
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Solution Techniques for
Inverse Problems in
Neural Field Theory

Nick Luiken
MSc Thesis in Applied Mathematics

October 2016

Assessment Committee:
Dr. C. Brune

Prof. dr. S.A. van Gils
Dr. P.K. Mandal

Supervisor:
Dr. C. Brune

Applied Analysis Group
Department of Applied Mathematics

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Abstract

In this thesis we present new solution techniques for inverse problems in
neural field theory. Neural fields are a continuum limit of neural networks and
describe the spatiotemporal evolution of neural activity in the brain. This evo-
lution is described by an integro-differential equation called the Amari equation.
One of the inverse problems in neural field theory is to describe the connections
between neurons based on this spatiotemporal evolution. The inverse problem
is ill-posed. In other work, this ill-posedness was dealt with using Tikhonov
regularization. We present three methods that reduce the ill-posedness of the
problem and improve the quality of the reconstruction. We compare these meth-
ods to the use of Tikhonov regularization and also show what happens when we
combine these methods with Tikhonov regularization. The first method we use
is parameter optimization. We show that parameter optimization is necessary
when dealing with data generated for fixed parameters. The second method
we introduce is subsampling. We show that subsampling is a tool to reduce
the error of the reconstruction and reduce the ill-posedness. At some point we
reach a trade-off between accuracy and stability. We furthermore show that a
combination of subsampling and Tikhonov regularization is sometimes the best
method. The third method we present is combining data. Sometimes we are
dealing with insufficiently informative data. To overcome this, we can combine
data that is qualitatively different.

Keywords: neural fields, Amari equation, inverse problem, integro-differential
equation, regularization, subsampling

Acknowledgements

This thesis is my final work as a student Applied Mathematics at the Uni-
versity of Twente. With it, my student life comes to an end and there is a
number of people I would like to thank for their support during this time.

First of all I would like to thank my supervisors Dr. Christoph Brune and
Prof. dr. Stephan van Gils for helping me the past 6 months. They have done
a great job supporting me, motivating me and advising me on this work. We
have had many long discussions about my research and they have always been
very helpful. I would like to thank Christoph as well for recommending me for
the PhD position in Utrecht which I will take next year. I am sure we will work
together at some point during my PhD research as well and I look forward to
it.

I would also like to thank Prof. dr. Roland Potthast. He was my supervisor
during my time as an intern at DWD in Germany. He has done a tremendous
job of supervising me there and advised me to pursue a PhD position. This has
led me to pursuing this myself and I am very grateful to him. He is also the
one who has laid the groundwork for inverse problems in neural field theory, on
which we have based this work. It is safe to say I owe him a great deal.

I thank Yoeri Boink for the discussions we have had and the collaboration
over the last two years.

I thank Andre and Martin for their friendship and support. A special thanks
goes out to Andre, who motivates me to work hard and perform to the best of
my abilities.

Last but not least, I thank my parents and my sister. Without them, none
of this would have been possible.

Contents

1 Introduction 3
1.1 Introduction . 3

1.1.1 Mathematical description of the inverse problem 3
1.1.2 Forward and inverse problem 4

2 Mathematical framework 6
2.1 Construction of solutions . 6

2.1.1 Ill-posedness of the problem 8
2.2 Solution procedure . 9
2.3 Solution techniques . 11

2.3.1 Parameter optimization 11
2.3.2 Subsampling . 11
2.3.3 Combining data . 12
2.3.4 Localization . 13

2.4 Validation . 13
2.4.1 Error . 14
2.4.2 Condition number . 14

3 Application to the Neural Field Equation 17
3.1 Summary . 17
3.2 Sine wave with order parameter dynamics 18

3.2.1 Tikhonov regularization 20
3.2.2 Influence of the parameters β and η 20

3.3 Traveling pulse . 25
3.3.1 Tikhonov regularization 26
3.3.2 Subsampling . 27

3.4 XOR gate . 29
3.5 Two-dimensional pulse with a prescribed kernel 31

3.5.1 Combining sequences . 33
3.5.2 Numerical accuracy of the Reduced Row Echelon Form

algorithm . 34
3.6 Mexican hat . 40
3.7 Other kernels . 47

1

2 Contents

4 Conclusion and outlook 50
4.1 Conclusion . 50
4.2 Outlook . 51

A Reconstruction for the Complexity, Entropy and Integration
kernel 54

Chapter 1

Introduction

1.1 Introduction

In this thesis we study inverse problems in neural field theory. Neural fields are
the continuum limits of neural networks. A neural network consists of a large
amount of neurons. These neurons are cells that are electrically excitable and
transmit information in our brain. They do so via synapses, which are structures
that permit a neuron to pass this signal.

Figure 1.1: Neural network

Due to the large amount of neurons
in the brain, it is tempting to derive
a continuum limit of these neural net-
works [9], [10], [11]. This means that
we assume there are infinitely many
neurons connected to each other. The
work was later extended by Wilson
and Cowan [12], [13] to include ex-
citation and inhibition as well as re-
fractoriness. This work was later ex-
tended by Amari [3], [4], who intro-
duced the Amari equation.
The interactions within the neural field form a pattern. A description of these
patterns is given by the synaptic weight kernel. The inverse problem in neural
field theory is to determine the synaptic weight kernel based on observations of
the neural field. The first study of the inverse problem was done by Potthast
and beim Graben, [1], [2]. In this thesis, we build upon their work and study
the inverse problem.

1.1.1 Mathematical description of the inverse problem

In this work we study the inverse problem in the Amari equation, given by:

3

4 1.1. Introduction

τ
∂u(x, t)

∂t
+ u(x, t) =

∫
Ω

w(x, y)f(u(y, t))dy, x, y ∈ Ω, t > 0, (1.1)

for a given initial condition u(x, 0) = u0(x). In the Amari equation the variable
u(x, t) describes the spatiotemporal evolution of the activity of the neurons.
The function f(u) is called the firing rate function and is usually given by:

f(u) =
1

1 + e−β(u−η)
− c. (1.2)

The constant c is either 0 or
1

2
. Choosing c =

1

2
ensures that f(0) = 0, which

means that the background is set to 0 [6]. In this case the parameter η = 0. If
c = 0 then the parameter η represents a thresholding parameter. The parameter
β is a measure for the variability. The function w(x, y) is called the synaptic
weight kernel and describes the connectivity between points x, y ∈ Rm in a do-
main Ω ∈ Rm, with m ∈ N. Positive values in the weight kernel correspond to
excitatory connections and negative values correspond to inhibitory connections.

1.1.2 Forward and inverse problem

A solution to the neural field equation given a certain initial condition, firing
rate function and synaptic weight kernel and studying it’s properties is known
as the forward problem. Here, the forward problem is to generate u via
equation 1.1 given 1.2. In an inverse problem the objective is to estimate the
unknown parameters or variables in the forward problem, given certain data.
We now state the inverse problem for the neural field equation, as described
in [1].

The inverse problem. Given a function u(x, t) ∈ BC(D)×BC1([0, T])
for some T ∈ R+∪∞ and with u(x, 0) = u0(x), the inverse problem is to
construct a kernel w(x, y) in X such that the solution of the neural field
equation 1.1 is satisfied.

In order to solve the inverse problem, we first rewrite the neural field equa-
tion. Define the synaptic weight operator as:

(Wϕ)(x) :=

∫
D

w(x, y)ϕ(y)dy, x, y ∈ D.

Then by defining the functions:

ψ(x, t) := τ
∂u

∂t
(x, t) + u(x, t),

ϕ(x, t) := f(u(x, t)),

5 1.1. Introduction

we can rewrite the neural field equation as:

ψ = Wϕ (1.3)

Here, W is an integral operator with kernel w. The discretized version of 1.3 is
given by:

ψj = Wϕj . (1.4)

Here, W ∈ Rn×n, ψj ,ϕj ∈ Rn for j ∈ J ⊂ N and |J | = n.
In [1] Potthast and beim Graben have shown that this problem is generally
ill-posed. They have shown through several examples how regularization can
be used to overcome some of the difficulties. In these examples we have to
distinguish two different cases.

1. Prescribed sequences. In this case a certain sequence u(x, t) is pre-
scribed and we reconstruct the kernel using this sequence. After that we
use the reconstructed kernel Wα to reconstruct the sequence uα(x, t). In
reconstructing uα(x, t) we change the discretization over time to avoid
the inverse crime. We then compare the sequences u(x, t) and uα(x, t) to
verify the quality of Wα.

2. Prescribed kernels. In this case we prescribe a kernel W and generate
a sequence u(x, t) for a given u0(x). We use this data to reconstruct the
kernel Wα and compare it to W .

In this work we will build upon the work of Potthast and beim Graben in
[1]. We will use the solution procedure described by them and reconstruct their
examples. We will show new solution techniques that we have developed to
improve the quality of the reconstruction, be it sequence or kernel, and reduce
the ill-posedness. Furthermore, we have included more examples illustrating the
difficulties that arise in inverse problems for neural fields, and how our solution
techniques help to overcome them.

Chapter 2

Mathematical framework

In this section we will describe the mathematical framework of the problem. We
start by discussing the construction of solutions and the solution procedure we
apply, following [1]. Then we present our solution techniques in addition to this
and comment on the validation of our methods.

2.1 Construction of solutions

In this section we describe the construction of solutions following [1]. The goal of
this section is to use biorthogonal sets to construct solutions and to investigate
the ill-posedness of the problem. We recite the construction of biorthogonal sets
from [1] and comment on the ill-posedness of the problem.
We assume we have a Hilbert space X with scalar product 〈·, ·〉. Two linearly
independent sets of functions Q = {ϕ1, ϕ2, ...} and R = {ρ1, ρ2, ...} are biorthog-
onal if

〈ρi, ϕk〉 = 0 ∀ k 6= i, 〈ρi, ϕi〉 = ci, ci 6= 0, i ∈ N.

Define
Vk = {ϕ1, . . . , ϕk−1, ϕk+1, . . . }, k ∈ N. (2.1)

We then have X = Vk ⊕ V ⊥k . Denote the orthogonal projection of ϕk onto V ⊥k
by ρ̃k. The biorthogonal elements are then given by

ρk :=
ρ̃k
‖ρ̃k‖2

. (2.2)

Writing ϕ̄k = ρ̃k + ϕk with ϕk ∈ Vk we find

〈ρ̃k, ϕ̄k〉 = 〈ρ̃k, ρ̃k + ϕk〉 = 〈ρ̃k, ρ̃k〉 = ‖ρ̃k‖2. (2.3)

If
∑n
j=1 βjρj = 0, then we have

0 =

〈
n∑
j=1

βjρj , ϕk

〉
=

n∑
j=1

βj〈ρj , ϕk〉 = βk, k = 1, . . . , n (2.4)

6

7 2.1. Construction of solutions

and hence the set R = {ρ1, ρ2, ...} is linearly independent. Q is called a Riesz
basis in a Hilbert space H if there are constants c1, c2 > 0 such that

c1

∞∑
j=1

|αj |2 ≤

∥∥∥∥∥∥
∞∑
j=1

αjϕj

∥∥∥∥∥∥
2

≤ c2
∞∑
j=1

|αj |2. (2.5)

for all α = (αj)j∈N ∈ `2. In this case the mapping

A : `2 → X, α 7→
∞∑
j=1

αjϕj (2.6)

is a bounded and invertible mapping from `2 onto A(`2). The dual operator is
then given by

A′ : X → `2, ψ 7→ (〈ϕj , ψ〉X)j∈N . (2.7)

The following estimate then holds:

〈α,A′Aα〉`2 = 〈Aα,Aα〉X ≥ c1‖α‖2`2 (2.8)

According to the Lax-Milgram theorem A′A is boundedly invertible in `2 with

a lower bound given by
1

c1
. The operation of A′A on α is given by

A′Aα = (〈ϕk, Aα〉X)k∈N =

 ∞∑
j=1

〈ϕk, ϕj〉Xαj


k∈N

(2.9)

The operation A′A on `2 can then be expressed as a matrix multiplication with
M , where M is defined as

M := (〈ϕk, ϕj〉)k,j∈N (2.10)

If we define

ρk :=

∞∑
j=1

(M−1)k,jϕj , k ∈ N, (2.11)

we get

〈ρk, ϕi〉X =

〈 ∞∑
j=1

(M−1)k,jϕj , ϕi

〉
=

∞∑
j=1

(M−1)k,j〈ϕj , ϕi〉 = (M−1M)k,i = δki.

(2.12)
Hence we have a constructive method for calculating the biorthogonal set. We
can now define operators Vn and V

Vnϕ :=

n∑
i=1

ψi〈ρi, ϕ〉, V ϕ :=

∞∑
i=1

ψi〈ρi, ϕ〉 (2.13)

8 2.1. Construction of solutions

such that

Vnϕi =

{
ψi if i = 1, .., n

0, if i > n
(2.14)

V ϕi = ψi, i ∈ N (2.15)

2.1.1 Ill-posedness of the problem

In [1] it’s stated that the division by ‖ρ̃k‖2 in 2.3 leads to the ill-posedness of
the problem. We have that:

‖ρk‖ =
‖ρ̃k‖
‖ρ̃k‖2

=
1

‖ρ̃k‖
. (2.16)

Using 2.11 we get that:

‖ρk‖2 = 〈ρk, ρk〉

=

〈 ∞∑
j=1

(M−1)k,jϕj ,

∞∑
l=1

(M−1)k,lϕl

〉

=

∞∑
j=1

(M−1)k,j

〈
ϕj ,

∞∑
l=1

(M−1)k,lϕl

〉

=

∞∑
j=1

(M−1)k,j

∞∑
l=1

(M−1)k,l 〈ϕl, ϕj〉

=

∞∑
j=1

(M−1)k,j

∞∑
l=1

(M−1)k,lMl,j

=

∞∑
j=1

(M−1)k,j(M
−1M)k,j

=
∞∑
j=1

(M−1)k,jδkj

= (M−1)k,k

We now have that:

‖ρ̃k‖ =
1√

(M−1)k,k
(2.17)

From 2.2 we see that:

ρk =
ρ̃k
‖ρ̃k‖2

= ρ̃k ·
(
M−1

)
k,k

(2.18)

Hence we see that the elements ρk are dependent on the invertibility of M .
If M is not invertible then the ρk are not well-defined and we are dealing with

9 2.2. Solution procedure

an ill-posed inverse problem, because we can no longer construct a stable and
unique solution.

2.2 Solution procedure

In this section we will briefly reiterate the solution procedure used by Potthast
and beim Graben in [1].
In the examples we employ an explicit Euler scheme for the time derivative and
the rectangular rule for the integral. For the spatial domain D = [a1, b1] ×
[a2, b2]× ...× [aN , bN] ⊂ RN we can define a grid by setting

hk :=
bk − ak
nk − 1

, k = 1, ..., N,

and

xk1,...,kN := (a1 + k1 · h1, ..., aN + kN · hN), ki = 0, ..., ni − 1, i = 1, ..., N.

All xk1,...,kN can be rearranged into a large vector x ∈ RΠN
i=1ni , defined as

xξ := xk1,...,kN , ξ =

N−1∑
i=1

N∏
j=i+1

njki + kN , kj = 0, ..., nj − 1, j = 1, ..., N.

The operator W is discretized using a collocation scheme. The values Wξ,η are
given by

Wξ,η = w(xξ,xη), ξ, η = 0, ...,

N∏
i=1

ni − 1

Assume we have ` time discretization points. Adopting the notation

ϕ(s) := ϕ(ts), ψ(s) := ψ(ts), s = 1, ..., l,

we can define the following matrices:

A :=
(
ϕ(1), . . . ,ϕ(`)

)
, B :=

(
ψ(1), . . . ,ψ(`)

)
. (2.19)

We can now rewrite 1.4 as:
B = WA (2.20)

Although it looks like it, 2.20 is not a standard least squares problem. Firstly,
the unknown variable W in the product WA is on the left side. This can be
overcome by taking the transpose on both sides. We then have the equivalent
problem

BT = ATWT. (2.21)

10 2.2. Solution procedure

If we write B = [b1 b2 · · · b`] and A = [a1 a2 · · · a`], we see that 2.21 can
be seen as the system of equations:

bT
1 = aT

1 WT

bT
2 = aT

2 WT

... =
...

bT
` = aT

` WT

(2.22)

Here we see that the columns of A and B constitute the variables of the
system and the rows constitute the number of equations used to solve the system.
In this case, the variable is W. It is not a vector but a matrix, in contrast to a
standard least squares problem.
We furthermore observe that there is no clear separation between model and
data. The measured data are in the matrix B. In a standard least squares
problem, A would be the model operator and would be independent of the
data. In this case however, A also contains the data.

The discretized operator W is calculated by:

W = BA†, (2.23)

where A† = (ATA)−1AT, the existence of which is discussed in [18], [19]. The
product (ATA)−1AT is the discretized version of 2.11. The matrix ATA is
the discretized version of M and thus the ill-posedness of the problem is related
to the invertibility of the discretized overlap matrix ATA. We see that for
increasing ` the vectors ϕ, i.e. the columns of ATA, become linearly dependent
and the matrix ATA becomes non-invertible. Therefore, to find a solution to
the problem we have to regularize (ATA)−1AT. In [1] Tikhonov regularization
was used, giving the equation:

Rα = (αI + ATA)−1AT. (2.24)

The regularized kernel Wα is now given by

Wα = B(αI + ATA)−1AT. (2.25)

The examples done by Potthast and beim Graben [1] are carried out by the
following steps.

1. Given a certain field u generated by the Amari equation compute the
matrices A and B.

2. Calculate Rα using 2.24 and use it to calculate Wα using 2.25.

3. In the case of a prescribed kernel we can directly compare the ground
truth W and the estimated Wα. In the case of a prescribed sequence we
compare u and uα where uα is reconstructed using Wα in 2.20.

The reconstructed solution uα is generated using a different time discretization
than the solution u. This is done to avoid an inverse crime, as described in [5],
and specifically for this problem but in less detail in [1].

11 2.3. Solution techniques

2.3 Solution techniques

In the previous sections we have shown that we are dealing with an ill-posed
inverse problem. To resolve this, Potthast and beim Graben have used Tikhonov
regularization and have shown in their work that this leads to good results [1].
In this section we discuss new methods to reduce the ill-posedness and improve
the quality of reconstruction.

2.3.1 Parameter optimization

We have shown in section 2.1 that the ill-posedness of the problem is due to the
fact that the matrix ATA is not invertible. However, even if ATA is invertible
we may not be able to reconstruct the kernel due to other unknown parameters
in the equation. These are the parameters β and η in the firing function. In [1]
the parameters were chosen beforehand, and all examples were done using these
fixed values. The prescribed sequences are generated using certain parameters
of the firing function and we need to ensure that we use the same parameters
in the inverse problem. We therefore try to determine the parameters β and η
that produce the lowest error and condition number (see section 2.4) and assume
these are the parameters that were used in the forward problem.

2.3.2 Subsampling

We have shown through the construction of biorthogonal sets that the ill-
posedness in our problem is due to a very fine discretization in the temporal
domain. To overcome this, we could take a very coarse discretization, i.e. very
large time steps, but his way we risk missing important features in the solution
that can be very informative. This problem of course only arises if we observe
sequences that have very little transients. Transients are changes in time over
space. If the sequence has many transients then ϕi and ϕj , j 6= i are very dif-
ferent and the overlap matrix will be well-defined. This of course gets harder
for decreasing ∆t, or equivalently, increasing `. If the sequence has very little
transients then we could choose a very coarse discretization over time, but we
would like to develop methods that solve the inverse problem independent of
the structure of the sequence. A very fine discretization in space would also be
an option to resolve this problem. If N � ` then the overlap matrix will be
well-defined as well. However, in practice, we can never demand a certain dis-
cretization over space, especially since we are dealing with micro-scale problems
in the brain. We look for a method of regularization that is both independent
of the discretization in space and time and the structure of the sequence.
To reduce the ill-posedness in the problem, Potthast and beim Graben have
used Tikhonov regularization. We propose regularization through subsam-
pling. The idea is that we select exactly that data that adds information to
our problem, while cutting out data that doesn’t. By adding information we
mean that the data we want to use is independent of all other data we are us-
ing. In a discretized sense, this boils down to reducing the matrix A to reduced

12 2.3. Solution techniques

row echelon form. We then select all pivot columns and use these columns to
form the new matrix Ã. We cut out the same columns in B, yielding a matrix
B̃. We can now calculate (ÃTÃ)−1ÃT, which we will still denote by Ã†. We
furthermore write W̃ = B̃Ã†.
The idea behind this method is to use data that is actually necessary to solve
the problem. If two different columns in the matrix A are very similar then
they do not give any extra insight into the matrix W. When data is actually
giving information different from all other data we can infer new information
about W.
To compute the reduced row echelon form we use the standard algorithm in
matlab, shown in algorithm 1.

Data: matrix A and a tolerance tol.
Result: [A,jb] = rref(A,tol) returns A in reduced row echelon form and

returns the indices of the pivot columns in jb.
[m,n] = size(A);
while i ≤ m && j ≤ n do

find the value p and the index k of the largest absolute value in
column j;

if p < tol then
Set the column to zero;

else
Create a pivot element;

end
i++;
j++;

end
Algorithm 1: Reduced Row Echelon Form algorithm

An important parameter in this algorithm is the tolerance, tol. This func-
tions like a measure for the linear dependence of two columns. A very low
tolerance means that we impose a more strict measure for linear independence
between columns. We will show in the examples how it influences the quality
of the reconstruction. The algorithm used to transform A and B to Ã and B̃
respectively is described in algorithm 2.

Data: matrices A and B and a tolerance tol.
Result: Ã = rref cut(A,tol) returns the pivot columns of A to Ã
[A,jb] = rref(A,tol)
A = A(:,jb)
B = B(:,jb)

Algorithm 2: Algorithm that transforms A and B to Ã and B̃

2.3.3 Combining data

In some cases one sequence may not suffice to reconstruct the kernel. This
happens in two cases:

13 2.4. Validation

1. The sequence is zero in some parts of the spatial domain for the full time
window. If the sequence is zero in some parts of the spatial domain we do
not have any information about the influence of these points on the other
points in the domain. Therefore the corresponding points in the synaptic
weight kernel will be zero.

2. The sequence is not informative enough. From a continuous point of view
this can be seen from 2.13. If n is a small number compared to the dimen-
sion of the ϕi, we have very little information about the ϕi. We thus see
that when we use algorithm 2 the rank of the matrix is actually a measure
of the informativeness of the sequence. For low rank matrices we have a
low number of equations solving system 2.22, whereas for high rank ma-
trices the converse is true. Sequences with very few transients will have a
low rank. When A has low rank, we cannot expect a good reconstruction
of W. One possibility to overcome this is to combine sequences gener-
ated by the same kernel. This can be done by choosing different initial
conditions and combining the sequences generated by them. We have to
ensure that these sequences are qualitatively very different. We can com-
bine sequences in our procedure by simply concatenating the matrices A
and B that are generated by them. After that we apply algorithm 2 to
the resulting matrix A.

2.3.4 Localization

In some cases we have a priori knowledge about the connections we expect to see.
When we know that we expect to see more local than non-local connections we
can use a technique called localization, which has previously been used for kernel
reconstruction in [20]. We solve the equation W = BRα on a localized domain
Ωloc. We have that x ∈ Ωloc if ‖x − y‖ < ρ, ∀y ∈ Ω. Denote K = A

∣∣
Ωloc

and

b = B
∣∣
Ωloc

. We then solve the equation Wloc = b(α+ KTK)−1KT and equate

W
∣∣
Ωloc

= Wloc. We apply this procedure for all x ∈ Ω, or in the discretized

setup, for all xi, i = 1, ..., n. In the discretized version we use the following
procedure. For a given ρ and index i, we select all indices j s.t. ‖xi − xj‖ < ρ
and store them in I0. We then select all indices k s.t. f(u(xj , tk)) > ν and store
them in I1. We then build the matrix K and the vector b using K = A(I0, I1)

and b = B(xi, I1). Then we solve the equation Wloc = b(α+ KTK)
−1

KT and
store it in Wα(xi, I1).

2.4 Validation

In this section we discuss how we validate the quality of the reconstruction of W.
In inverse problems, people usually look at the error between the ground truth
(if available) and the reconstruction and the condition number. The condition
number is a measure of the stability with respect to errors in the data.

14 2.4. Validation

2.4.1 Error

When calculating the error we again have to make a distinction between pre-
scribed sequences and prescribed kernels. If we have a prescribed kernel we can
determine the error by calculating the norm between W and Wα (or W̃), using
the formula:

Error = ‖W −Wα‖F , (2.26)

where ‖ · ‖F denotes the Frobenius norm, which is defined as:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2. (2.27)

We note that the matrix W is not the true kernel, but the kernel multiplied
by the grid constants. In [1] the matrix W was shown in the figures and we
have done the same to compare our results. Starting from section 3.6 we will
show the true kernel w and use w instead of W in 2.26.
When we want to validate the quality of the reconstructed kernel for a prescribed
sequence, we first calculate Wα. We then reconstruct the sequence uα using
the Amari equation with Wα. We then calculate the error between u(x, t) and
uα(x, t) using the formula:

Error = ‖u− uα‖F . (2.28)

This way, we calculate the error between u and uα at every points in space
per time step. This is not an optimal measure for all sequences. For instance,
if we study traveling pulses the absolute error per time step is not optimal. We
also have to take into account the shape of the pulse and the orientation, as well
as the velocity of the pulse. It is very hard to determine an optimal measure for
the error between two arbitrary sequences. We therefore use formula 2.28 as a
good indication, keeping in mind that it is not optimal.

2.4.2 Condition number

The condition number is a measure of the stability of a matrix. The quantity
arises naturally when studying the standard linear least squares equation Ax =
b. Let e denote the error in b. The objective is to study the relative error in the
solution induced by the relative error in b. This is calculated by:

‖A−1e‖
‖A−1b‖
‖e‖
‖b‖

=
‖A−1e‖
‖e‖

‖b‖
‖A−1b‖

(2.29)

The condition number κ is defined as the maximum of 2.29 and is given by
[21]:

15 2.4. Validation

κ(A) = max
e,b6=0

‖A−1e‖
‖e‖

‖b‖
‖A−1b‖

= ‖A‖ · ‖A−1‖. (2.30)

In case where the matrix is not invertible, we use the Moore-Penrose pseudo-
inverse, A†, instead, giving:

κ(A) = ‖A‖ · ‖A†‖. (2.31)

If the Singular Value Decomposition ofA can be computed then the condition
number is given by:

κ(A) =
σ1

σN
. (2.32)

As explained in section 2.2, we are not dealing with a standard linear least
squares problem. However, when we use equation 2.21, we see that the solution
of our problem is given by:

WT = A(ATA)−1BT. (2.33)

If we write WT = [w̄1 w̄2 · · · w̄N] and BT = [b̄1 b̄2 · · · b̄N], this can be
rewritten as:

w̄1 = A(ATA)−1b̄1

w̄2 = A(ATA)−1b̄2

... =
...

w̄N = A(ATA)−1b̄N

(2.34)

This is the solution to the system 2.22. We see that when we study the condi-
tion number of A(ATA)−1 we study the stability with respect to the measured
data in B. Since κ(A) = κ(AT) and (A(ATA)−1)T = (ATA)−1AT = A† we
see that κ(A†) is a measure for the stability.
In our case A† has the data in it as well, in contrast to the matrix A−1 in 2.29.
This means that an error in the data has an effect on the quantity A† as well.
The effect this has is captured by the condition number as well. The effect of a

change in the entries on the pseudo-inverse of a matrix A is measured by
dA†

dα
,

where α denotes the entries of A. Let I denote the identity matrix. We then
derive an expression for this by using:

0 =
dI

dα
(2.35)

=
dA†A

dα
(2.36)

=
dA†

dα
A+A†

dA

dα
. (2.37)

16 2.4. Validation

Rewriting equation 2.37 we get:

dA†

dα
= −A† dA

dα
A† (2.38)

Taking norms on both sides we get:

∥∥∥∥dA†dα
∥∥∥∥ =

∥∥∥∥−A† dAdαA†
∥∥∥∥ (2.39)

≤ ‖A†‖2
∥∥∥∥dAdα

∥∥∥∥ (2.40)∥∥∥∥dA†dα
∥∥∥∥

‖A†‖
≤ ‖A†‖‖A‖

∥∥∥∥dAdα
∥∥∥∥

‖A‖
(2.41)

= κ(A)

∥∥∥∥dAdα
∥∥∥∥

‖A‖
, (2.42)

where in the last line we have used 2.31. This means that the condition
number is an upper bound for the relative change in A† with respect to the
relative change in the entries of A.
We thus see that the condition number is a measure of the change in the solution
with respect to a certain input as well as an upper bound for the the error we
get in the quantity A† with respect to an error in A.

Chapter 3

Application to the Neural
Field Equation

In this chapter we present examples illustrating the difficulties that arise in
inverse problems in neural field theory. We use prescribed sequences and pre-
scribed kernels found in different articles on neural fields [1], [7], [8]. We start
with the examples introduced in [1]. We reproduce their results to verify if our
results are correct and then compare them to the results we get when using
our solution techniques. The order in which we present the examples from [1]
is chosen according to the difficulties that arise in solving the inverse problem.
In section 3.2 we start with a relatively easy example where ATA is still in-
vertible. We only have to optimize over the parameters. In sections 3.3 and
3.4 we deal with traveling pulses. Here, the matrix ATA is no longer invert-
ible and we introduce our subsampling method. In section 3.5 we deal with a
prescribed kernel. There we have the additional problem that we need to com-
bine sequences to make them informative enough. In section 3.6 we extend to
a prescribed kernel where we introduce excitatory and inhibitory behavior. In
section 3.7 we use simplified versions of kernels described in [8]. Here, we will
demonstrate how localization can help to solve the inverse problem and gain
some more insight to the problems arising in the inverse problem. We start out
with a summary of the work in this chapter as clarification for the reader.

3.1 Summary

Table 3.1 refers to all examples and the solution techniques used for that ex-
ample. A white cell indicates that a certain solution technique is not used for
that particular example. The shade of green shows how well the techniques
improves with respect to Tikhonov regularization. The last column shows the
overall quality of the reconstruction for the best case scenario. Red means a
bad reconstruction. We seperate the Compexity, Entropy and Integration kernel
via double line. Above, we have arranged the examples in order of increasing

17

18 3.2. Sine wave with order parameter dynamics

complexity. The overall quality column is separated because in that column the
color indicates the quality of the overall reconstruction and is not with respect
to the case where we use Tikhonov regularization.

hhhhhhhhhhhhhhhExample

Solution Techniques
Validation 2.4 Parameter optimization Subsampling Subsampling + Tikhonov Combining data Localization Overall quality

Sine 3.2 Sequence

Traveling pulse 3.3 Sequence

XOR 3.4 Sequence

Kernel pulse 3.5 Kernel

Mexican hat 3.6 Kernel

Complexity 3.7 Kernel

Entropy 3.7 Kernel

Integration 3.7 Kernel

Table 3.1: Table showing the solution techniques used for each example. The
shade of green indicates the improvement in terms of error and condition number
with respect to Tikhonov regularization. Red means a bad reconstruction.

3.2 Sine wave with order parameter dynamics

In this example we study a sine wave transitioning continuously between a finite
number of linearly independent states [1]. This prescribed sequence v(x, t) is
given by:

v(x, t) =

Q∑
i=1

λi(t) sin(ix)

The functions λi are so called tent functions. These functions are compactly
supported and non-zero on the interval [ti, ti+1], where the ti are defined such
that 0 = t1 < t2 < · · · < tQ = T , and |ti+1− ti| = T

Q−1 ∀i. The functions λi are
given by:

λi(t) =


0 if t < ti−1
Q−1
T (t− ti−1) if ti−1 ≤ t < ti

1− Q−1
T (t− ti) if ti ≤ t < ti+1

0 if t ≥ ti+1

The spatial domain is [0, 2π]. The other parameters are N = 320, T = 7, ` =
100 and τ = 2. In order to verify our results, we have reproduced the matrices
A, B, Rα and Wα that are shown in [1]. The matrices are shown in Figure
3.1.

We observe that there is a small difference between the matrices that we
have generated and the matrices shown in [1]. When we change the parameter

19 3.2. Sine wave with order parameter dynamics

Figure 3.1: Matrices A, B, Rα and Wα for β = 10.

to β = 100 we observe that we obtain the same results as Potthast and beim
Graben in [1]. We show the results in 3.2.

Figure 3.2: Matrices A, B, Rα and Wα for β = 100.

For the matrices shown in Figure 3.1 Q = 4. The prescribed and recon-
structed sequences shown in [1] are generated using Q = 8. To compare our

20 3.2. Sine wave with order parameter dynamics

results to the results in [1] we use the same parameters.

3.2.1 Tikhonov regularization

In [1] Potthast and beim Graben have shown that for the parameters β = 10
and η = 0.3 the problem is unstable. They have used Tikhonov regularization
to overcome this instability. We show the results for α = 0, 1, 30 in Figure 3.3.
The black line is the prescribed sequence and the red line is the reconstructed
sequence.

We see that if we don’t regularize, i.e. α = 0, after some time the recon-
structed sequence strongly deviates from the prescribed sequence and shows
some unstable behavior. If the regularization of the connectivity is too strong,
i.e. α = 30, the reconstructed sequence eventually damps out. For α = 1 we
observe a decent reconstruction. These are all observations we expect when
dealing with an ill-posed problem, and can be overcome by regularization.

3.2.2 Influence of the parameters β and η

We have shown in section 3.2.1 that we observe behavior that is typical for
ill-posed probems. From a theoretical viewpoint however, this should not be
the case. In this example N � ` to ensure that ATA is invertible. We have
shown in section 2.1 that if the matrix ATA is invertible then the problem
is not ill-posed and we should be able to reconstruct the kernel without any
regularization.
What was not taken into account in [1] is that the parameters of the firing
function have an influence as well. The parameters are however unknown. Since
the solution was generated by the Amari equation using a specific firing function
the parameters have an influence on the inverse problem as well. To determine
the right parameters we have set up an experiment where we vary the parameter
β in the range 5 ≤ β ≤ 115 and we vary the parameter η in the range 0.2 ≤
η ≤ 0.6. We then investigate the error of the reconstruction and the condition
number of Rα. We vary α from α = 1 · 10−5 to α = 10 where α is multiplied by
10 in each step. Furthermore we include α = 0 to see what happens if we don’t
regularize. For each α we look at the parameters of the firing function that give
the lowest error.

From table 3.2 we see that it is not strictly necessary to regularize the solu-
tion, as long as we are able to find the right parameters for the firing function.
The smallest error for the reconstructed solution is for α = 1 · 10−4, but the
error nor the condition number for α = 0 are that much bigger. For α = 1 we
do find a much smaller condition number, but here the error is bigger and also
the parameter β gets very big. From the table it is clear that the parameters
β = 18 and η = 0.3 appear the most and are probably the parameters that
generated the sequence. We do see however that for β = 17 and η = 0.3 we
have the smallest error. For completeness we have added a plot of the largest
singular values, smallest singular values, condition numbers, and the error for
varying α for both these parameters. They are shown in figures 3.4 and 3.5.

21 3.2. Sine wave with order parameter dynamics

Solution for α = 0.

Solution for α = 1.

Solution for α = 30.

Figure 3.3: Instability resolved using Tikhonov regularization.

22 3.2. Sine wave with order parameter dynamics

α Optimal parameters Smallest error condition number
1 · 10−5 β = 18 and η = 0.3 1.166 3.314 · 103

1 · 10−4 β = 17 and η = 0.3 1.097 3.133 · 103

1 · 10−3 β = 18 and η = 0.3 1.143 1.123 · 103

1 · 10−2 β = 29 and η = 0.2 1.421 3.952 · 102

1 · 10−1 β = 40 and η = 0.2 1.728 1.253 · 102

0 β = 18 and η = 0.3 1.187 3.389 · 103

1 β = 101 and η = 0.4 3.853 3.168 · 101

10 β = 10 and η = 0.3 15.19 2.009 · 103

Table 3.2: Smallest error for varying parameters of the firing function.

Here we see that although we have in principle a well-posed problem, since
A is linearly independent, we do benefit from regularizing the solution. The
result for β = 17 and α = 1 · 10−4 is shown in Figure 3.6.

It is also clear that it is not strictly necessary to regularize the operator
(ATA)−1AT and that optimizing with respect to the parameters β and η re-
duces the ill-posedness. We get additional benefits from using Tikhonov regu-
larization in terms of a lower condition number, but the error gets bigger. For
the parameter setup in [1] the error is 1.08 · 101 and the condition number is
6.4 · 102. The singular values are shown in Figure 3.7. Although the condition
number is smaller, the error is also much larger. If we compare the case where
β = 18 and α = 0 we see that the condition number for β = 10 and α = 1 is a
factor 0.19 smaller, but the error is a factor 9.08 bigger. If we then use β = 18
and α = 1 · 10−3 the condition number is a factor 0.57 smaller, but the error is
a factor 9.47 bigger.

23 3.2. Sine wave with order parameter dynamics

Condition number Error

Largest singular value Smallest singular value

Figure 3.4: Results for β = 17 and η = 0.3.

Condition number Error

Largest singular value Smallest singular value

Figure 3.5: Results for β = 18 and η = 0.3.

24 3.2. Sine wave with order parameter dynamics

Figure 3.6: Result for β = 17, η = 0.3 and α = 1 · 10−4.

Figure 3.7: Singular values for β = 10, η = 0.3 and α = 1. The horizontal axis
denotes the ordering of the singular values from largest to smallest.

25 3.3. Traveling pulse

3.3 Traveling pulse

For this example we consider a traveling pulse which follows a prescribed parabolic
path [1]. This is a prescribed sequence given by:

u(x, t) := e−R|x−x0(t)|2 , t ∈ [0, T] (3.1)

where
x0(t) := (q1t, q2t− q3t

2).

In [1] the parameters for the pulse and the discretization were not explicitly
given. We were not able to get the same reconstruction as in [1]. However, we
do get a reasonable reconstruction. We have tried to estimate the parameters
used in [1] based on the figures shown. We have estimated that the parameters
chosen were q1 = 1, q2 = 0.8, q3 = 5q2 and R = 5 for the parabolic path and the
size of the pulse. We have chosen n1 = 60, n2 = 60, x1 ∈ [0, 5], x2 ∈ [0, 5] and
` = 800. The parameters for the firing function in [1] are β = 10 and η = 0.3.
We show twelve snapshots of the prescribed sequence in 3.8.

Figure 3.8: Prescribed traveling pulse.

26 3.3. Traveling pulse

3.3.1 Tikhonov regularization

For this example the matrix ATA is not invertible. That means that in this
case the problem is ill-posed and that we need to regularize. The resulting
reconstructed sequence after solving the problem without regularization is shown
in Figure 3.9.

Figure 3.9: Reconstructed pulse without regularization.

We compare the results for Tikhonov regularization used in [1] and the sub-
sampling method we described in section 2.3.2. As this is a prescribed sequence,
we again optimize over the parameters of the firing function. For the parameters
β = 10 and η = 0.3 we have found that α = 800 yields the best results. The re-
constructed sequence is shown in 3.10. The error calculated using formula 2.28
is 87.76. The condition number as calculated by equation 2.32 is 2.03 · 1016.

Concerning the parameters of the firing function, we have found that the
reconstruction gets better as β →∞: it seems to control the propagation speed
of the pulse. We have therefore chosen:

f(u; η) =

{
1 if u− η > 0

0 otherwise
(3.2)

The result is shown in Figure 3.11. The error is 65.83 and the condition

27 3.3. Traveling pulse

Figure 3.10: Reconstructed traveling pulse with β = 10.

number is 7.64 · 1016.
We observe that the pulse reconstructed using the firing function 3.2 pre-

serves it’s shape better, and that the trail that the pulse leaves behind is less
substantial.

3.3.2 Subsampling

In this section we present the results using the subsampling procedure described
in 2.3.2. Through this procedure we have cut out 92 timesteps, reducing the
size of the matrices A and B from 3600× 800 to 3600× 708. We estimate that
the optimal parameter for η is η = 0.4. The error is 47.09 and the condition
number is 4.33 · 102.

We show the distribution of the singular values for both methods in Figure
3.13. What’s very interesting when we compare the figures is that we have pre-
cisely removed those columns that yield very small singular values. This means
that this method functions somewhat like a spectral cut-off method. When we
remove these small singular values from 3.13 the quality of the reconstruction
does not improve, but gets really bad. We conclude that for this example the
subsampling method cuts out precisely the information that is redundant and

28 3.3. Traveling pulse

Figure 3.11: Reconstructed traveling pulse with the firing rate function 3.2.

leads to the ill-posedness in the problem.

29 3.4. XOR gate

Figure 3.12: Reconstructed traveling pulse using subsampling.

Figure 3.13: Singular values. Left for Tikhonov regularization and right for
subsampling. The horizontal axis denotes the ordering of the singular values
from largest to smallest.

3.4 XOR gate

For this example we investigate the inverse problem for an XOR gate [1]. There
are two gates placed at the positions (0, 3) and (0,−3). We consider pulses

30 3.4. XOR gate

traveling through the gates to the position (10, 0) on the domain [0, 10]× [−5, 5].
When there are pulses at both gates they will die out. If there is only one pulse
at either one of the gates it will travel to (10, 0).
We have again found that we get the best results when we use a step function
for the firing function, with η = 0.3. Using the subsampling method we find
that the condition number is 47.33. The error for the reconstruction for a pulse
at either (0, 3) or (0,−3) is 29.28. For a pulse at both gates the error is 9.05.
We show the reconstruction in 3.14. When using Tikhonov regularization we
find that the error for a pulse at (0, 3) or (0,−3) is 29.30 and the error for a
pulse at both gates is 9.03. The condition number is much larger: 1.2 · 1016.
When looking at the singular values, we again see that the subsampling method
functions somewhat like a spectral cut-off method, as described in section 3.3
for the traveling pulse as well. This is shown in Figure 3.15.

Figure 3.14: Reconstructed pulses placed at the XOR gates using subsampling.

31 3.5. Two-dimensional pulse with a prescribed kernel

Tikhonov regularization Subsampling

Figure 3.15: Singular values. Left for Tikhonov regularization and right for
subsampling. The horizontal axis denotes the ordering of the singular values
from largest to smallest.

3.5 Two-dimensional pulse with a prescribed ker-
nel

This example shows the reconstruction of a prescribed kernel [1]. Here, we do
not have a prescribed sequence, but a prescribed kernel and we generate our
sequence using the Amari equation. The prescribed kernel is given by:

w(x, y) := ce−R|x−y|
2

·χx≥y(x, y)−χx1<y1(x, y)−χx2<y2(x, y), x, y ∈ Ω (3.3)

Here χ is given by:

χstatement =

{
1 if statement is true

0 if statement is false
(3.4)

The initial condition is given by:

u(x, 0) =

{
1 if |x− x0| ≤ c
0 if otherwise

(3.5)

We have included the constant c in formula 3.3 because we have found that the
pictures shown in [1] are not in accordance with the formula if c = 1. The full
kernel times the grid constants h1, h2 is shown in Figure 3.17 with c = 2 and
this figure is accordance with the one in [1]. The kernel times the grid constants
h1, h2 for fixed x2 is given in Figure 3.16. Here, we have chosen c = 4 so that
the figure is the same as in [1]. The reconstructed kernel slightly from the one
shown [1], which is likely due to a difference in the discretization of the spatial
and temporal domain and the regularization parameter.

The full kernel shown in [1] is not the full kernel for the kernel in the previous
example for fixed x2. There, the spatial domain was discretized using the domain

32 3.5. Two-dimensional pulse with a prescribed kernel

2D kernel 2D Reconstructed kernel

3D kernel 3D reconstructed kernel

Figure 3.16: Various plots of the kernel for fixed y.

[0, 30]× [0, 30] and n1 = 91 and n2 = 91. For the full kernel the spatial domain
is discretized using the domain [0, 10] × [0, 10] and n1 = 31 and n2 = 31. For
the full kernel the constant in 3.3 is c = 2.

Due to the fact that we have a prescribed kernel we do not optimize over the
parameters of the firing function and use the same parameters as in [1], namely
β = 10 and η = 0.5. The parameters do have some influence in terms of the
informativeness of the sequence, due to the fact that different parameters for
the firing function generate different sequences. This influence is not substantial
and therefore we omit results for other parameters of the firing function.
There are two things that influence the reconstruction of the kernel. The first is
the constant c in 3.3. If this constant is too small then the initial pulse from 3.5
will not be propagated enough and the sequence will not be informative. We
could also choose a constant smaller than 1 in 3.5: this will have the same effect
as choosing a larger c in 3.3. The second influence is the width of the pulse. If
the pulse is too narrow we again have a very non-informative sequence. In the

33 3.5. Two-dimensional pulse with a prescribed kernel

Figure 3.17: Kernel and reconstructed kernel. The axes show the discretization
points and not the actual domain, in accordance with the figure in [1].

example shown in 3.17 we have chosen c in 3.5 c = 4. When we look at the
reconstructed kernel in 3.17 we see bars that alternate between bars that show
a reconstruction of the prescribed kernel and bars that are 0. This is due to
the path that is traversed by the pulse. We illustrate this in Figure 3.18 for the
first 12 timesteps and for the full time window in 3.19. We see clearly in Figure
3.18 that the pulse doesn’t traverse the entire domain. The parts of the domain
that are not traversed correspond to the bars that are 0 in 3.17.

3.5.1 Combining sequences

It is clear from 3.17 that additional information is required to reconstruct the
kernel fully. In this case we do this by combining sequences with different initial
conditions. We see from Figure 3.18 that the initial pulse travels diagonally to
the right part of the domain. If we use several pulses located at different parts
of the domain we can add more information to A and reconstruct the kernel
better. We choose two different set-ups and compare the two cases.

1. Setup 1. We choose pulses at the locations

[
k − 1

0

]
, k = 1, ..., 10 and[

0
m− 1

]
, m = 2, ..., 10 with radius 1 and compare the results when we

use the matrices A and Ã and what the effects of regularization are. In
this case there are pulses placed along the axes x1 and x2. Due to the
structure of the kernel these pulses will traverse the entire domain and
reconstruct the full kernel.

2. Setup 2. We choose pulses at

[
k − 1
m− 1

]
, k,m = 1, ..., 10. In this case the

pulses cover the entire domain.

34 3.5. Two-dimensional pulse with a prescribed kernel

Figure 3.18: Snapshots of the first twelve timesteps of the solution generated
by the kernel in 3.3 using initial condition 3.5 with c = 4.

3.5.2 Numerical accuracy of the Reduced Row Echelon
Form algorithm

In the previous example the reduction of A to Ã was very straightforward. For
this example however, the tolerance of the algorithm has an influence. The
tolerance determines if a certain column is zeroed out: if the largest element in
a certain column is smaller than the tolerance, then the column is zeroed out.
In the previous example we have varied the tolerance and we have found no
difference between using the default tolerance and taking a tolerance as large
as tol = 1 · 10−1. For this example we have adjusted the tolerance because
the default tolerance still leads to bad numerical results and a relatively high
condition number. We compare the results for Tikhonov regularization versus
the subsampling method as well as the subsampling method combined with
Tikhonov regularization for all three cases. We show the condition number and
the error for varying tolerance in Figure 3.20 for the case where we have only 1
sequence. We show the results for the two cases where we use multiple sequences
for setup 1 respectively setup 2 in figures 3.21 and 3.22.

In Figure 3.20 we see that the error is barely influenced by adding Tikhonov

35 3.5. Two-dimensional pulse with a prescribed kernel

Figure 3.19: Snapshots of the full time window of the solution generated by the
kernel in 3.3 using initial condition 3.5 with c = 4.

Error Condition number

Figure 3.20: Influence of the tolerance in the RREF algorithm for 1 sequence.
Each line corresponds to a certain tolerance as indicated by the legend.

36 3.5. Two-dimensional pulse with a prescribed kernel

Error Condition number

Figure 3.21: Influence of the tolerance in the RREF algorithm for setup 1. Each
line corresponds to a certain tolerance as indicated by the legend.

Error Condition number

Figure 3.22: Influence of the tolerance in the RREF algorithm for setup 2. Each
line corresponds to a certain tolerance as indicated by the legend.

regularization. The error is lower for a lower tolerance. This means that by
increasing the tolerance we cut out information that is of importance for the
reconstruction. When we look at the condition number we see a drastic de-
crease when we increase the tolerance. We also see a benefit in using Tikhonov
regularization in addition to the subsampling method.
In Figure 3.21 we see the benefits of combining sequences to reconstruct the
kernel. The error is overall lower than the errors shown in 3.20. It can also be
seen that as we increase the tolerance, initially, the error decreases. However,
when the tolerance becomes too big, in this case tol = 10−1, the error increases
again. This means that we cut out too much information. When looking at the
condition number, we see that for tol = 10−1 and tol = 10−3 the condition num-

37 3.5. Two-dimensional pulse with a prescribed kernel

ber is lower than in 3.20 whereas the condition number for tol = 10−5 and tol =
10−7 is higher. This is not unexpected, as using multiple sequences in principle
increases the ill-posedness. This is due to the fact that ` (discretization in time)
becomes almost as large, or even larger than N (discretization in space). We
again see benefits in using Tikhonov regularization in addition to subsampling
in terms of the condition number. For the error we see that for sufficiently large
tolerance, i.e. 10−1 and 10−3, this is not the case. When the tolerance is too
small, i.e. 10−5 and 10−7, additional Tikhonov regularization does benefit. We
conclude that choosing the right tolerance is essential in this case. From our
results it is however not straightforward what tolerance to choose. This strongly
depends on the preference of accuracy over stability or vice versa.
Figure 3.22 shows the results when we combine sequences that are generated
from initial pulses that cover the entire domain. Here we have ` � N and
the problem is severely ill-posed. We see again that increasing the tolerance
strongly reduces the condition number, where in the case that tol = 10−1 and
tol = 10−3 additional Tikhonov regularization decreases the condition number
even more. We can see that the problem becomes severely ill-posed when we
look at the condition number, which is much larger than in 3.20 and 3.21 for
low tolerances. When we look at the error we again see that when the tolerance
gets too large, in this case tol = 10−1, the error increases. The lowest error we
get is when we use tol = 10−3 and α = 0. The error for this case is 1.05. We do
however get a very large condition number, namely κ = 1.27 · 1010. The result
is shown in figure 3.26.
For this example the results are not conclusive. We see that using subsam-
pling makes the problem solvable and reduces the ill-posedness. However, for
all setups there is a strong trade-off between error and stability, in terms of the
condition number. In figures 3.23, 3.24 and 3.25 we compare the solution using
Tikhonov regularization versus subsampling, and subsampling in combination
with Tikhonov regularization for a given tolerance.

38 3.5. Two-dimensional pulse with a prescribed kernel

κ(Rα) for varying α Error for Rα

κ(R̃α) for varying α Error for R̃α

Figure 3.23: Error and condition number for varying α for reconstruction with
1 sequence and tol = 10−1.

κ(Rα) for varying α Error for Rα

κ(R̃α) for varying α Error for R̃α

Figure 3.24: Error and condition number for varying α for reconstruction with
multiple sequences using setup 1 and tol = 10−2.

39 3.5. Two-dimensional pulse with a prescribed kernel

κ(Rα) for varying α Error for Rα

κ(R̃α) for varying α Error for R̃α

Figure 3.25: Error and condition number for varying α for reconstruction with
multiple sequences using setup 2 and tol = 10−1.

Figure 3.26: The reconstructed kernel using multiple sequences and setup 2 with
α = 0 and tol = 10−3. Compare figure 3.17

40 3.6. Mexican hat

3.6 Mexican hat

In this section we extend to a kernel where we have two populations of neurons,
namely excitatory and inhibitory. A typical example of a kernel where we have
two populations is called the Mexican hat. This is a 1D example where the
kernel has the form shown in Figure 3.27. We use the work of Dijkstra et al.
[7] where bifurcations for this type of connectivity have been studied. One big
difference is that we do not have any delays, so that our simulation of the Amari
equation differs from theirs. For example, without any delays, we are not able
to generate solutions that oscillate over the temporal domain. We have however
used their setup, i.e. we use the same spatial domain, the same connectivity
function, the same firing function and use their initial conditions. We use the

parameter β = 3 and the firing function f(x) =
1

1 + exp(−βx)
− 1

2
. Here, we

have included the constant c, which is chosen c =
1

2
to ensure that f(0) = 0,

see [6]. We try to reconstruct the following prescribed kernel:

w(x, y) = 12.5e−2|x−y| − 10e−|x−y| (3.6)

The kernel is shown in Figure 3.27.

Mexican hat 1D Full kernel for the Mexican hat

Figure 3.27: Prescribed kernel w(x, y).

We will use the following initial conditions, as used in [7]:

u(x, 0) = 0.05 (3.7)

u(x, 0) = 0.05(0.99x+ 0.01) (3.8)

u(x, 0) = 0.05(0.7 cos(4.3x) + 0.3 cos(2.04x)) (3.9)

The spatial domain is given by Ω = [−1, 1]. Furthermore, we choose T = 5
and α = 1. Here, our temporal domain is much smaller than the one in [7], but
this doesn’t influence the inverse problem. The results are shown in 3.28, 3.29
and 3.30.

41 3.6. Mexican hat

Generated sequence Reconstructed kernel Reconstructed sequence

Figure 3.28: Images for initial condition 3.7.

Generated sequence Reconstructed kernel Reconstructed sequence

Figure 3.29: Images for initial condition 3.8.

Generated sequence Reconstructed kernel Reconstructed sequence

Figure 3.30: Images for initial condition 3.9.

From these figures we see that we are not able to reconstruct the kernel.
What is interesting is that although we are not able to reconstruct the kernel,
we are able to reconstruct the generated sequence. This is due to ambiguity in
the forward model.
The first thing we show is that we can nearly perfectly reconstruct the kernel
when we use δ-pulses located at each point of the domain as initial conditions,
and only observe one time step. This is very straightforward, since each pulse
yields a column linearly independent of all other columns in the matrix A. Since
we use a δ-pulse on every point of the domain and only observe one time step,
we have a bijection and can invert the kernel. The reconstructed kernel and
the matrices A, B and Rα with α = 0 are shown in Figure 3.31. The error
between the prescribed kernel and the reconstructed kernel is 2.87 · 10−12 and

42 3.6. Mexican hat

κ(Rα) = 1.

Kernel and reconstructed kernel Matrices A, ATA, B and Rα

Figure 3.31: Reconstruction of the Mexican hat using δ-pulses.

We want to see next how well we can reconstruct the kernel when we use less
data. We generate sequences using the initial conditions 3.7, 3.8 and 3.9. Again
we compare the subsampling versus subsampling combined with Tikhonov reg-
ularization. We present the results for all initial conditions in Figure 3.33.

Figure 3.32: Reconstructed kernel using subsampling and tol = 10−7 using
initial condition 3.8.

We see that we again reduce the condition number in all cases. For the error
we see that combining subsampling and Tikhonov has adverse effects: the error
only increases. For the condition number we see that combining subsampling
and Tikhonov reduces the condition number compared to only using subsam-
pling. For the sequences generated by initial conditions 3.7 and 3.9 the error is

43 3.6. Mexican hat

roughly the same as using Tikhonov regularization. For initial condition 3.8 we
see that for tol = 10−7 and α = 0 the error is much lower compared to using
Tikhonov regularization. However, for this tolerance we still have a very high
condition number. The reconstructed kernel is shown in 3.32.

To check the informativeness of the sequences, we check the rank of the
matrix A. For the sequences generated by the initial conditions 3.7-3.9 the
rank of the matrices A are 10, 13 and 11. Since we have N = 100, we see via
2.22 that we are solving a system of equations with 100× 100 variables and 10,
13 or 11 equations. To come to a better reconstruction we combine sequences
to make the matrix A more informative. From figures 3.28 and 3.30 we see
that the sequences generated by initial conditions 3.7 and 3.9 are qualitatively
very similar. Combining them will therefore not lead to a better reconstruction.
Combining the sequences generated by combining initial conditions 3.7 and 3.8
or 3.7 and 3.9 will lead to better results. We look at the condition number and
the error we get by combining these sequences in Figure 3.34.

We see that by combining sequences that are qualitatively different we re-
duce the error and the condition number, and have better results than when
we use Tikhonov regularization. We still see that combining subsampling and
Tikhonov regularization reduces the condition number, and that for lower tol-
erances the error is lower. The ranks for the matrices A corresponding to the
sequences generated in Figure 3.34 are 14, 21 and 22. We see that the rank of
the matrix A increases. We have seen in Figure 3.32 that for the matrix A with
rank 13 we get a reasonable reconstruction. When we combine initial conditions
3.7 and 3.9 the matrix A has rank 14, but the reconstruction is worse. Hence,
we cannot conclude that the rank is a sufficient measure for informativeness.
We see no benefit by combining subsampling and Tikhonov regularization in
terms of the error. We show the reconstructed kernel for combining initial con-
ditions 3.7 and 3.8 with tolerance tol = 10−2 and α = 0 in Figure 3.35 as well
as the matrices A, Ã and (ÃTÃ)−1ÃT. Although we get fairly low condition
number, we do see that there is very little structure in the matrix (ÃTÃ)−1ÃT

and that the values get very big.

We conclude that we again improve the quality of the reconstruction in
terms of error and stability when using the subsampling method instead of
using Tikhonov regularization. We also see that increasing the tolerance yields
a lower condition number, but a larger error. We thus have to choose between
accuracy and stability.

44 3.6. Mexican hat

The error using Rα with α = 10−3 is 1.2 · 102 κ(Rα) with α = 10−3 is 1.7 · 1030

The error using Rα with α = 10−1 is 1.0 · 102 κ(Rα) with α = 10−1 is 1.4 · 1017

The error using Rα with α = 10−1 is 1.2 · 102 κ(Rα) with α = 10−1 is 5.0 · 1017

Figure 3.33: Error and condition number. Each color corresponds to a given
tolerance as indicated by the legend. The top figure refers to initial condition
3.7, the middle figure to initial condition 3.8 and the bottom figure to initial
condition 3.9.

45 3.6. Mexican hat

The error using Rα with α = 10−1 is 1.2 · 102 κ using Rα with α = 10−1 is 4.3 · 1016

The error using Rα with α = 10−1 is 3.1 · 101 κ using Rα with α = 10−1 is 1.2 · 1015

The error using Rα with α = 10−1 is 2.5 · 101 κ using Rα with α = 10−1 is 1.0 · 1015

Figure 3.34: Error and condition number. The top figure corresponds to com-
bining initial conditions 3.7 and 3.9, the middle figure to combining initial con-
ditions 3.7 and 3.8 and the bottom figure to combining initial condition 3.8 and
3.9.

46 3.6. Mexican hat

The matrix A The matrix Ã

The matrix (ÃTÃ)−1ÃT Subsampling versus Tikhonov regularization

Figure 3.35: Relevant matrices for reconstruction using tol = 10−2 for combining
initial conditions 3.7 and 3.8.

47 3.7. Other kernels

3.7 Other kernels

We now show some results on kernels as described in [8]. We work with simplified
versions, but preserve the overall structure of these kernels. In this section we
will not show the results for different tolerances for the RREF algorithm, but
we will find the tolerance yielding the best results and present it. The three
prescribed kernels we use are shown in Figure 3.36. The names for the kernels
are taken from [8] and in this work we will refer to them as such.

Complexity Integration Entropy

Figure 3.36: Prescribed kernels we try to reconstruct.

We reconstruct these kernels using the following initial conditions:

u(x, 0) = 0.05 (3.10)

u(x, 0) = 0.05x (3.11)

u(x, 0) = sin

(
2

π

)
(3.12)

The images for the reconstructed kernels are shown in the appendix in figures
A.1, A.2 and A.3. Here, we show the error and condition number in the Tables
3.3, 3.4 and 3.5. We see in Table 3.3 that for the initial condition u(x, 0) = 0.05
we can reconstruct the kernel nicely when using subsampling. For the other
initial conditions this is not the case. We furthermore see from Tables 3.4 and
3.5 that we are not able to nicely reconstruct the Entropy and Integration kernel
when using subsampling or Tikhonov. The condition number 1 in Table 3.5 is
due to the fact that through subsampling only 1 column is left. This means
that the corresponding sequence is terribly non-informative.

Localization

To improve the quality of the reconstruction of the Entropy kernel we use
localization. For the Entropy kernel we show the results for different ρ and
u(x, 0) = 0.05 in Figure 3.37.

We see that in our case the localization is strongly influenced by the radius
we use. Radii of 0.01 ≤ ρ < 0.02 yield a good reconstruction, but for larger ρ

48 3.7. Other kernels

u(x, 0) Error Condition number
0.05 2.07 · 10−9 1.45 · 103

0.05x 20.31 5.7 · 103

sin

(
2

π

)
38.83 5.2 · 104

u(x, 0) Error Condition number
0.05 24.96 1.28 · 1016

0.05x 55.88 1.36 · 1016

sin

(
2

π

)
40.23 5.85 · 1015

Table 3.3: Tables showing the error and the condition number for a given initial
condition for the Complexity kernel. The left corresponds to subsampling, the
right one to Tikhonov regularization.

u(x, 0) Error Condition number
0.05 9.95 1

0.05x 9.95 1

sin

(
2

π

)
9.85 1.58 · 103

u(x, 0) Error Condition number
0.05 9.95 1.17 · 1016

0.05x 9.95 1.99 · 1015

sin

(
2

π

)
10.93 5.32 · 1015

Table 3.4: Tables showing the error and the condition number for a given initial
condition for the Entropy kernel. The left corresponds to subsampling, the right
one to Tikhonov regularization.

u(x, 0) Error Condition number
0.05 7.62 8.54 · 101

0.05x 7.42 1.08 · 103

sin

(
2

π

)
7.61 2.99 · 103

u(x, 0) Error Condition number
0.05 7.65 2.87 · 1016

0.05x 7.93 9.53 · 1016

sin

(
2

π

)
8.05 9.02 · 1015

Table 3.5: Tables showing the error and the condition number for a given initial
condition for the Integration kernel. The left corresponds to subsampling, the
right one to Tikhonov regularization.

Result for ρ = 0.01 Result for ρ = 0.05 Result for ρ = 0.5

Figure 3.37: Results for varying ρ and ν = 0.05.

we see that the kernel shows connections between all points within the given
radius. Combining localization with subsampling produces better results than

49 3.7. Other kernels

localization alone and we only need one measurement in time in this case. For
ρ = 0.01 the error for the method without subsampling it is 3.53 · 10−1 and the
error for the method with subsampling is 3.16 · 10−13. This shows that in this
example, localization only works when we very precisely know the scale of the
local connections.
We have also tried to improve the quality of the reconstruction for the Integra-
tion kernel. The results are shown in Figure 3.38. This is however unsuccessful
and the only way we are able to reconstruct this kernel is via δ-pulses.

W̃ with ρ = 0.4. W̃ with ρ = 0.8.

Wα with ρ = 0.4. Wα with ρ = 0.8.

Figure 3.38: Reconstructed kernels for u(x, 0) = 0.05.

Chapter 4

Conclusion and outlook

4.1 Conclusion

In this work we have built upon the work of Potthast and beim Graben [1]. We
have used their methods to solve the problem and extended it using three new
solution techniques, namely:

1. Parameter optimization

2. Subsampling

3. Combining data

We have shown in sections 3.2, 3.3 and 3.4 that for prescribed sequences we
strongly benefit from optimizing over the parameters of the firing function. For
prescribed kernels, the choice of the parameters of the firing function is of less
influence.
In section 2.1 we have recited the results in [1] and derived the subsampling as a
tool for reducing the ill-posedness. Throughout this work, we have shown that
this method of regularization is easily applicable and outperforms Tikhonov reg-
ularization. We have also found that we benefit from combining the two methods
in terms of stability via a lower condition number. For the error however, sub-
sampling alone is the best method. We have also shown that the tolerance in
algorithm 2 influences the error and the condition number as well. Increasing
the tolerance reduces the condition number, but the error increases. This is a
classic trade-off between accuracy and stability that arises when using regular-
ization.
In sections 3.5 and 3.6 we have shown that we can strongly benefit from combin-
ing data to reconstruct the kernel. In section 3.5 we have shown that combining
sequences can overcome gaps in the reconstructed kernel. These gaps arise when
the sequence has parts where it shows no activity, i.e. it is zero. When com-
bining sequences that are complementary in terms of these gaps, we can reduce
the error and the condition number. In section 3.6 we have shown that we can

50

51 4.2. Outlook

reduce the error and condition number by combining sequences, when we deal
with sequences that are not informative enough to reconstruct the kernel by
themselves. The key in combining sequences is that they are qualitatively dif-
ferent. We have shown that combining sequences that look qualitatively similar
does not yield better results. Furthermore, we have shown that we can always
reconstruct a kernel using δ-pulses.
In section 3.7 we have shown in certain cases the ability to reconstruct the ker-
nel depends entirely on the initial condition. We have shown an example where
we were able to reconstruct the kernel using only one initial condition. For two
other initial conditions we could not, and combining them did not benefit. We
have applied localization in section 3.7 to reconstruct a kernel that has only
local connections. This technique has shown to work only in this case when
we precisely know the parameter ρ, and thus requires a great amount of prior
knowledge.
We have furthermore shown an example, namely the Integration kernel, which
we can only reconstruct using δ-pulses.

4.2 Outlook

For future work we should look into a more sophisticated method for selecting
useful data. We now use the Reduced Row Echelon Form, via algorithm 2, but
we would like a method that has a better measure for determining whether a
measurement is useful or not. We have shown some difficulties in determining
the right tolerance and would like a method that is more stable. The RREF
algorithm furthermore selects on a ”‘left-to-right”’ basis and does not distinguish
between elements of a linearly dependent class. This becomes important when
the tolerance of the algorithm starts playing a role. Furthermore, the RREF
algorithm takes up a significant amount of computation time that hopefully
can be reduced with different methods. The methods we are looking for are
closely related to compressive sensing, where subsampling methods are widely
used [14], [15], [16]. Recently it has been shown that subsampling can have a
regularizing effect [17].
Another aspect that can be improved is the understanding of the informativeness
of a sequence. We have argued that the rank is a good indication, but we have
shown in 3.5 that this is not a sufficient measure for informativeness. We have
shown that for two sequences with almost the same rank the reconstruction of
the kernel using the one sequence was considerably better than using the other.
For further research we would also like to look into different prescribed sequences
and prescribed kernels known from Neural Field Theory, or possibly real data.
Furthermore, we would like to show the effects that noise in the data has on the
inverse problem.

Bibliography

[1] R. Potthast and P. beim Graben, Inverse Problems in Neural Field Theory,
SIAM J. Applied Dynamical Systems, Vol. 8, No. 4, pp. 1405-1433

[2] P. beim Graben and R. Potthast, Inverse Problems in Dynamic Cognitive
Modeling, Chaos, 19(1):015103, 2008

[3] S. Amari, Homogeneous nets of neuron-like elements Biological Cybernet-
ics, 17:211220, 1975.

[4] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural
fields, Biolog. Cybernet., 27 77-87, 1977

[5] D. Colton and R. Kress, Inverse acoustic and Electromagnetic Scattering
Theory, Springer Verlag, New York, Berlin, 1998.

[6] G. Faye and O. Faugeras, Some theoretical and numerical results for delayed
neural field equations, Physica D 239(9)(2010) 561-578

[7] K. Dijkstra, S.A. van Gils, S.G. Janssens, Yu.A. Kuznetsov, S.Visser
Pitchfork-Hopf bifurcations in 1D neural field models with transmission de-
lays, Physica D 297(2015) 88-101

[8] O. Sporns and G. Tononi, Classes of Network Connectivity and Dynamics
Complexity 7(2002), 28 38.

[9] R. L. Beurle, Properties of a mass of cells capable of regenerating pulses,
Philosophical Transactions of the Royal Society London B, 240:5594, 1956

[10] J. S. Griffith, A field theory of neural nets: I: Derivation of field equations,
Bulletin of Mathematical Biophysics, 25:111120, 1963.

[11] J. S. Griffith, A field theory of neural nets: II: Properties of field equations,
Bulletin of Mathematical Biophysics, 27:187195, 1965.

[12] H.R. Wilson and J.D. Cowan, Excitatory and inhibitory interactions in
localized populations of model neurons, Biophysical Journal, 12:124, 1972.

[13] H.R. Wilson and J.D. Cowan, A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue , Kybernetik, 13:5580,
1973.

52

53 Bibliography

[14] S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sens-
ing, Springer, New York, Heidelberg, Dordrecht, London, 2013.

[15] J. Romberg, Compressive Sensing by Random Convolution, SIAM J. Imag-
ing Sciences, Vol. 2, No. 4, pp. 1098-1128

[16] D. Baron, S. Sarvotham and R.G. Baraniuk, Bayesian Compressive Sensing
Via Belief Propagation, IEEE Transactions on Signal Processing, Vol. 58
No. 1, January 2010

[17] A. Rudi, R. Camoriano, L. Rosasco Less is More: Nyström Computational
Regularization, CoRR, Vol. 1507.04717, 2015

[18] H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Prob-
lems, Springer, Berlin, 1996

[19] R. Kress Linear Integral Equations, Springer, Berlin, 1989

[20] G. Nakamura and R. Potthast, Inverse Modeling, IOP Publishing, 2015,
Chapter 7

[21] G.H. Golub and C.F. van Loan, Matrix Computations, The Johns Hopkins
University Press, Fourth Edition, 2013, p.87

Appendix A

Reconstruction for the
Complexity, Entropy and
Integration kernel

54

55

Figure A.1: Reconstructed kernels for the Complexity kernel. The left column
corresponds to subsampling and the right column to Tikhonov regularization.
The top figure is for u(x, 0) = 0.05, the middle figure is for u(x, 0) = 0.05x and

the bottom figure is for u(x, 0) = sin

(
2

π

)
.

56

Figure A.2: Reconstructed kernels for the Entropy kernel. The left column
corresponds to subsampling and the right column to Tikhonov regularization.
The top figure is for u(x, 0) = 0.05, the middle figure is for u(x, 0) = 0.05x and

the bottom figure is for u(x, 0) = sin

(
2

π

)
.

57

Figure A.3: Reconstructed kernels for the Integration kernel. The left column
corresponds to subsampling and the right column to Tikhonov regularization.
The top figure is for u(x, 0) = 0.05, the middle figure is for u(x, 0) = 0.05x and

the bottom figure is for u(x, 0) = sin

(
2

π

)
.

	Introduction
	Introduction
	Mathematical description of the inverse problem
	Forward and inverse problem

	Mathematical framework
	Construction of solutions
	Ill-posedness of the problem

	Solution procedure
	Solution techniques
	Parameter optimization
	Subsampling
	Combining data
	Localization

	Validation
	Error
	Condition number

	Application to the Neural Field Equation
	Summary
	Sine wave with order parameter dynamics
	Tikhonov regularization
	Influence of the parameters and

	Traveling pulse
	Tikhonov regularization
	Subsampling

	XOR gate
	Two-dimensional pulse with a prescribed kernel
	Combining sequences
	Numerical accuracy of the Reduced Row Echelon Form algorithm

	Mexican hat
	Other kernels

	Conclusion and outlook
	Conclusion
	Outlook

	Reconstruction for the Complexity, Entropy and Integration kernel

