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A B S T R A C T

PageRank algorithms are widely used for ranking/scoring the nodes
of a network, e.g for world wide web or citation networks. In this
project we will consider directed networks, generated using configu-
ration models, with fixed in- and out-degree distributions. We will
investigate how the number short cycles including self-loops will af-
fect the distribution of PageRank in such networks. For this, we firstly
propose an algorithm to control the number of short cycles in the arti-
ficially generated networks with fixed in and out-degree distribution.
Afterward we examine how the PageRank distribution is affected by
varying the number of short cycles in such networks. As we will see,
by increasing the fraction of self-loops, the number of nodes with
high PageRank increases. However, the effect of cycles of size larger
than one, is in contrast with this observation, i.e., the fraction of nodes
with high PageRank decreases by increasing the number of these cy-
cles. We will explain and prove the former observation by asymptotic
analysis of stochastic equations as a representation of PageRanks, and
for the latter we discuss an analytical example to provide an insight
about what is happening.
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1
I N T R O D U C T I O N

The age that we are living in, is called the age of information by many
thinkers and scientists [1]. This is indeed growing especially because
now, almost everyone has the possibility to generate and share con-
tents with others. According to Erik Schmidt, Executive Chairman of
Alphabet Inc. (the parent company of Google), every two days now
we create as much information as we did from the dawn of civiliza-
tion up until 2003!

Lots of information around us encompass some sorts of relations
among themselves, therefore one can assume a network structure for
plenty of data around us. Examples are ubiquitous: astronomical
social networks like Facebook, networks of citations, networks of sell-
ers and buyers in a market competing each other for offering their
products [2], networks of webpages, and etc. With such a growth,
demands for analysis, and developing new tools for comprehending
or even controlling the behaviors of such networks, is of substantial
value.

One of the most important problems in analysis of networks is
the problem of centrality, i.e., finding a way to see how central or
important is a node in a network. This knowledge can be used in
many different ways. For instance if one is interested in influencing
behaviors of a members of a network, or in order to spread certain
information in the network, it is totally reasonable to find and invest
on central nodes. There are many methods introduced for measuring
centrality of a node in a network. We refer to [3] for a good covering
survey.

Among all these centrality measures, PageRank is one of the most
famous ones. PageRank is first introduced by founders of Google,
Page and Brin in the seminal paper ”The anatomy of a large-scale
hypertextual web search engine” [4]. This measure was specifically
designed for the networks of webpages, and precisely formulated
to implement search algorithms for webpages. This was indeed the
grounds for Google.

Many real networks exhibit clustering property [5–7]. This means, if
two nodes are connected via a short path, it is probable that they are
connected directly as well. In informal terms, this means, for instance,
if two persons have friends in a same community, the probability of
them being friends increases. This probability indeed increases if the
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10 introduction

length of connecting path between two nodes become shorter. like for
instance, two persons having a common friend, probably know each
other as well. The measure of this probability in network terminology
is known as clustering coefficient. This measure, specifically known to
be quite high in social networks [8].

Having said the above, and knowing that PageRank is among the
most important measures of network centrality, it is interesting to ex-
amine the impact of clusters on PageRank distribution in a network.
This is the main aim of this thesis. More specifically, we consider
directed scale-free graph, i.e, graphs which their in- and out-degree
sequences are distributed according to power law [9]. On such graphs
we will consider effects of short cycles, on the distribution of PageR-
ank. For generation of such graphs we will use configuration mod-
els [10], with fixed in- and out-degree distributions [11]. We will
introduce an algorithm to modify this generated network, to change
the fraction of short cycle, while keeping the in- and out- degree se-
quences untouched. After this we will experiment how PageRank
distribution is going to be affected with different size of short cycles
for some randomly generated networks. At the end we try to prove
some of the observed results for a general case.

contributions

This thesis consists of three main contributions:

1. We introduce an algorithm using which one can generate di-
rected graphs with different clustring scructure, but fixed in-
and out-degree sequences. This algorithm is built on top of the
algorithm given in [11], for generating directed random graph,
with given distribution for in- and out-degree sequences. The
proposed algorithm in this thesis, receives a control parameter
as input for fraction of short cycles in the network, along with a
directed graph. Then it restructures this graph such that the in-
and out-degree sequences remain unchanged, but the fraction
of the short cycles are altered according to the given control pa-
rameter. Using this algorithm one can generated graphs with
different clustering properties, but same in- and out degree se-
quences.

2. Having devised the above algorithm to generate the desired
graph, we investigate how the PageRank distribution is altered
by changing the control parameter, i.e., by changing the amount
of short cycles, while the in-and out-degrees are kept fixed. As
we will see we have two contrasting numerical observations re-
garding cycles of length one, i.e., self-loops, and cycles of larger
length. As we will see, by increasing the number of self-loops,
the number of nodes with high PageRank increases, and vice
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versa. However, the effect of cycles of size larger than one, is
in contrast with this observation, i.e., the fraction of nodes with
high PageRank decreases by increasing the number of these cy-
cles.

3. For the observation regarding slef-loops, we employ stochastic
equation representation of PageRanks [12, 13] to prove it in the
general case. On the other hand, the observation related to cy-
cles of size larger than one, turns out to be more difficult to be
proved in general case. This is because, the proposed algorithm
for controlling the fraction of cycles, although keeps the in- and
out-degrees fixed, however, it completely restructures the graph.
This makes it hard to track and compare two different networks
with fixed in- and out-degrees, but different fraction of cycles.
Having said this, for this observation we provide an analytical
example, to supply it with some insight about what is actually
happening.

outline

This thesis consists of four more chapters. In the following we briefly
mention what is discussed in each of the following chapters.

Chapter 2 provides the grounds for theoretical developments of
PageRank, and briefly discusses an algorithm for computation
of PageRank in a graph. At the end of this chapter, PageRank is
discussed as the solution of a stochastic equation. The develop-
ments of this part is later used to prove numerical observations
in this thesis.

Chapter 3 discusses the well-known configuration models in gen-
eral, and configuration models for generation of directed graphs
with given distribution for in- and out-degree sequences, in par-
ticular. After this we introduce our proposed algorithm built on
top of these models, for controlling the fraction of short cycles in
a given graph, while its in- and out-degrees remain unchanged.

In Chapter 4 we investigate the influence of fraction of self loops
on the distribution of PageRank. Moreover, we use stochastic
equations to prove our numerical observations, for the case of
graphs with fixed out-degrees.

Chapter 5 investigates the effect of cycles of length larger than
one on PageRank distribution. For numerical results in this
chapter, we provide an analytical example.





2
PA G E R A N K A N D N E T W O R K S ’ S T R U C T U R E

In this chapter we briefly discuss the famous PageRank algorithm
first introduced by founders of Google, Page and Brin [4]. In a broad
sense, this algorithm is dealing with the problem of centrality: given a
directed graph, how we can rank its nodes according to their central-
ity or importance? A ’given graph’ can be model of any phenomena,
such as graph of web pages linking to each other, or network of paper
citations, or graph of friendship in a social network.

In the Section 2.1, we briefly discuss the theoretical ideas behind
the original PageRank algorithm, and Section 2.2.1, discusses the
power method as one of the most effective methods for computation
of PageRank. Finally, in Section 2.3, we discuss specifically, PageRank
distribution as a solution of a stochastic equation, following the same
idea in [12]. The advantage of this stochastic equation is that it pro-
vides the possibility to capture PageRank distribution of the entire
network in one equation.

2.1 theoretical development

Plenty of academic papers concerning PageRank have been published
since Page and Brin’s original paper. One can see the PageRank score
as the stationary distribution of a random walk process with some
additional jumping probabilities on a given directed graph. Consider
a directed graph Gn = (Vn, En) with n nodes, and let N+

i = {j : (j, i) ∈
En} and N−i = {j : (i, j) ∈ En} be the set of incoming and outgoing
neighbours of node i, respectively. Moreover, let (d+i , d−i ) be the bi-
degree sequence, i.e., d+i = |N+

i | and d−i = |N−i |. The PageRank of
node i is defined as the following:

πi = c

 ∑
j∈N+

i

1
d−j

πj +
1
n ∑

j∈D−0

πj

+
1− c

n
, i = 1, · · · , n. (2.1)

Where, c ∈ (0, 1), is a damping factor, and D−0 is the set of nodes with
out-degree zero.

Here is the physical description of the process. A random walker
in a node of the network with probability c may decide to follow an
outgoing link, or with probability (1− c) may jump to any randomly
chosen node in the entire network. The outgoing links are chosen
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14 pagerank and networks’ structure

uniformly, if any. In case the current node does not have a successor,
i.e., it is a dangling node, the walker will jump randomly to any other
node.

The Equation (2.1) is the convex combination of two terms, describ-
ing this physical process. The first term is the summation of PageR-
ank of incoming nodes weighted by the inverse of their out-degrees,
and the second term is incorporating the possibility of jumping to the
node i from any other node in the network. The latter term, in the
context of network of web pages, can be interpreted as the possibility
that a user just typing the address of a page in the browser, instead
of following a link in another page. From technical point of view,
this consideration makes sure that the underlying Markov chain is
irreducible, and hence the stationary distribution, i.e., the PageRank
exists and is unique.

Let π = (π1, · · · , πn)T be the vector of PageRanks, then the Equa-
tion (2.1) can be written in the vector form as the following:

πT = cπT A +
1− c

n
1T

n . (2.2)

Where 1n, is the unit column vector of n, 1’s, and A is the transition
matrix defined as:

Aij =


1/d−i if d−i > 0 and (i, j) ∈ En

1/n if d−i = 0

0 otherwise.

One can easily notice that matrix A is a stochastic matrix, since the
sum of the elements of each row adds up to 1.

Using Equation (2.2), the PageRank vector π can be computed as
follows:

πT =
1− c

n
1T

n (I − cA)−1.

From the above equation, and the fact that matrix A is stochastic we
can check that the computed PageRank vector is normalized:

πT1n =
1− c

n
1T

n (I − cA)−11n

=
1− c

n
1T

n

∞

∑
k=0

ck Ak1n

=
1− c

n
1T

n
1

1− c
1n

= 1. (2.3)

2.2 pagerank computation

As mentioned before, in a broad sense, PageRank computation can
be seen as computation of stationary distribution of a Markov chain,
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which in turn can be done by either solving an eigenvector problem,
or a system of linear equations. Knowing that πT1n = 1, one can
rewrite Equation (2.2) as the following:

πT = πT
(

cA +
1− c

n
1n1T

n

)
= πTP. (2.4)

Where matrix P is again stochastic (since it is a convex combination
of two matrices with rows adding up to 1) with eigenvalues:

1 > cλ2(A) ≥ cλ3(A) ≥ · · · ,

in which, λi(A) is the ith largest eigenvalue of matrix A (in absolute
value) [14].

Therefore, the PageRank vector π is the left eigenvector of the ma-
trix P associated with largest eigenvalue which is 1. However, com-
putation of this eigenvector is practically impossible by just solving
equations. This is because although P is usually a sparse matrix, but
it is of huge dimension. For instance for the network of webpages for
which Google needs to perform the search algorithm, the dimension
is of tens of billions, which is growing on daily basis [15].

There are plenty of methods for computing PageRank, among which
we briefly discuss the power method introduced in the original paper
of Brin and Page [16]. For survey of other numerical methods for
computing PageRank we refer to [17, 18].

2.2.1 The Power Method

The goal is to find vector π such that:

πT = πTP,

where
P = cA +

1− c
n

1n1T
n .

The power method is as follows:

Algorithm 2.1 Power Method

1: Pick an initial vector π(0)
2: repeat
3: πT

(k+1) = πT
(k)P

4: until Termination criterion is satisfied.

We first compute the error for one iteration:

πT
(k+1) − πT = πT

(k)P− πTP

= cπT
(k)A +

1− c
n

1T
n − cπT A− 1− c

n
1T

n

= c
(

πT
(k) − πT

)
A.
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Therefore, we have:

||πT
(k+1) − πT||1 ≤ c||πT

(k) − πT||1,

and after k iterations [19]:

||πT
(k+1) − πT||1 ≤ ck||πT

(0) − πT||1 ≤ 2ck.

This means that, independent of the dimension of the matrix, we can
lower the error as we want by repeating the iteration.

The main advantage of Power method is that it is easy to imple-
ment, and since the matrix at hand is usually sparse then each it-
eration is not costly. In addition to this, power method has robust
convergence behaviour, it is known that the convergence rate of iter-
ative methods is proportional to the second eigenvalue of the matrix
involved in iteration. However, one should have in mind that still for
some cases the convergence can be quite slow. For accelerarion of
power method one can refer to [20, 21].

2.3 pagerank as a solution to a stochastic equation

One of the main goals in this thesis is to investigate distribution of
PageRank of a randomly chosen node, in the graph. For this, follow-
ing the idea in [12, 13], we will model PageRank as the solution of a
distributional identity, i.e., a stochastic equation. Note that PageRank
values in Equation (2.1), are scaled by number of nodes, i.e. by 1/n.
However, in analysis of distributions, it is more convenient to deal
with scale-free PageRanks:

Ri = nπi, i = 1, · · · , n.

In this case the Equation (2.1), with the extra assumption that there is
no dangling node, is simplified as

Ri = c ∑
j∈N+

i

1
d−j

Rj + (1− c), i = 1, · · · , n. (2.5)

For consideration of networks with dangling nodes one can refer to
[12, 22].

In the following we consider the random variable R as the PageR-
ank of a randomly chosen node. Note that, as a result of Equa-
tion (2.3), we have E(R) = 1. One of the main goal in this thesis
is to compare the tail properties of probability distribution of R, i.e.,
P(R > x) as x is large enough, for different graph structures. To this
end PageRank R can be modelled as the solution of stochastic equa-
tion involving random variables associated with in- and out-degrees.

Let R and D+ be the random variables representing the PageRank
and the in-degree of a randomly chosen node. Moreover, let D−j be



2.3 pagerank as a solution to a stochastic equation 17

the random variable associated with the out-degree of a randomly
chosen node, say j, which has a link to the node we want to compute
its PageRank. Apparently, D−j ’s are not the same random variable
as the out-degree of a randomly chosen node, this is because of the
extra assumtion that they all have a link to a specific node. Hence
D−j ’s have different distributions. Now the stochastic equation can be
written as [12]:

R d
= c

D+

∑
j=0

1
D−j

Rj + (1− c), (2.6)

where, d
= means that the two sides are following the same probabil-

ity distribution. In the above equation we assume Rj’s are identically
and independently distributed (i.i.d) as R. In what follows, to sim-
plify the analysis, we add an extra assumption that D−j ’s are also i.i.d
and distributed as random variable D−. This assumption is accept-
able since the out-degree is not extensively influential on the value of
PageRank. Now the goal is to find the probability distribution of R
that satisfies the above equation.

By introducing new random variables A d
= c/D− and B d

= (1− c),
one reaches the general stochastic equation

R d
=

D+

∑
j=0

AjRj + B. (2.7)

In the remainder of this section we briefly discuss the existence of
solution to the general stochastic equation, and provide theorems for
its asymptotic solution. One can refer to [23] for detailed analysis.
We assume the following assumption is valid for the remainder of
this section.

Assumption 2.1. Rj’s are i.i.d and distributed as R, Aj’s are i.i.d and dis-
tributed as A, and Rj’s, Aj and D+ are mutually independent.

2.3.1 Existence and uniqueness

The solution strategy is based on the following iteration, with initial
known distribution of R(0):

R(k) d
=

D+

∑
j=0

AjR
(k−1)
j + B, (2.8)

where R(k−1)
j ’s and Aj’s are independent and distributed as R(k) and

A, receptively. The following theorem is proved in [12].

Theorem 2.1 (Existence and uniqueness). Equation (2.7) has a unique
and non-trivial solution R with mean 1. Moreover, the iteration in Equa-
tion (2.8) converges to this solution:

R = R(∞) = lim
k→∞

R(k).
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2.3.2 Asymptotic behaviour

The asymptotic, i.e., tail solution of R depends on relation of distri-
butions of D+ and B. However, in our case we have assumed B is a
constant 1− c, therefore we can assume that B is a random variable
with lighter tail, i.e., P(B > x) = o(P(D+ > x)) as x → ∞. For
other cases we refer to [12]. Moreover, as we will see in Chapter 3,
Section 3.1, in-degree distributions that we will be dealing with are
regularly varying random variable, i.e., we have:

P(D+ > x) ∼ x−αL(x) as x → ∞, (2.9)

where, L(x) is a slowly varying function.
The following theorem, proved in [12], summarizes the the asymp-

totic behavior of distribution of R:

Theorem 2.2. If P(B > x) = o(P(D+ > x)) and P(R(0) > x) =

o(P(D+ > x)), then for all k ≥ 1:

P(R(k) > x) ∼ C(k)P(D+ > x) as x → ∞,

in which, C(k) = (E(A))α ∑k−1
i=0 [E(D+)E(Aα)]i.

Note, that in the above theorem it is assumed that the initial distri-
bution of R(0) have a lighter tail than in-degree distribution. This is a
reasonable assumption as usually the iteration starts with R(0) ≡ 1.

Using Theorem 2.1, one can write:

P(R > x) = lim
k→∞

P(R(k) > x) ∼ C(∞)P(D+ > x) as x → ∞,

where, C(∞) is given by:

C(∞) = lim
k→∞

C(k) =
(E(A))α

1−E(D+)E(Aα)
. (2.10)



3

G E N E R AT I N G R A N D O M G R A P H S W I T H S H O RT
C Y C L E S

In this chapter we develop a model of network for which we can
control the number of triangles, while the in- and out-degree of the
nodes remain untouched. In order to do this, we first need to be
able to generate a graph based on given in- and out-degree sequence,
which from now on we call bi-degree sequence. For this we use the
directed configuration models [10].

Configuration model for undirected graphs is basically a way of
generating a graph such that the degree of each of its nodes is a
random variable samples from a probability distribution with inte-
ger support [24]. More specifically, let v1, · · · , vn be the vertices of a
graph, and P be a probability distribution with positive integer sup-
port. The configuration model is constructed as follows. For each ver-
tex vi independently sample a value di, with probability of P(Di = di).
Then attach di half edges or stubs to vi. After this randomly attach all
the half edges together, i.e., at each time choose two random stubs,
and connect them together, until no stub is remained.

A minor problem in the above process is that, ∑ di may be odd.
However, this can be easily solved by either repeating the sampling
process till the summation adds up to be even, or just by removing a
stub. A more significant problem shows itself when we want to gen-
erate simple graph. The above described process apparently allows
creation of multiple edges and loops, as e.g., the two chosen stubs
can be connected to a same vertex. We will consider this problem in
the next section for the directed configuration models.

The process of generating bi-degree sequence for directed graphs
will involve more technicalities. This is mainly due to the more com-
plex requirements for a bi-degree sequence to be graphical, i.e., if it is
possible to actualize or draw a graph with that sequence. So one need
to come up with procedure which guarantees that the generated se-
quence is graphical. This is the content of Section 3.1, which is based
on [11].

Section 3.2, discusses the modification of configuration model for
directed graphs. In other words given a graphical bi-degree sequence
how one can draw graph for that. This method resembles in some
aspects to the process described above for undirected graphs.

19



20 generating random graphs with short cycles

Finally, in Section 3.3 we introduce an algorithm to control amount
of cycles in the networks. This algorithm receives as input a bi-degree
sequence, and a parameter to control the number of loops in the
graph, so one can easily alter the total number of loops by changing
this parameter.

3.1 graphical bi-degree sequence

The goal in this section is to generate a simple random directed graph
from given distributions for both in- and out-degrees. For this we
need to specify two probability distributions with non-negative in-
teger support, indicating distribution of in- and out-degree of each
node. Let us name these distributions F and G for in- and out-degrees,
respectively:

F(x) =
x

∑
i=1

fi, and G(x) =
x

∑
i=1

gi,

where fi, and gi are the probability of having in- and out-degree of
i, respectively. Like the undirected case we assume that both in- and
out-degree elements are drawn independently from F and G. How-
ever, here we have more serious criteria for the drawn bi-degree se-
quence to be graphical. The corresponding condition to the undi-
rected case, for which summation of degree sequence has to be even,
for the directed case is that the sum of in-degrees should be equal to
sum of out-degrees.

This condition turns out to be more hard to meet comparing to
the case of undirected graphs. This is because in general, the prob-
ability that two i.i.d sequences have the same sum, as the length of
the sequence goes to infinity, converges to zero, even if they have
equal means. In order to deal with this, the authors in [11], have
provided an algorithm which modifies an i.i.d bi-degree sequence
D = (D+, D−), to get another sequence D̂ = (D̂+, D̂−), which will
be graphical with probability one, as the the number of nodes goes
to infinity. Moreover, they prove by way of their construction, the
sequence D̂, converges in distribution to the sequence D. In the fol-
lowing we briefly discuss the algorithm and the results from [11].

In order for algorithm to work we need to make an extra assump-
tion on distributions F and G. Particularly we need to assume that
there exist slowly varying functions LF and LG such that:

1− F(x) ≤ x−αLF(x) and 1− G(x) ≤ x−βLG(x),

for all x ≥ 0 and α, β > 1. A function L is said to be slowly varying if
limx→∞ L(tx)/L(x) = 1 for all fixed t > 0. In this case we say F and
G are regularly varying distributions. The above conditions make sure
that F and G have finite moments of order r and s, for 0 < r < α and
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0 < s < β, respectively. The following constant is important in the
asymptotic analysis of the algorithm:

κ = min{1− α−1, 1− β−1, 1/2}.

The algorithm for generating the bi-degree sequence is given in Algo-
rithm 3.1.

Algorithm 3.1 GenerateBiDegree(F, G)

Require: Probability distributions F and G for in- and out-degrees.
Ensure: The graphical bi-degree sequence.

1: Fix 0 < δ0 < κ

2: repeat
3: Sample i.i.d sequence {d̂+1 , · · · , d̂+n } from F
4: Sample i.i.d sequence {d̂−1 , · · · , d̂−n } from G
5: ∆n ← ∑n

i=1 d̂+1 −∑n
i=1 d̂−1

6: until |∆n| ≤ n1−κ+δ0

7: S|∆n| ← |∆n| randomly chosen nodes (without replacement)
8: if ∆n > 0 then
9: ∀i ∈ S|∆n| : d−i ← d̂−i + 1

10: if ∆n < 0 then
11: ∀i ∈ S|∆n| : d+i ← d̂+i + 1

The algorithm is based on repeated generation of samples of in-
and out-degrees until their summation difference satisfies the condi-
tion, |∆n| ≤ n1−κ+δ0 , given in line 6. After this the degree sequences in
lines 7-11 are modified such that the new bi-degree sequence satisfies
the condition that the summation of in and out-degrees are equal.

The first issue about the above algorithm is proof of termination.
In other words, one needs to prove the condition |∆n| ≤ n1−κ+δ0 , is
satisfied after a reasonable number of samplings. In [11], it is proven
that this event occurs with probability one as n goes to infinity, i.e.,

lim
n→∞

P({|∆n| ≤ n1−κ+δ0}) = 1.

The next point to consider is whether the generated bi-degree se-
quence is graphical, i.e., if there is an actual graph with the generated
bi-degree sequence. The necessary and sufficient conditions for a bi-
degree sequence to be graphical is given in the following Theoerm
taken from [25].

Theorem 3.1. Given vertices set V = {v1, · · · , vn}, the bi-degree sequence
(D+, D−) = ({d+1 , · · · , d+n }, {d−1 , · · · , d−n }), is graphical if and only if:

(i) ∑n
i=0 d+i = ∑n

i=0 d−i , and

(ii) ∑n
i=1 min{d−i , |A− {vi}|} ≥ ∑vi∈A d+i for all A ⊂ V.
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Having the above characterization for graphical bi-degree sequences,
in [11], it is proven that, bi-degree sequence generated by Algorithm 3.1,
is asymptotically graphical with probability one, i.e.,

lim
n→∞

P(({d+i }, {d
−
i }) is graphical) = 1.

Regarding the generated bi-degree, the other property to be dis-
cussed, is that the modification of sampled sequences in Algorithm 3.1,
is negligible, so to speak. Particularly, it has to be shown that al-
though the generated bi-degree sequence is no longer i.i.d, and may
have different distributions than of the original F and G, however,
asymptotically they assimilate these properties. Intuitively this is be-
cause the modification needed to be done to the degree sequences
(|∆n|) is small proportionate to n. Therefore the following theorem is
proven in [11].

Theorem 3.2. The bi-degree sequence, ({d+i }, {d
−
i }), generated in Algo-

rithm 3.1, for any fixed s, r ∈N, satisfies

(d+i1 , · · · , d+ir , d−j1 , · · · , d−js )
D−→ (d̂+1 , · · · , d̂+r , d̂−1 , · · · , d̂−s ),

as n→ ∞, where {d̂+i }, {d̂
−
i } are samples from original distributions F and

G, and D−→ is convergence in distribution.

3.2 directed configuration model

Having a graphical bi-degree sequence one can use the idea of config-
uration models, as in undirected graphs, to realize a directed graph.
Here instead of half-edges we consider half directed edges. Let v1, . . . ,
vn be nodes of the graph, and ({d+i }, {d

−
i }) be the bi-degree sequence.

We attach to each node vi, d+i inbound half-edges, d−i outbound half-
edges. Then we randomly choose one inbound half-edge and con-
nect it to a randomly chosen outbound half-edge (all the selection
processes are uniform). This process is continued until no half-edge
remains.

Like the case of undirected graphs here is also possible to have mul-
tiple edges, and self-loops. Hence we may not have simple graphs as
a result. In order to solve this two methods are proposed, repeated
directed configuration models and erased directed configuration models. In
the former method, as the naming suggests, the process is repeated
until a simple graph is realized. For this to happen, one has to prove
that the probability of realization of a simple graph is bounded away
from zero, hence a repeated performance of the method guarantees
that the probability of drawing a simple graph is one. In [11], authors
have proved that this is indeed the case, when certain reasonable con-
ditions on the bi-degree sequence is satisfied (e.g., they are sampled
from a distributions with finite moments), and the number of nodes
goes to infinity.
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Erased configuration model is simply based on creation of the pos-
sible multi-graph first, and then removing self-loops, and merging
multiple edges on the same direction into one edge. This is useful in
two ways. First when the conditions on bi-degree sequence for the
probability of realization of simple graph to be positive, are not satis-
fied, hence the repeated configuration model will not work. Second it
is more efficient, since the graph is generated only once, and no rep-
etition is needed [26]. However, we should note that in this method
the bi-degree sequence is modified and we may be violating the obli-
gation that the bi-degree sequence should follow a certain probability
distributions.

Let ({d(e)+i }, {d(e)
−
i }) be the bi-degree sequence of the simple

graph obtained using erased directed configuration method, i.e., d(e)+i
and d(e)−i are the in-degree and out-degree of node i after erasing
multiple edges and self-loops. We define the joint distribution as:

h(n)(i, j) =
1
n

n

∑
k=1

P(d(e)+k = i, d(e)−k = j),

Moreover, define the empirical distribution of the realised erased
model as:

f̂ (n)k =
1
n

n

∑
i=1

1{d(e)+i = k} and ĝ(n)k =
1
n

n

∑
i=1

1{d(e)−i = k}.

The following is proven in [11].

Theorem 3.3. For the erased configuration model as described above, from
the bi-degree obtained from Algorithm 3.1, we have:

(i) h(n)(i, j)→ figj as n→ ∞, and

(ii) ∀k = 0, 1, · · · : f̂ (n)k
P−→ fk and ĝ(n)k

P−→ gk as n→ ∞,

where P−→ is convergence in probability.

3.3 directed configuration model with cycles

In this section we provide an algorithm to control the number of loops
in directed graph with fixed in- and out-degrees. For this algorithm
we use the method discussed in Section 3.1 for generation of in- and
out-degrees. Moreover, we use the same idea as in [27], for adding
loops. This is based on the modification of the standard configuration
model as discussed in Section 3.2 as a model for generation of random
graphs with a given bi-degree distribution. The idea is that, instead of
just indicating in and out (half) edges for each node, we also indicate
the number of loop corners for each node.

Let {d+i } and {d−i } be a generated sequence of graphical bi-degrees
as provided in Algorithm 3.1. Let 0 ≤ α ≤ 1 be the parameter which
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controls the number of loops in the network, such that the number of
loops present in the network increases by increasing α. We split the
in- and out-degree for each node into single edges and loops corners
as follow:

ti = α ·min(d+i , d−i )

s+i = d+i − ti

s−i = d−i − ti

The sequences {s+i } and {s−i }, are the sequence of incoming and out-
going single half-edges, respectively. The sequence {ti} defines the
number of loop corner for each node, i.e., the number of loops the
node i is going to be part of. While for single half-edge of a node we
are choosing another node for forming a connection, for loop corners
we need to choose a set of other nodes equal to the provided size of
loop, and connect them to each other in a circular way.

Algorithm 3.2 CreatGraphWithLoops({d+i }, {d
−
i }, α, l)

Require: Bi-degree sequence {d+i } and {d−i }, α as the parameter of
controlling the number of loops, and the loop size l.

Ensure: The graph with the given bi-degree with loops.
1: ti ← α. min(d+i , d−i )
2: s+i ← d+i − ti
3: s−i ← d−i − ti
4: Build the graph with {s+i } and {s−i } as bi-degree sequence as

discussed in Section 3.2.
5: T = ∑i ti
6: while T > l do
7: Randomly choose the set of l nodes Sl = {n1, · · · , nl} s.t.

∀ni ∈ Sl : tni > 0
8: Add edges n1 → n2 → · · · nl → n1

9: ∀ni ∈ Sl : tni ← tni − 1
10: T ← T − l

Algorithm 3.2 provides the procedure for this idea. In lines 1-3
the single edge and loops corner sequences are created as discussed
above. In line 4 using the configuration model of Section 3.2, a graph
is created only using single half-edges. In line 5 the total number
of available loop corners are stored. Through line 6-10, an iteration
takes place until no other loops can be formed among available loop
corners, i.e., until when the number of available loop corners are less
than the given loop size. In line 7, l nodes that can contribute to a
loop are randomly chosen. Note that a node ni can be part of a loop if
tni > 0, i.e., when it has at least one incoming and one outgoing edge.
In line 8 a loop is created among the chosen nodes. In line 9 the value
of loop corner indicator for each chosen node is updated. Finally, in
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line 10 the total number of available loop corners are reduced by the
loop size l.

Note that in the above algorithm for generating the graph we can
use both so-called repeated directed and erased configuration models
discussed in Section 3.2. More specifically, in line 4 we use either of re-
peated or erased configuration models, therefore the resulting graph
is simple. Note that, after connecting loop corners through lines 6-10,
the resulting graph may not be simple any more, therefore another
pass of multiple edge removal is needed in case of requirement for
non-existence of multiple edges. However, if we allow multiple edges,
with the above algorithm the bi-degree of graph remains unchanged,
and only wiring is done in such a way that the number of loops varies
with α.

In the following proposition we compute and relate the expected
number of added cycles to the control parameter α.

Proposition 3.1. By the given process of the Algorithm 3.2, the expected
number of cycles increases linearly by α. Indeed,

E(Ml) = α · n
l

∞

∑
x=0

F̄(x)Ḡ(x),

where Ml is the random variable representing the number of added cycles of
size l, and F̄(x) = 1− F(x) and Ḡ(x) = 1− G(x).

Proof. Let Ti be the random variable representing the number of a
loop corners for node i. We have

P(Ti/α > x) = P(min(D+, D−) > x)

= P(D+ > x)P(D− > x)

= F̄(x)Ḡ(x).

Next we have

E(Ti/α) =
∞

∑
x=0

P(T/α > x) =
∞

∑
x=0

F̄(x)Ḡ(x).

Therefore,

E(Ti) = α ·
∞

∑
x=0

F̄(x)Ḡ(x).

Moreover, we have

E(Ml) =
1
l

n

∑
i=1

E(Ti),

which leads to the proof of the proposition.
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I N F L U E N C E O F S E L F - L O O P S O N PA G E R A N K
D I S T R I B U T I O N S

In this chapter we use the Algorithm 3.2 in Chapter 3 to see how
self-loops can influence PageRank distribution. We will use the tail
analysis results in Theorem 2.2 to prove the observations we have for
self-loops in the general sense.

In this chapter (and the next) for the generation of in- and out-
degrees, we use Pareto distribution, with parameters β and xm, as
shape and scale parameters, receptively. Probability density function
of Pareto distribution is given as:

P(X = x) =
βxβ

m

xβ+1 , x ∈ [xm,+∞]. (4.1)

In order to conduct observations, we use β = 1.1, xm = 3. This
means that the minimum possible in- or out-degree of a node would
be 3. Figure 4.1, shows the probability density functions of Pareto
distribution, in ordinary and log-log scale for these parameters.
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(a) PDF.

4 6 8 10

0.05

0.10

0.20

(b) PDF in log-log scale.

Figure 4.1: PDF and log-log PDF of Pareto distribution for scale and
shape parameters of 3, and 1.1, respectively.

This chapter is organized as follows. In Section 4.1 we illustrate
the observations and experiments done by addition of slef-loops to
the graph. In Section 5.2, we prove the observation for the general
case.

27
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4.1 experiments

In the following we specifically investigate the influence of addition
of self-loops to the distribution of PageRank. We use Algorithm 3.2
with loop size 1, to control the amount of self-loops. Figure 4.2 il-
lustrate the empirical distribution of PageRank computed on a graph
of ten thousands nodes. Each curve in this figure is associated with
a value of α, controlling the amount of self loops. As can be seen
by increasing the value of α, i.e., increasing self-loops, the fraction
nodes with high PageRanks increases, while it decreases for the case
of having nodes with lower PageRanks. This is indeed more visible in
Figure 4.2b, in which the value of probabilities are shown in log-scale.
Note that we have shown the curves of this figure in a longer domain
range, to show the effect of self-loops on the tail of the probability
distribution.

Figure 4.3, shows the same measures for a graph of half a million
nodes. One can easily see as the number of nodes increases we have
smoother curves. This clearly shows the importance of asymptotic
analysis for proving the observations in general case.

Given the above experiments we can formulate the following obser-
vation. Let Gα be a randomly realized graph according to the Algo-
rithm 3.2, for a fixed value of α, and let πi(Gα) be random variable
representing the PageRank of a randomly chosen node i, in the graph
Gα.

Observation 4.1. For α1 < α2, there exists the threshold γ, such that for
all x > γ, we have:

n

∑
i=1

1{πi(Gα1) > x} <
n

∑
i=1

1{πi(Gα2) > x}, (4.2)

as n→ ∞.

In plain words, the above observation states that the number of
nodes with high PageRank increases as the number of self-loops in-
creases. In Section 4.2, we prove the above observation for the special
case where all the nodes have the same out-degrees, using tail analy-
sis in Theorem 2.2.

4.2 tail analysis of observations

In this section we use tail analysis given in Theorem 2.2 to prove that
the observation in Section 4.1 generally holds. In order for Assump-
tion 2.1 to hold, we follow the idea in [12, 22] to assume that the
out-degrees are constant. This assumption is admissible since it is
widely known that the influence of out-degrees on PageRanks is not
extensive. Figure 4.4, depicts empirical distribution of PageRanks in
a graph of half a million nodes, with constant out-degree of 20.
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Figure 4.2: Empirical PageRank distribution for a graph of 10,000

nodes, for different values of α, and loop size 1, i.e., self-
loops. Note that πi(Gα) is random variable representing
PageRank of a realized random graph Gα.
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Figure 4.3: Empirical PageRank distribution for a graph of half a mil-
lion nodes, for different values of α, and loop size 1, i.e.,
self-loops. Note that πi(Gα) is random variable represent-
ing PageRank of a realized random graph Gα.
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Figure 4.4: Empirical PageRank distribution for a graph of half a mil-
lion nodes with constant out-degree of 20, for different val-
ues of α, and loop size 1. Note that πi(Gα) is random vari-
able representing PageRank of a realized random graph
Gα.
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In the following we use the stochastic equation for PageRank to
prove the Observation 4.1, indeed holds asymptotically. For the orig-
inal graph we can repeat the stochastic Equation (2.6) as follows:

R d
= c

D+

∑
j=0

1
D−j

Rj + (1− c)

Now let each node destroy one outgoing and incoming link and form
a self-loop. The above equation will be altered, and the new PageR-
ank can be computed as follows:

R̂ d
= c

D+−1

∑
j=0

1
D−j

R̂j +
c

D−
R̂ + (1− c)

⇒ R̂(1− c
D−

)
d
= c

D+−1

∑
j=0

1
D−j

R̂j + (1− c)

⇒ R̂ d
=

cD−

D− − c

D+−1

∑
j=0

1
D−j

R̂j +
(1− c)D−

D− − c
.

Note that the above distributional identity captures the entire modifi-
cation in the network. If we add the extra assumption that all nodes
have the constant out-degree, say d−, we have the following stochastic
equations for the original and altered PageRanks:

R d
=

c
d−

D+

∑
j=0

Rj + (1− c) (4.3)

R̂ d
=

c
d− − c

D+−1

∑
j=0

R̂j +
(1− c)d−

d− − c
. (4.4)

Both above equations can be seen as instances of the general stochas-
tic equation given in (2.7). Moreover, since the Assumption 2.1 holds,
Theorem 2.2 is immediately applicable for their tail analysis. Know-
ing that,

E(A) = c/d− and E(D+) = E(D−) = d−,

E(Â) = c/(d− − c) and E(D̂+) = E(D+ − 1) = E(D+)− 1,

we have:

P(R > x) ∼ C(∞)P(D+ > x) as x → ∞,

P(R̂ > x) ∼ Ĉ(∞)P(D+ > x) as x → ∞,

where, C(∞) and Ĉ(∞) are given by:

C(∞) =
(c/d−)α

1− d−(c/d−)α

Ĉ(∞) =
(c/(d− − c))α

1− d−(c/(d− − c))α
.
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After simplification, the above identities become:

C(∞) =
cα

(d−)α − cαd−
(4.5)

Ĉ(∞) =
cα

(d− − c)α − cα(d− − 1)
. (4.6)

In general we have:
Ĉ(∞) > C(∞),

for all c ∈ (0, 1) and d ∈ {1, · · · , n}. This proves the observations in
Section 4.1, for the general case. Figure 4.5, is illustrating both C(∞)

and Ĉ(∞) for α = 2 and for all c ∈ (0, 1) and different values of d−.
Therefore we have proved the following theorem:

Theorem 4.1. For α1 < α2, the exists the threshold γ, such that for all
x > γ, we have:

lim
n→∞

P (πi(Gα1) > x) < lim
n→∞

P (πi(Gα2) > x) . (4.7)
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Figure 4.5: Comparison of C(∞) and Ĉ(∞) for different values of d−,
for all c ∈ (0, 1) on x-axis, and α = 2.
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I N F L U E N C E O F C Y C L E S O N PA G E R A N K
D I S T R I B U T I O N S

In this chapter we follow the same lines as in Chapter 4, but for cycle
sizes of length larger than one. Again we use the Algorithm 3.2 in
Chapter 3 to see how different loop sizes can influence PageRank dis-
tribution. This chapter is further organized as follows. In Section 5.1
we illustrate the observations and experiments done by addition of
loops of different size to the graph. And in Section 5.2, we provide
an analytical examples in which one can see why the numerical ob-
servations are happening.

5.1 experiments

In this section we mainly discuss the observations and experiments
on the influence of loops on PageRank distribution. For the genera-
tion of in- and out-degree, like the previous chapter, we use Pareto
distribution (cf. Equation 4.1). In this section we investigate the influ-
ence of short cycles, i.e., loops of size greater than one on the distri-
bution of PageRanks. As we will see, the effect in this case is exactly
the reverse of self-loops.

Figure 5.1 shows the empirical distribution of PageRank computed
on a graph of 10,000 nodes, for different values of α, and loop size 3,
which means we are adding triangles. As one can see the probability
of having nodes with lower PageRank increases by increasing value of
α, i.e., having more triangles. So one may deduce that by increasing
α PageRank of a node is likely to be increased, specifically for low
ranked nodes. Figure 5.2, depicts the same results for half a million
nodes. As can be seen we have more smooth curves, especially for
log-scale diagram. This, again, shows the importance of asymptotic
analysis.

One can see that the results for addition of loops of size larger than
1, e.g., triangles, are the reverse of what we saw in the previous sec-
tion for addition of self-loops. Given the above experiments we can
can formulate the following observation. Recall from previous sec-
tion that Gα is a randomly realized graph according to Algorithm 2.1,
for a value of α, and πi(Gα) is the PageRank of node i, in the graph
Gα.

35
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Figure 5.1: Empirical PageRank distribution for a graph of 10.000

nodes, for different values of α, and loop size 3, i.e., tri-
angles. Note that πi(Gα) is random variable representing
PageRank of a realized random graph Gα.
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Figure 5.2: Empirical PageRank distribution for a graph of half a mil-
lion nodes, for different values of α, and loop size 3, i.e.,
triangles. Note that πi(Gα) is random variable represent-
ing PageRank of a realized random graph Gα.
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Observation 5.1. For α1 < α2, there exists the threshold γ, such that for
all x > γ, we have:

n

∑
i=1

1{πi(Gα1) > x} >
n

∑
i=1

1{πi(Gα2) > x}, (5.1)

as n→ ∞.

The above observation in plain words means that the fraction of
nodes with high PageRank decreases by increasing α. On the other
hands due to normalization, the fraction of nodes with lower PageR-
ank increases as α is increased.

We also consider addition of loops of greater size. Figure 5.3 illus-
trates the PageRank distribution in a graph of half a million nodes
for loops of size 15, for different values of α. As one can see the effect
is the same as for triangles, but with less intensity, i.e., the curves
for different values of α are closer to each other for lower values of
PageRanks, however, they follow the same order as for triangles. This
can be interpreted as follows: loops of smaller size have a greater ef-
fect on nodes with lower PageRanks. Hence we have the following
observation.

Observation 5.2. Addition of loops of larger size, in comparison with small
size loops, causes more decrease in fraction of nodes with lower PageRank.
As a result of this, since the PageRank is normalized, loops of larger size will
cause more increase in fraction of nodes with higher PageRank.

5.2 an analytical example

In this section in order to illustrate the observed results for case of
general loops, we investigate some toy examples for addition of tri-
angles, and will calculate the PageRank before and after addition of
triangles.

Figure 5.4, demonstrates a network with central node 1, which is
connected to other nodes via triangles or cycles. We assume there
are m1 and m2, triangles and cycles connected to the node 1 respec-
tively. Therefore the total number of nodes in this network is n =

2m1 + ∑m2
k=1 Lk + 1, where Lk is the number of nodes in the kth cy-

cle, without counting node 1. Since all the nodes in triangles have
the same PageRanks we refer to them with the same label, i.e., the
node connected to 1 via an out going edge from 1 is labeled a and
the other is labeled b. Moreover, we label the nodes in the kth cycle
(1 ≤ k ≤ m2) as vk

i , where 2 ≤ i ≤ Lk. We first analytically com-
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Figure 5.3: Empirical PageRank distribution for a graph of half a mil-
lion nodes, for different values of α, and loop size 15. Note
that πi(Gα) is random variable representing PageRank of
a realized random graph Gα.
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Figure 5.4: Structure of the original network.

pute PageRanks of all the nodes in this network. The equations for
PageRanks are as follows:

π1 = c

(
m1πb +

m2

∑
k=1

πk
Lk

)
+

1− c
n

πa =
c

m1 + m2
π1 +

1− c
n

πb = cπa +
1− c

n

πk
i =

{
cπk

i−1 +
1−c

n 3 ≤ i ≤ Lk and 1 ≤ k ≤ m2
c

m1+m2
π1 +

1−c
n i = 2 and 1 ≤ k ≤ m2.

Where πk
i (2 ≤ i ≤ Lk) is the PageRank of the ith node in the kth

cycle.
As one can see PageRank of node 1 is central in the above equa-

tions. By playing around with the above equations one can reach the
following value for π1, as the function of damping factor c:

A(c) = 1− 1
m1 + m2

(
c3m1 −

m2

∑
k=1

cLk

)
(5.2)

B(c) =
1
n

(
(1− c)(m1c2 + m1c + 1)−

m2

∑
k=1

cLk + m2

)
(5.3)

π1(c) =
B(c)
A(c)

. (5.4)
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Figure 5.5: Addition of a triangle to the network.

Now assume among m2 cycle we choose l of them and convert
them to triangles connected to node 1. This process is shown in
Figure 5.5 for one cycle. More specifically, in cycle lth the edges
(3, 2) and (Ll − 1, Ll) are removed and edges (Ll − 1, 3) and (2, Ll)

are added. Note that with this process the bi-degrees of nodes re-
main unchanged. Now one can see that the PageRanks of nodes
separated from cycles, and added to triangles connected to node 1,
are the same as the (modified) PageRanks of other nodes in triangles,
namely, a and b. This is illustrated in Figure 5.5 by using the same
colors and labels. Without loss of generality assume that the last l
cycles are converted into triangles. Now one can write the PageRank
equations as follows:

π̂1 = c

(
(m1 + l)π̂b +

m2−l

∑
k=1

π̂k
Lk

)
+

1− c
n

π̂a =
c

m1 + m2
π̂1 +

1− c
n

π̂b = cπ̂a +
1− c

n

π̂k
i =


cπ̂k

i−1 +
1−c

n 1 ≤ k ≤ l and 3 ≤ i ≤ Lk

c
m1+m2

π̂1 +
1−c

n 1 ≤ k ≤ l and i = 2

1/n l ≤ k ≤ m2 and 3 ≤ i ≤ Lk − 2.
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Figure 5.6: Comparison of PageRank of node 1, by introduction of
triangles.

Which result in the following equation for π̂1:

Â(c) = A(c)− 1
m1 + m2

(
kc3 −

m2

∑
k=m2−l

cLk

)
(5.5)

B̂(c) = B(c) +
1
n

(
(1− c)(lc2 + lc + 1) +

m2

∑
k=m2−l

cLk − l

)
(5.6)

π̂1(c) =
B̂(c)
Â(c)

. (5.7)

Where A(c) and B(c) are given in Equations (5.2) and (5.3).
Now we can compare the change of PageRank for node 1, by chang-

ing the number of triangles connected to it. By the observations of
previous section we expect a decrease in PageRank of nodes which al-
ready have high PageRank, such as node 1. This is because this node
is apparently the central node, hence having the highest PageRank in
the network. In order to do the comparison we consider a network
with 10 triangles, and 5 cycles connected to node 1. The length of the
cycles are 6, 8, 10, 12, 14. For modification and adding more triangles,
we isolates cycles of length,10, 12, 14, and keep the rest. Figure 5.6,
illustrates the values of π1(c) and π̂1(c) for all possible values of
c ∈ [0, 1]. As can be seen the PageRank of node 1, as the central node
with the highest PageRank in the entire network, is decreased for all
values of damping factor.

Figure 5.7, shows the same comparison for nodes labeled a and b.
Again one can see that PageRanks of these nodes are decreased. Note
that these nodes have the highest PageRanks after node 1. Moreover,
one can see how for lower values of damping factor c, PageRank of
node a is more than PageRank of b. this is because this node is closer
to node 1. However, for higher values of c, this node suffer more
decrease in PageRank.

On the other hand, for the nodes in the cycles we have different
results. Figure 5.8, demonstrates PageRanks of nodes who are closer
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Figure 5.7: Comparison of PageRanks of different nodes a and b, by
introduction of triangles.

to node 1 in an arbitrary cycle, namely nodes, 2, 3, and 4. As one
can see PageRanks of these nodes are increased. Note that in a cycle,
nodes which are closer to the node 1, have higher PageRanks, and
as we go further from node 1 PageRanks are decreased. This is the
result of damping factor c. Specifically, in Figure 5.8a one can see
the effect of damping factor c, and how it can cause an increase or
decrease in PageRank of a node. For this case, for high values of c
instead of increase we have decrease in PageRank of node 2.
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Figure 5.8: Comparison of PageRanks of different nodes 2, 3, and 4 of
an arbitrary cycle, by introduction of triangles.
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