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ABSTRACT

Abstract
Production standards nowadays are continuously increasing. Therefore there is a call for thorough
understanding of production processes and new methods of process control. One of these new
methods of process control is by making use of a model based control scheme.

The goal of this work is to build a detailed, accurate and fast model of a bending process, which can
be used for model-based control.

The bending process of interest is the plastic deformation of a 3 mm steel flap to an angle of 50◦. This
flap is part of a demonstrator product especially designed for the MEGaFiT (Manufacturing Error-free
Goods at First Time) project in which the University of Twente en Philips cooperate closely.

Finite Element (FE) modeling is used to model the bending process. The output of the FE-model is
a force curve similar to the force curve as measured in the bending process.

Proper Orthogonal Decomposition (POD) is used to reduce the result space from a series of FE
analysis. Using a Radial Basis Function (RBF) a meta model is fit through this reduced result space.

With an average wall time of 0.03 s, the build PODRBF-model is fast enough to be used in an inverse
analysis on which a model based control scheme can be designed. The PODRBF-model is detailed
and accurate enough to estimate 3 parameters with 10 % accuracy.

Keywords: PROPER ORTHOGONAL DECOMPOSITION, RADIAL BASIS FUNCTIONS, INVERSE ANALYSIS,
PARAMETER ESTIMATION
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NOMENCLATURE

Nomenclature
A Cross-sectional area [mm2]

Ajm Amplitude scalar of force curve m corresponding to j-th POD direction

E Young’s modulus [MPa]

F (tn) Force curve discretized in N time steps

L Length [mm]

M Number of force curves in snapshots matrix

N Number of time steps in snapshot matrix

Nϕ Number of POD directions included in the truncated POD basis

T Period of the punch motion [s]

Φ̄ Truncated POD basis

Ā Truncated amplitude matrix

Φ POD basis [Φnj ]

ϕj Vector containing the j-th POD direction

δpunch Final punch depth [mm]

ε̇ Strain rate [1/s]

γ Spring constant [N/mm]

Âj Approximated amplitude scalar corresponding to the j-th POD direction

F̂ Vector containing an approximated force curve

â Vector collecting the approximated amplitude scalars Âj

λ Eigenvalue

A Amplitude matrix [Ajm]

F Snapshot matrix [Fnm]

Fm Vector containing force curve m

aj Amplitude vector corresponding to the j-th POD direction

am Vector containing the amplitudes corresponding to force curve m

v Eigenvector

z, zm, zp Point in parameter space ZD, indexed with m for the initial DOE and indexed with p for
the validation set

ψ Radial basis function in amplitude approximation

σy Yield stress [MPa]

tn Time at point n [s]

w Weight scalar in amplitude approximation
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DOE Design Of Experiments
FE(M) Finite Element (Method)
LHS Latin Hypercube Sample
POD Proper Orthogonal Decomposition
RBF Radial Basis Function
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1 INTRODUCTION

1 Introduction
Ever increasing production standards demand for advanced methods of process control. Unfortu-
nately, variations in process parameters are inevitable and, in the worst case, unmeasurable. These
variations can have major influence on the outcome of the final product. Increasing production stan-
dards, such as decreasing tolerances and lower scrap rates, therefore call for thorough understanding
of production processes and new methods of process control. One of these new methods of process
control, is by making use of a model based control scheme.

1.1 This work
In this work the possibility of using model based control in a metal forming process is investigated.
The work is done in contribution to the MEGaFiT (Manufacturing Error-free Goods at First Time)
project in which the University of Twente and Philips cooperate closely. Within the MEGaFiT project
a demonstrator product is designed to study the feasibility of inline process control. The production
step of interest is a bending process in which a force curve is measured. Finite Element (FE) analysis
will be used to model this production step. The force curves from the finite element analyses are
used to gain insight into the influence of (un)measurable parameters. However, as the used FE-
model generally takes 1000 seconds to generate a force curve this model is too slow to be used in a
control scheme. The 10 most influential parameters are therefore used to build a new, faster model
to approximate the force curve. The approximation is based on a Proper Orthogonal Decomposition
(POD) combined with Radial Basis Functions (RBF). This PODRBF-model can be used in an inverse
analysis on which a control scheme can be based.

The goal of this work is to build a detailed, accurate and fast model of the bending stage, which can
be used for model-based control.

1.2 The demonstrator product

Figure 1.1: Top and side view of the demon-
strator product.

A top and side view of the demonstrator product as de-
signed for the MEGaFiT project can be found in Figure 1.1.
The product is specially designed to study the feasibility of
inline process control, therefore there are no specified re-
quirements. The three flaps are bend to an angle of 50◦.
During this bending step a force curve is measured, as
can be found in Figure 1.2a. The three force curves mea-
sured upon bending the three flaps differ from flap to flap,
as well as per product.

In Figure 1.2b the angle measurement per product of the
right most flap can be found. The angle measurement is
done after the product obtains its final geometry. As one
can see the angles display high frequent variation which is
difficult to control with direct feedback [7]. The angle mea-
surements are therfore not suitable to be used in a control
algorithm. In this work it is studied if the force curves can
be used instead.

Boukje de Gooijer 5
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Figure 1.2: Force curves and angles from 176 demonstrator products as measured in the test setup.

1.3 Outline of this work

zm

FEM

POD

RBF

e(z)

min e(z)

Fexp

z

FFEM(zm)

FFEM(zm) ≈
Nϕ∑
j=1

ϕj ·Ajm

FPODRBF(z) =
Nϕ∑
j=1

ϕj · Âj(z)

e(z) = e(Fexp − FPODRBF(z))

Figure 1.3: Flow diagram to present
outline of this work.

The production process of the demonstrator product is
described in section 2. How the bending step of in this
production process is modeled using finite elements
is described in section 3. The main output of the FE-
model is a force curve similar to the one as presented
in Figure 1.2a.

In Figure 1.3 the further outline of this work is pre-
sented. In section 4 it is described how the FE-model
is used to do a parameter study. The parameter study
is done to find the most influential parameters. By
comparing the force curves from the FE-model with
the force curves as measured in the test setup the 10
most influential parameters are chosen. Using these
10 most influential parameters a parameter space is
defined in which an initial design of experiments is
chosen. The sets of input parameters in the initial de-
sign of experiments (zm) are used as input for a new
series of finite element simulations.

The force curves from this new series of FE-analyses
(FFEM(zm)) are used as input in a Proper Orthogonal
Decomposition (POD). Section 5.1 describes how the
force curves are approximated using POD. In section
5.2 it is presented how Radial Basis Function (RBF)
are used to go from a discrete input (zm) to a con-
tinuous one (z). From this a force curve based on any
combination of input parameters (FPODRBF(z)) can be
approximated in a fast way.

Combining this fast approximation with experimental
results (Fexp) is the key to an inverse analysis (sec-
tion 6). In this inverse analysis an error function (e(z))
is minimized to estimate the combination of input pa-
rameters (z). In section 6.3 the results of a parameter
estimation are presented.

6 Boukje de Gooijer



2 THE PRODUCTION PROCESS

2 The production process
The production process of the demonstrator product is divided in four different modules. Figure 2.1
shows a picture of the production line. The product moves in one long strip through four modules
from left to right in the picture. The production speed can range from 12 rpm up to 60 rpm and is the
same in each module. In this work the focus is on production with 12 rpm. From the left to the right in
Figure 2.1 the modules are Cutting, Deep-Drawing, Coining and lastly Bending. The possibilities in
using model-based control are investigated for the bending module. Therefore this section elaborates
specifically on that module.

Figure 2.1: Test setup for production of the demonstrator product as used in the MEGaFit project.

2.1 The bending module
The bending module consists of six production steps. A cross-sectional view of the bending module
can be found in Figure 2.3. The corresponding demonstrator product in each step can be found in
Figure 2.4.

The first step is the entry of the product in the module. In the second step (2.4a, Detail A in Figure
2.3) the three so-called flaps are cut. The rightmost flap is in longitudinal direction, clockwise the next
flap is in lateral direction and the last flap is under an angle of 135◦ with both other flaps.

Figure 2.2: Picture of the flap as taken
in the test setup (Point D in Figure 2.3).

After cutting, the flaps are bend to an angle of 50◦ (2.4b, Detail
B in Figure 2.3). During this step the bending force of all three
flaps is measured. An example of the measured force curves
can be found in Figure 1.2a.

After bending the flaps, the flaps are bent back as desired (2.4c,
Detail C in Figure 2.3). The extend to which the flaps are bend
back can be regulated per product and per flap.

In the last step of the module (2.4d, Point D in Figure 2.3) a
picture of the flap in longitudinal direction is captured. From the
picture the angle can be calculated with an accuracy of ±0.1◦.
As processing the image takes some time the information on
the final angle of productN is only available when productN+2
or even N + 3 is being produced.

Boukje de Gooijer 7
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EE

A B C

E-E

SCALE 1 : 2

D
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SCALE 1 : 1

Figure 2.3: Cross-secional view of the bending module with close-ups of the different production steps.

. (a) Cutting (b) Bending (c) Back bending (d) Angle measurement

. (Detail A) (Detail B) (Detail C) (Point D)
Figure 2.4: Demonstrator product in the bending module at different production steps.

8 Boukje de Gooijer
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Figure 2.5: Cross-sectional view of the
bending step with most important parts in-
volved.

2.2 The bending step
As the force curve is measured in Detail B
in Figure 2.3, this section elaborates on that
bending step specifically. The most impor-
tant parts involved in the bending step are
denoted in Figure 2.5. All parts above the
product belong to the upper part of the mod-
ule, whereas all the parts below the product
belong to the lower part of the module.

The upper part of the module is connected
to a Bruderer stamping press. The move-
ment induces by the stamping press is de-
noted with Crank drive in Figure 2.5. The
entire upper part moves downwards until the
blank holder clamps the product. Thereafter
the blank holder guides the further downward
movement of the punch. The movement is
characterized by a Crank curve as described
in more detail in section 3.3. Above the punch
a force sensor is placed. This force sensor
does not measure negative forces as can be
seen clearly in Figure 1.2a.

The lower part of the module is fixed, except
for the die which is connected to a gas spring.
The punch and die together bend the flaps in
the product to an angle of 50◦.
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3 MODELING THE BENDING STEP

3 Modeling the bending step
Probably the hardest part in any finite element analysis is representing the real world in a satisfying
way. In this section it is described how the bending step as presented in section 2.2 is modeled using
finite elements.

The more elaborated a model becomes, the more expensive. By calling a model expensive one
means that it costs a lot of computational power or time to find a solution. The objective is to model
the bending step in the cheapest way without compromising too much on the behavior as seen in
reality.

A compromise in modeling the real world is already made by focusing only on the third step of the
bending module instead of on the total production process. One can imagine that previous production
steps can have major influence on the behavior of the product in the bending step. For example deep-
drawing can have major influence on the material properties in different directions. However, to lower
the computational costs the historical information of the process is completely neglected.

3.1 Software
The bending step is modeled using the FE software MSC Marc 2013.1. A preprocessor called Mentat
is used to generate the Marc-input files (.dat). To manage the input and output for the finite element
analysis MathWorks’ MATLAB is used. In MATLAB the different input files (.proc) for the preprocessor
are generated. The output file generated by Marc (.sts, .t16) are handled in MATLAB as well. The
informational flow between the different programs can be found in Figure 3.1. More information on
the settings used in Marc Mentat can be found in Appendix A.

MathWorks
MATLAB

MSC Marc
Mentat MSC Marc

.proc .dat

.sts, .t16

Figure 3.1: Information flow between different programs.

3.2 Geometry
A snapshot of the FE-model with several indicated ‘parts’ can be found in Figure 3.2. The following
parts can distinguished:

• flap,

• punch,

• die,

• spring 1 & spring 2,

• crank drive (H(t)),
• blank holder,

• fixed die.

The most important part is the flap. The flap is modeled with 3000 fully integrated bilinear rectangular
elements. In the remainder of this work flap and sheet are used interchangeably. The mesh of the
flap is finest around the bending area. To decrease numerical noise, no mesh-refinements are done.
The material behavior of the flap is modeled using a strain rate dependent material model. The strain
rate sensitivity is modeled using a power law as described more elaborately in section 3.4.

Both the punch and the die are modeled with fully integrated bilinear triangular elements, 1082 and
266 elements respectively. To reduce computational time only the lower part of the punch and the
upper part of the die are modeled. To take into account the elasticity of the part of tooling which is cut
off, the punch and die are both connected to a spring. The top of the punch is connected to spring 1,

10 Boukje de Gooijer



3 MODELING THE BENDING STEP

punch

die

flap

fixed die

g

blankholder

H(t)

gas spring 2  

gas spring 1

Figure 3.2: Two-dimensional model in Mentat.

whereas bottom of the die is connected to spring 2. The spring constant (γ) for both springs can be
calculated as follows.

γ = AE

L
(3.1)

Herein A is the cross-sectional area of the replaced part, E the Young’s modulus of the material and
L the length of the replaced part.

The punch movement is described by a Crank curve (H(t)). How this movement is implemented in
the FE-model is described in section 3.3.

To reduce computational time the blankholder and fixed die are modeled as rigid bodies. These rigid
bodies have no elasticity, and thus cannot deform. On the other hand, the friction between a rigid
body and a deformable body is modeled. Note that the geometry of the fixed die in the FE-model
differs a lot from the geometry as in Figure 2.2. When building the model it was encountered that the
initial contact between a node of the punch with the fixed die gave large peaks in the y-component
of the contact force. To smooth out these numerical errors the fixed die is modeled with a fillet with
large radius instead of a 90◦ angle.

Boukje de Gooijer 11



3 MODELING THE BENDING STEP

3.3 Motion of the punch
The motion of the punch is prescribed at the upper node of spring 1 (see Figure 3.2). The travel
distance of the punch from its initial position (H(t) in mm) is described by a Crank curve. To set the
desired punch depth, the final punch depth (δpunch) is subtracted from the travel distance H(t).

H(α) = KR ·

[
1− cos(α) + 1−

√
1− λ2 sin2(α)

λ

]
− δpunch (3.2)

with K = 0.6035 a ratio between the two main levers, R the eccentric radius (31.45 mm), α the Crank
angle in radians and λ = 0.0850 a ratio between the length of the connecting rod and the eccentric
radius as provided by Bruderer, the manufacturer of the stamping press.

The travel distance as a function of the Crank angle is rewritten to a function of time. To align the
curves at the deepest point on t = 0 a shift in Crank angle ∆α is introduced.

H(t) = KR ·

1− cos
(

2πt
T
−∆α

)
+

1−
√

1− λ2 sin2 ( 2πt
T −∆α

)
λ

− δpunch (3.3)

with T the period of the punch motion. The period for a production speed of 12 rpm is 5 s. The
resulting punch movement for several punch depths is plotted in Figure 3.3. Note the difference in
initial time of contact (t0) due to the different final punch depths.

t0 .

t
-0.3 -0.2 -0.1 0 0.1

H
(t
)

-1.5

-1

-0.5

0

δpunch = 1.5
δpunch = 1.55
δpunch = 1.6

Figure 3.3: Crank curve for different punch depths (δpunch) and the influence on time of initial contact (t0).

3.4 Material model
The material of the product and thus the flap is AISI420 steel. To model the bending process isotropic
material behavior is assumed. This means that the material is assumed to react the same in different
directions. As a result the FE-model can be compared to the measured force curves from the test
setup of all three flaps.

The flap is deformed plastically. To determine if plastic deformation occurs the Von Mises yield
criterion is used.

σy =
√

1
2 [(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2

12 + σ2
23 + σ2

31)] (3.4)

The plastic behavior of the material is modeled using experimental data. The strain rate sensitivity
of the material is based on extrapolated data curves [3]. The extrapolated yield-curve for zero strain
rate (ε̇pextra = 0) can be found in Figure 3.4. To model the strain rate dependency a so-called power
law is used. This yield-curve at zero strain rate σy(ε | ε̇ = 0) is multiplied with an exponential function.

σy(ε, ε̇) = σy(ε | ε̇ = 0) ·
(

1 +
(

ε̇

10c1

)c2
)

(3.5)

Herein ε̇ is the strain rate, and c1 and c2 are material constants.
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3 MODELING THE BENDING STEP

In Figure 3.6 snapshots of the FE-model at various moments in time are displayed. The colors
represent the equivalent plastic strain rates. The maximum equivalent strain (εpeq) and the maximum
equivalent strain rate (ε̇peq) reached in the FE-model using nominal settings are slightly over 0.5 and
5/s respectively. The maximum strain rate reached in the experiments (ε̇pexp) is 0.2/s. The values for
c1 and c2 used in modeling the bending step are thus strongly extrapolated.

ε
p

eq [-]
0 0.1 0.2 0.3 0.4 0.5

σ
y
[M

P
a]

300

600

900

1200

ε̇
p

extra = 0
ε̇
p

exp = 0.02

ε̇
p

exp = 0.04

ε̇
p

extra = 0.1
ε̇
p

exp = 0.2

ε̇
p

extra = 1
ε̇
p

extra = 5
ε̇
p

extra = 10

Figure 3.4: Equivalent plastic strain versus the yield stress for experimental data (ε̇p
exp) and extrapolated data

(ε̇p
extra). Material constants used in the extrapolation are c1 = 1.63 and c2 = 0.44.
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3 MODELING THE BENDING STEP

3.5 Output of the FE-model
Among other things the output file of the FE-model contains the force each contact body experiences
over time as well as the positions of all nodes. MATLAB is used to store both the force curve of
interest and the final angle of each simulation.

Force curve
Only the y-component of the force as experienced by the punch is used for further analysis. The
force curve from the FE model, as plotted in Figure 3.5, contains a few characteristics.

At t0 the punch makes its initial contact with the flap. This initial position of the punch is displayed in
Figure 3.6a. Depending on the final punch depth (δpunch) the time at which this initial contact takes
place can differ (see Figure 3.3). From t0 to t1 the flap is bend without any restrictions, this is called
the free bending stage and is displayed in Figure 3.6b.

At t1 there is an abrupt change in slope because the contact area starts to move. This change in
contact area can be seen clearly when comparing Figure 3.6b and Figure 3.6c.

At t2 the flap makes contact with the die as displayed in Figure 3.6d. This again causes an abrupt
change in slope. At t = 0 the punch reaches is maximum depth. Between t2 and t = 0 the flap is
flattened. Within this flattening stage the punch experiences its maximum force at t3. The FE-model
at maximum force is displayed in Figure 3.6e. The maximum force is not reached when the punch
reaches its deepest point due to the strain rate sensitivity of the material.

After the punch reaches its deepest point it starts to move upward. Due to a phenomena called
springback the flap moves a bit upward as well. The deformation of the flap after springback can be
found in Figure 3.6f.
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-0.3 -0.2 0 0.1
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ce
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20

40
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80

100

120
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t1 t2 t3

Figure 3.5: Force curve with different characteristics.

Final angle
The calculation of the angle of the flap is based on the difference between the initial and final position
of two nodes. The nodes on which the calculation is based are taken sufficiently far away from the
bending area. A closeup of flap and the used nodes can be found in the Figure A.1 in Appendix A.
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3 MODELING THE BENDING STEP

(a) Initial contact (t0) (b) Free bending (t0 to t1)

(c) Start shift in contact area (t1) (d) Initial contact die (t2)

(e) Fmax is reached (t3) (f) After springback
Figure 3.6: Snapshots of finite element analysis at different times. Color represents the equivalent plastic strain
rate.
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4 Parameter study

In this section all parameters incorporated in the FE-model are described. By means of a 1-by-
1 variation the influence of these parameters is screened. Based on this screening the 10 most
influential parameters are presented in section 4.2. By examining the differences between the FE-
model and the experimental data the ranges for some parameters are reduced. Based on the reduced
ranges a parameter space is build and presented in section 4.3.

4.1 Parameters incorporated in the FE-model
For convenience the parameters are divided in four groups namely alignment, material, geometric
and numerical. All parameters incorporated in the FE-model and their used values can be found in
Appendix B Table B.1. All parameters are varied around a nominal setting.

Alignment parameters
The degrees of freedom with which each part is modeled are depicted in Figure 4.1. The left part of
the blank holder is chosen as a reference for the x-alignment. For the y-alignment the position of the
fixed die is chosen as a reference. The clearance between the punch and the blank holder is chosen
to be equal on both sides. The same holds for the clearance between the die and the fixed die. The
x-alignment of the lower part is defined as the difference between the center lines of the punch and
the die. An overview of the most important alignment parameters can be found in Table 4.1.

Note that by changing the sheet length and the sheet thickness the mesh of the flap changes as well.
The number of elements stays the same, however their width and height changes.

blankholder 

(right part)
blankholder 

(left part) punch

die

fixed die

(right part)

fixed die

(left part)

Figure 4.1: Degrees of freedom for different parts.

Table 4.1: Alignment parameters in FE-model with corresponding minimum, maximum and nominal values.
Alignment parameter min nominal max unit
clearance punch/blankholder (x-alignment) 0 0.0025 0.005 mm
clearance die/fixed die (x-alignment) 0 0.002 0.004 mm
x-alignment lower part (die & fixed die) -0.0195 0.0005 0.0205 mm
sheet length (x-alignment cutting) -0.2 0 0.01 mm
sheet thickness (y-alignment upper part) 0.29 0.3 0.31 mm
y-alignment die -0.02 0 0 mm
punch depth (δpunch, y-alignment punch) 1.5 1.56 1.6 mm
blankholder force (y-direction) -50 -300 -500 N
sheet width (z-direction) 1.4 1.5 1.6 mm
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Material parameters
As only the bottom of the punch is modeled, the removed elasticity is compensated with a spring.
The length of the punch head which is modeled (Lhead) is 5 mm. The total length of the punch (Ltot)
as found in the SolidWorks model is 47.3 mm. The Crank drive (Ldrive) is not directly connected to
the top of the punch, but 2 mm below (Figure 2.3). The length of the removed part of the punch can
therefore be written as:

L = Ltot − (Lhead + Ldrive) = 40.3 mm (4.1)

The cross-sectional area of the punch of 4.97 mm2 is derived from the SolidWorks model as well. With
a Young’s Modulus of E = 210× 103 GPa, the nominal spring stiffness (γ1) of the spring connected
to the punch (spring 1) can be calculated using equation 3.1. Hence, the nominal spring stiffness of
the punch is 25 898 N/mm.

The nominal spring stiffness (γ2) of the spring connected to the die (spring 2) is calculated in the
same manner. With Ltot = 24.3 mm, Lhead = 5 mm and Ldrive = 0 mm, the length of the removed part
of the die is L = 19.3 mm. With a Young’s Modulus of E = 210 GPa and a cross-sectional area of A =
4.97 mm2, the nominal spring stiffness of the die is calculated to be 54 078 N/mm.

An overview of the most important material parameters can be found in Table 4.2.

Table 4.2: Material parameters in FE-model with corresponding minimum, maximum and nominal values.
Material parameter min nominal max unit
Poisson ratio 0.29 0.3 0.31 -
Young’s modulus (E) 190 210 230 GPa
sheet yield stress premultiplier 0.9 1 1.1 -
c1 strain rate dependent model 1 1.63 5 -
c2 strain rate dependent model 0.1 0.44 1 -
spring stiffness punch (γ1) 1000 25898 35000 N/mm
spring stiffness die (γ2) 40000 54078 60000 N/mm
friction coefficient 0 0.13 0.2 -

Geometric parameters
The fillet radius of the fixed die which is used to smooth the numerical errors in the y-component of
the contact force, is varied between 10 and 50 mm.

Numerical parameters
The numerical parameters are only varied to find the right settings for the final model in MarcMentat.
More on modeling in MarcMentat can be found in Appendix A.

4.2 Variation 1-by-1
All parameters are varied 1-by-1 between their minimum and maximum value to find their influence
on the nominal force curve. In a screening all force curves are examined by eye judgment and the 10
most influential parameters are chosen and presented below. Figure 4.3 displays the forces curves
based on the 10 most influential parameters, all force curves based on less influential parameters
can be found in Appendix B Figure B.1. Based on a comparison with the force curves as measured
in the test setup the minimum and maximum values for some parameters are changed.

Clearance die/fixed die
In Figure 4.3a the clearance between the die and the fixed die is varied as input in the FE-model.
A smaller clearance gives rise to a larger maximum force, this particularly holds for the flattening
stage and the maximum force. This is due to the fact that the die is more free to move with large
clearances. The distance with respect to the axis of rotation of the flap becomes larger resulting in a
smaller force needed to bend the flap.
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X-alignment lower part
The x-alignment of the lower part has a large influence on the force curve, specifically in timing.
As can be seen in Figure 4.3b a negative misalignment causes the contact area to change earlier.
This is due to the fact that with large negative misalignment the punch is in contact with the fixed
die. The fixed die forces the punch to the negative x-direction initiating the change in contact area
earlier. Both a negative and positive misalignment cause a larger force in the flattening stage with
respect to the nominal force curve. The positive misalignment causes the distance with respect to
the axis of rotation of the flap to decrease. The negative misalignment has a larger impact on the
maximum force than the positive misalignment, due to the contact with the fixed die. The slope after
the maximum force is much steeper for negative misalignment, this is due to the friction with the fixed
die.

Sheet thickness
The force curves based on changing the sheet thickness in the FE-model are plotted in Figure 4.3c.
Generally a larger sheet thickness means a larger force. There is also a slight change in timing due
to the change in punch depth. By evaluating the force curves from the test setup (Figure 1.2a) the
choice is made to change the minimum and maximum values for the sheet thickness to 0.295 and
0.305 mm respectively.

Y-alignment die
The y-alignment of the die has a large influence, specially in timing as can be seen in Figure 4.3d.
A negative misalignment causes a different curvature at the start of the free bending stage as there
is no contact with the tip of the die initially. The time at which the contact area starts to change and
the time at which the contact with the die takes place both shift in positive direction with negative
misalignment. Generally a negative alignment means less force needed to bend the flap. In the
experimental force curves the peak in the force curve is generally seen wider, than in the FE-model.
Therefore the choice is made to set the minimum y-alignment of the die to −0.01 mm.

Punch depth
In Figure 4.3e the influence of changing the punch depth in the FE-model can be found. The most
important effect is the change in maximum force. The force curve based on minimum punch depth
is not found as such in the force curves from the test setup. Therefore the minimum punch depth is
increased to 1.52 mm in the parameter space. The opposite holds for the maximum punch depth, this
value is decreased to 1.58 mm. As the punch depth gets smaller, the product is processed in less
time. This can be seen clearly in the timing of the force curve. With smaller punch depths the initial
contact between the punch and the flap (t0) is later. The initial contact between the die and the flap
becomes later as well. With the minimum punch depth (1.5 mm) the flattening stage is not reached
at all, hence there is no contact with the die. A larger punch depth initiates the shift in contact area
earlier.

Punch depth [mm]
1.5 1.52 1.54 1.56 1.58 1.6

A
ng

le
 [

°]

49.5

50

50.5

51

51.5

52

Figure 4.2: Final angle versus punch depth from the FE-model.
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To check the numerical noise of the FE-model [8] the final angles corresponding to a wide range
of punch depths are plotted in Figure 4.2. The largest angle is established with a punch depth of
1.516 mm. As can be seen in Figure 4.3e this is between the two force curves based on the smallest
punch depths. This transition from an increasing final angle to a decreasing final angle has probably
to do with the initial contact of the die. For a punch depth of 1.524 mm this stage is entered, whereas
with the minimum punch depth this stage is not reached at all.

Sheet yield stress premultiplier
Generally a larger yield stress premultiplier means a larger force as can be seen in Figure 4.3f. Only
after t = 0 there is a slight change in timing.

C1 strain rate dependent model
In Figure 4.3g the force curves with varied material constant c1 can be found. A smaller c1 gives a
larger force in all stages. Looking at equation 3.5 a smaller c1 means the yield stress becomes higher.
Hence, there is more resistance against deformation. This corresponds with the earlier initiation of
the change in contact area for smaller c1. The maximum value for c1 is decreased to 3 after examining
various combinations of c1 and c2. Both material parameters are used in the parameter space as
their values are strongly extrapolated from the experimental results.

C2 strain rate dependent model
A smaller c2 gives a larger force in all stages as can be seen in Figure 4.3h. Again looking at equation
equation 3.5, a smaller c2 means a larger yield stress as

lim
c2→0

( ε̇

10c1

)c2

= 1.

With c2 = 0.1 the FEA did not converge. The minimum and maximum values of c2 are changed to 0.3
and 0.7 respectively.

Spring stiffness punch
The minimum value used as input for the spring stiffness of the punch is rather low. This is chosen as
such to take into account the possible compliance of the machinery. As can be seen in Figure 4.3i a
lower spring stiffness produces a wider, but lower peak. As can be seen in Figure 4.3i the force curve
based on the maximum spring stiffness (35 000 N/mm) does not differ much from the force curve
based on the nominal value for the spring stiffness (25 898 N/mm). Therefore the maximum value for
the spring stiffness of the punch is reduced to slightly above the nominal value (26 000 N/mm).

Friction coefficient
Initially the friction coefficients between the punch and blank holder and between the die and fixed
die, were varied separately from the friction coefficient between the tooling and the sheet and the
friction coefficient between the punch and the fixed die. All friction coefficients have roughly the
same influence as can be seen when comparing Figure 4.3j with Figure B.1k and B.1l in Appendix B.
As the influence on the force curve is the same for all friction coefficients the choice is made to vary
all friction coefficients at once in the parameter space.
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(a) VAR03 - clearance die/fixed die.
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(b) VAR05 - x-alignment lower part.
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(c) VAR10 - sheet thickness.
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(d) VAR11 - y-alignment die.
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(e) VAR12 - punch depth.
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(f) VAR22 - sheet yield stress premultiplier.
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(g) VAR23 - c1.
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(h) VAR24 - c2.
Figure 4.3: FEM curves for most influential parameters.
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(i) VAR27 - spring stiffness punch
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(j) VAR29 - friction coefficient
Figure 4.3: FEM curves for most influential parameters (cont.).

4.3 Parameter space
The 10 most influential parameters from the screening described in the previous section are used
to define a parameters space (ZD). In Table 4.3 an overview is given from the new minimum and
maximum values based on the screening. These minimum and maximum values are the minima and
maxima of the real interval (Z(d)) on which each parameter (z(d)) is defined. Hence, D = 10, and a
point in the parameter space can be defined as:

z = {z(1), z(2), · · · , z(10)} ∈ ZD (4.2)

Comparing Table B.1 and Table 4.3 one can see that by means of the screening the variables in the
FE-model are reduced from 23 to 10. Only the alignment and material parameters are used in the
parameter space.

Using a Latin Hypercube Sample (LHS), 4960 points in the parameter space were generated as an
initial Design Of Experiments (DOE). Each point from the initial DOE (zm) is used as input for a new
set of finite element analyses.

Table 4.3: Minimum and maximum values for selected variables used to define the parameter space.

Variable Description min(Z(d)) max(Z(d)) unit
Alignment

z(1) = VAR01 clearance die/fixed die 0 0.004 mm
z(2) = VAR05 x-alignment lower part (die & fixed die) -0.0195 0.0205 mm
z(3) = VAR10 sheet thickness 0.295 0.305 mm
z(4) = VAR11 y-alignment die -0.01 0 mm
z(5) = VAR12 punch depth 1.52 1.58 mm

Material
z(6) = VAR22 sheet yield stress premultiplier 0.9 1.1 -
z(7) = VAR23 c1 strain rate dependent model 1 3 -
z(8) = VAR24 c2 strain rate dependent model 0.3 0.7 -
z(9) = VAR27 spring stiffness punch 1000 26000 N/mm
z(10) = VAR29 friction coefficient 0 0.2 -
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5 Approximating the Finite Element Analyses
It takes approximately 15 minutes for the FE-model to generate a solution. As production speeds
range between 12 to 60 rpm the FE-model is too slow for use in a control algorithm. In this chapter
a fast and accurate substitute for the FE analysis is sought. The objective is to reduce the result
space using a Proper Orthoghonal Decomposition (section 5.1). Thereafter a meta model based on
the input parameters is fitted through the reduced result space using Radial Basis Functions (section
5.2).

5.1 Proper Orthogonal Decomposition
Proper Orthogonal Decomposition (POD) is a method which enables to build a low dimensional
approximation of a high dimensional problem. In this section POD is used to approximate the results
of a finite element analysis.

Each point in the parameter space from the initial DOE (zm) defined in section 4.3 is used as input
for a finite element analysis. In total 4960 simulations were done. Seven simulations failed, therefore
4953 complete force curves were generated.

The FE analyses were done using a variable time step. The average amount of steps needed was
290, whereas the minimum was 228 and the maximum was 552. To be able to compare the force
curves each curve is interpolated in exactly N = 200 time steps (F (tn)). Note that by interpolating
with less time steps than in the original simulation the force curve is slightly smoothed. The force
sensors in the production line as presented in section 2.2 do not measure negative forces. This can
be seen clearly in the experimental force curve in Figure 1.2a. This is incorporated in the approxima-
tion by setting all negative forces equal to 0. These force curves are called snapshots in POD jargon
[1]. The collection of M snapshots can be stored in a so-called snapshot matrix (F). So, F is an N
by M matrix containing the M = 4953 force curves generated using the FE-model, in N = 200 time
steps.

F = [Fnm] = [Fm(tn)] with n = 1..N
m = 1..M

(5.1)

=

F1(t1) · · · FM (t1)
...

. . .
...

F1(tN ) · · · FM (tN )


To explain the principle of proper orthogonal decomposition an example with N = 2 results per
snapshot and M = 3 snapshots is given. Consider 3 force curves at time step tn and tn+1. Normally
these would be represented as in Figure 5.1a. However, the snapshot matrix can be considered as
a set of M , N -dimensional vectors as well [1]. These three vectors are normalized and plotted in
Figure 5.1b.

Instead of looking at the force curves in the current basis, a new basis is sought as such that the pro-
jection of all force curves is maximum. This new basis is called the POD basis (Φ) and is, depending
on the dimensions of the snapshot matrix, an N ×M or N ×N matrix. In this work N < M and the
POD directions are just the eigenvectors (vj) of the matrix C = F · FT [2].

ϕj = vj with j = 1..N (5.2)

The total POD basis can be built by storing the POD directions in descending order of corresponding
eigenvalues [1]. The POD directions have size N × 1. Hence, by storing the N POD directions the
total POD basis has size N ×N .

Φ = [ϕ1 · · · ϕj · · · ϕN ] (5.3)

All force curves in the snapshot matrix can be obtained by multiplying the POD basis with a so-called
amplitude matrix A.

F = Φ ·A (5.4)
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(a) Snapshot of 3 force curves at tn and tn+1.
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(b) Force curves represented as M = 3, N = 2-dimensional vectors with corresponding
POD basis.

Figure 5.1: Two different representations of a force curve.

As the POD basis is orthogonal it holds that ΦT ·Φ = I and the amplitude matrix can be calculated
easily.

A = ΦT · F (5.5)

Force curve in the POD basis
A single force curve Fm can be obtained by multiplying the POD basis with a corresponding ampli-
tude vector am. This amplitude vector is the m-th column of the amplitude matrix and contains all
amplitudes corresponding to the j-th POD direction of force curve Fm. Note that this can also be
written as the multiplication of a POD direction (ϕj) with its corresponding amplitude scalar (Ajm)
and summing over the number of POD directions (N ).

Fm = Φ · am

=
N∑
j=1

ϕj ·Ajm
(5.6)

Coming back to the example with the three force curves at times tn and tn+1. The first POD direction
(ϕ1) is plotted in Figure 5.1b. One can see that the first POD direction is very similar to the three
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vectors representing the force curve. So, apparently not all POD directions are needed to represent
the force curves. By using the first POD direction only, one can already get a good representation
of a force curve. Hence, the force curves in the snapshot matrix can be approximated in a lower
dimension by truncating the POD basis and amplitude matrix. The number of POD directions in the
truncated POD basis (Nϕ) is not established.

F ≈ Φ̄ · Ā (5.7)

where,

Φ̄ = [Φnj ], Ā = [Ajm] with j = 1..Nϕ < N

m = 1..M
n = 1..N

In the approximation of the FE model the principle is the same, only N = 200 and M = 4953. The
number of POD directions needed in the truncated POD basis (Nϕ) to capture the behavior as seen
in Figure 4.3 is not known yet. In Figure 5.2 the first four normalized POD directions are plotted. One
can see that the first POD direction looks very much like the force curve in Figure 3.5.
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Figure 5.2: First 4 POD directions.

To find out how many POD directions are needed to represent the force curve the Root Mean Square
Error (RMSE) is introduced. The RMSE is a measure for the difference between the force curve from
the finite element analysis and the force curve in the truncated POD basis. The difference between
the two force curves is squared and averaged over the number of time steps (N ). Subsequently the
square root is taken. Note that an interpolated force curves from the FE model can be written directly
in the POD basis by combining equation 5.4 and 5.4.

FPOD = Φ̄ · Φ̄T · F (5.8)

And the RMSE can be defined as:

RMSE(zm, Nϕ) =

√√√√ 1
N

N∑
n=1

(
FFEM(tn, zm)− FPOD(tn, zm, Nϕ)

)2
(5.9)

where

FFEM(tn, zm) = Fm

FPOD(tn, zm, Nϕ) = Φ̄ · Φ̄T · Fm
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Note that every force curve can thus be split in a part within the POD basis and a part outside the
POD basis. Recall that in this work N < M and the original POD basis had size N ×N .

F (tn) =

Nϕ∑
j=1

Φnj · ΦTnj

 · F (tn) +

 N∑
j=Nϕ+1

Φnj · ΦTnj

 · F (tn) (5.10)

The error due to truncation of the POD basis can thus be defined as:

ē(tn) =

 N∑
j=Nϕ+1

Φnj · ΦTnj

 · F (tn) (5.11)

Which is the same as FFEM(tn) − FPOD(tn, Nϕ), the error in equation 5.9. For every point in the
parameter space zm the root mean square error is calculated using a different number of POD-
directions. The average root mean square error (RMSE) over all force curves M is calculated and
plotted in Figure 5.3.

RMSE(Nϕ) = 1
M

M∑
m=1

RMSE(zm, Nϕ)

Theoretically the average root mean square error due to truncation should be 0 when Nϕ = N . At
Nϕ ≈ 170 the average root mean square error drops to the computational error and could therefore
not be calculated.
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Figure 5.3: Average root mean squared error of the POD basis based on the initial DOE (zm) versus the number
of used POD directions (Nϕ).
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5.2 Radial Basis Function
With the truncated amplitude matrix the force curves can only be obtained for the set of input param-
eters (zm). So, now the goal is to approximate the force curve for any set of parameters z, instead of
one of the sets of input parameters.

F̂(z) = Φ̄ · â(z) (5.12)

Hence, a function should be found to predict the amplitude vector for any set of parameters â(z).
This is done by interpolating the set of known amplitudes for each POD direction throughout the
parameter space. Hence, each row of the amplitude matrix (aj) is interpolated in ZD. To do this,
Radial Basis Functions (RBF) are chosen as an interpolation method.

It is assumed that the amplitude scalar Âj(z) for every j-th POD direction can be written as the linear
combination of a weight (wk) and a radial basis function (ψ) [4]. This RBF is some function based of
the euclidean distance between the argument (z) and the known points in the parameter space (zk).

Âj(z) =
M∑
k=1

wk · ψ(zk − z) (5.13)

By evaluating the amplitude scalar Âj(z) on the known points in the parameter space (zm) the un-
known weights can be found.

Ajm = Âj(zm) (5.14)

Doing this for all points in the parameter space gives:

aj =
M∑
k=1

wk · ψ(zk − zm)

=
M∑
k=1

wk ·Ψkm = w ·Ψ

(5.15)

Leading to:
w = aj ·Ψ−1 (5.16)

Where w is the 1 ×M vector containing the weights for all M basis functions and Ψ is the matrix
containing the radial basis functions evaluated at all M points. Substituting equation 5.16 into equa-
tion 5.13 gives an expression for the amplitude scalar for the j-th POD direction for any set of input
parameters:

Âj(z) = aj ·Ψ−1 · ψ(zk − z) (5.17)

Now the function to predict the amplitude vector â(z) can be defined as the vector collecting the Nϕ
approximated amplitude scalars.

â(z) = Âj(z) with j = 1..Nϕ (5.18)

The above-mentioned generally holds for all types of radial basis functions. In this work the choice is
made to use a multiquadric radial basis function with scaling in each dimension.

ψ(zk − z) =
√
c2
k + ||θ ◦ (zk − z)||2 (5.19)

herein ck is a local shape parameter and θ a global scaling parameter [4]. The global scaling param-
eter θ scales the parameter space in each dimension as follows.

||θ ◦ (zk − z)|| =

√√√√ D∑
d=1

θd

(
z

(d)
k − z

(d)
k

)2
(5.20)
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The values for θ can either be fixed or optimized per dimension. When θ is chosen to be same in
each dimension a value of θd = D

√
M is suitable when using a normalized z. The optimization of θ is

done by means of a Leave One Out Cross-Validation (LOOCV). The cross-validation values εm can
be found easily. By minimizing the euclidean norm of εm the optimal values for θ can be found [4].

εm = Â
(−m)
j (zm)−Ajm = wk

(Ψ−1)kk
(5.21)

The local shape parameters ck can be fixed or scaled to their nearest neighbor. When ck is scaled to
its nearest neighbor the values for ck can be calculated as follows [4].

ck = mink 6=m ||θ ◦ (zk − zm)||
maxm cm

(5.22)

The influence of changing both parameters in the multiquadric radial basis function can be found in
Figure 5.4. As one can see in Figure 5.4a changing ck and θ has the opposite effect. Lowering ck
gives a steeper radial basis function, whereas increasing θ gives a steeper function. In Figure 5.4b
the result of changing ck and θ in an interpolation can be found. The red line is an interpolation with
ck constant, and high θ. This leads to a steep function in the area with few data points (z = −4..− 1).
The blue line is an interpolation with ck constant, and low θ. This gives large oscilations in area with
many data pionts (z = −1..0). In black the interpolation function with ck scaled to its nearest neighbor
is plotted. One can see that this interpolation fits the data points nicely in both the area with few data
points as the area with many data points.
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(a) Multiquadric radial basis function (ψ). On the left: varying the shape parameter (ck)
and fixed scaling (θ = 1) . On the right: fixed shape parameter (ck = 1) and varied scaling
(θ).
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(b) Interpolation using a radial basis function with: ck fixed and high θ (red), ck fixed and
low θ (blue) and ck scaled to the nearest neighbor (black).

Figure 5.4: Influence of different parameters in a multiquadric radial basis function.
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5.3 Force curves using a PODRBF approximation
Now a force curve based on any point in the parameter space z can be approximated using PODRBF
as follows.

FPODRBF(tn, z, Nϕ) = Φ̄ · â(z)

=
Nϕ∑
j=1

ϕj · Âj(z)
(5.23)

The radial basis functions are scaled to their nearest neighbor (ck) and fitted using a fixed scaling
of θ = 10

√
5000 ≈ 2.3 for the first 184 POD directions and an optimized scaling for the first 25 POD

directions. To test the quality of both PODRBF-models extra points in the parameter space are
generated. This is done by calculating the minimum Euclidean distance between a new LHS of 1000
points and the original DOE. The 100 points p with maximum Euclidean distance with respect to the
original DOE are chosen as a validation set.

So, to recapitulate there are 5 types of force curves:

• FFEM(t), a force curve from the FE-model.
• FFEM(tn), a force curve from the FE-model discretized in N time steps.
• FPOD(tn, Nϕ), a force curve from the FE-model projected in the truncated POD basis.
• FPODRBF(tn, Nϕ), a force curve approximated using radial basis functions with fixed scaling.
• FPODRBF(tn, Nϕ, θopt), a force curve approximated using radial basis function with optimized

scaling.

The force curves from the FE-model are based on points in the parameter space from either the
original DOE (zm) or the validation set (zp, with p = 1..100). The PODRBF approximation is defined
throughout the whole parameter space (ZD) and can therefore be based on any point (z).

In Figure 5.5a different types of force curves based on a point from the validation set are plotted
(zp). One can see that the force curve plotted directly from the FE-model shows peaks in the free
bending stage. This high frequent behavior is due to numerical noise. The force curve from the FE-
model is projected in a truncated POD basis with Nϕ = 5. With this few POD directions the sudden
change in slope initiated by the change in contact area (see Figure 3.5) is captured poorly. The
PODRBF approximation with fixed scaling and Nϕ = 184 overestimates the force curve, specially
around the maximum force. However, the approximation does capture the sudden change in slope.
An approximation with this many POD directions starts to show high frequent behavior. The PODRBF
approximation with optimized scaling and Nϕ = 5 is almost identical to the original force curve written
in the POD basis.
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(a) Force curve from the FE-model, written in the POD
basis and using a PODRBF approximation with fixed
scaling and optimized scaling.
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Figure 5.5: Different approximations of the force curve and their absolute error per time step.
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Table 5.1: Amplitudes corresponding to the first 5 POD directions of the force curves in Figure 5.5a.
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

APOD 267.43 -25.97 -64.76 -6.71 16.47
APODRBF 303.17 -40.04 -63.59 -5.25 3.18
APODRBF(θopt) 269.90 -27.98 -64.19 -5.57 14.18

In Figure 5.5b the absolute error between the interpolated curve from the FE-model and the different
approximations is plotted.

|E(tn)| =
∣∣∣FFEM(tn, zp)− Fapprox(tn, zp)

∣∣∣ (5.24)

The curve of the absolute error of the PODRBF approximation using optimized scaling (in red) is very
similar to the absolute error of the force curve written in the POD basis with Nϕ = 5 (in gray). Only
around t = 0 the absolute errors differ slightly. The absolute error of the PODRBF approximation with
fixed scaling looks completely different from the two other curves (in blue).

In Table 5.1 the amplitudes corresponding to the first 5 POD directions are given. As expected
from Figure 5.5 the amplitudes of the force curve projected in the POD basis and the PODRBF
approximation with optimized scaling are alike. The PODRBF approximation with fixed scaling show
large deviations from the correct amplitudes.

The average root mean square error between FFEM and FPODRBF over the total validation set is
calculated (see equation 5.9) and plotted in Figure 5.6.

RMSE(Nϕ) = 1
P

P∑
p=1

RMSE(zp, Nϕ) (5.25)

However, the RMSE between the force curve from the FE-model projected in the POD basis with Nϕ
POD-directions (FPOD) and the PODRBF approximation (FPODRBF) can be calculated as well.

RMSE(zp, Nϕ) =

√√√√ 1
N

N∑
n=1

(
FPOD(tn, zp, Nϕ)− FPODRBF(tn, zp, Nϕ)

)2
(5.26)

where

FPOD(tn, zp, Nϕ) = Φ̄ · Φ̄T · Fp
FPODRBF(tn, zp, Nϕ) = Φ̄ · â(zp)

Leading to:

RMSE(zp, Nϕ) =

√√√√ 1
N

N∑
n=1

(
Φ̄ ·
(
Φ̄T · Fp − â(zp)

))2
(5.27)

The latter RMSE gives an indication of how well the RBF predicts the amplitudes and thus the force
curve. Both RMSE’s are plotted in Figure 5.6. As one can see the RMSE between FFEM and
FPODRBF using fixed scaling (in blue) does not become smaller than 2 N. By increasing the num-
ber of used POD directions to 20, the error between FFEM and FPODRBF is the same as the error
between FPOD and FPODRBF. So, adding an extra POD direction does not add any accuracy to the
approximation.

By using a radial basis function with optimized scaling (in red) the RMSE between FFEM and FPODRBF
can be lowered to 0.9 N by including 25 POD directions. Note that there is still a difference of 0.1 N
between the two types of RMSE. Hence, adding extra POD directions would increase the accuracy of
the approximation. However, due to the large computational costs it takes to fit an extra approximated
amplitude scalar the choice was made to take this error of 0.9 N for granted. To give an interpretation
of the size of this error, the average maximum force is 91.5 N which can thus be predicted with an
error of 1 %.
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Figure 5.6: Average root mean squared error of the test set zp versus the number of used POD directions (Nϕ)
with fixed scaling of 10√5000 and optimized scaling for the first 25 POD directions. RMSE between FFEM and
FPODRBF is plotted with a circle, RMSE between FPOD with Nϕ POD-directions and FPODRBF is plotted with a
+-sign.

5.4 Variation 1-by-1 using a PODRBF approximation
Now all parameters are varied 1-by-1 in the PODRBF approximation with optimized scaling and
Nϕ = 25 to reproduce Figure 4.3. Note that in the remainder of this work those settings are used to
approximate a force curve. So,

FPODRBF(tn, z) = FPODRBF(tn, Nϕ = 25θopt)

is evaluated using nominal settings (z′) and varying one parameter (z(d)) at a time. Note that these
points (z) are not used to make the POD basis. For comparison the force curves from the FE-model
at minimum and maximum values are plotted as well.

When comparing all plots in Figure 5.7 it can be seen that generally the force curves from the
PODRBF-model are smoother than the curves from the FE-model. Abrupt changes in slope are
not captured by the PODRBF-model. For example the slope of the curve upon initial contact is in
most cases not as steep as in the FE-results. However, generally the characteristics in force curve
each parameter causes are captured adequately.

Clearance die/fixed die
In Figure 5.7a one can see that the influence of the clearance is slightly overestimated by the
PODRBF-model, the force curves lay above the curves of the FE-model.

X-alignment lower part
The alignment in x-direction of the lower part has a large influence on the timing of the force curve.
The PODRBF approximation captures this behavior reasonably good as can be seen in Figure 5.7b.
Remember that the POD basis was built without any negative forces (section 5.1). Strikingly the force
curves from the PODRBF-model do drop to negative values.

Sheet thickness
In Figure 5.7c one can see that the influence of the sheet thickness is slightly underestimated by the
PODRBF model. The shift in initial contact between punch and flap (t0) is captured only after the
initial contact took place.

Y-alignment die
In Figure 5.7d the force curves with varying y-alignment of the die are plotted. Except for the general
remarks on the PODRBF approximation, the influence of the y-alignment of the die is accurately
captured.
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Punch depth
Upon initial contact the PODRBF approximation falls below zero for small punch depths as can be
seen in Figure 5.7e. However all shifts in timing are precisely captured by the approximation.

Sheet yield stress premultiplier
In Figure 5.7f the force curves with varying sheet yield stress premultiplier are plotted. The peak in
the force curve is somewhat more flat for a yield stress multiplier smaller than 1.

C1 strain rate dependent model
The influence of the material constant c1 from the strain rate dependent model is captured pretty
good as can be seen in Figure 5.7g. Around the maximum force the influence of c1 is slightly under-
estimated.

C2 strain rate dependent model
As for c1, the influence of c2 is underestimated around the maximum force as well. The force curves
with varying c2 can be found in Figure 5.7h.

Spring stiffness punch
In Figure 5.7i the force curves with varying spring stiffness of the punch are plotted. The influence of
a low spring stiffness is overestimated, whereas the influence of a high spring stiffness is underesti-
mated. The force curve from the PODRBF-model for γ = 1000 is, in contrast to all other curves, less
smooth than the curve from the FE-model.

Friction coefficient
Figure 5.7j displays the force curves from various friction coefficients. Compared to Figure 4.3j the
influence of varying the friction coefficient seems to increased. However, note that in the PODRBF-
model all friction coefficients are changed at once.
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(a) z(1) - clearance die/fixed die
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(b) z(2) - x-alignment lower part.
Figure 5.7: Force curves from a POD-RBF approximation for most influential parameters. Minimum and maxi-
mum force curves from FEA are plotted using gray dashed lines.
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(d) z(4) - y-alignment die.
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(f) z(6) - sheet yield stress multiplier.
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Figure 5.7: Force curves from a POD-RBF approximation for most influential parameters. Minimum and maxi-
mum force curves from FEA are plotted using gray dashed lines (cont.).
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6 Inverse analysis
The goal of an inverse analysis is to estimate what input parameters could have caused a certain
output. To be acquainted with the input parameters can be of great value in a control algorithm.
For example, if a change in friction coefficient can be identified, tool wear can be detected. In this
section the PODRBF-model is used to identify the input parameters of an experimental force curve.
An experimental force curve Fexp(t) can be:

• FFEM(t), a force curve based on the validation set zp which is not included in the original DOE
(zm) on which the POD basis is build.

• Ftest(t), a force curve as measured in the test setup (see section 1.2).

To take into account the difference between the FE-model and the curves from the test setup the
implementation of weight function is proposed in section 6.1.

Looking at Figure 5.3 with Nϕ = 25 the force curves projected in the truncated POD basis have an
RMSE due to truncation of 0.3 N. To see if the projection to the POD basis has an influence on the
estimation of the input parameters two types of error functions are proposed in section 6.2. Lastly,
based on the proposed weight and error functions a parameter estimation is done in section 6.3.

6.1 Weight Function
The PODRBF-model is based on force curves from a two-dimensional FE-model. As the test data
comes from a process in the real world, any differences can be taken into account by implementing
a weight function. A three-dimensional FE-model is build to quantify the difference between a two-
dimensional and a three-dimensional problem.
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Figure 6.1: Force curves using nominal settings from the 2-dimensional model (FFEM,2D), a 3-dimensional
model constrained to 2 dimensions (FFEM,3D2D), a 3-dimensional model (FFEM,3D) and the PODRBF approxi-
mation (FPODRBF(tn)). Three experimental force curves from one randomly chosen product as measured in the
test setup (Ftest(tn)) are plotted for comparison.

The force curve from the three-dimensional FE-model (FFEM,3D), based on nominal settings, can be
found in Figure 6.1. Compared to the curve from the two-dimensional model (FFEM,2D) one can see
that the change in contact area is initiated earlier. This is due to the anticlastic bending of the flap.

A suitable weight function is 1 when the approximation is compatible with the real world, and close to 0
when the approximation differs from the real world. A weight function which fulfills these requirements
is the following.

w(tn) = 1−
∣∣∣∣ FFEM,3D(tn, z′)− FFEM,2D(tn, z′)
max(FFEM,3D(tn, z′)− FFEM,2D(tn, z′))

∣∣∣∣ (6.1)
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Notice that there is a difference in initial contact between the test data and the FE-model in Figure
6.1. To compensate this, a ramp from w(t1 = −0.32) = 0.1 to w(t8 = −0.3) = 1 is added manually to
the weight function. After t = 0.1 nothing of interest happens in the data from the test setup, therefore
the weight function is ramped down to w(tN = 0.28) = 0.1. To smooth the numerical noise of the
FE analysis in the weight function a moving average filter with a span of 5 is used. The final weight
function can be found in Figure 6.2.
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Figure 6.2: Weight function (w(tn)) to compensate the difference between the two- and three-dimensional
model. Original version is denoted with a blue dashed line, final smoothed version is denoted with a solid red
line.

6.2 Error Function
The difference between an experimental force curve and a force curve from the PODRBF approxima-
tion, is a measure for how adequately a certain set of input parameters z represent the experimental
force. In this section different error functions based on this difference are proposed.

e(z) = e(Fexp − FPODRBF(z))

The amplitude vector for any experimental force curve can be defined as the transposed truncated
POD basis times the interpolated force curve.

āexp =
N∑
n=1

Φ̄Tnj · Fexp(tn) (6.2)

Error function in time
When a force curve based on the validation set (FFEM(tn, zp)) is used as an experimental curve there
is no need to incorporate a weight function. A suitable error function is the root mean square error
(equation 5.9). Note that the error function consists of a constant part due to truncation.

et(z) = RMSE(z)

=

√√√√ 1
N

N∑
n=1

(
Fexp(tn)− Φ̄ · â(z)

)2

=

√√√√ 1
N

N∑
n=1

(
Φ̄ · (āexp − â(z)) + ē(tn)

)2

(6.3)

This error due to truncation is orthogonal to the truncated POD basis. Therefore it holds that:
N∑
n=1

Φ̄Tnj · ē(tn) = 0 (6.4)

When the proposed weight function (Figure 6.2) must be incorporated, a time dependent error func-
tion is needed. The absolute difference between the two force curves is a suitable option.

et(tn, z) = |Fexp(tn)− FPODRBF(tn, z)| (6.5)
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Now the weight can be incorporated by multiplying et(tn, z) with the weight function and taking the
mean.

et,w(z) = mean (w(tn) · e(tn, z)) (6.6)

Error function in POD basis
It is intuitive to define an error function in time. However, the error function can be defined directly
in the POD basis as well. Without the incorporation of a weight function, the error function in the
POD basis (eA) is defined as the root mean square error between the experimental amplitude vector
(equation 6.2) and the amplitude vector from the PODRBF approximation (equation 5.18).

eA(z) =

√√√√ 1
Nϕ

Nϕ∑
j=1

(āexp − â(z))2 (6.7)

By neglecting the error outside the truncated POD basis, both error functions relate directly by:

et(z) = eA(z)

√√√√ 1
N

N∑
n=1

Nϕ∑
j=1

(Φ ◦ Φ)nj (6.8)

The relation between the error function in time and the error function in the POD basis is plotted in
Figure 6.3. With Nϕ = 200 the root in becomes 1, in that case et(z) = eA(z). Therefore it follows
directly that et(z) ≤ eA(z). With Nϕ = 25 as used in this work, the error function in the POD basis
(eA) is approximately three times larger than the error function in time (et) .
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Figure 6.3: Relation between et and eA as described in equation 6.8.

The time dependent weight function can be transformed to a function of j by premultiplying with the
transpose of the truncated POD basis.

w(j) =
N∑
n=1

Φ̄Tnj · w(tn) (6.9)

The error function in the truncated POD basis is defined as the absolute difference between both
amplitude vectors.

eA(j, z) = |aexp − â(z)| (6.10)

Again, the weighted error function is defined as the mean of the weight function times the error
function.

eA,w(z) = mean (w(j) · e(j, z)) (6.11)
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6.3 Parameter estimation
The smallest evaluation of the error function is the most adequate representation of the set of input
parameters z. Hence, to do a parameter estimation the objective is to minimize the proposed error
functions.

min e(z) (6.12)

Estimating the validation set
By estimating the parameters of the known validation set (zp) the ability of the unweighted error
functions to predict the correct parameters can be examined. In Figure 6.4 the error percentages of
a series of parameter estimations based on time can be found. In Figure 6.5 the error percentages
from a parameter estimation based on the amplitude can be found. The number of parameters
to be identified is varied (D). The parameters which are estimated are chosen randomly during
the inverse analysis. Hence, only when all the parameters are estimated (D = 10) the series of
parameter estimations based on amplitude and time are the same. More on this series of parameter
estimations can be found in Appendix C.

When only one parameter is estimated (Z(D=1)) the other 9 parameters (z(d−D)
p ) are given to the

error function. With only one parameter to be estimated, D = 1, the average error is 9 % for both the
error function based on time and on amplitude.

For both error functions the average error percentages increase to around 20 % for an estimation
of all ten parameters. Generally there is very little difference in average error between both error
functions. The number of iterations and function evaluations needed is slightly lower for the error
function defined in the POD basis. However, the differences are marginally.

When 10 parameters are estimated the full parameter space (Z(D=10)) has to be investigated. Pa-
rameters which are found with an average error less than 10 % in the full parameter space are con-
sidered to be estimated accurately. As can be seen in Figure 6.4 and 6.5 this criteria holds for both
error functions for the following three parameters:

• punch depth z(5)

• spring stiffness punch z(9)

• friction coefficient z(10)
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Figure 6.4: Error percentages of a parameter estimation on the valdiation set (zp) based on time (et) using
different number of parameters to be estimated (D).
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Figure 6.5: Error percentages of a parameter estimation on the valdiation set (zp) based on amplitude (eA)
using different number of parameters to be estimated (D).
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Evaluation per parameter
The error function in all dimensions is checked for local minima. To do this a point from the validation
set is chosen randomly. Each parameter is varied separately from minimum to maximum and the
RMSE is evaluated based on both the amplitude and time. The results can be found in Figure 6.6.

As expected from the relation between the error function in time and in the POD basis (see equation
6.8) the RMSE defined in the POD basis is three times larger than the error in time.

The punch depth (Figure 6.6e), the spring stiffness of the punch (Figure 6.6i) and the friction coef-
ficient (Figure 6.6j) which are estimated accurately in the estimation the validation set, show large
variation in RMSE. The clearance between the die and fixed die (Figure 6.6a) and the x-alignment
of the lower part (Figure 6.6b) show large variation as well. The x-alignment of the lower part shows
a local minimum when |z(2)| approaches 1. This in agreement with the force curves varied 1-by-1
(Figure 4.3 and 5.7) where both the minimum and maximum with respect to the nominal value give
rise to a larger maximum force.
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(d) e(z(4)) - y-alignment die.
Figure 6.6: RMSE evaluated per dimension: et is denoted with a blue line, eA denoted with a purple line. In red,
both error function evaluated on zp with p = 32.
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(j) e(z(10)) - friction coefficient
Figure 6.6: RMSE evaluated per dimension: et is denoted with a blue line, eA denoted with a purple line. In red,
both error function evaluated on zp with p = 32 (cont.).
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Evaluation of a subspace
Another point of the validation set (zp) is chosen randomly for further investigation. In Figure 6.7
the force curve from the FE-model (FFEM) and the PODRBF approximation based on zp (FPODRBF)
are plotted. The RMSE in time (et(zp)) between the curve from the FE-model and the PODRBF
approximation based on zp is 0.7473 N.

The subspace spanned by the 3 parameters which are found to be estimated accurately is exam-
ined. The subspace spanned by the punch depth, the spring stiffness of the punch and the friction
coefficient (Z(5) × Z(9) × Z(10)) is discretized with 50 points in each dimension.

The RMSE based on time (et(z(5), z(9), z(10))) is evaluated throughout this parameter subspace. The
force curve based on the minimum RMSE found within this subspace (Finv) is plotted using the
PODRBF-model in Figure 6.7. As one can see, the force curves are very similar. When comparing
FFEM and Finv one can see a change in slope near the maximum force, probably due to initial contact
with the die. The force curve from the PODRBF-model (FPODRBF) does not show this sudden change
in slope.

The RMSE between the curve from the FE-model and the PODRBF approximation based on the
estimated parameters is 0.5698 N. This is lower than the RMSE between the force curve from the
FE-model and the PODRBF approximation based on zp.
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Figure 6.7: Force curves from the FE-model (FFEM) and the PODRBF approximation (FPODRBF) based on zp

with p = 92 are plotted in blue. Force curve based on the estimated values for z(5), z(9) and z(10) with minimum
RMSE in time (Finv) is plotted in red.

The RMSE in time evaluated on the minimum found in each dimension is plotted in Figure 6.8. The
contour plots do not show local minima. The RMSE on the minimum in Z(10) shows the largest
variation. As a result the found minimum values in that plane (z(5) and z(9)) denoted with a white
+-sign are the closest to the input parameters z(5)

p and z(9)
p , denoted with a red ∗-sign.
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Figure 6.8: Contour plot of RMSE based on time (et(z(5), z(9), z(10))). On the top: contour on found minimum
in each dimension min(Z(d)). On the bottom: contour on input parameter (z(d)

p ). The found minimum is denoted
with a white +-sign, the input parameters are denoted with a red ∗-sign.
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Inverse analysis of the test data
To do an inverse analysis on the test data the three force curve from one randomly chosen product
are examined. To overcome local minima 25 different initial positions are used to see if the solution
converges to the same parameter set. The parameter estimation is done with three error functions
based on time and one error function based on the amplitude (eA). The three error function based on
time used are:

• the error function without any weight (et, equation 6.3),
• the error function with weight (et,w, equation 6.6),
• an extra error function with a weight of 1 on all time steps (et,w=1).

Using a weight of one leads the mean of the absolute difference. This is different from taking the
root mean square error. This function is introduced to be able to compare the influence of the weight
function objectively.

The parameter set which resulted in the lowest evaluation of the error function is chosen as the
best fit. The estimated parameters based on the different error functions can be found in Table 6.9,
6.10 and 6.10. The force curves based on these estimated parameters can be found in Figure 6.9,
6.10 and 6.11 respectively. The force curve on which the parameter estimation is based is plotted
for comparison. Generally the behavior of the experimental force curves is well captured by the
PODRBF-model.

As expected the error function with weight function (et,w) generally gives the lowest error. The influ-
ence of using the weight function based on the difference between the two- and three-dimensional
FE-model (equation 6.6) can be examined when comparing the last second and third columns in the
table. Generally the results of introducing a weight of one (et,w=1) or the weight function (et,w) show
little differences.

The sheet thickness, sheet yield stress premultiplier, c1 and c2 should be the same within one prod-
uct. All other parameters can differ per flap. When comparing the tables with estimated parameters,
especially the strain rate dependent material constants (c1 and c2) differ a lot.

All the values for the spring stiffness found in the force curves from the test setup are much lower
than the nominal spring stiffness used. This is probably due to the compliance of the tooling.

When comparing the first and last column it can be seen that the error functions without weight, both
in time and in amplitude, found the same set of input parameters. The error in amplitude is less than
three times as large as the error in time, as expected from equation 6.8. This is probably due to the
truncation error in the time based error function. It can thus be concluded that the truncation error
has no influence on the parameter estimation. Note that on average the error function defined in the
POD basis needs the fewest iterations to find a solution.

In Figure 6.11 it can be seen that large negative x-alignments can be found in the inverse analysis as
well. The force curve from the test setup shows a larger negative x-alignment than can be captured
by the PODRBF-model.
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Table 6.1: Best fit from 25 initial positions in the parameter estimation of Ftest1.

z(d) et et,w=1 et,w eA

clearance die/fixed die 1.28× 10−3 1.12× 10−3 1.55× 10−3 1.28× 10−3 mm
x-alignment lower part -0.0136 -0.0136 -0.0143 -0.0136 mm
sheet thickness 0.305 0.303 0.297 0.305 mm
y-alignment die 0.000 -0.001 -0.001 0.000 mm
punch depth 1.53 1.53 1.53 1.53 mm
sheet yield stress premultiplier 0.9 1.0 1.0 0.9 -
c1 2.99 2.57 1.62 2.99 -
c2 0.30 0.35 0.49 0.30 -
spring stiffness punch 5246 5329 5183 5246 N/mm
friction coefficient 0.09 0.09 0.09 0.09 -
e(z) 1.519 0.985 0.753 3.240
average iterations needed 140 188 177 101
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Figure 6.9: Force curve from the test setup (Ftest1(tn)) and the force curves from the PODRBF-model based
on the estimated parameters from Table 6.1.
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Table 6.2: Best fit from 25 initial positions in the parameter estimation of Ftest2.

z(d) et et,w=1 et,w eA

clearance die/fixed die 3.22× 10−3 1.85× 10−3 1.11× 10−3 3.22× 10−3 mm
x-alignment lower part -0.0132 -0.051 -0.0045 -0.0132 mm
sheet thickness 0.296 0.298 0.300 0.296 mm
y-alignment die 0.000 -0.005 -0.005 0.000 mm
punch depth 1.58 1.57 1.57 1.58 mm
sheet yield stress premultiplier 1.1 1.0 1.1 1.1 -
c1 2.70 1.84 2.41 2.70 -
c2 0.43 0.52 0.60 0.43 -
spring stiffness punch 7252 4603 5814 7252 N/mm
friction coefficient 0.03 0.16 0.10 0.03 -
e(z) 1.461 1.011 0.768 3.309
average iterations needed 124 132 148 122

Time [s]
-0.3 -0.2 -0.1 0 0.1

F
or

ce
 Y

 [N
]

0

20

40

60

80

100

Figure 6.10: Force curve from the test setup (Ftest2(tn)) and the force curves from the PODRBF-model based
on the estimated parameters from Table 6.2.
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Table 6.3: Best fit from 25 initial positions in the parameter estimation of Ftest3.

z(d) et et,w=1 et,w eA

clearance die/fixed die 0.05× 10−3 0.33× 10−3 0.33× 10−3 0.05× 10−3 mm
x-alignment lower part -0.0194 -0.0192 -0.0193 -0.0194 mm
sheet thickness 0.295 0.297 0.296 0.295 mm
y-alignment die -0.009 -0.005 -0.005 -0.009 mm
punch depth 1.53 1.52 1.52 1.53 mm
sheet yield stress premultiplier 1.1 1.1 1.1 1.1 -
c1 1.20 1.42 1.50 1.20 -
c2 0.38 0.57 0.51 0.38 -
spring stiffness punch 5726 5329 5327 5726 N/mm
friction coefficient 0.10 0.11 0.11 0.10 -
e(z) 4.304 2.309 1.955 9.082
average iterations needed 94 107 100 76
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Figure 6.11: Force curve from the test setup (Ftest3(tn)) and the force curves from the PODRBF-model based
on the estimated parameters from Table 6.3.
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7 Conclusion
The goal of this work was to build a detailed, accurate and fast model of the bending stage, which
can be used for model-based control.

With an average wall time of 0.03 s with Nϕ = 25 the build PODRBF-model is fast enough to be
used in an inverse analysis. Both error functions defined in time and in the POD basis are used
successfully in a parameter estimation.

The PODRBF-model is detailed enough to estimate 3 parameters with 10 % accuracy. The parame-
ters which can be estimated are:

• the punch depth,
• the spring stiffness of the punch,
• and the friction coefficient.

Large negative x-alignments of the lower part can be identified as well.

A relation between the error function in time and in the POD basis was found. The functions can
be used interchangeably to estimate the process parameters. The error due to truncation has no
influence on the parameter estimation. An advantage of using the error function directly in the POD
basis is that the function evaluation is slightly faster. Especially for large number of iterations this can
significantly decrease the computational time needed.
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8 Discussion & recommendations
To improve the results of the inverse analysis a few improvements are suggested in this section.

8.1 Material model
The material constants used in the strain rate dependent material model (c1 and c2) should come out
the same, especially when the same experimental force curve is analyzed. However as can be seen
in Table 6.9, 6.10 and 6.10 the material constants show large variations. Maybe the used material
model (equation 3.5) is not correct.

The material of the demonstrator product is rolled to produce the coils used in the production process.
Therefore the assumption that the material is isotropic is not correct. As the flaps in the demonstrator
product are not aligned but positioned in different directions, this anisotropic behavior might have an
influence on the measured force curve and thus on the parameter estimation.

Only data with 12 rpm is examined in this work. However there is also test data available at a
production speed of 60 rpm. The influence of using higher production speeds is not investigated in
this work.

8.2 Parameter space
To obtain a more accurate PODRBF-model the parameter space should be enlarged. In Figure 6.11
it can be seen that the force curve from the test setup has a lower x-alignment than the minimum
x-alignment in the parameter space.

The addition of a weight function is suggested, to take into account the difference in initial contact.
However, this difference in initial contact could be captured by the PODRBF-model by increasing the
maximum punch depth in combination with a small spring constant. To the maximum punch depth
should therefore be increased.

The values of the initial DOE are based on a Latin hypercube sample. However, the intention was to
include a fractional factorial design with two-levels and a resolution IV as well. Due to a programming
mistake this fractional factorial design was not included in the parameter space. A fractional factorial
design will produce points that lay on the boundaries of the parameter space.

It is therefore suggested redefine the boundaries of the parameter space and to include a fractional
factorial design in the initial DOE.

8.3 POD basis
The POD basis can be improved as proposed by Chaterjee [2] by subtracting the mean of each
column. For the current POD basis it was found that this gives an RMSE improvement of 0.0237 N
over the total basis.

The influence of the number of time steps (N ) is not studied in this work. By increasing the number
of time steps, it might be possible to capture sudden changes in slope (see Figure 5.5a). However,
increasing the number of time steps will imply that the number of POD-direction in the truncated basis
(Nϕ) will also have to be increased.

The end time set to interpolate the force curves from the FE-model (tN = 0.28) should have been
chosen with more care. The force curves form the FE-model do show some unexplained behavior
after t = 0.1, therefore this end time was chosen. However, in the force curves from the test setup
nothing of interest happens after t = 0.1.

Based on the revised initial DOE and the improvements suggested in this section a new POD-basis
should be build.

8.4 Inverse analysis
As can be seen in Figure 5.6 fitting more amplitude scalars using RBF is still improving the accuracy
of the PODRBF-model. It is therefore suggested to find out if the RMSE with optimized scaling
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converges to a constant value, just as the PODRBF-model without optimized scaling did.

The relation between the number of POD directions in the truncated basis (Nϕ) and the number of
parameters that can be identified (D) is not studied. It can be of great interest if a POD direction
can be related directly to certain parameter and vice versa. For example in Figure 5.2 the second
POD direction (ϕ2) shows behavior as seen in the force curves with negative x-alignment. A good
measure for the influence of a specific parameter on a certain POD direction is the relative size of
each amplitude scalar.
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A Modeling in Marc Mentat
This appendix describes more elaborately how MSC Marc 2013.1 and its preprocessor Mentat are
used to model the bending process. The sections A.1 and A.2 describe the differences between the
two-dimensional and three-dimensional model respectively. Section A.3 describes how the contact
between different bodies is modeled. Lastly the numerical settings used in the analysis are given in
section A.4.

A.1 2D model
In the two-dimensional model a plane strain situation is assumed. For the sheet element type 11 is
used (Figure A.2a). These are rectangular plane strain elements which are fully integrated (Q4). This
means each element consists four nodes and the stiffness matrix is found using four-point Gaussian
integration. It is known that shear locking can occur when using these elements. To overcome
problems the mesh is refined around the bending area as can be seen in Figure A.1. The number of
elements used is 200 in x-direction (udiv) and 15 in y-direction (vdiv), so 3000 in total.

Figure A.1: Snapshot of the FE-model. The red dots denote the nodes on which the angle calculation is based.

For the punch and die element type 6 is used (Figure A.2b). These are triangular plane strain fully
integrated elements (CST). Each element consists of 3 nodes. To obtain the stiffness matrix a one
point integration at the centroid is used. To obtain the mass matrix a four-point Gaussian integration is
done. Within the elements bi-linear interpolation functions are used which results in a constant strain
throughout element. This results in poor shear behavior and locking near incompressible behavior.

All other contact bodies are modeled as rigid.

A.2 3D model
In the three-dimensional model all contact bodies except for the sheet are modeled as rigid. To model
the elasticity of the die and the punch the rigid bodies are connected to a spring.

For the sheet element type 7 is used. These are rectangular solid, sometimes called brick, ele-
ments. The elements are fully integrated using an eight-point Gaussian integration and consist of 8
nodes. Tri-linear interpolation is used within the element. As for the two-dimensional elements, also
in three-dimensions shear locking behavior can occur. The sheet is meshed with 150 elements in
x-direction (udiv), 12 elements y-direction (vdiv) and 10 elements in z-directions. This give a total
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(a) Element type 11 (b) Element type 6 (c) Element type 7
Figure A.2: Schematic representation of used elements with nodes (�) and integration points (+). [5]

of 18000 elements. Again the mesh in x-direction is concentrated around the bending area. The
three-dimensional model has large computational costs, the wall time is roughly 20 times as large for
3D when compared to 2D. Therefore it is chosen to used the least elements as possible. The number
of elements in x-direction is chosen as such that there is minimum penetration of the punch in the
sheet during free bending.

To obtain the weight function in section 6.1 the same number of elements is used in the sheet in the
two-dimensional and three-dimensional model (see Figure 6.1).

A.3 Contact modeling
To model the contact MarcMentat gives the choice between node-to-segment and segment-to-segment
contact [6]. When using segment-to-segment contact sticking of the sheet to the punch occurred fre-
quently due to a stress-based separation criterion. This was not possible to overcome by using
different numerical settings. Therefore the choice was made to use node-to-segment contact. The
optimization of the contact equations was set off, so-that generally the region with lower node num-
bering comes into contact with the region with higher node numbering. The sheet is meshed first
and has therefore the lowest node numbering. As the sheet has the finest mesh penetration of any
contact body with higher numbering is most likely to be detected. The contact detection distance
tolerance was left to the default of 1/20 of smallest edge of the surrounding rectangle set up in the
global coordinate system, resulting in 2.614 50× 10−4. To leave the geometry unchanged the choice
is made to use no stress free projection upon initial contact.

Once the two bodies are in contact they can either stick or slip. To determine if either sticking or
slipping occurs a shear bi-linear model is used. The slip threshold is the displacement below which
sticking is simulated. This is left to the default of 0.0025 times the average edge length of the finite
elements defining the deformable contact bodies, resulting in 1.574 81× 10−4. The choice is made
to use finite sliding. The separation of two nodes is based on nodal forces. The force to cause
separation is set to 1× 10−4.

A.4 Analysis
In the FE-analysis adaptive time stepping is used instead of using a fixed time stepping. When
using an adaptive time step this allows for cutbacks when the convergence tolerance is not met. The
minimum number of recycles is set to 0 and the maximum to 10. A full Newton-Raphson iterative
procedure is used to find a solution.

The Updated Lagrange approach for large strain is used. Marc automatically uses Cauchy (true)
stress and logarithmic strain with the Updated Lagrange formulation.

Spring back is an important behavior to model the final angle correctly. Therefore the plastic proce-
dure is chosen to be multiplicative, which means the deformation gradient is split into an elastic and
an plastic part.
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The convergence of the solution is tested based on the relative residuals or displacements. This
choice is made because relative residual force tolerance testing does not work in a stress-free motion.
And relative displacement tolerance testing does not work in case of sringback.

The relative force tolerance is set to 0.01. Thus,

||Fresidual||∞
||Freaction||∞

< 0.01 (A.1)

where ||F ||∞ indicates the component of F with the highest absolute value. In the node-to-segment
contact algorithm the node in contact is skipped in the procedure of calculating the procedure. The
contact force is however considered as candidate for the maximum reaction force [6].

The relative displacement tolerance is set to 0.01. Thus,

||δu||∞
||∆u||∞

< 0.01 (A.2)

where ∆u is the displacement increment vector and δu is the correction to the incremental displace-
ment vector. Disadvantage of this approach is that it results in at least one iteration [6].

52 Boukje de Gooijer



B PARAMETER STUDY (CONTINUED)

B Parameter study (continued)
B.1 All parameters and their values
In the table below an overview of all parameters with their minimum, maximum and nominal values
can be found.

Table B.1: Variables in FE-model and corresponding minimum, maximum and nominal values.

Variable Description min nominal max unit
Alignment

VAR01 left clearance punch/blankholder 0 0.0025 0.005 mm
VAR02 right clearance punch/blankholder - =VAR01 - mm
VAR03 left clearance die/fixed die 0 0.002 0.004 mm
VAR04 right clearance die/fixed die - =VAR03 - mm
VAR05 x-alignment lower part (die & fixed die) -0.0195 0.0005 0.0205 mm
VAR06 x-alignment cutting (sheet length) -0.2 0 0.01 mm
VAR10 sheet thickness (y-alignment upper part) 0.29 0.3 0.31 mm
VAR11 y-alignment die -0.02 0 0 mm
VAR12 punch depth (δpunch) 1.5 1.56 1.6 mm
VAR13 K ·R (Crank, punch movement) - 18.980075 - -
VAR14 ∆α (Crank, punch movement) - dependent - -
VAR15 λ (Crank, punch movement) - 0.085 - -
VAR16 T (period, 60/rpm) 1 5 5 1/s
VAR18 blank holder force -50 -300 -500 N
VAR19 sheet width 1.4 1.5 1.6 mm

Material
VAR20 sheet Poisson ratio 0.29 0.3 0.31 -
VAR21 sheet Young’s modulus 190 210 230 GPa
VAR22 sheet yield stress premultiplier 0.9 1 1.1 -
VAR23 c1 strain rate dependent model 1 1.63 5 -
VAR24 c2 strain rate dependent model 0.1 0.437667 1 -
VAR25 tooling Poisson ratio 0.29 0.3 0.31 -
VAR26 tooling Young’s modulus 200 210 220 GPa
VAR27 spring stiffness punch (γ1) 1000 25898 35000 N/mm
VAR28 spring stiffness die (γ2) 40000 54078 60000 N/mm
VAR29 friction coefficient punch/blankholder,

die/fixeddie
0 0.13 0.2 -

VAR30 friction coefficient tooling/sheet 0 0.12 0.2 -
VAR31 friction coefficient punch/fixeddie 0 0.13 0.2 -

Geometric
VAR40 fillet radii tooling - 0.01 mm
VAR41 right radius fixed die 10 20 50 mm
VAR42 fillet radius punch - 0.05 - mm

Numerical
VAR50 element class sheet - 4 - -
VAR51 element type sheet - 11 - -
VAR52 udiv cup (x-direction) - 40 - -
VAR53 udiv sheet (x-direction) - 2x80 - -
VAR54 vidv sheet (y-direction) - 15 - -
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B.2 Force curves for less influential parameters
The force curves based on varying the remaining parameters are presented in this section. Hence,
below one can find Figure 4.3 continued.

Some parameters seem to have a large influence in outcome of the force curve as well. The clear-
ance between the punch and the blank holder only has a large influence when it is 0. As this is not a
realistic case the parameter is left out of the parameter space. The period (T ) has a large influence
but is not incorporated in the parameter space due to the time dependency of the POD basis. The
different sheet widths have linear influence on the outcome of the force curve. This can be incorpo-
rated by premultiplying the entire force curve. Therefore there is no need in including this parameter
in the parameter space. As described in section 4.2 all the friction coefficients are set to the same
value in the parameter space. Hence, the friction coefficients between the tooling and the sheet and
between the punch and the fixed die are incorporated in the parameter space.
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(a) VAR01 - clearance punch/blankholder.
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(b) VAR06 - x-alignment cutting (sheet length).
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(c) VAR16 - period, scaled to T = 5 s.
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(d) VAR18 - blankholder force.
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(e) VAR19 - sheet width.
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(f) VAR20 - sheet Poisson ratio.
Figure B.1: FEM curves for less influential parameters.
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(g) VAR21 - sheet Young’s modulus.
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(h) VAR25 - tooling Poisson ratio.
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(i) VAR26 - tooling Young’s modulus.
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(j) VAR28 - spring stiffness die.
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(k) VAR30 - friction coefficient tooling/sheet.
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(l) VAR31 - friction coefficient punch/fixed die.
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(m) VAR41 - right radius fixed die.
Figure B.1: FEM curves for less influential parameters (cont.).

Boukje de Gooijer 55



C PARAMETER ESTIMATION

C Parameter estimation
Table C.1 summarizes the results of the parameter estimations based on the validation set. The
results are based on estimating the input parameters:

• For each point (zp) in the validation set: p = 1..100,
• The error function is based on time (et) and on amplitude (eA) without a weight function,
• The starting position is varied: [0 0.5 1],
• The number of parameters to be identified is varied: D = 1..10,
• Which parameter(s) to be identified d is chosen randomly.

From each starting position the best fit is chosen as the estimated parameter z(d) which resulted
in the lowest RMSE. The difference between each best fit and the input parameter z(d)

p is averaged
and presented in Table C.1. All parameters are normalized, therefore the values can be interpreted
as percentages. Note that the estimation with D = 1 is averaged over 10 estimations, whereas the
estimation with D = 10 is averaged over 100 estimations.

When using an error function in time to estimate one parameter, the average number of iterations
needed was 12.8 with 49.6 function evaluations. When 10 parameters were estimated an average of
147.8 iterations with 1794 function evaluations were needed.

When using an error function based on the amplitude to estimate one parameter, the average number
of iterations needed was 13 with 51 function evaluations. When 10 parameters were estimated an
average of 143 iterations with 1741 function evaluations were needed.
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Table C.1: Average error in parameter estimation based on zp.
D = 1 D = 2 D = 3 D = 4 D = 5

z(d) = t A t A t A t A t A

clearance
die/fixed die

0.10 0.20 0.24 0.19 0.18 0.29 0.24 0.33 0.25 0.28

x-alignment
lower part

0.31 0.17 0.06 0.14 0.09 0.12 0.16 0.21 0.19 0.12

sheet thickness 0.11 0.10 0.16 0.13 0.13 0.22 0.23 0.17 0.17 0.16
y-alignment die 0.04 0.08 0.10 0.10 0.11 0.16 0.22 0.19 0.25 0.22
punch depth 0.03 0.03 0.03 0.06 0.05 0.02 0.06 0.06 0.08 0.06
sheet yield
stress premulti-
plier

0.07 0.07 0.08 0.10 0.08 0.07 0.09 0.11 0.09 0.11

c1 0.08 0.11 0.09 0.06 0.09 0.13 0.15 0.16 0.17 0.15
c2 0.04 0.08 0.14 0.10 0.16 0.15 0.17 0.14 0.19 0.20
spring stiffness
punch

0.08 0.05 0.03 0.05 0.03 0.03 0.06 0.08 0.08 0.05

friction coeffi-
cient

0.05 0.04 0.06 0.06 0.06 0.07 0.07 0.05 0.05 0.04

average 0.09 0.09 0.10 0.10 0.10 0.13 0.14 0.15 0.15 0.14

Table C.1: Average error in parameter estimation based on zp (cont.).
D = 6 D = 7 D = 8 D = 9 D = 10 average

z(d) = t A t A t A t A t A t A

clearance
die/fixed die

0.27 0.25 0.29 0.30 0.33 0.31 0.31 0.33 0.34 0.34 0.25 0.28

x-alignment
lower part

0.18 0.20 0.19 0.19 0.19 0.19 0.20 0.16 0.16 0.14 0.17 0.16

sheet thickness 0.23 0.24 0.25 0.24 0.26 0.27 0.26 0.30 0.29 0.27 0.21 0.21
y-alignment die 0.24 0.22 0.27 0.23 0.23 0.25 0.26 0.28 0.25 0.28 0.20 0.20
punch depth 0.08 0.06 0.11 0.07 0.09 0.10 0.09 0.09 0.09 0.08 0.07 0.06
sheet yield
stress premulti-
plier

0.14 0.11 0.12 0.16 0.13 0.15 0.16 0.16 0.17 0.16 0.11 0.12

c1 0.20 0.23 0.21 0.21 0.24 0.21 0.25 0.21 0.25 0.23 0.17 0.17
c2 0.21 0.21 0.26 0.24 0.28 0.27 0.32 0.27 0.30 0.29 0.21 0.20
spring stiffness
punch

0.08 0.08 0.06 0.08 0.06 0.09 0.06 0.06 0.05 0.06 0.06 0.06

friction coeffi-
cient

0.06 0.05 0.09 0.07 0.07 0.06 0.08 0.06 0.07 0.07 0.07 0.06

average 0.17 0.16 0.19 0.18 0.19 0.19 0.20 0.19 0.20 0.19
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