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ABSTRACT
Biometric face recognition is becoming a popular authen-
tication method on i.a. mobile devices. With this applica-
tion increasing, there comes a natural increase in interest-
ing attack scenarios for people with bad intentions. One
of the ways to trick biometric recognition methods is to
spoof the system by showing an artificial reproduction of
somebody else his face. This can be done by e.g. showing
a printed picture, a video or by wearing a mask.
Multiple methods are developed to detect this kind of
spoofing, but these are still lacking performance in terms
of detection rates. Also, many of these methods are not
applicable to mobile devices, due to specific constraints
that exists on these devices.
In this paper we extend an existing spoofing detection
method with usability on mobile devices in mind. The
existing method uses 3D properties of the face to distin-
guish between a real face and 2D representations of a face.
The extension on this method is a challenge, which re-
quires the user to rotate its head in a specific pattern.
By adding this challenge, the necessary rotation for the
3D check is enforced and furthermore, theoretically, more
types of spoofing can be detected. Tests shows that users
can successfully perform the challenge and that it is capa-
ble of reliably detecting spoofing attacks.

1. INTRODUCTION
Research in the field of face spoofing detection techniques
has begun around 2004[19]. Around that time the appli-
cation of biometric authentication was increasing. This
caused a growing attack surface for attackers to spoof bio-
metric recognition systems1. These attacks can be per-
formed on many different components of a biometric sys-
tem (see figure 1). Next to sensor attacks, which will be
explained later, the system can be attacked in multiple
ways from the inside. Communication can be intercepted
and replaced with false footage or even with false authen-
tication decisions. Databases can be accessed, giving the
opportunity to alter biometric data. This allows people
to be added to the database (to let unauthorized people
access the system) or deleted from the database (to let
authorized people be denied by the system). To protect
against these kinds of attacks, the internal communication
and storage of the biometric authentication system should
be properly secured.

On the other hand, sensor level attacks are attacks that are
specifically targeted at the sensor of the biometric system.
This type of attack does not require access to the internal

1For example, in 2009 the biometric verification
on Lenovo, Asus and Toshiba face recognition was
hacked[10]. See http://www.dailytech.com/Hackers+
Make+Short+Work+of+SuperSecure+Facial+Biometrics/
article14316.htm, retrieved November 2016

working of the system, but can be performed from the
outside. In the case of a face recognition systems, these
attacks consists mostly of spoofed faces that are presented
to the camera. These faces can be spoofed using a picture
of another person — printed on paper or displayed on a
screen — a video or a 3D mask.

To boost research in the field of biometric spoofing, the
Tabula Rasa project was started in 20112. This research
project provided a platform for more than 70 papers about
face spoofing to be published, mostly in the field of detect-
ing sensor-level attacks. Since then, the amount of spoof-
ing detection methods and their performance has greatly
improved. However, spoofing is still hard to detect and
especially when real-life scenarios are tested – for exam-
ple with cross-database testing – error rates are still above
10%.

Another problem is that most testing is done using static
cameras, while biometric authentication gets increasingly
popular on mobile devices. Many existing spoofing detec-
tion methods are difficult to port to mobile devices, be-
cause these devices pose some extra difficulties compared
to static systems. Smith et al. [28, 29] and Wen et al. [32]
identified the following difficulties for spoofing detection
on mobile devices:

• Increased movement of the face compared to fixed
cameras. This increases the difficulty for face detec-
tors to accurately detect the face;

• Differing lighting conditions resulted in inconsistent
behaviour of face detectors;

• The cameras on mobile devices all behave differently
in terms of auto-focus, exposure and auto white-
balance. Using manual settings could not resolve
these difficulties;

• Hardware limitations cause a trade-off between res-
olution and frame-rate;

• Illumination levels are unpredictable;

• Phones do not capture atomic frames, but ’scan’ the
image;

• The cameras on phones often have a narrow dynamic
range;

• Metering and auto-focus are sometimes inaccurate,
resulting in over exposed or blurry footage.

Next to these, there are some other difficulties like the
limited computational power of mobile phones and the fact

2http://www.tabularasa-euproject.org/, retrieved
November 2016

http://www.dailytech.com/Hackers+Make+Short+Work+of+SuperSecure+Facial+Biometrics/article14316.htm
http://www.dailytech.com/Hackers+Make+Short+Work+of+SuperSecure+Facial+Biometrics/article14316.htm
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Figure 1. The different attacks on biometric authentication systems[33].

that the device itself moves (and therefore there will be
more background motion than on fixed devices).

To increase the spoofing detection capabilities on mobile
devices, this research extends an existing spoofing detec-
tion method that does not rely on certain types of hard-
ware or camera capabilities. The existing methods is pre-
sented by De Marsico et al. [7] and detects spoofing by
checking if the presented face is actually a 3D face or just
a 2D representation of a face. Unfortunately, this method
can only detect spoofing attacks that use photos. Further-
more this method relies on the user rotating its face, while
this is not enforced in any way.

To overcome these problems, we extend this method by
adding a challenge for the user, for which it has to ro-
tate its head. This ensures that there is rotation of the
head, which is needed for the check of 3D properties. Fur-
thermore, this challenge makes spoofing attacks that use
videos harder, because the head has to rotate in a specific
pattern.

Tests on this challenge show that users are capable of
completing the challenge successfully, and that it can de-
tect different types of spoofing attacks with high accuracy
rates.

2. RELATED WORK
Face spoofing detection has been researched since at least
2004 [19]. Since then much research has been done, of
which an overview is given by e.g. Galbally et al. [9].
Most spoofing detection methods can be categorized in
two groups:

• liveness / motion detection

• texture / image quality detection

Some methods do not fall within these groups, like ones
which check for the edges of a spoofing medium or those
which check for 3D-properties of the face.

2.1 Liveness / Motion Detection
Liveness detection distinguishes between real faces and
photos by checking if the presented face is static or not.
Well known examples are spoofing detection methods which
check for eye-blinking [11] or eye-moving [25]. This is a ro-
bust and intuitive way of detecting spoofing attacks that
use photos, but can easily be circumvented by e.g. cutting
eye-holes in images.

Other methods check for liveness in the entire face, for ex-
ample by using Optical Flow Fields [3][14]. These methods
check for movement within the face caused by change of

facial expressions or for the difference in movement be-
tween specific regions of the face, caused by some regions
being closer to the camera than others.

Another type of spoofing detection using motion is check-
ing for difference of movement within the face, compared
to the close surroundings of the face [34]. If there is
much similarity in these regions, than probably an im-
age is shown to the camera which contains both the face
as well as the detected background.

All these methods are able to detect spoofing attacks with
photos to some extend, but there are some issues:

• they do not work against spoofing attacks which uses
videos;

• small changes to the photos – like cutting eye-holes
or bending/folding the photo – do decrease the per-
formance of many of these spoofing detection meth-
ods.

2.2 Texture / Image Quality Detection
Methods in this category try to measure differences in
image-details between real faces and the spoofing attack
surfaces, like computer screens or paper. This is based on
multiple assumptions, like that recapturing footage leads
to decrease of quality; that faces reflect light in a different
way than other surfaces or that printing on paper creates
detectable artefacts.

One of the most popular methods of this type is based on
the use of Local Binary Patterns (LBP) [21]. This method
analyses micro-textures to distinguish between spoof and
non-spoof videos. This allows for the detection of print-
artefacts, quality degradation of footage and differences in
reflection. In this way, photos, videos or masks can be de-
tected [6, 8]. Because LBP scores good results on the
detection of spoofing attacks, many variations are pre-
sented. Some of these use different texture-descriptors,
like LPQ [1], WLD [23] or TLP [26]. Other methods try
to add frame-transcending information to LBP by using
e.g. LBPV [18] or LBP-TOP [15]. Most of these method
improve the performance of LBP by some extend. The
popularity of LBP results in tests on the spoofing detection
capabilities of LBP varying from spoofing attacks with pic-
tures to spoofing attacks using 3D masks.

However, recent research using cross-database testing shows
that the results of LBP decrease significantly when the
training-footage is from another database then the test-
footage [20]. This indicates that the performance of LBP
on mobile phones may be pretty poor, because just like
cross-database tests, biometric authentication on mobile
phones cause great differences per situation. Furthermore,



most mobile phones contain very basic cameras, which
may influence the detected micro-textures and therefore
the results of LBP.

Other methods that can be categorized in the group of
texture / image quality detection methods are methods
using high frequency components [2, 19, 30]. These meth-
ods use the reflection properties of the captured surface to
distinguish between genuine authentication attempts and
spoofing attempts. These methods are sensitive to differ-
ing lighting conditions, so filters are applied to decrease
the effects of lighting [27]. Still, the results of these kind
of methods remain behind those of LBP.

2.3 Other Methods
Next to the methods using texture information or liveness
detection, other approaches are proposed. For example
Komulainen et al.[16] presented a method which is focused
on detecting the spoofing medium. A combination of two
techniques is used to achieve this:

• an upper-body detector is used to see if the upper-
body is in line with the face;

• histograms of gradients are used to see if there are
distinct edges in the footage, probably caused by the
edges of a screen or photo.

This method is a good addition to existing methods, but
because it only works in specific conditions, it is easy to
spoof when it works on its own.

Another approach is presented by Smith et al.[29]. For this
method the screen of a phone emits a certain colour for a
short time. Then it is checked if this colour was reflected
by the face, to see if there was some replay attack going
on. Unfortunately they had to conclude that most phones
do not have a screen that is bright enough to perform this
method.

Fusion of methods.
Because one method is not yet sufficient to counter spoof-
ing attacks, many researchers try to fuse multiple methods
in order to get better results. A set of different combina-
tions that are tried:

1. Motion and texture[4][17]

2. Frequency and texture[13]

3. Different texture methods[22]

Combining different methods does in many cases increase
the performance compared to using only a single detection
method.

Spoofing detection for mobile phones can still be improved.
Many methods only detect certain types of spoofing, can
easily be tricked or require some specific constraints like
fixed cameras. With the method presented in this paper,
we aim to extend the range of existing methods with a
method suitable for using on mobile phones. For this we
extend an existing method to overcome some of its limi-
tations.

3. 3D-DETECTION
Another approach of detecting spoofing that does not di-
rectly rely on texture information or liveness detection is
proposed by De Marsico et al. [7] and Wang et al. [31].
Their methods slightly differ, but both methods detect

Figure 2. A comparison of how landmarks behave
between a genuine face and the photo of a face [31].

spoofing attacks by assessing the 3D properties of a face.
The methods rely on the assumption that when a real face
rotates, the landmarks on the face move in a different way
then when a printed face rotates (see Figure 2). By taking
a set of landmarks and calculating the ratio of the distance
between them, 2D representations of faces can be distin-
guished from 3D faces. Although 3D-detection can suc-
cessfully be used to detect spoofing using photos of faces,
it cannot detect spoofing using videos or 3D masks. This
is due to the fact that both of these methods show rota-
tion in a 3D way. The possibility to detect bended photos
or photos with the nose cut out is not yet evaluated very
well.

3.1 Landmark Detection
In order to perform 3D detection, face-landmarks have to
be extracted from the given footage. The distances be-
tween these landmarks will be used later to distinguish
between genuine faces and spoofing attempts. Two differ-
ent landmark detection algorithms have been tested and
compared.

3.1.1 STASM
STASM [24] is a landmark detection algorithm that is able
to detect 77 different landmarks on the face by using the
following steps:

1. The location of the face is determined using a global
face detector.

2. The rough location of the landmarks is determined
using the output of step 1.

3. Iterate through the following steps about four times:

(a) For each landmark:

i. Get the portion of the image surrounding
that landmark;

ii. Compare this patch to known sample patches
for this landmark;

iii. Improve the positioning of the landmark.

(b) Confirm the newly suggested shape of all land-
marks, by comparing it to a global shape model.

On the setup we used, STASM was able to process about
8 images per second. Remarkable is that when STASM
is presented a picture multiple times, the position of the
landmarks slightly differed. This caused inaccuracy in the
detection of the landmarks by STASM.

3.1.2 DEST
DEST3 works somewhat similar as STASM. However, in-
stead of improving the position of landmarks based on a
3Deformable Shape Tracking: https://github.com/
cheind/dest. Retrieved November 2016

https://github.com/cheind/dest
https://github.com/cheind/dest


Figure 3. The configuration of landmarks used by
De Marsico et al. [7]. The three upper configura-
tions are collinear (c1 − c3), the three lower config-
urations are coplanar(c4 − c6).

global shape model, it uses regression trees to do so [12].
This increases the performance for rotated faces compared
to STASM. DEST locates 64 landmarks and on our system
it was able to process about 3 images per second.

3.1.3 Comparing STASM and DEST
As shown by Kazemi et al. [12], DEST offers better perfor-
mance on recognizing faces. This is caused by i.e. better
recognition of landmarks for rotated faces. STASM how-
ever, provides a better frame rate than DEST. STASM is
used in the original 3D-detection method of De Marsico
et al. [7]. For their research the accuracy of STASM was
sufficient. However, some limitations of STASM made it
unsuitable for our research:

1. The inaccuracy in the localizations of landmarks re-
sulted in a poor user experience when trying to per-
form the challenge.

2. We want the user to rotate their head, but because
STASM uses predefined models for alligning the land-
marks, it does not handle rotated faces very well,
resulting in:

• Worse accuracy of landmark positioning for ro-
tated faces.

• A small angle of rotation for which faces are
recognized.

Because DEST does not have these limitations, DEST is
used for the rest of our research.

3.2 Calculating 3D Movement
The method of De Marsico et al. [7] is used to recognize
2D spoofing. This method uses the cross-ratios of different
configurations of landmarks to differentiate between 3D
and 2D movement (see Figure 3). In theory, the cross-
ratio of the collinear points should stay the same for any
rotation of both 2D and 3D faces. However, the cross-
ratio of the coplanar points should change when a 3D face
is rotated, while it should stay the same for a 2D face.
Their research shows that this method can successfully be
used to distinguish between real faces and printed faces.
This is done by measuring the change of the value for
the cross-ratios over time: if the change of these values
is above a certain threshold, a face is marked as genuine.
The precise calculation of the cross-ratio can be found in
[7].

In this research, some changes are made in calculating 3D
movement compared to the method presented by De Mar-
sico et al.. First of all, the configuration of landmarks
is chosen slightly different, because some of the points
shown in Figure 3 do not correspond to landmarks used
by STASM or DEST. This means that we picked the land-
marks that were close to what can be seen in Figure 2.
Second, we did not use the configurations c1, c2 and c3. In
the original research, these points were just used as a test
to prove the initial assumption that these points would
not change when rotating the face. Therefore they are not
relevant to this research.

Thirdly, De Marsico et al. present two different formulas
to calculate cross-ratios for the configurations c4 to c6.
How they exactly combine these formulas is not explained
in their paper. Therefore, we chose to use both cross-ratios
separately, which gives us 6 different cross-ratios to work
with.

After determining the cross-ratios for each frame, their
variation over time should be measured, since this shows
if the cross-ratios change over time. This is done in a
similar way as shown by De Marsico et al, like shown in
Algorithm 1. There are 5 variables in this algorithm that
have to be set:

k is the range over which mean and variation are cal-
culated. This variable is also used by De Marsico et
al.. They show that larger values of k result in bet-
ter results. However, picking k large does also cause
more complex calculations and the need for longer
videos. Because De Marsico et al. got good results
for k = 25, this value is chosen for this research too.

tstart is set to the begin of the challenge + k frames. Adding
these frames is done because the first frames cannot
be compared to k frames before them, since they are
not part of the challenge.

tend is the end of the challenge.

thj is the set of thresholds that determine if the variation
of a cross-ratio is probably caused by 3D movement.
For each cross-ratio, another threshold is set. For
this research, the thresholds are trained using some
self-made footage.

thv is the threshold which determines how many of the
frames should show ’3D-movement’. This threshold
is trained with the same videos as used for training
thj . It is set to 80%.

4. CHALLENGE
The given method for spoofing detection relies on the user
rotating its head. In order to force the user to do this,
we add a challenge to the existing system. This challenge
is inspired by the swipe patterns that are often used on
android smartphones. It requires the user to move a dot
on the screen in a given pattern by rotating its head. If
the user succeeds in doing this, we consider the challenge
succeeded, but if the user deviates from the pattern or
runs out of time, the challenge is failed. An additional
advantage of adding this type of challenge to the current
system is that asking for a specific random generated pat-
tern makes the challenge more robust against other types
of attack such as pre-recorded videos. This is because in
these videos, the user does not rotate its head in the spe-
cific directions and order which the challenge asks for.



Algorithm 1 Algorithm for calculating 3D movement.

1: procedure Calculate 3D movement
2: for frame I do
3: extract landmarks L from I
4: compute cross ratio cj from L
5: for z ← frame tstart to tend do . tstart and tend are respectively the begin and end of the challenge
6: mj ← (1/k)

∑
cj . mean; k is set to 25

7: vj ← (1/k)
∑
|cj −mj | . variation

8: if vj > thj then . thj differs for each cross-ratio
9: genuine = genuine + 1

10: if genuine/y − x > thv then . thv is set to 80%
11: return ”Genuine”
12: else
13: return ”Spoof”

4.1 Calculating Rotation
The first step required in the design of the challenge is
measuring the rotation of the head of the user. This will
allow the user to move the point that will be presented to
him during the challenge. It is important to note that we
will only use yaw (shaking) and pitch (nodding) rotations
for the challenge. This is because using roll rotation is
less user-friendly (it is not a movement people used very
often), but mostly because roll rotation does not change
the ratios of distances between landmarks. So roll rotation
would not help when trying to measure spoofing attacks
based on 3D-movement.

The principles used for measuring ’3D-movement will also
be used for measuring rotation. Namely that the ratios of
the distances between landmarks vary when a head is ro-
tated. Two different methods are implemented to measure
rotation and both use the landmarks that are detected by
DEST.

4.1.1 Using the Cross-Ratios
The first method uses the cross-ratios that are also used
to calculate ’3D movement’. Since rotating the head influ-
ences this cross-ratios, they can be used to determine the
current rotation of the head. To do this, first an image is
taken on which the users head is facing the camera. The
cross-ratios in this image act as a reference to all other
frames that will be processed. When the user then rotates
his face, the cross-ratios are changing too, but they all re-
act differently to different kinds of rotation. For example
the first cross-ratio for c5 reacts about ten times stronger
on yaw rotation than on pitch rotation. By combining dif-
ferent combinations for yaw and pitch rotation, we are able
to determine the rotation of a given face quite accurate.
The used formulas are:

pitch =
c4cp1 + c5cp1 − c5cp2

3
(1)

yaw =
c5cp1 − c4cp2 + c5cp2 + c6cp2

4
(2)

Where for cx corresponds to the different configurations
of landmarks from Figure 3 and cpy corresponds to the
different cross-variants described in [7].

4.1.2 Using Nose-Eye-Distance
The second method for calculating the rotation of the face
is somewhat more straightforward. This method uses the
distance between the nose and both eyes to determine the
rotation of the face. Yaw rotation can be measured, be-
cause, for the view of the camera, the nose seems to move
faster than the eyes. Therefore, when the face is turned
to the left, the nose is closer to the left eye and vice versa.

Pitch rotation can be measured because when the face is
turned up, the tip of the nose moves between the eyes.
When the face is turned down, at least for the first de-
grees of rotation the distance between the nose and the
eyes grows for the viewpoint of the camera. Because we
do not need extreme downward movement from a user,
this increase in distance for the first degrees of rotation is
sufficient. Like for the other method, an image is taken
where the user is looking straight to the camera as a ref-
erence point. The used formulas are:

d =
xnose − xlefteye + xnose − xrighteye

2
(3)

pitch =
dcurrentframe − dreference

dreference
(4)

and:

d = |ynose − ylefteye| − |ynose − ylefteye| (5)

yaw = dcurrentf rame − dreference (6)

This method also results in accurate rotation tracking.
However, because using cross-ratios does sometimes gen-
erate inaccurate results when the nose is in line with other
landmarks, we chose to use the nose-eye-distance to cal-
culate the rotation for the challenge.

4.2 Challenge design
Using the ability to calculate the rotation of the face of a
user, a challenge can be presented. The challenge presents
the user with a 3x3 grid, which is familiar for many people
because of the swipe pattern that can be used to unlock
android phones. Next to this grid, the user is shown a red
dot, which he can move by rotating his face. Yaw rotation
causes movement of the dot over the y-axis and pitch rota-
tion over the x-axis. The aim of the challenge is to let the
red dot follow a determined path which consists of multi-
ple nodes on the grid. This path is randomly generated,
and consists of 4 nodes. The node to which the red dot
has to be moved is highlighted in the grid. When the red
dot gets within a set range around the node that it has to
move to, it can proceed to the next node. However, if the
red dot gets within the range of a node that it should not
move to, the challenge is stopped and the user is informed
that the challenge is failed.

The pattern is generated by selecting one random node on
the grid. Hereafter, an adjacent horizontally or vertical
neighbour is selected as the next node, and so on, until
4 nodes are chosen. Diagonal neighbours are not used,
because this makes it hard for the user to move from one
node to another without getting into the range of a third
node.



Figure 4. An example of how the challenge is pre-
sented to the user.

The range around the nodes to which the red dot has to
move can be varied. A higher range makes it easier for
the user to reach a dot, but at the same time, inaccurate
steering of the red dot will result into getting near a wrong
dot faster. The rotation needed to get the red dot near
the edges of the grid can also be fluctuated. When more
rotation is needed, more 3D-movement of the face can be
measured and inconsistency of the landmark detection gets
less influential. However, letting the user rotate its head
far is bad for the user experience and large rotations will
also decrease the performance of the landmark detection,
since most of them perform best on frontal faces. We chose
to set the radius around the nodes about 1/5th of the size
of the grid and the movement needed to get to the edge of
the grid at about 5 degrees rotation.

Because the challenge uses a random pattern, it makes
spoofing using videos harder. By using 4 nodes to cre-
ate a pattern, 192 different patterns are possible. If more
complex patterns are required, extra nodes can be added,
for which each extra node will multiply the complexity by
about 3.

4.3 Judging recorded footage
After successfully completing a challenge, the authentica-
tion attempt cannot automatically be marked as genuine.
Tricks could be used to complete the challenge, like using
9 pictures of a person looking in different directions corre-
sponding to the rotation needed to move the dot to a node
of the challenge. To overcome these kind of attacks, the
challenge is recorded and this footage is used to check for
inconsistencies. This is done by assessing if the landmark
detection is able to reliably detect the face in a majority
of the frames, by checking:

1. If the landmark detection detects a face at all.

2. If the location of the landmarks does not change
rigidly between frames.

This second check is performed because rigid movement
of landmarks typically indicate that either the landmark
detection does detect something other than a face – e.g.
because there is no face or because a face is rotated too
much – or because there are multiple faces visible in the
frame. However, if a picture is shown to the camera on
a screen and this picture is suddenly changed, then rigid
movement in the location of landmarks would occur too.

A frame is labeled containing too much movement of the
landmarks when at least x landmarks move more then a
certain threshold compared to the last reliable frame. If
multiple frames in a row are marked, the thresholds are
slowly raised. These thresholds are individually set per
landmark and are trained by using the training set of our
dataset. When more than 20 percent of the frames in
the footage contain questionable landmarks or no detected
landmarks at all, the video is labeled as imposter.

4.4 Overview
An overview of the complete system is shown in Figure 5.
The user is first presented with the challenge described in
section 4.2 (steps 1 & 2). This step will generate move-
ment of the face, required for step 5 and is expected to
filter out all spoofing attacks using still images and un-
modified videos. If this challenge is performed successfully,
the recorded footage is evaluated based on the accuracy of
the landmark detection as described in section 4.3 (steps 3
& 4). This step will filter out videos which cannot be reli-
ably processed. We expect that this step will also filter out
some types of attacks – like ones which uses pre-selected
photos of rotated pictures. The videos that have passed
the challenge and the accuracy check are then tested on
3D-movement, like described in section 3.2 (step 3 & 5).
Videos passing all these tests are labeled as genuine au-
thentication attempts, the rest is labeled imposter.

5. FUSION WITH TEXTURE ANALYSIS
A typical method to increase the performance of a spoof-
ing detection algorithm is to fuse multiple algorithms to-
gether. Since our algorithm is probably not capable of
detecting spoofing attacks using masks or real-life manip-
ulated videos it would make sense to fuse it with a method
that will likely detect these kinds of attacks. Only few
methods are tested on masks, but one method proved
to be able to detect masks and videos is LBP-TOP [6].
We tried to combine LBP-TOP with 3D-movement de-
tection, but ran into some issues of which some can be
fixed and some pose a greater problem. First of all, the
code that was intended to be used, based on the research
done by the IDIAP institute[5], was not properly main-
tained4. This could be overcome, just like the fact that
its training and running procedure was much longer than
expected (training on a database could easily cost one or
more days). A more permanent issue is the difficulty of
using LBP-TOP on footage captured on mobile devices.
Recent research shows that the performance of LBP drops
significantly when tested using inter-DB testing compared
to tests which train and test on the same database [20, 32].
Especially for usage on mobile phones – where very many
different types of cameras are used and the environment
cannot be controlled easily – the micro-textures which are
used by LBP-TOP may vary heavily, which will decrease
the performance of the algorithm. This, in combination
with the badly maintained software-library, caused us not
to implement a fusion with LBP-TOP.

6. EVALUATION
The combination of a challenge and calculating 3D move-
ment is evaluated to test if this is a usable method for
spoofing detection. The aim of the evaluation is to do a
proof-of-concept. The algorithm is tested on two proper-
ties: usability and spoofing detection rate.

4https://pypi.python.org/pypi/antispoofing.
lbptop/2.0.3, retrieved November 2016

https://pypi.python.org/pypi/antispoofing.lbptop/2.0.3
https://pypi.python.org/pypi/antispoofing.lbptop/2.0.3


Figure 5. An overview of the complete spoofing detection method.

To test usability, real users are presented with the chal-
lenge multiple times. It is then measured how many at-
tempts to perform the challenge are successful. In order
for the challenge to be usable, each user should be able
to finish the challenge successfully multiple times. This
will show that when the user is faced with the challenge
in real-life, he will be able to finish it successfully at most
after trying a few times.

To test the spoofing detection rate, the algorithm is tested
on both footage of both genuine and imposter authentica-
tion attempts. To get footage for this test, a new dataset is
created (see 6.1). The detection rate is measured by com-
paring the scores for genuine and imposter authentication
attempts and by comparing the influence of different steps
in the process with each other. For the performance of the
challenge, all of the footage of the dataset can be used,
since the challenge was not trained on this data. How-
ever, for the performance of checks on the reliability of
the landmarks and the 3D-movement, only the test-data
of the dataset is used.

6.1 The used dataset
For testing the performance of our proposed challenge,
footage is needed where users try to perform this chal-
lenge. Unfortunately, as far as we know, no database cur-
rently meets the need of people rotating their head for
certain degrees and certain times. Therefore, we have to
create our own dataset. This dataset exists of 90 videos
of genuine authentication attempts and 30 imposter ones.

The videos for the genuine authentication attempts are
created using 9 different subject. Each subject first got
1 minute to get accustomed to the movement of the dot
on the screen by rotating their head. Hereafter, they were
asked to try to perform the challenge 10 times. The en-
vironment in which the videos were made was partially
controlled, meaning that the lighting was quite even on
the face and there were no exceptionally light or dark en-
vironments. The backgrounds do differ for different sub-
jects ranging from white walls to ordinary living rooms.
The footage was captured using the default webcam of a
Lenovo Thinkpad W540.

The spoofing videos are created using 2 different photos.
One photo is captured from a frame of one of the genuine
authentication attempts and the other photo was shot us-
ing a Canon EOS 550D. Three different scenarios are cre-
ated using these images:

1. Holding the flat printed photo in front of the camera
and trying to finish the challenge by rotating the
photo.

2. The same as point 1, but than the photo is freely
folded and bend to try to create the desired 3D effect.

3. The same as point 2, but the edged of the nose are
cut and bend, so the nose is closer to the camera
than the rest of the photo.

Figure 6. Percentage of successful challenges per
subject.

Figure 7. Percentage of successful challenges per
attempt.

For each scenario 10 attempts are made and captured on
video. The environments in which the videos are made are
the same as for the videos of the genuine authentication
attempts.

The whole dataset is randomly divided into a training-
set and a test-set. The training-set consists of 67% of the
footage, the rest is in the test-set. For testing the challenge
only, both sets could be used (since the challenge was not
trained on the training-set of the dataset).

6.2 Results
The results for testing the usability of the spoofing de-
tection method are shown in Figure 6, 7, 8 and 9.
These graphs show that on average 78% of the challenges
are completed successfully. Interesting is that the first
challenge failed for 56% of the subjects, while the other
challenges failed on average for only 19% of the subjects.
Subject 9 failed the most of the challenges, and as can be
seen in Figure 8 and Figure 9 this person tried to perform
the challenge exceptionally fast, with both fast times for
successful and failed challenges. Observing the subjects

Figure 8. Time needed for successful challenge.



Figure 9. Time needed for failed challenge.

performing the challenge, it may very well be that people
who were more patience did also achieve better results.
For the failed challenges, 2 failed because time ran out
and the other 18 challenges failed because the dot on the
screen was moved to a wrong node.

The results for the spoofing detection are shown in Table 1.
Since none of the imposters are labeled as a genuine user,
the FAR is 0%. The FRR is 52%, resulting in a HTER
of 24%. The score for 3D movement is very interesting,
since it only increases the FRR, while all imposter videos
are already discarded before this test is performed. If this
test would be removed from the setup, the FRR would
decrease to 35%, which would result in an HTER of 18%.

The test shows that the majority of the imposters fail to
complete the challenge. For the test-set this is 78%. How-
ever, since the challenge is not trained on the training-set
of our database, we are also able to run the challenge on
both the training-set and the test-set. When we do this,
the FRR of the challenge drops from 28% to 22% and the
rejected imposters increase from 67% to 87%. This ma-
jor difference is caused because almost all imposter videos
with a successfully completed challenge are in the test-set.

7. CONCLUSION & DISCUSSION
As stated earlier, the evaluation that is performed on our
system is done to make a proof of concept. The results
from the evaluation provide a good indication of what this
method is capable of, but cannot be used for a detailed
comparison of FAR’s and FRR’s. With this in mind, the
results show that the concept of a challenge is certainly a
good addition to a spoofing detection algorithm and might
even work well on its own. With 0% FAR on the current
configuration and test-set, it is able to detect spoofing at-
tempts using photos very well. At the same time, it is
viable for users to perform the challenge successfully, cer-
tainly when multiple tries are given.

Since the results of this research are promising, it is ad-
vised to test the challenge on a more diverse range of at-
tacks. For example videos that are manipulated specifi-
cally to pass the challenge and 3D-masks can provide in-
teresting testing material. Also, the development of the
challenge would benefit from development and training
with a larger and more diverse dataset. For example, for
this research no people with a ’flat’ face structure (mean-
ing the nose is not much nearer to the camera than the
eyes) were in the dataset.

The robustness of this method is a major advantage com-
pared to other spoofing detection methods. Influences of
lighting, environment and camera quality are limited, be-
cause the method only relies on accurate landmark detec-
tion. However, a slightly larger amount of user-collaboration
is needed, since the user needs to rotate his face to com-
plete the challenge. For use-cases where user-collaboration
is not a problem, the presented challenge can provide a
biometric authentication system with a decent level of se-

curity.
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