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Summary

When an electric vehicle (EV) arrives at home and its battery is (almost) depleted, it must be charged
so that it can be used on the next day. Within a smart grid, this charging of the EV is adapted to
the given situation in the house. Concretely, this may mean that it is planned in such a way that the
resulting power profile of the house follows a certain target profile. An algorithm to control and adjust
the planning online using a target profile has already been developed by Gerards and Hurink [13]. It is
robust against errors in predictions of the power profile, since it does not directly use the power profile
to make a planning beforehand. However, the algorithm still requires the prediction of a parameter, the
fill level, which greatly determines the outcome of the algorithm.

Gerards and Hurink [13] suggest that this level should always be estimated too high (i.e., too pes-
simistically) to prevent large deviations of the house power profile from the target profile. However, we
claim that estimating the fill level too low (i.e., too optimistically) does not necessarily lead to large
deviations from the target profile. Therefore, we analyze the behavior of the fill level for the case where
it is estimated too low. The second topic of this thesis deals with a restriction on the model used in
[13]. The presented algorithm only works when the charging rate is allowed to take all values between
zero and a certain upper bound. In this thesis, we extend the online algorithm to the case when the EV
can be charged at only a single fixed charging rate instead of at any rate between zero and the upper
bound. A third contribution of this thesis concerns the accurate prediction of the fill level. We design
a data-driven method for both the original case (i.e., when the charging rate can vary between zero and
an upper bound) and the case where there is only a single charging rate. This method is based on kernel
density estimation and uses bounds on the relative costs of the aforementioned online algorithm, which
we derive in this work as well.

Results show that underestimating the fill level does indeed not necessarily lead to large deviation
of the house profile from the target profile. In fact, the results imply that by using our data-driven
prediction method and allowing the prediction to be too low as well as too high, the deviation of the
house profile from the target profile is smaller on average than when only allowing the prediction to be
too high. Furthermore, our extension of the online algorithm performs very well for the case when there
is only a single charging rate and achieves relative costs (i.e., the ratio between the objective value and
the optimum) of less than 1.01 for most of the instances that we considered. Finally, our data-driven
prediction method is able to predict the fill level very accurately on average. For the case with only one
single charging rate, the estimated level differs by at most 6.6% from the optimal level for the practical
instances that we considered.
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Voorwoord

Op de dag van mijn colloquium is het precies (maar dan ook precies) vijf jaar geleden dat ik voor het eerst
op de UT kwam als nuldejaars student voor de eerste dag van de Kick-In. De voornaamste reden dat ik
toegepaste wiskunde ging studeren en geen zuivere wiskunde was dat ik niet alleen maar wiskunde wilde
doen om de wiskunde. Op de een of andere manier wilde ik een bijdrage leveren aan de maatschappij door
met behulp van wiskunde problemen op te lossen. Het is dan ook niet toevallig dat deze thesis over het
opladen van elektrische auto’s gaat. Ik ben namelijk van mening dat onderzoek naar en investeringen in
hernieuwbare energie, duurzaamheid en energiemanagement een van de grootste prioriteiten zou moeten
hebben op dit moment. De ontwikkeling en integratie van elektrische auto’s draagt hier naar mijn mening
zeker aan bij. Het feit dat ik mijn passie voor wiskunde kon combineren met mijn ideaal over duurzame
energie maakte dit tot een geschikt onderwerp voor mijn master thesis.

Deze thesis zou niet tot stand zijn gekomen zonder een aantal mensen. Allereerst wil ik Marco Gerards
bedanken. Als eerste begeleider heb je me kennis laten maken met het onderzoek binnen de vakgroep
CAES over demand side management en met profielsturing. Je hebt me veel vrijheid gegeven in de in-
vulling van mijn onderzoek, wat ik erg waardeer. In eerste instantie was mijn onderzoek namelijk vooral
gericht op het uitbreiden van de online fill level approach naar situaties met tussentijdse state-of-charge
restrictie. Pas na een maand of twee ben ik de richting van de voorspelling van het fill level opgegaan.
Ook wil ik je bedanken voor de discussies en feedback-sessies die we hebben gehad over het onderzoek.
Deze hebben me erg geholpen om het onderzoek goed te structureren en vorm te geven. We hebben
het niet alleen maar over inhoudelijke zaken gehad. Ik wil je ook bedanken voor de leuke gesprekken
die eigenlijk over van alles en nog wat gingen: van wetenschapsfilosofie tot het kraken van de Postcode
loterij, en van bizarre “P=NP”-bewijzen tot mijn gebrek aan game-kennis. En natuurlijk voor de potjes
Go die we tijdens de vrijdagmiddagborrel gespeeld hebben: we zullen de komende jaren zien hoe veel
handicap ik nog nodig ga hebben!

Ten tweede wil ik Johann Hurink bedanken. Toen ik begon met de master Applied Mathematics werd
jij aan mij gekoppeld als tutor binnen DMMP en vanaf het begin konden we goed met elkaar overweg.
Toen ik op zoek ging naar een stageplek in het buitenland, wou ik al iets in de richting van Smart Grids
doen. Je hebt me toen geholpen met contact leggen met UC Berkeley en University of South Australia
die daar mee bezig waren, maar helaas heeft dat net niets opgeleverd. Ik ben je echter wel heel dankbaar
voor de tijd en moeite die je daarin hebt gestoken. Toen ik terugkwam van mijn stage bij ORTEC, wilde
ik nog steeds iets doen met Smart Grids, en toen heb je me kennis laten maken met de vakgroep CAES
en in het bijzonder met Marco, die “nog wel wat dingen had liggen”. Hiervoor wil ik je ook bedanken,
en ook voor het geven van feedback op de hoofdstukken en de nuttige discussies over de stukken die nog
niet zo lekker liepen. Hopelijk zullen die de komende vier jaar net zo fijn en nuttig zijn!

Ik wil Werner Scheinhardt graag bedanken voor het compleet maken van mijn afstudeercommissie en
het lezen van deze thesis. Verder wil ik iedereen van de vakgroep CAES bedanken voor de gezellige en
vooral gemoedelijke sfeer die er binnen de vakgroep heerst. In het bijzonder wil ik de bewoners van het
“Energiehok” noemen: Gerwin, Thijs, Gijs, James en ook Jorrit, Jeroen en Kristian, dank jullie wel voor
het creëren van een omgeving waarin er niet alleen hard gewerkt kan worden, maar er ook ruimte is voor
humor en gezelligheid.

Naast studeren heb ik me op de UT vooral beziggehouden met culturele activiteiten. In het bijzonder
wil ik (de leden van) Pro Deo en Musilon bedanken voor alle leuke theatersportscènes en mooie koorar-
rangementen die we samen gespeeld en gezongen hebben, en voor de geweldige open sfeer die bij beide
verenigingen heerst. Ik profiteer nog steeds van de dingen die ik bij Pro Deo geleerd heb.

Tot slot wil ik mijn vrienden en familie bedanken voor hun steun, en in het bijzonder mijn ouders en
zus. Ik denk niet dat ook maar iemand 10 à 15 jaar geleden had kunnen bedenken dat ik ooit zou kunnen
bereiken wat ik nu bereikt heb. Met grote zekerheid durf ik te stellen dat jullie drieën degenen zijn die
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dat voornamelijk mogelijk hebben gemaakt door jullie onvoorwaardelijke steun en liefde. Dankzij jullie
heb ik geleerd om in mezelf te geloven, mijn eigen pad te volgen en vooral om nooit op te geven. Zoals
een bekende dat ooit zo simpel doch doeltreffend heeft gezegd:

“Je moet je eigen kop volgen. Anders hadden ze er wel een bloemkool op gezet.” — H.A. Schoot Uiterkamp

Dank jullie wel.

Martijn
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Chapter 1

Introduction

In this introductory chapter, we first introduce electric vehicle charging. After that, we state the research
goals and accompanying research questions. Finally, we discuss the outline of the remainder of this
thesis.

1.1 Introduction to electric vehicle charging

Much scientific research of the past decades shows that the available amount of fossil fuels in the world is
running down and that the use of fossil fuels contributes to global warming and climate change. Therefore,
switching from the use of fossil fuels to renewable energy sources (RES) is needed to satisfy the future
energy demand. However, a disadvantage of the use of most RES is that their productivity relies on
uncontrollable factors such as weather conditions. Simply speaking, a wind turbine will not produce any
electricity when there is no wind. Therefore, integrating RES in the electricity grid leads to a great loss
of flexibility on the supply side of electricity.

One of the most popular RES is energy from photo-voltaic (PV) cells or solar energy. An increas-
ing number of households (partially) produce their own electricity by means of PV systems (i.e., solar
panels). However, much houses do not (yet) have a system to store PV-generated electricity in the case
of overproduction. This makes electric vehicles (EVs) appealing, since this overproduction can be used
to charge an EV relatively cheaply. Furthermore, as “normal” cars use fossil fuels directly as an energy
source for cars, switching to RES as energy source for transportation is of crucial importance in the
future. Based on the above, EVs should and will play a large role in transportation in the future. In this
work, we make no distinction between plug-in hybrid electric vehicles (PHEVs, i.e., EVs that have both
an electric motor and a combustion engine) and fully electric vehicles (FEVs, i.e., EVs that have only an
electric motor) when talking about EVs.

The penetration of EVs is currently increasing and is expected to increase in the future. In the
Netherlands, 9.7% of the newly registrated motorized vehicles in 2015 was an EV [33]. Furthermore, the
share of EVs in the total number of vehicles has risen from 0.05% in 2010 to almost 2.0% in 2015 and to
2.6% in May 2016 [8]. The Dutch government has the ambition to further increase the number of EVs in
the Netherlands to 200,000 in 2020 and to 1 million in 2025 [8].

This increase in the penetration of EVs causes some challenges for the current residential electricity
distribution network. The most important one is the limited capacity of the existing grid. The average
annual Dutch household electricity consumption is around 3050 kWh [7], which is around 8.3 kWh per
day on average. As a result, the average power consumption of a household is 346 W. As an example,
the average and maximum daily power consumption of a typical Dutch house is shown for 90 consecutive
days in Figure 1.1. This house is located in Lochem, the Netherlands1. For this case, the maximum
power consumption lies between 0.9 and 3.5 kW. Adding an EV to households changes these values a
lot, as most EVs charge at a maximum rate of 3.3 or 6.6 kW [23]. Therefore, charging an EV typically
requires significantly more power than a household, even compared to a peak in the power consumption
of the household as given in Figure 1.1. Compared to the average power consumption, the increase is even
more drastically. Furthermore, the capacity of EV batteries varies between 7 and 20 kWh for PHEVs
and between 16 and 90 kWh for BEVs [32]. This means that, on average, EV charging demands at least

1All plots of power profiles in this thesis are based on data generated using the profile generator described in [19], rather
than actual power profiles, due to privacy issues. All other data are from the electricity grid of a neighborhood in Lochem,
the Netherlands, which serves as a test site for DSM approaches.
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Figure 1.1: The average and maximum daily power consumption of a typical Dutch house for 90 consec-
utive days.

twice as much electricity as the household itself when an EV is fully charged each day. Summarizing,
residential EV charging has a large impact on the power profile of a household and on the total power
demand of a neighborhood.

The simplest way to charge an EV is to charge at the maximum rate from the moment the EV is
plugged in. However, this may lead to an overload of the grid if multiple EVs in the same neighborhood
are being charged. Hoogsteen et al. [20] carried out a field test in which this effect was observed. In
this test, the grid behavior of a neighborhood with multiple EVs is observed around the “evening peak”
when each EV arrives at home and directly starts charging at maximum power after it has been plugged
in. The authors show that, as a result, the evening peak consumption was more than twice as high than
when no EVs would have been charged.

Summarizing, the increasing number of EVs and the ongoing integration of RES in the electricity grid
can lead to the following two problems. First, the current grid is not suited for the increasing penetration
of EVs in the current practice of charging. Secondly, due to the RES integration, flexibility on the
supply side of the grid is reduced substantially by unpredictable yields of RES on the one hand and a
lack of storage for renewable generated energy on the other hand. A successful method to tackle these
problems is demand side management (DSM). The main idea behind DSM is to exploit the flexibility on
the demand side of the grid, rather than on the supply side, to match the supply and demand of energy.
This means that the electricity demand is adjusted to match the available supply instead of the other
way around. The most common objectives in DSM are to flatten the power profile (i.e., preventing any
peaks in the energy consumption), match the power profile to a certain target profile, reduce the costs
that users have to pay for their energy, and combinations of these three objectives.

An important factor in most DSM methodologies is the prediction of the house profile in the recent
future (e.g., for a next day or the next few hours). Based on these predictions, the EV charging can be
scheduled in such a way that a given objective is met (e.g., low electricity costs, little deviation from a
target profile). As a consequence, methods that extensively use predictions of the house profile to plan
EV charging are very sensitive to errors in these predictions. One way to circumvent this problem is
to try to improve the accuracy of the predictions. However, predicting a detailed power profile may be
very difficult due to the unpredictability of the power demand of certain house appliances (e.g., washing
machines and electric stoves). As an example, we consider a washing machine. First of all, households use
their washing machine quite irregularly in general. As a result, the starting times of a washing machine
varies significantly for different days. Furthermore, the running time of a washing machine depends on
factors like the used washing program and the weight of the laundry, which are very specific and therefore
unpredictable factors. In conclusion, it is very likely that a prediction of the demand of a washing machine
contains errors. The above reasoning applies to many other appliances as well. Therefore, we may expect
quite large errors in the prediction of a house profile and this may lead to large deviations for the given
objective (e.g., high power peaks when the objective is to flatten the power profile) if the used EV charging
scheduling method relies heavily on this erroneous prediction.

The problem of having erroneous power predictions can be solved by using methods that do not rely
extensively on such specific predictions. Although this comes at the loss of optimality of the eventual
charging profile with regard to the given objective, such methods are robust against prediction errors. As
a result, they generally return good charging profiles, even if the power predictions are not very accurate.
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1.2 Research questions

The main goal of this research is to develop and improve algorithms that schedule the charging of an EV
and are robust against prediction errors. We build on the work of Gerards and Hurink [13], who designed
a robust algorithm for EV charging that relies on the prediction of only a single parameter, the fill level,
instead of a detailed power profile.

We divide the main goal into three subgoals. As Gerards and Hurink [13] only considered the case
where the fill level is estimated too pessimistically and claim that estimating the fill level in this way
should be preferred over estimating it too optimistically, the first subgoal is to consider the case where
the level is estimated too optimistically and to analyze whether doing this indeed leads to worse results
than estimating the level too pessimistically. Furthermore, Gerards and Hurink [13] only considered
continuous charging rates, i.e., the charging power can take any value between zero and a certain upper
bound. Based on this, the second subgoal is to extend their approach to the case where there is only a
single charging rate (i.e. the charging power is discrete). The third subgoal is to design a method for
accurately estimating the fill level.

All together, this leads to the following three research questions:

1. In the case of continuous charging power, how well does the fill level approach in [13] perform when
the fill level is estimated too optimistically?

2. How can we extend the fill level approach to the case with discrete charging power?

3. How can we accurately predict the fill level?

We address these questions in Chapters 3-5 respectively.

1.3 Outline of this thesis

The outline of the remainder of this thesis is as follows. In Chapter 2, we provide more detailed background
information on demand side management and EV charging. Also, we give the mathematical formulation
of the charging problems that we consider in this work. In Chapter 3, we consider the charging problem
with continuous charging rate (e.g., the charging rate can vary between zero and a certain maximum
value). Chapter 4 discusses the charging problem with a single charging power. In Chapter 5, we present
a method to estimate the optimal fill level. An estimation of this parameter is needed as input for the
algorithms in Chapters 3 and 4. Finally, in Chapter 6, we list the conclusions of this research and discuss
directions for future research.





Chapter 2

Background and related work

In this chapter, we provide some background on demand side management, in particular on the concept
of profile steering. Also, we formally introduce the two versions of the EV charging problem that play a
central role in this thesis. Finally, we review some of the literature on the two versions, both with complete
information (the “offline” problems) as well as incomplete information (the “online” problems).

2.1 Demand side management and profile steering

Demand side management (DSM) is concerned with controlling the energy consumption at a house level.
By applying DSM techniques, network operators can adapt the consumption of energy to create a desired
load profile. For instance, the load profile can be flattened to prevent peaks in the energy demand.
Another objective may be to balance the load profile with the production of energy at a house level (e.g.,
by solar panels and wind turbines) to minimize the supply from the main grid.

In the future, electric vehicles (EVs) will have a large impact on the energy consumption of a household.
On the other hand, they provide a lot of flexibility since they do not necessarily have to be fully charged
as quickly as possible when they are plugged in at a home. Therefore, many DSM systems include EV
charging as one of the ways to control the energy consumption.

In most DSM systems, steering signals are used to control the appliances. In the case of an EV,
a steering signal is send when the EV is plugged in. Based on the received steering signal and some
deadline at which the EV must be fully charged, the charging station schedules the charging of the EV.
The two most common steering signals are electricity prices and target profiles. A target profile states
the total amount of electricity that, ideally, should be consumed by the household as a whole. When
an EV is plugged into the charging station, the station schedules the charging of the EV to match this
profile as well as possible. Note that setting the target profile to zero is equivalent to aiming for a flat
power profile, which is done in most studies.

Gerards et al. [14] argue that solely using electricity prices as steering signals may not lead to a flat
power profile, but merely to a shift of peaks in time or even to the planning of all peaks at the same time.
They showed that using target profiles as steering signals can lead to an overall flat power profile and
outperforms a DSM method that relies on dynamic pricing. While the possibility of letting the power
consumption follow a certain target profile has already been proposed before (e.g., in [12]), Gerards et al.
were the first to actually incorporate target profiles into a DSM system and to show that it can compete
with existing price-incentive DSM methods. The authors note that so-called profile steering is therefore
a very promising approach.

2.2 Problem formulation

Before we review some of the literature on EV charging, we formally introduce and formulate the EV
charging problem that we consider in this thesis. We focus on the charging of EVs and not on discharging
(i.e., using the EV as a battery or “vehicle-to-grid”). We assume that the EV can be charged from the
moment it arrives at the charging station until some deadline that is fixed when the EV arrives at the
station. Let a be the arrival time of the EV and d be the charging deadline. We refer to the interval
[a, d] as the charging interval. We divide the charging interval into M time intervals of equal length. For
convenience, we label the time intervals from 1 to M and denote by M the set of these labels. In this

13
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way, we can characterize any larger period within the charging interval by simply listing the indices of
the corresponding time intervals. As an example, the whole charging interval is represented by M. The
decision we now have to make is to specify the amount xm that is charged during time interval m for each
of the time intervals m ∈M. This leads to the decision vector x := (x1, ..., xM ). We assume that there is
a maximum amount x̄ that can be charged per time interval and we denote by C the total amount that
has to be charged in the charging interval. The goal of the charging is to steer the overall house profile
(i.e. the house profile including EV charging) to a certain target profile as closely as possible. Hereby, we
use the 2-norm as measure for the closeness. To specify the situation of the house, let p := (p1, ..., pM )
be the house profile without charging (i.e., pm denotes the electricity production / consumption in time
interval m) and let q := (q1, ..., qM ) be the target profile for the house.

In this thesis, we consider two versions of the EV charging problem. In the first version, we assume
that the charging rates are continuous, i.e., they are allowed to take any value between 0 and x̄. In the
second version, we assume that the charging rates are discrete and thus either 0 or x̄. This leads to the
following two formulations of the EV charging problems:

Problem CEVCP (the continuous EV charging problem).

min
x

√√√√ M∑
m=1

(pm − qm + xm)2

subject to

M∑
m=1

xm = C,

0 ≤ xm ≤ x̄ ∀m ∈M.

Problem DEVCP (the discrete EV charging problem).

min
x

√√√√ M∑
m=1

(pm − qm + xm)2

subject to

M∑
m=1

xm = C,

xm ∈ {0, x̄} ∀m ∈M. (2.1)

Notice that CEVCP is a relaxation of DEVCP . In both problems, we call an interval active if charging
is done in that interval, and inactive otherwise. As in the latter problem, there is only one rate at which
charging can be done, the number of active intervals is fixed and given by dC/x̄e. Let us, in that case,
denote the number of active intervals by MA. We assume that the values are chosen in such a way that
MA is an integer, meaning that MA = C/x̄.

We call pm−qm the house deviation at time interval m. It is the deviation of the house profile without
EV charging from the target profile. To simplify notation, let zm be the deviation of the resulting house
profile from the target profile at interval m. In other words, we define zm as

zm := pm − qm + xm.

The objective of both problems then reduces to

min
x

√√√√ M∑
m=1

z2m.

In this work, we assume that M , C and q are always given. However, we distinguish between two
cases for p:

• If the vector p is known beforehand, we refer to any of the two problems as the offline version of the
corresponding problem. Here, “known” means that we either know p exactly or use a prediction of
p as input for the optimization problem.
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• If the vector p is unknown beforehand, we refer to any of the problems as the online version of the
corresponding problem.

In the next section, we review some of the literature on solving both the offline and online versions of
CEVCP and DEVCP .

2.3 Related work

An extensive amount of research has already been done on solving all kinds of EV charging problems.
Therefore, we primarily focus on studies that include some kind of profile steering approach. In particular,
we review the literature on solving the offline and online versions of both CEVCP and DEVCP . We
highlight a selection of work that gives a representative overview of the work done in this area.

2.3.1 The offline versions

The offline version of CEVCP belongs to the class of continuous resource allocation problems. We
refer to Patriksson [31] for a survey on these kind of problems. Hochbaum and Hong [18] developed
an algorithm that solves a generalization of CEVCP , namely quadratic optimization problems with
submodular constraints. Their algorithm runs in time O(M), but relies on median finding and therefore
is only fast for relatively large values of M in practice [6].

Next to this, several other methods have been proposed to solve CEVCP to optimality. One way is
to use the so-called valley-filling or water-filling approach. In this approach, charging is done in such a
way that all “valleys” in the house deviation(p− q) are filled up to a certain level. This is illustrated in
Figure 2.1. Among others, Mou et al. [29] apply this valley-filling approach to obtain a flat power profile
(i.e., qm = 0 for all m ∈M).
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Figure 2.1: Charging an EV using the valley filling approach. Charging is done such that the house
deviation is filled up to a certain level by charging the EV to obtain a flat power profile (that is, qm = 0).

Van der Klauw et al. [25] designed an algorithm that can include the costs of electricity in the objective
as well. It first determines in which time intervals charging should take place and then directly calculates
the amount that should be charged in each active interval. The time complexity of the algorithm is
O(M logM), and the authors show that no other algorithm can have a better asymptotic time complexity.

DEVCP is a discrete resource allocation problem. Gross [16] shows (according to [10]) that discrete
resource allocation problems can be solved for any separable objective function by the greedy algorithm
if the set of values that all decision variables can assume contains only two elements (e.g., {0, x̄} is such

a set). Because the square root function is a monotone increasing function and
∑M
m=1 z

2
m is a separable

function, DEVCP can therefore be solved by the greedy algorithm as well. Because the function within
the square root function is quadratic, solving DEVCP reduces to finding the k intervals for which pm−qm
is minimal (see Algorithm 1).

As DEVCP can be solved in polynomial time in a straight-forward way, research in the literature has
focused mainly on extensions and generalizations of this problem. One generalization consists of having
an arbitrary number N of charging rates. Constraint (2.1) is then replaced by

xm ∈ {0, x̄1, x̄2, ..., x̄N} ∀m ∈M. (2.2)
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Algorithm 1 Optimal greedy algorithm for DEVCP

δ := p− q
xm := 0 for all m
for m = 1 to k do
m∗ := arg min(δ)
xm∗ := x̄
δm∗ :=∞

end for

Van der Klauw et al. [24] show that checking whether a feasible solution to this extension of the problem
exists is NP-complete. To solve the problem, they considered the relaxation in which convex combinations
of the charging rates are allowed, and showed that an optimal solution to this relaxation is a very good
approximation for a feasible solution.

2.3.2 The online versions

There are roughly two approaches to solve the online versions of the problems. The first one is to predict
the power profile for the charging interval and use one of the methods for the offline problems together
with this prediction. The performance of this approach heavily depends on the quality of the prediction.
Unfortunately, it appears to be very hard to accurately predict a detailed power profile [21]. Therefore,
it is worth looking at methods that do not rely that heavily on predictions of the power profile and are
therefore more robust against prediction errors. Most of these methods have the optimization of the costs
of electricity as their objective, rather than obtaining a flat power profile. However, it is shown that often
a flat power profile is a side-effect of the used methods.

One way to deal with the considered uncertainty of the power profile is to use stochastic models and
methods such as stochastic dynamic programming (e.g., in [22]) and auctions (e.g., the PowerMatcher
[27]) In the latter, households can send their desired energy consumption to the neighborhood controller in
the form of a bid. The controller now acts as an auctioneer and determines an equilibrium electricity price
based on all received bids. Based on the price, the households individually decide how much electricity
to consume and in what way (e.g. for EV charging).

A disadvantage of many stochastic models is that they use the current state of the system to make
decisions about charging and, in general, do not take into account possible decisions in the future.
Therefore, the flexibility in the system may already have been used before it was needed most. As a
result, it can happen that large peaks cannot be prevented because there is no flexibility left.

One of the most popular paradigms to solve optimization problems with uncertain parameters is
robust optimization [3]. The main motivation behind the use of robust optimization is that solving a
problem using estimations or expectations of the uncertain parameters can lead to solutions that are
infeasible in practice. Using the framework of robust optimization, one is able to obtain a solution to the
problem that is feasible for a specific set of possible outcomes of the uncertain parameters (the uncertainty
set) and thus take the uncertainty into account. Furthermore, it is in general relatively easy to derive the
robust representation (the robust counterpart) of a given optimization problem (e.g., a linear or convex
program).

However, there are some disadvantages to this method, especially in the light of our application. First
of all, one important assumption within robust optimization is that we must know all possible outcomes
of the power demand, at any time. In our application, this is similar to knowing lower and upper bounds
on the power consumption at any point in time. While technical bounds are known (e.g. the power
demand may not exceed the transformer capacity and is nonnegative), it is highly unlikely that these
boundaries are reached very often. Furthermore, solutions tend to be very conservative because they are
guaranteed to be feasible for all possible realizations of the parameters, regardless of how likely a certain
realization is. Finally, the robust counterpart of DEVCP is a second order conic program [5], and for
CEVCP it is either a semi-definite optimization problem or NP-hard, depending on the uncertainty set
[4]. This might be the major drawback considering the robust counterpart of our problems, because the
scheduling of the EVs must be done on local controllers with relatively low computational power.

One of the works in which robust optimization is used to solve an EV charging problem is by Soroudi
and Keane [37]. They consider the problem where the objective is to minimize the total electricity costs
and where energy prices are uncertain. It is assumed that lower and upper bounds for the prices exist.
By viewing the problem as a robust optimization problem, it is solved using its robust counterpart.
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For CEVCP , Gerards and Hurink [13] devised a robust algorithm that relies on the earlier mentioned
concept of a fill level. They carry out an online valley-filling approach using an estimation of the optimal
fill level. To compensate for estimating the level too low, charging at the maximum rate near the deadline
is enabled if needed. For the case where the estimation is higher than the optimal level, the authors show
that the relative deviation from the target profile is low, both in theory and practice.

For DEVCP , we already observed that the offline version of the problem could be solved by using
the greedy algorithm. A popular way to solve these greedy problems in an online setting is to model
them as k-secretary problems. In these problems, a number of values is presented to the decision maker
one at a time. Each time, the decision maker must decide to either select the value or discard it and
go on to the next one. In k-secretary problems, the decision maker has to select k values in this way.
In most k-secretary problems, the goal is to either maximize the expected payoff of the selected values
[1, 26] or the probability that the best k values are selected [15]. In both cases, some fixed number of
first observations is discarded. Based on these observations, a threshold is determined: any next value
is accepted if it does not exceed the threshold (for minimization problems). For the different methods
to determine the fixed number of first observations and the thresholds, competitive ratios have been
established. However, all methods use the assumption that the data is presented to the algorithm in a
random order. Obviously, this is not the case in our application. Still, we will use some ideas from the
k-secretary problem to solve DEVCP .

Walraven and Spaan [38] model DEVCP for multiple EVs as a Markov decision process (MDP). Their
objective is to minimize the costs of buying electricity from the main grid by matching the charging of the
EVs as well as possible to the amount of renewable energy resource (in this case wind) available. Their
method uses predictions of wind power as input for the MDP. While the model performs quite well for
some case studies, it relies on a prediction of the wind power profile that must be very detailed. Making
such a detailed prediction may not always be possible in practice.

Gan et al. [12] proposed a stochastic distribution algorithm to solve DEVCP with Constraint (2.2)
and an arbitrary number of EVs. For each time interval, a probability distribution for the charging profile
is set up using the total electricity demand in the current interval and the charging profile of the previous
interval. For a series of case studies, the authors show that their algorithm produces a solution that
converges towards the optimal solution when the number of EVs goes to infinity. However, a drawback
of their method is that much communication between the transformer and the individual EVs is needed,
even if there is just a single EV. Furthermore, they explicitly model the power demand of each house
at each time as a random variable with a known probability distribution. However, it has been shown
(e.g. by Javed et al. [21]) that accurately predicting the power demand at each moment in time is very
difficult (see also Section 1.1).





Chapter 3

Continuous charging power

In the previous chapter, we introduced the EV charging problems that we consider in this thesis. In this
chapter, we focus on the version in which the charging power is continuous: CEVCP. As mentioned in
the previous chapter, Gerards and Hurink [13] developed an online fill level algorithm to solve the online
version of CEVCP in which an estimation of the optimal fill level was used. While a small approximation
ratio and positive simulation results were obtained for the case where the estimated level is higher than
the optimal one, the authors hardly pay attention to the case where the estimated level is lower than the
optimal one. They suggest that one should always aim for an estimate that is higher than the optimal level
to avoid large deviations from the target profile at the end of the charging interval. However, we suspect
that estimating the fill level too low does not necessarily lead to more deviation of the overall house profile
from the target profile over the whole charging interval than estimating it too high. Therefore, the main
focus of this chapter is on the analysis of the performance of the algorithm in [13] for the case where the
estimated fill level is too low.

To start off, we first analyze CEVCP and discuss some of its characteristics. After that, we discuss
the algorithm of Gerards and Hurink and derive a bound on the performance of this algorithm for the
case where the estimated fill level is too low. Finally, we analyze the tightness of this bound and reflect
on the obtained results.

3.1 Analysis of CEVCP

In the previous chapter, we presented the valley-filling approach to determine the optimal solution to
CEVCP . In this approach, the house deviation in each interval is filled up to a certain level by charging
the EV appropriately. Given an instance of CEVCP , this level characterizes the optimal solution, as
filling to any other level results in charging either less or more than the required amount C. We denote
this optimal level by Z, and its use is visualized in Figure 3.1.

If the house deviation is already larger than Z in a certain time interval, no charging is done in that
interval. If filling up to Z requires charging more than the maximum charging rate x̄, then exactly this
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Figure 3.1: Charging an EV using the optimal fill level Z. The EV arrives at 18:00 and its charging
deadline is 7:00. Here, Z = 266.
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amount x̄ is charged at that moment. Therefore, if we know Z beforehand, the optimal solution can be
obtained in linear time by computing for each interval m

xm := max(0,min(Z − pm + qm, x̄)).

For the feasibility of CEVCP , the maximum charging rate must be large enough to charge the amount C
in any case, even if that means charging x̄ in each interval. Therefore, we assume that x̄ is large enough
to accommodate such an extreme case:

Assumption 3.1. x̄ ≥ C/M.

Note that if x̄ = C/M , then CEVCP only has one feasible solution.
For the analysis and derivations in the remainder of this chapter, it is furthermore convenient to rule

out the case that charging at maximum power is not enough to fill up the house deviation in an interval
to Z. Therefore, we assume for the remainder of this chapter that this will not happen:

Assumption 3.2. x̄ ≥ Z −minm(pm − qm).

A justification for this assumption is that for residential charging, the maximum charging power
typically resides around either 3.3 or 6.6 kW (among others, see [23]). In general, this is large compared
to the house deviation of a household as we argued in Section 1.1. Therefore, Z is not likely to exceed
the left side of Assumption 3.2, unless the charging requirement C is extremely large.

We note that under Assumption 3.2, zm ≥ Z for all m ∈ M in the optimal solution, since the house
deviation is always filled up to Z if it does not exceed Z already. As a result, this implies that the
deviation from the target profile is always at least Z in the optimal solution.

Let us call the intervals in which charging is done active intervals and those in which no charging is
done inactive. Let us denote the set of active intervals by I∗. The distribution of the house deviation
over the active intervals does not have any influence on Z, as long as I∗ remains the same. This is
because redistributing the house deviation for these intervals does not change the total house deviation
and charged amounts for these intervals (see Figure 3.2). The same applies to the inactive intervals: as
long as the set of inactive intervals (M\I∗) remains the same, redistributing the house deviation over
these intervals does not influence Z. However, this does not apply anymore if some active intervals
become inactive and some inactive intervals become active while redistributing the house deviation. If
the number of inactive intervals increases (at the expense of the number of active intervals), charging is
spread over less (active) intervals, which leads to an increase in Z. However, when we consider two cases
in which the total house deviation (the house deviation summed up over the whole charging interval) is
equal, then Z will be highest in the case with fewer inactive intervals. The reason for this is that house
deviation that is “consumed” in an inactive interval generates more “room” in the valleys of the power
profile to charge. As a result, the eventual fill level will be lower. Figures 3.1 and 3.3 illustrate this
phenomenon.

We can derive some upper and lower bounds on Z using the above analysis and assumptions. First of
all, we can derive an upper bound on Z if we know the total power consumption in the charging interval:

0

5

10

Z

Time

P
ow

er
(W

)

0

5

10

Z

Time

P
ow

er
(W

)

0

5

10

Z

Time

P
ow

er
(W

)

Figure 3.2: An example to show that the distribution of the house deviation over the active intervals
does not influence Z. The total house deviation for the active intervals (the first 3) is the same in all
three situations (10), but it is distributed differently. As long as the set of active intervals I∗ remains the
same as well as the total house deviation in these intervals, Z remains the same: it is only distributed
differently as well to accommodate for the changes in the house deviation distribution.
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Figure 3.3: Charging an EV using the optimal fill level. The sum of the house deviation (
∑M
m=1 pm−qm)

is equal to that of the case in figure 3.1, but here the house deviation is distributed over the charging
interval such that there are no peaks when the (net) profile is flattened. Here, Z = 281.

Lemma 3.1. Let P :=
∑M
m=1 pm and Q :=

∑M
m=1 qm. Then

Z ≤ P −Q+ C

M
.

Proof. Let zm be the deviation that corresponds with the optimal solution. Then the result directly
follows from the observation that zm ≥ Z for all m in the optimal solution:

P −Q+ C

M
=

∑M
m=1 pm −

∑M
m=1 qm +

∑M
m=1 xm

M
=

∑M
m=1 zm
M

≥
∑M
m=1 Z

M
= Z.

The bound in Lemma 3.1 is tight if zm = Z for all m ∈M. This occurs when, in the optimal solution,
the deviation from the target profile is the same for all intervals. As a result, all intervals are active.
Furthermore, note that for computing this upper bound, no detailed information about the power profile
(i.e., individual pm’s) is needed. The only unknown parameter in the bound is the power demand summed
over the entire charging interval.

To derive a lower bound on Z, we need to know the minimum house deviation (minm∈M(pm − qm)).

Lemma 3.2. Z ≥ minm∈M(pm − qm) + C/M.

Proof. Let m∗ the value of m for which pm − qm is minimal. Then xm∗ ≥ xm for all m. Furthermore ,
we must have that xm∗ ≥ C/M to be able to charge C over the M intervals. To see this, suppose that
xm∗ < C/M . Then we have

C =

M∑
m=1

xm ≤
M∑
m=1

xm∗ <

M∑
m=1

C/M = C.

This is a contradiction and therefore xm∗ ≥ C/M . Using this, we get

Z = pm∗ − qm∗ + xm∗ ≥ min
m∈M

(pm − qm) + C/M.

The bound in Lemma 3.2 is tight when the house deviation is the same for all intervals. Note that
this bound might be less useful in the online version of the problem, since we need to know the minimum
house deviation in order to use it.
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3.2 The robust online algorithm

In this section, we discuss the robust online EV charging algorithm developed by Gerards and Hurink
[13] in more detail. It uses the fill level approach as described in the previous section. As the optimal
fill level Z is not known beforehand in the online version of CEVCP , the input for the algorithm is an
estimate Ẑ of Z. This is done at the start of the charging interval before any charging is done. The
decision how much to charge in a certain time interval m is postponed until the very beginning of that
interval. We assume that at the beginning of an interval m, a more accurate prediction of pm is available.
Based on Ẑ and the prediction of pm, the amount of charging in m is determined by filling up the house
deviation in m to Ẑ, as long as this does not lead to an infeasible solution. If Ẑ > Z, then the EV will
be fully charged before its deadline and no charging is done near the end of the charging interval (see
Figure 3.4). If Ẑ < Z, then at some point in time, charging at maximum power x̄ is needed in order to
meet the charging requirement before the deadline (see Figure 3.5).
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Figure 3.4: Charging an EV using a fill level higher than the optimal one (Ẑ > Z).
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Figure 3.5: Charging an EV using a fill level lower than the optimal one (Ẑ < Z).

In Algorithm 2, these two cases are combined into a single procedure. Here, T keeps track of the
amount of electricity that has been charged so far: the state of charge (SoC). For each m, the algorithm
first determines the maximum amount that can be charged (line 2). If the net power consumption already
exceeds Ẑ (so if pm−qm ≥ Ẑ), then no charging is done. If not, then the maximum amount is Ẑ−pm+qm,
as long as this does not exceed x̄. Next, the two cases are treated. If Z < Ẑ, then the EV will be fully
charged already before its deadline. As a result, T = C for some time intervals. Line 3 will set xm to 0
in those cases. If Z > Ẑ, then at some points in time, charging at maximum power is needed in order to
meet the charging requirement. Line 4 checks whether we are at such a point. If this is the case, xm is
set to x̄ or to the remaining amount that has to be charged if this amount is less than x̄ (line 5). Finally,
T is updated to the new SoC.

This algorithm has several advantages compared to algorithms tat explicitly use predictions of the
power profile. First of all, it only requires the prediction of a single parameter (Z), rather than a detailed
power profile. Secondly, as we will see in the next section, we can put bounds on its performance, for
both the cases where Ẑ > Z and where Ẑ < Z (under some conditions on x̄, Ẑ and Z).
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Algorithm 2 Online EV planning (Algorithm 1 in [13]).

1: for m = 1 to M do
2: xm = max(0,min(Ẑ − pm + qm, x̄))
3: xm = min(xm, C − T ) (needed for Z ≤ Ẑ)
4: if T + xm + (M −m)x̄ < C then
5: xm := min(C − T, x̄) (needed for Z > Ẑ)
6: end if
7: T = T + xm
8: end for

3.3 Bounds on the relative costs

Algorithm 2 is an online algorithm, and therefore produces an approximation to the optimal solution of
problem CEVCP . The goal of this section is to analyze the performance of the algorithm by deriving
approximation ratios for the two separate cases Ẑ > Z and Ẑ < Z. Let us denote the objective value
induced by the optimal fill level Z by C(Z), and the objective value induced by the estimated fill level Ẑ
by C(Ẑ). Also, let ẑm be the deviation of the overall house profile from the target profile in interval m in
the online solution (that is, the solution obtained when using Ẑ as input for algorithm 2). In a similar
fashion, let x̂m be the charged amount in m in the online solution. Then we have

C(Z) =

√√√√ M∑
m=1

(pm − qm + xm)2 =

√√√√ M∑
m=1

z2m

and

C(Ẑ) =

√√√√ M∑
m=1

(pm − qm + x̂m)2 =

√√√√ M∑
m=1

ẑ2m.

We are now interested in a bound on the relative difference

C(Ẑ)

C(Z)
. (3.1)

We call (3.1) the relative costs. Gerards and Hurink [13] already derived a bound on this ratio for the
case Ẑ ≥ Z:

Theorem 3.3 (Theorem 1 in [13]). If Ẑ ≥ Z, then

C(Ẑ)

C(Z)
≤

√
Ẑ

Z
.

For the remainder of this section, we assume the opposite case, namely that Ẑ < Z. We show that
the relative costs of Algorithm 2 can be bounded when the problem instance belongs to a certain subset
of the set of instances for CEVCP , which we call the suitable set. First we explain the suitable set in
more detail. After that, we bound the number of intervals at the end of the charging interval in which
charging at maximum power is needed to meet the charging requirement. We use this bound to, finally,
derive a bound on the relative costs.

3.3.1 The suitable set

In this subsection, we define the suitable set and discuss its characteristics. To this end, we first define
a special time interval that marks the moment in the charging interval at which charging at maximum
power is needed to meet the charging requirement.

Definition 3.1. The time interval γ is the last interval in which no charging at maximum power is
required in the online solution.
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Figure 3.6: An instance of CEVCP . The relative costs of the online solution can become arbitrarily large
depending on the house deviation in intervals {γ + 1, ...,M}.

This definition implies that in all intervals in {γ + 1, ...,M}, charging at maximum power is needed to
meet the charging requirement.

To see why it is very hard to bound the relative costs when Ẑ < Z in general, we consider the instance
in Figure 3.6. In this instance, the estimated level Ẑ is chosen such that all charging in the online solution
is done in the intervals in {γ + 1, ...,M}. Note that in this case, γ = C/x̄. For these intervals, the house
deviation pm − qm is the same and positive. For each time interval m ∈ {1, ..., γ}, the house deviation
pm − qm is −C/(M − γ). In the optimal solution, all charging is done in these intervals, Therefore,
xm = C/(M − γ) for all intervals m ∈ {1, ..., γ}. It follows that for all these intervals m

zm = pm − qm + xm = − C

M − γ +
C

M − γ = 0.

Therefore, the optimal fill level Z is 0. As a result, we have that x̂m = 0 and xm = −pm + qm for all
1 ≤ m ≤ γ and that xm = 0 and x̂m = x̄ for all γ + 1 ≤ m ≤ M . Using this information, we can derive
the following:

C(Ẑ)2 − C(Z)2 =

M∑
m=1

(pm − qm + x̂m)2 −
M∑
m=1

(pm − qm + xm)2

=

M∑
m=1

((pm − qm)2 + 2x̂m(pm − qm) + x̂2m)−
M∑
m=1

((pm − qm)2 + 2xm(pm − qm) + x2m)

=

M∑
m=1

(2(x̂m − xm)(pm − qm) + x̂2m − x2m)

=

γ∑
m=1

(−2xm(pm − qm)− x2m) +

M∑
m=γ+1

(2x̂m(pm − qm) + x̂2m)

=

γ∑
m=1

(−2xm(pm − qm + xm)) +

M∑
m=γ+1

(2x̄2(pm − qm)) + x̄2

=

γ∑
m=1

(−2xm · 0) +

M∑
m=γ+1

(2x̄(pm − qm + x̄))

= 2x̄

M∑
m=γ+1

(pm − qm + x̄). (3.2)

Furthermore, we have that

C(Z)2 =

M∑
m=1

(pm − qm + xm)2 =

M∑
m=γ+1

(pm − qm + xm)2 =

M∑
m=γ+1

(pm − qm)2 ≤
(

M∑
m=γ+1

(pm − qm)

)2

.

(3.3)
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Using Equations (3.2) and (3.3), we get

C(Ẑ)

C(Z)
=

√
1 +
C(Ẑ)2 − C(Z)2

C(Z)2
≥

√√√√√1 + 2x̄

∑M
m=γ+1(pm − qm + x̄)(∑M
m=γ+1(pm − qm)

)2 . (3.4)

Equation (3.4) implies that the relative costs diverge as the term
∑M
m=γ+1(pm − qm) converges to 0.

Therefore, the relative costs can become arbitrarily large, depending on the term
∑M
m=γ+1(pm − qm).

This shows that, in general, we cannot bound the relative costs in terms of the parameters known
beforehand.

However, the instance in Figure 3.6 is artificial and does not resemble typical real instances from
practice. Therefore, this motivates us to investigate whether there exists a subset of the set of instances
for CEVCP that contains instances for which the relative costs can be bounded. It turns out that such
a subset exists. We define it as follows:

Definition 3.2. Let Uc be the set of all instances for CEVCP. The suitable set Ic ⊆ Uc is the set of
all instances that have the following three properties:

Property 3.1. ∑M
m=γ+1 zm∑M
m=1 zm

=
M − γ
M

;

Property 3.2.
M∑

m=γ+1

xm =
M − γ
M

C;

Property 3.3.

Ẑ + Z
x̄+ C/M

x̄− C/M ≤ x̄.

Property 3.1 states that in the optimal solution, the deviation of the overall house profile from the
target profile in the intervals {γ + 1, ...,M} is proportional to the total deviation over all intervals. To
clarify this, Figure 3.7 shows an instance that has Property 3.1. Since zm is the same for each m ∈ M
for this instance,

∑M
m=γ+1 zm(= (M − γ)Z) is proportional to

∑M
m=1 zm(= MZ) for any γ.
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Figure 3.7: An instance that has Property 3.1.

Clearly, an upper bound on the left-hand side of Property 3.1 is 1 rather than (M − γ)/M . While
we can create an instance for which this upper bound of 1 is tight (e.g., the instance in Figure 3.6), it
is very unlikely that this upper bound is tight for practical instances. Furthermore, although it is very
unlikely that an instance has Property 3.1, instances have this property in expectation if the deviations
in all intervals are independent and identically distributed random variables.
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Lemma 3.4. Suppose z1, ..., zM are independent and identically distributed (i.i.d.) random variables and
γ is given. Then

E

[∑M
m=γ+1 zm∑M
m=1 zm

]
=
M − γ
M

for any instance I ∈ Uc.

Proof. Since z1, ..., zM are i.i.d., we have that

E

[
zm′∑M
m=1 zm

]
= E

[
zm′′∑M
m=1 zm

]
(3.5)

for all m′,m′′ ∈M. Therefore, we get

1

M
=

1

M
E

[∑M
m=1 zm∑M
m=1 zm

]
=

1

M

M∑
m=1

E

[
zm∑M
m=1 zm

]
=

1

M

M∑
m=1

E

[
z1∑M

m=1 zm

]
= E

[
z1∑M

m=1 zm

]
. (3.6)

From Equations (3.5) and (3.6), it follows that

E

[∑M
m=γ+1 zm∑M
m=1 zm

]
=

M∑
m=γ+1

E

[
zm∑M
m=1 zm

]
=

M∑
m=γ+1

E

[
z1∑M

m=1 zm

]
=

M∑
m=γ+1

1

M
=
M − γ
M

.

Lemma 3.4 and the discussion above imply that for many instances that are not in Ic, we still have
that the expected difference between the left-hand side and right-hand side of Property 3.1 is small. In
Section 5.4.3, we use simulations to support this implication.

Property 3.2 states that in the optimal solution, the charged amount in the intervals {γ + 1, ...,M}
is proportional to the total charging requirement C. Figure 3.8 shows an example of an instance that
has Property 3.2. In the optimal solution to this instance, 13 intervals are active and xm is the same for
each active interval. Furthermore, for γ ≡ 5:00, we have that 2 out of the 8 intervals in {γ+ 1, ...,M} are

active. As a result,
∑M
m=γ+1 xm/C = 2/13. Also, M − γ = 8 and therefore (M − γ)/M = 8/52 = 2/13

as well. We conclude that the instance in Figure 3.8 has Property 3.2.

An upper bound to the left-hand side of Property 3.2 is C. However, the only instances for which
this upper bound is reached are those in which all charging is done at the end of the charging interval
in the optimal solution (see Figure 3.9). Therefore, we may conclude that most instances will not reach
this upper bound of C. Furthermore, while most instances in Uc do probably not satisfy Property 3.2,
Property 3.2 is satisfied in expectation when the charged amounts x1, ..., xM are i.i.d..

Lemma 3.5. Suppose x1, ..., xM are i.i.d. random variables and γ is given. Then

E

[
M∑

m=γ+1

xm

]
=
M − γ
M

C

for any instance I ∈ Uc.

Proof. Since x1, ..., xM are i.i.d., we have that

C

M
=

C

M
E

[∑M
m=1 xm
C

]
=

1

M

M∑
m=1

E[xm] = E[x1].

Therefore, we get

E

[
M∑

m=γ+1

xm

]
=

M∑
m=γ+1

E[xm] = (M − γ)E[x1] =
M − γ
M

C.
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Figure 3.8: An instance that has Property 3.2.
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Figure 3.9: An instance for which the left-hand side of Property 3.2 is equal to C.
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Figure 3.10: The minimum allowed value of x̄ according to Property 3.3 for different values of Z and Ẑ.
Here, M = 52.

Similarly to Property 3.1, Lemma 3.5 and the discussion above imply that for many instances that
are not in Ic, the expected difference between the left-hand side and right-hand side of Property 3.2 is
small. In Section 5.4.3, we use simulations to support this implication.

Property 3.3 states that x̄ must be relatively large compared to Z and Ẑ. Furthermore, when C is
very large, x̄ should be large as well to accommodate this large charging requirement. In Figure 3.10, the
minimum allowed value of x̄ according to Property 3.3 is given for different values of Z and Ẑ. The plots
imply that x̄ must grow linearly with Z and Ẑ in order to keep satisfying Property 3.3. This suggests
that we can adjust a given problem instance easily so that it has Property 3.3 by simply increasing x̄.

In Section 5.4.3, we analyze to what extend instances from practice have the properties in Definition
3.2 and thus belong to the suitable set Ic. By doing this, we can determine whether the bound that we
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derive in this section can be applied to instances from practice.

3.3.2 Bounding M − γ
Before we derive a bound on the relative costs, we first consider the following. Whether or not charging
at maximum power near the end of the charging interval is needed depends solely on Ẑ: it is needed if
and only if Ẑ < Z. However, the exact time interval γ after which charging at maximum power is needed,
does not only depend on Ẑ, but on x̄ as well. If the maximum charging power is very high, charging at
this rate can be postponed for a very long time before it becomes necessary. On the other hand, if x̄ is
very low, charging at this rate may already be required after relatively few intervals.

By the definition of γ, the number of intervals in which charging at maximum power is needed is
M − γ. Under Property 3.2 that we stated in the previous subsection in the definition of the suitable set
Ic, we can derive a bound on this number of intervals.

Lemma 3.6. Suppose Ẑ < Z and Property 3.2 is satsified. Then

M − γ ≤ min

(
C

x̄
,M

Z − Ẑ
x̄− C/M + Z − Ẑ

)
(3.7)

Proof. First we show that the inequality holds for the first term of the minimum expression. We can
rewrite C to get the following inequality:

C =

M∑
m=1

x̂m =

γ∑
m=1

x̂m + (M − γ)x̄ ≥ (M − γ)x̄.

From this, it follows directly that

M − γ ≤ C

x̄
.

Now we prove that the inequality holds for the second term as well. For this, we first claim that for each
m ∈M with m ≤ γ, it holds that

zm − ẑm ≤ Z − Ẑ. (3.8)

This can be seen by considering two different cases. If zm > Z, then no charging is done in m in both the
optimal and online solution (so x̂m = xm = 0). Therefore, ẑm = zm and the result follows since Z > Ẑ.
If zm ≤ Z, the result follows since ẑm ≥ Ẑ for all m ≤ γ.

Next, we have:

M∑
m=γ+1

(ẑm− zm) =

M∑
m=γ+1

(pm− qm + x̄− pm + qm−xm) =

M∑
m=γ+1

(x̄−xm) = (M − γ)

(
x̄− C

M

)
, (3.9)

where the last equality follows from Property 3.2. Furthermore, since
∑M
m=1 zm =

∑M
m=1 ẑm, we have

γ∑
m=1

zm − ẑm =

M∑
m=γ+1

ẑm − zm. (3.10)

Combining Equations (3.8)-(3.10) gives

γ(Z − Ẑ) =

γ∑
m=1

(Z − Ẑ) ≥
γ∑

m=1

zm − ẑm =

M∑
m=γ+1

ẑm − zm = (M − γ)

(
x̄− C

M

)
.

From this, we can derive an inequality on γ:

γ(Z − Ẑ) ≥ (M − γ)

(
x̄− C

M

)
⇒ γ

(
x̄− C

M
+ Z − Ẑ

)
≥ Mx̄− C

⇒ γ ≥ Mx̄− C
x̄− C/M + Z − Ẑ

.
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Then the result follows:

M − γ ≤M − Mx̄− C
x̄− C/M + Z − Ẑ

=
Mx̄− C +MZ −MẐ

x̄− C/M + Z − Ẑ
− Mx̄− C
x̄− C/M + Z − Ẑ

= M
Z − Ẑ

x̄− C/M + Z − Ẑ
.

The first term in the minimization expression of (3.7), C/x̄, is simply the minimum number of active
intervals needed to charge C. Therefore, it represents a worst case scenario in which Ẑ is so low that
no charging is done in any interval in {1, ..., γ}. The second term in the minimization expression of
(3.7) reflects some nice characteristics of the problem. If we estimate Z perfectly (i.e., Ẑ = Z), the
term becomes 0, which is in accordance with the fact that no charging at maximum power is needed
in this case. If x̄ = C/M , charging at maximum power is needed in all intervals to meet the charging
requirement, and the bound evaluates to M as well. Therefore, the bound is tight in these two (extreme)
cases and takes the differences between Ẑ and Z on the one hand and x̄ and C/M on the other hand into
account.

3.3.3 Bounding the relative costs

If a problem belongs to the suitable set Ic defined in Section 3.3.1, the relative costs of Algorithm 2 are
bounded when Ẑ ≤ Z. We state this in the following theorem:

Theorem 3.7. Suppose Ẑ ≤ Z and the problem instance belongs to Ic. Then

C(Ẑ)

C(Z)
≤

√√√√1 + min

(
C

Mx̄
,

Z − Ẑ
x̄− C/M + Z − Ẑ

)
x̄− C/M

Z2
(x̄− Ẑ + Z).

Before we can prove this theorem, we need one additional result.

Lemma 3.8. For all m ∈ M, we have zmxm = Zxm. Also, for all m ∈ M with m ≤ γ, we have
ẑmx̂m = Ẑx̂m and zmx̂m = Zx̂m.

Proof. If xm = 0, then zmxm = 0 = Zxm. If xm > 0, then pm − qm < Z. Therefore, we must have that
pm − qm + xm = Z, so zm = Z and thus zmxm = Zxm. This proves the first part of the lemma.

For proving the second part, we use a similar argument. If x̂m = 0, then ẑmx̂m = 0 = Ẑx̂m. If
x̂m > 0, then pm − qm < Ẑ. Therefore, ẑm = Ẑ and thus ẑmx̂m = Ẑx̂m.

Finally, for the third part, we combine the ideas from the first two parts. If x̂m = 0, then zmx̂m =
0 = Zx̂m. If x̂m > 0, then xm > 0 as well. Therefore, zm = Z, and thus zmx̂m = Zx̂m.

Now we are ready to prove the theorem:

Proof of Theorem 3.7. We first rewrite the relative costs as follows:

C(Ẑ)

C(Z)
=

√√√√∑M
m=1 ẑ

2
m∑M

m=1 z
2
m

=

√√√√1 +

∑M
m=1 ẑ

2
m − z2m∑M

m=1 z
2
m

=

√√√√1 +

∑M
m=1(ẑm + zm)(ẑm − zm)∑M

m=1 z
2
m

.

For any m ∈M, we have

ẑm − zm = pm − qm + x̂m − (pm − qm + xm) = x̂m − xm. (3.11)
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Furthermore, using Lemma 3.8, we get

M∑
m=1

zmxm = Z

M∑
m=1

xm = ZC.

Therefore, by Lemma 3.8,

C(Ẑ)

C(Z)
=

√√√√1 +

∑M
m=1(ẑm + zm)(x̂m − xm)∑M

m=1 z
2
m

=

√√√√1 +
(Ẑ + Z)

∑γ
m=1 x̂m + x̄

∑M
m=γ+1(ẑm + zm)−∑M

m=1 ẑmxm − ZC∑M
m=1 z

2
m

.

For m ∈M with m ≤ γ, we have ẑm ≥ Ẑ. Furthermore, for m ∈M with m > γ, we have ẑm ≥ zm ≥ Z.
Therefore, we get

C(Ẑ)

C(Z)
≤

√√√√1 +
(Ẑ + Z)

∑γ
m=1 x̂m + x̄

∑M
m=γ+1(ẑm + zm)− Ẑ∑γ

m=1 xm − Z
∑M
m=γ+1 xm − ZC∑M

m=1 z
2
m

=

√√√√1 +
(Ẑ + Z)

∑γ
m=1 x̂m + x̄

∑M
m=γ+1(ẑm + zm)− Ẑ∑M

m=1 xm − (Z − Ẑ)
∑M
m=γ+1 xm − ZC∑M

m=1 z
2
m

=

√√√√1 +
−(Ẑ + Z)

∑M
m=γ+1 x̂m + x̄

∑M
m=γ+1(ẑm + zm)− (Z − Ẑ)

∑M
m=γ+1 xm∑M

m=1 z
2
m

=

√√√√1 +
−(Ẑ + Z)(M − γ)x̄+ x̄

∑M
m=γ+1(ẑm + zm)− (Z − Ẑ)(M − γ)C/M∑M

m=1 z
2
m

.

Using Equation (3.11), we can replace ẑm by zm + x̂m − xm:

C(Ẑ)

C(Z)
≤

√√√√1 +
−(Ẑ + Z)(M − γ)x̄+ x̄

∑M
m=γ+1(2zm + x̄− xm)− (Z − Ẑ)(M − γ)C/M∑M

m=1 z
2
m

=

√√√√1 +
−(Ẑ + Z)(M − γ)x̄+ 2x̄

∑M
m=γ+1 zm + (M − γ)(x̄2 − x̄C/M)− (Z − Ẑ)(M − γ)C/M∑M

m=1 z
2
m

≤

√√√√1 +
2x̄
∑M
m=γ+1 zm + (M − γ)(−x̄Ẑ − x̄Z + x̄2 − x̄C/M − ZC/M + ẐC/M)

Z
∑M
m=1 zm

.

Using Property 3.1, we can rewerite this expression as

C(Ẑ)

C(Z)
≤
√

1 +
2x̄

Z

M − γ
M

+
(M − γ)(−x̄Ẑ − x̄Z + x̄2 − x̄C/M − ZC/M + ẐC/M)

Z
∑M
m=1 zm

.

To simplify this expression further, we use a reformulation of Property 3.3:

Ẑ + Z
x̄+ C/M

x̄− C/M ≤ x̄

⇒ 0 ≤ x̄− Ẑ − Z x̄+ C/M

x̄− C/M
⇒ 0 ≤ (x̄− Ẑ)(x̄− C/M)− Z(x̄+ C/M)

= x̄2 − x̄C/M − x̄Ẑ + ẐC/M − x̄Z − ZC/M
= −x̄Ẑ − x̄Z + x̄2 − x̄C/M − ZC/M + ẐC/M. (3.12)
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Using Equation (3.12) and the fact that Z
∑M
m=1 zm ≥MZ2 leads to the following:

C(Ẑ)

C(Z)
≤
√

1 +
2x̄

Z

M − γ
M

+
M − γ
MZ2

(−x̄Ẑ − x̄Z + x̄2 − x̄C/M − ZC/M + ẐC/M)

=

√
1 +

M − γ
MZ2

(−x̄Ẑ + x̄Z + x̄2 − x̄C/M − ZC/M + ẐC/M)

=

√
1 +

M − γ
M

x̄− C/M
Z2

(x̄+ Z − Ẑ).

Using Lemma 3.6, we can now derive the final result:

C(Ẑ)

C(Z)
≤

√√√√1 + min

(
C

Mx̄
,

Z − Ẑ
x̄− C/M + Z − Ẑ

)
x̄− C/M

Z2
(x̄+ Z − Ẑ).

The bound in Theorem 3.7 reflects some interesting characteristics of the problem. If we estimate Z
correctly (so if Ẑ = Z), then the bound resolves to 1. Furthermore, the bound becomes 1 as well when
we have x̄ = C/M . In this case, only one solution is possible since we must have that xm = x̄ for all m.
Finally, the bound is continuous for all Ẑ ≤ Z except when Z = 0.

Theorems 3.3 (from [13]) and 3.7 give bounds for the two cases Ẑ ≥ Z and Ẑ < Z. To summarize
these bounds, we define the following function:

cc(Z, Ẑ, C,M, x̄) :=



√
Ẑ

Z
for Z ≤ Ẑ√√√√1 + min

(
Z − Ẑ

x̄− C/M + Z − Ẑ
,
C

Mx̄

)
x̄− C/M

Z2
(x̄− Ẑ + Z) for Z > Ẑ.

(3.13)
We call this function the (continuous) cost bound function, since

C(Ẑ)

C(Z)
≤ cc(Z, Ẑ, C, x̄,M)

for all Ẑ (when the problem instance belongs to Ic). In the next section, we analyze for different cases
how tight the cost bound function is. We consider instances that satisfy the conditions as well as instances
that do not.

3.4 Analyzing the tightness of the cost bound function

In the previous section, we derived bounds on the ratio between the objective value of the online version
of CEVCP and its offline version and defined the cost bound function cc(Z, Ẑ, C,M, x̄) that bounds these
relative costs C(Ẑ)/C(Z). In this section, we analyze how tight the cost bound function is for several
situations.

To test the theoretical performance of the cost bound function, we first use a problem isntance that has
Properties 3.1-3.3 and therefore belongs to the suitable set Ic. Since it is very unlikely that a real house
profile has Properties 3.1 and 3.2, we created an artificial instance of the problem whose characteristics
are in Table 3.1. In this instance, the charging interval consists of a whole day. The charging interval
is divided into 15 minute time intervals (hence M = 24 · 4 = 96). The house deviation is the same for
each interval and thus obviously distributed equally over the charging interval. Thus, in the optimal
solution, the charging is evenly distributed over the charging interval as well. Therefore, the instance has
Properties 3.1 and 3.2. Property 3.3 can be easily satisfied by choosing x̄ large enough. To make sure
that the value of x̄ in Table 3.1 is large enough, we rewrite condition 3.3:

Ẑ + Z
x̄+ C/M

x̄− C/M ≤ x̄

⇒ Ẑ ≤ x̄− Z x̄+ C/M

x̄− C/M .
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Using the information from Table 3.1, we get that Property 3.3 is satisfied if

Ẑ ≤ 248.9. (3.14)

Therefore, as long as Ẑ satisfies (3.14), this artificial instance has the properties that are required for
Theorem 3.7.

In Figure 3.11, the cost bound function cc and the actual relative costs when using Algorithm 2 can
be seen for this instance. We see that for Ẑ < Z, cc(Z, Ẑ, C, x̄,M) gives a very tight bound on the actual
costs. This implies that the bound that we derived in the previous section is very tight for instances that
are in Ic.

Parameter Value
M 96
pm − qm 100 for all m ∈M
C 2880
x̄ 400
Z 130

Table 3.1: The characteristics of the artificial problem instance.
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Figure 3.11: The cost bound function and the actual relative costs for the artificial instance for different
values of Ẑ.

From the above, we have an indication of the performance of cc(Z, Ẑ, C, x̄,M) for instances that
belong to the suitable set and thus have Properties 3.1-3.3. We now turn our attention to real instances
of the problem. For this, we use measurements of the house profile of a Dutch house of one day. As for
the artificial data, we take the whole day as the charging interval and divide it into 15 minute intervals.
We set the maximum charging power to 7 kW. For C, we choose four different values (to represent EV’s
with different battery capacities and/or SoC’s), namely 6, 12, 18 and 24 kWh and denote by I1, I2, I3
and I4 the instances that correspond to these charging requirements respectively. For each instance, we
computed the relative costs obtained by using Algorithm 2 and the cost bound function for different
values of Ẑ: the results are given in Figures 3.12-3.15.

In these figures, we see that the bounds are not very tight. However, they do seem to represent the
general behaviour of the costs. Both the costs and the cost bound function have their minimum of 1 at
the optimal fill level. Moreover, both curves are steeper for Ẑ < Z than for Ẑ > Z.

The fact that the curves corresponding to the relative costs are steeper for Ẑ < Z than for Ẑ > Z
suggests that estimating Z too high is better than estimating Z too low. However, estimating Z too low
appears to not immediately lead to a large deviation from the target profile.

More results on the tightness of the cost bound function can be found in Section 5.4.1.

3.5 Conclusions

In this chapter, we focused on the case where the estimated fill level is lower than the optimal one when
applying Algorithm 2 for robust online EV planning. The main reason for considering this case was that



33 3.5. CONCLUSIONS

0 1,000 2,000 3,000 4,000 5,000 6,000
1

1.5

2

Ẑ
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Figure 3.13: The cost bound function and the
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Ẑ

R
a
ti

o

x̄ = 7000, Z = 3497

cc C(Ẑ)/C(Z)

Figure 3.14: The cost bound function and the
relative costs for instance I3 for different values
of Ẑ.
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Figure 3.15: The cost bound function and the
relative costs for instance I4 for different values
of Ẑ.

Gerards and Hurink [13] suggest that estimating the fill level too low would lead to dangerously large
deviation of the overall profile from the target profile. To avoid this, one should always aim at estimating
the fill level too high. We have shown that this is not necessarily true. Under certain conditions, the
relative objective value of Algorithm 2 can be bounded in the case where we estimate Z too low. From
the analysis on this bound and the simulations in the previous section, we learned that estimating the fill
level too high leads to a smaller increase in objective value than when estimating it too low. However,
the results confirmed our conjecture that estimating the level too low does not necessarily imply that the
objective value increases drastically.





Chapter 4

Discrete charging power

In the previous chapter, we considered the EV charging problem with continuous charging power (CEVCP).
For the online version of this problem, we discussed a robust online algorithm that solves the problem
and derived approximation ratios on its performance. The success of this method for CEVCP lead us to
believe that a similar approach might also work for the case with discrete charging power (DEVCP). In
this chapter, we introduce a robust online algorithm that solves the online version of DEVCP and is based
on the online algorithm for CEVCP.

First, we analyze problem DEVCP in more detail. After that, we introduce our robust online algorithm
and, as for CEVCP, derive bounds on the performance of this algorithm. Finally, we analyze the tightness
of these bounds by simulation and reflect on the results.

4.1 Analysis of DEVCP

As we mentioned in Chapter 2, DEVCP can be solved using a greedy approach: if charging must be
done in k intervals, then the optimal solution is to select the k intervals with the lowest house deviation
and charge in those intervals. In order to find these intervals, we must sort the intervals by increasing
house deviation. If there are some intervals m1,m2, ...,mR that have the same house deviation (i.e.,
pmr − qmr is the same for all 1 ≤ r ≤ R), we assign priorities to these intervals by adding rε to the house
deviation of each interval mr. Here, ε is a positive real number such that pmR

− qmR
+Rε is smaller than

the next smallest house deviation. As a result of this procedure, interval m1 now has the lowest house
deviation of these R intervals and mR the highest. Furthermore, this change implies that there are no
intervals anymore with the same house deviation. As a result, the sequence obtained after sorting the
house deviation in increasing order is unique and therefore the optimal solution to the problem is unique
as well. We call this modification of the problem instance the ε-procedure.

Note that without this modification of the problem instance, the optimal solution may not be unique.
For example, if pm − qm is the same for all m ∈ M, then any feasible solution to DEVCP is optimal.
However, when we apply the ε-procedure as described above, there are no time intervals with the same
house deviation. Therefore, the optimal solution is unique. As a result, the greedy approach then always
returns the same set of MA time intervals. In the following, for any k ∈ {1, ...,M}, let mk be the interval
with the kth smallest house deviation after applying the ε-procedure.

Motivated by the fill level approach for CEVCP , which we discussed in Section 3.1, we choose to
analyze DEVCP from a different perspective. In CEVCP , an optimal solution could be characterized by
a single value, namely the fill level Z. In an optimal solution to the problem, the house deviation in each
interval was filled up to Z if possible. This concept is transferable to DEVCP : we select a fill level Z and
only charge in a certain interval if doing so does not fill up the interval to more than Z. We call a level
Z optimal if using this valley filling approach with Z results in the optimal solution. Note that because
of the ε-procedure, this fill level approach always returns the optimal solution that is also obtained by
using the greedy approach.

However, increasing or decreasing an optimal level does not necessarily lead to a non-optimal or
infeasible solution. In fact, the optimal solution to DEVCP is not characterized by a single level but by a
certain range of levels. This is illustrated in Figure 4.1. In this figure, using any level in the optimal level
range as the fill level results in the optimal charging profile because for each of these levels, the same 11
time intervals are selected for charging. Recall that MA is the number of active intervals. If MA = M ,
then charging is needed in all intervals when using an optimal fill level Z. Therefore, increasing Z does

35
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Figure 4.1: Charging an EV using a fill level from [Zl, Zu). Here, [Zl, Zu) = [362.3; 379.3).
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Figure 4.2: Example to show why multiple levels characterize the optimal solution.

not change the set of intervals in which charging is allowed as there are simply no more intervals left to
charge in. As a result, any level higher than the optimal fill level Z is an optimal level as well. On the
other hand, if mMA

< M , then the only requirement for a fill level to be optimal is that it allows charging
in mMA

but not in the interval with the next highest house deviation, mMA+1.

As an example, consider Figure 4.2. Here, MA = 3 and x̄ = 3. Charging in intervals 1, 2 and 4 is the
optimal charging policy. It can be achieved by using Z = 5 or Z = 6 for instance. In fact, all levels in
the range [5, 7) are optimal fill levels. Levels of 7 and higher allow for charging in interval 3 and levels
lower than 5 do not allow for charging in intervals 2 and 4. Therefore, these levels result in infeasible
solutions. In general, solutions obtained by using a non-optimal fill level (i.e., a level that is not in the
optimal level range) are not only non-optimal but infeasible as well. As a result, when using the fill level
approach, the problem has a single feasible solution that is therefore optimal.

We call the range of optimal fill levels the optimal level range and denote it by [Zl, Zu), where Zl is
the lower bound of the range and Zu the upper bound. Note that the upper bound is not closed, since
using Zu as the fill level would allow charging in mMA+1 (see also Figure 4.2). When the power profile p
of the house is known, the optimal level range can be computed as

[Zl, Zu) :=
[
pmMA

− qmMA
+ x̄, pmMA+1

− qmMA+1
+ x̄
)
. (4.1)

In other words, the optimal level range is determined solely by x̄ and the house deviation in mMA
and

mMA+1.

For any fill level Z, we can compute the corresponding charging profile by using Algorithm 3. It
decides for each interval m ∈ M if charging in m can be done by checking whether charging in m fills
the interval up to Z (lines 2-6). When Z ∈ [Zl, Zu), Algorithm 3 returns the optimal solution since Z is
an optimal fill level. If Z ≥ Zu, the number of intervals that the algorithm selects for charging is larger
than MA. Analogously, if Z < Zl, the algorithm selects less than MA intervals for charging. As a result,
for any Z 6∈ [Zl, Zu), the algorithm returns an infeasible solution.
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Algorithm 3 Computing a solution to DEVCP using a fill level Z.

1: for m = 1 to M do
2: if Z ≥ pm − qm + x̄ then
3: xm = x̄
4: else
5: xm = 0
6: end if
7: end for

4.2 A robust online algorithm

In this section, we present a robust algorithm that solves the online version of DEVCP . It is very similar
to Algorithm 2 for the online version of CEVCP in the sense that it uses an online valley-filling approach.
As in Algorithm 2, the charging profile is not computed on forehand at the start of the charging interval.
Instead, the decision to charge in a certain interval m ∈M is postponed until the very beginning of the
interval m. We assume that at this point, a more accurate prediction of pm is available. Based on this
prediction of pm and an estimation of an optimal fill level Z, our algorithm decides whether to charge in
m. As in Algorithm 2, the estimation of an optimal fill level is done at the start of the charging interval
(i.e. at the start of time interval 1) and is used for the decisions in all time intervals within the charging
interval.

This motivates to base the choice of the fill level on an estimation of the optimal level range [Zl, Zu)
and choose a level from this range as input for our online valley-filling algorithm. However, (4.1) shows
that the optimal level range heavily depends, among other terms, on pmMA

and pmMA+1
. Since it is very

hard to predict these values accurately, we expect that accurately predicting the optimal level range using
predictions of these values is very hard as well. We therefore propose to focus on predicting only the
lower bound Zl of this range instead. Many properties of the range boil down to properties of Zl itself.
For example, we have zm ≤ Zl for all active intervals m. Furthermore, since Zl is the lower bound of the
optimal level range, there must be at least one active interval for which zm = Zl. Therefore, Zl gives
us information about the maximum height of the peaks caused by optimally charging the EV. Finally,
Zl is a single parameter and therefore easier to predict than the range [Zl, Zu), for which we have to
predict two values. Summarizing, we predict Zl instead of [Zl, Zu) and use this prediction for our online
algorithm.

Let us denote the estimated lower bound by Ẑl and use this level as the fill level. If Ẑl ∈ [Zl, Zu),
then we obtain an optimal solution since Ẑl is an optimal fill level. If Ẑl ≥ Zu, then the EV will be fully
charged earlier than in an optimal solution (see Figure 4.3). If Ẑl < Zl, there will be a point in time
from which on charging is needed in all remaining intervals to fulfill the charging requirement before the
deadline (see Figure 4.4).

In Algorithm 4, these two cases are combined into an online valley filling algorithm for the online
version of DEVCP . As in Algorithm 2, T keeps track of the SoC. For each interval m ∈M, the algorithm
first determines whether Ẑl is high enough to allow charging (lines 2-6). After that, the two cases are
treated. If Ẑl ≥ Zu, then the EV will be fully charged already before its deadline. In line 7, we check
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Figure 4.3: Charging an EV using a fill level above the optimal range for the case in Figure 4.1. Here,
Ẑl = 390.
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Figure 4.4: Charging an EV using a fill level under the optimal range for the case in Figure 4.1. Here,
Ẑl = 359.

whether this is already the case in interval m (i.e., if we already have T = C) and set xm to 0 if this is
the case. If Ẑl < Zl, then at some point in time, charging is required in all remaining intervals in order
to meet the charging requirement. The algorithm checks whether we are at such a point in line 8. If so,
then line 9 sets xm to x̄. Finally, the algorithm updates T to the new SoC (line 11).

Algorithm 4 Online EV planning with a single charging rate for DEVCP .

1: for m = 1 to M do
2: if Ẑl ≥ pm − qm + x̄ then
3: xm = x̄
4: else
5: xm = 0
6: end if
7: xm = min(xm, C − T ) (needed for Ẑl ≥ Zu)
8: if T + xm + (M −m)x̄ < C then
9: xm := min(C − T, x̄) (needed for Ẑl < Zl)

10: end if
11: T = T + xm
12: end for

Algorithm 4 shares the advantages of Algorithm 2 compared to algorithms that directly use predictions
of the power profile. It only requires the prediction of a single parameter rather than a detailed house
profile. Also, we show that we can put a bound on its performance if the problem instance has several
properties.

4.3 Bounds on the relative costs

In the previous section, we presented an algorithm for solving the online version of DEVCP . We now
analyze the performance of Algorithm 4 by deriving bounds on the relative costs of the algorithm, as we
did for Algorithm 2 in Section 3.3. These bounds again only hold when the problem instance has certain
properties, which we discuss before deriving the bounds themselves. Also, we analyze the behavior of the
relative costs in more detail.

Let C(Zl) be the objective value of the optimal solution (i.e., when using the fill level Zl), and let
C(Ẑl) be the objective value using the estimated level Ẑl. As in Section 3.3, let zm be the deviation of
the house profile including EV charging from the target profile in an optimal solution, and let ẑm be the
same deviation in the online solution. Then our goal is to bound the relative costs

C(Ẑl)
C(Zl)

=

√√√√∑M
m=1 ẑ

2
m∑M

m=1 z
2
m

. (4.2)

We distinguish between the cases Ẑl ≥ Zu and Ẑl < Zl. Note that when Zl ≤ Ẑl < Zu, Algorithm 4
returns the optimal solution.
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4.3.1 Preliminaries

We can expand Equation (4.2) in the same way as we did for the continuous case:

C(Ẑl)
C(Zl)

=

√√√√∑M
m=1 ẑ

2
m∑M

m=1 z
2
m

=

√√√√1 +

∑M
m=1 ẑ

2
m − z2m∑M

m=1 z
2
m

=

√√√√1 +

∑M
m=1(ẑm + zm)(ẑm − zm)∑M

m=1 z
2
m

. (4.3)

From Equation (4.3), we see that only the intervals for which the deviation zm in the optimal solution
and the deviation ẑm in the online solution are different add up to the relative costs. These are the
intervals that are active in exactly one of the solutions (but not both). In that case, zm and ẑm differ
by exactly x̄. Recall that I∗ is the set of active intervals in the optimal solution and that Î is the set of
active intervals in the online solution. Then we can denote the set of intervals that are active in exactly
one of the solutions by

Î 4 I∗ := Î\I∗ ∪ I∗\Î .
If m ∈ Î\I∗, then ẑm − zm = x̄, since charging in m is only done in the online solution. In this case, we
have ẑm ≤ Ẑl and zm + x̄ ≥ Zl. If m ∈ I∗\Î, then ẑm− zm = −x̄, since charging in m is only done in the
optimal solution. In this case, we have zm ≤ Zl.

Based on this, we can rewrite (4.3) to

C(Ẑl)

C(Zl)
=

√√√√1 +

∑M
m=1(ẑm + zm)(ẑm − zm)∑M

m=1 z
2
m

=

√
1 +

∑
m∈Î\I∗(ẑm + zm)(ẑm − zm) +

∑
m∈I∗\Î(ẑm + zm)(ẑm − zm)∑M

m=1 z
2
m

=

√
1 + x̄

∑
m∈Î\I∗(ẑm + zm)−∑m∈I∗\Î(ẑm + zm)∑M

m=1 z
2
m

. (4.4)

It is easy to see that Î\I∗ and I∗\Î have the same cardinality since

|Î\I∗| = |Î| − |Î ∩ I∗| = |I∗| − |I∗ ∩ Î| = |I∗\Î|,

where the second equality follows from |Î| = MA = |I∗|. Furthermore, |Î\I∗| and |I∗\Î| are bounded
from above by

min(MA,M −MA).

Obviously, it is bounded by MA. It is bounded by M −MA as well since

|Î\I∗| = |Î ∪ I∗| − |I∗| ≤M −MA.

The following lemma implies that the cardinality of Î\I∗ and I∗\Î is exactly min(MA,M −MA) for
a worst case instance:

Lemma 4.1. For any m1 ∈ Î\I∗ and m2 ∈ I∗\Î, (ẑm1
+ zm1

)− (ẑm2
+ zm2

) ≥ 0.

Proof. Since m1 ∈ Î\I∗, we have Zl < zm1 + x̄ = ẑm1 . Also, since m2 ∈ I∗\Î, we have zm2 ≤ Zl.
Therefore,

(ẑm1
+ zm1

)− (ẑm2
+ zm2

) = (2ẑm1
− x̄)− (2zm2

− x̄) ≥ 2Zl − 2Zl = 0.

The lemma implies that by increasing the sets Î\I∗ and I∗\Î (by increasing Ẑl), the term

x̄

 ∑
m∈Î\I∗

(ẑm + zm)−
∑

m∈I∗\Î

(ẑm + zm)


in (4.4) will not decrease. Therefore, we may assume without loss of generality that

|Î\I∗| = |I∗\Î| = min(MA,M −MA)

when deriving bounds on the relative costs.
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4.3.2 The suitable set

We now present and discuss the properties that an instance of DEVCP must have such that the relative
costs can be bounded. For the case Ẑl < Zl, there will be a time interval γ from which on charging in
all remaining intervals is needed in order to meet the charging requirement C before the deadline. Note
that the definition of γ in this chapter is the same as Definition 3.1 in the previous chapter when we
considered CEVCP .

As with CEVCP , the relative costs can become arbitrarily large depending on the house deviation. To
see why, consider the instance in Figure 4.5. The number of intervals in this example in which charging
is done is MA = M/2 = 26. The optimal lower bound of the optimal level range is Zl = 0. The estimated
lower bound Ẑl is such that charging is done in the last k intervals in the online solution. This implies
that γ = MA.
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Figure 4.5: An instance of DEVCP . The relative costs of the online solution can become arbitrarily large
depending on the house deviation in intervals {γ + 1, ...,M}.

For this instance, we have that zm = 0 for all 1 ≤ m ≤ γ and that xm = 0 and x̂m = x̄ for all
γ + 1 ≤ m ≤ M . Therefore, this instance is very similar to the instance in Figure 3.6 for CEVCP . As
a result, we can derive the following upper bound on the relative costs analogously to the derivation in
Section 3.3.1, which is similar to Equation (3.4):

C(Ẑl)
C(Zl)

=

√
1 +
C(Ẑl)2 − C(Zl)2

C(Zl)2
≥

√√√√√1 + 2x̄

∑M
m=γ+1(pm − qm + x̄)(∑M
m=γ+1(pm − qm)

)2 . (4.5)

Analogously to Equation (3.4), Equation (4.5) implies that the relative costs diverge as
∑M
m=γ+1(pm−qm)

converges to zero. From this, we conclude that the relative costs can become arbitrarily large, depending
on the term

∑M
m=γ+1(pm − qm). As a result, we cannot bound the relative costs in general.

However, instances such as the one in Figure 4.5 hardly ever resemble instances from practice. There-
fore, as for CEVCP in Section 3.3.1, we are interested in a subset of the set of instances to DEVCP that
contains instances for which the relative costs can be bounded. We define this subset as follows:

Definition 4.1. Let Ud be the set of all instances for DEVCP. The suitable set Id ⊆ Ud is the set of
all instances that have the following properties:

Property 4.1. Zl > x̄;

Property 4.2. If Ẑl ≥ Zu, then zm = Zl for all m ∈ I∗\Î;

Property 4.3. If Ẑl < Zl, then ẑm = Zl for all m ∈ Î\I∗.

Property 4.1 states that the optimal lower bound is higher than the maximum charging power. This
implies that the house deviation in interval mMA

is positive and therefore that the house deviation is
positive for all intervals m 6∈ I∗.

Property 4.2 states that the house deviation for all intervals m ∈ I∗\Î is filled up to exactly Zl in
the optimal solution. As a result, all intervals in I∗\Î have the same house deviation, which is equal to
highest house deviation of all intervals in I∗ since zm ≤ Zl for all m ∈ I∗.
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Property 4.3 states that the house deviation for all intervals m ∈ Î\I∗ is filled up to exactly Zl in the
online solution. Note that this implies that all intervals in Î\I∗ have the highest house deviation of all
intervals in Î since ẑm ≤ Zl for all m ∈ Î ∪ I∗.

In Section 5.4.3, we analyze to what extend instances from practice have these properties and thus
belong to the suitable set Id. By doing this, we can determine whether the bounds that we derive in this
section can be applied to instances from practice.

4.3.3 Bound when Ẑl ≥ Zu

We now derive a bound on the relative costs when Ẑl > Zu and the problem instance belongs to the
suitable set Id.

Theorem 4.2. Suppose Ẑl > Zu and the problem instance belongs to Id. Then

C(Ẑl)
C(Zl)

≤
√

1 + 2x̄
min(MA,M −MA)

M −MA

Ẑl − Zl
(Z − x̄)2

.

Proof. We already saw from Equation (4.4) and Lemma 4.1 that we may assume without loss of generality
that |Î\I∗| = |I∗\Î| = min(MA,M −MA). We continue the derivation in (4.4) as follows:

C(Ẑ)2

C(Z)2
=

√
1 + x̄

∑
m∈Î\I∗(ẑm + zm)−∑m∈I∗\Î(ẑm + zm)∑M

m=1 z
2
m

=

√
1 + x̄

∑
m∈Î\I∗(2ẑm − x̄)−∑m∈I∗\Î(2zm − x̄)∑M

m=1 z
2
m

=

√
1 + x̄

2
∑
m∈Î\I∗ ẑm −min(MA,M −MA)x̄− 2

∑
m∈I∗\Î zm + min(MA,M −MA)x̄∑M

m=1 z
2
m

≤

√√√√1 + x̄
2
∑
m∈Î\I∗ Ẑl − 2

∑
m∈I∗\Î Zl∑M

m=1 z
2
m

=

√
1 + 2x̄

min(MA,M −MA)(Ẑl − Zl)∑M
m=1 z

2
m

.

For all m 6∈ I∗, we have that zm + x̄ ≥ Zl. By Property 4.1, it follows that z2m ≥ (Zl − x̄)2 for m 6∈ I∗.
Furthermore, we have that z2m ≥ 0 for all m ∈ I∗. Using these observations, we bound

∑M
m=1 z

2
m from

below to obtain the final result:

C(Ẑl)
C(Zl)

≤
√

1 + 2x̄
min(MA,M −MA)

M −MA

(Ẑl − Zl)
(Zl − x̄)2

.

An important feature of this bound is that it resolves to 1 when Ẑl = Zl (so when we estimate Zl
correctly). Note that the term

∑
m∈I∗\Î zm can be arbitrarily small if the instance does not have Property

4.2. As we have bounded all terms z2m for m ∈ I∗ by zero in the proof, we expect that the bound becomes
less tight when MA increases.

4.3.4 Bound when Ẑl < Zl

We now derive a bound on the relative costs when Ẑl < Zl and the problem instance belongs to Id.

Theorem 4.3. Suppose Ẑl < Zl and the problem instance belongs to Id. Then

C(Ẑl)
C(Zl)

≤
√

1 + 2x̄
min(MA,M −MA)

M −MA

Zl − Ẑl
(Zl − x̄)2

.
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Proof. As we saw from Equation (4.4) and Lemma 4.1, we may assume for a worst case instance that

|Î∗\I∗| = |I∗\Î| = min(MA,M −MA).

This implies that
Î\I∗ = {γ + 1, ...,M}

and
I∗\Î ⊆ {1, ..., γ}.

Therefore, M − γ = min(MA,M −MA). We can then derive the following from Equation (4.4):

C(Ẑl)
C(Zl)

=

√
1 + x̄

∑
m∈Î\I∗(ẑm + zm)−∑m∈I∗\Î(ẑm + zm)∑M

m=1 z
2
m

=

√
1 + x̄

∑
m∈Î\I∗(2ẑm − x̄)−∑m∈I∗\Î(2zm − x̄)∑M

m=1 z
2
m

=

√
1 + x̄

2
∑
m∈Î\I∗ ẑm −min(MA,M −MA)x̄− 2

∑
m∈I∗\Î zm + min(MA,M −MA)x̄∑M

m=1 z
2
m

≤

√√√√1 + x̄
2
∑
m∈Î\I∗ Zl − 2

∑
m∈I∗\Î Ẑl∑M

m=1 z
2
m

=

√
1 + 2x̄

min(MA,M −MA)(Zl − Ẑl)∑M
m=1 z

2
m

.

For all m 6∈ I∗, we have that zm + x̄ ≥ Zl. By Property 4.1, it follows that z2m ≥ (Zl − x̄)2 for m 6∈ I∗.
Furthermore, we have that z2m ≥ 0 for all m ∈ I∗. Using these observations, we bound

∑M
m=1 z

2
m from

below to obtain the final result:

C(Ẑl)
C(Zl)

≤
√

1 + 2x̄
min(MA,M −MA)

M −MA

(Ẑl − Zl)
(Zl − x̄)2

.

An important feature of this bound, which it shares with the bound for the case Ẑl ≥ Zu that we
derived in the previous subsection, is that it resolves to 1 when Ẑl = Zl (so when we estimate Zl correctly).
Also note that the term

∑
m∈Î\I∗ ẑm can become arbitratily large if the instance does not have Property

4.3. As for the bound in Theorem 4.2, we expect that the bound becomes less tight when k increases as
we have bounded all terms z2m for m ∈ I∗ by zero in the proof of Theorem 4.3.

It is easy to see that we can combine Theorems 4.2 and 4.3 to obtain a bound that holds for all Ẑl
(as long as the problem instance belongs to Id):

Corollary 4.4. Assume that an instance of DEVCP belongs to Id. Then

C(Ẑl)
C(Zl)

≤
√

1 + 2x̄
min(MA,M −MA)

M −MA

|Ẑl − Zl|
(Zl − x̄)2

.

The bound in Corollary 4.4 is clearly symmetric in Ẑl with Zl as its symmetry axis. This means that the
bound resolves to 1 if Ẑl = Zl. However, this does not happen if Ẑl ∈ (Zl, Zu) (that is, if Ẑl is any of
the other optimal levels), in which case the relative costs are 1 as well. Possibly, this is due to the fact
that the bounds in Theorems 4.2 and 4.3 both use an estimation of Zl as the estimated fill level. The
bound for the case Ẑl ≥ Zu might approximate the relative costs better if we base it on an estimate of
Zu rather than of Zl.

Based on Corollary 4.4, we define the following function:

cd(Zl, Ẑl,MA,M, x̄) :=

√
1 + 2x̄

min(MA,M −MA)

M −MA

|Ẑl − Zl|
(Zl − x̄)2

. (4.6)
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We call this function the (discrete) cost bound function, because

C(Ẑl)
C(Zl)

≤ cd(Zl, Ẑl,MA,M, x̄)

for all Ẑl (provided that the problem instance belongs to the suitable set Id). As in Chapter 3, we analyze
the tightness of the cost bound function in the next section.

4.4 Analyzing the tightness of the cost bound function

In the previous section, we established bounds on the relative costs. In this section, we analyze the
tightness of these bounds.

We use the same data of house profiles as in Section 3.4. Furthermore, we choose to analyze the bounds
for MA ∈ {4, 8, 12, 16} and x̄ = 6000 (W). As a result of the choice of MA, the charging requirements are
6, 12, 18 and 24 kWh respectively. We denote the instances that correspond to the different values of MA

by I5, I6, I7 and I8 respectively. For each value of MA, we compute the relative costs C(Ẑl)/C(Zl) and
the cost bound function cd(Zl, Ẑl,MA,M, x̄) for different values of Ẑl. The results of these computations
are given in Figures 4.6-4.9. Since the relative costs are very small compared to the cost bound function,
we included plots of only the relative costs as well in Figures 4.10-4.13 on page 44.

From Figures 4.6-4.9, we learn that the bounds are not very tight. Moreover, the relative costs appear
to not be symmetric around Zl, unlike the cost bound function. However, both the cost bound function
and the relative costs have their minimum at Zl. Furthermore, Figures 4.10-4.13 imply that the relative
costs are very close to 1 when Ẑl is near Zl. This confirms our intuition that the online fill level approach
works very well for the online version of DEVCP as well.

More results on the tightness of the cost bound function can be found in Section 5.4.2

4.5 Multiple charging rates

In the previous sections, we considered DEVCP with a single charging rate x̄. In this section, we
consider an extension of DEVCP which we already briefly discussed in Section 2.3, namely the inclu-
sion of multiple discrete charging rates x̄1, x̄2, ..., x̄N . We formulate this extension as a new problem:
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Figure 4.6: The cost bound function and the
relative costs for instance I5 for different values
of Ẑl.
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of Ẑl.

6,350 6,400 6,450 6,500 6,550
1

2

3

4

Ẑl

R
at

io

MA = 16, x̄ = 6000, Zl = 6467
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Figure 4.10: The relative costs for instance I5
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Ẑl

R
a
ti

o
MA = 8, x̄ = 6000, Zl = 6366
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Problem DEVCP+ (the discrete EV charging problem with multiple charging rates).

min
x

√√√√ M∑
m=1

(pm − qm + xm)2

subject to

M∑
m=1

xm = C, (4.7)

xm ∈ {0, x̄1, ..., x̄N} ∀m ∈M.

Without loss of generality, we assume that 0 < x̄1 < ... < x̄N . Also, we assume that x̄N ≥ C/M to
ensure that the problem has a feasible solution. Note that this assumption is similar to Assumption 3.1
in Section 3.1 for CEVCP .

Checking whether a feasible solution to this problem exists is already an NP-complete problem [24].
This hardness follows from the equality in Constraint (4.7). Furthermore, since there are multiple charging
rates, the number of active intervals in a feasible solution is no longer fixed.

For these reasons, we cannot use a fill level algorithm to find the optimal solution. To see why,
consider Figure 4.14. Here, C = 8 and the set of charging rates is ∈ {0, 3, 5}. The optimal charging
profile is x = (0, 5, 0, 3). Let us now apply the fill level approach to obtain this optimal solution. If we
choose any fill level lower than 6, the house deviation cannot be filled up with 5 W for any of the time
intervals. Since C is no linear combination of elements in {0, 3}, any solution obtained by using such a
fill level is therefore infeasible. If the fill level is 6 or higher, not only time intervals 2 and 4 are used for
charging, but interval 1 as well. This is because charging the EV at a rate of 3 W in this interval fills up
its house deviation to exactly 6. As a result, the total charged amount is more than C. Therefore, the
obtained solution is infeasible. In conclusion, there is no fill level with which the optimal solution can be
obtained.

0 1 2 3 4
0

2

4

6

Intervals

P
ow

er
(W

)

Figure 4.14: Example to show why DEVCP+ cannot be solved using the fill level approach.

Although we cannot use the fill level approach to solve DEVCP+ to optimality, we claim that we can
use the approach to solve the online version of the problem when we make a small modification to the
problem structure. As the NP-completeness follows from the equality in Constraint (4.7), we allow our
online algorithm to slightly “overcharge” the EV (i.e., charge more than C) in order to meet the charging
requirement. This means that the online solution violates Constraint (4.7). However, when using the
resulting charging profile to charge the EV in practice, the EV will be fully charged before the end of the
charging interval. This motivates us to see this violation of Constraint (4.7) as a reasonable adjustment
to be able to solve the online version of DEVCP+ in polynomial time.

We propose to solve the online version of DEVCP+ by adapting Algorithm 4 to cope with multiple
charging rates. The result is Algorithm 5. Like Algorithm 4, it requires an estimate of Ẑl as input.
At each time interval m, the algorithm first determines the largest charging rate that does not let the
deviation (zm) exceed Ẑ if Ẑl ≥ 0 (line 2). Lines 3-5 check whether charging at maximum power is
needed in order to at least reach the deadline constraint. If the current amount of charging in m leads to
“overcharging” (i.e., T > C), then the algorithm determines the smallest charging rate that overcharges
the EV (lines 6-8).

Based on the positive results from the previous section, we expect that Algorithm 5 works well in
practice. We leave the derivation of a bound on its performance future work, and recommend Algorithm 5
as a heuristic for solving the online version of problem DEVCP+ for now.
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Algorithm 5 Online EV charging algorithm with multiple charging rates.

1: for m = 1 to M do
2: xm := maxj(x̄j | x̄j ≤ max(0, Ẑl − pm + qm))
3: if T + xm + (M −m) max(x̄) < C then
4: xm := maxi(x̄i)
5: end if
6: if T + xm > C then
7: xm := mini(x̄i | T + x̄j ≥ C)
8: end if
9: T = T + xm

10: end for

4.6 Conclusions

The goal of this chapter was to design a robust algorithm to solve the online version of DEVCP . We
suspected that this could be done by viewing the problem from the perspective of fill levels. This resulted
into Algorithm 4, which uses an estimation of the lowest optimal fill level to compute the charging level
interval by interval. It has the same advantage as Algorithm 2, namely that it only requires the prediction
of a single parameter rather than a complete power profile.

We derived bounds on the performance of this algorithm that hold when the problem instance has
certain properties. Simulations indicate that while the bounds are not very tight, the relative costs are
very small when using our algorithm. For the case with multiple charging rates, we adapted our algorithm
to obtain a heuristic to solve this extension of DEVCP .



Chapter 5

Estimating the fill level

In the previous two chapters, we established algorithms that solve our online EV charging problems
CEVCP and DEVCP. The main advantage of these algorithms is that they depend only on the prediction
of a single parameter (an optimal fill level), instead of a complete power profile. However, in order to have
a complete methodology, it remains to discuss how the fill level can be (accurately) predicted. Gerards and
Hurink [13] propose a simple way to find a rough estimation of the level. However, we believe that much
improvement is possible by using more sophisticated methods. Designing and finding suitable methods and
applying them to estimate the fill level is the subject of this chapter.

First, we describe the general concept and the statistical methods that we use to estimate the fill level.
After that, we carry out simulations to test the accuracy of our method and compare it to the method in
[13]. Finally, we reflect on the obtained results and suggest some ideas to improve upon our estimation
method.

To ease the discussion, we focus the analysis and design in Sections 5.1 and 5.2 on estimating the
optimal fill level Z for the continuous problem CEVCP only. However, we stress that all content of these
sections can be carried over analogously to the estimation of Zl for the discrete problem DEVCP.

5.1 The general estimation method

In order to predict the fill level Z, it is important to have an idea of the “behavior” of Z. One way to do
this, is to look at historical values of Z from previous charging sessions. Another possibility is to calculate
the optimal fill levels as if we had to charge the EV on previous days under the same circumstances. More
precisely, we consider the interval that corresponds with the current charging interval for a previous day
and compute Z using the values of C, M and x̄ that are given for the charging required on this day.
However, we use the power profile of the previous day but for the target profile we use the current target
profile. As a consequence, the only uncertain element used from the historical data is the power profile
on the corresponding days. Gerards and Hurink [13] calculated values of Z in this way for a Dutch house
over the course of 90 days (i.e., they computed optimal fill levels Zi for each day i). Their results show
that the values of the Zi’s lie within a relatively small range with few outliers. For this reason, we suspect
that we can model Z quite accurately as a stochastic variable with a certain (unknown) distribution.

We propose to choose the estimation Ẑ for the optimal fill level as the level that minimizes the
expected relative costs (thereby implicitly assuming that this expectation can be calculated). To this
end, let f(Z) be the probability density function (pdf ) of Z. Then we can write the expected relative
costs directly as

E

[
C(Ẑ)

C(Z)

]
=

∫ ∞
−∞

C(Ẑ)

C(Z)
f(Z)dZ. (5.1)

However, we know neither C(Ẑ)/C(Z) nor f(Z) beforehand. Therefore, we cannot use (5.1) directly
to compute the expected relative costs. To solve this problem, we substitute both unknown factors by
approximations. For the relative costs, we can use the results from Chapter 3. In that chapter, we derived
an upper bound on the relative costs for Algorithm 2 to solve the online version of CEVCP , namely the
cost bound function cc(Z, Ẑ, C,M, x̄). This function by definition has the property that (under certain
conditions)

C(Ẑ)

C(Z)
≤ cc(Z, Ẑ, C,M, x̄).

47
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Using this, we get

E

[
C(Ẑ)

C(Z)

]
≤ E

[
cc(Z, Ẑ, C,M, x̄)

]
=

∫ ∞
−∞

cc(Z, Ẑ, C,M, x̄)f(Z)dZ. (5.2)

In Section 3.4, we showed that the cost bound functions map the general behavior of the relative costs
quite well. Therefore, we expect that minimizing the right-hand side of Equation (5.2) leads to similar
results as minimizing Equation (5.1), even though the cost bound functions are not very tight as we saw

in Section 3.4. As for f(Z), we propose to replace it by an accurate approximation f̂(Z). Obtaining a
good approximation of f(Z) is not straightforward and, therefore, we devote the next section to finding

a suitable approximation f̂(Z).
Summarizing, we estimate Z by finding the Ẑ that minimizes an approximation of the expected cost

bound function:

Ê
[
cc(Z, Ẑ, C,M, x̄)

]
=

∫ ∞
−∞

cc(Z, Ẑ, C,M, x̄)f̂(Z)dZ. (5.3)

5.2 Approximating f(Z)

In this section, we try to find an approximation f̂(Z) of the pdf f(Z) of Z. We first review the literature
to find a suitable method for approximating f(Z). After that, we choose the method of our choice and
describe it in more detail. We explain the design choices that have to be made and the outcome of these
choices.

5.2.1 Literature review

Before we review methods for approximating pdf ’s, we state a number of criteria for the to-be-used
method and the approximation. First of all, we want to use historical values of Z as input for the
approximation. We obtain these historical values as described in Section 5.1. Each of these values or
data points should have an influence on f̂(Z). Secondly, characteristics like the distance between the data

points (i.e., the amount of clustering) should be reflected in f̂(Z) as well. Finally, we prefer methods that

have some theoretical performance guarantee (e.g., convergence of f̂(Z) to f(Z)). With these criteria in
mind, we now evaluate the methods and make a decision about which method to use.

One method to approximate a pdf is kernel density estimation (KDE) (see, among others, [17, 40] for
an introduction to KDE). KDE is often used when nothing is known about the probability distribution
of a stochastic variable. It uses historical samples to learn the distribution of the variable by building a
single pdf for each sample. This is done in such a way that the density is concentrated within a relatively
small neighborhood around the sample, thereby creating a small “bump” at this region. To obtain an
approximation to the actual pdf, the separate pdf ’s are added and normalized into a single pdf.

KDE is very popular in practice due to its simplicity and ease of implementation. Furthermore, it can
be shown that, under certain conditions, the obtained approximation converges towards the real pdf when
the sample size increases. One disadvantage of KDE is that it requires a number of design choices for
which no standard selection methods exist. For example, many different density functions can be used to
construct the individual pdf ’s, each with its own parameters. Furthermore, the size of the neighborhood
around the sample appears to have a major impact on the accuracy of the approximate pdf.

Another popular method to approximate an arbitrary function or the behavior of a system is to model
it as an artificial neural network (ANN) (see [39] for an introductions to ANN’s). Generally, modeling
a problem as an ANN is useful when little or nothing is known about the structure of the problem. It
learns the structure of the problem by processing historical data (that is, pairs of inputs and corresponding
solutions to the problem). It adjusts its own structure based on the difference between the outcome of
the ANN and the actual (desired) solution to a given problem instance to match it with the structure of
the actual problem.

An ANN consists of several nodes ordered in layers. Weighted links connect each node to nodes in
other layers.. The first layer is the input layer that receives the input for the function. The nodes in this
layer amplify or weaken the input and send it to nodes in the next layer via their outgoing links. In each
next layer, each node amplifies or weakens the input from its incoming links based on the weights on
these links and sends the resulting output via its outgoing links to nodes in the next layer. Eventually,
the nodes in the last layer (the output layer) present this modified input as the output of the function.
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Before an ANN can be used, it must be trained to learn the general behavior of a system. To this end,
one must present historical data to the ANN. Each time an output to a historical data point is obtained,
the difference between the output and the desired output is used to update the weights of the ANN. In
this way, ANN’s are capable of learning the behavior of the input that is presented to them.

Recently, some research has been done on using ANN’s to approximate pdf ’s. In [28], a general
framework to model pdf ’s as ANN’s is presented. The author shows that his method outperforms KDE
for several artificially created pdf ’s.

While ANN’s are popular in practice, their use has some drawbacks. First of all, there is no theoretical
guarantee for their performance. Furthermore, there is no automatic method that finds the numbers of
nodes and layers that result in the most accurate approximation. As a result, this has to be done manually
by trial and error. Lastly, training ANN’s requires much computational power (as is pointed out in [28]).
This is a major disadvantage in the light of our application since local controllers may not have much
computational power.

Many other methods exist to estimate pdf ’s (e.g., maximum likelihood estimation [30] and Bayesian
estimation [11]) that belong to the class of parametric density estimation methods. This means that
the probability distribution that corresponds to the density is known and that only its parameters (e.g.,
mean and standard deviation) have to be determined. As a result, these methods are not suitable for
estimating a density function for which little or nothing is known about its characteristics or underlying
probability distribution.

Based on the above discussion and the criteria, we decided to use kernel density estimation (KDE) to
approximate f . In the next subsections, we describe KDE in more detail and make some design choices
that fit to our current problems.

5.2.2 Kernel density estimation in more detail

Kernel density estimation (KDE) is a refined version of the histogram. In the histogram, the range of the
samples is divided into a number of equally sized intervals called bins. For each bin, a density mass block
is created whose height is proportional to the number of samples that fall within the bin. Combining
these blocks gives an approximation to the pdf (see Table 5.1 and Figure 5.1). The use of bins rather
than the individual data points reflects the fact that the data points are samples and therefore only give
an indication of the density at that point.

Observations
13 3 7 15 23 5 18 20 13 24 27 25 12 26 19

Table 5.1: The sample used to build the histograms in Figures 5.1-5.3.
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Figure 5.1: Histogram of the data in Table 5.1 with bin size 5, scaled for bin size.

While histograms are useful to get a general idea of the data, they have some drawbacks. The major
drawback of histograms is that the resulting estimation of the pdf depends heavily on the number of
bins. As can be seen in Figures 5.2 and 5.3, using different numbers of bins to represent the same data
can lead to a complete different picture of what the data looks like.

KDE solves this problem by creating a density mass for each separate data point, rather than for all
data points within a certain part of the range (in the case of the histogram, for a certain bin) together.

As a result, each data point i contributes directly to f̂ by adding a small “bump” in the function.
That is, it increases the density in a neighborhood around the data point compared to the total density.
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Figure 5.2: Histogram of the data in Table 5.1 with bin size 10, scaled for bin size.
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Figure 5.3: Histogram of the data in Table 5.1 with bin size 3, scaled for bin size.

Furthermore, instead of using bins, the size of the neighborhood around the data point around which the
density is smoothed out is regulated by a smoothing parameter, the bandwidth.

We now discuss KDE more formally. As we mentioned in Section 5.2.1, a KDE constructs the
approximation f̂(Z) of f(Z) by creating individual pdf ’s for each sample and adding them together. The
individual pdf ’s are constructed by using kernel functions.

Definition 5.1. A kernel function or kernel is a nonnegative function K(u) that is integrable on
(−∞,∞) and has the following two properties:∫ ∞

−∞
K(u)du = 1;

and
K(−u) = K(u) for all u ∈ R.

The first property of the kernel function implies that any kernel function may serve as a pdf. The
second property ensures that the expectation of any stochastic variable U that has K(u) as its density
function is 0:

E[U ] =

∫ ∞
−∞

uK(u)du

=

∫ 0

−∞
uK(u)du+

∫ ∞
0

vK(v)dv

=

∫ 0

∞
vK(−v)dv +

∫ ∞
0

uK(u)du (use the substitution v = −u)

=

∫ 0

∞
vK(v)dv +

∫ ∞
0

uK(u)du

= −
∫ ∞
0

vK(v)dv +

∫ ∞
0

uK(u)du

= 0.

Some popular kernel functions are well-known pdf ’s. For example, the Gaussian kernel,

KG(u) =
1

2π
e(−

1
2u

2), (5.4)
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is simply the pdf of the standard normal distribution. Other popular kernels are the Epanechnikov kernel,

KE(u) =
3

4
(1− u2)1{|u|≤1} (5.5)

and the bi-weight kernel,

KB(u) =
15

16
(1− u2)21{|u|≤1}.

Here, 1{|u|≤1} is the unit step function that is 1 if and only if |u| ≤ 1 and zero elsewhere. Figure 5.4
shows these popular kernel functions. Note that all kernels in Figure 5.4 have their mass centered in a
neighborhood around u = 0.
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Figure 5.4: Several popular kernel functions.

We mentioned in Section 5.2.1 that the size of the neighborhood of a kernel function is a parameter
that has to be set in KDE. This parameter is called the bandwidth and denoted by h(> 0). Given a
general kernel function K(u) and the bandwidth h, we create individual kernel functions Ki(Z) for each
data point Zi as follows:

Ki(Z) =
1

h
K

(
Zi − Z
h

)
. (5.6)

While it is possible to use a different kernel function K for each i, this is rarely done in practice. Therefore,
we also do not consider this possibility in this work. By defining the individual kernel functions as in
(5.6), we ensure that the density mass is concentrated around Zi. Also, h determines the smoothness
of each Ki(u) and therefore of the eventual approximation. A large bandwidth assigns relatively much
density to the neighborhood of a data point, whereas a small bandwidth results in a peaked density
function. Therefore, large values of h over-smooth the function, whereas very small values of h cause the
function to be zero at most of its domain and have large peaks at the data points. In Section 5.2.3, we
consider the choice of h.

Let n be the number of data points that are used for KDE, and let N be the index set for these data
points (i.e., N = {1, 2, ..., n}). Given the kernel functions Ki(u) for each i ∈ N , the approximation f̂(Z)
of f(Z) is defined as follows:

f̂(Z) :=
1

n

n∑
i=1

Ki(Z) =
1

n

n∑
i=1

1

h
K

(
Zi − Z
h

)
=

1

nh

n∑
i=1

K

(
Zi − Z
h

)
. (5.7)

The function f̂ is a proper pdf since∫ ∞
−∞

f̂(Z)dZ =

∫ ∞
−∞

1

nh

n∑
i=1

K

(
Zi − Z
h

)
dZ

=
1

nh

n∑
i=1

∫ ∞
−∞

K

(
Zi − Z
h

)
dZ

=
1

nh

n∑
i=1

∫ ∞
−∞

hK(ui)dui

(
using the change of variables ui :=

Zi − Z
h

)
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=
1

nh

n∑
i=1

h

= 1.

In Figure 5.5, the construction of f̂(Z) is visualized.
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Figure 5.5: Building f̂ from several kernel functions. The kernel functions are built using the 6 data
points, summed up, and normalized to obtain a valid pdf.

The function f̂(Z) can be used as the approximate density function. However, in order to apply it for
estimating Z, we still need to make two design choices, namely the used kernel function K(u) and the
value of the bandwidth h. We discuss these choices in the next subsection.

5.2.3 Choosing the kernel function and bandwidth

For all the derivations of quantities in this section and more background information on KDE, we refer
to any textbook or lecture notes on KDE (e.g., [17, 40]).

The goal is to choose the kernel function and bandwidth such that f̂(Z) approximates f(Z) as well
as possible.The most common quantity that is considered in this context in KDE is the aysmptotic mean
integrated squared error (AMISE). It is a measure for the deviation of f̂ from the real pdf, distributed

over the whole domain of f and f̂ :

AMISE =

∫ ∞
−∞

E[f̂(Z)− f(Z)]2dZ.

We now have to find the kernel function and bandwidth that minimize the AMISE. It can be shown that

AMISE =
h4

4

∫ ∞
−∞

Z2K2(Z)dZ ·
∫ ∞
−∞

(f (2)(Z))2dZ +
1

nh

∫ ∞
−∞

K2(Z)dZ. (5.8)

From this expression, we can derive that when n→∞, the AMISE converges to 0 if h→ 0 and nh→∞.
This means that h should converge to 0 as the sample size increases, but at a smaller rate than n diverges.
If these conditions are satisfied, then f̂(Z) is a pointwise consistent estimation of f(Z) (i.e., f̂(Z)→ f(Z)
when n→∞).

Since the AMISE is expressed as a function of h in (5.8), we can find the optimal (asymptotic)
bandwidth h∗ that minimizes the AMISE by computing its derivative and setting it to zero. This leads
to

h∗ =

( ∫∞
−∞K2(Z)dZ∫∞

−∞ Z2K2(Z)dZ ·
∫∞
−∞(f (2)(Z))2dZ

)1/5

n−1/5. (5.9)

It is easy to see from Equation (5.9) that h∗ → 0 and nh → ∞ as n → ∞. Therefore, the optimal
bandwidth ensures that the AMISE converges to 0 when n→∞.

When using h∗ as the bandwidth, the AMISE becomes

AMISE∗ =
5

4

(∫ ∞
−∞

Z2K2(Z)dZ

(∫ ∞
−∞

K2(Z)dZ

)4 ∫ ∞
−∞

(f (2)(Z))2dZ

)1/5

n−4/5. (5.10)
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Minimizing (5.10) for the kernel K(u) boils down to minimizing∫ ∞
−∞

Z2K2(Z)dZ

(∫ ∞
−∞

K2(Z)dZ

)4

. (5.11)

It turns out that the earlier mentioned Epanechnikov kernel in Equation (5.5) is the kernel that minimizes
Equation (5.11) and thus (5.10) (see [2, 9]). However, according to Silverman [36], there are many other
kernels that perform near optimal when minimizing (5.11). Therefore, the choice of kernel seems to have
very little impact on the AMISE (among others, [36]). Instead, one may choose the kernel function based
on reasons other than minimizing the AMISE.

While we have an expression for the optimal bandwidth in (5.9), we cannot use it directly since it
depends on f (2)(Z). The literature considers many methods to deal with this problem. In general, most
methods focus on approximating h∗ by using an estimation of f (2)(Z) or

∫∞
−∞(f (2)(Z))2dZ.

One method is the so-called rule-of-thumb proposed by Silverman [36]. It is the most popular method
in practice to select the bandwidth due to its simplicity and reasonable results, despite having some
drawbacks (e.g., oversmoothing the data in general, see [34]). This method assumes that f(Z) is

K(Z/σ)

σ
,

where σ is the standard deviation of K(u). Under this assumption,(∫ ∞
−∞

(f (2)(Z))2dZ

)−1/5
= σ

(∫ ∞
−∞

(K(2)(Z))2dZ

)−1/5
. (5.12)

By substituting Equation (5.12) in Equation (5.9) and replacing (the unknown) σ by the sample standard
deviation σ̂, we get the rule-of-thumb bandwidth

hRoT =

( ∫∞
−∞K2(Z)dZ∫∞

−∞ Z2K2(Z)dZ ·
∫∞
−∞(K(2)(Z))2dZ

)1/5

σ̂n−1/5,

which can be computed given K(u). Clearly, hRoT converges to 0 as n → ∞ at a smaller rate than n

diverges. Therefore, f̂(Z) converges to f(Z) when we plug-in hRoT into the AMISE in (5.8).
A more sophisticated bandwidth selection method that has become popular as well is proposed by

Sheather and Jones [35] (the SJ-method). This method has a stronger theoretical formulation than the
rule-of-thumb, but the corresponding algorithm for estimating h∗ has a time complexity of O(n2) and is
therefore less efficient when using many historical data.

The main idea of the SJ-method is to estimate
∫∞
−∞(f (2)(Z))2dZ using KDE as a subroutine. In this

inner KDE procedure, the inner bandwidth g for estimating
∫∞
−∞(f (2)(Z))2dZ is assumed to be a function

of h, namely the function

g(h) = 1.357

(∫∞
−∞(f (2)(Z))2dZ∫∞
−∞(f (3)(Z))2dZ

)1/7

h5/7. (5.13)

We denote the estimate of
∫∞
−∞(f (2)(Z))2dZ by

∫∞
−∞(f̂

(2)
g(h)(Z))2dZ. The kernel function is the Gaussian

kernel in Equation (5.4). Both the nominator and denominator of the term∫∞
−∞(f (2)(Z))2dZ∫∞
−∞(f (3)(Z))2dZ

in (5.13) are estimated using KDE and Gaussian kernels as well. In this case, the bandwidths are obtained
using an adaption of the rule-of-thumb of Silverman [36]. Plugging in the estimate for

∫∞
−∞(f (2)(Z))2dZ

into the expression in (5.9) for the optimal bandwidth results in an equation with h as its only unknown,
which is equivalent to equation (12) in [35]:

h =

 ∫∞
−∞K2(Z)dZ∫∞

−∞ Z2K2(Z)dZ ·
∫∞
−∞(f̂

(2)
g(h)(Z))2dZ

1/5

n−1/5. (5.14)
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Solving this equation gives the final bandwidth hSJ for the original KDE. Note that solving (5.14) is not

straightforward, since the term
∫∞
−∞(f̂

(2)
g(h)(Z))2dZ is a function of h. For the details on the SJ-method,

we refer to Sheather [34] and Sheather and Jones [35].

Since there is little difference between various popular kernels when it comes to minimizing the
AMISE [36], we base our choice for a kernel function not only on their optimality, but also on their ease
of implementation. In this light, we choose the Epanechnikov kernel as the kernel function. In Section
5.3, we explain our motivation for this kernel regarding the ease of implementation. For the bandwidth,
we select both the rule-of-thumb and the SJ-method, as they are the most used and successful methods
in practice.

In the next section, we discuss some computational issues when evaluating (5.3). In Section 5.4, we
carry out simulations to test the performance of the different kernels and bandwidths.

5.3 Computing the expected cost bound function: numerical
issues

Up to this point, we addressed the issue of substituting the factors C(Ẑl)/C(Zl) and f(Z) in the expression
for the expected relative costs in Equation (5.1). In this section, we address the last issue with regard to
actually evaluating the expected value of the cost bound function. This mainly consists of dealing with
the unboundedness of the integration domain in (5.3). Furthermore, we briefly address the computational
complexity of computing the estimate Ẑ and some ways to improve upon the running time of our method.

Before we discuss bounding the integration domain, we introduce the following property of a prob-
ability distribution. The support of a probability distribution is the range of values that a stochastic
variable with this distribution can assume. This means that the pdf of the stochastic variable is nonzero
for any value in its support and zero for any value that is not in its support. Based on this, we note that
bounding the integration domain in Equation (5.3) is equivalent to bounding the support of f̂(Z).

The support of f̂(Z) may already be bounded. In that case, we can replace the bounds in (5.1) by the

bounds of the support of f̂(Z) without losing changing the value of the integral. Whether the support of

f̂(Z) is bounded depends on the support of the kernel function from which f̂(Z) has been constructed.

If this kernel function has a bounded support, then the support of f̂(Z) is bounded as well. Analogously,

if the support of the kernel function is unbounded, then f̂(Z) has an unbounded support. The definition
of the Epanechnikov kernel in (5.5) and Figure 5.4 show that the Epanechnikov kernel has a bounded

support. The resulting support of f̂(Z) when using this kernel is therefore bounded as well.

To find the bounds of the support of f̂(Z), we must first find the support of the separate kernel
functions K1(Z), ...,Kn(Z). Using the Epanechnikov kernel as the kernel function K(u), each kernel
function Ki(Z) as defined in (5.6) is zero for all Z that satisfy∣∣∣∣Zi − Zh

∣∣∣∣ > 1.

This is equivalent to

Z < Zi − h ∨ Z > Zi + h.

Based on this observation and the definition of f̂(Z) in (5.7), we have that f̂(Z) = 0 for all Z that satisfy
either

Z < min
i∈N

(Zi − h) = min
i∈N

(Zi)− h

or

Z > max
i∈N

(Zi + h) = max
i∈N

(Zi) + h.

We define v := mini∈N (Zi) − h and w := maxi∈N (Zi) + h. By the discussion above, these two values

are the bounds of the support of f̂ . We can now simplify Equation (5.3) by replacing the bounds of the
integration domain by v and w:

Ê
[
cc(Z, Ẑ, C,M, x̄)

]
=

∫ ∞
−∞

cc(Z, Ẑ, C,M, x̄)f̂(Z)dZ =

∫ w

v

cc(Z, Ẑ, C,M, x̄)f̂(Z)dZ.
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Using the definitions of the cost bound function in (3.13), we now express the expected relative costs as

Ê
[
cc(Z, Ẑ, C,M, x̄)

]
=

∫ max(v,Ẑ)

v

√
Ẑ

Z
f̂(Z)dZ

+

∫ w

min(Ẑ,w)

√√√√1 + min

(
Z − Ẑ

x̄− C/M + Z − Ẑ
,
C

Mx̄

)
x̄− C/M

Z2
(x̄− Ẑ + Z)f̂(Z)dZ.

(5.15)

We expect that evaluating Equation (5.15) analytically for any estimated level Ẑ is very hard due
to the complexity of its integrands. Therefore, we use numerical integration to calculate the integral in
Equation (5.15). We use the bisection method to find the value of Ẑ that minimizes (5.15).

We now derived everything that is needed to estimate Z. Summarizing, the following steps have to
be carried out in order to obtain an estimation:

Step 1. Determine the historical values Z1, ..., Zn of Z on which the estimation of Z will be based.

Step 2. Compute the bandwidth h (using either the rule-of-thumb or the SJ-method).

Step 3. Establish the approximate pdf using Equation (5.7) and the Epanechnikov kernel in Equation
(5.5):

f̂(Z) :=
1

nh

n∑
i=1

3

4

(
1−

(
Zi − Z
h

)2
)
1{|Zi−Z

h |≤1}.

Step 4. Compute the bounds v and w of the support of f̂ .

Step 5. Find the value of Ẑ that minimizes Equation (5.15).

Computing the bandwidth in Step 2 can be done in linear time if the rule-of-thumb is used. However,
using the SJ-method requires solving the nonlinear equation in Equation (5.14). This cannot be done in
linear time in general. However, rewriting Equation (5.14) to ∫∞

−∞K2(Z)dZ∫∞
−∞ Z2K2(Z)dZ ·

∫∞
−∞(f̂

(2)
g(h)(Z))2dZ

1/5

n−1/5 − h = 0 (5.16)

and using the bisection method to solve Equation (5.16) may reduce the computational load of this step
greatly. Therefore, we use this approach to compute the SJ-bandwidth.

5.4 Simulations

In Chapters 3 and 4, we derived a method to respectively estimate Z for problem CEVCP and Zl for
problem DEVCP . To test the performance of this method, we now carry out simulations using the chosen
kernel function and bandwidths for both problems CEVCP and DEVCP .

5.4.1 Simulations for CEVCP

We first consider the case from [13] that we already mentioned in Section 5.1. In this case, 90 historical
values {Z1, ..., Z90 of Z for 90 days are used to generate an estimate of Z. For each historical day, the
estimated fill level in [13] is computed by

Ẑ = max
i∈N

Zi.

To compute Ẑ for a given day i ∈ N , we apply the KDE method presented in Section 5.2 with the two
bandwidths presented in Section 5.2.3, using the other 89 days as historical data (i.e., N = {1, ..., i−1, i+
1, ..., 90}). The considered charging intervals are from 18:00h to 24:00h and from 14:00h to 24:00h and
divided into respectively 24 and 40 time intervals of 15 minutes (so M = 24 and M = 40 respectively). We
set the maximum charging power x̄ to 7 kW. An overview of the results for the two charging intervals 18:00-
24:00h and 14:00-24:00h for different charging requirements C is given in Table 5.2 for both bandwidth
selection methods. To compare these results to the results in [13], we present the results in the same
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format as in Table 1 and 2 of [13]. Also, we added the corresponding results from [13] as Tables 5.3
for the charging intervals 18:00h-24:00h and 14:00h-24:00h. In all tables in this section, “med” stands
for “median” and “avg” for average. For each day, we also computed the difference between the cost
bound function and the relative costs. By doing this, we can check whether the cost bound function can
be applied to practical instances that do not belong to the suitable set Ic (recall Definition 3.2). The
results of these compuations are in the first half of the columns of Table 5.4. Furthermore, we analyzed
how accurately our method estimates the optimal fill level compared to the method in [13]. To this end,
for each day, we computed the ratio of the difference between the optimal fill level and the estimate Ẑ ′i
from [13] and the difference between the optimal fill level and the estimate Ẑ ′′i computed by the method
described in this chapter. If this ratio is larger than 1, our method estimates the optimal fill level more
accurately than the method in [13]. The results of these computations are in the first half of the columns
in Table 5.5.

The results in Table 5.2 compared to Table 5.3 imply that even by using relatively old historical data
(and not including any weights on the data to account for this), we can reduce the median and maximum
relative costs in [13] significantly for both the 18:00-24:00h and 14:00-24:00h charging intervals. We
expect that the results can be improved even more by considering different subsets of the historical data
as input for the KDE method that represent the current day better.

Band- C Ẑi cc
C(Ẑi)
C(Zi)

h

width (kWh) min med max min med max min med max min med max

18:00-24:00h case
RoT 6 1556 1559 1560 1.00 1.04 1.17 1.00 1.03 1.12 47.6 51.6 52.1

12 2585 2589 2589 1.00 1.03 1.09 1.00 1.02 1.08 61.8 66.2 66.9
18 3559 3564 3565 1.00 1.02 1.06 1.00 1.01 1.05 61.8 66.2 66.9
24 4532 4537 4538 1.00 1.01 1.04 1.00 1.01 1.04 61.8 66.2 66.9

SJ 6 1566 1570 1571 1.00 1.05 1.16 1.00 1.03 1.12 131 137 138
12 2585 2589 2590 1.00 1.03 1.09 1.00 1.02 1.08 170 176 177
18 3557 3561 3562 1.00 1.01 1.06 1.00 1.01 1.05 172 177 178
24 4532 4535 4537 1.00 1.01 1.04 1.00 1.01 1.04 172 177 178

14:00-24:00h case
RoT 6 1144 1148 1148 1.00 1.05 1.24 1.00 1.03 1.13 36.4 37.3 37.8

12 1790 1794 1794 1.00 1.03 1.14 1.00 1.02 1.11 44.9 45.5 45.9
18 2402 2406 2406 1.00 1.02 1.10 1.00 1.02 1.09 49.5 51.5 52.0
24 2993 2997 2997 1.00 1.02 1.07 1.00 1.01 1.07 48.8 51.8 52.3

SJ 6 1151 1155 1244 1.00 1.07 1.22 1.00 1.03 1.14 87 93 441
12 1796 1800 1865 1.00 1.04 1.14 1.00 1.03 1.11 110 115 441
18 2408 2412 2459 1.00 1.03 1.10 1.00 1.02 1.09 116 123 441
24 2999 3002 3033 1.00 1.02 1.07 1.00 1.01 1.07 116 124 441

Table 5.2: Results for CEVCP on the estimated fill level, cost bound function, relative costs and band-
width for all cases, bandwidth selection methods and charging requirements. The set of historical values
of Z consists of the other 89 days.

C Zi Bound in [13] C(Ẑi)
C(Zi)

from [13]

Case (kWh) min med max min med max

18:00-24:00h 6 1188 1463 1713 1.20 1 1.07 1.16
12 2188 2492 2776 1.13 1 1.05 1.11
18 3188 3492 3798 1.09 1 1.04 1.09
24 4188 4492 4798 1.07 1 1.03 1.07

14:00-24:00h 6 809 1057 1268 1.25 1 1.06 1.18
12 1409 1721 1962 1.18 1 1.06 1.15
18 2009 2340 2603 1.14 1 1.05 1.12
24 2609 2943 3221 1.11 1 1.04 1.10

Table 5.3: Results for CEVCP using the estimation method from [13] for the 18:00-24:00h and 14:00-
24:00h case (parts of Tables 1 and 2 in [13]) .
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The median and average values in the first half of the columns of Table 5.5, the ratio |Ẑ ′i−Zi|/|Ẑ ′′i −Zi|
are larger than 1 for all combinations of charging intervals and bandwidth selection methods. This implies
that for each combination, our method estimates the optimal fill level more accurately than the method
in [13] for at least half of the days. Furthermore, the minimum values are larger than 1 for almost all
combinations for the 14:00-24:00h charging interval. Therefore, our method outperforms the method in
[13] for all days for these combinations.

When comparing the results the rule-of-thumb method and the SJ-method, we see that the SJ-
bandwidths are much higher than the rule-of-thumb bandwidths. This implies that the SJ-method

Historical data
Band- C 90 days (5.17)

Case width (kWh) min med max avg min med max avg

18:00- RoT 6 3.3 · 10−4 0.097 0.11 0.020 0.0019 0.011 0.12 0.026
24:00h 12 5.2 · 10−4 0.0064 0.036 0.011 1.4 · 10−4 0.0071 0.053 0.013

18 1.9 · 10−4 0.0054 0.030 0.0078 -0.015 0.0055 0.036 0.0084
24 -0.0030 0.0053 0.024 0.0068 3.6 · 10−4 0.0052 0.026 0.0068

SJ 6 7.6 · 10−4 0.010 0.11 0.019 3.7 · 10−4 0.013 0.12 0.019
12 5.2 · 10−4 0.0065 0.036 0.010 6.4 · 10−4 0.0061 0.047 0.010
18 1.7 · 10−4 0.0055 0.031 0.0079 3.1 · 10−5 0.0054 0.029 0.0072
24 -0.0030 0.0053 0.024 0.0068 4.9 · 10−5 0.048 0.021 0.0062

14:00- RoT 6 0.0010 0.022 0.15 0.034 0.0020 0.022 0.15 0.035
24:00h 12 0.0011 0.0076 0.052 0.014 0.0012 0.0081 0.055 0.0081

18 5.5 · 10−4 0.0047 0.044 0.0089 7.2 · 10−4 0.0048 0.041 0.0094
24 2.0 · 10−4 0.0033 0.029 0.0068 1.8 · 10−4 0.0038 0.030 0.0071

SJ 6 3.3 · 10−4 0.097 0.11 0.020 0.0023 0.026 0.12 0.033
12 5.2 · 10−4 0.0064 0.036 0.011 0.0019 0.0088 0.048 0.012
18 1.9 · 10−4 0.0054 0.030 0.0078 1.1 · 10−5 0.0040 0.026 0.0056
24 -0.0030 0.0053 0.024 0.0068 6.3 · 10−4 0.0036 0.029 0.0055

Table 5.4: The difference between the continuous cost bound function and the relative costs (cc −
C(Ẑl)/C(Zl)) for all cases, bandwith selection methods, charging requirements and sets of historical
values of Z.

Historical data
Band- C 90 days (5.17)

Case width (kWh) min med max avg min med max avg

18:00- RoT 6 0.0038 2.23 151.14 7.68 0.0045 2.14 45.46 4.91
24:00h 12 5.0 · 10−4 2.32 70.33 4.66 6.5 · 10−4 2.48 699.99 12.00

18 0.0010 2.85 173.49 7.88 0.0013 2.92 42.58 4.94
24 9.4 · 10−4 2.65 414.54 9.14 0.0011 3.03 161.43 8.87

SJ 6 0.0041 2.05 605.34 11.34 0.0053 1.65 76.77 4.06
12 5.0 · 10−4 2.31 70.33 4.88 8.9 · 10−4 2.11 93.66 5.39
18 0.0010 2.90 375.69 10.00 0.0014 2.71 276.34 11.35
24 9.3 · 10−4 2.67 414.54 9.23 0.0012 2.87 376.68 10.22

14:00- RoT 6 2.67 6.35 1471.3 45.05 2.34 8.34 592.01 27.50
24:00h 12 3.56 10.94 237.27 21.84 3.39 13.33 223.16 25.20

18 0.70 1.59 5.83 1.85 4.32 19.86 860.96 48.50
24 5.65 22.55 1454.2 73.20 5.49 25.46 1776.3 66.47

SJ 6 2.57 5.35 269.85 16.42 2.06 4.94 410.52 10.97
12 3.39 8.37 237.27 30.76 2.74 8.61 107.38 12.25
18 4.43 13.64 438.92 35.81 3.78 14.90 2316.2 292.75
24 5.56 19.89 5158.9 144.37 4.81 22.36 390.56 44.55

Table 5.5: The difference between the fill level estimate Ẑ from [13] and the optimal level Z divided by
the difference between the estimation from our method and the optimal level (|Ẑ ′i −Zi|/|Ẑ ′′i −Zi|) for all
cases, bandwith selection methods, charging requirements and sets of historical values of Z.
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smooths the data much more than the rule-of-thumb method does. Furthermore, the results imply that
the estimates produces by the rule-of-thumb method are smaller than the estimates of the SJ-method.
However, in both cases, the results imply that the estimates are in general larger than the actual optimal
fill levels.

The results in the first half of the columns in Table 5.4 imply that the cost bound function is smaller
than the bound given in [13] (third set of columns of Table 5.3) for almost all days for all combinations of
charging intervals and bandwidth selection methods. Therefore, these results imply that the cost bound
function applies to most practical instances, even if they do not belong to the suitable set. Furthermore,
the cost bound function appears to approximate the actual relative costs quite well in general as the
differences in the first half of the columns of Table 5.4 are very small. This supports our observation in
Section 3.4 that the cost bound function maps the general behavior of the relative costs quite well.

For this particular case, there is very little variance in the estimated level. We suspect that this is
due to the large number of historical data used to obtain the estimate. While the obtained results are an
improvement on the results in [13], we expect that we can do better by using only the most recent data
for each day. In that case, the estimates are tailored more to the recent behavior of the power profile,
which comes to expression in the optimal fill levels. Also, we expect that using data for similar days (e.g.,
using data from the same weekday) can improve the accuracy of the estimations.

To this end, we now consider the same case as above, but use a different set of historical values of Z
as input for KDE. For estimating a level Zi, this set is

{Zi−1, Zi−2, Zi−3, Zi−7, Zi−14, Zi−21}. (5.17)

In other words, we use the optimal levels of the last three days and the three most recent optimal levels
of the same weekday. By doing this, we take into account both the recent behavior of the house profile
and its behavior for the weekday in question. The results for this case are given in Table 5.6 and the
second half of the columns of Tables 5.4 and 5.5.

From the second half of the columns of Table 5.5, we see that the minimum values of the ratio
|Ẑ ′i −Zi|/|Ẑ ′′i −Zi| are larger than 2 for the 14:00-24:00h case. This means that for all days, our method
estimates the optimal filling level at least twice as closely as the method from [13].

We see that there is now much more variation in the estimated fill level and bandwidth than when we
considered all 89 other fill levels as input for KDE. The median of the relative costs is smaller than in the
previous case. This implies that choosing (5.17) as input set for KDE yields more accurate results than

Band- C Ẑi cc
C(Ẑi)
C(Zi)

h

width (kWh) min med max min med max min med max min med max

18:00-24:00h case
RoT 6 1375 1515 1646 1.00 1.04 1.20 1.00 1.03 1.14 12.2 70.8 152.7

12 2346 2574 2730 1.00 1.03 1.12 1.00 1.02 1.09 10.7 94.7 195.5
18 3342 3553 3723 1.00 1.02 1.07 1.00 1.01 1.07 10.7 95.3 195.5
24 4305 4529 4715 1.00 1.01 1.05 1.00 1.01 1.04 10.7 95.3 195.5

SJ 6 1409 1600 1766 1.00 1.05 1.18 1.00 1.03 1.15 75 309 430
12 2388 2601 2757 1.00 1.03 1.11 1.00 1.02 1.09 64 388 498
18 3343 3568 3734 1.00 1.02 1.07 1.00 1.01 1.07 139 413 511
24 4379 4535 4707 1.00 1.01 1.05 1.00 1.01 1.04 139 472 511

14:00-24:00h case
RoT 6 1038 1132 1267 1.00 1.05 1.23 1.00 1.02 1.14 12.1 53.2 152.4

12 1663 1773 1931 1.00 1.03 1.13 1.00 1.02 1.11 4.9 67.2 191.2
18 2248 2392 2541 1.00 1.03 1.09 1.00 1.01 1.09 6.1 68.9 206.0
24 2842 2986 3140 1.00 1.02 1.07 1.00 1.01 1.07 2.9 69.1 216.3

SJ 6 1091 1201 1351 1.00 1.06 1.21 1.00 1.03 1.15 48 387 387
12 1712 1851 2025 1.00 1.04 1.15 1.00 1.03 1.12 93 461 461
18 2322 2449 2575 1.00 1.02 1.11 1.00 1.02 1.09 31 449 523
24 2900 3028 3216 1.00 1.02 1.08 1.00 1.01 1.08 58 380 542

Table 5.6: Results for CEVCP on the estimated fill level, cost bound function, relative costs and band-
width for all cases, bandwidth selection methods and charging requirements. The set of historical values
of Z is (5.17).
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using all data from three months ago up till now (i.e., the other 89 days). We must note however that
the maximum relative costs are higher than in the previous case, implying that there is more variation
in the relative costs as well.

5.4.2 Simulations for DEVCP

As for CEVCP in the previous subsection, we first consider the cases in [13]. We choose the same charging
requirements as in the previous subsection, but choose x̄ to be 6 kW to ensure that MA is an integer. Note
that MA is determined completely by C and x̄. An overview of the results for both the 18:00-24:00h and
14:00-24:00h charging intervals for different charging requirements C and bandwidth selection methods
is given in Table 5.7 and the first half of the columns of Table 5.9. These results are analogous to the
results in Table 5.2, the first half of the columns of Table 5.4 and Table 5.10 for DEVCP . We compare
these results to the worst case results in Table 5.8 for both charging intervals. Here, the worst case results
consist of the relative costs when no fill level approach or other DSM method is used and charging is
simply done in the first MA time intervals. For all tables, “1.00” is a rounded value (meaning that the
true value lies in the interval [1.005, 1.015)) and “1” is an exact value.

For all charging requirements and bandwidth selection methods, the relative costs do not exceed 1.005

Band- C MA Ẑl,i cd
C(Ẑl,i)
C(Zl,i)

h

width (kWh) min med max min med max min med max min med max

18:00-24:00h case
RoT 6 4 6155 6157 6158 1.09 2.17 8.14 1 1.00 1.08 44.5 46.7 47.0

12 8 6155 6157 6158 1.05 3.16 10.95 1 1.00 1.10 44.5 46.7 47.0
18 12 6422 6422 6423 1.01 1.87 15.85 1 1.00 1.06 26.1 27.5 27.6
24 18 6489 6495 6720 1.01 1.73 8.10 1 1.00 1.04 27.4 27.5 27.5

SJ 6 4 6159 6162 6171 1.07 2.15 8.66 1 1.00 1.08 65 68 124
12 8 6158 6161 6171 1.12 3.11 11.70 1 1.00 1.10 65 68 124
18 12 6420 6421 6422 1.01 1.90 15.83 1 1.00 1.06 66 66 66
24 16 6490 6491 6492 1.01 1.75 8.13 1 1.00 1.04 61 66 66

14:00-24:00h case
RoT 6 4 6127 6128 6129 1.05 1.88 5.15 1 1.00 1.08 25.7 29.3 29.3

12 8 6175 6176 6177 1.03 2.23 9.30 1 1.00 1.10 38.4 39.6 39.9
18 12 6255 6257 6259 1.04 2.39 11.26 1 1.00 1.08 57.6 58.5 58.6
24 18 6254 6256 6259 1.08 2.88 8.56 1 1.00 1.06 57.6 58.5 58.6

SJ 6 4 6125 6127 6128 1.11 1.89 5.12 1 1.00 1.08 41 66 66
12 8 6179 6182 6189 1.05 2.22 9.49 1 1.00 1.10 68 71 124
18 12 6262 6265 6269 1.09 2.36 11.49 1 1.00 1.07 96 124 124
24 16 6261 6264 6268 1.12 2.81 8.78 1 1.00 1.06 96 124 124

Table 5.7: Results for DEVCP on the estimated fill level, cost bound function, relative costs and band-
width for all cases, bandwidth selection methods and charging requirements. The set of historical values
of Zl consists of the other 89 days.

C MA Zl,i Worst case
C(Ẑl,i)
C(Zl,i)

Case (kWh) min med max min med max

18:00-24:00h 6 4 6060 6155 6465 1.00 1.07 1.17
12 8 6060 6155 6465 1.00 1.07 1.15
18 12 6120 6423 6561 1.00 1.05 1.11
24 18 6223 6495 6720 1.00 1.04 1.08

14:00-24:00h 6 4 6060 6133 6419 1 1.02 1.12
12 8 6063 6177 6447 1.00 1.03 1.14
18 12 6084 6260 6474 1.01 1.05 1.16
24 18 6084 6260 6474 1.00 1.05 1.12

Table 5.8: The optimal fill levels and worst case cost ratios for DEVCP for the 18:00-24:00h and 14:00-
24:00h cases.
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for at least half of the days according to the third set of columns in Table 5.7. While the results imply
that there are some outliers, this implies that Algorithm 4 is able to achieve very small approximation
ratios in practice regardless of the charging requirement and bandwidth selection method. Also, it is a
great improvement on the worst case scenarios in Table 5.8.

As for CEVCP , the SJ-bandwidths are larger than the rule-of-thumb bandwidths, implying that the
SJ-method smooths the historical data more than the rule-of-thumb method does. Furthermore, the
estimates of the SJ-method appear to be larger than those of the rule-of-thumb. However, this difference
is very small. In general, there seems to be very little difference between the results of the rule-of-thumb
and the SJ-method.

From the results in the second and third set of columns in Table 5.7 and the second half of the columns

Historical values of Zl
C MA 90 days (5.17)

Case Bandwidth (kWh) min med max avg min med max avg

18:00-24:00h RoT 6 4 0.047 0.85 4.1 1.3 0.029 0.82 6.9 1.3
12 8 0.031 1.2 8.3 1.5 0.0062 1.0 8.3 1.5
18 12 0.038 1.4 10.0 2.0 0.01 1.1 9.7 1.8
24 16 0.036 1.1 10.0 2.0 0.044 1.1 10.0 1.8

SJ 6 4 0 0.83 4.4 1.3 0.026 0.83 6.7 1.3
12 8 0.11 1.2 9.1 1.7 0.055 1.1 9.3 1.6
18 12 0.09 1.4 11.0 2.1 0.0036 1.2 9.8 1.8
24 16 0.085 1.3 9.7 2.0 0.025 1.2 9.5 1.8

14:00-24:00h RoT 6 4 0.047 0.85 4.1 1.3 0.029 0.82 6.9 1.3
12 8 0.031 1.2 8.3 1.5 0.0062 1.0 8.3 1.5
18 12 0.038 1.4 10.0 2.0 0.01 1.1 9.7 1.8
24 16 0.036 1.1 10.0 2.0 0.044 1.1 10.0 1.8

SJ 6 4 0 0.83 4.4 1.3 0.026 0.83 6.7 1.3
12 8 0.11 1.2 9.1 1.7 0.055 1.1 9.3 1.6
18 12 0.09 1.4 11.0 2.1 0.0036 1.2 9.8 1.8
24 16 0.085 1.3 9.7 2.0 0.025 1.2 9.5 1.8

Table 5.9: The difference between the discrete cost bound function and the relative costs (cd−C(Ẑl)/C(Zl))
for all cases, bandwith selection methods, charging requirements and sets of historical values of Zl.

Historical values of Zl
C MA 90 days (5.17)

Case Bandwidth (kWh) min med max avg min med max avg

18:00- RoT 6 4 13.0 59.0 69.0 61.0 7.0 60.0 233.0 69.0
24:00h 12 8 37.0 111.0 122.0 100.0 10.0 100.0 333.0 122.0

18 12 122.0 199.0 200.0 188.0 76.0 188.0 399.0 200.0
24 16 222.0 288.0 311.0 288.0 122.0 266.0 400.0 266.0

SJ 6 4 5.0 66.0 76.0 67.0 1.0 61.0 222.0 70.0
12 8 56.0 133.0 144.0 122.0 3.0 111.0 311.0 122.0
18 12 133.0 200.0 211.0 199.0 64.0 177.0 377.0 199.0
24 16 200.0 244.0 300.0 244.0 133.0 233.0 388.0 233.0

14:00- RoT 6 4 13.0 59.0 69.0 61.0 7.0 60.0 233.0 69.0
24:00h 12 8 37.0 111.0 122.0 100.0 10.0 100.0 333.0 122.0

18 12 122.0 188.0 200.0 188.0 76.0 188.0 399.0 200.0
24 16 222.0 277.0 311.0 277.0 122.0 266.0 400.0 266.0

SJ 6 4 5.0 66.0 76.0 67.0 1.0 61.0 222.0 70.0
12 8 56.0 133.0 144.0 122.0 3.0 111.0 311.0 122.0
18 12 133.0 199.0 211.0 199.0 64.0 177.0 377.0 199.0
24 16 200.0 233.0 300.0 233.0 133.0 233.0 388.0 233.0

Table 5.10: The difference between the estimated and optimal fill levels (|Ẑl,i−Zl,i|) for all cases, bandwith
selection methods, charging requirements and sets of historical values of Zl.
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of Table 5.9, we see that the cost bound function is not tight, as we already expected in Section 4.4.
Nevertheless, the relative costs themselves are very small. Therefore, it seems that this difference between
the cost bound function and the actual relative costs does not have much influence on the relative costs.

Analogously to the previous subsection, we also consider the case where the input for the KDE are
the values in (5.17). The results for this case are given in Table 5.11. Also, we compared the accuracy of
the estimation methods. That is, in Table 5.10, we compute the difference between the estimated level
and the optimal level for both sets of historical data.

The results in Table 5.10 show that the median and average differences are lower for (5.17) as historical
data than for the 89 other days for most combinations of charging interval, bandwidth selection method
and charging requirement. When we compare these differences to the actual values of the optimal and
estimated fill levels in Tables 5.8, 5.7 and 5.11, we see that the differences are relatively small. To see
this, observe that the maximum difference in Table 5.10 is 400 and the minimum optimal fill level is 6060.
Therefore, the maximum relative difference between the estimate and the optimal fill level compared to
the optimal level is 400/6060 ≈ 0.066. As a result, for the cases considered in this section, we estimated
Zl in such a way that the maximum difference between the estimate and the optimal level is 6.6%.

When comparing the results in Table 5.11 to the results in Table 5.7, the results when using the
89 other levels and (5.17) do not seem to differ much. Overall, the quantities of the case with (5.17) as
historical values are higher than those of the original case, but this difference is barely significant for most
of the quantities. Therefore, the results imply that for the considered problem instance, the difference in
performance between using the two choices of historical data is not significant.

5.4.3 Instance properties

In this section, we check to what extent the instances used in the previous two subsections have the
properties of the suitable sets in Sections 3.3.1 and 4.3.2. For this, we use the results of the rule-of-thumb
bandwidth since the results imply that, in general, this bandwidth leads to better results.

For Properties 3.1 and 3.2, we compute the difference between the estimated quantity (i.e., the
left-hand side of Properties 3.1 and 3.2) and the estimate itself (i.e., the right-hand side of Properties
3.1 and 3.2), relative to the estimates. Each of these two properties is satisfied if the corresponding
relative difference is 0. For Properties 3.3 and 4.1 we checked what percentage of the instances has the
corresponding property. For Properties 4.2 and 4.3, we compute the ratio between the left-hand side and

Band- C MA Ẑl,i cd
C(Ẑl,i)
C(Zl,i)

h

width (kWh) min med max min med max min med max min med max

18:00-24:00h case
RoT 6 4 6099 6158 6417 1.03 2.19 10.97 1 1.00 1.08 5.4 61.6 185.3

12 8 6139 6350 6452 1.04 2.11 20.2 1 1.00 1.03 3.1 93.1 170.2
18 12 6268 6419 6489 1.03 1.79 16.86 1 1.00 1.06 4.7 34.7 150.7
24 18 6322 6467 6552 1.03 1.71 14.1 1 1.00 1.04 4.3 32.2 163.2

SJ 6 4 6099 6172 6404 1.01 2.19 11.00 1 1.00 1.08 76 419 468
12 8 6157 6313 6450 1.02 2.20 19.60 1 1.00 1.04 8 347 468
18 12 6257 6398 6478 1.01 2.02 15.43 1 1.00 1.06 26 324 468
24 16 6294 6450 6531 1.01 1.78 13.33 1 1.00 1.05 38 287 468

14:00-24:00h case
RoT 6 4 6075 6129 6294 1.03 1.83 7.87 1 1.00 1.08 4.9 35.5 157.0

12 8 6116 6175 6399 1.00 2.05 9.34 1 1.00 1.06 5.6 49.8 176.9
18 12 6164 6246 6449 1.01 2.15 10.74 1 1.00 1.02 9.9 70.2 175.9
24 18 6209 6355 6468 1.04 2.13 11.43 1 1.00 1.02 4.2 63.4 176.0

SJ 6 4 6069 6131 6284 1.03 1.85 7.70 1 1.00 1.08 83 252 468
12 8 6125 6181 6384 1.06 2.08 10.33 1 1.01 1.10 82 377 468
18 12 6179 6246 6433 1.01 2.16 10.84 1 1.00 1.02 96 124 124
24 16 6227 6332 6444 1.02 2.24 10.51 1 1.00 1.03 59 419 419

Table 5.11: Results for DEVCP on the estimated fill level, cost bound function, relative costs and
bandwidth for all cases, bandwidth selection methods and charging requirements. The set of historical
values of Zl is (5.17).
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the right-hand side of respectively ∑
m∈I∗\Î

zm = |I∗\Î|Zl

and ∑
m∈Î\I∗

ẑm = |Î\I∗|Zl.

Each property is satisfied if the corresponding ratio is 1. If |I∗\Î| = |Î\I∗| = 0, then the two equalities
above hold but the ratio is not defined. In that case, we set the ratio to 1. The results of this analysis
are given in Tables 5.12-5.15. In Tables 5.12 and 5.13, “0” means that the actual value is lower than the
machine precision 10−16. In Tables 5.14 and 5.15, “1” means that the ratio is exactly 1. Furthermore,
“avg” means the average of the ratios for the corresponding case (Ẑl ≥ Zu or Ẑl < Zl).

For CEVCP , we see that the term (
∑M
m=γ+1 zm)/(

∑M
m=1 zm) is in practice very close to (M − γ)/M .

A reason for this is that the charging requirement C is so high that there are very few peaks (i.e.,
intervals m such that zm > Z). This implies that the practical data used in this section satisfies Property

3.1. For Property 3.2 however, this is not the case. The relative differences between
∑M
m=γ+1 xm and

(M − γ)/M · C are quite large for most days. From the last column of Table 5.12 and 5.13, we see that
most instances satisfy Property 3.3. In fact, the only situation in which not all days have Property 3.3 is
when C = 24 kWh in the 14:00-24:00h case. Summarizing, these results imply that practical instances
for CEVCP almost satisfy Properties 3.1 and 3.3, but not 3.2.

According to Tables 5.14 and 5.15, all instances that we considered in this section have Property 4.1.
Furthermore, the ratios for Property 4.2 are, on average, near 1. This implies that in practice, the total
deviation in the intervals in I∗\Î, which is

∑
m∈I∗\Î zm, is very close to its maximum value of |I∗\Î|Zl.

The ratios for Property 4.3 are near 1 on average as well. These results imply that practical instances
for DEVCP almost satisfy the three properties needed to belong to Id.

5.5 Conclusions

In this chapter, we designed a method to estimate the optimal fill levels that are required as input for
Algorithms 2 and 4. We choose the estimate as the value of the estimated level that minimizes the
expected cost bound function given by Equation (5.3). This approach required an approximation of
the probability density function of the optimal level. We constructed this approximation using kernel
density estimation. Simulations show that our method outperforms the method in [13] on accurately
estimating the fill level and achieving lower relative costs for CEVCP . For DEVCP , this method achieves
a median approximation ratio of less than 1.005. The results for the rule-of-thumb bandwidth are slightly
better than those for the SJ-method. Therefore, we recommend using the rule-of-thumb to compute the
bandwidth. Using a combination of levels from recent days and similar days as input data for the
density estimation improved the results for CEVCP . For DEVCP , the estimates were more accurate
when using only recent data, while the relative costs did not differ significantly for recent and older data.
We recommend testing the performance of other combinations of data from previous days in order to
improve the results of the method further.
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Property
C # instances 3.1 3.2 3.3

(kWh) with Ẑ < Z min med max min med max %

6 23 0.0019 0.039 0.053 0.012 0.35 0.58 100
12 32 0 5.0 · 10−16 0.0079 0.020 0.20 0.29 100
18 37 0 3.3 · 10−16 6.7 · 10−16 0.013 0.15 0.19 100
24 41 0 3.3 · 10−16 6.7 · 10−16 0.011 0.11 0.15 100

Table 5.12: Analysis of the properties corresponding to Ic for CEVCP for the 18:00-24:00h case.

Property
C # instances 3.1 3.2 3.3

(kWh) with Ẑ < Z min med max min med max %

6 19 0.056 0.087 0.12 0.072 0.64 0.89 100
12 25 0.0022 0.022 0.040 0.043 0.38 0.50 100
18 29 1.4 · 10−16 0.0024 0.0086 0.048 0.26 0.34 100
24 33 0 5.6 · 10−16 0.0019 0.077 0.19 0.26 33.3

Table 5.13: Analysis of the properties corresponding to Ic for CEVCP for the 14:00-24:00h case.

Property
C # days # days 4.1 4.2 4.3

(kWh) k Ẑl ≥ Zl Ẑl < Zl % min med max avg min med max avg

6 4 30 60 100 0.940 0.996 1 0.984 1 1.006 1.180 1.012
12 8 28 62 100 0.956 0.995 1 0.992 1 1.001 1.149 1.010
18 12 32 58 100 0.946 0.983 1 0.980 1 1.006 1.167 1.016
24 16 33 57 100 0.936 0.965 1 0.970 1 1.005 1.241 1.021

Table 5.14: Analysis of the properties corresponding to Id for DEVCP for the 18:00-24:00h case.

Property
C # days # days 4.1 4.2 4.3

(kWh) k Ẑl ≥ Zl Ẑl < Zl % min med max avg min med max avg

6 4 30 60 100 0.940 0.996 1 0.984 1 1.013 1.124 1.019
12 8 32 58 100 0.940 0.993 1 0.983 1 1.016 1.115 1.021
18 12 31 59 100 0.940 0.985 1 0.981 1.001 1.014 1.079 1.018
24 16 27 63 100 0.940 0.983 1 0.979 1 1.008 1.29 1.019

Table 5.15: Analysis of the properties corresponding to Id for DEVCP for the 14:00-24:00h case.





Chapter 6

Conclusions and future research

We conclude this thesis by summarizing the conclusions of our research (Section 6.1) and discussing
directions for future research (Section 6.2).

6.1 Conclusions

The first research question that we posed in Section 1.2 was how well the fill level approach by Gerards
and Hurink [13] performs when the estimate Ẑ of the optimal fill level Z is too optimistically (i.e., when
Ẑ < Z). In Chapter 3, we derived a bound on the relative costs of the online fill level algorithm in [13]
for this case. Simulation results show that the relative costs increase at a larger pace for the case Ẑ < Z
than for the case Ẑ ≥ Z as the difference between the estimated and optimal level increases. Therefore,
the fill level Z + δ gives lower relative costs than the level Z − δ, where δ is positive. Nevertheless, the
relative costs appear to be not much larger for Ẑ < Z compared to the costs for Ẑ ≥ Z. Furthermore,
the costs can be bounded when the problem instance belongs to a specific set of instances Ic, which we
called the suitable set. The simulations in Section 5.4.3 imply that instances from practice approximately
have the properties that are needed to belong to the suitable set. From this, we conclude that the relative
costs also can be bounded for most instances in practice when Ẑ < Z.

In Chapter 4, we considered the case where there is only a single charging rate. We presented an
algorithm that solves this version of the EV charging problem. In this version of the problem, there is a
range of optimal fill levels instead of just a single one. Our algorithm is based on the fill level approach
and thereby we use an estimate of the lower bound of the optimal level range (i.e., of the lowest optimal
fill level) to determine the charging profile. We derived bounds on the performance of this algorithm
that holds for instances that satisfy certain properties. Simulations in Section 5.4.3 indicate that most
instances from practice approximately have these properties. Furthermore, for instances from practice,
our algorithm achieves relative costs very close to 1. Therefore, we conclude that the relative costs can
be bounded for most practical instances as well. We extended our algorithm for the case with multiple
charging rates. However, in this case, the resulting algorithm only leads to a heuristic.

In Chapter 5, we presented a method to accurately estimate the fill level. Since we do not know the
optimal fill level beforehand, we estimate it by finding the estimate that minimizes the expected relative
costs. In the expression for the expected relative costs in Equation (5.1), we replaced the relative costs
(i.e., the term C(Ẑ)/C(Z)) by the bounds on the relative costs that we derived in Chapters 3 and 4.
Furthermore, we replaced the probability density function (pdf ) of the optimal fill level by an estimate of
the pdf that is based on historical values of Z (see also Section 5.1). To this end, we applied kernel density
estimation to create the approximate pdf. Simulations with instances from practice show that on average,
our method estimates the fill level more accurate than the method proposed in [13]. Furthermore, using
only the values of Z of recent and similar days (i.e., the first few preceeding days and the most recent
days that are the same weekday) reduces the expected relative costs compared to using the values of Z
of 89 preceeding days (as is done in [13]).

6.2 Future research

As we observed in Sections 3.4 and 4.4, the derived bounds on the relative costs of our online algorithms
are generally not very tight. Therefore, it may be worth investigating whether one can improve on the
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tightness of these bounds. Furthermore, our bounds only hold when the problem instance has certain
properties that most instances do not satisfy completely in practice. Therefore, obtaining bounds that
hold for any instance should be considered in future research.

In Section 4.5, we presented an online algorithm to solve the EV charging problem with discrete
charging power and multiple charging rates (DEVCP+). To analyze the performance of this algorithm,
bounds on its relative costs remain to be derived as we did for Algorithms 2 and 4 for the online versions
of CEVCP and DEVCP respectively.

In principle, the estimate for the fill level that is needed as input for Algorithm 5 for the discrete version
of the problem with multiple charging rates can be obtained using the estimation method presented in
Chapter 5. However, this requires the computation of optimal solutions to DEVCP+ for each day that
is used as input for the kernel density estimation (KDE) in Section 5.2. As this is an NP-hard problem
[24], more research must be done to find approximations of the optimal solutions in polynomial time. A
good starting point is the approach of Van der Klauw et al. [24]. To obtain an approximation to the
optimal solution, they allow convex combinations of the charging rates as feasible solutions.

The online fill level approach is mainly robust against prediction errors in the power profile with regard
to time. That is, as we argued in Section 3.1 and by means of Figure 3.2, the exact time at which there are
peaks in the charging interval (i.e., the distribution of the inactive time intervals) has no influence on the
optimal fill level. However, this does not apply anymore when the power profile is structurally different
from the historical power profiles on which the estimate is based. One way to overcome this problem is
to re-estimate the level at some moments within the charging interval. This re-estimation must be based
on information that has become available while charging. Examples of this are the realized house profile
up until now and recent weather forecasts. When and how the fill level must be re-estimated is a topic
for future research.

When we use the fill level approach to schedule the EV charging for each single EV, we can control
the power profile on the household level. However, we cannot directly control the power profile on the
neighborhood level (i.e., the power profile of the whole neighborhood) in this way. For example, to prevent
an overload of the neighborhood distribution network, our objective might be to flatten the total power
profile of all houses in the neighborhood together. In this case, if one of the houses has an extremely high
peak demand, not only its own EV should not be charged at that moment, but also the other EVs in the
neighborhood. Extending the fill level approach to take into account the power profiles and EV charging
of the other houses in the neighborhood is therefore an interesting direction of research. Gerards and
Hurink [13] already designed an algorithm that does this for CEVCP . Adjusting this algorithm so that
it works for DEVCP as well remains to be investigated.



Nomenclature

Acronyms and abbreviations

AMISE Asymptotic mean integrated squared error
ANN Artificial neural network
CEVCP Continuous EV charging problem
DEVCP Discrete EV charging problem
DEVCP+ Discrete EV charging problem with multiple charging rates
DSM Demand side management
EV Electric vehicle
FEV Fully electric vehicle
KDE Kernel density estimation
pdf Probability density function
PHEV Plug-in hybrid electric vehicle
PV Photovoltaic
RES Renewable energy sources
RoT Rule-of-thumb
SJ Sheather-Jones
SoC State of charge

Symbols

a Arrival time of the EV
γ Last interval in which no charging at maximum power is required in the online solution
C Charging requirement
C(Z) Objective value (costs) of CEVCP and DEVCP when using the fill level Z
d Charging deadline
f(Z) Probability density function of Z

f̂(Z) Approximate probability density function of Z
h Bandwidth
h∗ Optimal bandwidth
hRoT Bandwidth computed using the rule-of-thumb
hSJ Bandwidth computed using the SJ-method
I∗ Set of active intervals in the optimal solutions of CEVCP and DEVCP

Î Set of active intervals in the online solutions of CEVCP and DEVCP
I Problem instance
Ic Suitable set for CEVCP
Id Suitable set for DEVCP
K(·) Kernel function
M Number of time intervals
MA Number of active intervals in DEVCP
M Set of indices of time intervals
N Number of charging rates in DEVCP+
N Set of indices of historical values of Z
n Number of historical values of Z
p House profile
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p− q House deviation
q Target profile
R Number of intervals with the same house deviation (see Section 4.1)
σ Standard deviation of a kernel function K(·)
σ̂ Sample standard deviation
T State of charge
Uc Set of all instances for CEVCP
Ud Set of all instances for DEVCP

v Lower bound of the support of f̂(Z)

w Upper bound of the support of f̂(Z)
x Optimal charging profile
x̂ Online charging profile
x̄ Maximum charging rate
Z Optimal fill level

Ẑ Estimate of the optimal fill level
Zl Lower bound of the optimal level range

Ẑl Estimate of the lower bound of the optimal level range
Zu Upper bound of the optimal level range
[Zl, Zu) Optimal level range
z Deviation of the overall house profile from the target profile in the optimal solution
ẑ Deviation of the overall house profile from the target profile in the online solution

Indices

i Day used as input for KDE
m Time interval
r Time interval within a set of R time intervals with the same house deviation
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