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Abstract—A DDS (Direct Digital Synthesizer) is a highly
configurable system that is capable of outputting square waves
with a large range of different frequencies. The system described
in this paper uses the MSB of the output of an accumulator as
a square wave signal. This edges in this signal suffer from large
delays, which are corrected by using logic and a DTC (Digital
to Time Converter). The delay of the edges are increased in
such a way that a clean signal is created with equal periods
and the desired frequency. Unfortunately, this signal is a victim
of quantization caused by the digital nature of the input of the
DTC and the output of the accumulator. This causes quantization
spurs in the frequency spectrum, which is undesirable. By
modelling these quantization spurs, the system can be analyzed
and optimized. Due to the dependence of the output on a total
of four parameters (the resolution, tuning number and clock
frequency of the accumulator and the resolution of the DTC) an
extensive model is needed to predict the energy of these spurs.
This model is created by considering the difference between the
delayed edge and the desired edge as error pulses subtracted
or added from the ideal output signal. These error pulse can
be modelled as square waves with a certain duty cycle and
time-shift, which are also based on the four parameters defined
previously. The duty cycle is determined by the duration of the
pulse, while the time-shift is caused by the location of the pulse
in the output signal. By defining all these components separately
and using the law of superposition, a complete equation has been
created. This equation is capable of predicting the exact energy
for the carrier signal and every existing quantisation spur in the
frequency spectrum of the output signal. A simulation shows how
the equation matches the output of a simulated DTC-based DDS
created in Matlab. Slight inaccuracies have been observed based
on the sample size of the simulated output signal. The equation
will be able to help in determining the quality of an existing
DTC-based DDS and could provide information about ways to
improve the system.
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I. INTRODUCTION

A DDS (Direct Digital Synthesizer) is a system capable of
generating square waves with any frequency defined by the
user and is therefore very reconfigurable. In this paper a model
will be presented that describes a DDS that uses the properties
of a DTC (Digital to Time Converter) to create signals with
significantly accurate periods. A Digital to Time Converter is
a component that takes a digital input and delays an edge
accordingly. The necessity of this component will be made
clear later in this introduction. Another option that has the
same functionality as the DTC would be a DLL (Delay Locked
Loop). Even though it is a much less complex system than the
DTC, the DLL has the disadvantage that its precision decreases
when the resolution of its input increases. High resolution is

very important in this system, so a DTC is used instead. The
exact details of the DTC used in the DDS analysed by this
paper are described in [2].

Fig. 1. A block schematic of the DDS exploiting the workings of a DTC [1]

The system that will be modelled in this paper is shown
in figure 1. This block schematic is based on another DDS
that uses a DLL instead of a DTC[1]. The schematic will be
explained in section II.

In section II, the time and frequency spectrum of the
square wave output of a DTC-based DDS will be observed
and explained. Based on this behaviour, an equation will be
constructed in section III. In section IV, a simple example will
show that this equation correctly describes the quantisation
spurs in the frequency spectrum of the output signal. The paper
is concluded in section V.

II. OUTPUT CHARACTERISTICS OF DTC-BASED DDS
The first part of the system is the accumulator. An accumu-

lator has a binary output with N bits resolution of which the
value gets increased by tuning number M after every rising
edge of a clock signal with frequency fclk. After the output
reaches its highest binary value, it reverts back to zero, as the
carrier is discarded. By reading just the MSB (Most Significant
Bit) of the binary output, a square wave can be constructed.
This concept is visualised in figure 2.

As is shown in figure 3 and 2 however, there is one problem
with the system; the edges do not always occur on the right
point in time. Due to the larger steps of M, the actual falling
and rising edges often occur after the ideal falling or rising
edge. This overflow in time can be fixed by the rest of the
system. Due to causality the delay can not be removed, but
will instead be pushed further. By pushing all edges further in
time to one common total delay, all rising and falling edges
will be at the same distance from each other (figure 4

The added delay will be created by the last part of the
system: the DTC. This DTC has an internal DAC that steers it,
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Fig. 2. An example of how the accumulator MSB creates an irregular square
wave with frequency fclk

M
2N

. In this picture, N = 4 and M = 3. M periods are
drawn, which allows the accumulator output to end exactly where it started.

Fig. 3. A cycle showing the the output of the accumulator. In this case the
output of the accumulator (N) has 4 bits and the tuning number (M) is 3 [1]

which means that the DTC needs a digital input. That input is
called the delay word (DW). The highest possible delay word
adds a delay of one clock period to an edge. This means that
if a delay needs to be half a clock period, the delay word
will be half of its maximum value. The maximum delay word
is depended on the resolution R of the DTC. If a DTC has
a resolution of R, then its highest delay word can be 2R.
Calculating the delay word is done by defining with which
fraction of a clock period an edge needs to be delayed. This
can be expressed as M−AR

M Tclk in seconds in which AR is the
amount of ”overflow bits” between the MSB edge transition
and the ideal edge transition, as defined in figure 3. This
fraction needs to be multiplied with the maximum delay word.
However, since the input of the DTC is digital, this value needs
to floored to an integer value. This causes a quantization effect.
The function that describes the delay word that is submitted
to the DTC is equation 1 [1].

DW = floor
(
2R
M −AR

M

)
(1)

Due to the digital nature of the input of the DTC, the delay is
quantized. This means that some edges occur earlier than they
should. The higher the resolution of the DTC, the smaller these
errors become. This need for high resolutions is why a DLL
would not be a good choice for a system like this. In contrast to
the DLL, the DTC would remain much more stable for higher
resolutions, which is important in this system. Figure 5 gives
a clear indication of the consequences of quantisation in the

Fig. 4. The idea behind the DTC-based DDS [1]

delay of the edges.

Fig. 5. Some delay words do not completely correct the signal due to
quantization

In the frequency spectrum, the quantization of the delays is
visible as quantisation spurs. In this paper, an equation will
be derived that models the exact power of those quantisation
spurs as a function of the system parameters N, M, R and Tclk.
This can help to determine the effectiveness of increasing or
decreasing certain parameters. It is also useful for determining
the quality of DTC-based DDS systems.

In this paper, it is assumed that the clock signal has a
constant period, no jitter and a rising and falling time of zero.
Furthermore, the DAC inside the DTC has an INL and DNL
of 0 and the comparator in the DTC does not produce delay
by itself. None of the parts in the system produce any random
noise.

For the cases when M and 2N are not coprimes, M and
N can be made smaller for the efficiency of calculating the
equation later on. For example, a system with N = 5 and M =
6 produces the same output as a system with N = 4 and M =
3. The first system takes twice as many steps per clock cycle
on an accumulator cycle that is also twice as long. Therefore,
one MSB period will be just as long, as the amount of steps
are the same. A smaller value of M will simplify the equation,
so for ease of use, the parameters M’ and N’ will be created.
These parameters are defined by M ′ = M

gcd(M,2N )
and N ′ =
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N − log2(gcd(M, 2N )).

III. CONSTRUCTION OF THE EQUATION

A. Constructing parts of the equation
The difference between the quantized signal and the ”ideal”

signal (in this case an ideal signal is a signal without and
delayed edges due to quantization) could be seen as a small
square ”error” pulse. If these error pulses are correctly sub-
tracted from or added to the ideal signal, a signal will be
created that exactly represents the output of a DTC-based DDS.
This idea is visualised in figure 6. A signal that is the sum of
two signals has a frequency spectrum that is the sum of the
individual frequency spectra of the original two signals [4]
(Appendix A, equation 8). This means that if the frequency
spectra of the ideal signal and the error pulses are known, the
frequency spectrum of the output of the DTC-based DDS can
be described.

Fig. 6. Visualisation of the error pulses created in a DTC-based DDS with an
accumulator resolution N’ of 4, a tuning number M’ of 3, a clock frequency
fclk of 16 Hz and a DTC resolution R of 1. The 16 Hz clock signal creates
an error period Terror of 1 second, as the accumulator takes 2N

′
= 16 steps

to return to its starting point. By adding error pulse 1 and 5 and subtracting
pulse 2 and 4 from the ideal signal, the output of a DTC-based DDS with a
1 bit DTC can be mimicked.

Fig. 7. Visualisation of the error pulses created in a DTC-based DDS with an
accumulator resolution N’ of 4, a tuning number M’ of 3, a clock frequency
fclk of 16 Hz and a DTC resolution R of 1. By adding error pulse 1 and 5
and subtracting pulse 2 and 4 from the ideal signal, the output of a DTC-based
DDS with a 1 bit DTC can be mimicked.

An error pulse k (in which k corresponds to the kth edge in
one period of the ideal signal) is defined as a periodic pulse that
is only nonzero between an edge ka in the quantized signal and

its corresponding edge kb in the non-quantized ideal signal.
Edge ka always represents the left edge of the error pulse,
since it comes from the quantized signal with floored delays.
A floored value is always either lower than or equal to its
original value. The time periods between the start of the period
and edge ka and kb respectively are called tak and tbk . This is
visualised in figure 7. An error pulse occurs every 2N

′
clock

periods, defining Terror = Tclk ∗ 2N
′
. This is because for

tuning number M’, there are M’ unique periods. This is clearly
visible in figure 2. These M’ unique periods always have a total
duration of Tclk ∗ 2N

′
. For every edge, a unique error pulse

has to be created. Since the tuning number merely defines the
amount of periods inside the given time period of Tclk ∗ 2N

′
,

every edge always occurs only once in this period of time.
This gives the error pulses a period Terror equal to Tclk ∗2N

′
.

Fig. 8. Fourier Series of a square wave with a variable duty cycle [3]

To describe the frequency spectrum of the error pulses and
the ideal signal, the Fourier Series described in figure 8 is
used. This figure describes the Fourier Series of a square
wave with a variable duty cycle. The difference between error
pulses and the square wave described in figure 8, is that
the error pulses occur on a different point in the period. By
using the time-shifting theorem of the Fourier Transform [4]
(Appendix A, equation 9), this can also be accounted for. This
is unfortunately only applicable for the Fourier Transform,
meaning that the Fourier series will have to be converted into
a Fourier transform. This will be done by using equation 2. By
combining these three equations, equation 3 is derived, where
T is the period of the signal. This period is Terror = Tclk ∗2N

′

for error pulses and Tideal = Tclk∗2N
′

M ′ for the ideal signal.
The complete derivation of this function will be displayed in
Appendix B.

Xk(f) =

∞∑
n=−∞

Xk[n]δ

(
f − n

T

)
(2)

Xk(f) =
2A

π
exp(−j2πft0k)

∞∑
n=−∞

sin(nπdk)

n
δ

(
f − n

T

)
(3)

For the ideal signal, the duty cycle and time-shift are always
the same. The ideal signal has a duty cycle of 0.5 and is time-
shifted by 3

4T , in which T is the period of the error signal
Terror = Tclk ∗ 2N

′
. Since the period in figure 8 starts three

quarters of a period after the falling edge (at which the ideal
signal starts in this model) it should be time-shifted by that
amount. Terror is used, because the equation for the ideal
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signal will be constructed by creating it with the frequency
of the error signal, after which it will be dilated to the correct
frequency.

To describe the error pulses with equation 3, a duty cycle
and a time-shift have to be defined for each pulse individually.
As has been explained before, the error pulse signal is only
nonzero between edge ka and kb. The duty cycle of the error
pulse is the fraction of the period in which the value of the
signal is nonzero. The duty cycle of error pulse k can be
derived by subtracting tak from tbk (as defined in figure 7)
and dividing that sum by the duration of one period of the
error pulse, Terror = Tclk ∗ 2N

′
. The resulting equation is

defined in 4. In Appendix C, the equation is derived in detail.

dk =
k

2M ′
−
floor(k2

N′+R

2M ′ )

2N ′+R
(4)

It is assumed that the time-shift of the error pulse is 0 when
it is depicted as in figure 8; nonzero and symmetrical in t = 0.
This means that, to create an error pulse from the time signal
in figure 8, the time signal first has to shift half the duration
of the pulse and then has to shift over the duration of tak .
The duration of the pulse is defined by the duty cycle of the
pulse multiplied by the period of the error pulse Terror. This
brings the total time-shift to t0k = 0.5 ∗dk ∗Terror+ tak . The
complete derivation of this is equation 5. In Appendix C, the
derivation is explained in detail.

t0k =
Terror

2
(
floor(k2

N′+R

2M ′ )

2N ′+R
+

k

2M ′
) (5)

B. Construction of the total equation
The ideal signal can be constructed using equation 3. As

was defined in the previous section, the ideal signal has a duty
cycle of 0.5 and is time-shifted by 3

4Terror =
3∗Tclk∗2N

′

4 . The
ideal signal has a time signal that, relative to the error pulses,
is dilated by a factor M’. According to the Fourier Transform
Dilation Theorem[4] (Appendix A, equation 10), this means
that the ideal signal can be described by using equation 3 and
dividing that function and its variable f by M’. The function
then becomes equation 6. The derivation of this function is
described in Appendix D.

Xideal(f) =
2A

M ′π
exp(−j πf

M ′
3 ∗ Tclk ∗ 2N

′

2
)∗

∞∑
n=−∞

sin(nπ2 )

n
δ

(
f − nM ′

Tclk ∗ 2N ′

) (6)

The error pulses are more complex and require a more
general definition. Some pulses are subtracted from the ideal
signal, while others are added. As a point of reference to define
which pulses do what, it is assumed that the output signal of
the DTC-based DDS starts exactly after a falling edge where
the accumulator output is 0, as is done in figure 6 and figure 2.
Since the edges ka of the quantized signal are always earlier
than the edges kb, an error pulse that is created for a rising

edge always needs to be added to the ideal signal while an
error pulse that is created for a falling edge always needs to
be subtracted from the ideal signal. By giving the edges of
the ideal signal a value k ranging from 1 to 2M’-1, it is clear
that rising edges occur on odd and falling edges occur on even
edges. This means that odd numbered error pulses need to be
added, while even numbered error pulses should be subtracted.
Edge 0, M’ and 2M’ all have a pulse with duty cycle 0, as the
edge of the quantized signal and the ideal signal occur at the
exact same time. This means that these values can be excluded
from the equation. By combining the remaining pulses, a total
equation 7 can be defined, with dk defined in equation 4 and
t0k defined in equation 5.

X(f) =
2A

π
∗((

1

M ′
exp(−j πf

M ′
3 ∗ Tclk ∗ 2N

′

2
)∗

∞∑
n=−∞

sin(nπ2 )

n
δ
(
f − nM ′

Tclk ∗ 2N ′

))

+

( M ′−1∑
p=0,(2p+1) 6=M ′

exp(−j2πft0(2p+1)
)∗

∞∑
n=−∞

sin(nπd(2p+1))

n
δ
(
f − n

Tclk ∗ 2N ′

))

−
( M ′−1∑
p=1,(2p) 6=M ′

exp(−j2πft0(2p))∗

∞∑
n=−∞

sin(nπd(2p))

n
δ
(
f − n

Tclk ∗ 2N ′

)))

(7)

As was explained previously, N ′ is the resolution of the
accumulator, M ′ is the tuning number, Tclk is the clock period
and R is the resolution of the DTC. Furthermore, A is the
amplitude of the signal in the time domain.

IV. COMPARISON WITH FFT SIMULATIONS

To prove that this equation is really capable of describing
the behaviour of the frequency spectrum of the output of a
DTC-based DDS, the output of the system and the output
predicted by the equation can be compared via a simulation.
This simulation was created in Matlab. As a test and for ease
of visualisation, the scenario of accumulator resolution N’
= 4, tuning number M’ = 3 and DTC resolution R = 1 is
analyzed in this case. An ideal square wave signal with the
desired frequency was created along with four error pulses
such that adding and subtracting said error pulses from the
ideal signal created the real output of the DDS based DTC.
This has been done in figure 6 and works as intended, meaning
that the original five components combine into the actual
output of the system. This should mean that adding and
subtracting the frequency spectra of the error pulses correctly
from the frequency spectrum of the ideal signal should indeed
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produce a correct representation of the output of the system.
After calculating the frequency spectrum from the simulated
output of the DTC-based DDS, the equation is constructed. By
constructing parts of the function and adding and subtracting
them accordingly, an exact prediction of the function should
be created. The result can be seen in figure 9.

Fig. 9. The frequency spectrum of the output of a DTC-based DDS with
accumulator resolution N’ = 4, tuning number M’ = 3, DTC resolution R =
1 and fclk = 16Hz. The blue signal is the simulated output, while the red
circles indicate the prediction done by the equation. This figure was created
using 65536 samples for every Terror seconds.

In this figure, small inaccuracies can be found. To determine
whether these are caused by a finite amount of samples in
the simulation signal or an inaccuracy regarding the prediction
equation itself, a test was done. The results of this test are
displayed in figure 10.

Fig. 10. The highest difference between a predicted point and its simulated
output in dB. As can be seen, a doubling of the sample rate halves the highest
difference.

Figure 10 shows that the difference between a predicted peak
and a simulated peak is halved when the amount of samples
in the simulation is doubled. Since a signal in the real world
could be compared to a signal with an infinite sample size,

this equation is very likely to be a good model for the output
of a DTC-based DDS.

V. CONCLUSION

An equation was found that was capable of describing the
energy of important harmonic peaks in the frequency spectrum
of a DTC-based DDS with a variable accumulator resolution
N, tuning number M, DTC resolution R and clock period Tclk.
According to measurements, this equation corresponds to a real
world frequency spectrum with an infinite amount of samples.
This makes the equation a good tool for determining whether
it is worth to upgrade the quality of certain components within
the DTC-based DDS. It can also help in determining the
quality of an already existing DTC-based DDS. The Spurious-
Free Dynamic Range (SFDR) can also be found with the
help of the equation by finding the highest quantisation spur
between 0 and 2f0 for any frequency multiple of f0/M ′ and
determining the difference between the power of the carrier
signal and the power of the highest quantisation spur in dBc.

APPENDIX A
USED FOURIER TRANSFORM THEOREMS

A. Linearity

ag1(t) + bg2(t) � aG1(f) + bG2(f) (8)

B. time-shifting

g(t− t0) � G(f)exp(−j2πft0) (9)

C. Dilation

g(at) �
1

|a|
G
(f
a

)
(10)

APPENDIX B
CONSTRUCTING THE BASE EQUATION FOR ERROR PULSE K

As defined in figure 8, the Fourier Series of a square wave
with a variable duty cycle is defined by equation 11.

Xk[n] =
2A

nπ
sin(nπdk) (11)

To use the time-shifting theorem, which is a Fourier Trans-
form theorem, equation 11 needs to be transformed into a
Fourier Transform. This is done with the help of equation 2
and results in equation 12

Xk(f) =
2A

π

∞∑
n=−∞

sin(nπdk)

n
δ

(
f − n

T

)
(12)

After this transformation, the function can be time-shifted
according to equation 9.
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Xk(f) =
2A

π
exp(−j2πft0k)

∞∑
n=−∞

sin(nπdk)

n
δ

(
f − n

T

)
(13)

Finally, if this equation is used for error pulses, T =
Terror = Tclk ∗ 2N

′
, while if the equation is used for the

ideal signal, T = Tideal =
Tclk∗2N

′

M ′

APPENDIX C
CONSTRUCTING THE EQUATION FOR THE DUTY CYCLE AND

TIME-SHIFT OF AN ERROR PULSE

To define the duty cycle and the time-shift, the position of
the right and left edge need to be determined. These are defined
as tak and tbk , as depicted in figure 7. For easy of explanation,
three time periods are defined: Tclk, Tideal, Terror. These
periods are shown in figure 11.

Fig. 11. The highest difference between a predicted point and its simulated
output in dB. As can be seen, a doubling of the sample rate halves the highest
difference.

Edge kb (figure 7) of every error pulse corresponds to one
of the edges of the ideal signal. This means that these edges
are evenly spaced over the complete length of Terror. To find
tbk , the function simply needs to be multiply the value of k
with the length between two of these edges, which is equal to
Tideal

2 . This is defined by equation 14

tbk =
k ∗ Terror

2M ′
(14)

The left edge corresponds to edges ka of the quantized
signal. The accumulator that generates the MSB signal only
changes its output value when a rising edge occurs. This means
that during one period of Terror, 2N

′
possible edges can

occur. When the DTC is added, the amount of possible edges
doubles for every bit of resolution of the DTC. This is because
a DTC with resolution R can make time steps of 1

2R
Tclk. This

brings the total amount of steps to 2N
′ ∗2R. These steps have a

stepsize of Tclk

2R
. The edges of the ideal signal are approximated

with the step that is closest to the ideal edge kb, but also lower
than said edge. The step that represents this definition best can
be located by calculating how many integer steps fit between

the start of the period and the edge ka in question. This is
expressed in equation 15

Amountofsteps = floor(
k ∗ 2N ′ ∗ 2R

2M ′
) (15)

Dividing the amount of steps between the start of the period
and edge ka by the total amount of steps in the system gives
the fraction of the period Terror that is equal to the amount
of time between the start of the period and edge ka, which
is the basic definition of tak . This means that multiplying the
fraction with period Terror gives tak . Equation 16 describes
this.

tak =
floor(k∗2

N′
2R

2M ′ )

2N ′2R
Terror (16)

The duty cycle dk can be defined by subtracting the tak from
tbk and dividing the total by Terror, as is done in equation 17.

dk =
k

2M ′
−
floor(k∗2

N′+R

2M ′ )

2N ′+R
(17)

The time-shift of the error pulse is zero when the error pulse
is nonzero and symmetrical at t = 0, as is defined in figure
8. If this is assumed, the time-shift of an error pulse can be
defined as the sum of half of the pulse duration plus tak . The
pulse duration is defined by the duty cycle of the error pulse
multiplied by the total duration of the period of the pulse,
Terror. The total time-shift can be defined as t0k =

tperiod
2 dk+

tleft, which is the basis for equation 18.

t0k =
tperiod

2

(
k

2M ′
+
floor(k∗2

N′+R

2M ′ )

2N ′+R

)
(18)

APPENDIX D
CONSTRUCTING THE EQUATION FOR THE IDEAL SIGNAL

The function for a normal repeating square wave with a
variable duty cycle and time-shift is defined as equation 3.
Dilating this function with M’ creates equation 19.

Xideal(f) =
2A

M ′π
exp(−j πf

M ′
t0k)∗

∞∑
n=−∞

sin(nπdk)

n
δ

(
f

M ′
− n

Terror

) (19)

Since the ideal function has a fixed duty cycle and time-
shift these can be filled into equation 19 resulting in equation
20. This equation can be simplified to equation 21. The time-
shift value can still be used because the part of the function
responsible for the time-shift is dilated by M’.

Xideal(f) =
2A

M ′π
exp(−j 2πf

M ′
3 ∗ Tclk ∗ 2N

′

4M ′
)∗

∞∑
n=−∞

sin(nπ ∗ 0.5)
n

δ

(
f

M ′
− n

Terror

) (20)
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Xideal(f) =
2A

M ′π
exp(−j πf

M ′
3 ∗ Tclk ∗ 2N

′

2M ′
)∗

∞∑
n=−∞

sin(nπ2 )

n
δ

(
f − nM ′

Tclk ∗ 2N ′

) (21)
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