion of this algorithm is random, and when all branches hit a dead end, the
algorithm will conclude that no path is available. When a path is found, it will practically never
be the shortest/quickest path and also will not provide a smooth path. It also doesn't seem easy
to implement.

2.7 Comparison
In table 3.7 on the next page a total scoring is given for all algorithms. The scores used for the
requirements are 0, 2 or 6 points. The scores used for the other criteria are 0, 1 and 3 points,
since these criteria are less important than the requirements. Again, please note that the scoring
for 'Implementation difficulty' is somewhat subjective.

2.8 Decision
From Table 3.7 is concluded that A-star is the best algorithm for our purposes. It guarantees a
collision-free path, can be made to work in 3D environments and the probability of a working
algorithm before the deadline is high. It seems to be quick enough for use in this challenge, will
always find the shortest path and also provide a smooth flight.

20 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

 D
ijkstra's

shortest path

B
est-first

search

A
-star

P
otential

fields

H
arm

onic
P

otential
fields

R
andom

 tree
search

Collision-free
path

6 6 6 2 6 2

Implementation
difficulty

6 6 6 0 0 2

3 DoF
functionality

0 2 2 6 6 6

Path finding
speed in 3D
environment

0 1 1 2 2 2

Shortest path 2 1 2 1 2 0

Smooth flight 2 1 2 1 2 0

Total score

16

17

19

12

18

12

Table 3.7: Scoring table for comparing algorithms based on requirements

21

 Ramon Jansen University of Twente

3. Design and implementation
This chapter will show the process of developing the path planning algorithm with obstacle
avoidance. An algorithm based on A-star is designed and implemented. Finally, improvements
are made, leading to the final version of the algorithm. The full implementation of the algorithm
is found in appendix B.

3.1 Design
For designing the algorithm, a pseudo code implementation is made based on research done on
A-star. A flowchart of this pseudo code is found in figure 3.1. The pseudo code is found in
appendix A.

Figure 3.1: Flowchart A-star algorithm

22 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

3.2 Implementation
This section explains the implementation of the final algorithm. First, an implementation is made
based on the flowchart found in figure 3.1. Due to problems with this implementation,
improvements are made. These are described and added to the flowchart.

3.2.1 Basic A-star implementation
Refer figure 3.1. On initiation, the open set and the closed set are defined. The open set contains
the nodes that are examined at a certain time by the algorithm, excluding nodes that belong to
an obstacle. The closed set contains all nodes that have been examined already by the algorithm.
Initially, the open set contains the starting node and the closed set is empty.

As long as the open set is not empty, the open set is checked for the node with the lowest F score,
let's call this node X. Initially, the open set only contains the starting node and thus this becomes
node X. If the node with the lowest F score is the target node, the algorithm stops and the path is
reconstructed. Else the neighboring nodes of X, let's call them Xn, are each examined, refer figure
3.2. The numbers represent the distance to node X of each node Xn. First, each node Xn is
checked for occupancy.

If Xn is occupied, this node is skipped and the next node Xn is examined. An occupied node can
never be part of the final path.

If a neighboring node has not yet been examined before, the F-score of this node has to be
calculated. The G-score of this node is calculated by: GXn=GX + distance to X. The H-score of each
node Xn is calculated by using the Manhattan distance to the goal, refer section 2.2. This is the
easiest method to implement, and is sufficient to meet the requirements stated in chapter 2.

Figure 2.2: Nodes examined around node X. The numbers represent th e distance to node X of each node.

It is also possible that a neighboring node Xn has already been examined before, but a shorter
path to this node is found. This is true if the G-score of that node Xn that has just been calculated
is lower than the G-score that was calculated on previous examination. In this case, the G-score
and the F-score of this node Xn are updated and the node is put in the open set.

If all nodes Xn have been given a score and are put in the open set, node X is put in the closed set.
This way the algorithm will know that this node already has been the center node X. After this,
the open list is again checked for nodes and the process described above is repeated. If a path is
found, each node contributing to the path is sent to the controller one by one. If the MAV gets
within a distance of 0.1 m to the current presented node, the next node is presented. This way,
the MAV will remain a constant speed during flight.

23

 Ramon Jansen University of Twente

When testing this algorithm, it became clear that there were two issues. The first issue is seen in
figure 3.3a. The path is planned alongside the walls, which would result in a collision of the MAV.
By testing whether the error came from the algorithm or the Octomap, it was found out that the
nodes queried for occupancy in the octomap are not in the center of a block, but at one of the
corners, refer 3.3b. This means that for instance when the green node is queried, the Octomap
will return unoccupied because the block belongs to the red node. Therefore, if a node is said to
be unoccupied, there is a chance that this node is on the edge of an occupied node. In the
simulation this will result in a collision. Section 3.2.2 provides a solution to the wall hugging
issue.

Figure 3.3 a) Wall hugging issue b) Node position in Octomap

The second issue was that the algorithm sometimes would plan an illogical path where a straight
line would be sufficient, refer figure 3.4. The red line is a 2D example of what such an illogical
path might look like. The green line shows the optimal path between point A and point B. This
only occurs when a path is planned close to an obstacle. The cause of this is unknown.

Figure 3.4: 2D example of an illogical path between point A and B. The green l ine is the optimal path.

24 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

3.2.2 Wall hugging issue
As stated in section 3.4, the algorithm would plan a path that has virtually no distance from the
obstacles which would definitely result in a collision. In order to solve this, the 3x3x3 matrix is
resized to 7x7x7. This adds two nodes in all directions that is evaluated. For every next node this
7x7x7-matrix is formed and the occupancy of all surrounding nodes is queried and stored.

For choosing the next node, the original 3x3x3 matrix is still evaluated but now one extra step is
added. A 5x5x5-matrix around every node Xn of the 3x3x3-matrix is evaluated, refer figure 3.5
for a 2D example. The current center node is X, the 3x3x3-matrix is formed by nodes Xn and the
5x5x5 matrix used for the extra step is formed by nodes B. For a node Xn to be stored as a
possible successor, all the B-nodes around this node Xn and of course the Xn-node itself should
be unoccupied. This assures that the is at least a distance of two nodes between the MAV and an
obstacle.

Figure 3.5: Node checking procedu re

This solution was also tested with a 5x5x5-matrix and even though this also solved the wall
hugging issue, this would not leave a big margin of error. A 7x7x7-matrix provides a safety
margin.

3.2.3 Illogical path issue
The cause of this issue has not been found. Since this issue does not cause any significant
problems and does not occur every time, the choice was made to leave this issue as it is and
focus on optimizing the algorithm for better results.

3.2.4 Removing straight-line nodes
Since a PID-controller is used for the control, it can be assumed that when waypoint is received
by the controller, it will fly the MAV to that waypoint in a straight line. This means that if there is
a straight line in the path, all the nodes between the beginning and the end of this line can be
discarded and only the end-node has to be sent to the controller. After the path is created, the
path is checked for straight lines and in-between nodes are removed if possible.

Since the output of a PID-controller depends on the error presented at the input, this will
increase the speed of the MAV along these straight parts of the path, and thus the MAV will reach
its goal significantly faster, refer figure 3.6.

25

 Ramon Jansen University of Twente

Figure 3.6: Speed of the MAV with (green line) and without remo ving straight line nodes (red line)

3.2.5 Optimizing the path
As stated before, the algorithm used has only a limited choice of directions, that is only straight
or diagonal. Therefore the path is often not as direct as it could be. Especially in tasks 4.1 and
4.2, where the optimal path is always a straight line. Instead of a straight line, a less optimal path
like the one in figure 2.1 is often created.

In order to optimize this, there is a function available within the Octomap. This function draws a
straight line between a given start- and end point and will check whether the line is interrupted
by an obstacle or not. However, this function only checks for occupancy along this line. The
dimensions of the MAV are not taken into account. Therefore, this function is only used to
determine whether a shorter path is available between the starting point and the target node. If
no obstacles are found, all in-between nodes are discarded and only the target node is presented
to the controller.

For tasks 4.1 and 4.2 this will always result in just the target node being published to the
controller since there are no obstacles present. This decreases the time in which tasks 4.1 and
4.2 are completed, and might result in a better score due to lower settling time.

26 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

4. Evaluation
In this chapter the results of task 4 will be discussed. The last section will show the overall
results of team LEO in the European Robotics challenge.

4.1 Evaluation
By using the 7x7x7-matrix, the wall hugging issue is permanently solved. The time needed for
the algorithm to find a path has increased due to the extra nodes that have to be processed.
Though the total settling time of the system, i.e. from receiving a target waypoint to reaching the
target waypoint, is still within the benchmarks of EuRoC and thus the final scoring for settling
time has not changed.

Concerning the issue of generating an illogical sub-optimal path, this issue still remains since the
cause has not been found. This issue has not caused big problems and did not have significant
influence on performance of the algorithm and thus the focus was on optimizing the algorithm
for better results.

By checking the path for straight lines and removing all the nodes between the beginning and
the end of this line, the MAV reaches its destination quicker and the flight is smoother as
expected. The controller is handling this very well and this has surely improved the algorithm.

By immediately checking if a straight line is possible between the start and the goal, the settling
time in tasks 4.1 and 4.2 has decreased as expected. The algorithm just publishes the target
waypoint, the controller makes sure that the MAV gets to this target in a straight line and settles
again when the target is reached.

Since the function used within the Octomap to optimize the path only checks the nodes along a
line (so 1D), it is not safe to assume that the optimized path is obstacle-free. The function can
plan a new path too close past obstacles without this being checked since there is no margin, this
will result in a collision. Therefore, this function is only used once to check if a straight line is
possible between start and target. Though this has not shown any issues, theoretically the
chance of a collision is still there. Looking for another solution is advised.

An additional issue was also found in the algorithm, namely that not all waypoints generated by
the path planner were received by the controller. Finding the source of this issue has taken some
time, but eventually this was solved by adding a small delay between publishing the waypoints
to the event handler. This was thanks to Geert Folkertsma, who came up with this solution.

4.2 EuRoC results

4.2.1 Task 4 results
In table 5.1 the results of the final algorithm are shown. The left column shows the results of the
tests performed on our own PC's, the right column shows the results received from EuRoC.

As stated before, the algorithm is tested in a 3D environment along with the controller
implemented in task 3. So both systems have to work well together in order to get good results.
The algorithm is tested by EuRoC in within the same Octomap as was provided by EuRoC, so
testing the algorithm on our own PC's should give a good idea of how well the algorithm
performs.

27

 Ramon Jansen University of Twente

 Results on own PC Results from EuRoC
Task 4.1: Waypoint
navigation (no obstacles)

 Accuracy 1.5/2 0.5/2
Settling time 1.5/2 1.5/2

Energy-efficiency 1.5/2 0.5/2
Task 4.2: Sensor failure (no
obstacles)

 Accuracy 2/3 2/3
Settling time 2/3 2/3

Energy-efficiency 2/3 2/3
Task 4.3: Navigation with
obstacle avoidance

 Accuracy 3.5/5
0/15

(system did not settle)
Settling time 1.5/5

Energy-efficiency 3.5/5

Table 5.1: Results final algorithm

As can be seen in table 5.1 the results received from EuRoC are quite different than the results
that were obtained on our own PC's. It was already discovered that the results of the simulation
may differ depending on how fast the used PC is. Assuming that the algorithm was tested by
EuRoC on a faster PC than the ones we used, this might explain the difference in some of the
results.

Also, the system did not settle is task 4.3 when evaluated by EuRoC. No collision was reported by
EuRoC, but one explanation might be that the algorithm failed to find a path to the goal. Though
this has never happened when testing on our own PC's.

4.2.2 Team LEO results
In order to keep track on where each task stands, a status table was set up in which intermediate
testing scores were posted. The last known results before handing in the complete solution for
every task can be found in table 5.2. In table 5.3 the results of the European Robotics Challenge
for team LEO can be found.

Perception Control
Task 1: localization Task 2: Mapping Task 3: Hovering Task 4: Navigation

1.1: 5/8

2.1: 5/8 3.1: 6/9 4.1: 4.5/6

1.2: 6.5/10

2.2: 5/10 3.2: 3/4.5 4.2: 6/9

1.3: 5/8

2.3: 5/8 3.3: 5/9 4.3: 8.5/15

Table 5.2: Last known intermediate test results for each task

28 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Perception Control
Task 1: localization Task 2: Mapping Task 3: Hovering Task 4: Navigation

1.1: 3/8

2.1: 3/8 3.1: 4.5/9 4.1: 2/6

1.2: 3.5/10

2.2: 3.5/10 3.2: 1.5/4.5 4.2: 6/9

1.3: 3/8

2.3: 3/8 3.3: 4/9 4.3: 0/15

Table 5.3: Team LEO results European Robotics Challenge

The results on our own PC's were obviously better than the results received from EuRoC.
Despite that, these results were good enough for rank 12 out of 35 in the EuRoC challenge which
of course is a great achievement. The fifteen best teams proceeded to the next round, and thus
team LEO as well.

29

 Ramon Jansen University of Twente

5. Conclusions and recommendations

5.1 Conclusions
The goal of this assignment was to ultimately implement a working algorithm for navigation
with obstacle avoidance. Choosing A-star as a base has proven to be a good choice. After the
changes and optimizations described in chapter 3, the algorithm has always provided a collision-
free path in a satisfactory short time. Due to the creation of an illogical path at some points, the
path created has not always been the smoothest and shortest, but this did not result in a
significant decrease in performance. The results from our own pc's show that the goal of this
assignment is met, but optimization in terms of robustness is advised.

The issue of creating an illogical path has not been solved during the project. Together with the
result from EuRoC where the system did not settle, this shows that the algorithm is not entirely
bug-free.

5.2 Recommendations
For future research and development, some improvements are suggested.

1. Adding a local potential field as an extra safeguard while flying is suggested to decrease
the risk of collision even further.

2. The function used within the Octomap to optimize the path only checks the nodes along a
line (so 1D), it is not safe to assume that the optimized path is obstacle-free. The function
can plan a new path too close past obstacles without this being checked since there is no
margin, this will result in a collision. Looking for another solution is advised.

3. It is suggested to check the algorithm further for robustness. Illogical paths together with
the system not settling when tested by EuRoC show that there are still some issues that
need some work.

4. For 3D-environments, one might want to look at harmonic potential fields. This
algorithm takes more effort to implement due to the mathematics involved, but if this
algorithm is implemented correctly, it might prove to perform better than A-star.
Especially in a 3D environment.

30 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Appendix A: Pseudo code for A-star

function A*(start, goal)

 closedSet := {} // The set of nodes already evaluated.

 openSet := {start} // The set of currently discovered nodes still to be evaluated. Initially, only
 the start node is known.

 cameFrom := the empty map //for back tracking the path

 gScore := map with default value of Infinity // For each node, the cost of getting from the start
 node to that node.

 gScore[start] := 0 // The cost of going from start to start is zero.

 fScore := map with default value of Infinity // For each node, the total cost of getting from the
 start node to the goal.

 fScore[start] := heuristic_cost_estimate(start, goal) // For the first node, that value is completely
 heuristic.

 while openSet is not empty{ // If there are still nodes in the open set

 current := the node in openSet having the lowest fScore[] value

 if current = goal {

 return reconstruct_path(cameFrom, current)

 end algorithm

 }

 openSet.Remove(current)

 closedSet.Add(current)

 for each neighbor of current {

 if neighbor in closedSet {

 if currently calculated neighbor F score is lower than saved neighbor F score {

 Recompute H score, G score and F score

 Put neighbor in open set

 }

 }
 tentative_gScore := gScore[current] + dist_between(current, neighbor) // The distance from
 start to a neighbor

31

 Ramon Jansen University of Twente

 if neighbor not in openSet {

 openSet.Add(neighbor) // Discover a new node

 } else if tentative_F-score >= F-score[neighbor] {

 continue // This is not a better path.

 }

 // This path is the best until now. Record it!

 cameFrom[neighbor] := current

 gScore[neighbor] := tentative_gScore

 fScore[neighbor] := gScore[neighbor] + heuristic_cost_estimate(neighbor, goal)
 }

 }

 return failure

function reconstruct_path(cameFrom, current) {

 total_path := [current]

 while current in cameFrom.Keys: {

 current := cameFrom[current]

 total_path.append(current)

 }

 return total_path

}

32 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Appendix B : Implementation final algorithm

33

 Ramon Jansen University of Twente

34 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

35

 Ramon Jansen University of Twente

36 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

37

 Ramon Jansen University of Twente

38 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

39

 Ramon Jansen University of Twente

40 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

Appendix C : Other experiments

C.1.1 First solution to direct path planning
As can be seen from table 1.1, subtasks 4.1 and 4.2 are about waypoint navigation without
obstacle avoidance. Basically, this means going from point A to point B as straight as possible..
The algorithm treated this chapter has not been used in the final solution, since the final
algorithm used for obstacle avoidance was also capable of planning a direct path to a given
waypoint.

In order to make sure the algorithm will complete subtasks 4.1 and 4.2, a set of demands is
determined. The algorithm has to:

- Determine the direction of the target waypoint
- Find the best path towards the target waypoint
- Deliver the right information to the controller

The first goal was to have a working algorithm that plans a path to a target and delivers the right
information to the controller. When this base algorithm is working, improvements can be made.

The first design is based on a 3D-grid. Only discrete steps can be made within this grid, the step
size can be set with one parameter. The step size was initially set to 1m. The pseudo code of this
algorithm can be found at the end of this appendix.

The algorithm will check the retrieve data about position of the MAV from the simulation tool
itself as a (x,y,z)-vector. Next, the coordinates of the target are retrieved in the same format and
compared to the current position of the MAV. As long as the goal is not reached, a new
subwaypoint is created and stored in the array that will contain the final path.

The coordinates of this subwaypoint depend on whether the difference between the current
position of the MAV and the goal in the x-, y- and z-direction is zero or not. If the x-value of the
�’�”�‡�˜�‹�‘�—�•�� �™�ƒ�›�’�‘�‹�•�–�� �‹�•�� �•�‘�–�� �‡�“�—�ƒ�Ž�� �–�‘�� �–�Š�‡�� �‰�‘�ƒ�Ž�ï�•�� �š-coordinate, the x-coordinate of the previous
subwaypoint is incremented or decremented by the step size. Same goes for the y-coordinate
and the z-coordinate.

When the goal is reached, that is when the created subwaypoint has the same coordinates as the
target waypoint, the path is published to the controller. The subwaypoints will be published one
at a time. When the MAV gets within 0.25m of the published waypoint, this waypoint is
discarded and the next waypoint is published, until the target waypoint is reached.

A resulting path created by this algorithm is shown in figure 2.1. The blue line shows the path
the MAV will follow. Each intersection with a red line represents the coordinate of a sub-
waypoint. The starting position of the MAV is the coordinate given by the vector (1,1,2). The
coordinates of the target is given by the vector (9,6,4).

The sub-waypoints that were created by the algorithm and represented by the red and blue line
intersections are respectively (2,2,3), (3,3,4), (4,4,4), (5,5,4), (6,6,4), (7,6,4), (8,6,4) and (9,6,4).

41

 Ramon Jansen University of Twente

Figure 3.1: Resulting path of the direct path planning algorithm

The reason why this path is not a straight line (which would be the optimal path) is that the idea
was to combine this algorithm with the algorithm used for obstacle avoidance. An Octomap of a
power plant was provided by EuRoC, and because it wasn't sure yet whether the Octomap
should be queried discretely (so by respecting the resolution) or if every possible coordinate
could be queried for occupation. Therefore, this way was chosen as a safe base to start with. This
algorithm would compute a path, and every sub-waypoint would be checked for any occupation.
If a sub-waypoint is occupied, in other words an obstacle is found, the obstacle avoidance
algorithm would take over.

C.1.2 Direct path planning pseudo code

Check position: while goal is not reached {

 If(difference between previous x and goal x is not 0){

 New x=Increment or decrement previous x by step size

 }
 If(difference between previous y and goal y is not 0){

 New y=Increment or decrement previous y by step size

 }
 If(difference between previous z and goal z is not 0){

 New z=Increment or decrement previous z by step size

 }
 Store subwaypoint (New x, New y, New z)
}

Publish path

42 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

C.1.3 Direct path planning algorithm

43

 Ramon Jansen University of Twente

44 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

C.2.1 Adding a local potential field
As some kind of extra safeguard, a local potential field has been added for in-flight obstacle
avoidance, refer Appendix C.3. If for some reason the MAV would come to close to an obstacle, a
force opposite to the direction of the obstacle will be applied. To give an image of what this
'force field' around an obstacle looks like, refer to figure 4.2. The closer the MAV gets to the
obstacle, the bigger the repulsive force.

Figure 4.2: Force field around obstacle as seen by the MAV

To achieve this, a 7x7x7-matrix is present around the MAV when it is following the path. The
matrix is shifted each time the next node is published. The new nodes are checked for
occupancy, and if a node is found to be occupied the repulsive force is calculated as function of
the distance to the MAV. This force is then added to the output of the PID-controller. The
resulting force vector is sent to the MAV in the simulation, which will process this force vector
and move according to it.

45

 Ramon Jansen University of Twente

C.2.2 Local potential field algorithm

46 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

47

 Ramon Jansen University of Twente

References
Carsten, Joseph (2006), 3D Field D*: Improved Path Planning and Replanning in Three
Dimensions
 http://ri.cmu.edu/pub_files/pub4/carsten_joseph_2006_1/carsten_joseph_2006_1.pdf

Correll, Nikolaus (2011), Introduction to pathplanning for robotics
 http://correll.cs.colorado.edu/?p=965

Daily, Robert and David M. Bevly (2008), Harmonic Potential Field Path Planning for High Speed
Vehicles
 http://www.nt.ntnu.no/users/skoge/prost/proceedings/acc08/data/papers/0383.pdf

Masoud, Ahmad A. (2008), Planning with Discrete Harmonic Potential Fields
 http://cdn.intechopen.com/pdfs-wm/5366.pdf

Panati, S., Bayanjargal Baasandorj, Kil To Chong (2015), Autonomous Mobile Robot Navigation
Using Harmonic Potential Field
 http://iopscience.iop.org/article/10.1088/1757-899X/83/1/012018/pdf

Prestes, Edson, Silva Jr., Paulo M. Engel, Marcelo Trevisan, Marco A.P. Idiart (2002), Exploration
method using harmonic functions
 http://inf.ufrgs.br/~prestes/publicacoes/RAS02.pdf

Red blob games (2009), Introduction to A*
 http://www.redblobgames.com/pathfinding/a-star/introduction.html

Red blob games, Heuristics
 http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html

Rodriguez, S., Xinyu Tang, Jyh-Ming Lien, Nancy M. Amato, An Obstacle-Based Rapidly-Exploring
Random Tree
 https://parasol.tamu.edu/publications/download.php?file_id=525

Safadi, Hani (2007), Local Path Planning using Virtual Potential Field
 http://www.cs.mcgill.ca/~hsafad/robotics/

Siegwart, R., Autonomous Mobile Robots
 http://slideplayer.com/slide/5784565/

Slideshare, Dynamic Path Planning
 http://www.slideshare.net/dare2kreate/dynamic-path-planning

Stanford, A* algorithm
 http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

���ƒ�æ�«�ž�•�á���
�ž�• (2007), Navigation of Mobile Robots Using Potential Fields and Computational
Intelligence Means
 https://uni-obuda.hu/journal/Vascak_9.pdf

Winands, Mark (2004), Informed Search in Complex Games, chapters 4,5 & 7
 https://dke.maastrichtuniversity.nl/m.winands/documents/informed_search.pdf

48 Waypoint navigation with obstacle avoidance for MAV's

University of Twente Ramon Jansen

