
i

Master Thesis: Detecting Exploit kits using Machine

Learning

Author: Pallavi Jagannatha (pallavijagannatha@gmail.com)

MSc: EIT Digital Master on Security and Privacy

Graduation Committee:

Dr. Zhiyuan (Thomas) Tan (Edinburgh Napier University)

Dr. Andreas Peter (University of Twente)

Dr. Alexandr Vasenev (University of Twente)

Christian Prickaerts (FOX-IT)

Maarten Van Dantzig (FOX-IT)

Martin van Hensbergen (FOX-IT)

ii

Abstract

The job of a security analyst is often similar to the task of finding a needle in a haystack

when the clock is ticking. It is not about having the knowledge of computing and networking

on a level of how it functions, but it is about finding something that is present underneath the

covers. A security analyst has to go through a lot of data manually to learn/identify about a

security incident. However, it is not only time-consuming, but also difficult to perform a

thorough analysis of large data manually. This work focuses on providing an efficient

methodology for a two-layer detection scheme, which is not only lightweight but also

effective in attack detection and clustering.

Exploit kits are a serious cyber threat today as they are responsible for a big percentage of

malware infections worldwide. Everyone from inexperienced hacker to a sophisticated

cybercriminal can use an Exploit kit to spread malware. An Exploit kit is a tool which detects

and Exploits the vulnerabilities present in a system to spread malware (banking malware,

ransomware, etc.). An Exploit kit typically has a management console, add-on functions and

a set of vulnerabilities that can Exploit different applications (which have security-related

vulnerabilities) to launch an attack. The whole process is automated which makes it very

effective. Exploit kits contribute to a significant portion of web-based threats on the internet

today, creating an effective staging ground for criminal activities. Through the extensive

history of Exploit kit attacks, it is evident that it is important to have an effective system in

place to detect and defend users from such attacks.

This research project has developed a new approach for the automatic detection of a network

security incident, namely Exploit kits in this work. This research uses machine learning to

detect Exploit kits with the help of supervised and unsupervised learning approach. The

feature selection based on information gain allows data itself to explain the importance of

individual features for the detection. This helps human experts avoid tedious manual feature

selection.

Keywords: Exploit kits, Supervised learning, Unsupervised learning, Feature selection,

Naive Bayes, K-means clustering, Vectorization, Information Gain.

iii

Dedication

I would like to dedicate my thesis to my Appa (Father), Jagannatha K.N, my Amma

(Mother), Padma B.K, my eldest sister, Dr. Pushpa Jagannatha, my brother-in-law, Dr.

Vinay K.S, my elder sister, Ramya Jagannatha, my niece, Abhigna Sanvi, my Ma1,

Ingrid Muller-Farny, my Ma2, Roetie Adams, and my dog, Tippu. I would like to thank

them for their unconditional love, support and encouragement.

iv

Acknowledgements

I would like to use this opportunity to express my gratitude to my supervisors from the

University of Twente, Dr. Zhiyuan (Thomas) Tan, Dr. Andreas Peter and Dr. Alexandr

Vasenev for their guidance, advice and support in my research and academic developments.

I would like to specially thank my supervisor, Dr. Zhiyuan (Thomas) Tan for motivating me

to build my machine learning knowledge. Without that knowledge and his guidance, this

research would not have been possible. I appreciate that he believed in me to provide his time

and knowledge to make this possible. Dr. Zhiyuan (Thomas) Tan is a great person and a

scholar; without him, this thesis may not have been written.

I would like to thank my supervisors from FOX-IT, Barry Weymes, Christian Prickaerts,

Maarten Van Dantzig and Martin Van Hensbergen for providing me with an intellectual

environment, constant support and the long discussions about my research.

I would like to thank Renato Fontana, Dirk-Jan Korpershoek, Yonne de Bruijn, Lennart

Haagsma, Antonios Terefos, Leon Buikstra, Erik Schamper, Max de Bruijn, Gina Doekhie,

Mike Stokkel, Matthijs Gielen, Pepijn Westen, Bradley Prent from FOX-IT for their valuable

insights on my research.

I would like to thank my best friends at FOX-IT, Valentijn Harmers, Maarten van Dantzig

Paolo Schipani, Juno Teeuw, Claudia, Paul Platanias and Rolf Don for their support,

encouragement, and making my research experience at FOX-IT a memorable journey.

Finally, I would also like to thank David Fincher, a movie director, who inspired me to

pursue my masters in Cyber Security through his movie "The Girl with the Dragon Tattoo".

v

Contents

Abstract .. i

Dedication .. iii

Acknowledgements .. iv

List of Figures ... viii

Abbreviations .. x

Chapter 1 Introduction ... 1

1.1 Research question ... 2

1.1 Contribution .. 2

1.2 Limitations and scope ... 3

1.3 Structure of the report .. 4

Chapter 2 Related Work .. 5

2.1 Analysis of Exploit kits ... 5

2.1.1 PExy .. 5

2.1.2 Anatomy of Exploit Kits, Preliminary Analysis of Exploit Kits as Software Artefacts 6

2.1.3 MalwareLab ... 6

2.1.4 Manufacturing Compromise: The Emergence of Exploit-as-a Service 7

2.2 Detection of Exploit kits .. 8

2.2.1 Kizzle .. 8

2.2.2 EkHunter .. 9

2.2.3 WebWinnow .. 9

2.2.4 Revolver ... 9

2.2.5 JSAND ... 10

vi

2.2.6 Cujo .. 10

2.2.7 Hidost ... 10

2.2.8 Learning to detect and classify malicious executables in the wild 11

2.2.9 Unsupervised anomaly-based malware detection using hardware features 11

2.2.10 Next-generation of Exploit kit detection by building simulated obfuscators 11

Chapter 3 Background and main concepts ... 12

3.1 Bro Network Security monitor logs ... 12

3.2 Exploit kits ... 12

3.1.1 Background and origin: .. 13

3.1.2 How an Exploit kit works .. 14

3.3 Machine Learning .. 16

3.2.1 Supervised learning .. 18

3.2.2 Unsupervised learning ... 20

3.4 Multinomial Naive Bayes .. 21

3.5 K-means clustering ... 23

3.6 Input data .. 24

3.7 Textual data to numeric format .. 24

3.7.1 Word count vector ... 24

3.8 Feature selection .. 25

3.9 Scikit- library ... 26

Chapter 4 Method ... 28

4.1 Feature selection through information gain ... 29

4.2.1 Malicious/Bad data for training ... 32

4.2.2 Legitimate/Good data for training ... 33

4.3 Layer 1 - Textual data to numeric format ... 34

vii

4.3.1 Term frequency and inverse document frequency (TFIDF) ... 34

4.3.2 Word count vector ... 38

4.4 Layer 1 - Multinomial Naive Bayes. ... 38

4.5 Feature selection for k-means clustering ... 41

4.6 Layer 2-Textual data to numeric format ... 41

4.6.1 Uni-gram characterisation ... 41

4.7 Layer 2 - K-means clustering ... 44

4.7.1 Visualisation and Principal Component Analysis ... 45

Chapter 5 Results .. 47

5.1 Analysis of Features .. 47

5.2 Accuracy of the Classifier on the Training Set... 48

5.2.1 Cross Validation ... 48

5.3 Accuracy of the classifier on the Test Set ... 55

5.4 Accuracy of Clustering... 55

Chapter 6 Conclusions .. 58

6.1 Future work ... 59

7 References ... 61

viii

List of Figures

Figure 2.1: Architecture of PExy . Adapted from [44])...5

Figure 2.2:Infections per time window per Exploit kit. Adapted from [58]..............................7

Figure 2.3: Architecture of Kizzle. Adapted from [43]...9

Table 3.1: Timeline of Exploit kits..14

Figure 3.1: Overview of a typical Exploit kit attack..15

Figure 3.2: A general framework for the machine learning approach.....................................17

Figure 3.3: A general framework for the Supervised Machine Learning approach.................19

Figure 3.4: A general framework for the Unsupervised Machine Learning approach.............20

Figure 4.1: Overview of the methodology...28

Table 4.1: Malicious data set up for training..33

Table 4.2: Legitimate data set up for training..34

Table 4.3: set of documents used set up as an example for TFIDF vectorisation....................35

Table 4.4: Term frequency and inverse document frequency calculation for the documents..37

Table 4.5: Vector from of the documents calculated using Term frequency and inverse

document frequency calculation...37

Table 4.6: An example for work count vector..38

Table 4.7: An example for multinomial Naive Bayes Classification.......................................39

Table 4.8: Input data for Uni-gram Characterisation...43

Table 4.9: Output of Uni-gram Characterisation...44

Figure 4.2: Principal Component Analysis . Adapted from [63]...46

Figure 5 1: Analysis of features using Information gain..47

Figure 5-2: Performance of the classifier for K=1...49

ix

Figure 5.3: Performance of the classifier for K=2...49

Figure 5.4: Performance of the classifier for K=3...50

Figure 5.5: Performance of the classifier for K=4...50

Figure 5.6: Performance of the classifier for K=5...51

Figure 5.7: Performance of the classifier for K=6...51

Figure 5.8: Performance of the classifier for K=7...52

Figure 5.9: Performance of the classifier for K=8...52

Figure 5.10: Performance of the classifier for K=9...53

Figure 5.11: Performance of the classifier for K=10...53

Table 5-1: Performance of the classifier on the training data using K-fold validation............54

Figure 5.12: Performance of the classifier on the test data..55

Table 5.2: Performance of the classifier on the training set...55

Figure 5.13: Calculation of the value of K using Elbow method for the test data...................56

Figure 5.14: Visualisation of clusters of the test data using Principal Component

Analysis..56

Figure 5-15: Distribution of different types of Exploit kits in the test data.............................57

x

Abbreviations

SOC Security Operation Centre

SSE Sum Squared Error

IDS Intrusion Detection System

NB Naive Bayes

TFIDF Term Frequency Inverse Document Frequency

1

Chapter 1 Introduction

 The internet was originally developed when computers were huge and expensive.

Only a few organizations, such as universities, business organizations and governments could

afford them. We had a network of computers when these computers started communicating

with each other and it grew up as Personal Computers (PCs) which emerged in 1980s. People

started using it for more than just communication. Other devices, such as phone, cell tower

and so on started connecting with them. Today’s world is made of computers, laptops, tablets

and smart-phones. We use them for communication, work, news and entertainment.

Furthermore, we connect to a global network that brings the entire world to us via them. We

extend ourselves to the online world through our devices. We are always connected to a

global network; this means we could be vulnerable just by being connected. The ease at

which all these devices could connect with each other has come at the expense of security.

The widespread use of multiple new platforms gives rise to new points of attack for cyber

criminals. Exploits are malicious programs that contain an executable code with an intent to

take advantage of one or more vulnerabilities present in the software running on a remote

device. An Exploit kit is a toolkit that contains Exploits to spread malware. The Exploit kits

have become powerful and easily available, enabling even less technically proficient

cybercriminals to take advantage of them. Therefore, common devices such as computers,

laptops, tablets and smart-phones, now need methods to monitor and handle the security

breaches.

Before considering the methods to handle security breaches, it is important to understand

where we stand from the security point of view. A security analyst has to go through a lot of

data to learn/identify about a network security incident. As of now, the security analysts are

investing their time and efforts to do their best by investigating the security incidents in the

data manually. However, they can do a lot better with tools that can optimise their work.

There are many security events generated by many devices which detect abnormal behaviour

in the network. This has led to the obvious problem of generation of enormous amount of

data. Added to this, some events reported could also be a case of false alarm at times.

Despite having enormous data filled with all the valuable information, it is still a lot of work

to obtain the needed information in order to detect, prevent and respond to network security

incidents. It is only logical to build upon the knowledge obtained from understanding the past

incidents that can help to respond to incidents effectively. This is where machine learning can

help to address the issue and automate the process.

Applying well known machine learning algorithms to build and train the machine to detect a

network security incident allows a security analyst to choose a fitting solution based on the

requirements specification. This research focuses on detecting Exploit kits using both

supervised machine learning approach and unsupervised machine learning approach. This

research can make a significant positive impact to security companies as it can help them

with their Security Operation Centers (SOC).

2

1.1 Research question

Exploit kits are currently the most powerful weapon used to spread malware on the Internet.

This is a big threat to Internet security as it allows cybercriminals to easily infect a large

volume of machines Exploiting various software vulnerabilities. The impact of Exploit kits is

dramatic since a cyber criminal can perform several kinds of attacks, like identity theft or

banking fraud using them.

This thesis revolves around the threat of Exploit kits, in particular to provide an efficient

methodology to detect and cluster different types of Exploit kits. This can reduce the manual

efforts that has to be made by security analysts in detecting this network security incident.

How to design an efficient and automated approach to detect Exploit kits and cluster them

further into different types?

1.1 Contribution

By combining the supervised and the unsupervised machine learning approaches, this work

takes the idea of a two-layer detection scheme which provides an effective classification and

clustering of the Exploit kits.

In supervised approach, instances, namely data objects, are assigned with pre-defined

category labels. The malicious data (i.e. Exploit kit) and legitimate data are the pre-defined

labels in this work. The given new instance is assigned a label based on the likelihood

suggested by the training set of labelled instances. This method requires manual labelling of

the data; and in unsupervised approach, there is no need for labelled instances or human

intervention at any point in the whole process but poses the difficulty to determine the

number of clusters in advance. Therefore, significant research efforts have been invested to

bridge the gaps.

The combined efforts of these two techniques can reduce the manual efforts that has to be

made by security analysts in detecting this network security incident. This research provide

an efficient methodology of two-layer detection scheme to classify and cluster the Exploit

kits of all different types.

This two layer detection scheme can be used when clients have HTTP logs, which in this

research project are BRO HTTP logs. In general, these HTTP logs could also come from a

proxy or firewall log. Many companies do have HTTP logs available rather than PCAP files,

which is commonly used in network-based IDS. Knowing the type of Exploit kits is useful,

because the types of Exploits served by various Exploit kits can help an analyst in assessing

the possible damage the Exploit kit could to the end users of a certain network. For example

if Exploit D only employs Flash Exploits, while all end users in the attacked network do not

have Flash installed, there is little damage to be done by this specific Exploit kit.

Contributions to FOX-IT:

This research was conducted in cooperation with Fox-IT, a Netherlands-based security

company. Fox-IT prevents, solves and mitigates the most serious cyber threats. The Security

incidents are now more sophisticated, specific and adaptable. This makes the detection and

3

prevention of such attacks harder. Security analysts are urged to reduce cyber criminals’ free
time within the network, to reach root causes quicker, and to gain knowledge from recent

incidents to reduce future attacks. With the time sensitive nature of security incidents, it is

important to have automated tools to help an analyst investigate the network security

incidents as it can save time. This research project presents FOX-IT a proof of concept that

automates the detection of various types of Exploit kits.

Contributions to Society:

The cyber security landscape is getting complex. The potential cyber threats and the increase

in sophistication of attacks urges the security engineer to be technically proficient enough to

fight as innovation in the digital world happens much faster than that in the physical world.

Thus, this research is intended to address this problem. Moreover, with Internet of Things

(IoT) getting popular, there are going to be many security incidents to be examined. The

research achievements of this project could help to reduce the manual efforts to be made to

detect the Exploit kits.

Contributions to Science:

This research project will contribute optimised methods to detect Exploit kits effectively and

to reliably identify various kinds of Exploit kits without demanding expensive time and

efforts. The outcomes of this project will serve as the foundation for the future work to be

done in this field.

1.2 Limitations and scope

As with any research, there are limitations to be taken into consideration. The malicious data

of Exploit kits used to set up the training data does not have the name of the respective

Exploit kit family/group each Exploit kit belongs to. The second stage of the work involves

clustering of the data which indicates the possible number of different Exploit kits'

family/group present in the data. It is usually very difficult to determine the accurate number

of clusters.

Following the above considerations, our aim is to demonstrate the effectiveness of the

introduced methodology and as a generic example, this work will apply it to the data derived

from the post classification stage. Also, when it comes to results of clustering, this work does

not focus on deep analysis of the clusters formed, that is the different families/groups of

Exploit kits formed, as it beyond the scope of this research due to time constraint.

The aim of this study is to evaluate the performance of the supervised machine learning

algorithm and the unsupervised machine learning algorithm used in this work. The work

proposes that the unsupervised machine learning can be used to give feedback to the security

analyst to aid in the task of identifying the type of Exploit kits used to target the network

and/or customers when signature based Intrusion Detection System is not in place. This study

will form the basis for developing a hybrid approach of supervised and unsupervised

paradigm to the domain of network security by effectively classifying and clustering the

Exploit kits.

4

1.3 Structure of the report

The rest of this report is structured in the following fashion. The prior work related to

analysis and detection of Exploit kits is presented in Chapter 2. Thereafter, the main concepts

and the terminologies used throughout the report is introduced in Chapter 3. The concepts of

machine learning used in this work is also included in this chapter. The intersection

of machine learning and network security concepts used to answer the research question is

presented in Chapter 4. The methodology of this work is also included in this chapter . The

results and significance of this work is presented in Chapter 5. The conclusion of this work is

presented in Chapter 6.

5

Chapter 2 Related Work

Before going through this work, it is important to take a look at the existing work related to

detection of Exploit kits, specifically paying attention to the most advanced techniques and

strategies used by security researchers. There are basically two techniques, namely static

analysis and dynamic analysis, to detect malicious activities on the web pages. The static

analysis uses some static features and the source code of the web pages to characterize the

malicious payload. The dynamic analysis focuses on analysis of the behaviour when a web

page is loaded and executed in a browsing environment. A strategy common to both static

and dynamic analysis is that they extract features to capture the patterns that can identify

malicious payloads in web pages, based on which classification method is decided, generally

using machine learning techniques.

Exploit kits are not an easy threat and cannot be tackled easily as they have different software

components. Hence, this requires a diversified approach to detect and defend. Only by

combining different types of solutions one can build an effective detection system which can

identify Exploit kits and prevent the Exploitation of vulnerabilities.

In recent years, many behaviour-based strategies based on sandboxes and script analyzers

that execute scripts and code snippets in a protected environment are used for the detection of

Exploit kits. There are also web-based solutions to analyse URLs that is usually

implemented in browsers. They help add these compromised websites to blacklists to prevent

users from visiting these web pages. Then there are file-based solutions which can help in the

post-infection stage, that is after the malicious payload is delivered to the victim's system.

They look for the malicious executable in the file system and block the same to not to allow it

to run on the victim's s system anymore.

2.1 Analysis of Exploit kits

This further section presents work related to analysis of Exploit kits.

2.1.1 PExy

De Maio et al. [44] provide analysis of the source code of multiple Exploit kits.

Figure 2.1: Architecture of PExy . Adapted from [44])

6

PExy presents detailed overview of the server-side part of the Exploit kits, performing static

analysis, De Maio et al. have discovered the important coding practice followed, interesting

detection mitigation techniques and the methods used by the Exploit-kit authors to decide on

the type of Exploit kits to be served.

The static analysis of the source code to extract as many Exploits as possible aims to provide

the entire set of checks that an Exploit kit performs to decide on the right kind of Exploit to

deliver to the victim. The difficult part is to generate the configuration that can extract all the

possible Exploits associated with a kit. The study also presents the common practices

followed by Exploit kit developers and shows that the signs of similarities are found among

the different families/kinds of Exploit kits. when some detection system identifies an Exploit

sent by an Exploit kit, the URL is normally flagged as malicious. Since each Exploit kit has

several Exploits, flagging a web site as malicious based on this detection is not enough. This

is because one can easily miss out on updating signatures present in the antivirus for all the

Exploits present in the detected Exploit kit. The PExy uses the source code of an Exploit kit

to find and narrow down set of URL parameters and user agents to extract all the possible

Exploits from a particular Exploit kit. The set of parameters extracted from an Exploit kit also

work very well with an Exploit kit from another family since many Exploit kits from

different families share a certain amount of code in common. The figure 2.1 presents the

architecture of PExy. The goals of this research are 1) to find HTTP parameters dependant

branches in the code 2)to find the set of parameters that these branches depend on. This can

characterize an Exploit kit with a collection of HTTP parameters, and a set of values for those

parameters that can cover the largest portion of source code possible. The results of this study

show that in spite of complex analysis on the server-side components of an Exploit kit, it is

not a simple task to trigger a complete Exploit kit execution (involving all the Exploits) even

with big set of URL parameters.

2.1.2 Anatomy of Exploit Kits, Preliminary Analysis of Exploit Kits as

Software Artefacts

Kotov et al. [57] present a comprehensive analysis performed on the source code of more

than 30 different Exploit kits. The surprising revelation from this research is that the number

of vulnerabilities targeted by the tested Exploit Kit is very limited, and modes of attack are in

fact very simple. The strength of the Exploit kits lies in the possibility of choosing suitable

Exploits and way to monitor traffic. The analysis is based on source code obtained from more

than 30 different Exploit kits. They focused their investigation on functional features of the

Exploit kits, their delivery mechanisms, the evasion techniques used by them, code being re-

used, and code protection mechanisms used. This leads to a conclusion that Exploit kit

developers' primary concern is to improve the experience of their customers, and the

functionalities common to all Exploit kits are user-agent validation, code obfuscation, IP

blocking, use of commercial code protection tools and a management board for the

customization of the kit.

2.1.3 MalwareLab

Allodi et al. [58] Present MalwareLab, an isolated environment where Exploit kits were

installed and analysed. Their experimental approach examined the features and functionalities

of these different Exploit kits. They tested the strength of these Exploit kits in terms of their

7

resilience against change of software in time and the results showed for how long they could

effectively perform. The Exploit kits collected were from the period of 2007 to 2011.

Their first experiment in this direction failed because of the fact that the different Exploits in

an Exploit kit were engineered well enough to work regardless of the state of the memory on

the victim's machine. Figure 2.2 shows the results for the resilience of the Exploits kits

against software configuration updates. This graph basically shows three types of Exploit

kits. The first group contains Exploit kits that show similar trends in infecting effectiveness.

These were poor quality Exploit kits. The curves are identical for these Exploit kits which

indicate that these kits have the same Exploits. The second group of Exploit kits exhibit

significantly high resiliency. In the figure 2.2, Shaman exhibits better performance in

comparison to Eleonore. The third group contains Exploit kits that were designed to be

effective for a specific period of time. In the figure 2.2, Eleonore shows high infection rate

till 2008 and drops significantly in the following years. These are time-specific Exploit kits.

Through the experiment, Allodi et al. have demonstrated that some Exploit kit developers put

in great efforts in writing resilient code and this can be clearly seen in high quality Exploit

kits. The higher quality kits are effective for a longer period of time with lower peaks and low

quality kits infect more number of victims in a short period of time but have lower resilience.

This work demonstrates the performance of Exploit kits over time in terms of "quality".

Figure 2.2:Infections per time window per Exploit kit. Adapted from [58]

2.1.4 Manufacturing Compromise: The Emergence of Exploit-as-a Service

8

Grier et al. [59] present the concept of Exploit-as-a-service which is one of the major threats

for internet security. This research examines the topics such as the amount of traffic

generated in the malicious website after the malware is successfully installed on the victim's

machine, possibility to support the kit with custom malware, overview of the prevalence and

statistics of malware binaries. These malware binaries are divided into families to portray the

characteristics of each family along with the respective preferred channel used for their

delivery. This research has collected data of 77.000 malicious URLs provided by Google

Safe Browsing and a crowd-sourced blacklist. This work considers DNS traffic from real

network, provides statistics on the popularity of the malware families, and lifetime and

popularity of the domains that are part of drive-by-download infections. This work describes

the overview of the malware landscape with its various delivery channels such as droppers,

email, drivebys, and warez. This work shows that due to the short lived domains hosting

Exploit kits and cloaking techniques, the Crawler-based detection systems are not very

effective. Therefore, in-browser defensive strategies prove to be an efficient approach as it

can mitigate the difficulties about locating and decloaking.

2.2 Detection of Exploit kits

This further section presents work related to detection of Exploit kits.

2.2.1 Kizzle

Stock et al. [43] present the first prevention technique to find Exploits kits. This is named

Kizzle which can recognise the JavaScript code used by Exploit kits. With their analysis of

the JavaScript code used by Exploit kits, they found out that the infection code obtained after

deobfuscation does not vary much from one Exploit kit instance to another. This fact is used

to build a detection system which is resilient to superficial changes in JavaScript code. Kizzle

can detect Exploit kits delivering JavaScript code with signatures which can reduce the

manual work of a security analyst. This work also shows detailed description of evolution of

Exploit kits with time. This work analyses four families of Exploit kits. This work is

restricted to JavaScript code to derive signatures by using unsupervised learning method for

different families of Exploit kits. Kizzle generates anti-virus signatures and can generate new

signatures within hours to find Exploit kits. Figure 2.3 shows the architecture of KIZZLE.

This malware signature compiler has false-positive rate under 0.03% and false-negative rate

under 5%.

9

Figure 2.3: Architecture of Kizzle. Adapted from [43]

2.2.2 EkHunter

Eshete et al. [60] present an effective counter-offensive model against the threat of Exploit

kits after surveying 30 real-world Exploit kits. They adopted an offensive approach to find

vulnerabilities in Exploit kit source code. They obtained good results with their approach as

they found more than 180 vulnerabilities in the Exploit kits surveyed. Their experiment

showed that Exploit kits did not implement protection mechanisms to resist counter-offensive

attacks. Eshete et al. have designed a tool, EkHunter which can detect vulnerabilities in

Exploit kit's code. This information can be used to find the identity of the kit user and to

compromise an Exploit kit. Their strategy can accelerate the process of detecting and taking

down the botnets which are big threat to Internet security today. They explain the problem of

kit infiltration and the steps that led to the deployment of the vulnerability analysis system.

They also discuss the ethical and legal implications of their approach.

2.2.3 WebWinnow

Eshete et al. [11] present WebWinnow to detect URLs hosted by Exploit kits. They have built

a detection system based on features extracted from over 40 Exploit kits. It uses machine

learning techniques to train a classifier based on both the attack-centric behaviour and the

self-defence behaviour exhibited by the Exploit kits. Attack-centric features are those features

involved in the actual infection, such as fingerprinting, obfuscation, etc. The features such as

evasion techniques and IP blocking are the features related to self-defence behaviour. when

an unknown URL is presented to the detection system, WebWinnow analyses the URL under

test to check if it matches with the pattern of known Exploit kits' URLs. The performance of

the classifier has a true positive rate of about 99% on a separate testing sets except for the

Random Tree classifier.

2.2.4 Revolver

Kapravelos et al. [61] present a novel approach to automatically identify evasive behaviour in

JavaScript code with Revolver. Revolver is a very efficient tool for evasion detection which

can compare the code under test with a large database of JavaScript programs in terms of

their similarities and differences to detect the evasive code. Revolver dynamically analyzes

the code, executing and monitoring it to examine any code generated at runtime as well as

10

static code. The analysis made by Revolver consists of several phases. During the first phase,

Revolver compares the different scripts and detects syntactic-level differences in each cluster.

In the next phase, Revolver then figures out the effects of the differences on page execution.

In the final phase, it tries to detect presence of evasion routines. The main contribution of

their work is an efficient code similarity detection technique and an evasive code detection

engine. The code similarity detection technique is based on Abstract Syntax Tree analysis and

dynamic analysis techniques that are resilient to polymorphism, dynamic code generation and

obfuscation. The evasive code detection engine is based on different classification of similar

scripts.

2.2.5 JSAND

Cova et al. [62] present a detection approach that employs both anomaly detection and

emulation techniques to uncloak any hidden behaviour of the JavaScript code. This work

focuses on malicious applications of the JavaScript code such as attacks on browsers and

their plug-ins that can enable drive-by-download attack. They present a tool called JSAND

(JavaScript Anomaly-based Analysis and Detection). This has been tested over 140,000 web

pages and can be used to analyze a suspicious URL and files. This tool can detect zero-day

drive-by downloads as it has both anomaly detection and machine learning techniques which

can be used to compare the behaviour of the emulated JavaScript code under test with a

learned model of benign JavaScript code execution. The detection system then generates a set

of signatures that can be implemented in a signature-based system.

The system uses an instrumented browser to visit a webpage to analyze the events that would

be triggered during the HTML elements interpretation and JavaScript code execution. The

system extracts one or more features for each event and these features are classified as either

anomalous or non-anomalous using anomaly detection techniques. The system also provides

the attack's details such as Exploits used.

Cova et al. have identified ten features that efficiently identify drive-by download attacks

with their intrinsic characteristics. This work also generates signatures that can deobfuscate

obfuscated JavaScript code.

2.2.6 Cujo

Rieck et al. [63] present a system, CUJO which is embedded in a web proxy to efficiently

detect drive-by-downloads with emphasis on malicious JavaScript. Rieck et al. have made

use of both static and dynamic analysis to examine the JavaScript code. They have built and

trained a binary classifier with JavaScript features to detect drive-by-downloads using

Support Vector machines. This classifier provides a detection rate of 95% with an average

analysis time of 0.5 seconds per a web page and low false alarms.

2.2.7 Hidost

Šrndić et al. [45] provide the first static machine-learning-based malware detection system,

Hidost, which operates on multiple file formats such as PDF and SWF (Flash). The results

show that Hidost has outperformed most of the antivirus engines deployed by the website

virus total in detecting highest number of malicious PDF files.

11

2.2.8 Learning to detect and classify malicious executables in the wild

Kolter et al. [46] provide a method to detect and classify malicious executables using

machine learning and data mining. They set up a training set with benign and malicious

executables using n-grams to characterise the features. They have used Naive Bayes,

Decision tree, and support vector machines algorithms. They have achieved the accuracy of

97.11 % with Naive Bayes algorithm.

2.2.9 Unsupervised anomaly-based malware detection using hardware features

Tang et al. [47] have presented a detector, which works based on unsupervised machine

learning to find malware Exploits. They have carefully selected micro architectural features

to build baseline models of benign program execution and then use the same profiles to detect

deviations that occur due to malware Exploitation. The approach works better along with

signature-based detectors to improve the security as it can serve as complementary to

signature based detectors.

2.2.10 Next-generation of Exploit kit detection by building simulated

obfuscators

Luo et al. [1] provide a rather structured approach towards Exploit kit detection, but it is case

specific (JavaScript samples of 5 Exploit kit families). They have aimed to minimize the

manual efforts when reproducing the obfuscator (reverse engineering the obfuscator from

obfuscated samples) based on JavaScript normalization technique and hierarchical cluster

algorithm. They have opted for agglomerative approach to measure the proper threshold to

best classify samples depicting the timeline of Exploit kits from the perspective of the

evolution of its obfuscator.

There have been many different efforts to provide an effective approach for the automation of

detecting different kinds of Exploit kits. The understanding about identifying the different

types of Exploit kits present in the network traffic is the key. This in turn can be used to

generalise which can be used for the automation.

Unlike the others' work that has opted for either supervised learning technique or

unsupervised learning technique and not both in combination, this work makes use of both.

This work relies on the features that are extracted from HTTP log file to characterize the

behaviour of the Exploit kits. These derived features are used for the detection. In the first

layer, this work uses Multinomial Naive Bayes algorithm to detect the Exploit kits as

Multinomial Naive Bayes is a fast algorithm with low storage requirement. This is a

supervised machine learning algorithm and is robust to irrelevant features as they tend to

cancel each other out without affecting the results. This algorithm works best when many

equally important features are to be considered as it is the case in this work. It provides a

good dependable baseline for classification involving text data.

This work opts for clustering of the data in the next layer of the work. Clustering is the type

of unsupervised learning which groups the data points that share common characteristics. To

measure the similarity between the data points, the distance measurement is used. This

algorithm is used to group Exploit kits belonging to different families/groups.

12

Chapter 3 Background and main concepts

This chapter presents the main concepts and relevant terminologies to this research work.

3.1 Bro Network Security monitor logs

This section mentions about the log files that are considered as input for this research.

Network security monitoring provides us with a picture of the state of a network via security

log files. However, manual analysis of these log files can be labour intensive. One of the

potential solutions is to structure the data from these logs and to mine the most valuable

hidden information.

Although there are many good Intrusion Detection Systems (IDS) available on the market,

most of them are proprietary products and provide very limited room for conducting

academic research. Thus, IDS products from open-source communities are better fit into my

research project. Open-source IDSes, such as Bro or SNORT [14], could be potential

platforms to carry out the research.

Bro IDS has features such as the ability to run in high speed environments, use sophisticated

signatures, and can be flexibly configured, making it the more suitable choice in comparison

with SNORT. Bro is also polished enough with more than 15 years of research, has bridged a

gap between academia and industry, and has been continuously supported. Bro is in use in

many scientific environments and widely used by major universities, research labs,

supercomputing centres, and open-science communities making it the best choice for my

project [14].

Bro is an open source Unix-based network monitoring framework. It performs at high speed,

can handle large volume monitoring, no packet drops, real time notification and its logging

mechanism is separated from the alerting policies. It provides network security monitor,

traffic inspection, attack detection, log recording, distributed analysis, full programmability

and several other features which are useful for security analysts. Bro creates high level flow

of the events and stores them in multiple separate files. The data can be parsed and mined for

the crucial information about the malicious activities in the network monitored. These logs

include complete record of every connection seen along with application-layer transcripts

such as all HTTP sessions with their requested URIs, key headers, MIME types, server

responses, DNS requests with replies, SSL certificates, key content of SMTP sessions, and

much more. This can display the network's activity in detail with the flexibility for production

deployment. [15]

3.2 Exploit kits

Exploit kits are a serious cyber threat today as they are responsible for big percentage of

13

malware infections worldwide. [65] Exploit Kits are powerful cyber weapons that carry out a

malicious campaign targeting innocent victims to leverage them for various methods of

profit. Everyone from inexperienced hackers to sophisticated cybercriminals can use the

Exploit kits to spread malware through Exploitation of client-side vulnerabilities, usually

targeting browsers and plug-ins that a website can access through the browser exposed APIs.

Exploit kits have pre written code which make use of outdated software applications running

on a computer. The drive-by-downloads, spam and denial-of-service are some of the

examples of attacks that are launched through Exploit Kits. They have been around in the

cyber world for the past 10 years at least. They have evolved through the years and have

become modular and sophisticated enough with capabilities to evade detection, thwart

analysis and deliver suitable Exploit kits.

3.1.1 Background and origin:

The history of the Exploit kit attacks dates back to the creation of WebAttacker kit [1] found

in Russian underground market in 2006. WebAttacker kit Exploits vulnerabilities found in

Microsoft™ Windows®, Mozilla Firefox®, and Java applications through spam and

compromised websites.

Later 2006, another Exploit kit, named Mpack, [66] was spotted. It is more sophisticated than

WebAttacker kit in terms of information gathering. Mpack provides detailed statistics of the

victim including its location. This kit consists of a collection of PHP scripts that targets

security holes in programs like Mozilla Firefox or Apple Quicktime [1].

Then several Exploit kits were released in 2007, namely, NeoSploit, Phoenix, Tornado, and

Armitage Exploit kits. They were followed by more Exploit kits, namely Fiesta, AdPack, and

FirePack Exploit kits in 2008. Then the Blackhole Exploit Kit which surfaced in 2010 was

widely used Exploit kit in 2012 and 2013, and posed a major threat to users. Then there were

several other Exploit kits, namely, Fiesta, Nuclear, SweetOrange, Styx, FlashPack, Neutrino,

Magnitude, Angler, and Rig which were still in use in 2014. [1]

The ability of an Exploit kits to launch attacks depends on the vulnerabilities they can Exploit

and these vulnerabilities have be updated in timely fashion. If a vulnerability is new and not

been patched by a user, this could be of great value to an attacker as he can spread malware

more efficiently. The key for an attacker is to constantly update their Exploit kits with new

vulnerabilities to Exploit.

Timeline:

14

Year Exploit Kits

2006 MPack and WebAttacker kit

2007 Armitage Exploit Pack, IcePack Exploit Kit,

NeoSploit Exploit Kit 1.0, Phoenix Exploit

Kit, Tornado Exploit Kit

2008 AdPack, Fiesta Exploit Kit, FirePack Exploit

Kit

2009 CrimePack 1.0, Eleonore Exploit Kit, Fragus

Exploit Kit, Just Exploit Kit, Liberty Exploit

Kit, Lucky Sploit, MyPoly Sploit, Neon

Exploit System, SPack, Siberia Exploit Pack,

Unique Sploits Exploit Pack, Yes Exploit Kit

1.0/2.0

2010 Blackhole Exploit Kit 1.0, Bleeding Life

Exploit Kit 1.0/2.0, Dragon Pack, Nuclear

Exploit Kit 1.0, Papka Exploit Pack, SEO

Sploit Pack

2011 Best Pack G01, Pack Exploit Kit, Katrin

Exploit Pack, OpenSource Exploit Kit, Sava

Exploit Kit

2012 Alpha Pack, CK Exploit Kit, Cool Exploit

Kit, CrimeBoss Exploit Kit ,CritXPack,

GrandSoft Exploit Kit, Impact Exploit Kit,

KaiXin Exploit Pack, Kein Exploit Pack,

NucSoft Exploit Pack, ProPack, RedKit

Exploit Kit, Sakura Exploit Kit, Serenity

Exploit Pack, Sibhost/Glazunov Exploit Kit,

Styx Exploit Kit 2.0, SweetOrange Exploit

Kit, Techno XPack Yang Pack, ZhiZhu

Exploit Kit

Table 3.1: Timeline of Exploit kits

The table 3.1 shows the timeline of different Exploit kits from 2006 to 2012. [46]

3.1.2 How an Exploit kit works

An Exploit kit is a tool which detects and Exploits the vulnerabilities presenting in the system

to spread malware, such as banking malware, ransomware, etc. This action can be described

in three steps, namely scanning the system for vulnerabilities, Exploiting the discovered

vulnerabilities by injecting malicious code into the system and executing the malicious code.

[3]

15

Figure 3.1: Overview of a typical Exploit kit attack

When a user visits a legitimate website that has been compromised, the user's browser is

redirected to a malicious website that hosts an Exploit kit. This is called a drive-by attack.

[64] Then the Exploit kit scans the browser to look for vulnerabilities/security holes, such as

out-of-date browser plug-ins, and delivers the payload, which is typically a malicious

software. Finally, the malware proceeds to function as it is programmed to. This can be seen

in Figure 3.1.

In a typical Exploit kit attack scenario, contact is the first step of the infection. During this

step, an attacker tries to lure users to access the link of an Exploit kit server. This is often

done through spammed emails, compromised websites or malicious advertisements [3]. In the

case of spammed emails, an attacker usually tries to trick the users into clicking the link

through social engineering. In the case of malicious advertisements, the advertisements

redirects the users of website to Exploit kit server.

In the second step, an attacker screens the victims using a traffic direct system based on

 Exploit kit web Page

Compromised

legitimate Website

/Phishing emails

Scanning for

vulnerabilities in a

system

Exploiting the

vulnerability and

installs the malware in

the system

16

certain set criteria. This involves the use of traffic distribution system (TDS), whose primary

function is to intelligently route web traffic that arrives at the TDS. The redirection of traffic

is not necessarily monitored by an attacker but by the person who sells the same in

Underground markets. An attacker can specify the target and this is achieved by filtering out

victims based on the mentioned requirements. [3]

The next steps would be Exploitation and infection. Once the attacker is successful in getting

a victim past steps 1 and 2, a victim will be in Exploit kit's landing page. The landing page

would profile the environment of a victim, and to determine which vulnerabilities can be best

used in the attack [3].

The page will send requests to the Exploit kit server to download the Exploit files based on

the vulnerable application identified. The usual targeted vulnerabilities by Exploit kits are

those found in Web browsers, Java, Adobe Flash Player, and Adobe Acrobat and Reader. The

attacker then delivers and executes the malware in the victim’s environment after successfully

exploiting the vulnerability. There are many types of malware that are associated with Exploit

kit attacks, such as ransomware, online banking malware, etc. [3].

The Exploit kits can now obfuscate the payload with encryption which makes detection

almost impossible as the payload will be later decrypted in victim's machine in memory by

shellcode after it has been successfully downloaded in victim's machine. The Exploit kits

obfuscate the Exploit file using different techniques to avoid detection. For example, jar files

can be compressed using Pac200 [3] which is a compacting archive format, angler Exploit kit

makes use of the same for its java Exploits to avoid the detection. Another example would be

use of the tool called DoSWF [3] by Exploit kits, namely FlashPack [3] and Magnitude, to

hide Flash player Exploit files [1].

Exploit kits do far more sophisticated things like using techniques such as domain shadowing

which is compromising registered accounts, hosting the malicious activities under sub

domains for those legitimate domains, 302 cushioning which is use of HTTP 302 redirects to

use as another tier of redirection (another way for them to hide in the noise), custom

encrypted payloads where the victim system is posting out data, payload is custom encrypted

to every single victim [3].

3.3 Machine Learning

Machine learning has grown from a field of statistics to a broad discipline that has produced

fundamental statistical-computational theories of learning processes and has designed various

learning algorithms that can be used in commercial systems for applications like speech

recognition, computer vision, medical diagnosis, bio-surveillance, recommender systems,

sales prediction, fraud detection, robot control and so on [4]. These algorithms can learn from

the data itself regardless of the volume and complexity of the data without relying on the

rules-based programming for various reasons like tasks are too complex to be programmed or

tasks are beyond Human Capabilities or tasks require adaptivity. Machine learning uses real

17

data to train a model for solve various problems, such as classification, clustering, prediction,

anomaly detection, etc. The figure 3.2 shows the general framework for machine learning

approach.

 DATAfff

Figure 3.2: A general framework for the machine learning approach

Data pre-processing:

The different types of data available are binary/discrete, continuous values, time series,

natural language text, images, sound and so on. Data pre-processing involves data cleaning

and representation. Real-life data is usually noisy. The different possible reasons are missing

data, out of sync fields, misspellings, special values, spikes, and data from different sources

(old/new) with slightly different meaning, inconsistent data or irrelevant data. [7] This step is

done to present the data in a form that could be used to extract information which helps in

understanding the data with its importance in the context of relevance and details. The exact

choice of learning method and the choice of representation of features are very important.

With the wrong representation, no method would be successful and a good representation

guarantees success with almost any method chosen. The process of finding a suitable

representation requires much domain knowledge and problem understanding.

Model generation:

The different types of machine learning algorithms can be used to build and train a model

based on the requirement specifications. This model is then tested with the some part of the

data set used for training using methods such as k-fold validation method for example. This

can be repeated multiple times to check the accuracy of the algorithm. The different machine

learning methods include

 Case based methods

This is based on the fact that similar patterns belong to the same class. This is

generally easy to train (every pattern is saved but sometimes similar patterns may not

be identical), but takes longer during recall, to find the similar patterns. Model size

increases with the number of seen examples. This requires specification of a distance

measure. Examples of this are Table lookup, Nearest neighbour, k-Nearest neighbour.

[49]

VERIFYING THE

MODEL

MODEL

GENERATION

DATA PEPARATION

(Data Cleaning &

data

Representation)

18

 Logical Inference

This is based on constructing logical expressions that characterizes the classes. This

typically considers one feature at a time. Examples of this are Inductive logic,

Decision trees, Rule based systems [50].

 Artificial Neural Networks

This is inspired by the neural structure of the brain. The neural units are connected

with others and each connection is weighted. The weights are adjusted to produce the

best mapping. The ‘Deep’ architectures require much data to train. Examples of this

are multilayer perceptron, Self-Organizing Maps, Bolzmann machines, deep neural

networks [51].

 Statistical methods

There are large number of methods, from simple to complex. The fundamental idea is

to calculate the probability of each class(c) given a feature vector(x), P(c|x). The

Parametric versus nonparametric methods are considered depending on whether the

forms of the class distributions are known or not. Examples of this are Naive Bayes,

Mixture models, Hidden Markov models, Bayesian networks, MCMC, Kernel density

estimators, Particle filters. [52]

 Heuristic search. Examples of this are Genetic algorithms, Reinforcement learning,

simulated annealing, Minimum Description Length. [53]

Validation of the model:

The created model is validated using previously unseen data samples, which are also known

as test data. “Validation” demonstrates how the model performs while being put into practise.

3.2.1 Supervised learning

Supervised machine learning algorithms learn from supplied data instances to produce

general hypotheses, which then make predictions about unknown data instances. In the

predictive or supervised learning approach, it learns a function from a set of labelled data,

which is also known as training data, containing a set of inputs Xi mapped to set of outputs

(labels/classes) Yi, The learnt function is then used to map a new given data sample (also

known as test data) to its corresponding label/class.

An input, Xi, from the training set could be a complex structured object, such as an image, a

sentence, an email message, a time series, a molecular shape, a graph, etc. Its corresponding

output, Yi, could in principle be a categorical or a nominal variable [7]. The goal of

supervised learning is to build an accurate model describing the distributions of particular

categories of data [7].

19

Since supervised algorithms assume that the labels of data items are known, the need for

knowing the category structure in advance and generation of correctly labelled training set

can be challenging at times in case of large and dynamic datasets.

Figure

Figure 3.3: A general framework for the Supervised Machine Learning approach

Figure 3.3 presents a general framework for the supervised machine learning approach. The

data in the training set are labelled with pre-defined classes. It guides the machine learning

algorithm to find the corresponding label for the given training data. Every data instance in

training set and test set used by machine learning algorithms is represented using the same set

Features

(Vectors)

Training data

Ex: Text, image,

sound

 Machine

Learning

Algorithm
Labels

Label of the

class for the

new data
Model

(Predicti

ve)

Features

(Vectors)

Testing data

(new data)

20

of features. These features can be continuous, categorical or binary. The trained classifier can

assign class labels to test data instances. [5]

In supervised approach, instances (data) are assigned with pre-defined category labels based

on the likelihood suggested by a training set of labelled but requires the manual labelling of

data.

3.2.2 Unsupervised learning

The second main type of machine learning is the descriptive or unsupervised learning

approach. Here we are only given inputs, and the goal is to find the pattern that exists in the

data which can be an answer to a question. This is called knowledge discovery. [7]

Figure

Figure 3.4: A general framework for the Unsupervised Machine Learning approach

Features

(Vectors)

Training data

Ex: Text, image ,

sound

 Machine

Learning

Algorithm

Testing data

(new data) Model
Features

(Vectors)

Cluster ID or

likelihood

21

Figure 3.4 gives a general framework for the Unsupervised Machine Learning approach.

Here, depending on the algorithm used, a pattern is found in the given data which is used to

classify new data presented.

In unsupervised approach, there is no need for labelled instances or human intervention at

any point of the whole process but at the same time poses the difficulty such as determining

the number of clusters for clustering in advance.

3.4 Multinomial Naive Bayes

This section mentions about the supervised machine learning algorithm used in layer 1 of this

work.

For an input instance X, the Naive Bayes classifier determines the probability of X belonging

to each different class given and then one with the highest probability is assigned to the

instance. The features are assumed to be mutually independent in Naive Bayes and

probability of class Ci is calculated using Bayes’ Theorem.

 �ሺ��|�⃗ሻ = �ሺ�భ|��ሻ�ሺ�మ|��ሻ�ሺ�య|��ሻ.........�ሺ��|��ሻ.�ሺ��ሻ�ሺ�⃗⃗ሻ (3.1)

 Equation 3.1 provides mathematical formula to calculate the probability of class Ci given X.

The Naive Bayes (NB) classifier uses the joint probabilities of terms and respective

categories to estimate the probabilities of categories given a test data making it a is a

probabilistic model. [36] This is sometimes called naive because of the assumption that all

terms involved in the data are conditionally independent of each other given a category. Due

to this, the parameters for each term can be learned separately and this speeds the

computation operations compared to other classifiers. There are two common event models

for NB which involves text classification, multinomial model and multivariate Bernoulli

model. In these models classification of test data is performed by applying the Bayes’ rule

[18] �ሺ࢏ࢊ|࢐ࢉሻ = �ሺ࢐ࢉሻ ∙ �ሺ࢐ࢉ|࢏ࢊሻ�ሺ࢏ࢊሻ (3.2)

where di is a test data and cj is a category. The equation 3.2 gives mathematical formula for

Naive Bayes. The posterior probability of each category cj given the test data di, i.e. P(cj|di),

is calculated and di, data is assigned to the category with the highest probability. The P(cj)

and P(di|cj) are estimated from the training set data to calculate P(cj|di). The P(di) can be

eliminated from the computation as it is same for each category. The category prior

probability, P(cj), can be estimated as follows: �̂ሺ࢐ࢉሻ=∑ ૚=࢏�ሻ࢐ࢉ,࢏ࢊሺ࢟ � (3.3)

22

where, N is number of training data and y(di|cj) is defined as follows: ࢟ሺ࢏ࢊ, ሻ࢐ࢉ = { ૚ ࢐ࢉ � ࢏ࢊ ࢌ࢏ ૙ (3.4) ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕

The equation 3.3 and 3.4 provides mathematical formula to calculate prior probability for

each category. The prior probability of each category cj is estimated by the fraction of data in

the training set belonging to that category cj . The multinomial model and multivariate

Bernoulli model use different ways to estimate P(di | cj) .The multinomial model is explained

below:

In the multinomial model a document di is an ordered sequence of term events, drawn from

the term space T. The probability of each term event does not depend on position in the

document, term's context and length of the document as it is assumed to be independent in

this model. So, each document di is drawn from a multinomial distribution of terms with

number of independent trials equal to the length of di. The Equation 3.5 provides the

mathematical formula for probability of document di belonging to a category in multinomial

model

The probability of a document di given its category cj can be approximated as: �ሺ࢐ࢉ|࢏ࢊሻ ≈ ∏ �ሺ࢏࢚, ૚=࢏|࢏ࢊ|ሻ࢐ࢉ (3.5)

where |di| is the number of terms in data di; and ti is the ith term occurring in document di.

Thus the estimation of P(di|cj) is reduced to estimating each P(ti|cj) independently. The

following Bayesian estimate is used for P(ti|cj):

 �̂ሺ࢐ࢉ|࢏ࢊሻ = ૚ + ࡲࢀሺ࢐ࢉ,࢏࢚ሻ|ࢀ| +∑ ࢀ∋࢑࢚ሻ࢐ࢉ,࢑࢚ሺࡲࢀ (3.6)

The Equation 3.6 provides mathematical formula for Bayesian Estimate applied to P(ti|cj).

Here, TF(ti,cj) is the total number of times term ti occurs in the training set documents

belonging to category cj . The summation term in the denominator stands for the total number

of term occurrences in the training set data belonging to category cj . This estimator is called

Laplace estimator and assumes that the observation of each word is a priori likely [17].

Multinomial model: an instance is represented by a feature vector with integer elements

whose value is the frequency of that word in the instance.

Thus given a training set of instances (with labelled class) and a set of K classes, multinomial

text classification model is as follows:

1. The number of words in the vocabulary defines the dimension of the feature vectors which

is represented by Vocabulary V.

23

2. In the training set, the total number of instances and frequency of the word are calculated.

The total number of instances is N. The number of instances labelled with class C=k, for each

class k=1, . . . , K, Nk. The frequency of word wt in instance Di, xit is computed for every

word wt in V.

3. The likelihoods P(wt|C=k) is estimated using �̂ሺ࡯|࢚࢝ = ሻ࢑ = ∑ ∑૚=࢏�࢑࢏ࢠ࢚࢏࢞ ∑ ૚=࢙|࢜|૚=࢏�࢑࢏ࢠ࢙࢏࢞ (3.7)

where ��� is an indicator variable which equals 1 when Di has class C=k, and equals 0

otherwise

 4. The priors P(C=k) are estimated using �̂ሺ࡯ = ሻ࢑ = �࢑� (3.8)

5.The unlabeled instance Dj is classified by estimating the posterior probability for each class

using

P(C|Dj) ∝ P(C|xj) ∝ �ሺ࡯ሻ ∏ �ሺ࡯|࢚࢝ሻ࢏|�|࢚࢏࢞=૚ (3.9)

3.5 K-means clustering

This section mentions about the machine learning algorithm used in the layer 2 of the work.

Clustering is a type of unsupervised machine learning algorithms, which do not require any

labelled data for training. Clustering algorithms group data points according to their

similarities. In other words, how close these data points are. Give a real-life example,

Assuming that we have a dataset containing human data samples and dog data samples but

we are not sure how humans and dogs look like. Each sample described with two features,

namely “walking with four legs” and “having a tale”. The two features of each sample have
Boolean values. A clustering algorithm groups all the samples according their feature values.

If the data samples collected properly, we should see identical patterns in the two clusters,

namely the human cluster and the dog cluster. Thus, we can use the patterns to describe and

distinguish humans and dogs.

It is important to know the of number of clusters to be formed, then clusters can be found

using the kmeans algorithm.

Let k be the number of clusters. The algorithm is as follows:

1. k data points from the data set are selected randomly as the initial centroids

2.Iteratively data points are assigned to their nearest centroid and centroids are updated

incrementally, i.e., after each assignment of a document to its nearest centroid and this stops

the clusters are stable

24

K-means is a simple but powerful technique for identifying grouping data with similar

features in.

The centroid vector c of cluster C of instances is given by the equation 3.10 :

ࢉ = ∑ ࡯࡯=ࢊࢊ (3.10)

So, c is obtained by averaging the weights of the terms of the instances in C. The similarity

between a instance d (data) and a centroid vector c is given by cosine similarity measure

equation 3.11.

,ࢊሺ࢙࢕ࢉ ሻࢉ = (3.11) |ࢉ|.|ࢊ| ࢉ • ࢊ

3.6 Input data

This section mentions about the format of the data considered as input for this research.

There are several websites with databases collecting information on various types of security

incidents, and one such place is Security Repo, an open source containing data of various

security incidents and is available at http://www.secrepo.com/#. The data considered for this

research is meta data of bro logs of various Exploit kits collected and generated in 2012.

The data for training is set up with 2000 instances which includes 1000 instances of

legitimate data and 1000 more instances of malicious data (Exploit kit in this case). The

malicious data for training is obtained from the meta-data of bro logs of Exploit kits found in

secrepo.com. The legitimate data for training is obtained by generating a PCAP file which can

be done using, for example, Wireshark or tcpdump.

3.7 Textual data to numeric format

The data under consideration for the research is textual data. This data has to be converted to

numeric format to use it in machine learning. This can be done by using following methods:

3.7.1 Word count vector

This is based on Vector Space Model [64]. Each instance is treated as a vector of its words.

There is one co-ordinate for every possible word w. The similarity between vectors is

calculated by their dot product. Given the instances I1 and I2, their dot product is given by

equation 3.12 �૚ ∙ �૛ = ∑ �૚ሺ࢝ሻ ∙ �૛ሺ࢝ሻ࢝ (3.12)

http://www.secrepo.com/

25

The obvious problem is that dot product is not scale invariant. This is solved by normalising

them by words using equation 3.13. �૚∙�૛||�૚||∙||�૛|| (3.13)

When the angle between vectors given by �ሺ�૚, �૛ሻ = ࢙࢕ࢉࢉ࢘� �૚∙�૛||�૚||∙||�૛|| is 0, then the

instances are identical and is not identical when it is 90°.

The algorithm takes into account the number of occurrences of a given term in training

instances from its class , including multiple occurrences. [35]

The algorithm reads the different instances. Then the algorithm splits each instances (for each

character in the line, if it is not alphanumeric, previous word is added to the list and then it

starts with a new word)into words. Then it counts the word frequencies (the word list is

sorted, for each word in word list, counter is incremented if it same as last word else last

word and its counter is added to the list and counter is reset to 0). Then it computes the dot

products (it starts with first words of each instance if the words are equal, word frequencies

are multiplied and added to the total, and is repeated until the instances run out of words).

When the dot product is 0, it implies that the instances are same and when the dot product is

90°, it implies that instances are not identical. [35]

3.8 Feature selection

This section mentions about the method to validate the strength of the features considered for

machine learning.

The goal of feature selection is to pick the strong relevant features which can help solve the

problem at hand by ignoring redundant and noisy features which do not give much

information about the data.

Information gain assign a scoring to each feature by applying a statistical measure to the

features. The features are ranked by the score and the suitable features can be selected based

on their score. This is univariate and considers all the features independently, or with regard

to the dependent variable. This makes it suitable for this work.[56]

Information Gain:

Information gain measures the number of bits of information gained in a data for category

prediction considering the presence and absence of a term to better represent the data. When

the set of possible categories is {d1, d2, ..., dm}, the IG for each unique term t is calculated as

follows [16]:

26

��ሺ�ሻ = − ∑ �ሺ��ሻ. ܕሺ�ሺ��ሻሻ ��ܔ
�=૚ + �ሺ�ሻ. ∑ �ሺ��|�ሻ. ܕሺ�ሺ��|�ሻሻ ��ܔ

�=૚+ �ሺ�ሻ̅ ∑ �ሺ��|�ሻ̅. ܕሺ�ሺ��|�ሻ̅ሻ ��ܔ
�=૚

(3.14)

Equation 3.14 provides mathematical formula to calcualte information gain for each term. For

the two cases of when the feature is present and when the feature is absent, decrease in the

entropy is calculated. �ሺ��ሻ is the prior probability of category �� It can be estimated from

the fraction of instances in the training set belonging to category ��. P(t) is the prior

probability of term t. It can be estimated from the fraction of instances in the training set in

which term t is present. �ሺ�̅ሻ can be estimated from the fraction of instances in the training

set in which term t is absent. The Terms whose Information gain are less than some

predetermined threshold which depends on the problem at hand are removed from the feature

space. [16]

3.9 Scikit- library

This section mentions about the functions made use of in the implementation of this work.

Scikit Learn provides a wide range of supervised learning algorithms and unsupervised

learning algorithms via a consistent interface in Python. It is licensed under a permissive

simplified BSD license. It is distributed under many Linux distributions, encouraging

academic use and commercial use. [68]

Some popular groups of models provided by Scikit Learn include Clustering, Cross

Validation, Datasets, Dimensionality Reduction, Ensemble methods, Feature extraction,

Feature selection , Parameter Tuning, Manifold Learning, Supervised Models (Naive Bayes,

discriminate analysis, neural networks, support vector machines and decision trees). [68]

This work has made use of following scikit-library functions:

 1) class sklearn.naive_bayes.MultinomialNB

This is Naive Bayes classifier used for multinomial models (multinomially distributed data).

This is usually used when discrete features (for example word count vectors) are considered

for classification. [68]

2) sklearn.feature_extraction.text import CountVectorizer

This imports the countvectorizer from sklearn.feature_extraction.text, then creating the

vectorizer to feed the data in the form of strings. It takes each word(anything with more than

27

2 letters as a word) as token and assigns an integer and counts the number of times it occurs

in a instance(data). [68]

3) class sklearn.cluster.KMeans

This kmeans algorithm groups the data by trying to separate data in n clusters of equal

variance, minimizing a criterion known as the inertia (measure of how internally coherent

clusters are). This requires the number of clusters to be mentioned in advance. [68]

28

Chapter 4 Method

This research uses machine learning to detect the Exploit kit attacks with the help of

supervised learning and unsupervised learning. The procedure is explained below.

Figure 4.1: Overview of the methodology

Figure 4.1 represents the overview of the methodology used in this work.

Layer 1:

Layer 1-Supervised Classification

 Algorithm: Naive Bayes classifier

 Aim: To classify the data as

legitimate or malicious {Exploit kit

in this case}

Layer 2-Unsupervised Classification

 Algorithm: K-Means Clustering

 Aim: To cluster malicious data

belonging to different Exploit

kits

Layer 3 - Visualization of Clusters

 Approach: Principal component

analysis (PCA)

29

This stage involves supervised machine learning approach by using multinomial Naive Bayes

algorithm. The Naive Bayes algorithm classifies the given data as either legitimate data or

malicious data which is Exploit kit in this research project.

The information gain algorithm [16] is implemented to select the best features for machine

learning. Based on this algorithm and relevance of features for detection, the features are

chosen and used in detection of Exploit kits.

Layer 2:

In the second stage of the work, the output of the first stage is clustered using an

unsupervised learning algorithm, namely K-means clustering [7]. This algorithm clusters the

data into different groups of Exploit kits.

The data is textual and it is converted to numeric format using unigram Characterization [67].

Each alphabet within a feature, which is a string in context of Exploit kit detection, is mapped

to a number to build a distinct profile. A 36-dimensional numeric vector represents the URL

and domain name of the malicious data. The value of each element in the vector is a digit,

and each dimension stands for a distinct alphabet or a number.

Then the data is clustered into groups of different Exploit kits based on the similarity between

the profiles of malicious instances. The value of k, namely the number of clusters, is

determined based on the knowledge of the data and using an Elbow method [54]. Then the

data is clustered into k different groups of Exploit kits.

Layer 3:

The clusters are visualised after being reduced to two dimensions using Principal Component

Analysis (PCA) [63] as the data is 36 in dimension at layer 2.

4.1 Feature selection through information gain

 The different parameters typically present the HTTP bro log are id.orig_h, id.orig_p,

id.resp_h, id.resp_p, trans_depth, method, host, uri, referrer, user_agent, request_body_len,

response_body_len, status_code, status_msg, info_code, info_msg, filename, tags, username,

password, proxied, orig_fuids, orig_mime_types, resp_fuids, resp_mime_types. As currently

all popular Exploit kits use the HTTP protocol, not HTTPS, this work will consider the HTTP

log file as input.

It is expected that an increasing amount of Exploit kits will start favouring the use of HTTPS

in the future, as the encryption of the traffic will be advantageous to the criminals behind

these kits. Using encryption their attacks might stay under the radar longer, because intrusion

detection systems will have more difficulties detecting their patterns.

The goal of an Exploit Kit is to infect users with malware and compromise the victims’
environment to stage further criminal activities. To accomplish the goal, Exploit Kits exhibit

several attack-centric characteristics such as profiling of victim (system configuration),

redirection, content being served and so on. From the point of view of detecting Exploit Kits,

30

the workflow of a typical Exploit Kit gives useful insights about the characterization of

Exploit Kit behaviours, From the analysis, the following attack-centric features of Exploit

Kits make the best features for detection.

1)Host: Host is the server on which the Exploit kit is hosted. Therefore, by examining the

domain name present in the feature host, one can assess the likelihood of it being legitimate

or not(for example by using TLD)

Ex: bfdshfhdssdhbksbksbkfbgkfbgkf.pallavi.ru, where sub domain

bfdshfhdssdhbksbksbkfbgkfbgkf is unusual and long.

2)Referer: Referer gives information about the normal webpage which leads the user to the

Exploit landing page. This can inform about the fact that the normal webpage(which referred

a user to a Exploit landing page) has been compromised.

Ex: Normal website -> Exploit landing page-> Exploit, in this example one can conclude that

normal website has been compromised.

 3)User-Agent: This can give information about the configuration of the system user has

including operation system, browser's version and so on. This can of be use to know the

vulnerabilities present in the browser and likelihood of that user getting infected with a

malware from an Exploit kit.

4)URL: This can be a good indicator to know if a given URL points to an Exploit Kit by

examining it.

5)Status code: This contains a list of Hypertext Transfer Protocol (HTTP) response status

codes. For Example 301 indicates moved permanently, 302 indicates found, 303 indicates

See other, 403 indicates Forbidden, and so on.

6)Content-Type: This can indicate the type of content served by the Exploit kit.

As mentioned in the earlier chapter, Feature selection can be used for eliminating irrelevant

and redundant features by selecting a subset of features which describe the samples better to

produce a better classification performance.

Information gain algorithm measures the number of bits of information gained for detecting

Exploit kits in this case when the presence or absence of a term in the data is known. This is

done by Calculating the information gain (reduction in entropy) that would result by splitting

the data on chosen attribute, then Calculating the frequency of each of the values in the target

attribute, then calculating the sum of the entropy for each subset of records weighted by their

probability of occurring in the training set, and then subtracting the entropy of the chosen

attribute from the entropy of the whole data set with respect to the target attribute. [13]

The code used to calculate information gain is mentioned below:

Calculates the entropy of the training set data set for the target attribute.

def entropy(data, target_attr):

 val_freq = collections.defaultdict(int)

 data_entropy = 0.0

31

 # Calculate the frequency of each of the values in the target attribute

 for item in data:

 if item == target_attr:

 for val_ in data[item]:

 val_freq[val_] += 1.0

 # Calculate the entropy of the data for the target attribute

 for freq in val_freq.values():

 data_entropy += (-freq/len(data)) * math.log(freq/len(data), 2)

 return data_entropy

 # Calculates the information gain (reduction in entropy) that would result by splitting the

data on the chosen attribute (attr).

def gain(data, target_attr):

 val_freq = collections.defaultdict(int)

 subset_entropy = 0.0

 # Calculate the frequency of each of the values in the target attribute

 for value in data:

 if value == target_attr:

 for val_ in data[value]:

 val_freq[val_] += 1.0

 for value in val_freq:

 freq = val_freq[value]

 val_prob = freq / sum(val_freq.values())

 # Calculate the sum of the entropy for each subset of records weighted by their

probability of occuring in the training set.

 subset_data = []

 for attr in data:

 for val_ in data[attr]:

 if val_ == value:

 subset_data.append(val_)

 subset_data = {target_attr : subset_data}

 subset_data = pd.DataFrame(subset_data,columns=[target_attr])

 subset_entropy += val_prob * entropy(subset_data, target_attr)

 # Subtract the entropy of the chosen attribute from the entropy of the whole data set with

respect to the target attribute (and return it)

 return (entropy(data, target_attr) - subset_entropy)

The information gained from the features which represent attack-centric behaviour of the

Exploit kits are good enough to classify the new data as either legitimate data or malicious

data. This can be seen in the results section. Based on the output of the program and

relevance of features for detection, Host, URI, referrer, user-agent and status-code which are

32

all connection specific, as they are all part of the request and MIME which is content specific,

as it describes the content of the requested page are the features selected for detecting Exploit

kits. These features are interesting and they provide the information about the steps involved

in the Exploit kit attack. This work has discarded time, uid, id.orig_p, id.resp_h, id.resp_p,

trans_depth, request_body_len, response_body as these features provide information only

about a specific incident that cannot be used to detect other Exploit kits with machine

learning.

4.2.1 Malicious/Bad data for training

The data considered for the research is the meta data of bro logs of various Exploit kits

collected and generated in 2012. This is obtained from Security Repo, an open source

containing data of various security incidents and is available at http://www.secrepo.com/#.

As mentioned in the figure 3.1, the first step of an Exploit kit attack begins with the

redirection with an intention to send a user from a site a user visits to the malicious landing

web page. The Exploit kit landing page then launches the suitable Exploits. Therefore, this is

an important step without which there would be no traffic going to an Exploit kit landing

page.

When a web site has been compromised, in this case (due to Exploit kits) it suggests that a

redirect link would have been placed on it. This basically sends a small part of the web page,

called an iframe, from the compromised site to the a landing page that will perform the actual

attack. The user will have no knowledge of this as they do not witness anything unusual.

The process of redirect page to landing pages to malware servers to command and control

(C&C) is series of independent phases which allows an attacker to set up the infrastructure as

needed for each phase using different systems and techniques

The redirect page itself is not usually seen but the redirect site is discovered by the referer in

the http protocol while looking at the initial calls to the landing page. The transition of the

attack from the redirect page to the landing page give the attacker an advantage to design a

redirect page with the sole function of tunnelling attacks to the Exploit servers. There can be

multiple redirect pages scattered across the Internet acting as a funnel to send traffic to the

landing page for Exploitation. The Exploit kit landing page will contain a malicious

javascript to collect the relevant information about the configuration of the victims that visit

the infected website. This information related to browser plugins and can include JAR files,

PDFs and flash, is used to launch suitable attacks. Then the malicious program is downloaded

and installed which often places itself in a number of places on the victim's system as to

maintain itself on the system on a reboot or deletion of some of its components. Then the

attacker gets further control of the victim's system once the malware then connects back to

the attacker.

This research has considered all these stages of an Exploit kit attack to represent the

malicious data set for the machine learning training. This work has considered about 1000

http log files of various Exploit kits to set up the data for training. Each instance taken from a

different Exploit kits in the training file represent one of the different stages of the attack

explained above. The malicious data is represented by 0 in the data set in this work.

http://www.secrepo.com/

33

Table 4.1: Malicious data set up for training

4.2.2 Legitimate/Good data for training

The good data/legitimate data is obtained by generating a PCAP file which can be done

using, for example Wireshark or tcpdump. The data is generated by browsing online while

Wireshark would record the same and generate a file which later is parsed into different log

files using BRO Network Security Monitor. The HTTP log file of these PCAPS are used to

set up good data for machine learning training. Each instance taken from these http logs

represent legitimate traffic. The legitimate data is represented by 1 in the data set in this

work.

34

Table 4.2: Legitimate data set up for training

4.3 Layer 1 - Textual data to numeric format

 4.3.1 Term frequency and inverse document frequency (TFIDF)

It is a product of term frequency and inverse document frequency. The term frequency

indicates the number of time a term appears in a document of the corpus. This has an obvious

problem of terms being considered prominent beyond their value. This can be solved by

calculating inverse document frequency which is a measure of how important each term is in

a document.

35

Docume

nts

Method Host

Docume

nt1

GET

www.morango.it

Docume

nt2

GET

www.samistream.com

Docume

nt3

GET

a.adorika.net

Docume

nts

Uri Referrer

Docume

nt1

/wp-content/plugins/nextgen-

gallery/css/nggallery.css?ver=1.0.0

http://www.morango.it/

Docume

nt2

/thumbs/geosuper.PNG

http://samistream.com/

Docume

nt3

/c/banner_s?tenant=AD&selection=3367&size=300x25

0&di=1&skin=iframe

http://www.samistream.com/

728x90.html

Docume

nts

User Agent Status Code

Docume

nt1

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

SV1)

200

Docume

nt2

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1;

Trident/4.0)

404

Docume

nt3

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1;

Trident/4.0)

200

Documents resp_mime_types

Document1
text/plain

Document2
text/html

Document3
text/html

Table 4.3: set of documents used to set up as an example for TFIDF vectorisation

Term frequency is nothing but number of times a term appears in each document/instance.

36

Inverse document frequency (Idf) is numerical measure of how much information each term

provides. This can be calculated by the formula log (N/n), where N is total no of documents

and n is the no of documents which contain the term.

TFIDF=Term frequency * inverse document frequency

Document 1

1)Tf (Get, d1) = (1/7) and Idf (Get, D) =log (3/3) and TFIDF= (1/7) * 0 = 0

2)Tf(www.morango.it, d1) = (1/7) and Idf (www.morango.it, D) =log (3/1)= 0.48 and

TFIDF= (1/7) * 0.48 = 0.07

3)Tf(/wp-content/plugins/nextgen-gallery/css/nggallery.css?ver=1.0.0, d1) = (1/7) and Idf

((/wp-content/plugins/nextgen-gallery/css/nggallery.css?ver=1.0.0, D) =log (3/1)= 0.48 and

TFIDF= (1/7) * 0.48 = 0.07

4)Tf(http://www.morango.it/, d1) = (1/7) and Idf (http://www.morango.it/, D) =log (3/1)=

0.48 and TFIDF= (1/7) * 0.48 = 0.07

5)Tf(Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1), d1) = (1/7) and Idf

(Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1), D) =log (3/1)= 0.48 and

TFIDF= (1/7) * 0.48 = 0.07

6)Tf(200, d1) = (1/7) and Idf (200), D) =log (3/2)= 0.18 and TFIDF= (1/7) * 0.48 = 0.03

7)Tf(text/plain, d1) = (1/7) and Idf (text/plain), D) =log (3/1)= 0.48 and TFIDF= (1/7) * 0.48

= 0.07

Document 2

1)Tf(Get, d2) = (1/7) and Idf (Get, D) =log (3/3) and TFIDF= (1/7) * 0 = 0

2)Tf(www.samistream.com, d2) = (1/7) and Idf (www.samistream.com, D) =log (3/1)= 0.48

and TFIDF= (1/7) * 0.48 = 0.07

3)Tf(/thumbs/geosuper.PNG, d2) = (1/7) and Idf ((/thumbs/geosuper.PNG, D) =log (3/1)=

0.48 and TFIDF= (1/7) * 0.48 = 0.07

4)Tf(http://samistream.com/,d2) = (1/7) and Idf (http://samistream.com/,D) =log (3/1)= 0.48

and TFIDF= (1/7) * 0.48 = 0.07

5)Tf(Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)), d2) = (1/7) and Idf

(Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0), D) =log (3/2)= 0.18 and

TFIDF= (1/7) * 0.48 = 0.03

6)Tf(404, d2) = (1/7) and Idf (404, D) =log (3/1)= 0.48 and TFIDF= (1/7) * 0.48 = 0.07

7)Tf(text/html, d2) = (1/7) and Idf (text/html), D) =log (3/2)= 0.18 and TFIDF= (1/7) * 0.48

= 0.03

Document 3

1)Tf(Get, d1) = (1/7) and Idf (Get, D) =log (3/3) and TFIDF= (1/7) * 0 = 0

2)Tf(a.adorika.net, d1) = (1/7) and Idf (a.adorika.net, D) =log (3/1)= 0.48 and TFIDF= (1/7) *

0.48 = 0.07

37

3)Tf(/c/banner_s?tenant=AD&selection=3367&size=300x250&di=1&skin=iframe, d1) =

(1/7) and Idf ((/c/banner_s?tenant=AD&selection=3367&size=300x250&di=1&skin=iframe,

D) =log (3/1)= 0.48 and TFIDF= (1/7) * 0.48 = 0.07

4)Tf(http://www.samistream.com/728x90.html,d1) = (1/7) and Idf

(http://www.samistream.com/728x90.html, D) =log (3/1)= 0.48 and TFIDF= (1/7) * 0.48 =

0.07

5)Tf(Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0),d1) = (1/7) and Idf

(Mozilla Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0),D) =log (3/2)=

0.18 and TFIDF= (1/7) * 0.48 = 0.03

6)Tf(200, d1) = (1/7) and Idf (200), D) =log (3/2)= 0.18 and TFIDF= (1/7) * 0.48 = 0.03

7) Tf(text/html, d2) = (1/7) and Idf (text/html), D) =log (3/2)= 0.18 and TFIDF= (1/7) * 0.48

= 0.03

Table 4.4: Term frequency and inverse document frequency calculation for the

documents

The vector formed using TFIDF for the three documents is given below:

Vector:

[[0,0,0]

[0.07,0.07,0.07]

[0.07, 0.07,0.07]

[0.07,0.03,0.07]

[0.07, 0.03, 0.03]

[0.03, 0.07, 0.03]

[0.07,0.03,0.03]]

Table 4.5: Vector from of the documents calculated using Term frequency and inverse

document frequency calculation

The features available in http bro log are with contents in it are ts, uid, id.orig_h, id.orig_p,

id.resp_h, id.resp_p, trans_depth, method, host, uri, referrer, user_agent, request_body_len,

response_body_len, status_code, resp_mime_types, resp_fuids.

From Exploit kit detection method, host, uri, referrer, user_agent, status_code,

,resp_mime_types are interesting as they give information about the steps involved in Exploit

kit attack but method feature is discarded but there is not much information gain as it is

present in all the documents which implies lack of its importance.

38

But the Term frequency and inverse document frequency calculation (TFIDF) fails in this

work because of lack of consistency (there were different number of words in each instance

which led to a vector that could not be used in Naive Bayes classfier) in the data and TFIDF

is more suitable for similarity measurements in the data.

 4.3.2 Word count vector

Word count vector fixes a dictionary containing n different words each instances found in the

training set. It associates word count vector "a" with each instance where ai = number of

times word i appears in each instance. Each word in an instance is formed after it is separated

by "/" and " " (space) in this approach.

Example:

Dictionary Instance 1 Instance 2 Instance n

bratwurst.de

2.html

http:alyanaa.fr

Mozilla4.0

302

Texthtml

0

1

0

1

1

0

1

1

0

1

1

0

0

1

1

1

1

0

Table 4.6: An example for work count vector

Document-term matrix is given by collection(Dictionary) of N instances, with word count n-

vectors a1, . . . , aN , document-term matrix is N × n matrix A, with Aij = number of times

word j appears in instance i , rows of matrix A are a1
T , . . . , aN

T and jth column of A shows

occurrences of word j across Dictionary.

when there are two instances with word count vectors a1, a2 and histogram vectors h1, h2 , the

distance measure (of dissimilarity) is given by ||h1 − h2||. This is expected to be small when

the instances tend to be similar which can help to classify the data as legitimate or malicious.

4.4 Layer 1 - Multinomial Naive Bayes.

Multinomial Naive Bayes is a fast algorithm with low storage requirement. It is robust to

irrelevant features as they tend to cancel each other out without affecting the results. It is

good in domain with many equally important features as in this research. The features

selected through information gain in this research such as host, URI, referrer, user-agent,

status code, mime-type are equally important .It is optimal if the independent assumption

hold true making it good dependable baseline for classification involving text data.

39

An example:

Set up Instances Words Class

Training 1 adregmedia.com

/ga.js

adregmedia.com

Good

Training 2 adregmedia.com

adregmedia.com

200

Good

Training 3 adregmedia.com

302

Good

Training 4 google-analytics.com

/IC/XvidSetup.exe

adregmedia.com

Bad

Testing 1 adregmedia.com

 adregmedia.com

 adregmedia.com

google-analytics.com

/IC/XvidSetup.exe

Predict

Table 4.7: An example for multinomial Naive Bayes Classification �̂ = �ࢉ� (4.1)

where �̂ is probability of a class, Nc is the number of instances belonging to that class and N

is total number of instances. The Equation 4.1 presents Prior for each class/category

 �̂ሺࢉ|࢝ሻ = ሻ + |�| (4.2)ࢉሺ࢚࢔࢛࢕࡯ሻ+ ૚ࢉ,࢝ሺ࢚࢔࢛࢕࡯

40

where �̂ሺࢉ|࢝ሻ is likelihood of a word given a class, ࢚࢔࢛࢕࡯ሺ࢝, ሻ is count of the that wordࢉ

occurring in that class, ࢚࢔࢛࢕࡯ሺࢉሻ is count of all the words occurring in that class, V is total

number of unique words in present in all the instances. The Equation 4.2 provides

mathematical formula for Conditional probability.

Prior for class good P(good)= 3/4 [class good appears 3 times out of 4 instances in the table]

Prior for class bad P(bad)= 1/4 [Class bad appears once out of 4 instances in the table]

Conditional Probabilities

P(adregmedia.com | Good) = (5+1)/(6+8)= 6/14 =3/7

 [the term adregmedia.com appears 5 times in the class Good plus 1 which is divided by the

total number of words in class good plus the number of unique words in the entire set

(vocabulary)]

P(google-analytics.com | Good) = (0+1)/(6+8)= 1/14 [the term google-analytics.com does

not appear in the class Good plus 1 which is divided by the total number of words in class

good plus the number of unique words in the entire set (vocabulary)]

P(/IC/XvidSetup.exe| Good) = = (0+1)/(6+8)= 1/14 [the term (/IC/XvidSetup.exe does not

appear in the class Good plus 1 which is divided by the total number of words in class good

plus the number of unique words in the entire set (vocabulary)]

P(adregmedia.com | Bad) = (1+1)/(3+6)= 2/9 [the term adregmedia.com appears once in the

class Bad plus 1 which is divided by the total number of words in class Bad plus the number

of unique words in the entire set (vocabulary)]

P(google-analytics.com | Bad) = (1+1)/(3+6)= 2/9 [the term google-analytics.com appears

once in the class Bad plus 1 which is divided by the total number of words in class Bad plus

the number of unique words in the entire set (vocabulary)]

P(/IC/XvidSetup.exe| Bad) = (1+1)/(3+6)= 2/9 [the term /IC/XvidSetup.exe appears once in

the class Bad plus 1 which is divided by the total number of words in class Bad plus the

number of unique words in the entire set (vocabulary)]

Choosing the class for the test instance:

P(Good | test) ∝ �̂ * �̂ሺࢉ|࢝ሻ = �̂ * �̂ሺࢊ࢕࢕ࡳ|࢝ሻ = 3/4 * 3/7 * 3/7 * 3/7* 1/14 * 1/14 =

0.0003

P(Bad | test) ∝ �̂ * �̂ሺࢉ|࢝ሻ = �̂ * �̂ሺࢊ�࡮|࢝ሻ = 1/4 * 2/9 * 2/9 * 2/9 * 2/9 * 2/9 =0.0001

In this example, the chosen class would be class Good as a result of the calculation. If the

number of instances are equal in training set for each classes, then the effect of words being

41

repeated will increase the chance of that instance belonging to that class and unique words

would imply otherwise.

4.5 Feature selection for k-means clustering

 The features selected for k-means clustering are domain name (Connection-Specific) and

URL (Connection-Specific). This can help to identify and group the instances of given URL

and domain which belong to a particular type of Exploit Kit.

Ex 1: XXX.com/php?id=11, XXX.com/ php?id=12, XXX.com/ php?id=13, in this particular

example, Exploit kit owner use php?id=11, php?id=12, php?id=13 to identify different

criminals who use the same Exploit kit.

Ex 2: abc.bet.com/123, bcd.bet.com/123, ced.bet.com/123, in this particular example, Exploit

kit owner use abc, bcd and ced to identify different criminals who use the same Exploit kit.

These features can create a quite distinctive profile, making it easy for similarity

measurements and therefore help in grouping the same type of Exploit kits together. This is

because when a cyber criminal sells a particular Exploit kit (sells it to many other criminals),

he identifies them with different URI (for example php?id=11, php?id=12, php?id=13 for

different criminals) or uses different subdomains to identify them. This information is useful

in grouping several Exploit kits of same type together.

4.6 Layer 2-Textual data to numeric format

The features selected for clustering is textual and it is converted to numeric format using

unigram characterisation.

 4.6.1 Uni-gram characterisation

The two features namely domain name and URL are combined together. Each alphabet of the

string in the features are mapped to a number to build a distinct profile. This is done by

creating a 36 dimensional vector, values in the vector are digits and each dimension stand for

a distinct alphabet and numbers and the data is normalised in the end to compensate for the

different lengths of the string. All the other special characters (for example -, . and so on) are

excluded. The code mentioned below creates a profile from the features of each instance.

def _calc_vector(cls, vector_str):

 temp = [0,

0, 0, 0, 0]

 array1 = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't, 'u', 'v', 'w', 'x',

'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

 array2 = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',

'V', 'W', 'X', 'Y', 'Z']

 for letter in vector_str:

42

 # print(letter)

 if letter in array1:

 temp[array1.index(letter)] += 1

 elif letter in array2:

 temp[array2.index(letter)] += 1

 return [x/float(sum(temp)) for x in temp]

Example:

Host Url Feature for clustering

www.coucht

arts.com

/templates/yoo_pure/warp/js/d

ropdownmenu.js

www.couchtarts.com/templates/yoo_pu

re/warp/js/dropdownmenu.js

21.cedricthe

realtor.com

/news/faults-ending.php

21.cedrictherealtor.com/news/faults-

ending.php

www1.smar

t-

checkerfl.ne

t.tf

/31202e33.js

www1.smart-

checkerfl.net.tf/31202e33.js

libocai.com

/directly/persuades-

output_compiler.php

libocai.com/directly/persuades-

output_compiler.php

adf.ly

/js/entry.js

adf.ly/js/entry.js

bilsoierwer.

tk

/50610006.html

bilsoierwer.tk/50610006.html

sausagesme

nts.com

/hole/games/java_trust.php?f=

103

sausagesments.com/hole/games/java_tr

ust.php?f=103

ads.clicksor. /newServing/searchTrack.php? ads.clicksor.com/newServing/searchTra

43

com

nid=1&random=1523964293

ck.php?nid=1&random=1523964293

allocatzds.a

elita.fr

//index.php?d4bdab7f2856dbb

1991b9a8d6d905b6e

allocatzds.aelita.fr//index.php?d4bdab7

f2856dbb1991b9a8d6d905b6e

laisvai.lt

/jstools.js

laisvai.lt/jstools.js

Table 4.8: Input data for Uni-gram Characterisation

The output for the features from uni-gram characterisation is

Host vector

[0.05, 0.0, 0.075, 0.05, 0.125, 0.025, 0.025, 0.05, 0.05, 0.0, 0.0, 0.05, 0.025, 0.075, 0.05, 0.05,

0.0, 0.075, 0.05, 0.075, 0.025, 0.0, 0.025, 0.0, 0.0, 0.0, 0.0, 0.025, 0.025, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0]

[0.030303030303030304, 0.0, 0.06060606060606061, 0.0, 0.12121212121212122,

0.06060606060606061, 0.0, 0.030303030303030304, 0.0, 0.030303030303030304,

0.030303030303030304, 0.030303030303030304, 0.030303030303030304,

0.030303030303030304, 0.0, 0.0, 0.0, 0.06060606060606061, 0.06060606060606061,

0.09090909090909091, 0.0, 0.0, 0.09090909090909091, 0.0, 0.0, 0.0,

0.030303030303030304, 0.06060606060606061, 0.06060606060606061,

0.09090909090909091, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

[0.045454545454545456, 0.022727272727272728, 0.09090909090909091,

0.045454545454545456, 0.09090909090909091, 0.0, 0.0, 0.022727272727272728,

0.09090909090909091, 0.0, 0.0, 0.06818181818181818, 0.045454545454545456, 0.0,

0.09090909090909091, 0.11363636363636363, 0.0, 0.06818181818181818,

0.045454545454545456, 0.06818181818181818, 0.06818181818181818, 0.0, 0.0, 0.0,

0.022727272727272728, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

[0.07142857142857142, 0.0, 0.0, 0.07142857142857142, 0.07142857142857142,

0.07142857142857142, 0.0, 0.0, 0.0, 0.14285714285714285, 0.0, 0.07142857142857142,

0.0, 0.07142857142857142, 0.0, 0.0, 0.0, 0.07142857142857142, 0.14285714285714285,

0.07142857142857142, 0.0, 0.0, 0.0, 0.0, 0.14285714285714285, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0]

[0.0, 0.04, 0.0, 0.0, 0.08, 0.0, 0.0, 0.04, 0.08, 0.0, 0.04, 0.08, 0.04, 0.0, 0.04, 0.0, 0.0, 0.08,

0.04, 0.08, 0.0, 0.0, 0.04, 0.0, 0.0, 0.0, 0.16, 0.04, 0.0, 0.0, 0.0, 0.04, 0.08, 0.0, 0.0, 0.0]

[0.12195121951219512, 0.0, 0.024390243902439025, 0.0, 0.0975609756097561,

0.024390243902439025, 0.04878048780487805, 0.04878048780487805, 0.0,

0.024390243902439025, 0.0, 0.024390243902439025, 0.07317073170731707,

0.024390243902439025, 0.04878048780487805, 0.04878048780487805, 0.0,

0.024390243902439025, 0.14634146341463414, 0.07317073170731707,

0.04878048780487805, 0.024390243902439025, 0.0, 0.0, 0.0, 0.0, 0.024390243902439025,

44

0.024390243902439025, 0.0, 0.024390243902439025, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

[0.06896551724137931, 0.0, 0.08620689655172414, 0.05172413793103448,

0.05172413793103448, 0.0, 0.017241379310344827, 0.034482758620689655,

0.05172413793103448, 0.0, 0.034482758620689655, 0.017241379310344827,

0.034482758620689655, 0.06896551724137931, 0.05172413793103448,

0.034482758620689655, 0.0, 0.08620689655172414, 0.06896551724137931,

0.017241379310344827, 0.0, 0.017241379310344827, 0.017241379310344827, 0.0, 0.0, 0.0,

0.0, 0.034482758620689655, 0.034482758620689655, 0.034482758620689655,

0.017241379310344827, 0.017241379310344827, 0.017241379310344827, 0.0, 0.0,

0.034482758620689655]

[0.10344827586206896, 0.10344827586206896, 0.017241379310344827,

0.1206896551724138, 0.05172413793103448, 0.034482758620689655, 0.0,

0.017241379310344827, 0.034482758620689655, 0.0, 0.0, 0.05172413793103448, 0.0,

0.017241379310344827, 0.017241379310344827, 0.034482758620689655, 0.0,

0.017241379310344827, 0.017241379310344827, 0.034482758620689655, 0.0, 0.0, 0.0,

0.017241379310344827, 0.0, 0.017241379310344827, 0.017241379310344827,

0.034482758620689655, 0.017241379310344827, 0.0, 0.017241379310344827,

0.034482758620689655, 0.05172413793103448, 0.017241379310344827,

0.034482758620689655, 0.06896551724137931]

[0.1111111111111111, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1111111111111111,

0.1111111111111111, 0.0, 0.16666666666666666, 0.0, 0.0, 0.1111111111111111, 0.0, 0.0,

0.0, 0.2222222222222222, 0.1111111111111111, 0.0, 0.05555555555555555, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Table 4.9: Output of Uni-gram Characterisation

4.7 Layer 2 - K-means clustering

Clustering is a type of unsupervised machine learning algorithms, which do not require any

labelled data for training. Clustering algorithms group data points according to their

similarities. In other words, how close these data points are. Give a real-life example,

Assuming that we have a dataset containing human data samples and dog data samples but

we are not sure how humans and dogs look like. Each sample described with two features,

namely “walking with four legs” and “having a tale”. The two features of each sample have
Boolean values. A clustering algorithm groups all the samples according their feature values.

If the data samples collected properly, we should see identical patterns in the two clusters,

namely the human cluster and the dog cluster. Thus, we can use the patterns to describe and

distinguish humans and dogs.

The value of k, number of clusters can be assumed based on the knowledge of the data. This

work has implemented a program which calculates the ideal number of clusters based on

Elbow method.

Elbow method computes the sum of squared error (SSE) for different values of k starting

from 0. The SSE is defined as the sum of the squared distance between each member of the

cluster and its centroid. The equation 4.3 provides mathematical formula for Sum of squared

Error:

45

ࡱࡿࡿ = ∑ ∑ ,࢏࢓ሺ࢚࢙࢏ࢊ ૚=�࢑࢏࡯∋࢞ሻ૛࢞ (4.3)

can be used as a measure of the quality of the clustering, where the error is the distance from

a data point to the centroid of the cluster it belongs to. In the equation 3.9, for each point, the

error is the distance to the nearest cluster ,SSE is obtained by squaring these errors and

summing them up, x is a data point in cluster Ci and mi is the representative point for cluster

Ci . when two clusters are given, the one with the smallest error is chosen. [54]

The value of k is plotted against the SSE calculated, one can see that error decreases as K

increase. The idea is to choose that k at which SSE decreases abruptly because when the

number of clusters increases, distortion becomes smaller.

This is done by using the code below

def do_KMeans(vec):

 "" This function takes a list of 36 dimensional samples and finds clusters """

 SSE = []

 prev = 10000000000

 THRESH = 0.1

 for i in range(len(vec)):

 fitted = KMeans(n_clusters=i + 1, n_init=10).fit(vec)

 errors = fitted.transform(vec)

 curr = sum([min(err) ** 2 for err in errors])

 SSE.append(curr)

 if abs(prev - curr) < THRESH:

 break

 prev = curr

 print "======="

 print SSE

 plt.plot(SSE)

 plt.xlabel('K-number of clusters')

 plt.ylabel('Sum Squared Error')

 plt.title('SSE Curve')

 plt.show()

 plt.clf()

 print "Ideal number of clusters is: " + str(i + 1)

 returnfitted

Based on the value of k obtained from the elbow method, cluster centres are calculated for

the k clusters, then each point is assigned to the nearest clusters, then the new cluster centres

are calculated and process is repeated until the clusters are stable.

4.7.1 Visualisation and Principal Component Analysis

Visualisation of the clusters formed is done using a dimensionality reduction technique ,

Principal Component Analysis (PCA) which can bring out strong patterns in the dataset and

46

emphasize the variation. This is used to obtain a new 2- dimensional coordinate system

(basis) from a 36-dimensional data after considering only the axes that contain as much of the

dataset’s variance as possible and ignoring the axes with very little variance. The two
dimensional clusters are plotted.

Figure 4.2: Principal Component Analysis . Adapted from [63]

The figure 4.2 shows an example that contains gene expression data which are mainly located

within a three-dimensional subspace. Principal Component Analysis is used to visualize these

data points by reducing the dimensionality of the data. The three original variables are

reduced to a lower number of two new variables termed principal components by identifying

the two-dimensional plane that optimally describes the highest variance of the data. This two-

dimensional subspace can then be presented as a two-dimensional component space by

rotating the same. [63]

48

The figure 5.1 shows the information gain value provided by each feature in the HTTP bro

log file. The graph shows higher value of gain for the features uid, status code, tans_dept, ts,

mime_type, resp_fluids, response_body_len, host, id_orig, id.resp_h, status_msg, uri and

refferer. Based on the domain knowledge, the features selected for effective detection of

Exploit kit in this work are host (Connection-Specific), uri (Connection-Specific), referrer

(Connection-Specific), user_agent (Connection-Specific), status_code (Connection-Specific)

and mime_type (Content-Specific).These aggregate values of features, in fact, are fairly

discriminative in putting apart Exploit kit and non Exploit kits. The connection-Specific and

content-Specific features used in the work are backed up by the statistical variations in the

graph which are indicators of the discriminative power of these features in practice. The

features selected guarantee good detection rate. The other features such as time, uid,

id.orig_p, id.resp_h, id.resp_p, trans_depth, request_body_len, response_body are discarded

as they only provide information about a specific attack which cannot be used to generalise in

order to detect other Exploit kits.

5.2 Accuracy of the Classifier on the Training Set

The metrics to evaluate the classifiers is Detection Rate (DR) on the training set using 10-fold

cross validation. The detection rate is percentage of correctly classified data.

5.2.1 Cross Validation

This approach uses the entire transformed dataset to train and test a given the algorithm,

Naive Bayes in this work. This involves separating the dataset into a number of equally sized

groups of instances (called folds). This work opts for 10-fold (K-fold) validation. Then the

model is then trained on 9 folds with an exception of one fold which is used for the test. The

process is repeated K times so that each fold get’s an opportunity at being left out used as the
test dataset. Finally, the performance measures are averaged across all folds to estimate the

capability of the Naive Bayes algorithm in this work.

The original sample of 2400 instances (1200 instances of legitimate data and 1200 ore

instances of malicious data)is randomly partitioned into k equal size subsamples of 240

instances (120 instances of malicious data and 120 more instances of legitimate data in this

work). Of the k subsamples, a single subsample(240 instances) is retained as the validation

data for testing the model, and the remaining k-1 (2160 instances) subsamples are used as

training data. The cross-validation process is then repeated 10 times (the folds), with each of

the k subsamples used exactly once as the validation data.

10-fold cross validation involved training and testing a model 10 times:

 #1: Train on folds 1+2+3+4+5+6+7+8+9, test on fold 10

 #2: Train on folds 1+2+3+4+5+6+7+8+10, test on fold 9

 #3: Train on folds 1+2+3+4+5+6+7+9+10, test on fold 8

 #4: Train on folds 1+2+3+4+5+6+8+9+10, test on fold 7

 #5: Train on folds 1+2+3+4+5+7+8+9+10, test on fold 6

54

Figure 5.11: Performance of the classifier for K=10

From the Figure 5.11, the number of instances of malicious data used for the training is 1080,

the number of legitimate data instances used for the training is 1080, the number of instances

of test data (120 malicious data instances and 120 legitimate data instances) is 240. The

number of correctly classified data is 236 in this case with 4 misclassified data instances. The

accuracy of this validation is 98.3%.

K-fold training Detection Rate (DR)

Fold 1 97.5%

Fold 2 97.9%

Fold 3 97.5%

Fold 4 100%

Fold 5 97.5%

Fold 6 97.9%

Fold 7 97.5%

Fold 8 98.3%

Fold 9 97.9%

Fold 10 98.3%

Table 5.1: Performance of the classifier on the training data using K-fold validation

From the table 5.1, the Average performance measure of the Naive Bayes Classifier in this

work is [(97.5*4) +(97.9*3)+(98.3*2)+(100*1)]/10 = 98.03%. Using 10-fold cross

validation, the classifiers is quite precise which indicates the discriminative power of the

features used based on attack-centric behaviour of the Exploit kits. The meanings of DR in

this context is the percentage of correctly classified data. The advantage of this approach is

high accuracy, ability to modify the classifier (features) and very little time to classify the

data.

56

Figure 5.13: Calculation of the value of K using Elbow method for the test data

The Figure 5.13 shows the calculation of the ideal number of clusters based on Elbow method

.The fundamental idea of this method is for a range of values of k , k-means clustering is done

on the dataset and the sum of squared errors (SSE) is calculated and plotted. Then the

"elbow" on the arm in the graph is chosen as the value of k as it has a low SSE. Then the data

is clustered into K groups.

58

Chapter 6 Conclusions

Exploit Kits contribute to a significant portion of web-based threats on the internet today,

creating a staging ground for further malicious criminal activities. Through the extensive

history of exploit kit attacks causing problems for innocent internet users, it is clear that it is

important to have an effective system in place to control the damage. To minimize the threat

they pose to the internet, it is important to understand how they function (entry point,

distribution, exploit, infection, and execution, to launch an attack) to detect and defend users

from further attacks.

A typical exploit kit attack usually begins with a victim being lured to a URL (e.g., by

clicking a link in a spam email or an advertisement found on a legitimate webpage) to visit a

seemingly legitimate web page. This is followed by a series of redirections, and the victim

reaches an exploit kit landing page. The kit then scans for vulnerabilities to exploit by

gathering information about the victim. At this stage, a kit analyses the User-Agent

information of the victim (type and version number of the operating system, browser, and

third-party plugins) so it can serve suitable exploits (pre-written exploit code which usually

include installer scripts, number of exploits, configuration details, administration features for

the kit owner, and payload) to the victim based on this information. Examples of

(historically) popular Exploit Kits include RedKit, Angler, Blackhole, NuclearPack, Sakura,

NeoSploit, Siberia Private, and Styx. [11]

This work has trained Naive Bayes classifier on the features derived from attack centric

behaviour of the Exploit kits. The data set up to train the classifier involves data which cover

all the different stages present in a typical Exploit kit attack workflow and provides a very

good detection rate on the test data. The contributions of the approach include a machine

learning approach that makes use of distinct features drawn from the attack-centric

behaviour, an implementation and evaluation of the approach , clustering of the detected

Exploit kits URL and domain name, visualisation of the clusters that contain different types

of Exploit kits and an implementation of information gain algorithm for ideal feature

selection from a machine learning point of view.

The features selected for effective detection of Exploit kits in this work are host (Connection-

Specific), URI (Connection-Specific), referrer (Connection-Specific), user_agent

(Connection-Specific), status_code (Connection-Specific) and mime_type (Content-

Specific).These aggregate values of features, in fact, are very good at putting apart Exploit kit

and non-Exploit kit related traffic. The connection-Specific and Content-Specific features

used in the work are backed up by the statistical variations in the graph which are indicators

of the discriminative power of these features in practice. The features selected guarantee a

high true positive rate and very low false positives rate in the detection.

The average performance measure of the Naive Bayes Classifier on the training set in this

work is 98.03%. Using 10-fold cross validation, the classifiers is quite precise which

indicates the discriminative power of the features used based on attack-centric behaviour of

the Exploit kits. The advantage of this approach is its accuracy, ability to modify the

classifier (features) and very little time to classify the data.

The accuracy of classifiers on the testing test shows the accuracy of the classifiers on an

independent test set. Overall, the classifier has achieved about 99% accuracy. As shown in

59

the results, the classifier is precise enough to correctly classify samples disjoint with the

training set.

The Naive Bayes classifier can help answer the question whether a given URL points to an

Exploit kit. The answer to this question can have significant implications for the safety of

end-users on the Internet, considering the rate of victims that have been affected by Exploit

kits over the last few years. This information can be used by search engines which can use

detection techniques to prevent indexing of these malicious URLs . These URLS could also

be blacklisted and this information could be passed on to end-users and browser vendors.

They can be protected from harmful infection. The signature dataset maintained by anti-virus

companies can be updated with these URLs. The take-down operations against malicious

activities on the Internet can make use of identifying these Exploit Kits. This approach helps

detect malicious URLs that are used by an Exploit kit which is useful when new Exploits are

added by Exploit kits by using machine learning. [11]

The accuracy of K-means clustering on the testing set is between 75%- 85%. In terms of

verification, although the data originally came without label, it now can be treated as labelled

data since this work has picked the samples from the dataset and manually labelled them. In

addition, the sample size is relative small, this work went through the detection results

manually to verify that the detectors have done their job right. As shown in the results, this

approach is decent enough to group samples from the training set in to different groups of

Exploit kits based on the domain name and URL.

The practical use of grouping the various types of Exploit kits could help analysts in knowing

what type of Exploit kits are being used to target their network and/or customers. This is of

course if that network does not already employ an IDS system, which already has signatures

to detect the types of Exploit kits. This makes most sense when a customer does have HTTP

logs, in this case Bro is used, but such HTTP logs could also come from a proxy or firewall

log. In this work, machine learning algorithm could identify the Exploit kits that were seen, in

retrospect. A lot of companies do have HTTP logs available, and not PCAP files (which is

what an IDS would use). Knowing the type of Exploit kits is useful, because most Exploit

kits have different types of Exploits. For example Exploit kit A could have an Exploit for all

Java versions from 2015, while Exploit kit B would only have Exploits for Java versions

from 2014. Another example: Exploit kit C could only have Exploits for Java, while Exploit

kit D only has Exploits for Flash. Knowing the types of Exploits served by various Exploit

kits can help an analyst in assessing the possible damage the Exploit kit could to the end

users of a certain network. For example if Exploit D only employs Flash Exploits, while all

end users in the attacked network do not have Flash installed, there is little damage to be done

by this specific Exploit kit.

6.1 Future work

Despite the significant progress made in this thesis, there remain several open exciting

challenges with detection of Exploit kits for large-scale machine learning. In the following

list, some promising topics are mentioned that can be of worth to future research projects.

 Considering the entire PCAP for detection

 Considering other Bro logs for detection purposes

 More training data and data which includes the labels of the Exploit kit they belong to

60

 Analysis of the formed clusters

 Considering temporal features which can bring context to the picture

61

7 References

[1]Luo, T., & Jin, X. NEXT-GENERATION OF EXPLOIT KIT DETECTION BY

BUILDING SIMULATED OBFUSCATORS.

[2]Grier, Chris, et al. "Manufacturing compromise: the emergence of Exploit-as-a-

service." Proceedings of the 2012 ACM conference on Computer and communications

security. ACM, 2012.

[3]https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-

evolution-of-Exploit-kits.pdf

[4]Mitchell, Tom Michael. The discipline of machine learning. Vol. 9. Carnegie Mellon

University, School of Computer Science, Machine Learning Department, 2006.

[5]Rätsch, Gunnar. "A brief introduction into machine learning." 21st Chaos Communication

Congress. 2004.

[6]Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas. "Supervised machine learning: A

review of classification techniques." (2007): 3-24.

[7]Kevin, Murphy. "Machine Learning: a probabilistic perspective." (2012).

[8]Yang, Y. and J. P. Pedersen, “A Comperative Study on Feature Selection in Text
Categorization”, The Fourteenth International Conference on Machine Learning, pp. 412–
420, 1997.

[9]Mitchell, T. M., Machine Learning, McGraw Hill, 1997.

[10] McCallum, A. and K. Nigam, “A Comparison of Event Models for Naive Bayes Text
Classification”, AAAI-98 Workshop on Learning for Text Categorization, 1998.

[11]Eshete, Birhanu, and V. N. Venkatakrishnan. "Webwinnow: Leveraging Exploit kit

workflows to detect malicious urls." Proceedings of the 4th ACM conference on Data and

application security and privacy. ACM, 2014.

[12]http://setosa.io/ev/principal-component-analysis/

[13]https://mariuszprzydatek.com/2014/10/31/measuring-entropy-data-disorder-and-

information-gain/

[14]Paxson, Vern. "Bro: a system for detecting network intruders in real-time."Computer

networks 31.23 (1999): 2435-2463.

[15]https://www.bro.org/why_choose_bro.pdf

[16]Yang, Y. and X. Liu, “A Re-examination of Text Categorization Methods”, Proceedings

62

of SIGIR-99, 22nd ACM International Conference on Research and Development in

Information Retrieval, Berkeley, US, 1999

[17]Joachims, T., “A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text

Categorization”, ICML-97 , 1997

[18]Burges, C. J. C., “A Tutorial on Support Vector Machines for Pattern Recognition”, Data
Mining and Knowledge Discovery, Vol. 2, No. 2, pp. 121–167, 1998

[19]Eberhardt, Jeremy J. "Bayesian spam detection." Scholarly Horizons: University of

Minnesota, Morris Undergraduate Journal 2.1 (2015): 2.

[20]McCallum, Andrew, and Kamal Nigam. "A comparison of event models for naive bayes

text classification." AAAI-98 workshop on learning for text categorization. Vol. 752. 1998.

[21]Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge University Press, 2014.

[22]Kodratoff, Yves. Introduction to machine learning. Morgan Kaufmann, 2014.

[23]Khanum, Memoona, et al. "A Survey on Unsupervised Machine Learning Algorithms for

Automation, Classification and Maintenance." International Journal of Computer

Applications 119.13 (2015).

[24]Bonev, Boyan. Feature selection based on information theory. Universidad de Alicante,

2010.

[25]http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

[26]http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html

[27]Birhanu Eshete, Adolfo Villafiorita, Komminist Weldemariam, Mohammad Zulkernine.

EINSPECT: Evolution-Guided Analysis and Detection of Malicious Web Pages. In

Proceedings of the International Conference on Computer Software and Applications

(COMPSAC), pages 375-380, IEEE, 2013.

[28]Birhanu Eshete, Adolfo Villafiorita. Effective Analysis, Characterization, and Detection

of Malicious Web Pages. In Proceedings of the International Conference on World Wide

Web (WWW) Campanion, pages 355-360, ACM, 2013.

[29]Birhanu Eshete, Adolfo Villafiorita, Komminist Weldemariam. BINSPECT: Holistic

Analysis and Detection of Malicious Web Pages. In Proceedings of the International

Conference on Security and Privacy in Communication Networks (SECURECOMM), pages

149-166, Springer-Verlag, 2012.

[30]Birhanu Eshete, Adolfo Villafiorita, Komminist Weldemariam. Malicious Website

Detection : Effectiveness and Efficiency Issues, In Proceedings of the System Security

Workshop (SysSec), pages 123- 126, IEEE, 2011.

[31]Vadim Kotov and Fabio Massacci. Anatomy of Exploit Kits - Preliminary Analysis of

63

Exploit Kits as Software Artefacts. In ESSoS, pages 181–196, 2013.

[32]http://www.delaat.net/rp/2015-2016/p24/report.pdf

[33]http://people.csail.mit.edu/kalyan/AI2_Paper.pdf

[34]http://stanford.edu/class/ee103/lectures/documents/documents_slides.pdf

[35]https://www.coursera.org/learn/ml-foundations/lecture/i8ilf/creating-the-word-count-

vector

[36]Maas, Andrew L., et al. "Learning word vectors for sentiment analysis." Proceedings of

the 49th Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies-Volume 1. Association for Computational Linguistics, 2011.

[37]Largeron, Christine, Christophe Moulin, and Mathias Géry. "Entropy based feature

selection for text categorization." Proceedings of the 2011 ACM Symposium on Applied

Computing. ACM, 2011.

[38]Justin Ma. Learning to Detect Malicious URLs. PhD thesis, University of California, San

Diego, 2010.

[39]Cavnar, William B., and John M. Trenkle. "N-gram-based text categorization." Ann

Arbor MI 48113.2 (1994): 161-175.

[40]Khanum, Memoona, et al. "A Survey on Unsupervised Machine Learning Algorithms for

Automation, Classification and Maintenance." International Journal of Computer

Applications 119.13 (2015).

[41]Smola, Alex, and S. V. N. Vishwanathan. "Introduction to machine learning." Cambridge

University, UK 32 (2008): 34.

[42]https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-

papers/wp-evolution-of-Exploit-kits.pdf

[43]Stock, Ben, Benjamin Livshits, and Benjamin Zorn. "Kizzle: A Signature Compiler for

Detecting Exploit Kits."

[44]De Maio, Giancarlo, et al. "Pexy: The other side of Exploit kits." International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer

International Publishing, 2014.

[45]Šrndić, Nedim, and Pavel Laskov. "Hidost: a static machine-learning-based detector of

malicious files." EURASIP Journal on Information Security2016.1 (2016): 22.

[46]Kolter, J. Zico, and Marcus A. Maloof. "Learning to detect and classify malicious

executables in the wild." Journal of Machine Learning Research7.Dec (2006): 2721-2744.

http://www.delaat.net/rp/2015-2016/p24/report.pdf
http://people.csail.mit.edu/kalyan/AI2_Paper.pdf
https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-evolution-of-exploit-kits.pdf
https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-evolution-of-exploit-kits.pdf

64

[47]Tang, Adrian, Simha Sethumadhavan, and Salvatore J. Stolfo. "Unsupervised anomaly-

based malware detection using hardware features." International Workshop on Recent

Advances in Intrusion Detection. Springer International Publishing, 2014.

[48]Cohen, William W. "Fast effective rule induction." Proceedings of the twelfth

international conference on machine learning. 1995.

[49]https://jair.org/media/3908/live-3908-7454-jair.pdf

[50]Bottou, Léon. "From machine learning to machine reasoning." Machine learning 94.2

(2014): 133-149.

[51]http://www.cs.rutgers.edu/~elgammal/classes/cs536/lectures/ANN.pdf

[52]http://kioloa08.mlss.cc/files/hutter1.pdf

[53]https://www.ics.uci.edu/~dechter/papers/paginated_binders/PART%25201.pdf

[54]http://wwwis.win.tue.nl/~tcalders/teaching/datamining09/slides/DM09-07-Clustering.pdf

[55] http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note07-2up.pdf

[56] http://machinelearningmastery.com/an-introduction-to-feature-selection/

[57]Kotov, Vadim, and Fabio Massacci. "Anatomy of Exploit kits." International Symposium

on Engineering Secure Software and Systems. Springer Berlin Heidelberg, 2013.

[58] Allodi, Luca, Vadim Kotov, and Fabio Massacci. "Malwarelab: Experimentation with

cybercrime attack tools." Presented as part of the 6th Workshop on Cyber Security

Experimentation and Test. 2013.

[59]Grier, Chris, et al. "Manufacturing compromise: the emergence of Exploit-as-a-

service." Proceedings of the 2012 ACM conference on Computer and communications

security. ACM, 2012.

[60]Eshete, Birhanu, et al. "EKHunter: A Counter-Offensive Toolkit for Exploit Kit

Infiltration." NDSS. 2015.

[61]Kapravelos, Alexandros, et al. "Revolver: An automated approach to the detection of

evasive web-based malware." Presented as part of the 22nd USENIX Security Symposium

(USENIX Security 13). 2013.

[62]Cova, Marco, Christopher Kruegel, and Giovanni Vigna. "Detection and analysis of

drive-by-download attacks and malicious JavaScript code." Proceedings of the 19th

international conference on World wide web. ACM, 2010.

[63]Rieck, Konrad, Tammo Krueger, and Andreas Dewald. "Cujo: Ecient Detection and

Prevention of Drive-by-Download Attacks."

[63]http://www.nlpca.org/pca_principal_component_analysis.html

65

[64]Salton, Gerard, Anita Wong, and Chung-Shu Yang. "A vector space model for automatic

indexing." Communications of the ACM 18.11 (1975): 613-620.

[65]https://blog.malwarebytes.com/cybercrime/Exploits/2016/09/rig-Exploit-kit-takes-on-

large-malvertising-campaign/

[66]https://en.wikipedia.org/wiki/Exploit_kit

[67]http://odur.let.rug.nl/~vannoord/TextCat/textcat.pdf

[68]http://scikit-learn.org/stable/

66

67

