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Abstract 

 

Wearables are getting more and more common and researchers are wondering if they 

could be a feasible alternative for traditional research equipment. The reason wearables are not 

widely used in research is that there are concerns about the differences between the values 

coming from wearables and traditional research equipment. This study examined heart rate data 

from four different wearables on their agreement with ECG obtained heart rate values in an 

ambulatory setting. The Bland-Altman method was used to determine the agreement. None of 

the wearables was accurate enough to be used in research regarding absolute heart rate. With 

the results of this study, no conclusions can be done about using wearables for heart rate zones 

or in other research situations where the absolute value is less important. To be able to use 

wearables for absolute heart rate values in research, first further development of the technology 

is needed. After that, there should be validation studies, which employ appropriate statistical 

measures, as discussed in the present thesis. 

 

 

 

Samenvatting 

Wearables worden steeds meer gebruikt en in het onderzoek is de vraag of deze een 

alternatief kunnen bieden aan de traditionele onderzoeksapparatuur. De reden dat dit nog niet 

gedaan wordt is de vraag in hoeverre wearables accurate data geven. In dit onderzoek werden 

de hartslagwaardes van vier verschillende wearables vergeleken met hartslagwaardes van een 

ECG op een ambulante manier. De Bland-Altman methode werd gebruikt om de overeenkomst 

vast te stellen. Geen van de wearables was accuraat genoeg om gebruikt te worden in onderzoek 

waar absolute hartslagwaardes belangrijk zijn. Met deze studie kunnen geen conclusies 

getrokken worden over situaties waar absolute waardes minder belangrijk zijn. Om wearables 

voor absolute hartslagwaardes te gebruiken, is eerst verdere ontwikkeling van de technologie 

nodig. Daarna is zijn er validatiestudies nodig met geschikte statistische analyses, zoals 

omschreven in deze masterthese.  
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Introduction 

Approach 

This thesis examines the feasibility of using wearable biosensors in scientific research 

instead of classic physiological equipment. A requirements analysis was conducted to map the 

needs and wishes for wearables use in research (Noldus Information Technology, 2016). This 

showed that the most important physiological measures were heart rate, heart rate variability 

and skin conductance. Since skin conductance measurement is rare in wearables, the present 

study focuses on heart rate measurements. Another finding is that wearables in research would 

be used in real life situations, such as classrooms. Most use cases include a situation in which 

the participants are in a stationary position. The most mentioned concern for using wearables 

in research is the validity and reliability. Validity in this case refers to the extent in which 

wearables take the same measure as traditional research equipment and reliability refers to 

consistency of the measure when the measurement is repeated. The present study focuses on 

the extent to which wearables give the same values as traditional research equipment for 

physiology, the gold standard. Four wearables, Microsoft Band 2 (Microsoft, 2015), Garmin 

Forerunner 235 (Garmin, 2015), Motorola Moto 360 2nd generation (Motorola, 2015) and a 

prototype from Philips, Elan (Philips, 2015), were tested against traditional research equipment. 

Even though the actual results will be outdated in a few years’ time, this thesis will be part of 

the validation literature to illustrate the technical improvement of wearables. This thesis 

illustrates the importance of correct methodology for validation studies, by examining previous 

validation studies and review articles about correct methodology.   

In the beginning of this introduction the current use of wearables is discussed, next there 

is a short explanation how heart rate is measured, furthermore some validation studies are 

reviewed and finally the correct way to determine agreement between devices is examined.  

 

Wearables  

There is no clear definition for a wearable in the literature (Chuah et al., 2016); the terms 

wearable, wrist-worn device and smartwatch are used interchangeably, even though there are 

wearables worn on other places than the wrist. Smartwatches are watches with extra 

functionalities, such as the access to email by using a connection to a smartphone, or step count. 

A well-known example is the Apple Watch (Apple, 2015). There are also wrist-worn devices 

without a screen to use for activity tracking, such as the Fitbit Flex (Fitbit, 2013). An example 
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of a wearable not worn on the wrist is the My UV-patch (L’Oreal, 2016), which can be attached 

anywhere on the skin to measure ultraviolet radiation.  

Wearables occur in many different forms, varying from wristbands to inner ear pieces. 

Their functions and uses are also diverse, ranging from step count to fertility tracking. Schwartz 

and Baca (2016) defined three types of wearables: commercial wearables intended for the 

general public, advanced wearables for use in research and experimental wearables, usually in 

a developmental stage. Commercial wearables are the most common wearables, focusing on 

measuring physical activity, such as travel distances, the other two types of wearables have 

broader measurements, for example skin temperature or oxygen saturation. Other differences 

in the types of wearables are the price, implemented algorithms and possibility to access the 

raw data (Schwartz & Baca, 2016). Consumer wearables have algorithms to smooth and 

structure the data, while with advanced and experimental wearables the raw data is given. For 

the present study three commercial wearables and an experimental wearable were used, all 

wrist-worn with heart rate measurement. These wearables were chosen because they are 

assumed to have decent accuracy, as claimed by manufacturers’ research and consumer tests. 

Furthermore, these wearables were provided by Noldus Information Technology and they were 

appropriate for use in other project.  

In the next paragraphs, the current state of wearable use in research will be explained, 

after which there will be an elaboration on consumer wearable use, to shine light on the different 

uses of wearables.  

Use in research. Wearables are getting used more commonly in research (Wac & 

Tsiourti, 2014). Sometimes commercial devices are used (e.g. Swift et al., 2015; Tiedemann, 

Hassett & Sherrington, 2015), but there are also devices marketed towards research, such as the 

ActivPal (PAL technologies, 2007) and the Empatica E-series (Empatica, 2012). A great 

advantage of wearables is their unobtrusive nature, so the user is not restricted in their tasks and 

movements (Wac & Tsiourti, 2014). This means that the data tracking feels more natural for 

the user and that there is no need for a lab environment, making the data more ecologically 

valid (Fahrenberg, Myrtek, Pawlik & Perrez, 2007; Wac & Tsiourti, 2014). Other advantages 

of wearables include ease of use and higher participant compliance (Noldus, 2016), since it is 

likely that participants are more at ease with attaching a device to their wrist than having 

electrodes placed on their chest as with the traditional research equipment (Wac & Tsiourti, 

2014). It is also possible to easily test multiple participants at once when using wearables (Wac 

& Tsiourti, 2014).  
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An area in which wearables could be a promising alternative for traditional research 

equipment is ambulatory assessment. Ambulatory assessment is the use of computer-assisted 

methodology for monitoring purposes while the participant undergoes their daily activities 

(Trull & Ebner-Priemer, 2012). This type of observation originates from medicine, but is getting 

more commonly used in other fields for research purposes, such as psychology (Fahrenberg et 

al., 2007; Trull & Ebner-Priemer, 2012). Wac and Tsiourti (2014) suggested exploratory 

research when using wearables in ambulatory assessment, given the complexity of the data and 

the unknown circumstances. This is because with ambulatory assessment, there are many 

possible factors that could influence that data which cannot be quantified. In an experiment 

setting, most of these factors are known, or equal between participants.  

Consumer use of wearables.  Wearables are most often used by consumers. Their main 

motivation for using wearables is self-tracking. This can be done for specific reasons, such as 

measuring heart rate while working out (Thompson, 2016) and adjusting their training using it 

(Tholander & Nylander, 2015). Self-tracking can also be used to keep track of certain habits, 

like sleep patterns or food intake. Self-tracking is the basis of the movement of Quantified Self 

(Lupton, 2014). The Quantified Self is a community in which people track aspects of their 

everyday life, these aspects could be anything, as long as it is quantifiable. Examples include 

blood pressure, amount of exercise and food intake (Swan, 2012). The rise of wearables has 

made the tracking easier, because some of the data of interest can be tracked automatically now, 

like sleep or activity (Lupton, 2014; van Dijk, Beute, Westerink & Ijsselstein, 2015). Self-

tracking is an interesting movement for research, because of the availability of data about 

behavioral patterns from various persons.  

There are different modes of self-tracking. The first mode is private self-tracking, in 

which case the user decides what and how they track and with whom they share their data 

(Lupton, 2014). Pushed self-tracking is a mode in which the user is nudged to use self-tracking. 

This occurs for example in the United States, where employers pay for their employee’s health 

insurance and where the employer wants to increase the employee’s activity (Lupton, 2014). 

Self-tracking with an app or wearables creates a database with all data from the users. This 

leads to the mode of self-tracking in which data is shared within a community; communal self-

tracking. The availability of big data has also sparked interest of third parties, leading to the last 

two modes of self-tracking. There is imposed self-tracking, where users have limited choice in 

whether they self-track or not and the data is used for other’s benefit (Lupton, 2014). For 

example in a company, the location of employees is recorded, even when they are not working 

(Fort, Raymond & Shackelford, 2016). The last mode is exploited self-tracking, where data 
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from the user is sold or used for other’s benefit. This is for example the case with Strava (Strava, 

2009), an app in which users can track their training and performance in different sports. Strava 

uses this data for example to make heat maps with the most used cycling roads. Self-tracking 

has different forms and users might not always track for their own benefit. Regardless of the 

mode of self-tracking, it leads to a database full of personal information, but the users may not 

be aware that the tracking is not primarily for their own benefit. (Lupton, 2014).  

The availability of self-tracking data could contribute to research, as is for example the 

case with the period tracking app Clue (Clue, 2013). The Clue company uses the information 

of its users to do research. Users indicate if they experienced certain symptoms, events and 

feelings per day. With some of their research projects, like when testing the claim that periods 

can synchronize when spending much time with someone else, they ask for volunteers to track 

more factors relevant for the project. In other cases, it might not be so clear that data is being 

used by others than the person doing the tracking. The use of other’s data is possible because 

of ambiguities about the ownership of this data, so users could be unaware that their data is 

used by third parties (Lupton, 2014).The ethical implications of the use of wearables are not 

clear for users, and might not be for researchers.  

 

Heart rate  

Wearables have the possibility to gather various information about the user, as stated 

above, but the present study focuses on heart rate. The different ways to measure heart rate 

will be explained in the next paragraphs.  

Measurement. Heart rate is traditionally measured by an electrocardiogram (ECG). 

ECG is seen as the gold standard in monitoring heart rate (Lemay et al., 2014). An ECG is 

obtained by using electrodes measuring the electrical activity of the heart (Berntson, Quigley 

& Lozano, 2007). There are different methods of placing the electrodes in order to get an ECG, 

but for many studies three electrodes are placed on the chest and shoulder. The electrical activity 

obtained by the electrodes is visualized, the ECG signal, shown in Figure 1. 

The cardiac cycle is visible in the ECG, it starts at the P wave, where the heart does not 

pump and fills with blood due to an electrical signal generated by the heart. After this the heart 

contracts, shown by the QRS complex. Then a recovery phase occurs, the T wave, in which the 

heart is prepared for the next pump movement (Berntson et al., 2007). The number of R-peaks 

happening in the timeframe of a minute is used to determine the heart rate, which is most 

commonly expressed as beats per minute (bpm) (Lemay et al., 2014).  
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Figure 1. ECG waves with typical points (Nederlandse Vereniging voor Cardiologie).  

 

Photoplethysmogram (PPG) is another often used method for measuring heart rate 

(Lemay, 2014). Wearables that allow for heart rate measurements make use of PPG. This 

method makes use of light and measures changes in light absorption, to indicate blood volume 

changes. When a heart beats occurs, the blood flows in bigger volumes trough the body, which 

is visible due to the change in light absorption this causes. This entails that with a PPG sensor 

the Blood Volume Pulse (BVP) is measured, the phasic change in blood volume with each 

heartbeat. Based on the change in BVP, the heart rate is determined. The visual representation 

of this can be found in Figure 2, which also shows how this differs from an ECG signal. In the 

PPG signal, every peak represents a heartbeat.  

 

 

Figure 2. Visualization of the ECG signal and PPG signal (Allen, 2007).  

 

The important difference in ECG and PPG are the way of obtaining information, with 

ECG using a bio-potential technique, and PPG using an optical method (Lemay et al., 2014). 

This means that with an ECG a bio-potential, an electric signal, is measured, while with PPG 

the measurement is done by detecting visual differences.  

 There are several studies comparing both methods, leading to the conclusion that PPG 

can be used to accurately measure heart rate, as pulse rate is in agreement with heart rate (e.g. 

Lemay et al., 2014; Schäfer & Vagedes, 2013). These studies did experiments with PPG sensors 

designed for research or health care, which were most of the time attached to the participant’s 
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finger. In the present study, the PPG sensors of consumer wearables worn on the wrist are tested 

in an ambulatory setting.  

Use. Heart rate is a measure of activity of the autonomic nervous system. The autonomic 

nervous systems receives and sends information from the internal organs (Kalat, 2007). This 

means that heart rate is dependent on the responses of the autonomic nervous system. This 

entails that some factors, such as stress, emotion and activity, indirectly influence heart rate 

(Wilhelm, Pfaltz & Grossman, 2006; Kreibig, 2010). Heart rate in humans in a resting position 

is normally between 60 and 100 bpm (American Heart Association, 2015). Very fit persons 

could have a heart rate as low as 40 bpm and while exercising, the heart rate could go up to 200 

bpm for young healthy adults (American Heart Association, 2015). Since the normal heart rate 

ranges are broad, it is important to keep in mind that average heart rate can vary per person, it 

is for example very dependent on age (Acharya, Kannathal, Sing, Ping & Chua, 2004).  

 

Validation studies 

 As mentioned before, PPG is a different method to obtain heart rate than ECG, which 

causes concern to use the two method interchangeably. This is why validation studies are 

needed in which the agreement is assessed between data from a PPG and data from an ECG. 

Wearables make use of PPG, while most chest straps use electrodes to obtain heart rate. 

Consumers also have concerns about the measurements of their wearables. Without access to 

scientific validation papers about wearables, many web logs try to validate their new wearables 

for themselves by comparing with a chest strap (e.g. DC Rainmaker (www.dcrainmaker.com); 

Wareable (www.wareable.com)). These kind of tests most often include only one participant, 

but most bloggers do use the same setting, such as training scheme and route, when testing new 

wearables. The tests almost never include a statistical calculation, only an estimate of agreement 

after visually comparing the data. This gives some information about the validity of the device, 

but no generalizable conclusions. This means that even though there are many tests regarding 

wearables, there are no clear conclusions about the reliability and validity of consumer 

wearables. It is important to note that the demands for consumers might be different than 

demands for scientific purposes. For consumer the approximate heart rate might be enough, 

while for scientific use the absolute heart rate is often necessary.  

Accelerometers have been scientifically tested, and dependent on the brand, are deemed 

a valid measure of activity (e.g. Welk, Schaben & Morrow, 2004; Ferguson, Rowlands, Olds & 

Maher, 2015). There is no such clear claim about the use of heart rate measurements from 

wearables (Patel, Asch & Volpp, 2015). However, there are some validation studies for heart 
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rate measurements from wearables. For example, Stahl, An, Dinkel, Noble and Lee (2016) 

tested six different consumer wearables and stated those as acceptable for the recreational 

athlete and for use in research. In contrast, Wang et al. (2016) also tested six consumer 

wearables, four of them the same as Stahl et al. (2016) and concluded variable accuracy and 

that none of the wearables achieved the same accuracy as a chest strap based monitor. They 

recommended to use electrode-containing chest monitors for situations in which accurate heart 

rate is needed. Spierer, Rosen, Litman and Fujii (2015) compared different wearables, including 

the Alpha Mio with a gold standard, Polar. They concluded that on average the wearable devices 

were accurate, but, especially the Mio Alpha, were less accurate in intensive activities and for 

participants with a darker skin color (Spierer et al., 2015). A few other factors that could 

influence measurement with a wearable are personal characteristics (e.g. skin color), ambient 

temperature, ongoing behavior and potential misplacement (Wac & Tsiourti, 2014). 

 

Reproducibility 

It is important that validation study results are reproducible, meaning in this case that 

devices give similar results in different settings or with different participants. De Vet, Terwee, 

Knol and Bouter (2006) stated that reproducibility includes agreement and reliability 

parameters. The agreement concerns the measurement error and assesses how close the scores 

for repeated measures are, while the reliability has to do with the variability between subjects, 

despite the measurement errors (de Vet et al., 2006).  

To draw valid conclusions about the measurements of the wearables, relevant statistical 

calculations should be used. Correlations are in general used as a measure of association, and 

in some cases for assessing agreement between devices (e.g. Poh, Swenson & Picard, 2010). 

Bland and Altman (1986) were to first to state that correlations are not an appropriate measure 

for assessing agreement, since a high correlations indicates that the  output of the devices are 

related, but not that they necessarily agree. Bland and Altman (1986) stated that data in poor 

agreement can give high correlations: Any straight line in a figure of measurement points would 

give a high correlation, but high equality requires a straight line with the same x and y values. 

An example with simulated data is shown in Figure 3. 
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Figure 3. Example data to show the difference between related variables and variables 

in agreement. The Pearson correlation coefficient for this data set is set to be .98.  

 

Bland and Altman (1986) also pointed out that it would be unlikely that two methods 

designed to measure the same quantity, would not give an adequate correlation. Other reasons 

for not using correlations are the dependency on the range of quantity, if the quantity is wide, 

the correlation will be stronger and a change in scale would change the agreement, but not the 

correlation (Bland & Altman, 1986). Ludbrook (2002) stated that correlations should be seen 

as an index of goodness-of-fit of a linear regression model. 

The claim that correlations are not an appropriate method for measuring agreement is 

widely agreed upon (e.g. Lin, 1989; Ludbrook, 2002; Zaki, Bulgiba, Ismail & Ismail, 2012; 

Schäfer & Vagedes, 2013). Bland and Altman (1986) proposed a method for assessing 

agreement between devices, similar to the Tukey mean-difference plot (Zaki et al., 2012). This 

method identifies how much the new method is likely to differ from the old instead of 

quantifying the actual agreement. Other appropriate calculations are the concordance 

correlation coefficient (Lin, 1989; Ludbrook, 2002), or the intra class correlation coefficient (de 

Vet et al., 2006; Zaki et al., 2012), which are similar methods (Atkinson & Nevill, 1998). A 

least products regression analysis can also be used to assess the agreement between two devices 

(Ludbrook, 2002).  

In the present study there is chosen to use the Bland-Altman method, since the focus is 

on absolute heart rate values. The other methods take slope into account as well. Ludbrook 

(2002) wrote in a review about different methods for assessing agreement that the Bland-

Altman method is an appropriate statistical method for continuous variables, for example lung 

function or blood pressure. It was added that a small sample size could contribute to 

unacceptably wide limits of agreement. Another reason for using the Bland-Altman method is 
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that this method is used more often than the other, statistically more complicated, calculations 

(Zaki et al., 2012). This has the effect that the results are easier to interpret when compared to 

other literature. For example, the concordance correlation coefficient shows poor agreement 

when a value is < .90 (McBride, 2005). This is confusing, since this is very different compared 

to the Pearson correlation coefficient. Wang et al. (2016) used the concordance correlation 

coefficient and found a value of .91 for the Apple Watch, which led to articles on several 

websites claiming that the Apple Watch had 90% accuracy compared to an ECG (e.g. Sawh, 

2016) instead of moderate agreement as stated by the authors. A Bland-Altman analysis was 

also provided and gave limits of agreement ranging from -27 to +29 bpm, which shows that 

even with moderate agreement, the true absolute value could be in a range of almost 60 bpm. 

The Bland-Altman method is set up to compare two devices by means of setting up 

limits of agreement. It requires the data of all participants together, so individual differences 

will be minimalized. For each data point, the difference and the mean of the devices is 

calculated. A graph is produced, where the differences between the methods are plotted against 

the mean of the two methods, as can be seen in Figure 4.  

 

 
Figure 4. Example of a Bland-Altman plot with simulated data.  

 

By plotting the differences against the mean, the distribution of the differences is made 

visual. Two horizontal lines are placed at two standard deviation above and below the mean of 

the differences, the limits of agreement. Since the lines are two standard deviations from the 

mean, a 95% confidence interval is created. The lines represent the limits of agreement, the 
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range in which 95% of the values lie. Beforehand maximum allowed differences have to be set 

up. This means that the limits of agreement coming from the data would have to be smaller than 

the threshold set up beforehand, to say that the devices are in agreement.  

For the present study a ±5 bpm difference was set as the limit in the present study, in 

accordance with the Association for Advancement of Medical Instrumentation (AAMI) (2002). 

This means that the limits of agreement derived from the data, the mean ± 2 standard deviations, 

have to be smaller than ±5 bpm. Calculations were made per device, leading to the following 

research question: 

 

Is 95% of the heart rate data from wearables within 5 bpm of heart rate data from 

traditional research equipment when data is acquired in an ambulatory setting?  
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Method 

Pilot 

A pilot study with 17 participants was conducted to familiarize with the testing methods. 

The Empatica E4 as research wearable and the Biopac as traditional research equipment were 

used. From the experience of the pilot, there was chosen to use newer electrodes for the Biopac 

and another form of statistical analysis than correlations. The new electrodes would produce 

less noise in the ECG signal and correlations turned out to not be a valid measure of agreement 

between different devices. Further details about the pilot can be found in appendix A.  

 

Participants  

Noldus employees working at its headquarters were asked to participate in the study. 21 

of them volunteered, of which 16 were male and 5 were female. Their age ranged between 21 

and 56, M = 40.10, SD = 10.71. The participants held different positions in the company. The 

participant carried out their daily work while being measured, which consisted of desk work 

and meetings. Al participants gave their informed consent and the study was approved by the 

ethics committee of the University of Twente. 

 

Materials 

Physiological measurements. The participants were attached to electrodes for an ECG 

and wore four different wearables which all measured heart rate. All the wearables made use of 

PPG to indicate pulse rate. Noldus developed a software program which gathered the 

physiological information gathered by wearables with a sampling frequency of 1 Hz. The output 

consisted of a CSV file with a timestamp for all data. The use of this program meant that the 

raw data could be used, instead of data after unknown filtering as available from the 

manufacturer.  

Biopac MP150. The traditional research equipment used was the Biopac MP150. A 

wireless system was used with electrodes with wires attached to a small device that can be 

carried around, the Bionomadix (Biopac, 2014). This wireless device was connected to a 

recording device, which was stationary. Figure 5 shows the recording system and the wireless 

device. The electrodes were placed as recommended, the negative electrode on the right 

collarbone, the positive electrode on the lowest left rib and the ground electrode on the lowest 

right rib (Appendix B). The Biopac data was exported to Biopac Acqknowledge 4.4 software, 

from which it could be analyzed and then exported into various file types.  
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Figure 5. The Biopac system, consisting of recording equipment and a wireless 

measuring device (Biopac, 2014). 

 

Microsoft band 2. The Microsoft Band 2 is the second smart watch from Microsoft and 

intended for consumer use. It has different biosensors, such as an optical heart rate sensor, 3-

axis accelerometer, an ambient light sensor and a skin temperature sensor. Microsoft Band 2 is 

intended for everyday use and has sports functions, like a guided workout and a special function 

for golf. The Microsoft Band 2 is intended to be used with the Microsoft Health app for a 

smartphone. The Microsoft Band 2 is worn with the PPG sensor on the inside of the wrist.  

Garmin Forerunner 235. The Garmin Forerunner 235 is a consumer smartwatch from 

Garmin. It is a running watch, so it displays heart rate zones and has GPS-functionality. Step 

count is also available. The Garmin Forerunner 235 is intended to be used with the smart phone 

app Garmin Connect.  

Motorola Moto 360 2nd generation. The Motorola Moto 360 2nd generation is a 

smartwatch intended for everyday consumer use and looks like a normal watch. It can be 

adjusted to one’s taste and has gender specific sizes. Next to the size, the display background, 

material of the band and color are customizable. The Motorola Moto 360 is a watch in the series 

of Android Wear. 

Philips Elan prototype. The Philips Elan is a research wearable, still in a developmental 

state. Since Noldus IT and Philips are working together on a project about smartwatches, the 

prototype was made available. The Elan has several sensors and gives 22 text files after each 

session with physiological information. This ranges from heart rate to acceleration to respiration 

rate. Values were given with a timestamp and an indication of certitude of the value, a scale of 

quality of measurement. This scale ranged from 0 to 4, with 0 being the worst quality and 4 

being the best quality. Philips would not disclose how this scale of quality was determined. 

Motorola also has a similar value, which gives a lower quality value when more movements are 
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detected, it is likely that Philips has a similar algorithm. There are two types of prototype, one 

for real time recording and one for analyzing afterwards. The one used for this project was the 

one not suitable for real time recording.  

The Observer XT coding scheme. The participants all worked at Noldus and were 

familiar with the Observer XT. The Observer XT is a program used for logging behavior, real 

time or in a video afterwards. The participants were asked to code their activities during the 

experiment. The scheme was very simple, as to not disturb the participants in their tasks. The 

coding scheme can be found in appendix C.  

 

Procedure 

Ambulatory assessment was done at the office of Noldus Information Technology BV 

in Wageningen, the Netherlands. The heart rate of the participants was recorded while they 

were doing their normal daily tasks. The measuring took place on working days over a time 

period of 2.5 weeks. Each morning or afternoon was reserved for one participant. The 

experiment time varied, depending on the availability of the participant, but was on average 2 

hours, with a mean of 123.39 minutes and a standard deviation of 40.41 minutes.   

The participants were asked to put the wearables on their wrists and attach the electrodes 

to their upper body. The placement of the electrodes was tested by checking the ECG signal. 

The wearables were turned on and it was checked if the computer program received the data. 

The Elan had a light turning on every second to indicate recording. Participants wore two 

wearables on each arm, as can be seen in Figure 6. The placement varied per participant, to 

account for the influence of position. Appendix D shows the position of the wearables per 

participant. After checking if the devices worked as they are supposed to, the participants could 

go on with their work as usual. The researcher would check on the devices about every 30 

minutes, to see if the connection between the devices and the computer was not lost. Sometimes 

the Bluetooth connection would fail, making the checks necessary.  

 

Figure 6. A participant with the wearables.  
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Data acquisition 

Biopac data. The raw data from the Biopac was prepared for analysis using 

Acqknowledge, a software program for physiological analysis from Biopac. The sampling 

frequency was set to 250 Hz to establish an ECG signal. All files were manually checked for 

noise, such as sudden movements, which influenced the ECG signal, and therefore the bpm. 

Markers were set to distinguish the disrupted data, to be able to discard this later on. Checking 

for noise was done manually, because when using an automatic filter, the data was not 

discarded, but smoothed. This means that it could not serve as ground truth. How exactly the 

noise was identified is described in appendix E. The bpm was calculated from the ECG with 

automatic settings for a human heart beat in a resting situation. The bpm was exported to an 

Excel file with one value per second. Since the data was recorded on a 250 Hz frequency, the 

last value given in a certain second was exported. The file with markers for noise was separately 

exported. A program was coded to use the markers to discard the values between these markers 

in the file with bpm values. 

 Garmin, Motorola & Microsoft Band. The data from these wearables was collected 

with a smartphone that had a Bluetooth connection to the wearable and a network connection 

to a computer. The computer program exported the data in Excel files, with values and a 

timestamp. No data from the wearables was altered or discarded, since no objective noise could 

be determined, due to the only available output being heart rate values and timestamps. 

 Philips. The wearables from Philips gave several txt files, from which only the heart 

rate file was used. This file gave the heart rate value in bpm, a timestamp and a value for the 

quality of measurement.  

 

Data structuring 

For each participant an Excel file was created with the collected data from all devices. 

This was done by combining all the different files as supplied by the different wearables, 

resulting in one file per participant. Each device had a column, every second a row. The next 

sheet of these files showed only the data between the recorded start and stop time, as indicated 

by the Observer. All values under 40 were removed, since it can be assumed that these values 

were artefacts. The values of the first minute from the wearables were discarded, to be sure that 

the devices were well attached and adjusted. A new file was made with the data of all 

participants together. In a new sheet, the data was averaged over 1 minute. This was done by 

using an averaging formula with the condition that at least 45 of the 60 values were present.  



 

15 

 

Data analysis 

The different devices were compared with regard to agreement and quality of the data, 

such as missing data. The percentage of missing values was compared between the devices. The 

assessment of the agreement was done by using the Bland-Altman method (Bland & Altman, 

1986). This method consists of plots of the differences between the devices against their mean. 

Three lines are plotted, one for the mean of the differences and two standard deviations above 

and under the mean. These two lines are the limits of agreement and refer to the interval in 

which 95% of the values lie. Beforehand a threshold is set, in this case ±5 bpm, in accordance 

with AAMI (2002). This threshold should be broader than the limits of agreement coming from 

the data in order to say that the devices are in agreement with each other.  

The Bland-Altman method works best with normally distributed differences. When this 

is not the case and the differences are skewed, the data can be log transformed. When after the 

log transformation, the differences are still not normally distributed, the Bland-Altman method 

can still be used. This will not lead to acceptance of poor devices, since the limits of agreement 

tend to be broader in this case (Bland & Altman, 1986). Furthermore the percentages of the 

values outside the threshold were given.  

For the quality of measurement from the Philips, a general linear model with repeated 

measures calculation was also used. This was done to identify the linear relationship, with the 

mean of differences as the dependent variable and the scale of quality of measurement as 

predictor. Paired sample t-tests with the mean difference per scale point were done to check if 

the differences between the Biopac and the Philips were significantly different on each scale 

point.  

To check if the position of the wearables has influence on the differences between the 

wearables and the traditional research equipment, a paired samples t-test was done, with the 

mean difference per position. The pairs existed of all the possible combinations of the 

positions, since a linear relationship would be unlikely. The mean and standard deviation of 

the differences per position was given.   
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Results 

Missing data 

Almost all devices had missing data, due to different reasons. The percentage of missing 

data is shown per device and participant in Table 1.  

Table 1.  

Missing data per device, per participant in percentages. Empty cells represents no collected 

data from a certain device. Participant 1 has two rows, since there were two measurements.  

Participant Biopac Microsoft Motorola Garmin Philips 

All data 9.99 14.32 20.01 97.04 3.77 

 

1 25.16 1.45 18.42 99.85 

 

 

11.65 1.32 43.46 96.65 13.76 

2 9.02 44.40 45.31 

 

0 

3 59.00 12.78 37.77 94.73 0 

4 11.50 5.13 50.05 98.54 13.67 

5 2.17 0.70 4.68 94.92 0 

6 4.91 23.92 56.54 97.96 0 

7 8.78 27.72 4.00 99.86 

 

8 1.74 

   

0 

9 7.60 

   

0 

10 3.29 39.47 16.85 99.77 31.98 

11 22.77 6.96 26.42 96.02 0 

12 2.64 27.58 31.95 96.60 0 

13 13.32 7.85 7.01 99.32 0 

14 13.79 21.52 4.10 

 

0 

15 1.34 0.22 9.46 87.73 0 

16 3.16 15.31 4.46 97.08 0 

17 0.61 4.88 6.64 96.31 15.98 

18 2.04 15.77 5.32 97.72 0 

19 5.37 15.80 5.55 98.56 0 

20 5.17 5.25 11.56 97.41 0 

21 4.83 8.54 10.60 97.70 0 

 

As can be seen, the missing data from the Garmin was exceptionally high. This meant 

that the Garmin data was not used in further calculations. It is likely that this was caused by the 

fact that the Garmin is not intended for real time Bluetooth communication. The missing data 

from the Biopac was in most cases due to the participant being too far away from the Biopac, 



 

17 

 

so the data could not be sent to the computer. Other reasons for missing data by the Biopac were 

movements when the electrodes were touched, resulting in noise in the ECG signal. The missing 

data from the Microsoft Band and Motorola was also due to the Bluetooth. The devices were 

not always able to send data each second, and the connection was sometimes disconnected.  The 

missing data from Philips was due to an empty battery.  

 

Microsoft Band 2 and Motorola synchronization 

The synchronizing from the Microsoft Band and the Motorola with the Biopac did not 

go as intended. After the measurements it turned out that the program used for the 

communication to and from to wearables, applied the timestamp from the phone instead of the 

wearable to each value. Since the wearables were synchronized to the computer, but the phones 

were not, no certain conclusions can be drawn from these devices. The transmission of the 

information from the wearable to the phone via Bluetooth took on average 5 milliseconds, with 

rare outliers up to 0.3 seconds. For a measuring frequency of 1 Hz, this is negligible, since even 

if someone’s heart rate would be 180 beats per minute, this would mean 1 missed beat at most 

due to the delay in sending. This is important, since the phone gave the time stamp at the 

moment of receiving, so the exact timestamp of the moment of measuring was lost. The phones 

and the computer were all set to network time, meaning that the displayed time should be the 

same. This does not mean that the time was the same, it was not verified during the 

measurements. After this came to light, which was after the data collection, the phone times 

were occasionally compared to the computer time and they sometimes differed up to 7 seconds. 

This means that even though all the devices were set to network time, there were differences. It 

could be that the devices only setting the time when turned on, and after that an internal clock 

is used in which the duration of an hour is slightly different than the actual duration of an hour.  

No set-off point in the data could be found by comparing peaks and slopes in the Biopac data 

and wearable data. All these factors led to the conclusion that the data as collected could not be 

used, since the synchronization had failed and it could not be verified by how much. This means 

that it was not possible to analyze the data on a 1 second basis, but on a 1 minute basis was 

possible as will be explained below.  

  

Averaged data 

Even if the data was not accurate enough to be analyzed per second, it was possible to use when 

averaged over 1 minute. It was possible to compare the data when averaged, because the 

synchronization was off by a maximum of a few seconds. This is negligible over 1 minute, since 
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heart rate values do not differ much per second. For the best comparison, the data from the 

Philips was also averaged over 1 minute. For each device a Bland-Altman plot was made, as 

can be seen in Figures 7, 8 and 9. The data was normally distributed, as shown in appendix F.  

  

 Figure 7. Bland-Altman plot of Biopac and Microsoft Band data, averaged over 1 

minute. The black line represents the mean of the differences, and the dotted lines are the 

limits of agreement, two standard deviation from the mean. The red lines indicate the 

threshold of ±5 bpm.  

 

The limits of agreement from the Biopac and Microsoft Band data ranged from -8.46 bpm, 95% 

CI [-8.50, -8.42] to 8.38 bpm, 95% CI [8.34, 8.42]. A total 16.81% of the values lay outside of 

the threshold of ±5 bpm.  
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Figure 8. Bland-Altman plot of Biopac and Motorola data, averaged over 1 minute. 

The black line represents the mean of the differences, and the dotted lines are the limits of 

agreement, two standard deviation from the mean. The red lines indicate the threshold of ±5 

bpm. The red lines indicate the threshold of ±5 bpm. 

 

The limits of agreement from the Biopac and Motorola data ranged from -14.90 bpm, 

95% CI [-14.96, -14.84] to 9.24 bpm, 95% CI [9.18, 9.30]. In total 22.14% of the values lay 

outside of the threshold of ±5 bpm. 
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 Figure 9. Bland-Altman plot of Biopac and Philips data, averaged over 1 minute. The 

black line represents the mean of the differences, and the dotted lines are the limits of 

agreement, two standard deviation from the mean. The red lines indicate the threshold of ±5 

bpm. The red lines indicate the threshold of ±5 bpm. 

 

The limits of agreement from the Biopac and Philips data ranged from -14.79 bpm, 95% 

CI [-14.85, -14.72] to 11.48 bpm, 95% CI [11.42, 11.55]. In total 17.01% of the values lay 

outside of the threshold of ±5 bpm. 

As can be seen in Figure 7, the differences between the Biopac and the Microsoft Band 

ranged from negative differences with lower heart rate values to positive difference at higher 

values. This means that when the Biopac gave low heart rate values, the Microsoft Band gave 

even lower value and when the Biopac gave a high value, the Microsoft Band gave even higher 

values. The difference between the Biopac and the Microsoft Band was just as big with high 

and low values.  

Another pattern occured with the Motorola and the Philips, as can be seen in Figure 8 

and 9. When the Biopac gave higher values, the wearable gave lower values, whereas with 

lower values of the Biopac, the values of the wearable varied less.   

 

Philips 

The Philips data was also analyzed on a 1 second basis.  
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Bland-Altman. A Bland-Altman method was used to obtain the limits of agreement. 

The differences were normally distributed (appendix G). These limits ranged from -20.88, 95% 

CI [-20.91, -20.73] to 17.60 bpm, 95% CI [17.45, 17.63]. In total 44.27% of the values lay 

outside of the threshold of ±5 bpm. Figure 10 shows the Bland-Altman plot, displaying the 

difference between the Biopac and the Philip against the mean of the two. This visualizes how 

the differences were spread; when the heart rate was lower, the differences were smaller.  

 

Figure 10. Bland-Altman plot of Biopac and Philips. The black line represents the mean of 

the differences, and the dotted lines are the limits of agreement, two standard deviation 

from the mean. The red lines indicate the threshold of ±5 bpm. The red lines indicate the 

threshold of ±5 bpm. 

 

Differences between participants. The data was plotted per participant. These were checked 

for normal distributions, which can be found in Appendix H. Some of the participants 

(participant 9, 10, 12, 14 and 20) did not have normally distributed differences, the data from 

these participants was log transformed. None of the log transformed data was normally 

distributed, as displayed in Appendix I, so there was chosen to use the original data instead, in 

accordance with Bland and Altman (1986).  

There were several patterns visible in the data per participant. Figure 11 shows some 

typical participants. It was clear that the agreement between the devices was better for some 
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participants than for others. Some participants had smaller limits of agreement in which the 

differences were divided proportionally, such as with participant 11. For other participants there 

was no clear relation between the devices, and the limits were broad (participant 2). Other 

patterns were when the Philips gave different values, while the Biopac gave more or less stable 

values (participant 9), or when the Philips gave low values, the Biopac gave varying high and 

low values (participant 6). The plots from all participants can be found in appendix J. The other 

wearables also displayed different patterns per participant.  

Participant 11 Participant 2 

  

Participant 9 Participant 6 

  

Figure 11.  Bland-Altman plots showing the different patterns for agreement between 

the devices, each plot shows the data from one participant. The black line represents the 

mean of the differences, and the dotted lines are the limits of agreement, two standard 

deviation from the mean. The red lines indicate the threshold of ±5 bpm. The red lines 

indicate the threshold of ±5 bpm. 

 

Effect of quality. The Philips had a scale ranging from 0 to 4 for the quality of the measurement 

for each value. Descriptive statistics of the differences can be found in Table 2. The relation of 

the differences between the Biopac and the Philips and the scale of quality of measurement was 
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linear, F (4, 14) = 20.16, p = 0.00. All the scales differed significantly (p < .02), except for the 

quality scales 0 and 1 (p = .09).  

Table 2.  

Mean and standard deviation of the differences between Biopac and Philips, arranged by 

quality of the measurement.  

Position Mean Standard deviation 

All data -1.64 9.62 

Quality =0 -15.12 19.39 

Quality = 1 -11.08 15.10 

Quality =2 

Quality = 3 

Quality = 4 

-5.99 

-2.39 

.09 

12.50 

9.47 

7.11 

 

For the each of the quality scales a Bland-Altman analysis was done (appendix K). When the 

quality of measurement was higher, the limits of agreement were narrower, leading up to -

14.21, 95% CI [-14.21, -14.06] to 14.31, 95% CI [14.24, 14.39] for the highest quality of 

measurement.  

 

Effect of placement 

Table 3 shows the descriptive statistics of the positions, but the values per position did 

not differ significantly (ranging from p = .07 to p =.88). This means that there were no 

significant differences in the positions of the wearables.  

Table 3.  

Mean and standard deviation of the differences between data from the wearables and the 

data from traditional research equipment arranged by different positions of the wearables. 

Position Mean Standard deviation 

All data 

Left wrist (closest to hand) 

-1.29 

-.32 

3.27 

3.02 

Left wrist (second) .05 1.76 

Right wrist (closest to hand) -3.43 4.19 

Right wrist (second) -1.26 2.44 
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Discussion 

Conclusions from the data 

Limits of agreement. To be able to answer the research question, the limits of 

agreement found in the data between the Biopac and the wearables were compared to the 

threshold. On a 1 Hz sample rate, only the Philips Elan was sufficiently tested and the results 

were not within the acceptable limits. The limits of agreement from all wearables are too wide, 

even when averaged over 1 minute. This means that the research question, ‘is the 95% of the 

heart rate data from wearables within 5 bpm of heart rate data from traditional research 

equipment in an ambulatory setting?’ can be clearly answered with a ‘no’. None of the tested 

wearables constantly gave values within 5 bpm of the Biopac when averaged over 1 minute. 

This means that when analyzed on a 1 second basis, the wearables would also not give values 

within ±5 bpm from the Biopac.  

Quality. Quality in this setting means the foundation of the assumptions of the research. 

In this case, the quality was secured by two aspects, the placement of the wearables and the 

quality indication of the Philips. The placement of the wearables differed per participant, to 

adjust for potential placement effects. There were no significant differences between the 

positions of the wearables, meaning that the placement of the wearables did not have effect on 

the measurements. The Philips Elan gave an indication of quality of measurement with each 

heart rate value. The data of higher quality of measurement had smaller limits of agreement 

than the data of the lower quality of measurement. The agreement improved when the quality 

gets better, which implies that the measurement used as ground truth is a constant good value. 

If the quality measure was not actually indicating the quality no relation between the level of 

agreement and the quality measure would be expected. 

Missing data. The Motorola had most missing data, followed by the Microsoft Band, 

the Biopac and then the Philips. The Motorola had double the amount of missing data compared 

to the Biopac, while the Microsoft Band lay in-between, but close to the percentage of the 

Biopac. Even though the wearables did not give significantly less missing values, this does not 

disprove the assumption that participants can be more mobile when using a wearable than with 

traditional research equipment without data loss (Wac & Tsiourti, 2014).  

The missing data of the Biopac was due to the participant being too far from the Biopac 

or movement that caused disruptions in the ECG measurements. The Philips only had minimal 

missing data, which was all due to battery loss. The missing values of the commercial wearables 
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were mostly due to the Bluetooth connection, making it likely that this would be less when it 

was collected in another manner and if the data would be analyzed afterwards. 

 

Implications  

Other validation studies. The findings of the present study were in line with the results 

of Wang et al. (2016), who concluded that for accurate heart rate measurement, it is better to 

use a device that used electrodes on the chest. Stahl et al. (2016) and Spierer et al. (2015) 

claimed certain wearables to be accurate. Both stated that all wearables tested were in more or 

less of an agreement with research equipment. This conflicts with the present study, in which 

none of the tested wearables were deemed accurate enough. This could be explained by the 

different manners of data analysis. As de Vet et al. (2006) stated, only using reliability 

measurements without agreement measurements, often leads to wrong conclusions. Stahl et al. 

(2016) used the mean absolute percentage error (MAPE). Bland-Altman plots were used to 

illustrate the slope of the differences, but no threshold was stated. Their limits of agreement 

ranged from -9.7 bpm to 9.7 bpm for TomTom to -17.6 bpm to 25.8 bpm for Fitbit. Stahl et al. 

(2016) still deemed the wearables accurate, due to the MAPE calculations and a Tukey’s range 

test. Spierer et al. (2015) used correlations and t-tests. None of these calculations are considered 

to be appropriate statistical methods for agreement between measurement devices (e.g. 

Ludbrook, 2002; de Vet et al., 2006; Köttner et al., 2011; Zaki et al., 2012). The MAPE is not 

appropriate since it has a bias towards the device which gives the lowest values (Tofallis, 2015). 

T-tests and Tukey’s range test compare the mean of the different methods, not the values per 

second. Correlations give a measure of association, not of agreement (Bland & Altman, 1986). 

The results of the Bland-Altman analysis of the present study were similar to the results 

of Stahl et al. (2016), but led to different conclusions. This could be due to different thresholds. 

If judged by the Bland-Altman analysis with the same threshold as the present study, the 

wearables from Stahl et al. (2016) would also be classified as non-accurate. This means that, 

none of the wearables are able to measure heart rate to an accuracy of ±5 bpm. This is assuming 

that with the different devices tested by Stahl et al. (2016) and the present study, a broad 

selection of recent wearables was included. Because they use similar PPG technology, this 

makes it likely that other wearables using similar technology and in the same price-class would 

also fail to give results within the limits of ±5 bpm. 

Other validation studies of heart rate measurement used other thresholds for the Bland-

Altman analysis, for example ±6.5 bpm (Kornowski et al., 2003), ±11 bpm (Gatti, Scheider & 

Migliaccio, 2014) and ±0.6 bpm (Radespiel-Tröger, Rauh, Mahlke & Mück-Weymann, 2003). 
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Gatti et al. (2014) made a statement that their threshold was based on medicine and sports 

science. The other articles gave no arguments for their chosen limits. The limits between the 

studies differed a lot and lacked justification for the set limits, so another approach was chosen 

for the present study. The limits should not be too broad, since the absolute value is important 

for research purposes. With an acceptable limit of ±11, the real value could be within a range 

of 22 bpm. Limits that are too narrow will result in devices being rejected when this might not 

be necessary. A limit of ±0.6 is unfeasible with wearables with an output of rounded numbers. 

±5 bpm seemed not too broad and not too narrow, meaning that this was deemed a good limit 

in which there was a good trade-off of the chance of wearables being falsely accepted or 

rejected.  

Different use cases call for different acceptable limits. In consumer use, the acceptable 

limits could be broader, since an approximate value is enough to be able to determine for 

example a heart rate zone during running and users might be more interested in the slope than 

the absolute value (Tholander & Nylander, 2015). With the results of the present study no 

conclusions can be drawn about whether wearables could be used when the change of heart rate 

is more important than the absolute heart rate value.  

 Research implications. The present study was done in an ambulatory setting, with 

wearables aimed at the consumer market and the focus on absolute values. That means that the 

conclusions cannot be generalized outside these settings. For studies in which absolute heart 

rate values are important, this means that at least the tested wearables are not a viable alternative 

for traditional research equipment. As stated above, it is likely that the current generation of 

wearables is not suitable for research in regard to absolute heart rate values. This means that 

studies focusing on absolute heart rate using these types of wearables might have come to 

different conclusions when traditional research equipment was used. For other types of 

research, when the absolute heart rate data is not analyzed, consumer wearables could still be 

suitable. Examples are a study of user comfort or usability of wearables or a study designing 

the visualization of real time physiological data. It would also be possible to use heart rate 

measurement from wearables in a study comparing the base line, when a subject is at rest, with 

elevated levels as an indicator of exercise. In such a study there would not be made use of 

absolute heart rate values, but the elevation of the heart rate, together with data from an 

accelerometer for example, could be used as an indication of the exercise.  

With the results of the present study, there can be no conclusions about the accuracy of 

the wearables on the market developed for research, such as the Empatica E4. It is possible that 

these type of wearable have better technology, leading to values more in agreement with 
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traditional research equipment. The present study also does not provide conclusions about 

wearable use for consumers not focusing on absolute heart rate values.  

Consumer implications. With the present study there are no conclusions about the use 

of wearables for consumers, since it is not clear to which extent consumer rely on absolute heart 

rate. If a wearable is used for activity tracking, the training might be adjusted to heart rate or 

heart rate zones (Tholander & Nylander, 2015), but there was no information available on how 

heavily a consumer relies on absolute heart rate values.  

 When looking to buy a wearable, there is much information available on independent 

review websites (e.g. Wareable (www.wareable.com)). As stated before, these kind of websites 

often test wearables on their accuracy without specifying what that means. Since most of these 

tests are done on one participant, this might not be generalizable to a broader population. The 

present study revealed big differences between participants, so depending on the person who 

tested the wearables, the conclusion could vary. If the person who tested the wearables found 

good agreement between the devices, it would not necessarily mean that this would work for 

prospective buyers too. The wearable would be promoted as accurate, while this may not be the 

case for many other wearers. The same could happen the other way around, if the person testing 

the devices finds low agreement between devices, for example due to skin color (Schäfer & 

Vagedes, 2013), the wearable would be classified as inaccurate, while for others it may work 

well. Even though some websites warn that this might happen, not all consumers might be 

aware of this. All in all, users of wearables should be cautious in relying only on a wearable for 

their heart rate. This is important, since one of the potential dangers of wearable use is over-

relying on the given data (van Dijk et al., 2015).  

 

Recommendations 

Limitations of the study. The present study could have been improved by better 

synchronization. The values of two of the wearables could only be analyzed on a 1 minute basis. 

This was the major flaw in carrying out the present study, since it was planned to analyze all 

the wearables on a 1 second basis. In this case, it did not influence the possibility to answer the 

research question, since the wearables did not meet the standards on a 1 minute basis and thus 

it can be concluded that the wearables would not meet the standards on a 1 second basis. For 

the sake of methodology it would have been better to be able to do analysis on a 1 second basis, 

since that is the frequency the wearables will most likely be used at.  

Another shortcoming of the present study was that no use was made of the coded 

behavior. This was due to unforeseen errors in the gathering of the logs, making it unreadable 
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in the Observer. This information could potentially have explained some of the variation and 

missing data.  

Not all wearables gathered the data in the same way in the present study. This was due 

to the Philips software for real time measuring not working in the first weeks of the experiment. 

By the time everything worked as it was supposed to, it was not feasible to implement the real 

time recording device into the experiment. The Biopac, Microsoft, Garmin and Motorola 

devices all measured real time, while the Elan saved all the data within the device, to be 

exported afterwards. This is one of the reasons the Philips was the device with the least missing 

data. Furthermore, there was no replication of the devices, meaning that one device was used 

without establishing that this one device was representative for all the devices in the series 

(Biopac MP 150, Microsoft Band 2, Garmin Forerunner 235, Motorola Moto 360 2nd gen, 

Philips Elan).  

Due to the use of the program for gathering the data for the consumer wearables, there 

was made use of the raw data of the wearables. This means that when the data was gathered the 

way the manufacturers intended, more filtering would be applied and there would have been 

less outliers. This could explain some of the discrepancies between the results of the present 

study and the manufacturer’s claims about the agreement of the wearable with traditional 

research equipment. There was chosen to gather the data this way to fit the use case, since 

researchers require access to the raw data instead of data that has been transformed in an 

unknown way. Other reasons are that when using this program, the data would not be stored at 

the manufacturer and some use cases required real time access to the data.  

It would have been better to have used another statistical analysis next to the Bland-

Altman method, but there was not sufficient time available to carry out further data analysis. 

By carrying out alternative calculations, such as the least product regression analysis or the 

concordance correlation coefficient, the slope would have been takin into account next to the 

absolute values. The use of a concordance correlation coefficient would lead to a conclusion if 

use of wearables is feasible in situations where change in values is generally more important 

than absolute values. This is important, since not only for consumer use, but also for research 

purposes, the change in heart rate might be as important as the absolute heart rate. This is for 

example the case in a study measuring stress. Since the present study was focused on absolute 

heart rate values, the use of another method would be of added value, but not necessary to 

answer the research question.  

Recommendations. For future validation research it is recommended to use the same 

way of measuring for optimal comparison, meaning that all wearables measure real time, or all 
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wearables do not. This will reduce the amount of different factors between the wearables that 

could have influence on the measurement. If the choice for real time measurement is made, it 

is important to use a tool appropriate for synchronization and monitor the synchronization 

frequently, to prevent later issues. When not measuring real time, it is as important to have 

correct synchronization, since the data will be collected independent of the other devices. The 

choice for either of these measurement methods, should depend on the goal of the research. If 

the end goal for the use of wearables calls for information real time, such as an adaptive training, 

it is best to test the wearables real time.  

Before starting a study, it would be good to do a pilot test to see if the chosen wearables 

are suitable for real time recording by testing the Bluetooth connection. Another 

recommendation is to follow the guidelines for reporting reliability and agreement studies from 

Köttner et al. (2011), which provides guidelines for each part of a research paper. It is also 

important to use appropriate statistical analysis, such as the Bland-Altman method or the least 

products regression analysis (Ludbrook, 2002). A concordance correlation coefficient is also an 

appropriate statistical method for evaluating reproducibility (Lin, 1989, Schäfer & Vagedes, 

2013). By combining multiple statistical calculations, agreement and reliability parameters can 

be assessed (de Vet et al., 2006), leading to a more complete image of the reproducibility of the 

device.  

It would be good to further research the different personal characteristics influencing 

accurate pulse rate measurement. The agreement between the wearables and the traditional 

research equipment was different per participant. No statistical analyses about personal 

characteristics, such as skin color could be done, since the subgroups would have been too 

small. The fact is that there were differences in the agreement per participant. For some 

participants the wearables were in more agreement with the traditional research equipment than 

with others. In future research it would be good to test a larger heterogeneous group participants 

and analyze the effects of characteristics such as skin color, age, hairiness and fat percentage. 

The differences between the devices should also be investigated further, since for different 

participants different wearables were more in agreement with the traditional research 

equipment.  

In general when doing research using wearables, there might be ethical concerns which 

are not as important when using traditional research equipment. The data gathered with 

wearables is not always stored in a secured place, mostly the manufacturer’s website, making 

it ambiguous who has access to the data (Ryan, 2016). This is an important consideration when 

selecting a wearable for independent research. When using a commercial device in research, 
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the data might be accessible to third parties too. In case of research which makes use of imposed 

or exploited self-tracking, the researcher might be the third party using the data without the 

users knowing. This is a sensitive issue, due to privacy of the user on one hand and the 

opportunities of big data on the other hand. Manufacturers of wearables should be transparent 

with their users about who has access to their data and why (Fort et al., 2016). When users are 

aware why and how their data is used, they might be more content with sharing their data. The 

availability of big data could give insight in all kinds of behavior and habits. This could 

contribute to the improvement of products for the users, for example when Strava’s heat maps 

are used to improve the most used bicycle tracks. Research in big data could also contribute to 

general knowledge about habits, for example when Jawbone examined sleeping patterns all 

over the world and found that people sleep on average least in Tokyo and most in Melbourne 

(Wilt, 2014). All in all, the implication of availability of big data is twofold, on one hand there 

is no clear statement on the privacy for users (Fort et al., 2016), but on the other hand big data 

could give interesting insights.  

 Another recommendation in general is to not use lower cost wearables to measure 

absolute heart rate in research until they are sufficiently validated. Until then it is better to use 

traditional research equipment, which is also available in wireless options, or as an alternative 

a validated chest strap, for example the Polar H7 (Polar, 2012). This may not be the most ideal 

option, but does meet some of the advantages of wearables, such as participant mobility. To be 

able to use absolute heart rate data from wearables in research, further development of the pulse 

rate technology is needed, as well as validation studies with correct statistical analyses.  

 

Conclusions 

 Wearable technology is not yet as far developed as one might wish. The heart rate 

measurements taken from consumer wearables do not fulfill the guidelines for heart rate 

accuracy as stated by the AAMI (2002). At the moment, it is not feasible to use heart rate 

measurements from those wearables in research when the use of absolute heart rate values is 

important.   
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Appendices 

Appendix A. The pilot study 

Introduction 

The goal of the experiment was to have an indication of the variation between 

subjects. For example, wearables are believed to be sensitive to the amount of melatonin in 

the skin (Spierer, Rosen, Litman & Fujii, 2015), or the fit of the device could be different for 

men and women (Wac & Tsiourti, 2014). In this pilot, a heterogeneous group of participants 

were tested, to see if and how their characteristics influence the results. This experiment 

focused on the differences in participants relevant for the wearable, meaning the difference in 

measurements, not the differences in the values. The aim was to get a handle on the amount 

and diversity of participants needed for the actual experiment.  

 

Method 

Participants 

Colleagues from the Wageningen office were asked to participate in the experiment. If 

they wanted to participate, they could chose a timeslot. Fifty timeslots were available, but a 

minimum of fifteen participants was accounted for. Seventeen persons volunteered to 

participate, thirteen of which were male, and four were female. Their age varied between 21 

and 56, with a mean of 38 and a standard deviation of 12.  

Apparatus 

Biopac. The participants had three electrodes attached to them from the Biopac. The 

Biopac was used as ground truth in this experiment, since it’s one of the most used devices for 

psychophysiological measurements. The electrodes were placed as recommended by the 

manufacturer, with the negative electrode on the right collarbone, the negative electrode on 

the left lowest rib and the ground electrode on the right lowest rib. A photo plethysmography 

(PPG) sensor was used on the right forefinger. Electrodes for electrodermal activity were 

placed on the palm of the non-dominant hand. One was placed on the palm just before the 

thumb and the other on the palm on the outer side.  

Empatica E4. The Empatica E4 is a new wearable device that aims to measure heart 

rate, heart rate variability, EDA, movement and temperature. Empatica wants to introduce 

wearables to the research market and claims the E4 to be accurate enough for 

psychophysiological research. The E4 is placed on the wrist and has different sensors at the 



 

37 

 

back of the top of the device. The participants wore the E4 on the wrist of their non-dominant 

hand.  

Procedure 

Participants were given an informed consent. Each participant was asked to place their 

wrist on a grey paper where a photo was taken. The participant was connected to the Biopac 

and the E4. They had to sit calmly for five minutes and walk around for two minutes.  

Analysis 

EDA. The raw values of EDA were used for visually checking the similarity between 

the devices. The frequency of SCRs were used for further calculation of similarity.  

HR. The beats per minute calculated by the devices, were used as values for 

calculations about the similarity. 

Participant characteristics. Different characteristics of the participants, such as age, 

sex, skin color, wrist size and amount of fat on the wrist, hair on the wrist and use of lotion on 

the wrist could influence the measurements. Sex, age and skin color were the most important 

of these variables. To have an objective measurement of skin color, the wrist of all the 

participants was photographed while placed on a grey background. Since the background of 

these photos is all the same, the skin color can be objectively measured. The skin color was 

rated on a scale from 1 to 5, based on standard deviations of the RGB color spectrum of all 

participants. Participants were also rated on a scale from 1 to 3 for the amount of fat and hair 

on the wrist. This was done by visual estimation. The participants were asked for age and use 

of lotion.  

Data analysis. Pearson’s correlation coefficients were calculated, to see to which 

extent the different devices match in their derived measures. The calculations were done per 

participant, so an estimation could be given about the variance between participants.  

 

Results 

 Data preparation for analysis 

The data was set up in two different forms, one with in each column the data of a 

specific participant with a specific device, and the other based on time, in which all the data 

was in the same column.  

Heart rate. The data from the Biopac had a lot of noise, mostly due to movements, 

and as was revealed later, old electrodes. This meant that the data was not as good as 

expected, resulting in a derived heart rate varying from 30 beats per minute to, in some cases, 

240 beats per minute. These outliers were deemed unrealistic, with regards to the activities of 
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the participants. Since movement was a big factor in creating the noise, only the values 

measured when the participant was sitting were used. To further solve this, the derived beats 

per minute data, without outliers were used. This meant that any value above or below two 

standard deviations from the mean was discarded. This resulted in realistic values for most 

participants. The data from the PPG from participant 3 was excluded, because even with these 

precautions, the standard deviation was still 19.31 and there were values below 30 bpm and 

above 140 bpm. The ECG data from participant 11 was also excluded, because and the 

standard deviation was 16.96 and there were many values above 130 bpm, when the previous 

value was around 75 bpm.  

Electrodermal activity. To calculate the amount of SCRs, a low-pass filter was used. 

The amplitude criterion for the present study was .01 µS and the criterion for the speed 

changes .000009 µS. the minimal gap between peaks was 700 ms. The SCRs were all in a pre-

defined window of 1-3 to 1-5 seconds, with a amplitude of .01 to .05 µS. The Biopac 

electrodes were not properly attached by participant 12 and 14, resulting in long periods of 

0.00 values. This data was not discarded, since for the calculation with the SCRs, it was not of 

a big influence. This is because the SCRs still occur by participant 12 and by participant 14, it 

happened in a period that the E4 gave little to no SCRs. The data of participant 15 was 

discarded, because the synchronization did not work.  

 

Heart rate 

Similarity between devices. The similarity of the devices was compared by visual 

estimation and by use of Pearson’s r. Figure 1 represents the visually estimated best similarity 

of the devices. Figure 1 shows the values of participant 5, in which clearly can be seen that 

the values vary more when measured by the Biopac, due to automatic algorithms in the E4.  
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 Figure 1. Beats per minute of participant 5 by three different measurements.  

 

The data of the worst similarity, as estimated visually, can be seen in figure 2. These are the 

values of participant 8, in which a difference is clear between the data from the E4 and from 

the Biopac (PPG and ECG).  

 

 

Figure 2. Beats per minute of participant 8 by three different measurements.  
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To have a statistical measurement of similarity, Pearson’s r was calculated between 

the E4 and the two measures of the Biopac. The values and significance level are displayed 

per participant in table 1.  

 

Table 1.  

Correlations between the E4 and the Biopac heart rate data.  

 

* indicates statistical significant data. 

  E4 - PPG Biopac E4 - ECG Biopac 

 Pearson’s r significance Pearson’s r significance 

Participant 1 -.08 .22 -.04 .50 

Participant 2 .14* .03 -.46* .00 

Participant 3   .02 .65 

Participant 4 .09 .11 .01 .82 

Participant 5 .14* .01 .14* .01 

Participant 6 -.03 .73 .00 1 

Participant 7 .33* .00 .50* .00 

Participant 8 .09* .10 .10 .07 

Participant 9 .17* .00 -.16* .00 

Participant 10 .04 .62 .08 .35 

Participant 11 .20* .00   

Participant 12 .37* .00 .12 .09 

Participant 13 .11* .03 .28* .00 

Participant 14 .39* .00 .42* .00 

Participant 15 .26* .00 .36* .00 

Participant 16 -.30* .00 -.31* .00 

Participant 17 .20* .00 .27* .00 

  

Variance. A table was set up with descriptive statistics of the variance in values per 

participant, as displayed in table 2. As can be seen, the mean heart rate differs from 

participant to participant. What is most striking in this table, is the differences in similarity 

between measurements. For some participants, such as 2, 4, 5, 7, 10, 15, and 17, the mean and 

standard deviation are very similar across the measurements. However, for other participants 

there are clear differences, such as participant 3, 8, and 16, where the mean heart rate differs 

almost or more than ten beats per minute.  
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Table 2.  

Mean and standard deviations of beats per minute per participant 

 E4 PPG ECG 

 Mean HR SD Mean HR SD Mean HR SD 

Participant 1    68.38 2.36 69.56 6.10 74.00 12.51 

Participant 2 69.98 3.06 69.49 3.20 68.24 1.39 

Participant 3 61.97 7.48   54.70 4.27 

Participant 4 74.84 6.21 73.81 6.99 73.89 6.11 

Participant 5 64.36 2.57 65.56 6.45 65.38 6.16 

Participant 6 75.22 8.81 72.42 6.00 72.22 5.61 

Participant 7 66.57 6.56 65.33 10.51 67.47 16.46 

Participant 8 80.75 4.55 90.55 9.82 90.53 9.41 

Participant 9 74.71 3.42 76.01 7.94 77.21 12.90 

Participant 10 64.35 4.38 63.85 3.63 64.38 4.13 

Participant 11 86.01 4.54 83.18 10.04   

Participant 12 71.40 2.99 69.85 5.05 68.61 9.49 

Participant 13 61.11 7.04 56.22 9.90 58.72 4.19 

Participant 14 81.19 8.55 78.63 4.52 78.32 5.43 

Participant 15 77.26 4.43 76.14 7.02 76.43 5.73 

Participant 16 69.23 19.53 56.69 7.37 55.78 5.72 

Participant 17 73.94 2.80 73.41 5.43 73.43 4.74 
   

 

Electrodermal activity 

Similarity between devices. The comparison between devices was done by using the 

raw EDA data and the amount of SCRs.  

Raw EDA data. The raw data of the EDA values were set up in a double Y-axis graph, 

so the relative changes could be compared. The similarity between devices differed per 

participant, as can be seen in figure 4 and 5. Figure 4 displays the data from participant 6, 

where the values had the same relative changes. In figure 5 the values of participant 3 are 

displayed, but the different measures look disparate.  
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 Figure 4. EDA values of participant 6 in micro Siemens by the E4 and the Biopac, 

relative over time.  

 

  
Figure 5. EDA values of participant 3 in micro Siemens by the E4 and the Biopac, 

relative over time. 

 

Pearson’s correlation coefficients for the devices were calculated, to have a measure of 

similarity. All correlations were significant, but few were above .6, which could be described 

as an adequate correlation. This was the case for participant 1, 5, 6, 7, 8, 9, 11, and 12. 

Participant 12 had a negative correlation, but this is not so relevant, it still indicates that the 

relation between the devices has an adequate correlation, only this relation is reverse 

compared to the others. Participant 5, 7, 8, and 9 had a strong correlation.  
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Table 3.  

Pearson’s correlation coefficients for the EDA values from the E4 and the Biopac. 

 

* indicates statistical significant data.  

 E4-Biopac 

 Pearson’s r significance 

Participant 1 .65* .00 

Participant 2 .46* .00 

Participant 3 -.16* .00 

Participant 4 .38* .00 

Participant 5 .98* .00 

Participant 6 .71* .00 

Participant 7 .84* .00 

Participant 8 .87* .00 

Participant 9 .89* .00 

Participant 10 .07* .00 

Participant 11 .70* .00 

Participant 12 -.65* .00 

Participant 13 .17* .00 

Participant 14 .35* .00 

Participant 16 .15* .00 

Participant 17 .58* .00 

 

SCRs. The devices were also compared in the amount of SCRs they detected. In table 

2 the values for the amount of SCRs can be found sorted by device. As can be seen, the values 

were not close to each other, which could be due to differences in sensitivity. Of interest is 

that the relative differences due to activity were sometimes comparable, such as with 

participant 3, 4, 6, 8, 9, and 11.  

 

Table 4.  

Amount of SCRs per participant, split by device and activity.  

 Sitting Walking Total 

 E4 Biopac E4 Biopac E4 Biopac 

Participant 1 29 44 0 37 29 80 

Participant 2 7 68 5 28 12 96 

Participant 3 38 75 8 14 46 89 

Participant 4 11 49 4 23 15 72 

Participant 5 2 89 2 15 4 104 

Participant 6 17 35 7 14 24 49 

Participant 7 31 66 8 22 39 88 

Participant 8 51 98 17 35 68 133 

Participant 9 5 54 1 17 6 71 
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Participant 10 8 59 10 40 18 99 

Participant 11 59 105 28 57 87 162 

Participant 12 16 65 8 116 24 181 

Participant 13 29 76 19 27 48 103 

Participant 14 20 85 38 62 58 147 

Participant 16 3 37 26 61 29 98 

Participant 17 1 36 0 50 1 86 

  

Influences of personal characteristics. To check for the individual differences between 

participants, a generalized estimating equation was run with amount of skin conductance 

responses as the dependent variable, participant number as subject variable, time and device 

as within subject variable, task as random factor and the characteristics skin color, amount of 

hair on wrist, width of wrist, gender and age as covariates. The only significant effect found 

was from task (χ = 24.97, α < .00). The unstandardized residuals were plotted and were 

normally distributed.  

 

Discussion 

As a pilot, the experiment was very useful, meaning that several factors that could be 

of influence were discovered before the actual research started. One of the most important 

findings was the unreliability of the data used as the gold standard, the Biopac. This was due 

to old electrodes and movements that caused friction on the electrodes. To solve this in 

following research, new electrodes were ordered and there was chosen to do ambulatory 

research, in which participants do not have to move much. To have better data, the ECG 

signal has to be cleaned, before using the derived beats per minute values. In this experiment, 

the used values from the Biopac for heart rate were not derived from a clean ECG, meaning 

that they may be less valid. Since this is the standard the E4 is compared to, absolute 

conclusions about the agreement between the devices cannot be drawn from this experiment 

only.  

 There seem to be differences between participants. For some participants the values 

are very similar in both devices, while for other participants there is no clear connection. This 

could mean that there are individual differences in play, but no significant factors were found 

for the electrodermal activity data.  

Since it was decided to do ambulatory research for the coming experiment, it would be 

inconvenient for the participants to have electrodes placed on their wrist. That could hinder 

their ability to type for example. The E4 is also one of the few wearables with EDA 

measurement, so for the coming experiment, only heart rate measurement will be used.  
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Appendix B. placement of the elctrodes 

 

An example picture of the correct placement of the electrodes for the ECG. Only three 

electrodes were used, 1 for the negative electrode, 2 for the ground electrode and 3 for the 

positive electrode.  

 

Figure obtained from van Dijk et al. (2013).  

 

Van Dijk, A.E., van Lien, R., van Eijsden, M., Gemke, R.J.B.J., Vrijkotte, T., & de 

Geus, E.J.C. (2013). Measuring cardiac autonomic nervous system (ANS) activity in children. 

Journal of Visualized Experiments, 74, (74). doi:10.3791/50073  



 

47 

 

Appendix C. Coding scheme from the Observer 

Independent variables 

- Participant number 

- Age 

- Gender 

 

 Observer XT coding scheme 

Activity 

- Working at desk 

- Meeting  

- Leaving desk 

- Leaving floor 

- Return to desk 

- Other 
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Appendix D. Position of the wearables per participant 

 

Participant left closest to 

hand 

second left right closest to 

hand 

second right 

1 Motorola Microsoft Band Garmin Philips 

2 Microsoft Band Motorola Philips Garmin 

3 Garmin Philips Motorola Microsoft Band 

4 Microsoft Band Garmin Motorola Philips 

5 Motorola Microsoft Band Garmin Philips 

6 Philips Motorola Microsoft Band Garmin 

7 Garmin Philips Motorola Microsoft Band 

8 Microsoft Band Garmin Philips Motorola 

9 Motorola Microsoft Band Philips Garmin 

10 Philips Motorola Microsoft Band Garmin 

11 Garmin Philips Motorola Microsoft Band 

12 Garmin Microsoft Band Philips Motorola 

13 Motorola Microsoft Band Garmin Philips 

14 Philips Motorola Garmin Microsoft Band 

15 Garmin Philips Motorola Microsoft Band 

16 Microsoft Band Garmin Philips Motorola 

17 Motorola Microsoft Band Garmin Philips 

18 Philips Motorola Microsoft Band Garmin 

19 Garmin Philips Motorola Microsoft Band 

20 Microsoft Band Garmin Philips Motorola 

21 Motorola Microsoft Band Garmin Philips 
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Appendix E. Description of discarding noisy data in ECG signal 

 

Most important feature to look into is the possibility to distinguish the normal ECG line, the 

upper, green, line. This should be as expected, with the regular peaks and valleys. When it is 

disrupted, only mark the data as good when the BPM line, the lower red line, is at a realistic 

value. Examples are below.  

 

 

Perfect example 

 

 

Kept, because R peaks are clearly distinct.  



 

50 

 

 

 
Kept, because no clear disruptions in ECG line. 0-values were removed after.  

 

 

 
Kept, because no clear disruptions in ECG line. 0-values were removed after.  
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Kept, but only because all the data from this participant has this noise in it. The ECG line is 

still clearly distinguisable. If this type of line occurs before/after loss of data/more disruption, 

it is discarded. If it seems to interfere with BPM, or looks like it could interfere BPM (by 

having high peaks in noise) it is discarded 

 

 
Discarded, since the ECG line is clearly disturbed.  
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Discarded, because some disruptions in ECG line cause unreliable values for BPM. 

 

 

 
Discarded, because participant is out of reach of the Biopac, as can be seen by minimal 

change in ECG line at the end – and afterwards.  
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Discarded, because of noise at the start and is still not normal at the end of this screen.  

 

 

 
Discarded, since noise is interrupting the ECG line. 
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Discarded, ECG line disrupted 

 

 
Discarded, ECG is not clear 
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Discarded, ECG line not clear, lots of influence on BPM 

 

 

 
Discarded, because more R-peaks are calculated than there should be, as can be seen in BPM 
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Appendix F. Plots to check for normal distributions of the differences for the averaged 

data 

 Normal distribution of the differences of the averaged data, as a prerequisite of the 

Bland-Altman analysis.  

 

 

 

Microsoft Band 
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Motorola 

 

 
 

Philips 
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Appendix G. Plots to check for normal distribution of differences for Philips 

 

Differences Biopac and Philips from the non-averaged data.  
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Appendix H. Plots to check normal distributions differences per participant 

 Participant 1  Participant 2  Participant 3 

  
 

 Participant 4  Participant 5  Participant 6 

 
 

 

 Participant 7  Participant 8  Participant 9 

No Philips data 
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 Participant 10  Participant 11  Participant 12 

 
 

 

Participant 13  Participant 14  Participant 15 

 
 

 

 Participant 16  Participant 17  Participant 18 
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 Participant 19  Participant 20   Participant 21 
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Appendix I. Distributions of original and log transformed Biopac-Philips differences per 

participant 

Histograms to show the distribution of the original and log transformed differences.  

 

Participant 9  

Original data Log transformed data 

 

 

 

Participant 10 

Original data Log transformed data 
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Participant 12 

Original data Log transformed data 

 

 

 

 

Participant 14 

Original data Log transformed data 
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Participant 20 

Original data Log transformed data 
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Appendix J. Bland-Altman plots per participant of the Philips data 

 

 

 Participant 1  Participant 2  Participant 3 

 

 
  

 

 Participant 4  Participant 5  Participant 6 

 

 
 

 

 

 Participant 7  Participant 8  Participant 9 

No Philips data 
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 Participant 10  Participant 11  Participant 12 

   

Participant 13  Participant 14  Participant 15 

 
  

 Participant 16  Participant 17  Participant 18 

   

 Participant 19  Participant 20   Participant 21 
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Appendix K. Bland-Altman plots per quality scale  

Normal distribution of the differences and Bland-Altman plots of Biopac and Philips 

data. 

Quality = 0 

Original data Log transformed data 

 
 

The differences are also not normally distributed with the log transformed data, so the 

original data is used for the Bland-Altman plot.  
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Quality = 1 

Original data Log transformed data 

  
The differences are not normally distributed with the log transformed data, they are 

skewed to the left, so the original data is used to make the Bland-Altman plot.  
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Quality = 2 

Original data 

 

Log transformed data 

 

 

The differences are not normally distributed with the log transformed data, they are 

skewed to the left, so the original data is used to make the Bland-Altman plot.  
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Quality = 3 

 

The differences are normally distributed.  
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Quality = 4 

The differences are normally distributed.  

 

The differences are normally distributed.  

 

 
 
 


