

	
	
	
	
	
	

	
	

	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	

	

	

	

	

	

	
Control architecture for docking UAVs

with a 7-DOF manipulator

G.B. (Giuseppe) Barbieri

 MSc Report

C e
Prof.dr.ir. S. Stramigioli

Dr. R. Carloni
Dr.ir. R.G.K.M. Aarts

M. Reiling, MSc

October 2016
	

045RAM2016
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

ii Control architecture for docking UAVs with a 7-DOF manipulator

Giuseppe Barbieri University of Twente

iii

Abstract

The SHERPA-project (www.sherpa-project.eu) focuses on developing a mixed ground/aerial
robotic platform to improve human rescuers activities. In this collaboration, the human should
be able to use the robots with ease when necessary, while the robot should be autonomous
when control is not demanded by the operator.

The robotic platform consists of a robotic arm integrated with a ground rover, the task of
the system will be to autonomosly localize, pick up and dock a UAV1 in its neighbourhood
to achieve a battery swapping. The MSc research focuses on designing and implementing a
control architecture that integrates motion planning and control techniques to execute all the
necessary steps of grasping and docking a UAV. During execution the architecture supervises
the feasability of the given tasks to ensure correct execution.

1Unmanned Aerial Vehicle

Robotics and Mechatronics Giuseppe Barbieri

iv Control architecture for docking UAVs with a 7-DOF manipulator

Giuseppe Barbieri University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Report Organization . 2

2 Background and Analysis 3

2.1 The SHERPA arm . 3

2.2 Analysis . 5

2.3 Approach . 7

3 Control architecture for docking UAVs with a 7-DOF Manipulator 9

4 Algorithms and Software Implementation 18

4.1 Overview . 18

4.2 Motion Planning . 19

4.3 Sampling-Based Motion Planning algorithms . 19

4.4 Kinematic Solver . 22

4.5 Software Implementation . 24

5 Conclusions and Recommendations 32

A Appendix 33

A.1 URDF model . 33

A.2 MoveIt installation . 33

B Appendix: Gazebo Model 37

C Appendix: User Manual 39

C.1 Instructions to start the software . 39

Bibliography 41

Robotics and Mechatronics Giuseppe Barbieri

vi Control architecture for docking UAVs with a 7-DOF manipulator

Giuseppe Barbieri University of Twente

1

1 Introduction

1.1 Context

1.1.1 SHERPA project

The introduction of robotic platforms offer a promising solution for the improvement of search
and rescue activities in hostile environments, such as in the alpine scenario. This thesis has
been developed under the project named "Smart collaboration between Humans and ground-
aErial Robots for imProving rescuing activities in Alpine environments" (SHERPA) (Marconi
et al., 2012), launched and funded by the European Union. The project aims to provide a ro-
botic team to support human rescuers, with the purpose of increasing the operators’ awere-
ness, facilitating rescuing activities by reducing their work load.
The robotic team is composed of the following elements:

• SHERPA rover: the SHERPA rover acts as an "intelligent donkey" that carries load. It is
equipped with a recharging station for small-scale UAVs, referred to as SHERPA box, and
it is conceived as an hardware station with computational and communications capab-
ilities, as well as a high-degree of autonomy and long endurance. It’s autonomy capab-
ilities are improved through a multifunctional robotic arm installed on it, which will be
described in further detail in the next sections.

• Small-scale UAVs: the small-scale UAVs act as trained "wasps" and are small rotary-wing
UAVs. They are used to support rescuing surveillance activity by enlarging the controlled
area through the use of small cameras and various sensors.

• Large glider UAV : the large UAV is a long-endurance, high-altitude and high-payload aer-
ial vehicle with complementary features with respect to the small-scale UAVs. It is re-
ferred to as the "Patrolling hawks" and it is in charge of creating a 3D map of the rescue
area. Those maps inform the platforms in case critical terrain morphologies changes are
identified.

The research focuses on how the human operator and the mixed aerial and ground robot plat-
form collaborate with each other, toward the achievement of a common goal.
Although the ease and simplicity for the operator to coordinate and communicate with the
platform, rescuing activities require great implications so that constant supervision of the plat-
form seem hardly achievable by a single person. Therefore, the autonomous performances of
the robot system represent a core part of this project.
The current development regards the implementation of a robotic arm integrated on the
ground rover. The task of this system will be to autonomously localize, pick up and dock a
small-scale UAV detected in the platform neighbourhood.
The scope of this master thesis project contributes in the increase of autonomy of the robotic
system, specifically of the SHERPA arm. A control architecture is presented for controlling the
SHERPA arm, leading towards the achievement of grasping and docking operation of the UAVs.

1.1.2 Problem statement

Small-scale UAVs, equipped with small cameras and various sensors, are excellent for increas-
ing the surroundings awareness of the operator. However, they are characterized by a short
battery life. In order to increase the UAVs autonomy, and overcome their limited battery life,
they have to be recharged directly on field.
For this purpose, a mobile ground-vehicle equipped with a robotic arm works as a mobile re-
charging station for small-scale UAVs. The robotic manipulator has to be capable of grasping

Robotics and Mechatronics Giuseppe Barbieri

2 Control architecture for docking UAVs with a 7-DOF manipulator

the UAVs and docking them in the SHERPA box mounted on the ground-rover.
The execution of novel applications such as the one devised for the SHERPA arm, requires the
introduction of safer control architectures that can cope with the need of operating in hostile
environments. For this reason the supervision of given tasks is desirable at different level of
abstraction(N.Xi et al., June 1996), (Yildirim and T.Tunali, 1999). Direct feedback of the world
model should be provided to the task level of the robot software, which gathers the necessary
informations to decide whether a certain task will be completed or not. Moreover, the path
planner should generates free-collision trajectories and be able to cope with situations in which
the arm has to interact with unknown environments, while supervising correct trajectory track-
ing.

1.2 Report Organization

A description of the SHERPA arm and a discussion of the software abstraction levels applicable
to the robot will be found in Chapter 2. The paper concept, presenting the proposed control ar-
chitecture, is then given in Chapter 3. The paper will also describe the methodology and imple-
mentation details of the software, the hardware used for realization, as well as the experiment
results. In Chapter 4, additional information regarding methodology and software implement-
ation are given. Finally, conclusions of the achieved work are drawn and recommendations for
future works proposed in Chapter 5.

In addition, appendices describing the software’s installation, Appendix A and Appendix B, and
use, Appendix C, can be found at the end of this thesis.

Giuseppe Barbieri University of Twente

3

2 Background and Analysis

In this chapter some background information on the system are given. Also, the approach for
designing the control architecture is presented and discussed. Following, the requirements to
be fulfilled for the present work are listed.

2.1 The SHERPA arm

The SHERPA arm is a light weight compliant manipulator (Barrett et al., 2016). The arm is de-
signed such that it is extremely resilient against disturbances and shocks. This is achieved by
introducing compliant elements which allows decoupling of the robot’s structure and drives
from rigid impacts. Moreover, the arm is equipped with two Variable Stiffness Actuators (VSA)
(Vanderborgh et al., 2013), allowing for the adjustement of the mechanical stiffness of the ro-
bot’s joints, adapting its dynamics behavior to different tasks.
In addition to its variable compliant DOF, the SHERPA arm has 7 active DOF: 3 DOF in the
shoulder, 1 DOF in the elbow and 3 DOF in the wrist.
The arm’s shoulder is a 3 DOF joint, in which the second and third DOF are actuated by two
differentially coupled motors. The wrist is a 3-DOF joint, the last two of which are differentially
coupled as well. The elbow joint consists of two axes connected by an intermediate link, driven
by a single actuator. This allows the arm to fully fold into its transport configuration and to
enlarge its workspace. The SHERPA arm can be observed in Figure 2.1.

Figure 2.1: The SHERPA arm

2.1.1 Electronics

The SHERPA arm currently contains a total of eleven ELMO Whistle miniature digital servo
drives1 that locally control the actuators in position, velocity or current control. The ELMOs
use feedback from the incremental motor encoders. In addition to the incremental encoders,
every degree of freedom is equipped with 14-bit absolute magnetic encoders. The arm is also
equipped with mechanical limit switches that are directly connected to the ELMO drives.
The communication is realized by connecting the motor controllers via the standard industrial
CAN bus, while the encoders are connected through a separate SPI bus. The high-level control
is run on an Intel NUC running Ubuntu 14.04.

1Elmo motion control ltd. - http://www.elmomc.com/products/whistl-digita-servo-drive-main.htm

Robotics and Mechatronics Giuseppe Barbieri

4 Control architecture for docking UAVs with a 7-DOF manipulator

2.1.2 Gripper

The SHERPA arm is equipped with a custom gripper (E.Barrett et al., 2016) with integrated ac-
tuation and electronics. The gripper ensures grasping of the UAV by latching onto an interface
installed on the UAV as depicted in Figure 2.2. Its shape facilitates the grasping, which is easily
drivable into the interface, ensuring simple pick-up operation. The gripper actuator is con-
trolled with an Atmel ATmega328 microcontroller and Allegro A4953 motor driver.

Figure 2.2: Gripper latched into the interface

2.1.3 SHERPA box

The ground-rover is equipped with the SHERPA box - Figure 2.3. This box provides communic-
ations capabilities in order to inform when a UAV has been successfully docked. It is equipped
with a mechanism that autonomously replace the UAV’s battery.

Figure 2.3: Dummy Sherpa box

With reference to the figure, the two tongues sticking out from the box are used to correctly
position the drone on the box and guide it to its final docking position. For the scope of the
project a dummy box has been used, demonstrating the feasibility of the docking operation.

Giuseppe Barbieri University of Twente

CHAPTER 2. BACKGROUND AND ANALYSIS 5

2.2 Analysis

2.2.1 Current system control architecture

The current control architecture for the SHERPA arm is depicted in Figure 2.4 and provides
the implementation of the Joint Controllers and a State Observer which interface with the
hardware. The Joint Controller provides setpoints to the local drives placed on the arm every
sampling period, which track them in hard-real time. The State Observer retrieves position
feedback from the encoders on the arm.
The system works as follows: the user interfaces with the system via a fader panel in which
set-points can be sent to each joint controller placed on the arm.
The current implementation includes the option of sending setpoints through a ROS topic as
well, although is not used yet. A monitor is used for running a visualization of the arm in ROS
(Rviz2).

Figure 2.4: Current System Control Architecture

In the current state, all functionality are readily accessible through an interface for direct con-
trol. In order to increase the autonomy of the SHERPA arm, a higher-level control architecture
has to be integrated with the current implementation of the joint controllers.

2.2.2 Layered control structure

For the realization of robotic systems that are capable of planning and executing tasks, a multi-
level approach to robotic software architectures can be used. Hence, the overall control archi-
tecture can be designed by studying the layered controller structure proposed by (Broenink and
Hilderink, 2001) and depicted in Figure 2.5.

According to the the proposed controller structure, the control processes should be divided
over the range of hard and soft real-time. With reference to Figure 2.5, the embedded control
software part is structured in the following layers:

• Supervisory Control: typically includes control tasks such as task planning, vision al-
gorithms and environment mapping. It performs calculations in order to determine the
tasks to be sent to the sequence controller.

• Sequential Control: enables and feeds the loop controller with setpoints and necessary
parameters. It is implemented in soft real-time.

2ROS.org - Ros Visualizator http://wiki.ros.org/rviz

Robotics and Mechatronics Giuseppe Barbieri

6 Control architecture for docking UAVs with a 7-DOF manipulator

Figure 2.5: Control Architecture

• Loop control: contains the control algorithms for controlling the actuators. Those require
a setpoint update every sampling period, hence it is implemented as hard real-time.

• Safety Layer: is the layer that examines for safety issues on all control levels.

The autonomous control function required to be implemented for the SHERPA arm can be
mapped into the layered controller structure. This results in a model as depticted in Figure 2.6.

Figure 2.6: Control Architecture

Giuseppe Barbieri University of Twente

CHAPTER 2. BACKGROUND AND ANALYSIS 7

The Supervisory Control contains the block Task Planning and World Model. World Model is
the geometrical representation of the world, while Task Planning contains the sequence of op-
erations allowing the accomplishment of given missions.
The Sequential Control contains three blocks: the Robot State observer, the Path Planner and
the Joint Controllers. The Path Planner outputs the trajectories set-points and sends them to
the Joint Controllers together with information regarding the required control mode. The State
Observer provides feedback both to the Path Planner and the Joint Controllers given the ob-
tained measurements from the sensors. This layer is implemented in soft real-time as the ac-
quired results are useful even after the deadline is passed.
The Loop Control and its safety layer are hard-real time, as missed deadlines could results in
system failures or unstable control actions for the joints. In this level the Local Controllers is
the only functional block. The Local Controllers are in charge of tracking the set-points sent by
the Joint Controllers nodes implemented in ROS, using the current joint positions coming from
the motor’s incremental encoders.
The safety layer covers all the software layers since each one of them include their own safety
methods, preventing possible damages to the robot.

For the scope of this thesis the Task Planner is designed as the composition of four pre-defined
Elementary Actions that are run in sequence. In the future, nevertheless, it will be possible to
implement different more complicated tasks for the SHERPA arm.
The analyzed possible structure consists of several function blocks which are explained in fur-
ther details in Section 3.

2.3 Approach

As previously mentioned, our software is tested in the scenario where a small-scale UAV is
picked up and docked. When its battery is running out, the drone will land in proximity of
the robotic ground platform. It will then be possible to pick it up and dock it onto the Sherpa
box, which handles the battery replacement.
The whole procedure is accomplished in different phases. The first phase consists of reaching
the drone with the robotic arm and executing a grasping operation. Once the drone is grasped,
it has to be placed in proximity of the SHERPA box and subsequently docked.

With reference to the diagram depicted in Figure 2.6, the different phases are supervised and
executed by a Task Planner which provides target locations to the Path Planner. The Path Plan-
ner handles the execution of the task by commanding the Joint Controller and using the feed-
back that the Robot State obtains from the joint sensors. Therefore, the used methodology in
order to accomplish such described task should consists of:

• An inverse kinematic control algorithm that takes desired Cartesian poses as input and
output robot’s joint configurations.

• A motion planning algorithm which generates a stream of setpoints given a start and a
goal end-effector pose while obeying the arm’s kinematic constraints.

• An impedance controller to handle situations in which the arm has to interact with an
unknown environment. The impedance controller takes desired position and stiffness as
input and output torques setpoints for the joints.

Robotics and Mechatronics Giuseppe Barbieri

8 Control architecture for docking UAVs with a 7-DOF manipulator

2.3.1 Requirements

The requirements for the software development presented in this work are derived from the
previous subsections and are divided into technical and functional.

From a technical point of view, the requirements are the following:

• the system must be able to interface with the hardware described in the previous subsec-
tion.

• The system has to run on a NUC Intel mounted on the SHERPA rover running Ubuntu
14.04.

• The design of the software has to be scalable such that further autonomous behaviours
can be implemented in the future.

The requirements for the desired behaviour are the following:

• The arm needs to reach all the positions required for the specific mission, such that its
maneuverability is ensured in its workspace.

• The arm has to execute trajectories by avoiding collisions with obstacles present in the
environment.

• The arm needs to interact with the environment in a physically compliant, versatile and
robust way.

• Autonomous pick and dock routine is performed upon operator request.

• The robot can autonomously cancel the execution of commands if those result in dan-
gerous behaviour, or if the controllers are faulty.

• When there is the necessity to change the control mode during a task execution, it should
be autonomously handled with no need for the operator’s intervention.

Giuseppe Barbieri University of Twente

9

3 Control architecture for docking UAVs with a 7-DOF
Manipulator

Robotics and Mechatronics Giuseppe Barbieri

Control Architecture for Docking UAVs with a 7-DOF Manipulator

Giuseppe Barbieri, Mark Reiling, Eamon Barrett and Raffaella Carloni

Abstract— This paper presents the design and implementa-
tion of a control architecture to increase the autonomy of a
7-DOF manipulator mounted on a ground rover, used to grasp
and dock small-scale unmanned aerial vehicles (UAVs). The
overall goal of the controller is to combine efficiency of motion
planning algorithms in finding collision-free trajectories and
impedance controller to handle situations in which the arm
is in contact with unknown environments. The architecture
supervises the feasability of the given tasks in order to ensure
correct execution.

I. INTRODUCTION

The introduction of robotic platforms is seen as a promis-
ing solution in improving search and rescue activities in
hostile environments as proposed in the european project
named SHERPA. The project aims to provide a robotic team
which includes a mix of ground and aerial robotic platforms
to assist human rescuers [1].
During long rescue operations, small-scale UAVs, equipped
with cameras and other sensors, gather data on the field with
the goal of enlarging the rescuer’s operational environment.
However, due to their limited battery life, UAVs cannot
guarantee full autonomy during the entire mission. Therefore
they have to be autonomosly recharged on field.
For this purpose, a mobile ground-vehicle equipped with a
robotic arm behaves as a mobile recharging station for the
UAVs. The robotic arm is a 7-DOF lightweight compliant
manipulator which should grasp the UAVs and dock them
on the ground-rover.
Novel applications such as the tasks of the SHERPA arm
require interaction of the robot with unknown environments
introducing the necessity for safe control architectures.
Industrial manipulators are generally used in well-defined
environments where they are required to perform precise
tasks, accomplished with the use of classical control architec-
tures. The ability to operate in unknown environments would
considerably increase the applicability, but it also sets new
requirements on the robot control system and sensors.
For the realization of robotic systems that are capable of
planning and executing tasks, a multi-level approach to
robotic software architectures is well recognized and used
[2][3]. In some approaches such as [2], various feedback
information are sent to the low-level control layers to ensure
robust performance. In this case the path planner can be

This work has been funded by the European Commission’s Seventh
Framework Programme as part of the project SHERPA under grant no.
600958.

G. Barbieri, M. Reiling, E. Barrett and R. Carloni are with the Faculty
of Electrical Engineering, Mathematics and Computer Science, CTIT Insti-
tute, University of Twente, The Netherlands (e-mail: {g.barbieri,m.reiling,
e.barrett, r.carloni}@utwente.nl).

Fig. 1: Overview of the overall control architecture

considered as a time-based memory component for storing
predefined plans that lacks feedback from the environment
and cannot cope with unpredictable changes in the world
model. Other works, such as [4], proposes an event-based
approach directly integrated into the planner which can take
decisions based on sensory measurements. Studies such as
[5] propose the introduction of a high level task planner
which generates a sequential plan of operations based on
the feedback retrieved from sensors and is entrusted with
replanning in case unexpected events occur. Those subtasks
are then sent to a motion planner which generates the
necessary trajectories for the joints but lacks direct feedback.

This paper, introduces a control architecture that combines
the approaches described in [5] and in [4] and extends the
paradigm with the possibility of executing given subtasks
that requires the computation of plans with different
behaviours. The Task Planner manages the sequential
execution of a set of subtasks defined in Cartesian space
and sends them to the Path Planner which sequentially
translates them into commands for the joint controllers while
monitoring execution. Depending on the task the control
mode is autonomously switched and the proper commands
are generated. Moreover, the feasability of a specific subtask
is managed by the Task Planner which retrieves sensor’s
feedback during execution. If the environment changes
during the operation or a subtask has not been successful,
the model is updated and the remaining operations can be
stopped or replanned.
The overall architecture of the system is depicted in Figure 1
and includes: the Task Planner, the Path Planner, the Joint
Controller, the State Observer for feedback and interfaces
to the hardware.

The rest of the paper is organized as follows. First,
the general control architecture is analyzed, then the
implementation is detailed. Finally, the overall control
architecture is validated both in simulation environment and
experiments.

1

Fig. 2: Detailed scheme of the proposed Control Architecture

II. CONTROL ARCHITECTURE

This section describes in further detail the control
architecture depicted in Figure 1.
The architecture allows to execute the tasks of reaching,
grasping and docking a UAV by following point-to-point
motions in both Cartesian and Joint space.
The total system consists of five top-level blocks; the Task
Planner, the Path Planner, the Joint Controller, the State
Observer and the Robotic Arm.
It also contains the Plan Scene which consists of the
geometric representation of the environment and is obtained
by fusing the data from vision sensors and encoders.

A. Task Planner
The Task Planner handles the execution of a given task,

which is divided into subtasks referred to as Elementary
Actions. The modules that define the Task Planner are
detailed in Figure 2.
In general, the Action Manager receives updates on the world
from the Plan Scene and manages the sequential execution
of the Elementary Actions when a UAV is detected. By
monitoring the state of the robot and of the world during
execution, the Task Planner can be aware of changes in the
environmental’s conditions and decide whether to stop the
given mission.
The blocks that compose the Task Planner are described in
further detail in the next sections with the exception of the
Parameter Server.
The Parameter Server is a shared, multi-variate dictionary
which is used to store and retrieve parameters at runtime.
The Task Planner uses the Parameter Server to obtain config-
uration information including robot kinematics, joint limits,
planning variables and trajectory constraints.

B. Path Planner
The Path Planner computes the commands that are sent to

the Joint Controllers while monitoring execution. It is defined

as an interconnection of different modules that are detailed
in Figure 2.
In general, once the UAV is detected, the Task Planner
sequencially executes the proper subtasks by providing target
locations to the Cartesian controllers that constitute the Path
Planner, which computes the necessary commands for the
Joint Controller. These are then sent to the Joint Controller
through the Set-point Server which provides an interface to
ensure safe execution.
The blocks that compose the Path Planner and generate the
proper commands for the joint controllers are described in
further detail in the next sections.

C. Joint Controller

The Joint Controller tracks the trajectories generated by
the Path Planner and sends the corresponding set-points to
the hardware. It is composed of controllers for each arm’s
joint and accepts position, velocity or torque set-points. The
Joint Controller interfaces with the Path Planner through the
Set-point Server.

D. State observer

The State Observer shares feedback on the robot state
to the Path Planner. It estimates the internal state of the
robot’s joint such as position, velocity, acceleration, torque
and stiffness by retrieving sensor feedback.

E. Robotic Arm

The Robotic arm is a 7-DOF light weight manipulator,
referred to as SHERPA arm [6]. The arm is designed with
compliant elements which allows decoupling of the robot’s
structure and drives from rigid impacts. This makes the
arm extremely resilient against disturbances and shocks.
Moreover, the arm is equipped with two Variable Stiffness
Actuators (VSA)[7], allowing for the adjustment of the
mechanical stiffness of the robot’s joints.
The arm is equipped with a custom gripper [8] which ensures
grasping of the UAV by latching the interface installed on
the UAV.

2

III. TASK PLANNER

This section describes in detail the design choices taken
in implementing the Task Planner.

A. Elementary Actions

To realize pick-and-place functionality, the problem is
divided into subtasks referred to as Elementary Actions.
The Elementary Actions are run in sequence and are defined
in the following way:

• Idle: In this stage the arm is inactive. The UAV is not
detected within the arm’s workspace.

• Reaching: This phase starts when the UAV is localized
into the robot’s workspace. The UAV pose is provided to
the controller which computes the free-collision trajec-
tory to place the manipulator’s end-effector in proximity
of the object.

• Grasping: At this point, the manipulator’s end-effector
is controlled to safely reach the grasping position. De-
sired position and desired stiffness are provided to the
Path Planner which computes safe Cartesian trajectories
to handle interaction between the manipulator and the
UAV. Once the grasp position is reached, the gripper is
latched into the UAV interface.

• Placing: This action requires the planner to a compute
collision-free trajectory from the grasp pose to a loca-
tion in proximity of the docking position. In this phase,
the UAV is attached to the arm.

• Docking: In this phase the drone is safely docked on
the SHERPA box. The arm’s compliance is controlled
to handle the interaction between the UAV and the
SHERPA box. Once the UAV has been succesfully
docked, the gripper releases the UAV.

B. Action Manager

The Action Manager handles the execution of the state-
machine schematically represented in Figure 3. It keeps
track of the Elementary Actions being executed and it is
designed to facilitate the retrieval of feedback information
during task execution.
The Action Manager was designed in order to coordinate
separate systems that need to work sequentially.
It consists of a set of global variables, and it works as a
repository of messages that can be accessed by separate
processes such as the Elementary Actions.
This design choice was made because even though the
robot status is constantly received from the Plan Scene, it
is not necessary to continuously update it and notify the
Elementary Actions. In this way, the separate processes can
request the robot state in order to validate whether or not a
certain state has been achieved.

IV. PATH PLANNER

This section describes in detail the design choices taken
in implementing the path planner.

Fig. 3: Internal state machine diagram of the Action Manager. In blue:
actions executed in free-space motions. In yellow: actions that requires
constrained motions

A. Inverse Kinematics

The execution of the elementary actions requires direct
motions in the robot’s Cartesian workspace.
As previously mentioned, the arm used in this work is a 7-
DOF manipulator operating in a six dimensional workspace.
The forward kinematics of the serial manipulator can be
described in the form:

x = f(q)

where x ∈ R6 denotes the position and orientation of
the end-effector in operational space, q ∈ R7 denotes the
position of the joints, and f(q) the forward kinematic model
of the robot.
The inverse kinematic is then described as:

q = f−1(x)

Finding a closed-form solution to the inverse kinematic’s
problem poses more than a challenge for redundant manip-
ulators since infinite solutions may exist.
For direct workspace motions, Jacobian inverse-kinematics
is a well studied approach [9]. The manipulator Jacobian
is used to map desired cartesian motions to joint-level
commands for the robot.
The typical inverse kinematic method is a closed-loop
scheme in which the desired pose xd is taken as a reference
and compared to the actual state xe. The error e is then used
to compute the joint positions to add to the current robot’s
state.
The selection of the kinematic controller was based on
robustness when dealing with joint limits, convergence issues
and singularities. Based on these considerations, the damped
least squares method was proposed among the control based
kinematic solvers [9].
This method consists of finding the solution ∆q as the value
that minimizes:

||J∆q− e||2 + λ||∆q|| (1)

with λ ∈ R being the non-zero damping constant. As
described in [10], this results in:

∆q = (JTJ + λ2I)−1JT e (2)

It can be seen that when λ = 0, equation (2) reduces to
the classic pseudo-inverse scheme described by ∆q = J†e.
In order show robustness near singularities, solution (2) was
analyzed with the method of singular value decomposition.
According to [9], this results in:

3

Fig. 4: Visualization in Rviz of kinematic solver benchmarking. Test run on
1000 poses each with 6 end-effector orientations

J =

r∑

i=1

σ2
i + λ2

σi
uivTi (3)

as a result the pseudo-inverse jacobian can be written as:

J† =
r∑

i=1

σi
σ2
i + λ2

viuT
i (4)

This expression shows that the introduction of a damping
constant allows the damping of the inverse kinematic solution
near singularities. This method implies considerations on the
value of the damping factor. For small λ, it behaves as
the ordinary pseudo-inverse since σ2

i >> λ2, resulting in
accurate solutions but low robustness. For large values of λ,
we obtain σi → 0, hence the limits tends to 0 instead of
infinite. However this results in low tracking accuracy.

In this context, homogeneous transformations are used
to calculate the Cartesian coordinates for the end-effector
position. Those are defined in the arm’s base frame of
reference in which the direct kinematics of the manipulator
are expressed. The UAV location is then defined as the matrix
that describes the transformation between the base and the
object frame: Hb

o . This can be expressed as a combination
of the current end-effector pose and the object pose in the
end-effector frame Hb

o = Hb
eH

e
o . After the object pose has

been defined, a translation is computed in order to place the
end-effector frame on top of the UAV. The quality of the used
solution was tested in comparison with a standard pseudo-
inverse method and the results are reported in Table I. Those
results allowed to indirectly analyze the reachable workspace
of the arm. Figure 4 shows that the chosen kinematic solver
allows for the reach of several positions in which the UAV
could be located for different end-effector orientations.

TABLE I: Behaviour of studied methods concerned with joint limits for 6000
samples with JP classical pseudo-inverse control scheme and JD damped
least square scheme

Method solved (%) time solution (ms)
JP 75.71 1.46
JD 93.13 0.91

Fig. 5: Inizialization of RRT* Fig. 6: The goal is included in the
tree concluding the search

B. Motion Plannner

Consider W ∈ R6 as the space in which the robot and
obstacles are geometrically described, and C ∈ R7 as the
set of all the possible robot’s configurations.
The motion planning block samples the configuration space
and approximates its connectivity with a graph structure.
Each sample is then checked in order to compute the free
configuration space, referred to as Cfree. This represents the
subset of robot’s configurations that are not in a self-collision
or in contact with environmental obstacles.
With xd ∈ W being the pose of the UAV in the Cartesian
workspace, and xe ∈W the current pose of the robot’s end-
effector, the final end-effector pose of the arm can be found
by using the kinematic controller previously described.
Once the inverse kinematic solution is found by taking into
account joint limits, the sample is added into the motion
planning path. The collision avoidance algorithm ensures that
the computed states are enclosed in Cfree by returning a list
of contact data that identify collision points for the selected
sample. This is done by representing volumes through dy-
namic boxes which are recomputed each time the robot’s
state or the environment change.
At this point, the motion planning block proceeds in finding a
suitable collision-free path, p(xe, xd), between start and goal
state by using the sampling-based motion planning algorithm
RRT*[11]. This algorithm creates a tree structure of Cfree,
rooted in the start configuration of the robot as shown in
Figure 5. The tree is then heuristically expanded by the
planner toward the goal configuration, choosing the resulting
feasible path that minimizes a given cost function c(x), such
as the length of the path. When the goal configuration is
reached, the search can be considered complete as depicted
in Figure 6.

The solution path is generated as a function [0, 1] → C,
and does not prescribe how this path should be followed
by the controllers. Therefore, a post-processing routine is
applied to represent the path as a time parametrized function
[0, T]→ C, where T is the planning horizon.
Finally, the trajectory is generated. The trajectory consists
of a set of waypoints. A waypoint is a joint configuration,
described by the tuple (p, v, a, t) where p ∈ R7 are the
positions, v ∈ R7 the velocities and a ∈ R7 the accelerations
at time t.
Since the selected algorithm is probabilistically complete

4

[11], in case a target position is unreachable or an inverse
kinematic solution is not enclosed in Cfree, the motion
planning algorithm will conclude that it is not possible to find
a solution to the motion planning problem. In this scenario,
the planner reports that the target is unreachable.

C. Impedance Controller

In order to handle interaction with unknown environments,
a simple impedance controller has been integrated into the
Path Planner.
Impedance control provides a common control approach to
cope with contact between robotic arms and environment, as
well as to maintain interaction forces within some desired
level [12]. The idea is to describe the desired stiffness
of the end-effector in Cartesian space by enforcing the
relation between the desired force response F ∈ R6 and
the deviation ∆x from the desired position. This is achieved
by establishing a mass-damper-spring relationship between
the Cartesian position xd and the Cartesian force F such as:

K∆x+D∆ẋ+M∆ ˙̇x = F (5)

where M,D and K are diagonal and positive definite ma-
trices representing desired inertia, damping and stiffness of
the end-effector respectively. The desired inertia is defined
as the intrinsic intertia of the robot in its current state. In
this way, the control objective described in Equation 5 can
be achieved without the need of force-feedback loop with
the following control:

K∆x+D∆ẋ = F (6)

When speed is essential an high stiffness K is desired,
while a small K is advisable when interaction forces should
be compensated. The current end-effector position x = f(q)
is calculated with the use of forward kinematics. Adopting
the transposed manipulator Jacobian JT (q), the Cartesian
force F is transformed into desired joint torques:

F = K∆x+D∆ẋ→ τj = JT (q)F (7)

The joint torque controller, referred to as T , generates the
corresponding motor torque commands τm = Tτj .
The commanded torques are combined with a feedforward
command τf containing gravity and friction compensations
torques.
The Impedance Controller receives from the Task Planner
the desired Cartesian trajectories defined in end-effector
frame and the desired Cartesian stiffnesses for executing
grasp and dock actions. The Impedance Controller contains
a server that handles the Cartesian trajectories sent by the
Task Planner and ensure proper tracking. The set-points are
then translated into proper torque commands by computing
Inverse Dynamics as described in (7).
In this context, the object position is described with respect to
the end-effector frame by using the homogenous matrix He

o .
This allows for the simplification of calculation as, once the
drone is reached or placed, movements along one of the end-
effector reference frame’s axis can be executed, as depicted

Fig. 7: Grasp Fig. 8: Dock

in Figure 7 and 8.
The server handles the conversion of the given trajectories
from end-effector reference frame to the arm base frame.

D. Set-point Server

The Set-point Server provides an interface to ensure cor-
rect trajectory execution.
With reference to Figure 2, it is composed of two blocks:
Gripper Server and Joint Server.
The Gripper Server handles trajectories sent to the gripper,
while the Joint Server manages joint trajectories. The Gripper
Server receives pre-defined goal set-points which command
grasp and release operations.
The Joint Server receives the entire joint trajectory output
necessary to move the arm from its initial pose to the
desired pose. Subsequently, it publishes the trajectory to the
controller.
The trajectory tracking is ensured by mantaining a timer
which guarantees that the duration value associated with each
point of the trajectory is reached by the controller.
The server also enforces constraints on the trajectory, such as
position and timing constraints. It allows to abort trajectories
in case constraints are violated or whenever the controller
suddenly stops responding.

V. IMPLEMENTATION

This section covers the implementation of the design
described in Section 2.

A. Software Implementation

The proposed architecture was developed within the
ROS-based MoveIt! framework [13][14], which provides a
platform for developing robotic applications and incorporates
tools for motion planning, manipulation and control.
The motion planning algorithm and the kinematic solver
have been integrated as plugins in the MoveIt! framework.
The central part of the framework is the move group node.
This node is used as an integrator which pulls all the plugins
present in the MoveIt! environment. The move group
node is also in charge of creating and maintaining the
geometrical model of the environment referred to as Plan
Scene. In this model it is possible to explicitly include
environmental obstacles or other objects within the robot
workspace via corrensponding topics (CollisionObject or

5

PlanningSceneDiff). In some cases, such as grasping or
docking, collision between the manipulator and the object
is intended. For this purpose, it is possible to modify the
Allowed Collision Matrix within the Plan Scene in which
objects can be dynamically included or excluded.
To ensure time parametrization of the computed paths
MoveIt! offers an iterative hyperbolic time parameterization
algorithm which translate the planned path into a trajectory
for the controllers, while respecting imposed velocity and
acceleration limits. The kinematic description of the robot
is defined in the URDF format [15], a markup language
designed to describe serial-chain robots.

The Set-point Server is implemented by using the
actionlib stack, which provides tools to create client-server
models to interface with preemptable tasks in ROS. The
client part is in charge of sending goals or cancel requests.
The server handles the goal execution, and provides the
client with status of the goals present in the system,
feedback on the goal execution and result about completion
of a goal.
This model is also used in the implementation of the
Impedance Controller. The client provides to the controller
Cartesian trajectories while the server controls that the
right torque commands are sent and executed by the Joint
Controller.
In the servers, watchdog timers are implemented in order
to detect faults and abort a commanded trajectory in case
something goes wrong.

The sequential functionality of the Action Manager has
been implemented by using ROS services. This is based on
the need of getting the robot state information at specific
times during execution. This communication pattern is done
via a service, which is defined by a pair of messages: one
for the request and one for the reply. A providing ROS node
offers a service under a string name, and the client then
calls the service by sending the request message and waiting
for the reply. The Action Manager answers by sending the
current state of the action being executed. In this way,
each action can be executed only once the previous one
was completed in the right way. Custom service messages
were implemented to represent the status of a certain action.
Figure 9 shows the communication diagram between the
client classes and the Action Manager.

Fig. 9: Communication between elementary actions and Action manager

B. Planning algorithm and Cartesian controllers

The motion planning algorithm is based on the Open Mo-
tion Planning Library [16], and the main pipeline architecture
is inspired by MoveIt!, however cartesian constraint and state
machine for sequential tasks were added. OMPL is an open

Fig. 10: Communication between ROS and hardware

source motion planning library that contains most of the
state of the art sample based algorithms such as RRT [17],
PRM [18]. For collision detection, Flexible Collision Library
(FCL) [19] has been used. This library offers different types
of proximity queries on geometric models composed of
triangles.
Kinematics and dynamics library (KDL) [20] is a library
for computing forward and inverse kinematic queries with
numerical solution. It was used to implement and integrate
the aforementioned schemes for kinematic and Cartesian
Impedance Controller.

C. Communication between hardware and ROS

The communication between ROS and the hardware is
realized by the implementation of three ROS nodes that
handle the information flowing to the drives and converging
from the encoders.
The connections are schematically represented in Figure
10. The actuators on the arm are controlled locally with
ELMO Whistle motor drives [21] that use feedback
from incremental motor encoders. The motor controllers
are connected via standard industrial Controller Area
Network (CAN) bus. In addition to the incremental motor
encoders, every DOF is equipped with 14-bit absolute
magnetic encoder. These are connected via a separate Serial
Peripheral Interface (SPI) bus. The gripper is controlled
through an Arduino Nano[22], which communicates with
ROS through Rosserial package which is a protocol for
wrapping standard ROS serialized messages. The ROS side
works as a serial server while a client library is installed
on the Arduino. Parameters relative to the drives, such
as transmission ratios and calibration of the encoders, are
stored in configuration files and initialized at initialization.

VI. EXPERIMENTS

This section presents some preliminary experiments. The
experiments show that the performance of the task mission
described throughout this paper is indeed achieved by the
designed controller.
In the experiments, the task given to the robotic arm was
to reach, grasp, place and dock the UAV. The UAV has
been placed in a pre-defined Cartesian position, namely
x = 0.6 m, y = 0.0 m and z = 0.0 m. For now, the

6

impedance controller has only been tested in simulation as
no appropriate dynamic compensation has been implemented
in the State Observer. For contact operations, a Cartesian
stiffness has been set manually to safely execute grasping
and docking.
Vision sensors are not yet implemented in the setup, hence
the location of the UAV is assumed to be known.

A. Hardware Setup

The SHERPA arm mounted on the SHERPA rover is used
for the experiments.
The control architecture runs on an Intel NUC running
Ubuntu 14.04 which is placed on the rover.
An Optitrack Motion-Capture System [23] with 10 cameras
is used to get absolute state feedback on the arm. The data is
streamed from a dedicated computer over network towards
another Ubuntu computer. Visual feedback is provided via a
monitor connected to the NUC running Rviz1.

B. Experiment results

During the experiments the controller ran at a rate of 30
Hz. The state of the robot was updated at a rate of 100 Hz.
Note that the state observer was not complete during the
execution of those experiments, hence deviations from
the desired trajectory are due to the fact that no dynamic
compensation is integrated in the arm.
Figure 11 shows a successfull trial where the arm completes
the whole sequence. Starting from the idle state, it
reaches the UAV (1) and proceed with the grasping (2).
When the grasping has been achieved the arm proceeds in
placing the UAV in proximity of the box (3) and docks it (4).

0.4

0.20.1

0.2

0 0

0.3

Trajectory Optitrack

Y

0.4

0.2 -0.2

0.5

0.6

Z

X

0.4 -0.4

0.7

0.8

0.9

-0.60.6

1

-0.80.8

2

3
4

1

X
Y

Z

Fig. 11: The end-effector trajectory during the docking maneuver. The arm
moves from the transport to the reach position, where it grasps the UAV.
Subsequently the UAV is placed in proximity of the SHERPA box, where
it will be docked.

1Ros Visualizator

Figure 12 shows the executed trajectory in comparison
with the desired trajectories computed by the Path Planner.
These plots show, respectively, the x, y, z vs time.
All plots initiate at the moment in which a new task request
is sent by the user. As can be seen in the plots, the path is
generated after a certain amount of time (0.18s).
A significant amount of deviation error between the desired
and measured positions is visible in the plots. This can
be interpreted as the absence of dynamic compensation in
the arm, imprecision of measurements with the OptiTrack
and rough calibration of the position sensors. However, it
is observable that the arm follows the computed path in all
stages.
During docking the deviation from the desired trajectory
increases since disturbing factors such as gravity and play
of the shoulder further affects the arm’s performances.
In order to allow execution of the complete sequence, the
constraint limits were relaxed to 0.25 m.

20 40 60 80
time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
x vs time

desired
optitrack

1 32
4

20 40 60 80
time

0

0.2

0.4

0.6

0.8

y

y vs time

desired
optitrack

1 2 3 4

10 20 30 40 50 60 70 80
time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

z

z vs time

desired
optitrack

1 2 3 4

Fig. 12: Result plots of one of the trials from the experiment in compliance
with the 3D plot in Figure 11

In this context repeatability and precision of the computed
paths in reaching the UAV has been measured.
The mean values and standard deviations are listed in Table
II .

TABLE II: Measured precision of position and orientation of the end-
effector for 10 reaching trials

x(m) y(m) z(m) r(rad) p(rad) y(rad)
x̄ 0.5176 −1.018 0.0344 0.586 0.0936 −0.0231
σ 0.0104 0.0153 0.0058 0.0053 0.0315 0.012

From the values listed in Table II it can be seen that the
maximum deviation from the mean value is about 1.5 cm in
the x-direction, 1 cm in the y-direction and 0.5 cm in the

7

z-direction.
Regarding orientation, the max deviation is about 0.03 rad.
From the mean values of the orientation, it can be seen that
the arm indeed reaches the desired orientation (roll = 0.57
rad, pitch = 0 rad, yaw = 0 rad). This results shows that
the computed path is reliable and allows the arm to reach
the desired position each time.

More experiments were run to show behaviours of the arm
in presence of obstacles between the start and end pose.
The end-effector trajectory performed by the arm, and mea-
sured by the OptiTrack system, is shown in Figure 13. In this
experiment, a box of dimension x = 0.118 m, y = 0.130 m
and z = 0.578 m is inserted between the arm’s initial state
and the UAV location. The plot shows two trials. Reaching
and grasping have been executed with and without the box.
The plot shows that the computed path in presence of the
obstacle allows the arm to smoothly avoid the box.

0.2

0.3

0.5

0.4

0.4

0.5

0.6

0.3

0.7

Z

0.2

Y

0.8

0.1

0.9

1

0

1.1

-0.1

Trajectory Optitrack

0.65

X

0.60.55-0.2 0.50.45

with obstacle
free-space

Fig. 13: Obstacle avoidance plot. In red the end-effector trajectory without
obstacle, in blue the end-effector trajectory computed once the obstacle has
been introduced in the workspace

VII. CONCLUSION AND FUTURE WORKS

This paper has presented a control architecture for docking
UAVs with a robotic manipulator. The advantage of the pro-
posed method lies in supplying feedback information about
the world model to the task level of the robot software which
can evaluate unexpected changes. Moreover, the trajectory
execution is supervised by the Path Planner through the
Set-point Server. This reduces the cognitive workload of
the higher-level Task Planner and offers a framework that
facilitates execution of more complex state-machines. The
approach was implemented for our specific scenario and
important aspects of the implementation were discussed.
An RRT* motion planning algorithm in combination with a
kinematic controller was used to generate collision-free paths
for executing free-space motions, while a simple Impedance
Controller was integrated to handle interaction with unknown
environments. The advantage of this approach lies in the

possibility of planning paths for the controllers with different
behaviours.
Experiments showed the execution of the given task also
in presence of obstacles. Future works will focus on the
integration of vision sensors and the implementation of
proper dynamic compensation, in order to reduce the amount
of error between the measured and desired trajectories.

REFERENCES

[1] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart,
S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Do-
herty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, and
N. Tomatis, “The SHERPA project: Smart collaboration between
humans and ground-aerial robots for improving rescuing activities
in alpine environments,” in Proceedings of the IEEE International
Symposium on Safety, Security, and Rescue Robotics, 2012, pp. 1–4.

[2] M.Brady, J. Hollerbach, T. Johnson, T. Lozano-Perez, and M.T.Mason,
Robot Motion: Planning and Control. MIT Press, 1986.

[3] J. F. Broenink and G. H. Hilderink, “A structured approach to
embedded control systems implementation,” in Proceedings of the
2001 IEEE International Conference on Control Applications, M. W.
Spong, D. W. Repperger, and J. M. I. Zannatha, Eds. IEEE,
2001, pp. 761–766. [Online]. Available: http://www.ce.utwente.nl/
rtweb/publications/2001/pdf-files/042R2001.pdf

[4] N.Xi, T.Tarn, and A.Bejczy, “Intellingent planning and control for mul-
tirobot coordination: An event-based approach,” in IEEE Transaction
on Robotics and Automation, vol. 12, no. 3, June 1996.

[5] S. Yildirim and T.Tunali, “A new methodology for dealing with
uncertainty in robotic tasks,” in International Symposyum on Computer
and Information Sciences, Bornova, Turkey, 1999.

[6] E. Barrett, M.Realing, G.Barbieri, M.Fumagalli, and R.Carloni,
“Mechatronic design of the sherpa robotic arm,” University of Twente,
2016.

[7] B. Vanderborgh, A. Albu-Schaffer, A.Bicchi, E.Burdet,
D.G.Caldwell, R.Carloni, M.G.Catalano, O.Eiberger, W.Friedl,
G.Ganesh, M.Garabini, M.Grebenstein, G.Grioli, S.Haddanin,
H.Hoppner, A.Jafari, M.Laffranchi, D.Lefeber, F.Petit, S.Stramigioli,
N.G.Tsagarakis, M.V.Damme, R.V.Ham, L.C.Visser, and S.Wolf,
“Variable impedance actuators: A review,” in Robotics and
Autonomous Systems, vol. 61, no. 12, 2013, pp. 1601–1614.

[8] E.Barrett, M.Fumagalli, and R.Carloni, “The sherpa gripper: Grasp-
ing of small-scale uavs,” in Proceedings of the IEEE International
Symposium on Safety, Security and Rescue Robotics, 2016.

[9] S. R. Buss, “Introduction to inverse kinematics with jacobian trans-
pose, pseudoinverse and damped least squares methods,” IEEE Journal
of Robotics and Automation, vol. 17, no. 1-19, p. 16, 2004.

[10] B.Siciliano, L.Sciavicco, L.Villani, and G.Oriolo, Robotics, Modelling,
Planning and Control. Springer, 2009.

[11] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[12] N.Hogan, “Impedance control: An approach to manipulation,” in
Journal of Dynamic Systems, Measurement and Control, 1985, pp.
8–15.

[13] “Ros: an open-source robot operating system,” http:www.ros.org/.
[14] “Moveit,” http://moveit.ros.org/.
[15] “Urdf, unified robot description format,” http://wiki.ros.org/urdf.
[16] “Ompl,” http://ompl.kavrakilab.org/.
[17] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge

University Press, 2006.
[18] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[19] “Fcl, flexible collision library,” ”https://flexible-collision-
library.github.io/”.

[20] “Kdl, kinematics and dynamics lybrary,” http://www.orocos.org/kdl.
[21] “Elmo motion control ltd.” http:www.elmomc.com/products/

whistle-digital-servo-drive-main.htm.
[22] “Arduino,” http://www.arduino.cc.
[23] “Optitrack, natural point,” http://www.optitrack.com.

8

18 Control architecture for docking UAVs with a 7-DOF manipulator

4 Algorithms and Software Implementation

In the next sections, design choices and explanations of used algorithms are given. The specific
implementation has been presented in the paper, but some details were omitted due to limited
space.

4.1 Overview

The overview of the control architecture, which was previously presented in the paper in Sec-
tion 3, is reported again in Figure 4.1. The software architecture is mainly composed of the
Task Planner which handle the sequantial execution of the the Elementary Actions and the
Path Planner which generates the appropriate set-points for the joint controllers. The Joint
Controller communicates with the Robotic Arm through CAN bus while the sensors are inter-
faced through separate SPI bus.

Figure 4.1: Control Architecture

The motion planning algorithm consist of a sampling-based algorithm, which finds collision-
free path in the environment. The Set-point Server sends the computed trajectories to the
Joint Controller for execution. In the Joint Controller a simple Proportional-Integral feedback
controller is implemented.
The Impedance Controller is used to execute constrained Cartesian trajectories and to handle
operations in which contact between the arm and the environment is necessary.
The State Obsterver output feedback on the robot’s state by reporting measurements from the
sensors on the arm. The feedback can be visualize through the ROS visualizator Rviz.
Inputs regarding the target locations and the control modes are handled by the Action Manager
which manages the execution of the actions necessary to complete the planned task.
The geometrical representation of the environment is handled by the Plan Scene, while para-
meters such as constraints and robot model are stored and retrieved at run-time from the
Parameter Server.

Giuseppe Barbieri University of Twente

CHAPTER 4. ALGORITHMS AND SOFTWARE IMPLEMENTATION 19

4.2 Motion Planning

In order to solve the complex motion planning problem, different approaches have been pro-
posed (LaValle, 2006), such as search-based algorithms, potential functions, combinatorial al-
gorithms or sampling-based methods. Out of the four methods, sampling-based planners are
the most suitable to practically solve complex problems in high-dimensional spaces.
The fundamental idea of this class of algorithms is to approximate the connectivity of the con-
figuration space with a graph structure. The configuration space is then analyzed and sampled
in different ways and the selected samples between start and goal state are connected via a
collision-free path. These methods are faster and computationally more efficient in high-
dimensional planning problems than other motion planning algorithms since they operate
within a finite set of configurations in the state space, instead of inspecting the entire con-
tinuous configuration space.

4.3 Sampling-Based Motion Planning algorithms

Nowadays, the most used sampling-based planners are: Probabilistic Roadmaps (PRM) (Kav-
raki et al., 1996) and Rapidly Exploring Random Trees (RRT) (LaValle, 2006).
Even though the idea of connecting points sampled randomly from the configuration space is
common to both approaches, these two algorithms differ in the way they construct a graph
connecting these samples.
The PRM is a multiple-query method that builds a roadmap which represents a set of collision-
free trajectories, and answers the queries by reporting the one connecting start and goal state.
This algorithm has been reported to perform well in high-dimensional configuration space
(Kavraki et al., 1996). Moreover, the PRM algorithm is probabilistically complete, hence the
probability of failure decays to zero exponentially with the number of samples used to con-
struct the roadmap.
However, our planning problem does not require multiple queries and the environment is not
known a priori. Moreover, computing a roadmap a priori may be computationally challenging
or even infeasible.
The RRT is a single-query method that avoids the necessity to set the number of samples a pri-
ori. RRT has been showed to be probabilistically complete with an exponential rate of decay
for the probability of failure (LaValle, 2006).
As introduced in Section 3, the motion plannig algorithm used in our architecture is the RRT*
which is an optimal version of the RRT sampling-based algorithm.
This section introduces the theory regarding the basic RRT technique , together with its optimal
variation. Collision detection approach will then be discussed.

4.3.1 Rapidly-Exploring Random Trees

The RRT technique was introduced by LaValle in 1998. This is a non-deterministic, single-query
planning algorithm which offers a method to quickly search non-convex, high-dimensional
spaces with kinematic constraints.

Algorithm description

First we introduce some definitions. Let C ∈ R7 be the configuration space of the manipulator
and W ∈ R6 the workspace in which the arm and the geometrical environment are described.
C f r ee is defined as a subset of C which contains all the configurations in which the robot is not
in collision. Furthermore, qst ar t and qg oal denote, respectively, the start and goal configura-
tions of the robot. The path between start and goal state is denoted by p(qst ar t , qg oal).
The RRT algorithm generates the collision-free path between start and goal configuration by
creating a tree structure of the free space. The tree outsets from the start configuration qst ar t

of the robot, and is heuristically expanded by the planner towards the goal state (Figure 4.2a).

Robotics and Mechatronics Giuseppe Barbieri

20 Control architecture for docking UAVs with a 7-DOF manipulator

One of the advantages of this method is that the configuration space is sampled simultaneously
with the construction of the configuration tree.
The basic RRT algorithm working principle is given in Figure 4.3.

(a) (b) (c)

Figure 4.2: Working principle of the RRT algorithm

In each iteration a random sample qr and is chosen from the configuration space C . At this
point, an heuristic function is used to search for the nearest vertex qnear in the tree to the given
sample qr and .
The algorithm moves toward the goal configuration qg oal with some fixed incremental distance
ε, starting from qnear as depicted in Figure 4.2b. At this point, if qnear is reachable in a single
step, qr and is directly added to the tree as qnew and its edge is checked for collision. If the pro-
posed new edge does not lie in C f r ee then the configuration is rejected from the RRT.
The algorithm will continue performing this operation until the distance between the node
qnew and qg oal is less then a defined distance dg oal or in case the maximum number of itera-
tions Imax has been executed. In this case the search can be considered complete (Figure 4.2c)
and the trajectory is published.

Optimal RRT (RRT*)

The RRT planner belongs to the family of non-optimal planners. There exists two paradigms to
compute near-optimal solutions using RRT: construct trees considering some optimal criteria
or improve the plans by applying post-optimization.
The RRT* (S.Karam and E.Frazzoli, 2011) belongs to the first category, and its implementation
closely resembles that of the standard RRT described in the previous subsection. However,
the optimal motion planning problem imposes the additional requirement that the resulting
feasible path minimizes a given cost function c(x), such as the length of the path.
The method starts by initializing an empty tree and a node corresponding to the initial state.
Like the RRT, the RRT* incrementally builds the tree by sampling a random state qr and from the
free configuration space C f r ee . At this point, the RRT* rather than selecting the nearest node
qnear as parent, will consider all the nodes in a defined neighboorhood and will evaluate the
cost of choosing each as the parent as depicted in Figure 4.3a and Figure 4.3b.
This process calculates the total cost as the additive combination of the cost associated with
reaching the potential new parent nodes qn1, qn2 or qn3 and the cost of the entire trajectory to
qnew . Among those, the node that yields the lowest cost will be selected and will be added to
the tree.

Giuseppe Barbieri University of Twente

CHAPTER 4. ALGORITHMS AND SOFTWARE IMPLEMENTATION 21

(a) (b)

Figure 4.3: Working principle of the RRT* algorithm

Collision Detection

Collision detection is a critical component of sampling-based motion planning techniques.
Once the algorithm computes the samples, it has to be determined wheter they lie in the free
configuration space or not. The collision can be identified either as a self-collision or as an en-
vironmental collision.
In this project the flexible collision library (FLC1) was used. This algorithm returns a list of con-
tact data that identify collision points for a new random sample chosen by the motion planning
algorithm.
In this method, dynamic axis aligned bounding boxes are used. This means that volumes are
represented trough dynamic boxes which are recomputed each time the robot’s state or the en-
vironment changes.
Collision checking was tuned by modification of the Allowed Collision Matrix in order to enable
collisions with objects when contact is required by the task.

1Flexible Collision Library - https://github.com/flexible-collision-library/fcl

Robotics and Mechatronics Giuseppe Barbieri

22 Control architecture for docking UAVs with a 7-DOF manipulator

4.4 Kinematic Solver

As introduced in Section 3, control methods are applied to solve inverse kinematics problems.
The damped least square method with the singular value decomposition was used in this pro-
ject. Our choice was based on the robustness of the method in handling joint limits, conver-
gence issues and singularities.
However, other solutions has been explored during this assignment. One of them was the Jac-
obian Transpose algorithm, which is very interesting as it avoids matrix inversion. This method
was first introduced for inverse kinematics by (Wolovich and H.Elliot, 1984).

Jacobian Transpose Method

The control scheme for the Jacobian Transpose method is showed in Figure 4.4.

Figure 4.4: Jacobian transpose control scheme (B.Siciliano et al., 2009)

This method uses the transpose Jacobian instead of its inverse. This result in very fast compu-
tational time and avoidance of unstable behaviour in the neighborhoods of singularities.
With reference to the scheme depicted in Figure 4.4 the following control rule is defined:

∆q = K J T
a e (4.1)

where J T
a is now the transpose of the analytic jacobian of the manipulator.

In order to ensure error convergence to zero, when choosing K , literature (B.Siciliano et al.,
2009)(Buss, 2009) recommends to take the value that makes the norm of the change in the task
space equal to the norm of the error.
As described in (Buss, 2009), this results in:

K = < J J T e,e >
< J J T e, J J T e > (4.2)

As already introduced, this solution is computationally very fast, altought it may require more
steps than other methods since the Jacobian values are smaller. Moreover, by not being a
least-squares solution it can derive in chattering.
The algorithm was first implemented in Matlab to study its feasability.
The simulation was run for a 7-DOF manipulator executing reach motion with joint limits set
at 1.57 rad. The results are reported in Figure 4.5.

It can be seen that by using this method, joint limits are easily surpassed. This is due to the fact
that the algorithm works under the crucial assumption that any commanded joint velocity is
achievable (Wolovich and H.Elliot, 1984).
This assumption is broken in presence of unfeasible states in the configuration space such as
joint limits and environmental obstacles.
The integration of this algorithm in our architecture resulted in very poor performances. Even

Giuseppe Barbieri University of Twente

CHAPTER 4. ALGORITHMS AND SOFTWARE IMPLEMENTATION 23

0
0.5

0

0.1

0.2

0.2

yx

z

00.4

0.3

0.6

0.4

0.8

0.5

-0.5

0 200 400 600 800 1000

iterations

-3

-2

-1

0

1

2

3

4

ra
di

an
s

JT, joint positions

Figure 4.5: Behaviour of the Jacobian Transpose method when the objective vulnerate joint limits

when a solution to the inverse kinematic problem was found, it lied outside the free configura-
tion space C f r ee , causing the motion planning algorithm to fail in finding a valid path between
start and goal state.

Moving towards the use of Jacobian Transpose algorithm
The Jacobian transpose algorithm results very attractive from a computational point of view.
Indeed, it requires only forward kinematics to be computed.
However, as already described, the problem of introducing joint limits and collision avoidance
has to be solved.
One solution to this problem could be to assign the maximum or minimum value for the joint
if the limit is surpassed. Nevertheless this will not work well, as blocking a joint will result in
blocking other joints movements.
Another solution is proposed in (L.Sciavicco, 1988), which consists in incorporating constraints
derived from joint limits and obstacles, on the condition of properly enlarging the task space
vector. It is possible to define a set of variables that describe the configuration of the manipu-
lator with respect to the obstacle and the joint limits. In this way, it will be possible to describe
those variables in terms of joint variables obtaining augmented direct kinematics:

y = f ′(q) (4.3)

where y is an ((m + v)x1) vector completely defined in task space, with 0 ≤ v ≤ n −m. Once
the forward kinematic is solved, it will also be possible to solve the inverse kinematic problem
under both constraints.
Hence, a solution can be found by enlarging the task space and including obstacle avoidance
contraints and joint limits. Anyway this approach will present some difficulties regarding ac-
tivation and deactivation of the constraints (L.Sciavicco, 1988).

Robotics and Mechatronics Giuseppe Barbieri

24 Control architecture for docking UAVs with a 7-DOF manipulator

4.5 Software Implementation

4.5.1 Executing Elementary Actions

The main goal of this project is to design and implement a control architecture that autonom-
ously manages the execution of different elementary actions to achieve the finalization of a
pre-defined mission. Figure 4.6 shows the interaction of the designed classes in a normal flow
of executing elementary actions clarifying the behaviour of the Task Planner.
In the end, it is possible to see two outcome states, namely Succeded and Aborted.

Figure 4.6: Diagram showing execution of Elementary Actions

Giuseppe Barbieri University of Twente

CHAPTER 4. ALGORITHMS AND SOFTWARE IMPLEMENTATION 25

Following the diagram flow, the starting sequence depends on whether the UAV has been loc-
alized or not by the vision sensors. In our case, the UAV is assumed to be localized every time,
since no vision system has been implemented yet.
Once the UAV is detected in the arm’s workspace the Plan Scene is updated and the new world
representation is published to the corresponding topic /Planning_Scene. At this point, the
elementary actions are initialized. The first action is always Reach which sends a request to the
Action Manager to retrieve the current state of the robot. Once the state is updated the Ele-
mentary Action can be executed and the location of the UAV is sent to the blocks of the Path
Planner to generate the task execution orders for the Joint Controller.
The Set-point Server, controls the execution by retrieving feedback from the State Observer. If
the execution failed, the goal will be canceled. The subsequent elementary action will be ini-
tialized by requesting the current state of the Plan Scene and verifying whether the previous
one has been executed. If this is not the case, the mission will be stopped. Grasp and Dock
actions include the commands Grasp and Release to the gripper.
The mission will be considered successfull if all the elementary actions are executed.

4.5.2 Generating a correct reach position

As introduced in Section 3, before grasping the object, the arm’s end-effector has to be placed
above the UAV interface. The easiest case scenario is obtained when the interface is parallel
to the ground and it is possible to compute a simple translation along z from the object pose.
However, due to irregularities of the ground the UAV interface may be tilted.
Hence, once the homogenous transformation that describes the object position with respect to
the base frame is known, another translation has to be computed. This translation depends on
the orientation of the UAV interface, since it has to be computed along the z-axis of the object
frame.
Figure 4.7a and 4.7b shows the transformation that is computed in defining the desired end-
effector pose depending on the UAV’s orientation. With reference to the figures the goal posi-
tion for the end-effector is defined as (x1, y1, z1). Parameter r = 15cm represents the distance
between the end-effector and the object’s center of rotation.

(a) Pitch (b) Roll

Figure 4.7: Computation of end-effector position for rotations of the UAV interface

Robotics and Mechatronics Giuseppe Barbieri

26 Control architecture for docking UAVs with a 7-DOF manipulator

4.5.3 Software Implementation: ROS

As already mentioned in Section 3 the Robotic Operating System (ROS) framework has been
used to develop the software. In this framework, different scripts (threads) run along-side and
communicate over internal UDP-connections. The version of the framework used for this pro-
ject is the 8th distribution Indigo Igloo and the operating system that the system is running on
is Ubuntu 14.04.
The general software implementation of Figure 4.1 is showed in Figure 4.8. The nodes corres-
ponds to the blocks described in the control architecture analysis and their relation can be seen
in the colored legend.
The threads that costitutes the Task Planner are the Elementary_Actions nodes and the Ac-
tion_Manager_Server node.
The Path Planner is composed by the following nodes:

• the move_group node which handles execution of inverse kinematics and motion plan-
ning queries.

• the Joint_Trajectory_Action_Server node and the Gripper_Action_Server node which
compose the Set-point Server

• the Impedance_Controller_Server node, and the Impedance_Controller node which con-
stitutes the Impedance Controller package.

The Controller node contains the implementation of the Joint Controller and the State Ob-
server and communicates to the hardware interfaces through the Spi_Interface_node, the
Can_Interface_node and the Serial_Interface_node.

Figure 4.8: ROS node diagram

At the current state of implementation the Impedance Controller package is not used on the
real arm. Hence, all the paths necessary to execute the Elementary Actions are generated within
the move_group node. Further details on the nodes and the communications between them are
presented in the next subsections.

Giuseppe Barbieri University of Twente

CHAPTER 4. ALGORITHMS AND SOFTWARE IMPLEMENTATION 27

4.5.4 MoveIt!

In this project, tasks that involves motion planning are developed within the MoveIt!2 frame-
work. Here, a more detailed overview about MoveIt! is given.
Various parts of MoveIt! are implemented as plugins which means they are replaceable by
other components that provide the same interfaces. This makes MoveIt! highly customizable.
The motion planning and kinematic solver used in this project are integrated as plugins in the
MoveIt! framework.
The central part of the framework is the move_group node, which manages all the plugin
present in the Moveit! environment. This node also mantains the Plan Scene, which is created
by retrieving informations from the sensors placed on the robot.
The move_group node provides a user interface, consisting of various ROS topics and services
that allows to access its functionalities.
MoveIt! also provides a plugin for Rviz visualization tool which can be used to do planning
requests base on a graphical interface or receive feedback on the plan computed during exe-
cution.

Robot Interface

The move_group node communicates with the robot through ROS topics and ROS actions.
It requires to listen to the /joint_state topic to retrieve the current state of the robot. It also
monitors informations about the homogenous matrices that describe the position of a robot’s
link with respect to the reference frame using the ROS TF library3. Those informations are
provided by the robot_state_publisher node.
The move_group node communicates with the Joint Controller through the Joint_Trajectory_Action_Server.

More details on the implementation and description on how to install and connect MoveIt!
with the SHERPA Arm are described in Appendix A.

4.5.5 Set-point server messages

As already mentioned in Section 3, the Set-point Server handles the execution of the trajectory
generated by the Path Planner. This was achieved by designing a server-client model using the
actiolib4 stack in ROS. In order to communicate with the servers, the clients have to send a mes-
sage that contains the goal that has to be executed. In general, client and server communicate
by exchanging messages as showed in Figure 4.9.

Figure 4.9: Server-Client model with messages

• Goal: This topic is used to send an ActionGoal message to the controller. It’s a custom
message that contains the relevant fields for the server to execute the action. In our case,
this message describes a time parametrized trajectory that has to be executed along with

2ROS.org - MoveIt! http://moveit.ros.org/
3ROS.org - TF library http://wiki.ros.org/tf
4ROS.org - actionlib http://wiki.ros.org/actionlib

Robotics and Mechatronics Giuseppe Barbieri

28 Control architecture for docking UAVs with a 7-DOF manipulator

allowed tolerance values for final joint positions and execution time. Those tolerances
specify how precise the controller has to stick to the position, velocity, acceleration and
time constraints defined for the trajectory in order to consider the execution to be suc-
cessful.

• Feedback: The controller uses this topic to continuously provide feedback about the cur-
rent execution status. The feedback message contains information about the trajectory
point the controller is currently processing.This result in preventing the execution of an-
other goal while one is currently being executed.

• Status: Provides the client with status information about the goal that is currently being
tracked by the server. The client uses this information to know if the goal is still active,
aborted or pending.

• Result: After finishing the trajectory execution, the controller publishes the result to this
topic. If the final joint positions lie within the specified tolerance values and the time
constraints were met, the trajectory execution is considered to be successful. The mes-
sage contains a boolean variable status that returns true when the terminal state of the
state is succeeded, and false when it is terminated in any other state.

The messages used to define the goals for the Joints and the Gripper are structured in the same
way. Details on the topics are reported in the Appendix A.

4.5.6 Graphical User Interface

Graphical feedback is provided to the user through the ROS visualization tool (RViz). This is a
3D visualizer for displaying sensor data and state information of the robot’s model.
Two models have been included in the visualizator. One of them displays the joint commands
generated by the Path Planner coming over a ROS topic, while the second one is used for com-
parison and displays the actual state of the robot by subscribing position measurements sent
by the encoders over ROS.

4.5.7 Impedance Controller implementation

In order to execute actions that require interaction with an unknown environment the Ac-
tion Manager will send commands to the Impedance Controller which will translate them into
torque set-points for the Joint Controller. Figure 4.10 shows the interaction of the designed
classes to achieve this goal.

Figure 4.10: Impedance Controller design

Client-Server

As well as for the Set-point Server the Cartesian trajectory execution is handled by a client and
a server, implemented through the use of the actionlib stack from ROS.
Once Reach or Place have been executed, the Action Manager initializes respectively Grasp and
Dock, which sends the desired Cartesian Trajectories to the Impedance Controller Server. The

Giuseppe Barbieri University of Twente

CHAPTER 4. ALGORITHMS AND SOFTWARE IMPLEMENTATION 29

first point of the trajectory has been set as the current position of the end-effector with max-
imum stiffness, in order to avoid leaps in the arm movements during control switching.
The Impedance Controller Server is in charge of sending the commands to the Impedance Con-
troller while monitoring execution. The desired trajectories are defined in end-effector frame
and directly translated by the server to the arm base frame. The detailed scheme of the ROS
messages exchanged between client and server is the same as the one depicted in Figure 10,
although in this case the goal is defined in a different way.
In ROS, the goal is defined as a custom message, hence a new structure was created. The de-
scription of the goal’s field is as follows:

• Pose: this defines the pose to be achieved by the end-effector of the arm.

• Stiffness: this defines the Cartesian stiffness to be achieved in each Cartesian dimension.

• Time from start: this field stores the time from start of each point of the trajectory.

In order to enforce the constraints on the trajectory execution some parameters has been in-
troduced.

• constraint/goal/time: this represents the amount of time that the controller is allowed
to be late in executing the goal. If the set time is passed and the controller still hasn’t
achieved the final position, then the goal is aborted.

• contraints/goal/pose: this defines the maximum final error in pose for the trajectory goal
to be considered successfull. Negative numbers indicates that there are no constraints.

• constraint/goal/effort: this parameter defines the maximum error allowed in the squared
difference between the joint efforts. Negative numbers indicates that no constraint is set.

In initialization, the Impedance Controller Server will retrieve those parameters from the Para-
meter Server.

Controller

As already introduced in Section 3, the controller is an open-loop Jacobian-transpose force
controller.
The main function of the Impedance Controller class is to convert at every point on the traject-
ory the desired stiffness into a Cartesian force vector and ultimately into a joint torque vector
using the transpose of the arm Jacobian matrix computed at its actual location.
Since there is no adequate feedback on the arm to determine the applied force, no guarantee is
made on the magnitude of the applied force.
In initialization, the Impedance Controller retrieves the arm’s kinematics from the Parameter
Server creating a serial chain, which is used to compute forward and inverse kinematic. The
Impedance Controller Server sends a vector containing the entire Cartesian Trajectory. In or-
der to translate the given set-points into joint commands at the appropriate time defined in
the goal, they are are stored in a dynamic queue. The sampling rate of the controller is used to
analyse the time passed between the last and next set-point. Once this value corresponds with
the one set in the goal, the set-point is removed from the trajectory reducing its size. When the
trajectory is empty the last setpoint is hold and sent to the controller each sampling update.
During execution, the State Observer provides the current state of the arm to the Impedance
Controller which uses it to calculate forward kinematics. The state is then provided to the Im-
pedance Controller Server, which compares it with the imposed constraints. Based on this
comparison, it will keep executing the goal or cancel it and reporting the result to the Action
Manager.

Robotics and Mechatronics Giuseppe Barbieri

30 Control architecture for docking UAVs with a 7-DOF manipulator

The instructions necessary to run the Impedance Controller package has been properly docu-
mented in Appendix C.

4.5.8 Testing Impedance Controller on a simulated 3-link arm

Since the control architecture is still missing a full implementation of the state-observer the
impedance controller was tested in simulation on a different and simpler arm. However, the
code has been written and documented to be immediately adaptable once the proper dynamic
compensations on the arm will be implemented.
In Figure 4.11, the Gazebo environment with the simulated arm for testing is depicted.

Figure 4.11: Simulated 3-link arm in Gazebo environment

The total lenght of the arm is 4 meters (l i nk1 = 2m, l i nk2 = 1m, l i nk3 = 1m). The inertias are
calculated with respect to the center of mass of each link.
In the experiment, the desired position is set at x = 0.5m,y = 0.2m,z = 1m with a desired
cartesian stiffness of 1N /m in the x-direction, 10N /m in the y-direction and 10N /m in the
z-direction. In this arm, the end-effector link has only 1-DOF, hence only variation on the
x-axis will be evaluated.
The desired position is defined slighty inside a box placed in front of the 3 link arm in the
simulation environment as depicted in Figure 4.12.

Figure 4.12: Simulated 3-link arm in Gazebo environment in contact with an unknown object

Giuseppe Barbieri University of Twente

CHAPTER 4. ALGORITHMS AND SOFTWARE IMPLEMENTATION 31

Figure 4.13: Plot of cartesian force and end-effector position in presence of obstacle

The plot of Figure 4.13 shows the response of the system while approaching and contacting the
environment.
It is possible to observe that the end-effector position never reaches the desired position,
which stabilizes around 0.4m once the contact with the box has happened.
The Cartesian force in the x-direction starts from a value of 3N and reduces the closer we get
to the desired position. We can notice that at the contact point (x = 0.4m) the Cartesian force
increases. At this point, the Impedance Controller reacts to redefine the position trajectory
that limits the steady-state force to a value of approximately 1N.

Robotics and Mechatronics Giuseppe Barbieri

32 Control architecture for docking UAVs with a 7-DOF manipulator

5 Conclusions and Recommendations

The aim of this master thesis research was to increase the autonomy of the 7-DOF light weight
compliant manipulator of the SHERPA project. This report introduced a control architecture
which allows to execute the task of grasping and docking a UAV while monitoring execution.

By means of layered control approach, several levels of autonomy for the SHERPA arm were
defined. The proposed method is based on the supply of feedback information, about the world
model, to the task planner which can monitor the feasability of a given subtask. In case an
action is not successfully executed, the mission is interrupted. In addition, the path planner
ensures trajectory tracking through the use of the set-point server.

The previously described approach has been implemented and tested for the validation of the
proposed architecture and algorithms. Experiments results show reliability of the system in
executing the given task even with the presence of obstacles in the environment. However,
significant deviation between the desired and measured trajectory was observed, reducing the
success rate of effective grasping and docking of the UAV.

In order to improve the system’s performance, it is recommended to use a proximity sensor
mounted on the end-effector. This allows, precise detection of contact between the gripper and
the UAV, granting a command to be sent to the gripper with higher certainty. Moreover, once
vision sensors are integrated in the system, a more accurate position of the UAV can be provided
to the software, whilst currently, the drone is placed manually in the desired position. It is also
recommended to further develop the state observer by integrating a proper dynamic model
of the arm. This will allow the integration of the implemented impedance controller and the
improvement of the overall performance of the system. Also, the calibration technique of the
sensor should be improved, as currently, existing calibration errors compromise the accuracy
of the executed trajectory.

The proposed method was implemented and tested for the specific scenario described in Sec-
tion 2. At the current state of development, in the event of failure of an elementary action dur-
ing execution, the mission is ceased. However, the designed software framework lays ground-
work for future development, focusing on the implementation of more complex behaviours for
the task planner such as the replanning of given subtasks in the case of failure, or the occurence
of unexpected events.

Future work should include the integration of the arm and the ground rover’s softwares in order
to conduct more complex and realistic cooperative missions.

Finally, the devised scenario for the scope of this thesis is the one in which the multirotor lands
on the ground in proximity of the rover and is then docked by the robotic arm. In this scenario,
the type of surface on which the drone lands is important; a smooth flat surface is preferable.
However, this scenario is very unlikely, and a rocky environment is to be expected in alpine
areas. The drone could then be lost or damaged when attempting to land.
This thesis introduces and demonstrates the plausibility and feasibility of such operation. In
the future, other scenarios could be inspected such as docking the multirotor while is still flying
in close proximity to the rover.

Giuseppe Barbieri University of Twente

33

A Appendix

A.1 URDF model

The Unified Robot Description Format (URDF) is a markup language, designed to describe ro-
bots. The description happens in text files, in a special XML format. The most important ele-
ments in the XML specification are:

• Link: Describes the properties of a specific robot link. Each link must have a unique
name. The visual, inertial and collision details are configured in the corresponding sub-
tags of the link element. The visual part as well as the collision model can either be com-
posed from primitive shapes or from mesh files.

• Joint: Describes the properties of a joint. A joint is a flexible connection between two
links, having exactly one parent and one child link. Each joint states a new reference
frame for its child link and it is positioned relative to its parent frame. The joint actuates
its child link relative to its parent link along the joint axis. There are different types of
joints available such as fixed and revolute.
A fixed joint states a rigid connection between parent and child link. A revolute joint
is a rotational joint with one degree of freedom. Details like angular joint limits, axis
orientation and the dynamic properties of the joint motors can be configured in the cor-
responding subtags of the joint element.

Those elements are used to form the URDF graph that exactly describes the kinematic chain of
the robot components and their placement relative to each other.

The URDF file relative to the SHERPA arm can be found in the folderSHERPA_ARM_V1.52_rover
together with the meshes generated in SolidWorks.

A.2 MoveIt installation

A.2.1 Creating MoveIt configuration package

After designing the URDF description of our robot setup it was necessary to create a MoveIt
configuration package. This was done, using the MoveIt Setup Assistant which is part of the
MoveIt distribution.
This software tool provides a graphical user interface that allows to con figure and generate a
ROS package that contains all necessary MoveIt configuration files based on an existing URDF
model. This section explains the steps that had to be performed and the resulting configura-
tion package.
The Setup Assistant was launched using the following command line statement:

roslaunch moveit_setup_assistant setup_assistant.launch

This command brings up the Setup Assistant which asks for the file path to the previously cre-
ated URDF description. After pointing the Setup Assistant to the correct file location, we had
to perform the following configuration steps:

• Computing the self collision matrix: The self collision matrix consists of pairs of robot
links that can safely be excluded from collision checking. Adjacent links of the robot arm
for example are in permanent collision. Collisions between other links can never happen
because they are simply too far apart. The Setup Assistant can be triggered to compute

Robotics and Mechatronics Giuseppe Barbieri

34 Control architecture for docking UAVs with a 7-DOF manipulator

this self collision matrix automatically by testing a large number of different robot config-
urations while tracking for link pairs that are hardly always in collision and pairs that are
never in collision. The number of sample configurations to check can be adjusted. We
selected a medium density of 50.000 sample configurations to find colliding link pairs.
Excluding a large number of link pairs raises performance during motion planning be-
cause collision checking is an expensive process. The resulting self collision matrix can
be adjusted manually if necessary. The image in figure below shows a screenshot of this
configuration step.

• Defining the planning groups: MoveIt requires to define so called planning groups for the
robot setup. A planning group is a group of links and joints within the model that can be
seen as a logical component, e.g. a gripper or a robot arm. Each planning group consists
of a unique name and a list of robot links and joints that are part of that group. Addi-
tionally can be specified, which IK solver should be used for the planning group.Each
planning request in MoveIt is done against one of those defined planning groups. We
defined planning groups for arm, gripper and rover. However, motion planning is per-
formed only for the group arm.

• Defining the end effectors: Each planning request in MoveIt requires to specify the end
effector of the selected planning group. Those end effectors also had to be defined during
the setup process. An end effector definition in MoveIt consists of a unique name, the
underlying planning group (in our case end effector), the parent planning group (in our
case arm) and the name of the last link in the kinematic chain of the parent group (in our
case End adaptor).

• Completing the Setup Assistant: The last step in the setup process was to generate a Mo-
veIt configuration package based on the previously explained configuration steps. There-
fore the Setup Assistant required to specify the desired package name which we set to
sherpa_moveit_config. After triggering the package generation on the Configura-
tion Files page of the Setup Assistant, the resulting ROS package was created at the spe-
cified save location.

The package that was generated during this setup process contains all the configuration and
launch files that are necessary to make planning requests for our robot setup though it is not
yet connected to the hardware. The configuration can be tested by running it in demo mode.
This mode allows to plan and execute trajectories without being connected to the robot hard-
ware. The demo mode is launched with the following command line statement: roslaunch
sherpa_moveit_config demo.launch This command runs a move_group node
using the previously created configuration and starts an instance of RViz with the motion
planning plugin. There it is possible to switch between planning groups, set start and target
configurations, do planning requests and visualize the resulting trajectories based on a graph-
ical user interface.

A.2.2 Launch files and Configuration files

The configuration files withing the config package are described here:

• controllers.yaml: The content of this file specifies the available controllers for the
(simulated or real) hardware. The file is initially empty and has to be populated manually.
This was done after implementing the required controller interface, which is described
in section 3.6.

Giuseppe Barbieri University of Twente

APPENDIX A. APPENDIX 35

Figure A.1: generating collision matrix with setup assistant

Figure A.2: planning groups setup assistant

• fake_controllers.yaml: This file is populated by the Setup Assistant and contains
the definitions for the fake controllers. The fake controllers simulate a connection to the
hardware by providing the required ROS interface.

• SHERPA_ARM_V.1.52.srdf: This file contains all the semantic information about
the robot that was configured during the setup process. The content is specified using
the SRDF format. It holds the definitions of the configured planning groups, end effectors
and the generated self collision matrix entries.

• joint_limits.yaml: This file holds the velocity and acceleration limits of all joints
contained in the robot description. The Setup Assistant creates the initial values based
on the URDF model but this configuration file allows to specify other limits if necessary.
MoveIt uses the limits that are configured within this file, not those configured in the
URDF description.

• kinematics.yaml: This file contains the definition of the IK solvers that should be
utilized for the robot arms. This file is currently not used since the kinematic plugin was
modified internally.

Robotics and Mechatronics Giuseppe Barbieri

36 Control architecture for docking UAVs with a 7-DOF manipulator

• ompl_planning.yaml: This file defines the allowed planning algorithms for each
planning group. It holds OMPL specific configuration parameters, the most relevant of
which are:

– Range: represents the maximum length of a motion to be added in the tree of mo-
tions

– Goal bias: In the process of randomly selecting states in the state space to attempt
to go towards, the algorithm may in fact choose the actual goal state, if it knows it,
with some probability. This probability is a real number between 0.0 and 1.0; its
value should usually be around 0.05 and should not be too large.

• joint_trajectory_action.yaml: This file holds the Joint Server configuration. It
specifies goal constraints for the joints and for the goal pose.
Note: If, while executing a trajectory, the following error appears on terminal:

Figure A.3: Feedback screen error message

increase the goal tolerance’s value in this parameter file. This parameter defines the max-
imum error deviation between the current robot’s state and the desired trajectory.

The launch files within the configuration package are responsible for uploading the config-
uration parameters to the parameter server and start the move_group node. A launch file
was written to run all the necessary nodes to set-up MoveIt. This can be launched with the
following command:

roslaunch sherpa_moveit_config moveit_planning_execution.launch

This launch file will launch the move_group node, the joint trajectory action server, the
Rviz visualization, the robot_state_publisher the gripper action server and the im-
pedance controller action server. It offers also the possibilty to change the environment
from simulation to real hardware. By setting sim = true a controller simulator part of the
industrial_simulator_package will be run. In this way it will be possible to execute
the docking procedure in simulation.

A.2.3 Connecting MoveIt to real hardware

MoveIt interfaces with the robot through the FollowJointTrajectory action, which has been
integrated in Joint_Trajectory_Action node.
In order to enable communication between MoveIt and the Sherpa Arm the Joint Controller has
to subscribe thejoint_path_command topic containing thetrajectory_msgs/JointTrajectory
message.
On the other hand, the State Observer is required to publish the feedback_states topic
containing the (control_msgs/FollowJointTrajectoryAction) message.

Giuseppe Barbieri University of Twente

37

B Appendix: Gazebo Model

In order to run Gazebo the following packages are needed:

• sherpa_arm_control: It contains configuration files in which is possible to specify simu-
lated controllers and a launch file to call them.

• sherpa_arm_description: It contains the description of the arm in URDF format with the
addition of Gazebo elements for visualization and simulation.

• sherpa_arm_gazebo: It contains the Gazebo world and a launch file that loads the robot
description and controllers.

In order to visualize the URDF model in Gazebo the file sherpa_arm.gazebo has been
created to add <gazebo> elements for each link and joint. This elements allow to: visualize
links in gazebo, set damping dynamics for the joints and add actuator control plugins for the
joints.
The URDF has been converted into Xacro file which allows to simplify the model and in-
clude different files. In the URDF model transmission values have been added. The file
materials.xacro is used to specify colors and materials of the arm.

Launch Gazebo Model To start the Gazebo model the following command has to be run from
terminal:

→roslaunch sherpa_arm_gazebo worlds.launch

When launching this node, you should be able to visualize the following image on your screen:

Figure B.1: Sherpa Arm in Gazebo environment

This model has been set up and prepared, however some problems still hold relative to the
mimic joint present in the elbow. Since Gazebo does not support mimic joint the model of the
model of the arm result inaccurate, hence difficult to run proper simulations. The best way to
solve this issue should be by writing a proper Gazebo plugin.

Robotics and Mechatronics Giuseppe Barbieri

38 Control architecture for docking UAVs with a 7-DOF manipulator

Connect ROS and Gazebo

When running the Gazebo model the following topics will be set-up running:

Figure B.2: Sherpa Arm in Gazebo environment

In order to run a simulation, the/sherpa_arm/joint_states has to be subscribed by the
controller node. This furnish to the controller the current state of the simulated arm.
The simulated arm is commanded by providing set-point messages to the simulated controllers
advertising the topics /sherpa_arm/Jnt_X_effort_controller/command

RRbot

In order to run the gazebo model of the 3-link simulated arm the following command has to be
run:

→ roslaunch rrbot_gazebo rrbot_world.launch

The communication with this arm happens as described above.

Giuseppe Barbieri University of Twente

39

C Appendix: User Manual

C.1 Instructions to start the software

1. Start roscore

2. Load parameters relative to motors and encoders on the arm using the following com-
mand:
→rosparam load sherpa_arm.yaml

3. Run the node that enables communication with SPI bus:
→rosrun spi_interface spi_interface_node

4. Run the node that enables communication with CAN bus:
→rosrun can_interface can_interface_node

5. Run the node that contains implementation of joint controllers and state observer:
→rosrun controller controller_node

Once the controller is running and the arm is calibrated the screen should show the following
message:

sensors are calibrated

Start MoveIt by inputing the following command to terminal:

→ roslaunch sherpa_moveit_config moveit_planning_execution.launch

This will initialize MoveIt and the servers for the Joint Controller (Joint_Trajectory_Action
node), the gripper(Gripper_Action_Servernode), the impedance controller(Impedance_Controller_Server
node) and the action manager(Action_Manager_Server node). It will also launch the
RViz GUI for visualization and the robot_state_publisher node.

If everything is correct the terminal should output the following message:

Figure C.1: Feedback screen message

To start the docking routine the following launch file has to be run

→ roslaunch elementary_actions pick_place.launch

This will initialize the elementary actions and the serial communication with the gripper.

C.1.1 Starting the Impedance Controller

Before starting the impedance controller the parameter file containing trajectory constraint is
loaded by the following command:

→ rosparam load impedance_controller.yaml

The impedance controller is started by inserting the following line in the terminal:

Robotics and Mechatronics Giuseppe Barbieri

40 Control architecture for docking UAVs with a 7-DOF manipulator

→ rosrun impedance_controller impedance_controller

At the actual state of development the elementary actions Grasp and Dock are executed without
the use of the Impedance Controller package. They are integrated in reach_place node and
executed through motion planning functionalities.
In order to test the impedance controller and execute those indipendently from the rest of the
software two executable has been created. In order to test them the following command has to
be run: Grasp: → rosrun elementary_action grasp

Dock: → rosrun elementary_action dock

In case you want to test the controller without running MoveIt! and all the other nodes, remem-
ber to run the following command:

→ rosrun impedance_controller impedance_controller_action

Which will start the action Server.

Giuseppe Barbieri University of Twente

41

Bibliography
Barrett, E., M.Realing, G.Barbieri, M.Fumagalli and R.Carloni (2016), Mechatronic Design of

the SHERPA Robotic Arm, University of Twente.

Broenink, J. F. and G. H. Hilderink (2001), A structured approach to embedded control systems
implementation, in Proceedings of the 2001 IEEE International Conference on Control
Applications, Eds. M. W. Spong, D. W. Repperger and J. M. I. Zannatha, IEEE, pp. 761–766,
ISBN 0-7803-6733-2, doi:10.1109/CCA.2001.973960.
http://www.ce.utwente.nl/rtweb/publications/2001/pdf-files/
042R2001.pdf

B.Siciliano, L.Sciavicco, L.Villani and G.Oriolo (2009), Robotics, Modelling, Planning and
Control, Springer.

Buss, S. R. (2009), Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse
and Damped Least Squares methods.

E.Barrett, M.Fumagalli and R.Carloni (2016), The SHERPA Gripper: Grasping of Small-Scale
UAVs, in Proceedings of the IEEE International Symposium on Safety, Security and Rescue
Robotics.

Kavraki, L., P. Svestka, J.-C. Latombe and M. Overmars (1996), Probabilistic roadmaps for path
planning in high-dimensional configuration spaces, in IEEE Transactions on Robotics and
Automation.

LaValle, S. M. (2006), Planning Algorithms, Cambridge University Press, Cambridge, U.K.

L.Sciavicco, B. (1988), A solution algorithm to the inverse kinematic problem for redundant
manipulator, in IEEE Journal of Robotics and Automation.

Marconi, L., C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger, R. Carloni,
S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala
and N. Tomatis (2012), The SHERPA project: Smart collaboration between humans and
ground-aerial robots for improving rescuing activities in alpine environments, in
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics,
pp. 1–4, doi:10.1109/SSRR.2012.6523905.

N.Xi, T.Tarn and A.Bejczy (June 1996), Intellingent Planning and Control for Multirobot
Coordination: An Event-Based Approach, in IEEE Transaction on Robotics and Automation,
volume 12.

S.Karam and E.Frazzoli (2011), Sampling-based algorithms for optimal motion planning, in
The International Journal of Robotics Research, volume 30, Sage Publications, pp. 846–894.

Vanderborgh, B., A. Albu-Schaffer, A.Bicchi, E.Burdet, D.G.Caldwell, R.Carloni, M.G.Catalano,
O.Eiberger, W.Friedl, G.Ganesh, M.Garabini, M.Grebenstein, G.Grioli, S.Haddanin,
H.Hoppner, A.Jafari, M.Laffranchi, D.Lefeber, F.Petit, S.Stramigioli, N.G.Tsagarakis,
M.V.Damme, R.V.Ham, L.C.Visser and S.Wolf (2013), Variable Impedance actuators: A
review, in Robotics and Autonomous Systems, volume 61, pp. 1601–1614.

Wolovich, W. and H.Elliot (1984), A computational technique for inverse kinematics, in
Proceedings of the 23rd IEEE Conference on Decision and Control.

Yildirim, S. and T.Tunali (1999), A new methodology for dealing with uncertainty in Robotic
Tasks, in International Symposyum on Computer and Information Sciences, Bornova, Turkey.

Robotics and Mechatronics Giuseppe Barbieri

http://www.ce.utwente.nl/rtweb/publications/2001/pdf-files/042R2001.pdf
http://www.ce.utwente.nl/rtweb/publications/2001/pdf-files/042R2001.pdf

	Abstract
	Contents
	1 Introduction
	1.1 Context
	1.2 Report Organization

	2 Background and Analysis
	2.1 The SHERPA arm
	2.2 Analysis
	2.3 Approach

	3 Control architecture for docking UAVs with a 7-DOF Manipulator
	4 Algorithms and Software Implementation
	4.1 Overview
	4.2 Motion Planning
	4.3 Sampling-Based Motion Planning algorithms
	4.4 Kinematic Solver
	4.5 Software Implementation

	5 Conclusions and Recommendations
	A Appendix
	A.1 URDF model
	A.2 MoveIt installation

	B Appendix: Gazebo Model
	C Appendix: User Manual
	C.1 Instructions to start the software

	Bibliography

