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ABSTRACT 

[Background] 3D virtual planning of open cranial vault reconstruction is used to simulate and define 

an operative plan for craniosynostosis surgery pre-operatively. However, virtual planning techniques 

are subjective and dependent on the experience and preferences of the surgical team. In order to enable 

further development of a truly objective automated 3D pre-operative planning technique for open 

cranial vault reconstructions, curvature maps were used for the local shape comparison of the patient’s 

skull with an age-specific normative skull model. [Methods] Mesh data of skulls were created using 

marching cubes. All skulls were oriented similarly within the used coordinate system and ray casting 

was used to obtain sampled 3D metrical data of the inner and outer layer of the skulls. Normalised 

skulls were created for the age groups of 0-1, 2-4, 5-7, 8-10, 11-14, 15-18, 19-24, 25-36, 37-48 months. 

Also, a test object was created and a cranial CT-scan of a 11 months old trigonocephaly patient was 

selected. Gaussian curvature was estimated with quadric surface fitting and curvature maps were 

computed. The shape comparison was tested for the test object and within the normalised skull of the 

11-14 age group. Finally, shape comparison was performed for the trigonocephalic skull with the age-

appropriate normalised skull. [Results] Normalised skulls and thickness maps were created for the 

defined age groups. Similar shapes were correctly identified and the identification of the region on the 

patient’s skull, that maximally corresponded in shape with the reference shape, was feasible. 

[Conclusion] It is shown that curvature maps allow the shape comparison of craniosynostosis skulls 

with age-appropriate normative skulls. This study showed the first step towards an objective user-

independent pre-operative planning technique for open cranial vault reconstructions.  
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 GENERAL INTRODUCTION 

Craniosynostosis is the result of the premature fusion 

of one or more sutures within the new-born’s skull. The 

prevalence of craniosynostosis in the Netherlands is 

between 1:2100 and 1:2500 births and is therefore a 

rare disease[1], [2]. Several forms of craniosynostosis 

are known (Figure 1) [3]. The existence of each form 

is dependent on which suture is fused. Growth of the 

skull manifests perpendicular to the suture. When 

fusion of a suture occurs, growth in perpendicular 

direction of that suture will be hindered. Compensatory 

growth at the location of the other sutures will cause a 

deformed skull shape. This can lead to several 

complications, such as increased intracranial 

hypertension with subsequently mental retardation and 

malfunction of the eyes, ears and respiratory system. 

[1], [4]–[7] 

Patients of the Radboud University Medical Centre (Radboudumc) with craniosynostosis that are older 

than 6 months are subjected to open cranial vault reconstruction. The goal of this treatment is to prevent 

or treat increased intracranial pressure by increasing the intracranial volume, but also to restore the 

cranial shape[6], [8]. During the procedure, the cranial vault is divided into several osseous panels which 

are relocated and fixed to form a new cranial vault shape. Many different reconstruction techniques have 

been described for different forms of craniosynostosis and no consensus on the best technique exists[6], 

[9]–[17]. Therefore, the location of cutting lines and relocation of the panels is dependent on the 

experience and preference of the surgical team and the results will vary between surgical teams [18], 

[19].  

Current research focuses on the development of pre-operative planning techniques. Mardini et al.[20] 

and Soleman et al.[21] pre-operatively perform a virtual reconstruction to determine the cutting lines 

and reallocate the created osseous panels pre-operatively. Also, Clijmans et al[22] present a semi-

automated technique that is used for the determination of the cutting lines. Within their algorithm several 

reconstruction protocols are known and the most suitable protocol is automatically detected. At the 

Radboudumc a pre-operative plan is created as well. Following standard clinical practice, a cranial CT-

scan of the patient’s skull is made prior to the surgery. The volumetric data of the skull is obtained from 

the CT-data and represented in a 3D mesh. With help of the surgeon, all surgical options are virtually 

evaluated and the optimal cutting lines are determined. With the use of a pre-operative plan for open 

cranial vault reconstruction, the reproducibility will increase and the operation time, blood loss and 

infection rates will decrease [20], [21], [23]. 

To our knowledge still no fully automated objective planning technique is available. Created pre-

operative planning techniques are yet based on the interpretation of the surgical team. The aim of this 

study is to set the first steps towards a user-independent automated pre-operative planning technique 

that fully eliminates subjectivity. This planning technique will merely consist of an objective evidence-

based algorithm allowing for the reconstruction to establish a shape of the patient’s cranial vault that 

maximally corresponds with an age-appropriate reference skull. This study developed an algorithm that 

enables local shape comparison of the patient’s skull with an 3D age-appropriate reference skull. 

Chapter 2 describes the method for the creation of comparative mesh data that were used in both methods 

described the subsequent chapters. Chapter 3 and 4 elaborate on the creation of normalised skull models 

and the algorithm for the local shape comparison of skulls, respectively.  

Figure 1 Craniosynostosis forms, compensatory 

growth is represented by the black arrows, source: 

Raj et al. [3] 
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 COMPARATIVE MESH DATA 

2.1 INTRODUCTION 
To enable the comparison of skulls, all skulls should be similarly represented within the coordinate 

system. Not only should the skulls be similarly oriented within the coordinate system, the skulls should 

also be similarly sampled. This provides knowledge about the location of data points within the 

coordinate system and enables comparison of similar data points of different skulls. In this study CT-

scans were used to obtain information of skulls. Due to the high contrast of bone with surrounding tissue, 

skulls can accurately be segmented from the voxel data and represented by mesh data. For this study the 

use of mesh data was superior to intensity-based data due to the low processing time of mesh data. This 

chapter focusses on a method for the similar representation of all skulls within a reference coordinate 

system. 

2.2 MATERIALS AND METHODS 

2.2.1 Materials 
The algorithm for the creation of comparative mesh data was implemented in MATLAB 2016a®. GPU 

integration was used in order to decrease computation time and memory usage. The icosphere was 

created in 3ds Max 2016®. CT-scans were obtained from the hospital database and were provided as 

DICOM files. 

2.2.2 Methods 
For each cranial CT-scan the DICOM data were loaded and segmentation of the skull was applied, based 

on a 167 Hounsfield unit (HU) threshold. Small isolated high intensity pixels were removed and a 

Gaussian filter was applied to reduce noise in all slices. Marching cubes, based on the same 167 HU 

threshold, were used to create 3D mesh data (for the elaboration 

on marching cubes see supplement 7.1) [24].  

A graphical user interface was implemented enabling the user to 

select the centre of the sella turcica, nasion and both anterior 

clinoid processes (Figure 2). The registration algorithm places the 

centre of the sella turcica at the origin of the coordinate system and 

the sella-nasion line onto the y-axis. Based on both anterior clinoid 

processes the skull is rotated to place the skull in a straight up 

symmetrical position, with the 𝑥, 𝑦-plane being horizontal.  

To obtain evenly distributed data points of the inner and outer 

surface of the skull the mesh data was resampled using raycasting. 

A triangular unit hemi-icosphere with 20641 vertices and 43284 

faces was created within 3ds Max 2016® (for more information 

on icospheres see supplement 7.2). The location of the vertices 

were used to determine the direction of the rays. For each vertex 

of the hemi icosphere, a ray was casted from the origin through 

this vertex. The Möller-Trumbore technique was used to find all 

intersections of the rays with the original mesh of the skull (for the 

elaboration on Möller-Trumbore see supplement 7.3). The outer 

and second outer intersection were selected because these 

intersections form the intersections with the inner and the outer 

layer of the mesh respectively. Both the hit distance and position 

of the hit were stored for each ray. Due to the presence of 

fontanelles or holes within the skull it was possible that no 

Figure 2 Registration landmarks; (Top)  

Centre of sella turcica and anterior 

clinoid processes, (Bottom) Nasion 
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intersections with the inner or outer layer were found. For these rays the intersections with the inner and 

outer layer were stored as 𝑁𝑎𝑁 values. Only intersections with a minimal distance from the origin were 

selected to avoid that the outer and second outer intersection were found within another structure.  

Because this study only focusses on the shape comparison with no discrimination of fontanelles or holes 

within the skull, extrapolation was used to fill in all the holes within the mesh data. This extrapolation 

followed an iterative process (see Pseudocode 1). New positions for missing vertices were based on the 

hit distance of neighbouring vertices. For each iteration, only vertices at the borders of the holes were 

filled because only for these vertices the hit distance of their neighbours were known. With every 

iteration, the border of the holes shift to the centre of the holes till all positions of the vertices were 

estimated and the holes were filled. The number of iterations for this study was 200. 

 

The inner and outer layer intersections were stored separately. For each separate layer, the found 

intersections with that layer and the faces of the icosphere formed the sampled mesh data of the 

respective layer. The sampled mesh data of both layers for each skull were stored within the research 

database. 

2.3 RESULTS 
Figure 3 shows the results of the segmentation, registration and sampling of a skull, obtained from a 

single CT-scan. The inner and outer layer of the skull are shown in Figure 3(Left). This figure shows 

that the skull is oriented in a straight up position with the 𝑥, 𝑦 −plane being horizontal. The sella-nasion 

line is located at the 𝑦 −axis with the centre of the sella turcica located at the origin. Figure 3(Right) 

shows the result of the sampling. The data points are distributed over the surface of the skull according 

to the intersection of the rays with the original mesh. The results show an almost even distribution of 

the data points on the surface of the skull.  

Create list with 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑𝑠 of vertices with 𝑁𝑎𝑁 values 

Repeat 𝑛 iterations: 

For each 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑 compute the mean position of neighbouring  

    vertices: 

  Find 𝑓𝑎𝑐𝑒𝐼𝑑𝑠 in 𝐹𝑎𝑐𝑒𝐿𝑖𝑠𝑡 with 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑 

  Get 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑s from 𝐹𝑎𝑐𝑒𝐿𝑖𝑠𝑡 for 𝑓𝑎𝑐𝑒𝐼𝑑s 

  For 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑𝑠: 

   If position vertex with 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑 is not 𝑁𝑎𝑁 

    Place position in array 

  Compute mean hit distance 𝑟 

Get direction ray (𝜃, 𝜑) of 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑 

  Compute new position for 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑: 

   𝑥 = 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 

   𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 

𝑧 = 𝑟𝑐𝑜𝑠𝜑  

Pseudocode 1 
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2.4 DISCUSSION 
For all sampled skulls, the vertex numbering is similar to the numbering of the icosphere. This enables 

comparison of vertices of different skulls with corresponding vertex numbers. However, for the 

implementation of algorithms that process the mesh data of skulls, variance in the mesh structure should 

be taken into account. First, the valence is not equal for all vertices. The connectivity of the vertices of 

the sampled skulls is similar to the vertices of the icosphere used within the raycasting method. Figure 

4 shows the connectivity of the vertices of a simple icosphere. For most vertices the valence is 6, but 

exceptions exist for which the valence is only 5. This is important knowledge for the implementation of 

algorithms that are based on the connectivity of the vertices. The used icosphere contained 6 vertices 

with valence 5. Also, Figure 5 shows that if rays are casted from a single point in different directions 

and the intersections are found at difference distances, variance in the resolution of the mesh data exists. 

Because skulls are not perfect spherical objects and the intersections will be found at different distances, 

algorithms should account for variance in the resolution of the mesh data.  

Figure 3 (Left) Inner and outer layer of a skull on which registration is applied (Right) Sampled skull with a small area of 

the mesh data in more detail 

Figure 4 Icosphere (4 iterations) with the neighbouring faces of vertices with valence 5 highlighted 



11 

 

 

This study did not focus on the improvement of the registration method. Remarks were already made in 

[25] concerning the accuracy of the method. The use of the anterior clinoid processes as registration 

landmarks is questionable. The close relative location of the clinoid processes to the sella turcica make 

the registration algorithm prone to errors. Also, literature describes variation of the anterior clinoid 

processes between healthy individuals and the influence of craniosynostosis on the cranial base anatomy 

has been described[26]–[28]. This was confirmed by the researchers who performed the registration in 

this study. In some cases the clinoid processes were indistinguishable and discrepancy existed in the 

best selection of the landmarks. Therefore, a large intra- and inter-observer variability is suspected due 

to difficulties in the selection of the landmarks.  

The development of an automated registration algorithm for skulls is challenging. A recent study at the 

department of Neurosurgery of the Radboudumc already focussed on the development of an automated 

registration algorithm for skulls, using an iterative closest point algorithm and intrinsic shape signatures. 

This algorithm places an object in the reference coordinate system based on a target object in which 

reference landmarks are selected. The study showed the feasibility of the algorithm for objects in which 

stable landmarks can be identified. However, no sufficient stable landmarks on the skull are known. 

Also, the algorithm was only tested for objects with a similar shape as the target object. Because the 

shape of skulls differs, especially in case of craniosynostosis, the algorithm should be robust for shape 

deformities. Further research should focus on the identification of stable landmarks on the skull and the 

development of a robust automatic registration algorithm that is feasible for both healthy skulls and 

skulls with craniosynostosis. 

2.5 CONCLUSION 
This study implemented a method for the similar representation of skulls within a reference coordinate 

system to enable the comparison of skulls. 

  

Figure 5 Ray cast sampling: when all rays are casted from a central point, even though evenly distributed, an irregular 

spatial resolution of sampling points will be found on the target 
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 NORMALISED SKULLS 

3.1 INTRODUCTION 
The goal of open cranial vault reconstructions in craniosynostosis patients is to restore the cranial shape 

and intracranial volume. However, no age-appropriate 3D reference shape and volume are available. 

The only objective parameters that are used are 2D measurements, such as the cephalic index for 

scaphocephaly and the frontal angle for trigonocephaly[29], [30]. Delye et al.[31] have set the initial 

step in the creation of an age-specific 3D database, containing normative data of geometrical 

measurements, bone thickness, and bone density of the paediatric skull. However, the geometrical 

measurements consist only of geodesic length measurements. As shape and volume are 3D properties, 

they cannot be sufficiently described by 2D measurements. Consequently, reconstructions are mainly 

performed according to the interpretation of the surgical team on what is a normal head shape, i.e. what 

is beauty. This is affirmed by literature, whereas the surgical results are often evaluated based on the 

satisfaction of the surgical team and parents with the shape of the head[9]–[15]. In order to create a fully 

objective pre-operative plan, the reconstruction should be based on objective 3D reference data. This 

study creates normalised paediatric skull models that can be used as age-specific reference in the 

creation of pre-operative plans. 

3.2 MATERIALS AND METHODS 

3.2.1 Materials 
The method that establishes the normative skull models was implemented in MATLAB 2016a®. Due 

to the large amount of memory use and computation time, OpenCL was used for GPU integration. CT-

scans were obtained from the hospital database and were provided as DICOM files. 

3.2.2 Methods 
For the establishment of normative skull models, paediatric CT-scans were collected from the medical 

database. All cranial CT-scans of patients with the age between 0 and 48 months were selected and 

screened. Only CT-scans with a maximal slice thickness of 3 mm and in which the nasion and the entire 

cranium from the level of the sella turcica were present, were included. All scans of patients with disease 

that could have had effect on the shape of the cranium, such as space occupying lesions, metabolic bone 

disease, fractures and malformations were excluded from the dataset. Due to the limited amount of 

included scans, ages were clustered. Age groups were based on the ages of patients at the Radboudumc 

during surgery and follow-up, and the growth curves of the skull described by Delye et al.[31] and 

Waitzman et al.[32]. The age groups were 0-1, 2-4, 5-7, 8-10, 11-14, 15-18, 19-24, 25-36, 37-48 months. 

All scans were processed as described in chapter 2. Because the vertex numbering for the inner and 

outer layer was similar for all skulls, normalisation per vertex number was possible. For each vertex 

number, the coordinates of the vertices for the separate layers of the skulls within the same age group 

were normalised according to the following equation:  

𝑣(𝑥, 𝑦, 𝑧)𝑛𝑜𝑟𝑚 =
∑ 𝑣𝑖(𝑥, 𝑦, 𝑧)𝑁𝑣

𝑖=1

𝑁𝑣
 

𝑁𝑣 is the number of vertices stored for the respective vertex number, excluding 𝑁𝑎𝑁 coordinates. The 

normalisation was only applied for the vertex numbers for which 𝑁𝑣 >  0, i.e. only vertex numbers for 

which at least one skull contained an intersection coordinate with the respective layer were normalised. 

The maximum value of 𝑁𝑣 was the number of skulls within the age group. The normalised vertices of 

the vertex numbers for which no skulls contained an intersection coordinate were stored as 𝑁𝑎𝑁. The 

normalised vertices and the corresponding faces remained numbered similarly to the hemi icosphere. 

Also, the thickness of the normalised skulls was obtained by computing the distance of the inner and 
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outer layer. For each vertex number that contained an intersection with both the inner and outer layer of 

the skull, the distance was computed:  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥𝑜𝑢𝑡 − 𝑥𝑖𝑛)2 + (𝑦𝑜𝑢𝑡 − 𝑦𝑖𝑛)2 + (𝑧𝑜𝑢𝑡 − 𝑧𝑖𝑛)2 

(𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛) and (𝑥𝑜𝑢𝑡, 𝑦𝑜𝑢𝑡 , 𝑧𝑜𝑢𝑡) are the coordinates of the inner layer vertex and outer layer vertex, 

respectively. 

3.3 RESULTS 
Table 1 shows the number of CT-scans used per age group to obtain the normalised skulls. All outer 

layers of the normalised skulls were plotted in a single figure to show the growth of the normalised 

skulls over time. Figure 6 shows the cross-sections of this overlay. The results show that most growth 

of the skull occurs in the first 7 months, which agrees with the results shown by Delye et al.[31]. Figure 

7, Figure 8 and Figure 9 show the thickness maps for all age groups. The scale of the colour maps of the 

first three age groups were chosen differently from the other groups to show the best variation in 

thickness. Notable is that the thickness map of second age group deviates from the thickness growth 

pattern. No abnormalities in the scans were found and this variance was assigned to influence of 

variation within the population due to small population groups. 

Table 1 Number of scans available per age groups 

Age group 

(months) 

Number of 

scans 

0-1 6 

2-4 8 

5-7 3 

8-10 8 

11-14 16 

15-18 11 

19-24 13 

25-36 9 

37-48 11 

3.4 DISCUSSION 
Because no appropriate age-specific 3D normative data was available till now, reconstruction techniques 

were originated from experiences, subjective decision making (what is beauty?) and common practice. 

This study provides objective 3D normative data that can be used in the creation of objective pre-

operative reconstruction plans. The planning technique will now be able to create a plan that will 

reconstruct the patient’s skull in such that its shape maximally corresponds with the age-specific 

reference skull. Hereby, the plan will not be based on the opinion of the surgical team, but on the 

normalised shape and volume of the healthy population of the same age group as the patient. 

This study has also set a step in the development of objective evaluation tools for open cranial vault 

reconstructions. At this moment the surgical results are only evaluated based on 2D measurements or 

the opinions of the surgical team and the parents. These evaluation parameters are not sufficient and as 

long as the surgical team and parents are content with the surgical results, there will be no reason to 

reconsider the used surgical techniques. This study provides objective age-specific 3D normative data. 

Suggestions for evaluation parameters are intracranial volume and shape correspondence between the 

patient’s skull and the age-appropriate normalised skull. By objective evaluation, superior 

reconstruction techniques can be selected and standardisation in the treatment of craniosynostosis can 

be accomplished. A drawback of the use of the normalised skulls created in this study is that post-

operative CT-scans of the patient are required, which increases the received radiation dosage of the 
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patient. Therefore, research at the Radboudumc also focusses on the development of post-operative 

evaluation tools based on 3D stereophotogrammetry. 

The database with CT-scans of healthy skulls still needs expanding. The goal is to create a database with 

at least 20 scans per non-clustered age-group. At this moment all cranial CT-scans that are present in 

the Radboudumc medical database and were obtained within the period of January 2001 till December 

2015 were screened. Because the Radboudumc medical database appears not to be sufficient, 

negotiations with other medical centres are ongoing. The aim is to collaborate with medical centres from 

several West-European countries in order to create reliable 3D normative data that represent the West-

European population.  

The thickness maps were created by computing the difference between the hit with the inner layer and 

with the outer layer of the skull for each separate ray. Figure 5 suggests that the rays are not casted 

perpendicular to the surface of the skull. As result a bias in the thickness computation exists because the 

rays do not follow the shortest route through the skulls. This bias increases with the thickness of the 

skull. Because the skull thickness in infants is only a few millimetres, it is expected that this bias was 

minimal.  

3.5 CONCLUSION 
This study provided 3D normalised skull models for different age-groups, based on a small CT-database 

of the Dutch population.  
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Figure 6 Normalised skulls: (Top) cross-section in z-direction, (Middle) cross section in y-direction, (Bottom) cross-

section in x-direction 
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Figure 7 Thickness maps of normalised skulls; age groups 0-1, 2-4,  and 5-7 months 
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Figure 8 Thickness maps of normalised skulls; age groups 8-10, 11-14,  and 15-18 months 
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Figure 9 Thickness maps of normalised skulls; age groups 19-24, 25-36,  and 37-48 months 
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 SHAPE COMPARISON 

4.1 INTRODUCTION 
Current research focuses on the development of pre-operative planning techniques for open cranial vault 

reconstructions[20], [21], [22]. However, to our knowledge no solution has been found for the variance 

in results caused by subjective decision making yet. The developed techniques for the creation of a pre-

operative plan still require interactive user-input, remain time consuming, complicated and labour-

intensive, and follow an iterative process. Often several sessions are needed in which the medical 

technician discusses the feasibility of the created plan with the surgeon. Hereby, the pre-operative plans 

are based on the opinion of the surgeon of what is beauty [20]–[23].  

In order to create a fully objective planning technique, an algorithm will be developed that is able to 

compare the patient’s skull with an age-appropriate reference model. The new cranial shape is obtained 

by relocating osseous panels and is therefore dependent on the shape of these panels. In other words, 

when the created panels do not have the optimal shape it is impossible to obtain an optimal cranial vault 

shape. Preliminary work already created normalised skulls that can be used as reference models. This 

chapter focusses on an algorithm for the local shape comparison of the patients’ skulls with a reference 

model, based on a method described by Gatzke et al.[33]. The algorithm enables the selection of an 

region on a reference skull and finds the region on the patient’s skull that maximally corresponds in 

shape with the selected reference shape. This chapter will first elaborate on the surface fitting method 

and the curvature computation for mesh data, then describe the shape comparison algorithm and finally 

describe the analysis in which the feasibility of the shape comparison was demonstrated. 

4.2 MATERIALS AND METHODS 

4.2.1 Materials 
The shape comparison algorithm was implemented in MATLAB 2016a®. Due to the large amount of 

memory use and computation time, OpenCL was used for GPU integration. The 3D test objects were 

created with 3ds Max 2016®. CT-scans were obtained from the hospital database and were provided as 

DICOM files. 

4.2.2 Methods 

4.2.2.1 Quadric surface fitting 

Because curvature is an intrinsic property of a surface and therefore gives direct information about the 

shape of a surface, the shape comparison was based on curvature (for the definition of curvature, see 

supplement 0). All skulls and test objects were represented as mesh data, based on the method described 

in chapter 2. The curvature was computed for each vertex of the mesh data, based on the quadric surface 

fitting method described by Hoppe et al[34] and Garland et al.[35]. The quadric surface fitting method 

obtained a quadric surface that approximated the surface of the mesh around a specific vertex (from now 

on called vertex quadric). A quadric surface can be defined by a 4 × 4 symmetrical matrix that stores 

10 coefficients: 

 

𝑄𝑣(𝒗) = [

𝑞11 𝑞12 𝑞13 𝑞14

𝑞12 𝑞22 𝑞23 𝑞24

𝑞13 𝑞23 𝑞33 𝑞34

𝑞14 𝑞24 𝑞34 𝑞44

  ] 

 

(1) 

 

  



21 

 

The goal of the surface fitting method was to find the 10 coefficients that solve the least square fitting 

problem for vertex 𝒗:  

 𝒗𝑇𝑄𝑣𝒗 = 0 (2) 

 

According to Hoppe et al[34] and Garland et al.[35], to find the 10 coefficients of this quadric surface, 

the quadrics of the faces within a specified radius 𝑅𝑁 from the vertex, weighted by their face area, are 

summed: 

 

𝑄𝑣(𝒗) = ∑𝑎𝑟𝑒𝑎(𝐹𝑖) ∙ 𝑄𝐹𝑖

𝑛𝑟𝐹

𝑖=1

 (3) 

𝑄𝑣 is the vertex quadric, 𝐹𝑖 is a neighbouring triangular face build up from three vertices 𝑣1, 𝑣2 and 𝑣3, 

and 𝑄𝐹𝑖 the quadric surface that approximates the surface of 𝐹𝑖 (from now on called face quadric). 𝑛𝑟𝐹 

is the number of faces that are present within a specified neighbourhood on which the vertex quadric is 

based.  

Based on equation (3), the surface fitting method proceeded according to Pseudocode 2. The individual 

steps are explained in the following section of this chapter. 

 

Face quadric 

A face quadric was defined by the coefficients of the general plane equation in which the face was 

present (for mathematical explanation see supplement 7.5): 

 
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (4) 

The plane coefficients 𝑎, 𝑏 and 𝑐 were given by the unit face normal: 𝒏𝑭𝒊
= (𝑎, 𝑏, 𝑐). The face normal 

and coefficient 𝑑 were computed with the following equations: 

𝒏𝐹𝑖
= 

(𝒗1 − 𝒗2) × (𝒗1 − 𝒗3)

‖(𝒗1 − 𝒗2) × (𝒗1−𝒗3)‖
 

𝑑 = −𝒏𝑇 ∙ 𝒑 

A face quadric was then defined as: 

𝑄𝐹𝑖 = [

𝑎2 𝑎𝑏 𝑎𝑐 𝑎𝑑
𝑎𝑏 𝑏2 𝑏𝑐 𝑏𝑑
𝑎𝑐 𝑏𝑐 𝑐2 𝑐𝑑
𝑎𝑑 𝑏𝑑 𝑐𝑑 𝑑2

  ] 

  

For each face: 

Compute face quadric 

Compute face area 

 Multiply face quadric by face area  
For each vertex: 

 Find faceIds within search radius 𝑅𝑁 from vertex 

 Obtain face quadrics of faceIds 

 Sum face quadrics 

Pseudocode 2 
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Face area 

The area of a face was defined as half of the length of the face normal vector (note: no unit vector): 

𝑎𝑟𝑒𝑎(𝐹𝑖) =
1

2
((𝒗1 − 𝒗2) × (𝒗1 − 𝒗3)) 

Multiplying quadrics by a scalar 

The face quadrics were multiplied by the face areas according to the following rule: 

𝛾𝑄 = 𝛾 [

𝑞11 𝑞12 𝑞13 𝑞14

𝑞12 𝑞22 𝑞23 𝑞24

𝑞13 𝑞23 𝑞33 𝑞34

𝑞14 𝑞24 𝑞34 𝑞44

  ] 

Neighbourhood search 

A neighbourhood search algorithm was implemented that allowed the search for faces within a specified 

radius 𝑅𝑁 from a vertex. To enhance the process time of this algorithm, the neighbourhood search was 

based on clustering. Figure 10 illustrates the clustering for an icosphere mesh. First, a bounding box was 

created including all the vertices (Figure 10 (Left)). This box was divided in a grid based on 𝑅𝑁 and each 

grid element was given a cluster identity. Each vertex was allocated to the cluster identity of the grid in 

which the vertex was present. This obtained a list with information about which vertex is present in 

which cluster. Figure 10 (Right) shows the mesh in which the vertices are colour coded based on the 

allocated cluster identities. This list was used to find all faces within 𝑅𝑁 from a specific vertex. Hereby, 

it was only necessary to check whether vertices were within 𝑅𝑁 distance from the original vertex, for 

neighbours within adjacent clusters and the cluster in which the respective vertex was present. The 

pseudocode of the clustering and neighbourhood search are given in Pseudocode 3 and Pseudocode 4, 

respectively. Because the 𝑅𝑁 has important effect on scaling, the appropriate 𝑅𝑁 was not known 

beforehand. Chapter 4.2.2.4 will further elaborate on the selection of the appropriate 𝑅𝑁. 

 

  

Figure 10 (Left) Bounding box and grid with indexation (Right) Vertices colour coded by cluster identity with 𝑅𝑁=30 

mm 

z 

x 

y 
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Quadric summation 

To solve equation (1), the face quadrics within a specified neighbourhood radius from the respective 

vertex were summed. The methods of the previous sections enabled to compute the face quadrics and 

find the faces (and therefore the face quadrics) contributing to a vertex neighbourhood. The summation 

of the face quadrics for each vertex was performed according to the following rule: 

∑𝑄

𝑘

𝑖=1

= 𝑄𝑖 + 𝑄𝑖+1+. . 𝑄𝑘 

Determine boundaries of bounding box: 

Find minimal 𝑥, 𝑦, 𝑧 – values of vertices  

     (𝑚𝑖𝑛𝐺𝑟𝑖𝑑𝑥, 𝑚𝑖𝑛𝐺𝑟𝑖𝑑𝑦,𝑚𝑖𝑛𝐺𝑟𝑖𝑑𝑧) 

Enlarge bounding box by 1 % to make sure that all vertices are 

  included 

Save 𝑥, 𝑦, 𝑧 - size bounding box (𝑆𝑖𝑧𝑒𝑥,𝑆𝑖𝑧𝑒𝑦,𝑆𝑖𝑧𝑒𝑧) 

Divide bounding box in grid with size 
𝑆𝑖𝑧𝑒𝑥 

𝑅
×

𝑆𝑖𝑧𝑒𝑦 

𝑅
×

𝑆𝑖𝑧𝑒𝑧

𝑅
 

 Compute number of boxes in grid in 𝑥, 𝑦, 𝑧 – direction  

    (𝑛𝑟𝑏𝑜𝑥𝑥,𝑛𝑟𝑏𝑜𝑥𝑦,𝑛𝑟𝑏𝑜𝑥𝑧) 

Create vertex list with the corresponding clusterId (𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐿𝑖𝑠𝑡): 

 Compute box number in grid in 𝑥, 𝑦, 𝑧 – direction 

𝐵𝑙𝑜𝑐𝑘𝑛𝑟𝑥 = 𝑓𝑙𝑜𝑜𝑟 ൭𝑛𝑟𝑏𝑜𝑥𝑥 ∙ ൬
𝑉𝑥 − 𝑚𝑖𝑛𝐺𝑟𝑖𝑑𝑥

𝑆𝑖𝑧𝑒𝑥
൰൱ 

𝐵𝑙𝑜𝑐𝑘𝑛𝑟𝑦 = 𝑓𝑙𝑜𝑜𝑟 ൭𝑛𝑟𝑏𝑜𝑥𝑦 ∙ ቆ
𝑉𝑦 − 𝑚𝑖𝑛𝐺𝑟𝑖𝑑𝑦

𝑆𝑖𝑧𝑒𝑦
ቇ൱ 

𝐵𝑙𝑜𝑐𝑘𝑛𝑟𝑧 = 𝑓𝑙𝑜𝑜𝑟൭𝑛𝑟𝑏𝑜𝑥𝑧 ∙ ൬
𝑉𝑧 − 𝑚𝑖𝑛𝐺𝑟𝑖𝑑𝑧

𝑆𝑖𝑧𝑒𝑧
൰൱ 

 Assign clusterId to vertex 

  𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 = 𝐵𝑙𝑜𝑐𝑘𝑛𝑟𝑥 ∙ 𝑛𝑟𝑏𝑜𝑥𝑥 ∙ 𝑛𝑟𝑏𝑜𝑥𝑧 + 𝐵𝑙𝑜𝑐𝑘𝑛𝑟𝑦 + 𝐵𝑙𝑜𝑐𝑘𝑛𝑟𝑧 ∙ 𝑛𝑟𝑏𝑜𝑥𝑥 

Pseudocode 3 

Pseudocode 4 

Obtain 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 from 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐿𝑖𝑠𝑡 

Determine clusters adjacent to 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 

Get all 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑s that are present within clusterId and adjacent  

    clusters 

Find all 𝑓𝑎𝑐𝑒𝐼𝑑s that contribute to vertexIds within the clusters 

For each 𝑓𝑎𝑐𝑒𝐼𝑑: 

 Get 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑s of 𝑓𝑎𝑐𝑒𝐼𝑑 

 Walk through 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑s  

Check if 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑 is present within the clusters 

If all 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑s of 𝑓𝑎𝑐𝑒𝐼𝑑 are present within clusters, add face  

   to 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝑙𝑖𝑠𝑡 
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4.2.2.2 Quadric curvature 

For each vertex the vertex quadric was obtained and the curvature was computed. Next to the 4 × 4 

matrix given in equation (1), quadrics can be represented by the implicit function. This implicit function 

was deduced from the least square problem given in equation (2):  

𝐹(𝑥, 𝑦, 𝑧) = 𝑞11𝑥
2 + 2𝑞12𝑥𝑦 + 2𝑞13𝑥𝑧 + 2𝑞14𝑥 + 𝑞22𝑦

2 + 2𝑞23𝑦𝑧 + 2𝑞24𝑦 + 𝑞33𝑧
2

+ 2𝑞34𝑧 + 𝑞44 
 

(5) 

Hereby, 𝑥, 𝑦 and 𝑧 are the coordinates of the vertex for which the vertex quadric was obtained. 

Goldman[36] describes the curvature formulas for implicit functions. Supplement 7.6 summarises these 

formulas. According to these formulas, the curvature formulas for quadrics were defined as followed: 

 𝜕2𝐹

𝜕𝑥2
= 2𝑞11 

 
𝜕𝐹

𝜕𝑥
= 2(𝑞11𝑥 + 𝑞12𝑦 + 𝑞13𝑧 + 𝑞14) 

 

𝜕2𝐹

𝜕𝑦𝜕𝑥
=

𝜕2𝐹

𝜕𝑥𝜕𝑦
= 2𝑞12 

 
𝜕𝐹

𝜕𝑦
= 2(𝑞12𝑥 + 𝑞22𝑦 + 𝑞23𝑧 + 𝑞24) 

 

𝜕2𝐹

𝜕𝑧𝜕𝑥
=

𝜕2𝐹

𝜕𝑥𝜕𝑧
= 2𝑞13 

 

𝜕𝐹

𝜕𝑧
= 2(𝑞13𝑥 + 𝑞23𝑦 + 𝑞33𝑧 + 𝑞34) 

 

𝜕2𝐹

𝜕𝑧𝜕𝑦
=

𝜕2𝐹

𝜕𝑦𝜕𝑧
= 2𝑞23 

 

 𝜕2𝐹

𝜕𝑧2
= 2𝑞33 

 
 

𝛻𝐹 = 2([𝑞11𝑥 + 𝑞12𝑦 + 𝑞13𝑧 + 𝑞14, 𝑞12𝑥 + 𝑞22𝑦 + 𝑞23𝑧 + 𝑞24, 𝑞13𝑥 + 𝑞23𝑦 + 𝑞33𝑧 + 𝑞34]) 

𝐻(𝐹) = [

2𝑞11 2𝑞12 2𝑞13

2𝑞12 2𝑞22 2𝑞23

2𝑞13 2𝑞23 2𝑞33

] 

𝐻∗(𝐹) = [

4𝑞22𝑞33 − 4(𝑞23)
2 4𝑞23𝑞13 − 4𝑞12𝑞33 4𝑞12𝑞23 − 4𝑞22𝑞13

4𝑞13𝑞23 − 4𝑞12𝑞33 4𝑞11𝑞33 − 4(𝑞13)
2 4𝑞12𝑞13 − 4𝑞11𝑞23

4𝑞12𝑞23 − 4𝑞13𝑞22 4𝑞12𝑞13 − 4𝑞11𝑞23 4𝑞11𝑞22 − 4(𝑞12)
2

] 

𝑇𝑟𝑎𝑐𝑒(𝐻) = 2𝑞11 + 2𝑞22 + 2𝑞33 

 

𝐾𝐺 =
∇𝐹 ∙ 𝐻∗(𝐹) ∙ ∇𝐹𝑇

2‖∇𝐹‖4
 

𝐾𝑀 =
∇𝐹 ∙ 𝐻(𝐹) ∙ ∇𝐹𝑇 − |∇𝐹|2𝑇𝑟𝑎𝑐𝑒(𝐻)

2‖∇𝐹‖3
 

𝑘1, 𝑘2 = 𝐾𝑀 ± √𝐾𝑀
2 − 𝐾𝐺 

𝐾𝐺 is the Gaussian curvature, 𝐾𝑀 the mean curvature, and 𝑘1 and 𝑘2 are the principal curvatures.  
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4.2.2.3 Shape comparison 

The shape comparison algorithm creates curvature 

maps that can be used to quantify the shape 

correspondence of two regions. Because the Gaussian 

curvature has the most geometrical meaning, the 

curvature maps were based on the Gaussian curvature 

values of the vertices.  

The curvature maps were build up from regions defined 

by 𝑖-ring neighbourhoods. An 1-ring neighbourhood of 

a vertex was defined as the set of vertices that are 

connected to the vertex with only a single edge. The 

valence of the mesh structures was in most cases 6. 

Some exceptions existed where the valence was 5. 

Figure 11 shows a 3-ring neighbourhood of a vertex 

with valence 6. Exploring Table 2 gave the sequences 

for the total number of vertices and faces and per 𝑖-ring 

neighbourhood for a valence of 6. These sequences 

were used for the ring-based neighbourhood search 

given in Pseudocode 5 on page 28: 

𝑛𝑟𝑉𝑝𝑒𝑟𝑅𝑖𝑛𝑔 =  𝑛 ∙ 6 

𝑡𝑜𝑡𝑛𝑟𝑜𝑓𝑉 = 3 ∙ 𝑛 ∙ (𝑛 + 1) 

𝑛𝑟𝐹𝑝𝑒𝑟𝑅𝑖𝑛𝑔 =  6 + (𝑛 − 1) ∗ 12 

𝑡𝑜𝑡𝑛𝑟𝑜𝑓𝐹 = 6 ∙ 𝑛2 

 

 

A curvature map was defined as a piecewise linear function that describes the change of the curvature 

over the different neighbouring rings 𝑅𝑖. For each vertex of the mesh data, a curvature map was 

computed based on an 8-ring neighbourhood. Per ring, the mean of the Gaussian curvature values was 

computed: 

𝑔(𝑖) =
1

𝑁𝑖
∑ 𝜅(𝒗𝑗)

𝑗∈𝑅𝑖

 

𝑁𝑖 is the number of vertices in ring 𝑅𝑖, and 𝜅(𝒗𝑗) are the curvature values of the vertices within the 

ring. A logarithmic filter was used to suppress high curvature variations: 

 ℎ(𝑥) = sin(𝑥) log (1 + |𝑥|) (6) 

𝑓𝑖 = ℎ1 ∘ 𝑔(𝜅) 

Table 2 Total number of vertices and faces and per ring for a N-neighbourhood 

i 

Number of vertices 

per ring 

(𝒏𝒓𝑽𝒑𝒆𝒓𝑹𝒊𝒏𝒈) 

Total number of 

vertices 

(𝒕𝒐𝒕𝒏𝒓𝒐𝒇𝑽) 

Number of faces 

per ring 

(𝒏𝒓𝑭𝒑𝒆𝒓𝑹𝒊𝒏𝒈) 

Total number of 

faces 

(𝒕𝒐𝒕𝒏𝒓𝒐𝒇𝑭) 

1 6 6 6 6 

2 12 18 18 24 

3 18 30 30 54 

4 24 54 42 96 

… … … … … 

Figure 11 3-Ring neighbourhood 
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𝑓𝑖 was scaled by the distance of the ring to the original vertex, which resulted in the 𝑖𝑡ℎ value of the 

curvature map 𝜅𝑚𝑎𝑝: 

𝑟𝑖 = √
𝐴𝑖

𝜋
 

𝜅𝑚𝑎𝑝𝑖
= 𝑓𝑖 ∙ 𝑟𝑖 

𝐴𝑖 is the area of the 𝑖-ring, which was computed by summing the areas of all faces within the ring. The 

areas of all faces were already computed in chapter 4.2.2.1. 

For the shape comparison of two regions, the 𝐿1 difference between the curvature maps of both regions 

(𝜅𝑚𝑎𝑝𝐴 and 𝜅𝑚𝑎𝑝𝐵) was computed: 

 

𝑆 =  ∑(|𝜅𝑚𝑎𝑝𝐴𝑖
− 𝜅𝑚𝑎𝑝𝐵𝑖

|)

𝑁𝑖

𝑖=1

 (7) 

𝑆 is the signature that represents the difference in shape. When 𝜅𝑚𝑎𝑝𝐴 and 𝜅𝑚𝑎𝑝𝐵 are equal, 𝑆 will be 

zero and with increasing difference between the shape of the regions, 𝑆 will increase as well. In 

conclusion, to find the region on a mesh that maximally corresponded with a selected reference region, 

the vertex for which the curvature map results in the minimal value of 𝑆 was found. The ring 

neighbourhood of this vertex was then the best fit for the reference region. 

4.2.2.4 Analysis 

To show the feasibility of the shape analysis algorithm, several analyses were performed. First, to verify 

the formulas for quadric curvature given in chapter 4.2.2.2, the Gaussian, mean and principal curvature 

were computed for quadrics describing a plane, sphere and saddle. The quadric for the plane was 

obtained with the method described in chapter 4.2.2.1. The quadrics for the sphere and saddle were 

defined by standard quadric forms. Because the plane is a flat object, all curvature values were expected 

to be zero. Also, according to the definition of the Gaussian and mean curvature given in supplement 0, 

𝜅𝐺 = 0 and 𝜅𝐺 < 0 for a symmetrical saddle shape. Due to the opposite symmetrical shape of the saddle, 

the principal curvatures were expected to be: 𝜅1 = −𝜅2. Moreover, Goldman [36] shows that for a 

sphere: 𝜅𝑀 =
1

𝑅𝑠
, 𝜅𝐺 =

1

𝑅𝑠
2 and 𝜅1 = 𝜅2, Because the curvatures for the different forms were known, it 

was possible to verify the results. 

Curvature based on quadric surface fitting was computed for all vertices of a hemi-icosphere, full 

icosphere and an 11 months old skull. The radius of both icospheres was 60 mm, which was based on 

the width of the normative skull from the 11-14 months age group. Because the curvatures for the 

spheres were known (𝜅𝐺 =
1

𝑅𝑠
2 =

1

602 = 2.8 ∙ 10−4 𝑚−2), it was again possible to verify the results. For 

this, the mean values and standard deviations for the different neighbourhood sizes were computed. 

Furthermore, it was expected that if the quadric surface fitting was based on a small neighbourhood size, 

high variety of curvature, for example small ridges, would be detected on the skull surface. In contrast, 

the curvature estimation based on a greater neighbourhood size would only detect small variety in 

curvature of the surface and small ridges would be missed. To be able to choose the most appropriate 

neighbourhood size, curvature was computed based on 𝑅𝑁 = 10, 15, 20, 25, 30 and 35 𝑚𝑚. The 

appropriate radius was selected according to the detail discrimination, which was used in further 

analysis. 

To verify the shape comparison algorithm, the method was performed for three test cases. First, shape 

comparison was applied on a test object. The test object consisted of a sphere with 5 spherical bulges 
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with different radii, a torus shaped bulge and a spherical hole (Figure 18 (Top Left)). The reference 

region was selected at the top of the bulge with the second last radius. The hole had the same radius as 

this bulge. Therefore, the shape of the inside surface of the hole was similar to the outside shape of the 

bulge. The torus and hole were included in the test object in order to show that the curvature maps 

discriminate different shapes. The shape of the test object was compared with the shape of second test 

object that was a 45º anti-clockwise rotated version of the original. The region on the rotated test object 

that showed the maximal shape correspondence with the reference region was determined. Because the 

compared objects were equivalent, it possible to verify whether the right region was identified by the 

algorithm. Secondly, the shape comparison was applied within the normalised skull from the 11-14 

months age group. Because a healthy skull is (almost) symmetrical, it was expected that a shape on one 

side of the skull could also be found on the other side of the skull. Therefore, a distinguishable region, 

the right temple ,was selected as reference region and the algorithm was tested for the ability to identify 

the similar shape on the left temple. Finally, the algorithm was tested for an 11 month old trigonocephaly 

case. Because for trigonocephaly patients the forehead is reconstructed, a reference region on the right 

side of the forehead of the normalised skull was selected. The region on the trigonocephaly skull for 

which the shape maximally corresponded with the shape of the reference region was identified. Because 

only the shape of the outer surface of the skull is relevant for the aesthetics of the patient, the shape 

comparison was applied on only the outer layer of the skulls. 

4.2.2.5 Extended icosphere 

Because the results showed inaccuracies in the 

curvature estimation for vertices near borders, 

the hemi-icosphere in the ray casting method 

described in chapter 2, was extended in the 

𝑧 −direction (see Figure 12). As a result, the ray 

casting obtained extra geometrical information 

of at least −
1

2
𝑅𝑁 < 𝑧 < 0 for all objects and 

skulls. Hereby, for vertices with 0 < 𝑣𝑧 <
1

2
𝑅𝑁 

the curvature estimation was now based on full 

neighbourhoods. Because not all skulls 

contained data for 𝑧 < 0, the extrapolation 

method described in chapter 2 was used to fill 

in missing data points. The extended icosphere 

was preferred over the full icosphere, because 

of less memory storage. The extra data was only 

used for the goal to increase the accuracy of the 

curvature computation for vertices near 

borders. The shape comparison algorithm was 

only applied on regions of vertices with 𝑧 > 0. 

Figure 12 Extended unit hemi-icosphere 
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Allocate vertex neighbour list (𝑉𝑁𝑙𝑖𝑠𝑡) 

Allocate face neighbour list (𝐹𝑁𝑙𝑖𝑠𝑡) 

 

Walk through all rings 

For the first ring 
Walk through all vertices 

Find adjacent faces (Find 𝑓𝑎𝑐𝑒𝐼𝑑 containing 𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝑑) 

For each adjacent 𝑓𝑎𝑐𝑒𝐼𝑑 

Walk through the vertices of this face 

     Place vertex ids in a temporary array 

Remove repetitive 𝑣𝑒𝑟𝑡𝑒𝑥𝑖𝑑s and original  

 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑 

Place adjacent vertex ids in the 𝑉𝑁𝐿𝑖𝑠𝑡 (1-6)  

 valence 5 vertices contain a ‘zero’ 

 neighbour 

Place adjacent face ids in 𝐹𝑁𝐿𝑖𝑠𝑡 (1 to 6),  

 valence 5 vertices contain a zero  
 neighbour 

For the 2nd till number of rings 

Walk through all vertices 

Get neighbours from 𝑉𝑁𝐿𝑖𝑠𝑡 of the previous found ring: 

𝑉𝑁𝐿𝑖𝑠𝑡(𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝑑, (𝑡𝑜𝑡𝑁𝑟𝑉 − 𝑝𝑟𝑒𝑣𝐹𝑜𝑢𝑛𝑑𝑁𝑟𝑉)+1) 

For each neighbouring vertex, if not zero 

Get the first ring neighbourhood vertices and  

    place in temp vertex 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝑙𝑖𝑠𝑡 

Get the first ring neighbourhood faces and place  

    in temp face 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝑙𝑖𝑠𝑡

Remove repetitive 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝑑s and 𝑓𝑎𝑐𝑒𝐼𝑑s, and  

 zeros 

Remove all neighbouring vertices and faces that  

  were already found in previous rings 

Remove original vertex 

Add found neighbours to 𝑉𝑁𝐿𝑖𝑠𝑡 and 𝐹𝑁𝐿𝑖𝑠𝑡 

Pseudocode 5 
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4.3 RESULTS 

4.3.1 Quadric curvature 

4.3.1.1 Plane 

The plane was defined by points 𝑣1 = (0,1,0), 𝑣2 = (0,0,1) and 𝑣3 = (1,0,0). According to the method 

described in chapter 4.2.2.1,the parameters of the quadric that approximates the surface of the plane are 

computed as followed: 

𝒘𝟏 = 𝒗𝟏 − 𝒗𝟐 = (0,1, −1) 

𝒘𝟐 = 𝒗𝟏 − 𝒗𝟑 = (−1,1,0) 

𝒏𝐹𝑖
= 

𝒘𝟏 × 𝒘𝟐

‖𝒘𝟏 × 𝒘𝟐 ‖
=

(1,1,1)

1.73
= (0.58 0.58 0.58) 

𝑎 =  0.58, 𝑏 = 0.58, 𝑐 = 0.58 

𝑑 = −(𝑎 ∙ 𝒗𝟏𝑥 + 𝑏 ∙ 𝒗𝟏𝑦 + 𝑐 ∙ 𝒗𝟏𝑧) = −0.58 

𝑎𝑟𝑒𝑎(𝑓) =
‖𝒘𝟏 × 𝒘𝟐 ‖

2
= 0.50 

And thus, the plane and quadric are defined as: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0.58𝑥 + 0.58𝑦 + 0.58𝑧 − 0.58 = 0 

𝑄𝑣(𝒗) = ∑𝑎𝑟𝑒𝑎

𝑓∋𝑣

(𝑓) ∙ 𝑄𝑓(𝒑) = 0.50 ∙  [

𝑎2 𝑎𝑏 𝑎𝑐 𝑎𝑑
𝑎𝑏 𝑏2 𝑏𝑐 𝑏𝑑
𝑎𝑐 𝑏𝑐 𝑐2 𝑐𝑑
𝑎𝑑 𝑏𝑑 𝑐𝑑 𝑑2

  ] 

= 0.50 ∙ [

0.33 0.33 0.33 −0.33
0.33 0.33 0.33 −0.33
0.33 0.33 0.33 −0.33

−0.33 −0.33 −0.33 0.33

  ] =  [

0.17 0.17 0.17 −0.17
0.17 0.17 0.17 −0.17
0.17 0.17 0.17 −0.17

−0.17 −0.17 −0.17 0.17

  ] 

To visualise the quadric surface, all solutions for equation (2) were plotted with interval [-5,5] and a 

step size of 0.1 for 𝑥, 𝑦 and 𝑧. Figure 13 shows that the quadric surface is congruent to the original plane. 

Figure 13 Quadric approximating the surface of the 

plane defined by P1 = (0,1,0), P2 = (0,0,1) and P3 = 

(1,0,0) 
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Given equation (5), the implicit function of the quadric is: 

𝐹(𝑥, 𝑦, 𝑧) = 0.17𝑥2 + 0.33𝑥𝑦 + 0.33𝑥𝑧 − 0.33𝑥 + 0.17𝑦2 + 

                                                    +0.33𝑦𝑧 − 0.33𝑦 + 0.17𝑧2 − 0.17𝑧 + 0.17 = 0 

The curvature was computed for 𝑃 = (0.5, 0.5, 0.5), which is a point on the surface of the plane. The 

first and second derivatives are: 

𝜕𝐹

𝜕𝑥
=

𝜕𝐹

𝜕𝑦
=

𝜕𝐹

𝜕𝑧
= 2(0.17𝑥 + 0.17𝑦 + 0.17𝑧 − 0.17) = 0.17 

𝜕2𝐹

𝜕𝑥2
=

𝜕2𝐹

𝜕𝑦𝜕𝑥
=

𝜕2𝐹

𝜕𝑧𝜕𝑥
=

𝜕2𝐹

𝜕𝑥𝜕𝑦
=

𝜕2𝐹

𝜕𝑦2
=

𝜕2𝐹

𝜕𝑧𝜕𝑦
=

𝜕2𝐹

𝜕𝑥𝜕𝑧
=

𝜕2𝐹

𝜕𝑦𝜕𝑧
=

𝜕2𝐹

𝜕𝑧2
= 2 ∙ 0.17 = 0.33 

𝛻𝐹 = (0.17, 0.17, 0.17) 

𝐻(𝐹) = [
0.33 0.33 0.33
0.33 0.33 0.33
0.33 0.33 0.33

] 

𝐻∗(𝐹) = [

4(0.17)2  − 4(0.17)2 4(0.17)2 − 4(0.17)2 4(0.17)2 − 4(0.17)2

4(0.17)2 − 4(0.17)2 4(0.17)2 − 4(0.17)2 4(0.17)2 − 4(0.17)2

4(0.17)2 − 4(0.17)2 4(0.17)2 − 4(0.17)2 4(0.17)2 − 4(0.17)2

] 

𝑇𝑟𝑎𝑐𝑒(𝐻) = 0.33 + 0.33 + 0.33 = 1.0 

𝐾𝐺 =

(0.17, 0.17, 0.17) ∙ [
0 0 0
0 0 0
0 0 0

] ∙
0.17
0.17
0.17

 √0.172 + 0.172 + 0.172
4 = 0 𝑚−2 

𝐾𝑀 =

(0.17, 0.17, 0.17) ∙ [
0.33 0.33 0.33
0.33 0.33 0.33
0.33 0.33 0.33

] ∙
0.17
0.17
0.17

− 0.292 ∙ 1.0

0.048
= 0 𝑚−1 

𝑘1, 𝑘2 = 0 ± √02 − 02 = 0 𝑚−1 

In conclusion, the results confirm the expectations for the curvature values of a plane. 
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4.3.1.2 Sphere and saddle 

Standard quadric forms were used to define a symmetrical saddle shaped and spherical surface. The 

quadric forms and results are shown in Figure 14. For the saddle, the parameters were 𝑘 = 3, 𝑙 = 3 and 

𝑚 = 3. The radius 𝑅𝑠 of the sphere was 3. The results in Figure 14(Right) meet the expectations 

discussed in chapter 4.2.2.4.  

𝑄𝑣 = 

[
 
 
 
 
 
 
1

𝑘2
0 0 0

0
−1

𝑙2
0 0

0 0 0
−1

𝑚2

0 0 0 0

  

]
 
 
 
 
 
 

 𝑄𝑣 = 

[
 
 
 
 
 
 
 
1

𝑅𝑠
2 0 0 0

0
1

𝑅𝑠
2 0 0

0 0
1

𝑅𝑠
2 0

0 0 0 −1

  

]
 
 
 
 
 
 
 

 

  

𝜅𝐺 = −0.44 𝑚−2 𝜅𝐺 = 0.11 =
1

32
 𝑚−2 

𝜅𝑀 = 0 𝑚−1 𝜅𝑀 = 0.33 =
1

3
 𝑚−1 

𝜅1 = 𝜅𝑀 − √𝜅𝑀
2 − 𝜅𝐺 = −0.67 𝑚−1 𝜅1 = 𝜅𝑀 − √𝜅𝑀

2 − 𝜅𝐺 = −0.33 𝑚−1 

𝜅2 = 𝜅𝑀 − √𝜅𝑀
2 − 𝜅𝐺 = 0.67 𝑚−1 𝜅2 = 𝜅𝑀 − √𝜅𝑀

2 − 𝜅𝐺 = −0.33 𝑚−1 

Figure 14 (Left) Quadric, visualisation and curvature for a saddle surface, (Right) Quadric, visualisation and curvature for a 

spherical surface 

4.3.2 Quadric surface fitting 

4.3.2.1  (Hemi-)Icosphere 

Table 3, Figure 15 and Figure 16 show the results of the curvature estimations for the hemi- and full 

icosphere based on quadric surface fitting. Table 3 shows that for the hemi-icosphere (with border) the 

quadric surface fitting results in a small underestimation of the curvature, with a large standard 

deviation. The colour maps in Figure 15 are constant for all vertices of the hemi-icosphere, except for 

vertices at the borders. The figure shows that the width of this border increases when 𝑅𝑁 increases and 

is approximately 
1

2
∙ 𝑅𝑁. Because the quadrics for the vertices with 𝑣𝑧 <

1

2
𝑅𝑁  are based on less than 1 

neighbourhood, with a minimum of 
1

2
 neighbourhood, it was expected that this results in asymmetrical 
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quadrics relative to the vertices. This results in a deviation in de curvature estimation, which could 

explain the large standard deviation. This was confirmed when the mean Gaussian curvature and 

standard deviation were computed for all vertices of the hemi-icosphere for which 𝑣𝑧 >
1

2
𝑅𝑁 (without 

border). This resulted in a small over-estimation of the curvature, but smaller standard deviations. On 

account of these results the extended icosphere discussed in was chapter 4.2.2.5 introduced. 

The results for the full icosphere in Table 3 show a small over-estimation of the curvature that increases 

when 𝑅𝑁 increases. In comparison to the hemi-icosphere (without border), the standard deviations for 

the full icosphere are smaller. Figure 15 shows that the colour maps are constant for the entire surface 

of all spheres. Even though the results show some over-estimation of actual curvature, the results were 

found acceptable.  

Table 3 Mean Gaussian curvature and standard deviations for different neighbourhood sizes of a hemi-icosphere (with and 

without border) and a full icosphere 

𝑹𝑵 

(𝒎𝒎) 

Hemi-icosphere 

With border 

 

Without border 
Full icosphere 

𝒎𝒆𝒂𝒏 𝜿𝑮  
(𝒎−𝟐) 

𝒔𝒕𝒅 𝜿𝑮  
(𝒎−𝟐)   

𝒎𝒆𝒂𝒏 𝜿𝑮  
(𝒎−𝟐) 

𝒔𝒕𝒅 𝜿𝑮  
(𝒎−𝟐)   

𝒎𝒆𝒂𝒏 𝜿𝑮  
(𝒎−𝟐) 

𝒔𝒕𝒅 𝜿𝑮  
(𝒎−𝟐) 

10 2.75 ∙ 10−4 3.51 ∙ 10−5 2.85 ∙ 10−4 8.01 ∙ 10−7 2.85 ∙ 10−4 7,86 ∙ 10−7 

15 2.70 ∙ 10−4 4.22 ∙ 10−5 2.85 ∙ 10−4 8.01 ∙ 10−7 2.86 ∙ 10−4 5.69 ∙ 10−7 

20 2.68 ∙ 10−4 4.85 ∙ 10−5 2.85 ∙ 10−4 8.11 ∙ 10−7 2.90 ∙ 10−4 4.12 ∙ 10−7 

25 2.68 ∙ 10−4 5.44 ∙ 10−5 2.85 ∙ 10−4 8.28 ∙ 10−7 2.97 ∙ 10−4 3,29 ∙ 10−7 

30 2.69 ∙ 10−4 6.04 ∙ 10−5 2.85 ∙ 10−4 8.54 ∙ 10−7 3.05 ∙ 10−4 2,47 ∙ 10−7 

35 2.72 ∙ 10−4 6,65 ∙ 10−5 2.85 ∙ 10−4 8.71 ∙ 10−7 3.16 ∙ 10−4 3,68 ∙ 10−7 

Figure 15 Curvature estimations for a hemi-icosphere (𝑅𝑆 = 60 𝑚𝑚) with neighbourhood sizes: 𝑅𝑁 =
 10,15,20,25,30,35 𝑚𝑚 
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4.3.2.2 11 Months old skull 

Figure 17 shows the results of the curvature estimation for an 11 months old skull, for different 

neighbourhood sizes. Due to many different curvatures on the skull, a great variance in the curvature 

values existed. This makes direct representation of the curvature values by a colour map difficult. First, 

because a skull is spherical-like shaped and the Gaussian curvature of a sphere is defined as 
1

𝑅𝑠
2, the 

curvature values were represented in 𝑅𝑠 to remove the exponential distribution. Then the logarithmic 

filter defined in chapter 4.2.2.3 (see equation (6)) was applied in order to reduce the effect of large 

variations in the curvature values. This enabled appropriate representation of the results by a colour 

map. The results confirm the expectations on scaling described in chapter 4.2.2.4: the smaller the 

neighbourhood size, the more details of the skull are distinguished by the curvature estimation. The 

Figure 16 Curvature estimations for a full icosphere (𝑅𝑆 = 60 𝑚𝑚) with different neighbourhood sizes:𝑅𝑁 =
 10,15,20,25,30,35 𝑚𝑚 

Figure 17 Curvature estimations for a 11 months old skull with different neighbourhood sizes 𝑅𝑁 =  10,15,20,25,30,35 𝑚𝑚 
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neighbourhood radius of 15 𝑚𝑚 appeared to give the best results on detail discrimination and was used 

for further analysis. 

4.3.3 Shape comparison 

4.3.3.1 Test object 

Figure 18 shows the results of the shape comparison for the test object. The results show that the 

curvature colour maps of both objects were similar, which confirmed that both test objects contained 

similar shapes. (Figure 18(Middle)). Hereby, the method was able to find the region that matches the 

reference region (Figure 18(Top and Middle)). The curvature maps of the matched regions are shown 

in (Figure 18(Bottom)) and show similar patterns, with small differences. 

4.3.3.2 Shape comparison within a single skull 

The curvature colour map in Figure 19(Top right) confirms that the shape of the skull is symmetrical, 

with some subtile differences between left and right. The figure also shows the two best matching 

regions found by the shape comparison. The first match was found close to the reference region. The 

second match was the temple on the opposite side of the reference region. The curvature maps in Figure 

19(Bottom) show that the curvature maps of both matches contain similar patterns to the curvature map 

of the original region. The curvature map of the first match shows more similarity to the reference than 

the second match.  

4.3.3.3 Shape conparison in a trigonocephaly case 

Results of the shape comparison for the trigonocephaly case are shown in Figure 20. The normative 

skull model and its curvature colour map are shown on the left side of the figure. The trigonocephaly 

skull and its curvature colour map are shown on the right side of the figure. The trigonocephaly case is 

shown in the x-y plane to show the distinguishable sharp curved forehead of the patient. The sharp 

curved forehead is also represented by the curvature colour map: a relatively large curvature can be 

distinguished on the fore head. Also, the colour map of the trigonocephaly case shows more varieties 

than the colour map of the normative skull. This agrees with the larger amount of irregularities shown 

in the skull model surface compared to the surface of the normative skull. The results show that the best 

match was found at the parietal bone of the trigonocephaly skull.  
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Figure 18 Shape comparison of a test object: (Top left) original test object with selected reference region (Middle left) 

Curvature colour map of original test object with selected reference region (Top right) Rotated test object with mathed region 

(Middle left) Curvature colour map of rotated test object with mached region (Bottom) Curvatures maps of reference region 

and matched region 
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Figure 19 Shape comparison within a single skull: (Top left) Skull with selected reference region (Top right) Curvature colour 

map of skull with selected reference region and first 2 matches 
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Figure 20 Shape comparison of a trigonocephaly with an age-appropriate normative skull: (Top left) Normative skull with 

selected reference region (Top right) Trigonocephaly skull with matched region (Middle left) Curvature colour map of 

normative skull with selected reference region (Middle right) Curvature colour map of trigonocephaly skull with matched 

region (Bottom) Curvature maps of reference region and matched region 
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4.4 DISCUSSION 

Some challenges arose for the curvature computation of mesh data. The definition of curvature in 

Supplement 0 is based on the curvature computation of parametric continues closed functions. Due to 

the mesh representation of the objects and skulls no such functions were available. Mesh data contains 

discrete data and provides no information about the surface around the specific point on which the 

curvature is computed. Therefore, the curvature of mesh data could only be estimated. Several authors 

have paid attention to curvature estimation methods on 3D mesh data[37]–[44]. Gatzke et al.[38] have 

published a review in which they compared discrete estimation methods with surface fitting methods. 

Discrete methods directly estimate the curvature based on the normal vectors of the mesh and the 

contribution of faces and edges of a neighbourhood to the surface. Surface fitting methods however, 

first solve a least square fitting problem to obtain a continuous function that approximates a 

neighbourhood surface for a specific vertex. This function is then used to estimate the curvature in that 

vertex. The review found that discrete functions were fast but very sensitive to noise and required a 

regular mesh valence and resolution. Fitting methods were slower but appeared less sensitive to noise 

and valence, if the valence was over 4. Also, the fitting methods were found more accurate when the 

surface fitting was based on a multi-ring neighbourhood. All methods were found valence independent 

when there were more than 4 vertices within a one-ring neighbourhood. Another review was published 

by Magid et al.[37] in which they compared the influence of resolution and neighbourhood sizes for 

both discrete and surface fitting methods. This review also concluded that multi-ring surface fitting 

methods were most accurate and robust for the curvature estimation of mesh data. Finally, within all 

fitting methods quadric fitting appeared to be the most accurate and robust[37]–[39], [42]–[44]. In 

conclusion, multi-ring quadric surface fitting appeared to be the best choice in curvature estimation 

techniques for skull mesh data and was therefore used within this study.  

Furthermore, this study took variation in resolution and connectivity of the mesh data, and holes within 

mesh data into account. First, the mesh data of the skulls were sampled by ray casting with an evenly 

distributed spatial resolution of rays. Nonetheless, chapter 2 notes that because all rays were casted from 

a single central point, an irregular resolution of the mesh data was created due to the different 

intersection distances (Figure 5). Due to the sphere-like shape of the skulls this effect was expected to 

be minimal. Still, both the curvature estimation and the curvature map algorithm compensated for 

variations in sample resolution by normalising with respect to the area of faces. Secondly, because all 

mesh data was sampled based on the structure of the icosphere, the connectivity was known. This 

provided the knowledge of the number of neighbours for each vertex and enabled the implementation 

of the ring-based neighbourhood search. Finally, results in chapter 4.3.2.1 showed that the accuracy of 

the curvature estimation was reduced when the quadric surface fitting was not based on a symmetrical 

neighbourhood. Therefore, holes within the mesh could lead to inaccurate curvature estimations for 

vertices near the borders of the holes. Because all holes were filled this problem was prevented. 

The appropriate neighbourhood size for the quadric surface fitting method was based on the amount of 

detail shown by the curvature colour map. Small ridges in the skull surface are irrelevant for the 

establishment of the appropriate shape during the reconstruction of the cranial vault. Therefore, the 

neighbourhood size of 10 𝑚𝑚 appeared to be inappropriate, because the corresponding curvature colour 

map showed high detail discrimination. However, a lack of knowledge about the detail of the skull’s 

curvature could lead to unwanted ridges and bumps on the skull’s surface. This excluded the 

neighbourhood sizes 20 − 35 𝑚𝑚, because the corresponding curvature colour maps showed a lack of 

detail. Moreover, Rusinkiewicz et al.[43] stated that where a small neighbourhood results in very 

accurate curvature estimation for clean data, increasing the neighbourhood size reduces the sensitivity 

for noise. The results in chapter 4.3.2.1 confirmed that a smaller neighbourhood size resulted in more 

accurate curvature estimations. In conclusion, the neighbourhood distance (𝑅𝑁) of 15 𝑚𝑚 appeared to 

be the best choice. 
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It should be noted that the choice for this neighbourhood size was based on the 11 skull. This is a 

common age during open cranial vault reconstruction at the Radboudumc and the same age as the 

presented trigonocephaly case. It is expected that different scaling is needed for skulls of different ages. 

The cranial vault is smaller at lower age and the details to be detected are smaller as well. This could 

require smaller neighbourhood sizes. On contrast, at older age the scaling should be based on larger 

details. Thus, it could be possible that for older ages a larger neighbourhood size should be selected. 

Further evaluation on the scaling is needed in order to determine the appropriate scaling for each age 

group. 

Within this study, the behaviour of the quadric surface fitting method was not fully understood. The 

curvature estimation for the icospheres resulted in an overestimation of the curvature. For the full 

icosphere, this overestimation increased with the neighbourhood size. Because the curvature was 

estimated for an icosphere that contained minimal noise, it was not expected that this inaccuracy could 

be explained by the larger influence of noise due to the contribution of a larger neighbourhood. In 

contrary, it was expected that a larger neighbourhood size would result in a better approach of the surface 

by the quadric surface and thereby a better estimation of the curvature: larger neighbourhood sizes 

contain more vertex neighbours and therefore more information about the surface around a vertex. 

However, analysis of the quadric surfaces showed that the quadric surface fitting method was more 

inaccurate when the neighbourhood size increased. For the analysis of the quadric surface fitting method, 

it was desirable to visualise the quadric surfaces. However, problems existed due to memory restrictions 

of Matlab®. In order for Matlab® to visualise the quadric surface, an 𝑥−, 𝑦−, 𝑧 − grid is defined and 

each coordinate combination is filled in equation (5). Then, Matlab® creates a surface plot of all 

solutions 𝐹(𝑥, 𝑦, 𝑧) = 0. Figure 21 illustrates that for a grid 

with interval [0,1] with step size 0.1 for 𝑥 and 𝑦 and 𝑧 = 𝑎 

only 2 solutions are found. The more dense the created grid, 

the greater the chance that more solutions are found. Due to 

the memory capacity of Matlab® the density of the grid was 

limited, whereas the results for all 𝑥, 𝑦, and 

𝑧 −combinations need to be stored. As result, it was not 

possible to use a grid that was dense enough to find enough 

solutions to create a surface plot. A solution for this 

problem might be to encapsulate the quadric surface. This 

method is illustrated in Figure 21 by the coloured lines. An 

iterative process is followed that finds the matching 

coordinates belonging to each separate 𝑥, 𝑦 and 

𝑧 −coordinate in the grid that results in the solution of 

equation (2). For each 𝑥, 𝑦, and 𝑧 −coordinate a solution 

would be found and the quadric surface could be visualised 

and analysed. An expected drawback of this method is that 

the process will be very slow and will only be feasible for 

simple surfaces. 

The curvature maps that were used for the shape comparison did not include angular information about 

the curvature variance within regions. For each vertex the mean Gaussian curvature per ring was 

computed. A function was created describing the relation between the distance to the vertex and the 

mean Gaussian curvature of n-ring neighbourhoods. The shape comparison algorithm compared these 

functions, the curvature maps, in order to define the shape correspondence between different regions. 

The angular information about the curvature variance within the regions is lost with the use of the mean 

Gaussian curvatures per ring. Gatzke et al. [33] also describe curvature maps that contains angular 

information of the shape correspondence. This method uses geodesic fans instead of n-ring 

neighbourhoods. Next to the computation of the mean Gaussian curvature at a certain distance from a 

centre vertex, the mean Gaussian per geodesic spoke is computed. This allows both the shape 

Figure 21 Quadric surface represented in the  

𝑥, 𝑦 − plane for 𝑧 =  𝑎 (blue line) with the found 

solutions for the chosen grid by the current method 

(black arrows) and the solution found by 

encapsulation (coloured arrows) 
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comparison of the curvature related to the distance from the centre vertex and the curvature related to 

the angle of the geodesic fan. It could be useful to implement this method because the shape comparison 

would then not only give information about which region matches the reference region, but also about 

how to rotate the matched region to fit the reference region best. 

The results on the test object confirm that the shape comparison was able to identify areas with similar 

shape. The curvature colour maps showed corresponding curvature results, which is expected for 

objects with similar shape. However, the curvature map of the matched area showed small differences 

with the curvature map of the reference area. This difference was assigned to the estimation 

inaccuracy of the quadric surface fitting method. The matched region was not locate at the torus. This 

showed that the algorithm distinguishes different shapes. Because the spherical bulges with different 

radii were not matched, it is shown that the curvature maps are scale variant. This is important for the 

planning technique, because small ridges and bulges should be discriminated from big ridges and 

bulges. Moreover, due to the similar radii of the hole and the reference area, the inside surface of the 

hole is similar to the outside shape of the bulge. Because it is not possible to use the inside surface of 

the cranium for the reconstruction, it is important that the shape comparison discriminates bulges from 

holes of similar shape. The test results show that the current algorithm is able to do so. Also, when 

testing the algorithm on a normal skull, we expected that a shape on one side of the skull could also be 

found on the other side of the skull, given the fact that a healthy skull is (almost) symmetrical. Indeed, 

the algorithm led to a first match that was almost the same area as the reference area. 

Furthermore, when testing the algorithm on a normal skull, we expected that a shape on one side of the 

skull could also be found on the other side of the skull, given the fact that a healthy skull is (almost) 

symmetrical. Indeed, the algorithm led to a first match that was almost the same area as the reference 

area. Because the second match was found at the symmetrical region on the left side of the skull, is 

could be concluded that the shape comparison algorithm is able to identify corresponding shapes 

correctly. 

For the trigonocephaly case, the area with the optimal shape for the selected reference area, the right 

side of the forehead, was located at the parietal bone. This result is in contradiction with the common 

practice, whereas literature only describes reconstruction techniques for trigonocephaly skulls that 

concern only the use of the frontal bone [10]–[13], [16], [17], [21]. Because no appropriate age-specific 

3D normative data was available till now, these techniques were originated from experience, subjective 

decision making (what is beauty?) and common practice. However, the results of this study were fully 

based on objective shape comparison with age-appropriate 3D normative data and propose that for the 

presented case, a totally different  reconstruction technique could be considered. According to the results 

of this preliminary study, the parietal bone and not the contralateral frontal bone, would give rise to the 

‘best’ frontal reconstruction of the presented trigonocephaly case. Albeit a first trial of the developed 

algorithm, this case shows clearly that the use of a fully objective automated pre-operative planning 

technique could be able to achieve better results by introducing out-of-the box solutions, based on 

reference data. 

4.5 CONCLUSION 
This study has implemented an algorithm for the local shape comparison of skulls. First, the curvature 

estimation for predefined quadrics verified the curvature formulas for implicit functions. Then, it was 

shown that the Gaussian curvature based on quadric surface fitting was estimated correctly and that the 

shape comparison algorithm was able to identify similar shapes. The shape comparison algorithm was 

tested for a trigonocephaly case. Hereby, the algorithm identified a region on the parietal bone of the 

patients skull that maximally corresponded with the reference shape. In conclusion, the results showed 

the feasibility of the algorithm to identify the region on a patient’s skull that maximally corresponds in 

shape with a reference shape. 
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 GENERAL CONCLUSION AND FUTURE PROSPECTS 

This study has set the first steps towards an automated pre-operative planning technique for open cranial 

vault reconstructions in craniosynostosis patients. Age-specific normative skulls were created for 

different age groups. This provided knowledge about the normal shape of the cranium at different ages. 

Also, an algorithm was developed that enables the identification of the region on the patient’s skull that 

contains the shape that maximally corresponds with an age-appropriate reference shape. By integrating 

this algorithm within the automated planning technique, appropriate regions on the patient’s skull that 

can be used to create the optimal shape for the reconstruction site can be found. As result, the open 

cranial vault reconstructions will not be based on the subjective decision making of the surgical team, 

but on objective foundations. 

There is still a long way to go in the development of the automated pre-operative planning technique for 

open cranial vault reconstructions. A next step is to create a cost function that is able to define the 

optimal osteotomies and relocation of the created osseous panels in order to create the optimal cranial 

vault shape. This cost function should add restrictions to the location of osteotomies, the number of 

osseous panels and should take the establishment of a stable reconstructed structure into account. 

The location of the ostomies is important to guarantee the patient’s safety. The sigmoid sinus and 

superior sagittal sinus are major superficial vascular structures that can easily be damaged by the 

craniotomy drill. Also, at the site of the existing sutures the dura is often attached to the cranium. 

Crossing a suture with the drill could lead to dura tears. Other examples of structures that should be 

avoided are the supra-orbital artery and nerves. For the full automation of the pre-operative planning 

technique it is important that critical structures can be recognised by the algorithm. Jafarian et al. [45] 

describe a method for the segmentation of the sutures in the new-born’s skull. The feasibility of the 

localisation of the other structures by imaging analysis techniques is yet to be determined.  

The number of osseous panels is dependent on the reference region size. The shape comparison 

algorithm identifies an region on the patient’s skull surface with the same size as the reference region. 

Small osseous panels facilitate the creation of the optimal cranial shape but increase the number of 

panels. A large number of panels complicate the creation of a stable structure and require more screws 

and plates for the fixation. This increases the costs and duration of the procedure. In contrast, by 

selecting a reference region that is too large, ideal regions could be missed. This is because it is possible 

that an region on the patient’s skull exists that ideally fits only a part of the selected reference region. In 

conclusion, the optimal reference size should be determined. Variation of the reference size, but also 

shape should be considered.  

The stability of the structure is dependent on the fixation of the reconstructed structure. The osseous 

panels are secured with plates and screws. A large distance between the panels or between the panels 

and the cranium increases the risk of fracturing the plates and failure of the screws. Fixation of screws 

in unstable osseous tissue, for example where the tissue is thin, can also lead to failure of the structure. 

Overlay of the panels should be avoided because this results in ridges on the skulls surface. Moreover, 

the reconstructed structure should have a stable foundation. For example, in frontal orbital 

reconstructions the structure is often built up with the orbitae ridge as base. A stable structure is essential 

to prevent the structure from failing and to avoid brain tissue damage when external pressure on the 

structure is applied.  

This study expects that a pre-operative plan for open cranial vault reconstructions in craniosynostosis 

patients created by a fully automatic and objective algorithm, will give better results than a plan created 

based on the subjective decision making of the surgical team. In order to confirm these expectations, the 

results of both plans should be compared. To avoid ethical issues the reconstructions can initially be 

performed on 3D printed skulls that are based on CT-scans. First, the feasibility of the automatic 

algorithm should be determined. Reconstructions on printed skulls of several craniosynostosis cases 
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should be performed according to preoperative plans created by the algorithm. Then, for several 

craniosynostosis cases predefined plans should be created by both the automatic algorithm and the 

surgical team. Both plans should be executed by the same surgeon and the results can be evaluated by 

comparing the reconstructed skulls with the age-specific normative skull. 
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 SUPPLEMENT 

7.1 MARCHING CUBES 
Lorensen et al.[24] describe a fast intensity-to-mesh 

algorithm called marching cubes. This method ‘marches’ a 

cube, consisting of 8 logical vertices, through the 3D voxel 

data. The four upper vertices and the four lower vertices are 

always located in two different adjacent slices of the image 

data, so that the connectivity of slices is known. For each step 

the method determines how the surface with a certain 

intensity threshold intersects the cube. Hereby, all vertices of 

the cube for which the intensity value exceeds the intensity 

threshold are given the value 1. The other vertices are given 

the value zero. This enables the storage of the intersections in 

only 8 bits per cube. Because the cube can only be intersected 

in a limited amount of ways, the method can use a look-up 

table that describes 14 different options (see Figure 22). 

Symmetrical versions of the options are given the same 

index. Linear interpolation is finally used to determine the 

exact intersection of the surface with the edges of the cube. 

For each step in the marching through the voxel data, the 

intersection index of the cube is determined and the 

triangulation of the surface is constructed.  

7.2 ICOSPHERE 
An icosphere is build up from an icosahedron, which consists of 8 equilateral triangles that are defined 

by the corners of 4 orthogonal congruent rectangles. A more detailed icosphere is obtained by an 

iterative process in which the triangles are divided in smaller equilateral triangles. With every iteration 

the icosphere will consist of smaller triangles, thus will contain more data and will be more detailed. 

Because the icosphere is built up by equilateral triangles it consists of evenly distributed data points.  

  

Figure 22 Look-up table of the marching cubes 

algorithm that is  used to describe the surface 

triangulation, source: Lorensen et al.[24] 

Figure 23 (Left) icosahedron, source: Wikipedia[51], (Middle) icosphere 
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7.3 MÖLLER-TRUMBORE 
The Möller-Trumbore technique is a quick method 

that can determine whether a ray intersects a 

triangular face of the mesh. Each face consists of 

three vertices (𝑉1, 𝑉2, 𝑉3). The method defines points 

on the triangle with barycentric coordinates. The 

triangle is transformed to a unit triangle and 

translated to the origin so that the coordinates of the 

vertices are (1,0,0), (0,1,0) and (0,0,1). The 

location of an arbitrary point on the surface of the 

triangle is then expressed with the ratios 𝑢, 𝑣 and 

𝑤 = 1 − 𝑢 − 𝑣 (see Figure 24). Using this 

coordinate system a coordinate of a point on a 

surface can be expressed as: 

 𝑇(𝑢, 𝑣) = (1 − 𝑢 − 𝑣)𝑉0 + 𝑢𝑉1 + 𝑣𝑉2 

A ray is defined by: 

𝑅(𝑡) = 𝑂 + 𝑡𝐷 

𝐷 is the normalised direction, 𝑂 the origin of the ray and 𝑡 the length of the ray. To determine whether 

the ray crosses the triangle, the algorithm then solves the following equation: 

𝑇(𝑢, 𝑣) = 𝑅(𝑡) 

7.4 CURVATURE 
Dietz et al.[46] use Figure 25 to illustrate the definition curvature of a curve in 𝓡2. A blunt curve and 

sharp curve are shown on the left and centre respectively. The average curvature is defined as the rotation 

of the unit normal vector with respect to the arc length 𝑠 over which the rotation occurs:  

 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ
 (8) 

The total rotation is given by 𝜃 and is equal for both the blunt and the sharp curve. The arc length over 

which the rotation occurs is greater for the blunt curve than for the sharp curve. Therefore, according to 

(8), the average curvature of the sharp curve is greater than of the blunt curve, which is intuitively 

correct.  

Figure 25 Example of a blunt curve (left) and a sharp curve (right), source: Dietz et al.[46] 

Figure 24 Barycentric coordinates expressed in three 

ratios, source: Wikipedia[50] 
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To obtain specific information about the shape of a curve in each point on the surface, the arc length 

should reach to zero. This gives curvature as a point metric, being defined as the derivative of the unit 

normal, over the length of rotation:  

𝜅(𝑠) = ‖
𝑑𝒏

𝑑𝑠
‖ 

Because the rotation of the normal vector is used, this curvature is called normal curvature in literature. 

For the computation of the normal curvature in 𝓡3 literature refers to the shape operator[47], [48]. The 

shape operator 𝑆𝑝(𝒗) is the covariant derivative of a normal vector field at point 𝒑 in the direction 𝒗. In 

other words, the shape operator provides information about the direction change of the normals to a 

surface when moving over the surface in a certain direction 𝒗. Consider a surface 𝑀 ⊂ 𝓡3 and its normal 

vector field 𝑁 (Figure 26). Figure 27 shows a unit normal vector 𝑁(𝒑) in point 𝒑 on this surface with 

its corresponding tangent plane. Imagine following the surface 𝑀 in the direction of 𝒗, the normal vector 

field is expected to rotate to the right and slightly forward. The shape operator representing this rotation 

is shown in Figure 27.  

Because the shape operator provides information about the change in direction of the normal vectors, 

the rate of change of the shape operator will provide information about the strongness of the curve, i.e. 

the normal curvature. Hereby it is possible to compute the normal curvature in direction 𝒗, which can 

be in any direction on the tangent plane: rotating from 0 to 360∘around the normal vector (Figure 28). 

The minimal and maximal normal curvature 𝜅1 and 𝜅2 of a surface in a point 𝒑 and their corresponding 

directions 𝒗𝟏and 𝒗𝟐 are called the principal curvatures and principal directions respectively. Figure 29 

shows the curves corresponding to the principal curvatures at the centre of a saddle shaped surface. 

Figure 26 Surface 𝑀 with unit vector field 𝑁 

∇𝑣𝑁 

𝒗 

𝑁(𝒑) 

Figure 27 Surface 𝑀 with the unit vector 𝑁(𝒑) and the corresponding tangent plane and the shape operator 𝛻𝑣 𝑁 in de direction 

of 𝑣 
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The principal curvatures (and all other normal curvatures) only provide information of the surface in 

specific directions. Therefore, not the principal curvatures but the mean and Gaussian curvatures are 

used to describe a surface. Their definitions are:  

 
𝐾𝑀 =

𝜅1 + 𝜅2

2
 (9) 

 
𝐾𝐺 = 𝜅1𝜅2 (10) 

𝐾𝑀 is the mean curvature and 𝐾𝐺 the Gaussian curvature 

O’Neill[48] clearly describes that the Gaussian curvature has the most important geometrical meaning; 

it directly provides information about the shape of a surface and is independent on the choice of unit 

normal vectors. They elaborate the four situations in which the Gaussian curvature is positive, negative 

or zero. 

I. 𝐾𝐺(𝒑) > 0 m−1 , both 𝜅1(𝒑) and 𝜅2(𝒑) are positive; the surface is paraboloid 

II. 𝐾𝐺(𝒑) < 0 m−1, 𝜅1(𝒑) or 𝜅2(𝒑) is negative; the surface is saddle-shaped 

III. 𝐾𝐺(𝒑) = 0 m−1, 𝜅1(𝒑) and 𝜅2(𝒑) is zero; the surface is a plane 

IV. 𝐾𝐺(𝒑) = 0 m−1, 𝜅1(𝒑) or 𝜅2(𝒑) is zero; the surface is trough-shaped 

Even though the mean curvature has less important geometrical meaning, it is more stable because it is 

an average instead of the product of the principle curvatures.  

7.5 FACE QUADRICS 
A quadric is a second degree polynomial and can have many different shapes, depending on its 

coefficients[49]. Often described forms of quadrics are the sphere, ellipsoid, cylinder, cone, saddle, 

paraboloid and the hyperboloid. This section describes how a quadric surface is defined, that solve the 

least square fitting problem for a plane. 

Figure 28 Surface 𝑀 with the unit normal vector 𝑁(𝒑) and the corresponding tangent plane illustrating that direction v can 

be any direction, rotating from 0 to 360 degrees around 𝑁(𝒑) 

Figure 29 The principle curvatures of a saddle surface 
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The distance error metric of a quadric surface to a face is defined as the squared distance of an arbitrary 

point 𝒑 at the quadric surface to the plane 𝑃 ⊂ ℛ3 in which the face is present. The distance of a point 

𝒑 = (𝑝1, 𝑝2, 𝑝3, 1) to the plane 𝑃 is given by the length of the projection of the vector 𝒑 on the plane: 

𝐷 = 𝒏𝑇 ⋅ 𝒑 + 𝑑 

Therefore, the squared distance gives: 

 (𝒏𝑻 ⋅ 𝒑 + 𝑑)
𝟐

= 𝒑𝑻(𝒏𝒏𝑻)𝒑 + 2𝑑𝒏𝑻𝒑 + 𝑑𝟐 (11) 

 

Hereby, the unit normal vector of a face 𝒏 is given by:  

𝒏 = 
(𝒗1 − 𝒗2) × (𝒗1 − 𝒗3)

‖(𝒗1 − 𝒗2) × (𝒗1−𝒗3)‖
 

𝒗1, 𝒗2 and 𝒗3 are the three vertices of the face. Variable 𝑑 is defined as: 

𝑑 = −𝒏𝑇𝒑 

Equation (11) can be rewritten so that the error metric is written in the quadric form:  

 𝒑𝑻𝑄𝒑 = 𝝐 (12) 

With 𝑄: 

𝑄 = (𝑨, 𝒃, 𝑐) = ((𝒏𝒏𝑻), (𝑑𝒏), (𝑑2)) 

𝑄 can also be represented as the homogeneous symmetrical matrix: 

𝑄(𝒑) =  

[
 
 
 
 

𝑨    𝒃

          𝒃𝑇        𝑑2 ]
 
 
 
 

= [

𝑞11 𝑞12 𝑞13 𝑞14

𝑞12 𝑞22 𝑞23 𝑞24

𝑞13 𝑞23 𝑞33 𝑞34

𝑞14 𝑞24 𝑞34 𝑞44

  ] 

By filling in (11), 𝑨 and 𝒃 can be defined as:  

𝑨 = 𝒏𝒏𝑇 = [𝑛1 𝑛2 𝑛3] [

𝑛1

𝑛2

𝑛3

] = [

(𝑛1)
2 𝑛1𝑛2 𝑛1𝑛3

𝑛1𝑛2 (𝑛2)
2 𝑛2𝑛3

𝑛1𝑛3 𝑛2𝑛3 (𝑛3)
2

] 

𝒃 =  𝑑𝒏 = 𝑑([𝑛1 𝑛2 𝑛3]) = [𝑑𝑛1 𝑑𝑛2 𝑑𝑛3] 

Then, the homogeneous matrix for the quadric 𝑄(𝒑) is: 

 

𝑄(𝒑) =

[
 
 
 
 
(𝑛1)

2 𝑛1𝑛2 𝑛1𝑛3 𝑛1𝑑

𝑛1𝑛2 (𝑛2)
2 𝑛2𝑛3 𝑛2𝑑

𝑛1𝑛3 𝑛2𝑛3 (𝑛3)
2 𝑛3𝑑

𝑛1𝑑 𝑛2𝑑 𝑛3𝑑 𝑑2 ]
 
 
 
 

 (13) 

And thus:  

- 𝑨 is a symmetrical 3 × 3 matrix  

- 𝒃 is a 3 × 1 column vector  

- 𝑑2 is a constant. 

In conclusion, the quadric functional 𝑄 is represented in a symmetrical 4 × 4 matrix and stores 10 

coefficients.  
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Equation (12) is very useful because solving 𝒑𝑻𝑄𝒑 = 𝜀 gives a set of points that is located at 𝜀 distance 

from the original surface. Note that to find the quadric surface that approximates the plane in which the 

face is present, a set of points should be found for which the distance of the quadric surface to this plane 

should be zero. In other words, if the distance is zero the quadric is congruent to the plane in which the 

face is present. Considering this: the least square problem can be defined as:  

𝒑𝑻𝑄𝒑 = [𝑥 𝑦 𝑧 1] [

𝑞11 𝑞12 𝑞13 𝑞14

𝑞12 𝑞22 𝑞23 𝑞24

𝑞13 𝑞23 𝑞33 𝑞34

𝑞14 𝑞24 𝑞34 𝑞44

  ] [

𝑥
𝑦
𝑧
1

] = 

= 𝑞11𝑥
2 + 2𝑞12𝑥𝑦 + 2𝑞13𝑥𝑧 + 2𝑞14𝑥 + 𝑞22𝑦

2 + 2𝑞23𝑦𝑧 + 2𝑞24𝑦 + 𝑞33𝑧
2 + 2𝑞34𝑧 + 𝑞44 = 0  

When the coordinates of the three vertices of a face are known, the general equation of the plane in 

which the face is present can be determined:  

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

This equation provides normal vector 𝒏 = [𝑎 𝑏 𝑐] and 𝑑 and gives the quadric functional defined in 

equation (13). Thus, for each face (if the vertex coordinates are known) the quadric functional is: 

𝑄 = [

𝑎2 𝑎𝑏 𝑎𝑐 𝑎𝑑
𝑎𝑏 𝑏2 𝑏𝑐 𝑏𝑑
𝑎𝑐 𝑏𝑐 𝑐2 𝑐𝑑
𝑎𝑑 𝑏𝑑 𝑐𝑑 𝑑2

  ] 

7.6 CURVATURE FORMULAS FOR IMPLICIT FUNCTIONS 
Goldman[36] describes the formulas for curvature from implicit formulas. The formulas are given in the 

following textboxes: 

 

  

𝐾𝐺 =
∇𝐹∗𝐻∗(𝐹)∗∇𝐹𝑇

2‖∇𝐹‖4    Gaussian curvature 

𝐾𝑀 =
∇𝐹∗𝐻(𝐹)∗∇𝐹𝑇−|∇𝐹|2𝑇𝑟𝑎𝑐𝑒(𝐻)

2‖∇𝐹‖3   mean curvature 

𝑘1, 𝑘2 = 𝐾𝑀 ± √𝐾𝑀
2 − 𝐾𝐺  principal curvatures 

𝛻𝐹 = (
𝜕𝐹

𝜕𝑥

𝜕𝐹

𝜕𝑦

𝜕𝐹

𝜕𝑧
)   gradient 

𝐻(𝐹) =

[
 
 
 
 
 

𝜕2𝐹

𝜕𝑥2

𝜕2𝐹

𝜕𝑥𝜕𝑦

𝜕2𝐹

𝜕𝑥𝜕𝑧

𝜕2𝐹

𝜕𝑦𝜕𝑥

𝜕2𝐹

𝜕𝑦2

𝜕2𝐹

𝜕𝑦𝜕𝑧

𝜕2𝐹

𝜕𝑧𝜕𝑥

𝜕2𝐹

𝜕𝑧𝜕𝑦

𝜕2𝐹

𝜕𝑧2 ]
 
 
 
 
 

   Hessian 

𝐻∗(𝐹) =

[
 
 
 
 
 

𝜕2𝐹

𝜕𝑦2

𝜕2𝐹

𝜕𝑧2 −
𝜕2𝐹

𝜕𝑦𝜕𝑧

𝜕2𝐹

𝜕𝑧𝜕𝑦

𝜕2𝐹

𝜕𝑦𝜕𝑧

𝜕2𝐹

𝜕𝑧𝜕𝑥
−

𝜕2𝐹

𝜕𝑦𝜕𝑥

𝜕2𝐹

𝜕𝑧2

𝜕2𝐹

𝜕𝑦𝜕𝑥

𝜕2𝐹

𝜕𝑧𝜕𝑦
−

𝜕2𝐹

𝜕𝑦2

𝜕2𝐹

𝜕𝑧𝜕𝑥

𝜕2𝐹

𝜕𝑥𝜕𝑧

𝜕2𝐹

𝜕𝑧𝜕𝑦
−

𝜕2𝐹

𝜕𝑥𝜕𝑦

𝜕2𝐹

𝜕𝑧2

𝜕2𝐹

𝜕𝑥2

𝜕2𝐹

𝜕𝑧2 −
𝜕2𝐹

𝜕𝑥𝜕𝑧

𝜕2𝐹

𝜕𝑧𝜕𝑥

𝜕2𝐹

𝜕𝑥𝜕𝑦

𝜕2𝐹

𝜕𝑧𝜕𝑥
−

𝜕2𝐹

𝜕𝑥2

𝜕2𝐹

𝜕𝑧𝜕𝑦

𝜕2𝐹

𝜕𝑥𝜕𝑦

𝜕2𝐹

𝜕𝑦𝜕𝑧
−

𝜕2𝐹

𝜕𝑥𝜕𝑧

𝜕2𝐹

𝜕𝑦2

𝜕2𝐹

𝜕𝑦𝜕𝑥

𝜕2𝐹

𝜕𝑥𝜕𝑧
−

𝜕2𝐹

𝜕𝑥2

𝜕2𝐹

𝜕𝑦𝜕𝑧

𝜕2𝐹

𝜕𝑥2

𝜕2𝐹

𝜕𝑦2 −
𝜕2𝐹

𝜕𝑥𝜕𝑦

𝜕2𝐹

𝜕𝑦𝜕𝑥 ]
 
 
 
 
 

  adjoint Hessian 
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