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Abstract

Hardware and software combined designs have proven to be advantageous over the more tra-
ditional hardware- or software-only designs. For instance, co-designs allow a larger trade-off
between hardware area and computation time. To date, translating a high-level software de-
sign to hardware is often performed from the imperative programming language C, thanks
to its wide usage and its readily available compilers. The functional programming language
Haskell, however, has shown to be a better alternative to describe hardware architectures. In
the computer architecture for embedded systems group (CAES) at the University of Twente,
the Haskell-to-hardware compiler CλaSH has been developed. This thesis aims to provide a
well-defined basis and a proof of concept for semi-automating the process of offloading a subset
of Haskell functions, from an arbitrary Haskell program, onto reconfigurable hardware, called a
field-programmable gate array (FPGA).

Significant amount of research has already been done on HW/SW co-design in general
and several tools are available, however, a Haskell specific co-design approach has not been
extensively researched. During the research phase of this thesis some related work regarding co-
design workflows was analysed and optimal solutions for fundamental implementation problems
were found.

A design space exploration has been performed to realize a design that featured the optimal
solutions. It was decided to focus on the following two use scenarios: semi-automated offloading
and manual offloading. The main reason for this division was that a pipelined utilization of
offloaded functions is more effective, but deemed too complex to automatically generate from a
standard software-only Haskell program. Some of the prominent design choices were: a system-
on-chip implementation platform that contained an ARM processor and an FPGA, a FIFO
buffer based interconnect, and the use of a Haskell compiler plugin to automate the function
offloading process. The implementation phase required a significant portion of the thesis’ time
to fully implement the proof of concept on the chosen platform, of which the result has been
briefly described in the thesis and a user manual has been written.

Besides proving that automatic offloading of specific Haskell functions is possible, the re-
sults of benchmarking the proof of concept also show that only large enough Haskell functions
will truly benefit from offloading, which is even more prominent in the case of non-pipelined
utilization of offloaded functions in the automatic offloading proof of concept.

Therefore, the main conclusion was that automatic function offloading in its current im-
plementation is possible but not very efficient for HW/SW co-design and that therefore either
future work is required on automatic pipelining of Haskell programs or, as seems more appro-
priate, the focus should be shifted to the manual function offloading approach that allows for
more design freedom. Lastly, the dataflow support in CλaSH should be expanded more to allow
offloading of more complex Signal based functions.
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1 Introduction

Algorithms, with the right properties, can have a faster and more efficient implementation with
the aid of hardware accelerators than is possible in a software-only implementation on a general-
purpose processor (e.g. the Intel Pentium), as these accelerators sometimes allow a more parallel
representation of the algorithm. There are several potential properties of an algorithm that will
prevent us from implementing it in a more parallel fashion. A data dependency between two
steps of an algorithm, for instance, is one of these properties. If we take a multiply-accumulate
(MAC) operation as an example, which could arbitrarily be used within an algorithm, then the
multiplication of this MAC operation has to take place before the accumulation of the values
can be performed. It is therefore often a challenge to identify if and where an algorithm would
benefit from a more parallel implementation on a hardware accelerator.

When designing a system that will feature hardware acceleration, we can resort to either
an application-specific integrated circuit (ASIC) design or implement the accelerator in recon-
figurable hardware. Designing and manufacturing an ASIC is often a long process and is only
cost-effective in larger production volumes. Using reconfigurable hardware instead, such as a
field-programmable gate array (FPGA), is a more cost-effective approach to realize hardware
accelerators.

In this thesis the focus lies on the investigation and development of a solution for embedded
system designers which allows the design, rapid prototyping and realization of hardware accel-
erators on an FPGA. In the next sections it will become clear why it is necessary, what the
proposed solution would be, and the involved problems.

Within the context of this thesis the term ’Function offloading’ is used to indicate the
process of transforming a part of an algorithm with potential for acceleration, to a hardware
representation and integrating it with the remaining software implementation. Different design
methodologies are necessary when applying function offloading or when creating a hardware/-
software combined design (HW/SW co-design) in general [1]. In addition to new methodologies,
it also requires the knowledge of both hardware- and software-only design principles. To date,
a great amount of the embedded system designs were realized in a hardware- or software-only
engineering approach. Among these new HW/SW co-design methodologies is a system-wide
design space exploration (DSE), where the goal is to find the optimal partitioning of hardware
and software. Another methodology is the use of co-simulation [4], where concurrent execution
of software and hardware components in a simulation environment is possible.

Due to technological evolution, Systems-on-Chip (SoC) solutions have become more promi-
nent. These SoCs, which consist of several types of processing architectures, are a useful plat-
form for realizing HW/SW co-design. Function offloading, for instance, can be implemented
on a SoC containing a combination of a processor and an FPGA. These SoC subsystems are
connected via complex interconnects [2]. The prominently available SoC solutions for this the-
sis’ implementation of function offloading, are integrated with a processor based on the ARM
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1.1. HW/SW HASKELL EXAMPLE CHAPTER 1. INTRODUCTION

architecture. To this day the ARM processors remain the industry leader in embedded and
application specific computing. However, when looking at the roadmap of Intel, which is also
an industry giant for processors, it becomes apparent that it is a critical part of their growth
strategy [3] to integrate an FPGA in their x86-instruction set based processors in the future.
With these increasing amount of SoC solutions, a HW/SW co-design engineering approach has
become more accessible and, with the rising need of complex system designs, it will also become
a must in the future [1]. In order to make HW/SW co-design more accessible and, subsequently,
allow for the use of the associated design methodologies, a way to describe a system at a high-
level is desired.

There are several tools available that can transform C-code to hardware in order to realize
HW/SW co-designs. Examples of these tools are those included in the design suites of the
major FPGA manufacturers Altera and Xilinx [5]. This process of interpreting a high-level
algorithm and transforming it to a hardware description with the same functional behaviour
is called High-level synthesis (HLS). As shown by Smit et al. [8], in comparison with the
often used imperative programming language C, the purely-functional language Haskell [6, 7] is
more suitable for describing and evaluating algorithms, as it is very close to both mathematical
specifications and architectural structures on an FPGA. Therefore, in a Haskell program, it
is easier to reason about exactly which functions are most suitable for hardware acceleration.
For these reasons, it would be more appropriate to use Haskell as the input language for the
HLS transformation and more importantly function offloading. One particular ”Haskell-to-
Hardware” compiler is in development at the Computer Architecture for Embedded Systems
(CAES) group at the University of Twente and it is called CλaSH (pronounced ’clash’) [9, 10].
It beholds a functional hardware description language that borrows its syntax and semantics
from Haskell. In essence, it is able to transform a subset of the high level Haskell functions
to a low-level hardware description language (HDL) such as VHDL, Verilog or SystemVerilog.
Therefore having the possibility to create HW/SW co-designs from a Haskell description would
also be a desirable addition to the CλaSH compiler.

1.1 HW/SW Haskell example

Before describing the proposed solution, we will look at an example of a Haskell description that
proves to be a good target for function offloading. The example in question is about an Nth-
order finite impulse response (FIR) filter as given in the discrete-time Equation 1.1. Essentially,
each output value of such a FIR filter is a weighted sum of the last N input values.

y[t] =
N∑

n=0

bnx[t− n] (1.1)

A FIR-filter is often used as a low-pass frequency filter. A practical application, for instance,
is to filter out the carrier frequency component of a received signal in Gaussian frequency-shift
keying (GFSK) demodulation[11]. A partial Haskell description of the GFSK demodulator with
a FIR-filter can be seen in Listing 1.1. For demonstration purposes we will merely focus on the
FIR-filter as the remainder of the GFSK demodulator description is trivial.

2



1.1. HW/SW HASKELL EXAMPLE CHAPTER 1. INTRODUCTION

1 module Demodulator where
2
3 import . . .
4
5 demodulate input = output
6 where
7 f i l t e r P a s s = mapAccumL f i r ( . . . ) input
8 output = . . .
9

10 f i r : : ( Vec n ( a ) ) −> a −> ( Vec n ( a ) , a )
11 f i r s t a t e s input = ( s ta t e s ’ , dotproduct )
12 where
13 s ta t e s ’ = input +>> s t a t e s −− s h i f t new input in s t a t e s
14 dotproduct = fo ld l (+) 0 (zipWith (∗ ) c o e f f V e c t o r s t a t e s )

Listing 1.1: A Haskell demodulator exemplary description using the FIR filter function

The fir function, as given in Listing 1.1, includes the foldl and zipWith higher-order func-
tions. A higher-order function is, in general, a function that applies one or more argument
functions onto its input data and/or internal states. In Appendix A, we can see the structural
representation of the two higher-order functions in the fir.

The fir function begins with updating the state vector 1 states’ by shifting the latest received
input into the state vector from the previous execution. Subsequently, the zipWith applies the
multiplication function in parallel onto the states and coefficient vectors, which results in a
single vector of products. The foldl function then uses the addition argument function to sum
the products vector.

The fir function requires n multiplications and n− 1 additions (without any optimisations).
A structural hardware representation of the FIR filter is given in Figure 1.1. We can notice
how closely related the Haskell description is to the structural representation as the row of
multiplications are identical to the zipWith function and the additions are closely related to the
foldl function.

The FIR filter is a good example of a function that can be offloaded onto an FPGA as it can
be computed in a more parallel fashion as all the costly multiplications can be performed at once
and the additions in a tree-like fashion. Subsequently, we can also optimise the function further
by either implementing it as a transposed variant, or by reducing the number of multiplications
if the coefficients are symmetrical, or by implementing it as a multiplier-less implementation
(i.e. only bitwise shifting and additions).

input Tdelay

∗b0

Tdelay

∗

+

b1

Tdelay

∗

+

bn−1

Tdelay

∗

+

bn

output

Figure 1.1: A hardware representation of the FIR-filter function used in the demodulator example.

1A vector in CλaSH represents a fixed-size list of data and the associated type notation is: Vec (length) (data
type).
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1.2. ASSIGNMENT CHAPTER 1. INTRODUCTION

The effectiveness of function offloading this FIR-filter function is primarily depending on
characteristics such as the required bit-resolution and the order of the filter itself. From this
GFSK demodulator example, it turned out that certain Haskell descriptions can definitely
benefit in terms of speed and power consumption if they are implemented in a HW/SW co-
design.

1.2 Assignment

With the example of section 1.1 in mind, we can formulate our main problem as follows: ”How
can we automatically offload selected functions of a Haskell program onto an FPGA and subse-
quently call upon them remotely from the remainder of the Haskell program?”. The automation
of function offloading can be interpreted in more than one way, for instance, it can mean that it
should automatically analyse the bottlenecks in a Haskell program and subsequently select, and
offload, the optimal functions. In this thesis, however, the assumption is made that the user will
select the offloadable functions themselves and therefore automatic function offloading strictly
implies that a user specified set of functions in a Haskell program are automatically offloaded
onto the FPGA. The proposed solution in this thesis project is to develop a tool, which is to
be used as a proof of concept, for offloading one or more functions from a Haskell program
onto an FPGA. Offloading a complete Haskell program, however, is not the goal of this project
as it would impose that it becomes a hardware-only design instead of the intended HW/SW
co-design. Additionally, it can be argued that a hardware-only design is already possible by
using CλaSH.

The ideal solution would be that we merely have to annotate[12]2 the function within the
original Haskell program and that a compiler will offload the functions automatically. This
will require a framework that can automatically generate the FPGA architecture according to
the offloaded functions. Depending on the used SoC solution, it will require additional manual
steps, such as separately synthesizing the generated hardware description files and programming
the associated devices. In Listing 1.2 we can see how our previous fir function only has to be
annotated within the GFSK demodulator Haskell description.

However, this automated way of function offloading inherently has a reduced performance
due to the latency in the communication between the hardware and software partitions. This
problem can essentially be solved by transforming the Haskell program into a pipelined co-
design, which is something that will become clear later on. Automating this pipelining trans-
formation is considered to be too complex for this thesis and therefore an additional approach
for a more manual way of function offloading will also be included. It will allow for a less
restricted HW/SW co-design in comparison to the automated solution, which will become clear
later on in this thesis. Within the manual solution, we will have direct access to some of the
underlying functions used in the automated offloading process. For instance, this manual ap-
proach allows for the FIR-filter example to be implemented in a pipelined fashion, which can
result in a co-design with a higher throughput.

2Similar to the #pragma for a C-code compiler.
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1.3. OVERVIEW CHAPTER 1. INTRODUCTION

1 . . .
2
3 {−# ANN f i r Of f l oad #−} −− Example annotat ion
4 f i r : : ( Vec n ( a ) ) −> a −> ( Vec n ( a ) , a )
5 f i r s t a t e s input = ( s ta t e s ’ , dotproduct )
6 where
7 s ta t e s ’ = input +>> s t a t e s
8 dotproduct = fo ld l (+) 0 (zipWith (∗ ) c o e f f V e c t o r s t a t e s ’ )

Listing 1.2: Annotated FIR filter function example

The main problem may be divided in two partitions in order to realize the two previously
mentioned solutions. The first part is related to the design and realization of the interconnect
between the two SoC components and the additional HW/SW required on either sides of the
connection to make manual function offloading possible. The second part is the actual automa-
tion of the offloading procedure. The following research questions are introduced for the first
part.

• How does function offloading, or in general High-Level Synthesis (HLS), work in other programming
languages and how does it relate to Haskell?

• How can the offloaded functions on the FPGA be called upon remotely?

• What type of communication would be the best for function offloading, when also keeping a
platform-independent implementation in mind?

• How can offloading of Haskell functions be implemented on the chosen development board?

• What, if any, restriction apply to offloadable functions?

It is imperative that the above research questions are answered first, as automating the offloading
process will build upon it. This second part will introduce the following questions:

• How can a function be altered at compile-time within Haskell for the purpose of function offloading?

• How can the process of offloading Haskell functions be automated?

• What additional requirements will this automated process impose on the HW/SW co-design?

The result of answering all the previous questions will be used to implement the proof of concept
to solve the main problem in this thesis. As this implementation itself is also a HW/SW co-
design itself, we will also apply a system-wide design space exploration to find the optimal
solutions. This proof of concept is in conclusion also benchmarked to document the performance
difference between a HW/SW co-design implementation and a traditional software-only design.

1.3 Overview

This thesis has started with describing the main problem, its context, and the necessity for a
solution. An example was given in order to introduce the problem and the subsequent proposed
solution. In the second chapter, related literature is reviewed and background information is
given. This mainly includes the literature on combined hardware and software design and on
distributed computing in Haskell. The rest of the second chapter is dedicated to providing
more background information that is used in the subsequent chapters. This second chapter and
Appendix B can be considered as the result of the final project preparation study as required
for an Embedded Systems master at the University of Twente.

5



1.3. OVERVIEW CHAPTER 1. INTRODUCTION

The third chapter beholds the design overview and the design space exploration that is
performed in order to find the optimal design for the proposed solution. Here, the usage
scenarios are defined, which are used to perform the subsequent design space explorations.
Many of the explored topics are concluded by means of a scoring table containing the possible
solutions. Chapter four describes the actual implementation of the previously proposed solution.
It uses the design choices and considerations from chapter three to achieve the optimal solution.
The fifth chapter contains a brief listing of the requirements for HW/SW co-design in Haskell
and a brief user manual for the implemented proof of concept. Chapter six describes the results
of this thesis. It includes a section on verification of the implementation and on performance
benchmarks.

In chapter seven the problems encountered during the work for the previous chapters will be
discussed and the relevant conclusions are drawn. It also points out several recommendations
for future work.

6



2 Background

This chapter beholds a brief literature review and relevant background material on subjects
related to this thesis. Some of the research questions imposed in chapter 1 are either partially
answered or in full. These solutions and the provided background information form the basis
on which the design space exploration is performed as described in chapter 3. The first lit-
erature subject is on hardware/software co-design within several programming languages. We
will subsequently use this reviewed literature and two practical applications to come up with a
workflow for co-design in Haskell. The second literature review is focussing on parallel comput-
ing within Haskell and how it can be partly used for our solution. These subjects are reviewed
to identify optimal solutions for this thesis’ implementation problems and to prevent making
similar mistakes found in the literature.

2.1 HW/SW Co-design

Combined hardware and software design, as already introduced in chapter 1, is an interesting
practice when using a high-level functional language like Haskell. A lot of research has already
been done on HW/SW co-design in other programming languages and several tools have been
developed. Teich published a paper on the past, present, and future of HW/SW co-design [1].
He states that current co-design tools are still not fully mature as they fail to both overcome
the complexity wall and fail to handle runtime adaptability that is introduced with complex
heterogeneous multi-core processing chips. This statement does not necessarily apply to the
proposed solution in this thesis, as it specifically focusses on a SoC with a single FPGA and CPU.
However, in subsequent work related to this thesis, it will most likely have to be considered in
the future. Teich also shows the importance of methodologies such as design space exploration,
co-simulation, and co-synthesis in HW/SW co-design. They allow for an optimized result due to
the possibility of early trade-off analysis and reduced development time. These methodologies
are also in some form applicable to a Haskell HW/SW co-design process, which is something
that will become clear later on.

In chapter 1 it has been described that CλaSH focusses on hardware-only designs. Related
work on the topic of hardware descriptions in functional languages has been done for several
years with results such as muFP[13], Hydra[14] and Lava[15], but a specific focus on hardware
and software combined design in functional languages is a relatively lesser researched topic.
Mycroft et al. [16] propose an implementation that can transform a program in their own
functional language SAFL to a hardware and software partition. In contrast to the intended
purpose of this thesis, they target the software partition to run on the FPGA fabric in custom
generated soft processors. This approach allows for a larger design space that can be explored
by the exploiting of the area-time spectrum1. However, designing a custom soft processor that
can execute Haskell functions is not really feasible, as Haskell is significantly more complex than

1A trade-off between the number of logic gates and amount of clock cycles required to achieve a result.

7



2.1. HW/SW CO-DESIGN CHAPTER 2. BACKGROUND

the SAFL language. An additional reason to not use a soft processor is that their operating
frequency is significantly lower than a hard processor.

Mycroft made the assumption that the user will explicitly define the hardware and software
partitions themselves. As we have already described in chapter 1, we will also make this as-
sumption as it is not the intention to automatically partition and optimize a Haskell program
with respect to the area-time trade-off, which is a very complex task.

With the knowledge gained in this brief review on the current state of HW/SW co-design, we
can begin analysing available HW/SW co-design tools for their workflow on function offloading.

2.1.1 SoC Co-design workflows

Two practical cases of HW/SW co-design workflow will be analysed to get a better understand-
ing of how co-design can be applied using Haskell. Many of the existing solutions for HW/SW
co-design on SoCs are designed for imperative programming languages like C and Matlab [5].
In the following two paragraphs we analyse a model-based Matlab workflow and one for the C
programming language.

MathWorks workflow The first analysed case is a co-design workflow proposed by Math-
Works in Matlab & Simulink as it provides a more abstract model-based approach with their
HDL coder and HDL workflow advisor tools [17]. This model-based co-design, in contrast to
language-based co-design, has the advantage of a strong mathematical formalism that is useful
for analysis and realisation of the co-designed system [1]. As mentioned in chapter 1, the func-
tional language Haskell is also closely related to mathematics and so it can be said that Haskell
has similar advantages. Matlab is still an imperative language underneath the model-based
design and therefore a HW/SW co-design approach based on the purely functional language
Haskell will remain interesting.

MathWorks provides several co-design example applications that are ranging from simple
LED blinking to advanced image processing [18]. All these examples start with a Simulink
model. The process of offloading a subsystem of the model onto the FPGA requires a workflow
that is summarized in List 2.1.

1. The preparation of the SoC hardware and installation of the associated tools.

2. A design space exploration on a system level, leading to the partitioning of the design for a
hardware and software implementation.

3. Generation of the IP core in the HDL workflow advisor.

4. Integration of the IP core in an HDL project and programming the FPGA.

5. Generation of a software interface model.

6. Generation and execution of C-code on the ARM in order to interface the Simulink model on the
host computer with the IP core in the FPGA.

List 2.1: MathWorks co-design workflow

For the simple LED blinker example the resulting co-design will then look like Figure 2.1.
The blue block represents the embedded CPU, the green arrows represent the interconnections,
the dark orange block features the programmed FPGA fabric, and the white block is the host
computer running the Simulink model.

8



2.1. HW/SW CO-DESIGN CHAPTER 2. BACKGROUND

Figure 2.1: Resulting HW/SW co-design for the LED blinker example Matlab application [18].

This workflow imposes that the MathWorks tools ’HDL coder’ and ’HDL workflow advisor’
use the Simulink model to automatically configure and generate the interconnection and the
additional hardware and software necessary on the SoC. As can be seen in List 2.1 and Fig-
ure 2.1, a part of the Simulink model still runs on the host computer. This may be undesired
depending on the application requirements. A potential solution is to run the remainder of the
model on the SoC by generating C-code in Simulink.

Xillybus workflow The second analysed HW/SW workflow case is a C-language based co-
design workflow. It is proposed by Xillybus, which is the designer of an interconnect managing
IP core that is used in this thesis [19]. The workflow has quite some similarities to the Matlab
example, but the main difference in contrast to the model-based workflow is that it requires
considerably more user interaction. The second workflow goes as follows:

1. The workflow starts with a C program prog that contains a function f that is the target for
offloading onto the FPGA. This function is to be manually separated from the main program file
and inserted into a new file.

2. Some modifications should then be applied to this new file, such as compiler pragmas that indicate
the input and output ports as used by a high-level synthesis (HLS) tool.

3. Provided that the implementation platform is ready and the associated tooling is installed, then
the user will start compiling the function f with the HLS tool and include it within an updated
version of the demonstration HDL project that is made available with the Xillybus IP block. This
demo project features both a Direct Memory Access (DMA) and a First In, First Out (FIFO)
types of data communication on the interconnection between the FPGA fabric and the HPS. For
demonstration purposes, the DMA method will suffice, but additional hardware and software may
be necessary for more complex applications.

4. Finally the user has the task to alter the original program prog such that it remotely calls upon
the offloaded function instead of the original version.

List 2.2: C language based co-design workflow by Xillybus

9
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Matlab or C

design/program

HLS on targeted

module/function

Synthesize HDL
Update and com-

pile design/program

FPGA CPU

Hardware part Software part

Figure 2.2: Workflow summary for hardware/software co-design in a Matlab and a C based approach.

Both the Matlab and C based examples can be generalized as pictured in the diagram in
Figure 2.2. Both workflows still require the user to generate or even create and integrate the
additional software and hardware on either side of the interconnect. Some restrictions on the
offloadable functions will be required in order to allow a more automated workflow. In the next
section we will propose a workflow for function offloading in Haskell, but first we will have to
get a basic understanding of describing hardware in Haskell.

2.2 Proposal of HW/SW co-design in Haskell

With Listing 1.1 and Figure 1.1 we already saw an example of how Haskell is closely related to
a hardware representation. We will use the solutions found in the previous literature review to
propose a workflow for HW/SW co-design in Haskell.

Traditionally, Haskell descriptions are only executable on a processor architecture and not
on an FPGA. In order for a Haskell function to become implementable on an FPGA it should
be rewritten to a representation that is compilable with the CλaSH compiler. CλaSH is only
able to interpret a subset of Haskell functions in order to transform a design into a hardware
description with the same functional behaviour. These CλaSH compilable Haskell functions can
be translated to either only pure combinational logic or into synchronous sequential logic, such
as a Mealy machine [23, 24] as shown in Figure 2.3. In contrast to combinational logic, the
output of sequential logic depends not only on the present value of the input signals but also a
set of previous input and intermediate values. These past values are stored in registers, which
update their values based on a clock signal.

10
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Combinational
logic

Registers

Input Output

State’State

Figure 2.3: Mealy machine hardware representation

The function f mealy in Listing 2.1 is a Haskell representation of a Mealy machine as shown
in Figure 2.3. Similar to the figure, it can be seen that it essentially wraps state registers
around a trivial combinational logic function f comb. A major advantage of allowing these
types of sequential functions to be offloaded onto the FPGA in addition to standard combina-
tional functions, is that we can keep the state register data locally stored. This reduces the
amount of data that has to be transferred between the CPU and FPGA.

1 f mealy : : s −> i −> ( s , o )
2 f mealy s t a t e input = ( s tate ’ , output )
3 where
4 ( s tate ’ , output ) = f comb s t a t e input

Listing 2.1: A Mealy machine in Haskell

In CλaSH the primary method of describing and simulating synchronous sequential logic
is by writing it as a Signal type based representation. These Signal type based functions es-
sentially use a standard Haskell input list as the implicit clock signal and for each element in
that input list will produce the corresponding output element in the Signal type based output.
However, as shown in the next part of this section, we cannot easily offload these Signal based
functions without additional modifications.

In order to interface combinational on the FPGA with a program on the CPU (which
essentially is a very complex sequential circuit), it has to be transformed to sequential logic
itself. Additionally, the registers in this sequential logic should only be updated if correct
input data is available. These two problems are solved by using dataflow principles, which is
something that will be described in more detail later on. These dataflow principles mainly allow
the combinational and sequential logic to only produce a valid output if a new correct input
value is received from the CPU. Currently the dataflow composition implementation in CλaSH
is limited to the following types of functions that are not Signal based:

• Pure function: i -> o

• Mealy function: s -> i -> (s, o)

• Moore function: (s -> i -> s) -> (s -> o)

However, going back to the Signal based functions, only possible to offload such a function if
it already adheres to the dataflow principles and therefore can be lifted to a dataflow typed
function. However, for automatic function offloading it would impose that beforehand the
software-only design of the Haskell program also has to deal with the dataflow principles, which
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undesirably leads to additional overhead and design complexity. As discussed later on, this can
still be used in the manual function offloading use scenario.

Finally, it is also possible to combine multiple of the dataflow typed functions to create a
more complex dataflow function, i.e. a multi-component design such as the GFSK demodulator
from section 1.1. Similar to the previously mentioned way to offload Signal based functions,
it requires the original software-only Haskell program to deal with dataflow principles and
therefore we will also only allow this for manual function offloading and not for the automated
variant.

With this gained knowledge we can state that a function which is a potential candidate for
offloading must, at least, adhere to the following criteria:

• A function has to be (re)written in the sub-set of Haskell functions that CλaSH supports.

• A Haskell function should either be written as a pure3, Mealy, or Moore function as
described in the CλaSH Prelude[24]. As later becomes clear we may also manually create
combinations of these three functions.

• The function has to conform the rules and limits for compiling in CλaSH [25], e.g. the
function may not contain infinite data sets or have unbounded recursion[26].

• It must not exceed any limit of the targeted hardware platform. This includes resource
limits such as required logic blocks, embedded memory, clock trees and any other dedicated
blocks.

List 2.3: Fundamental requirements to allow function offloading in Haskell.

2.2.1 Proposed workflow

An overview of the workflow we propose for the process of offloading one or more functions of
a Haskell program is pictured in Figure 2.4. The overview can be described in the following
steps:

1. It starts with an arbitrary Haskell program. Verification of this Haskell program is then
recommended before proceeding, which can be achieved by static analysis or by simulation
within the interactive compiler environment (GHCI) or a custom testbench.

2. Subsequently, the designer can start selecting functions for offloading by means of a design
space exploration. These functions should meet the requirements described in List 2.3
and so it might be the case that they have to be altered. At this point, simulation of
the hardware partition with the software part may be performed in Haskell to verify and
analyse the complete system. In addition, co-simulation may also be possible by simulating
the hardware partition in a HDL simulator [4].

3. Depending on the use scenario, which may happen either by hand or by means of an
automated process, the targeted functions have to be separated from the rest of the Haskell
program. After this any necessary updates to both partitions should be performed. These
updates are essentially the additions of hardware and software necessary to let the two
partitions communicate with each other.

3Pure means the function output is only influenced by the most recently received input, i.e. no state registers.
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4. These updated partitions are then separately compiled to HDL and an executable respec-
tively. The HDL files are then added to a template project and synthesized to an FPGA
programmable file.

Haskell program Simulate program

Target and

adapt functions

for offloading

Co-simulate

co-design

Parse, modify, and

partition functions

(by hand or

automated process)

CλaSH

functions

Haskell

functions

Compile to HDL

Compile to

executible for CPU

Add HDL to

template project

and synthesize

FPGA CPU

Figure 2.4: Workflow for offloading Haskell functions onto the FPGA.

In the next section we will explore how to fully automate the process of function offloading
according to our proposed workflow.

2.3 Automation of function offloading

Fully automated function offloading is essentially the process that performs all the steps starting
from the annotated offloadable functions in the grey block from Figure 2.4, without interaction
of the user. Automating the step of parsing, altering and partitioning the targeted offloadable
functions is paramount for full automated offloading. It is assumed that the subsequent steps
of compiling, synthesizing, and programming can be performed through means of a non-trivial
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scripted process and therefore our focus in this section lies on the initial step as pictured by the
grey block in Figure 2.4.

In section 1.2 it was already mentioned that a framework has to be designed in CλaSH ,
which can generate the hardware partition for the FPGA, by merely passing the targeted off-
loadable functions as input arguments. For the software partition we will need to modify the
original Haskell program such that the targeted offloadable functions are replaced by functions
that will interface with the offloaded function in the hardware partition.

Partitioning and modifying a Haskell program at compile-time is possible in two main ways,
which are both directly related to the phases in which Haskell compiles a given program [27].
The process in which GHC compiles a Haskell program to an executable file consists of the steps
shown in List 2.4. The listing briefly describes what the function is of each phase and which in-
and output type the phase has.

1. Parsing (File/String -> HsSyn RdrName)
In this first step the Haskell program file is interpreted and parsed into an expression with the
abstract syntax required for the next phase.

2. Renaming (HsSyn RdrName -> HsSyn Name)
In this phase all of the identifiers are resolved into fully qualified names and several other minor
tasks are performed.

3. Typechecking (HsSyn Name -> HsSyn Id)
The process of checking that the Haskell program is type-correct.

4. Desugaring (HsSyn Id -> CoreExpr)
Transforming the typechecked Haskell source to a more computer friendly Core program.

5. Optimisation (CoreExpr -> CoreExpr)
This phase is used to optimize a Core program.

6. Code generation (CoreExpr -> Desired output)
The final Core program is compiled to either an intermediate interface file or executable code
depending on if the initial Haskell source is imported or the top-level module.

List 2.4: Haskell compiler phases

The two possible ways to partition and modify a program at compile time are before the
parsing phase and by means of a Core plugin [29] at the start of the optimisation phase.
Modifying before the parsing stage implies that a Haskell program file (which contains all the
targeted offloadable functions) has to be modified before it is parsed by the Haskell parsing
phase of the GHC compiler. To achieve this, a pre-compiler has to be built which consists of
the phases shown in List 2.5. It first parses the Haskell program file to an expression tree that
can be easily modified. Subsequently, the partitioning and modifications are performed and
finally the resulting two expression trees have to be unparsed into Haskell program files again,
such that it can be compiled into a software and a hardware partition with respectively the
GHC and CλaSH compilers.
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1. Parsing (String -> ExprTree)
Phase that parses a Haskell program string into an expression tree with the type of a subset of
the Haskell grammar.

2. Modifier (ExprTree -> (ExprTree,ExprTree))
The process of partitioning the hardware and software parts happens here. Subsequently the
software part is also modified to interface with the hardware partition.

3. Unparsing ((ExprTree,ExprTree) -> (String,String))
The last phase constructs the new Haskell program strings of the modified expression trees, which
results in two new files that can be used to compile both co-design partitions.

List 2.5: Phases of the proposed Haskell pre-compiler that allows for compile time program modifica-
tions.

The second approach, building a Core plugin, requires knowledge of the Core type to which
all of Haskell gets compiled, as shown in the last three phases of List 2.4. As can be seen in
Listing 2.2, the explicitly-typed Core is quite small as it does not require any syntactic sugar for
human readability. The exact details are not important here, but a simple example increment
function in the left column of Table 2.1 will result in the relatively large Core tree expression
in the right column.

1 type CoreExpr = Expr Var
2
3 data Expr b −− ”b” f o r the type o f b inders ,
4 = Var Id −− Var iab l e s
5 | Li t L i t e r a l −− L i t e r a l s
6 | App ( Expr b) ( Arg b) −− Type a b s t r a c t i o n and app l i c a t i o n
7 | Lam b ( Expr b) −− Value a b s t r a c t i o n and app l i c a t i o n
8 | Let ( Bind b) ( Expr b) −− Local b ind ing s
9 | Case ( Expr b) b Type [ Alt b ] −− Case e xp r e s s i on s

10 | Cast ( Expr b) Coercion −− Casts
11 | Tick ( Tick i sh Id ) ( Expr b) −− Adding Core in format ion
12 | Type Type −− Types
13
14 type Arg b = Expr b −− Top− l e v e l typed expre s s i on
15 type Alt b = ( AltCon , [ b ] , Expr b) −− Case a l t e r n a t i v e s
16
17 data AltCon = DataAlt DataCon | Li tAl t L i t e r a l | DEFAULT −− Alt cons t ruc t o r
18
19 data Bind b = NonRec b ( Expr b) | Rec [ ( b , ( Expr b) ) ] −− Top− l e v e l and l o c a l

b ind ing

Listing 2.2: Entire Haskell Core type[28]
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Standard Haskell Core expression equivalent

increment : : Int −> Int
increment x = x + 1

Main . increment : : GHC. Types . Int −> GHC. Types . Int
[ GblId , Arity =1, Str=DmdType, Unf=OtherCon [ ] ]
Main . increment =
\ ( x sxV : : GHC. Types . Int ) −>

l e t {
sat sxW [ Occ=Once ] : : GHC. Types . Int
[ LclId , Str=DmdType ]
sat sxW = GHC. Types . I# 1 } in

GHC.Num.+ @ GHC. Types . Int GHC.Num. $fNumInt x sxV sat sxW

Table 2.1: Simple increment Haskell function and its Core expression equivalent.

Modifications to a Core expression can be done during the optimisation compiler phase
with the previously mentioned Core plugin. When a Haskell module has been compiled to the
Core expression representation, then by default, modifications can only be performed using
the in-scope Core expressions. This is a limitation of the current Core plugin implementation,
however as it is not a fundamental problem, it may be removed in the future. This limitation
prevents us from constructing our replacement function without its environment already being
in-scope. As will become clear later on in the thesis, it requires quite some work to construct
whole functions within a Core plugin.

Besides making modifications, we also need to partition the Core expression into a hardware
and software part. There are two ways to achieve this by means of a Core plugin:

• We can choose to have a separate Core plugin for the hardware and the software partition
compiler. This means that two versions of the plugin have to be designed.

• We can limit ourselves to a single Core plugin for the software partition and then, similar
to the pre-parser approach, we will generate a Haskell module file that can be used to
generate the hardware partition.

In summary, both approaches for compile-time modifications are good candidates, but each
have their own advantages and disadvantages. In the next chapter we will perform a design
space exploration on these two solutions, which will mention these (dis)advantages.

In the next section we will look at distributed computing in order to find possible solutions
that can be used to realize our proposed solution for the main problem.

2.4 Distributed computing in Haskell

Offloading Haskell functions onto reconfigurable hardware is closely related to the field of paral-
lel programming. Haskell itself has wide support for pure parallelism and explicit concurrency.
An example of related work is distributed computing, in which an algorithm is executed on a
network of computers. Distributed computing allows for explicit concurrency, but it also intro-
duces other characteristics such as asynchronous communication between distributed functions
and independent failures of components. Cloud Haskell [20, 21] is a practical example of con-
current distributed programming in Haskell. It essentially provides a programming model and
implementation to program a computer cluster as a whole, instead of individually. This model is
based on Erlang [22], which is an industry proven programming language for massively scalable
and reliable soft real-time systems. The programming model features explicit concurrency, has
lightweight processes with no shared states, and has asynchronous message passing between the
processes.
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A basic communication topology in Cloud Haskell can be described as a Master-Slave pat-
tern, in which the master node controls the other slave nodes in the computer cluster. The
master node has the task to create and send a Haskell function closure2 to start a process on
a slave node. Cloud Haskell makes use of serialisation (i.e. a bytestring) to send a function
closure to other nodes. This approach imposes that the slave node should be able to receive and
execute the function closure during runtime. If this would be implemented on a slave node that
contains reconfigurable hardware, then the slave or its master node has the task to reconfigure
the respective hardware at runtime. Doing this often on an FPGA is not very desirable as
the function closure has to be translated into a hardware description and subsequently synthe-
sized to a programmable bitstream, which are time consuming tasks. In addition, translating a
function closure into a hardware representation might not even be possible at all times, e.g. if
the closure’s environment contains additional functions that are not synthesizable. An original
Erlang feature that allows for updates to functions closures at runtime on a node is not im-
plemented in Cloud Haskell. Two potential solutions for offloading a function to an FPGA in
distributed computing without the previously mentioned problems would be either to separately
synthesize all potential functions for the FPGA beforehand or to configure the FPGA only at
the start of the program, such that it will include all of the desired offloaded functions that are
necessary during runtime.

Once a function closure is set-up as a process on the slave node, then the master node can
call upon the function through message passing. In Cloud Haskell, this is achieved by using the
send and expect functions that require a unique process identifier. Such an identifier is also a
potential solution for identifying offloaded functions and their associated messages.

Cloud Haskell supports multiple types of network transport layers. In contrast to a computer
cluster, that often communicate asynchronously through TCP connections on a local network, a
system-on-chip platform has dedicated interconnections that are designed for high performance
and may feature direct memory access (DMA). This allows for a more application specific
implementation and, unlike the asynchronous message passing approach of TCP communication,
it can perform more efficient as it does not necessarily require additional buffering and sorting
of messages.

In summary, some design choices in Cloud Haskell can also be used for solving the problems
faced in this thesis, as will become clear in chapter 3. And in chapter 7 we will discuss the
combination of Cloud Haskell and our proof of concept implementation.

This background chapter has been about the review of literature and related work to find
optimal solutions for the design and implementation of the proof of concept for function off-
loading in Haskell. In the next chapter we will use this background information during the
design space exploration and the subsequent creation of the proof of concept design.

2A closure is a record storing a function with its environment.
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3 Design

In the previous chapters we described the thesis’ main problem and answered a number of the
research questions through literature reviews and background information. A rough represen-
tation of the proposed solution was given in section 1.2. In this chapter we will apply this
gathered knowledge in a design space exploration in order to put together the optimal design
for the proposed solution.

3.1 Design considerations

A few use scenarios and their requirements have to be specified in order to perform the design
space exploration successfully. Due to the analysis of the HW/SW co-design workflows of re-
lated tools and the literature review in chapter 2, we can describe the generalised use scenario
for this project to be that the user desires to offload one or more functions of a Haskell program
onto the FPGA such that it will be more efficient. We will divide this main scenario in an au-
tomated, a semi-automated and a manual scenario, such that the user will have the possibility
to optimize their HW/SW co-design in a more manual way if deemed necessary.

Fully automated offloading - This allows the user to automatically offload functions in a
Haskell program by merely annotating them, as shown in the example function in Listing 1.2 of
chapter 1. An automated process will then perform the steps of HW/SW partitioning, applying
modifications, compiling, synthesizing, and programming without assistance of the user.

Semi-automated offloading - Here the user will still be able to annotate the functions for off-
loading. The main difference with the full automated scenario is that only the steps of HW/SW
partitioning, modifying, and compilation of the software partition are automated. The user then
has to manually compile the hardware partition to a HDL, which is subsequently synthesized
within a template HDL project to obtain the programmable bitstream for the FPGA. At this
point, the user can execute the compiled Haskell program, which will now use the offloaded
functions instead. As can be seen by this scenario description, it does not behave as a com-
pletely automated process.

Manual offloading - This scenario is similar to semi-automatic offloading except that the user
will also manually partition and modify the Haskell program into HW/SW parts. This may
be used to create a more efficient streaming application, something that will be described in
greater detail later on.

As will become clear later, the fully automated offloading scenario is out of the scope of this
thesis due to restrictions in the chosen implementation platform. However, it is assumed to be
possible to implement this scenario in the future when a different implementation platform is
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used.

3.2 Design space exploration

With the use scenarios defined, we can now begin exploring the design space to find the optimal
solutions for this thesis. Some of the major design space explorations are explained by means
of a scoring table. The score for a category ranges from worst to best by means of the following
ordinal scale: −−, −, 0, +, and ++. In the last column of each table is the weighted scoring
summation given to indicate the best solution1. This total score ranges from an 1 (worst) to a
5 (best).

The exploration starts in the next section on what implementation platform is to be chosen.
Subsequently, the exploration continues on how to implement the interconnection between the
CPU and FPGA on the chosen platform. This is followed by an exploration on design options
related to the CPU implementation. And finally, the implementation considerations for the
hardware partition are described. This chapter ends in an overview of the made choices and
the resulting design, such that they may be used in the next chapter.

3.2.1 Implementation platform

In this section we briefly explore the platforms on which we can implement our proposed so-
lution. One of the prominent platforms is a System-on-Chip solution. There are multiple SoC
platforms available on which this thesis project can be realized. A particular SoC platform was
already regarded as a potential candidate, namely the SoCKit development board. A technical
overview of the SoCKit and some related background topics can be found in Appendix B. To
summarize the appendix, the SoCKit is a board that contains the Cyclone V SoC as pictured
in Figure 3.1. This SoC combines an FPGA and an ARM processor (which we may refer to as
the Hard Processor System (HPS)) through means of a configurable high-speed interconnect.
The appendix shows that Haskell programs can be compiled and executed on the HPS. In Ap-
pendix B it has been shown that a Haskell compiler should be installed on the HPS itself instead
of using an often quicker cross-compiler. This former option allows the use of dynamic-loading
and Template Haskell, which, as will become clear later on, are paramount for this thesis.

1Total row score is calculated by summing the product of the ordinal score and its weight in each criteria and
dividing it by the sum of the weights.

19



3.2. DESIGN SPACE EXPLORATION CHAPTER 3. DESIGN

Figure 3.1: Altera Cyclone V System-on-Chip overview [32]

By means of the technical review in Appendix B, it is estimated that the SoCKit platform
can be used to implement our proposed solution of section 1.2. In the rest of this section we
will use the background information gathered in Appendix B to perform the design space ex-
ploration on the implementation platform.

In Table 3.1 we see the results of the exploration. The first solution is the SoCKit, which is
a combination of an FPGA and a hard processor on a single chip. We have already discovered
that the processor is fully capable to run Haskell programs and that it is a desired platform
for function offloading by embedded systems designers that target low-power or applications
specific designs.

Implementation platform Haskell
execution
capable

Offloading
effective-
ness

Develop
time

Score

Weighting 3 2 1

SoC with FPGA & CPU ++ ++ + 4.83
FPGA with soft processor −− 0 −− 1.67
CPU & PCIe FPGA ++ + ++ 4.67

Table 3.1: Design space exploration on the implementation platform.

A potential alternative solution is using only an FPGA with a soft processor inside its
fabric, which was something that was already hinted at in the literature research on the work of
Mycroft et al. Soft processors potentially have the advantage that additional instructions can be
added and so the effectiveness of function offloading can argued to be less or even unnecessary.
However, existing soft processors such as the MicroBlaze of Xilinx and the NIOS II of Altera,
do not have support for Haskell and designing a new custom soft processor ourselves is out of
the scope of this thesis.

The final prominent alternative is a standalone FPGA connected to a processor. A prac-
tical example of this is an FPGA that is interfaced through a PCI express bus with a high-
performance processor based on the x86 instruction set. Haskell has been primarily designed
for this type of processor. In addition, the synthesis tools for FPGAs are only available for this
type of processor and so only with this solution can we adhere to the full automated offloading
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scenario. In contrast to the ARM processor on the SoCKit, this type of processor is often not
intended for low-power or application specific designs. For this reason we will favour the SoCKit
for function offloading effectiveness.

In conclusion, the SoCKit remains the optimal choice. The CPU and standalone FPGA
combination is a very prominent alternative and shares some resemblance with the SoCKit. It
is therefore estimated that in the future the SoCKit implementation should be relatively easily
adapted for this alternative.

3.2.2 SoCKit Interconnect

Now that we are determined to use the SoCKit development board, we can continue the de-
sign space exploration with the possible implementations of the interconnect on SoCKit. This
interconnection between the FPGA fabric and the HPS can be utilized in multiple ways, as
seen in subsection 3.2.1. It already became clear during the related work analysis in chapter 2,
that the default method is to generate it with the Altera provided tools, i.e. Qsys and Embed-
ded Design Suite. In order to implement the semi-automatic offloading scenario for more than
one function, the interconnection has to be configured as an abstract channel such that it can
transport multiple types of messages. As shown in section 2.4, Cloud Haskell uses serialization
combined with a protocol to communicate with the remote functions.

Designing and managing the interconnect on the FPGA and the CPU partitions is not a
trivial task when considering that an efficient buffering of data is likely to be required. For this
reason, a design exploration was performed on alternative solutions that would do the task for
us. In the limited time for this exploration only one prominent alternative was found, namely
the Xillybus IP core [40]. The advantages that Xillybus provides are the following main features:

• The IP core comes with an Ubuntu Linux image with a working package manager.

• No need to develop hardware drivers for the ARM. All communication with the FPGA is
done by plain user-space programming with standard file operator functions.

• It utilizes DMA buffers on the processor side to minimize data management overhead.

• The interconnection, including DMA buffer sizes, can be automatically configured and
optimized according to the expected bandwidth and desired latency.

• An almost identical Xillybus implementation is, for instance, also available for PCIe based
FPGA and processor combinations. This allows future users to use this thesis’ proof of
concept without much effort on other implementation platforms.

Together with the advantages of the IP core and limited time for this thesis, it was chosen
to use the Xillybus IP core instead of designing and managing the interconnect ourselves. It is
assumed that this IP core can be replaced in the future with a user created interconnect that
has a similar functional behaviour. In the following sections we will attempt to find the optimal
configuration of the interconnection by first explaining the Xillybus IP core in more detail and
then how it can be configured.

3.2.2.1 Xillybus IP core

The Xillybus IP core manages the data exchange between the FPGA and ARM processor. It
is created by the company Xillybus Ltd., which also creates similar solutions for other imple-
mentation platforms. A graphical representation of how the IP core is integrated in the SoCKit
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system can be seen in Figure 3.2. The Xillybus IP core uses several licensing formats [41]. This
thesis is performed under the ”Educational license” that allows free usage for study related
projects. For commercial usage there are other licenses available such as a ”Single copy” license
that requires a 1,000 USD fee per IP core used. For this reason, the ideal end-point would be
to not require this IP core for the offloading of the Haskell functions when using the SoCKit.

System
on

Chip

FPGA fabric
Xillybus
IP core

ARM
processor

core (HPS)
AXI bus

Figure 3.2: Overview of Xillybus IP core integration in the Cyclone V SoC.

The Xillybus IP core essentially consists of two parts: a Xillybus Quartus project that
includes all the files necessary for programming the FPGA and an Ubuntu LTS 14.042 image
for the HPS. The Xillybus IP core comes standard with a configuration for demonstration
purposes. In order to configure the IP core according to application requirements, the user has
to regenerate the core in the IP factory on the Xillybus website[43]. This process produces
new HDL files to replace the old configuration in the Quartus project. By using the Xillybus
IP core and the associated Ubuntu image, the device files related to the chosen configuration
are automatically generated upon booting the OS. These device files can then be used in user-
space programming languages to communicate with the FPGA. The Xillybus Quartus project
is restricted to Quartus II version 13.0sp1, as newer versions have introduced changes to some
IP cores that the Xillybus IP core relies on. Next we will perform a design space exploration
to determine the best Xillybus configuration for our proposed solution.

3.2.2.2 Xillybus configurations

Several types of Xillybus IP core configurations can be generated on the Xillybus IP factory
website in order to optimize it for an application. As can be seen in the Xillybus demonstration
project, there are essentially two main types of configurations possible:

1. A direct address/data interface configuration, which resembles a direct memory access
(DMA) for the CPU to a user defined memory block in the FPGA fabric.

2. A FIFO buffer configuration between the CPU and FPGA. The actual FIFO buffer is
implemented in the FPGA fabric, but the CPU has a local DMA buffer to reduce data
management overhead. The DMA buffer is then used by the Xillybus IP core for trans-
ferring data from or to the FIFO buffer.

These two options, which also can be used concurrently, also have several configurations
themselves. The design space exploration begins by analysing these two main configurations.
The first DMA method allows for configuring the address range, data width, and settings regard-
ing desired latency and expected bandwidth. The FIFO buffer configuration includes, besides

2Manually upgraded to version 14.04
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settings of the actual FIFO buffer in the FPGA fabric, options for controlling the direction of
the buffer, the data width, the CPU DMA buffer page size (for streaming applications), and
other settings related to latency and bandwidth.

The key difference between the DMA and FIFO configurations is the amount of overhead on
the HPS. The DMA method requires the HPS to specify the right address in the memory block
on the FPGA and will require asserting and polling of read and write flags in the memory to
allow clock domain crossing of data, whilst the FIFO implementation on the HPS is just a write
to local buffer and read from local buffer operation. Furthermore, the DMA configuration is not
suitable for streaming applications, which is something that will be explained later, as it is not
intended to buffer more than one data set without having to emulate a FIFO buffer in the FPGA
memory. In that case, it would result in more overhead on the CPU for controlling the FIFO
buffer structure in the FPGA memory in comparison with the standard FIFO configuration.

The DMA method also makes designing our FPGA architecture quite complex. Besides that
the CPU will have more overhead in controlling the memory structure, the hardware architec-
ture will also require automatically generated control logic for the shared memory in order to
achieve the (semi-)automated use scenario.

An important characteristic of a FIFO buffer is its buffer size. Determining the buffer size is
often a trade-off between meeting specific application requirements and using the least amount
of required memory (which can then be used for other purposes). In our proof of concept there
is no knowledge of how and what type of offloaded functions will be used and so an optimal
FIFO buffer size cannot be chosen. A second prominent characteristic is the data type of an
element in the buffer. In the Xillybus IP core the options are 8, 16, or 32-bits integers. The
interconnection data width for the SoCKit is at most 128-bits as shown in Figure B.2, but this
is not accessible within the Xillybus IP core. In order to get the most bandwidth, especially for
streaming applications, the 32-bits configuration should be chosen.

The requirement that more than one Haskell function can be offloaded, introduces an addi-
tional solution for this particular topic of the design space exploration. This solution is to use a
separate up- and downstream FIFO buffer pair for each offloaded function in order to prevent
waiting for shared buffer queues when multiple functions were called from the CPU. Multiple
pairs of FIFO buffers, however, will not work with the Xillybus IP block as it can’t be directly
reconfigured at compile time and thus failing the (semi-)automated use scenario. An argument
for using separate FIFO buffer pairs is that it will allow each offloaded function to have its own
clock domain, however this may also be achieved in the single FIFO solution if separate clock
domain crossing logic is implemented before and after each offloaded function.

Xillybus con-
figuration

HPS over-
head

Automatic
scalability

Streaming
efficiency

Design
difficulty

Score

Weighting 2 2 1 1

DMA − + −− − 2.5
Single FIFO + ++ + ++ 4.5
Mult. FIFOs ++ −− ++ + 3.5

Table 3.2: Design space exploration for the Xillybus IP configuration.

In Table 3.2 a summary of the previous discussed points is shown. It clearly shows that a
single FIFO configuration is the optimal solution for our design.
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3.2.2.3 Message protocol

Using a single FIFO buffer for multiple offloaded function implies that the interconnection will
require a protocol on top of the already serialized data. This protocol will need to have a header
identifier to indicate the start of a message, a function identifier, and a data length indicator. In
the literature research some of the related work use the Transmission Control Protocol (TCP)
to transport its messages. This protocol uses sequential numbering and additional messages,
such as the SYN-, FIN-, and ACK-flags, to reliably transmit over a network. These measures
are necessary to prevent data loss as the used transmission channel is, in general, shared with
other computers. The interconnect between the CPU and FPGA on the SoCKit, however, is
not shared. This implies the reliability measures of the TCP-protocol are not truly necessary.
Altera SoC FPGA devices are designed for high levels of error resilience by means of several
techniques [44]. It is therefore assumed that the probability of errors during data transmission
is almost neglectable. A disadvantage of using these additional reliability measures is that they
introduces extra overhead on data transmissions.

For these previous reasons and because this thesis remains a proof of concept, we will not
include these reliability measures and only implement a relatively simple protocol to indicate
each message, its associated function, and data size. The chosen protocol itself is described
later on in chapter 4.

In the next section the design space exploration on the processor is performed. It includes
topics, such as the general software partition implementation, data serialisation, and automation
of function offloading.

3.2.3 Hard Processing System

The next topics of the design space exploration are related to the hard processor system (HPS)
of the SoCKit and the Xillybus IP core. Interacting Haskell user-space programming with the
device files of the Xillybus IP core is rather straightforward. For this purpose, Haskell includes
the System.IO library, which contains the openFile, readFile, writeFile and hClose functions.
These are the Haskell equivalents of the Posix.IO library. The Foreign Function Interface (FFI)
of Haskell can also be used to call C language functions directly. In both cases impure functions
are introduced, which will introduce the IO Monad to the Haskell program. As this is impossible
to be solved without rewriting the original given Haskell program, it is circumvented by using
the unsafePerformIO function [42]. This exploit is regarded as a bad habit to have in the pure
Haskell language, but this will be discussed later.

In order to transform an offloadable Haskell function into a function that calls the offloaded
function in the FPGA architecture, it has to be replaced with a polymorphic function that has
the behaviour as pictured in Figure 3.3.
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Write arguments
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Read results
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function
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Figure 3.3: Flowchart of proposed behaviour of the replacement function for an offloaded function in
Haskell.

Streaming applications, which can benefit significantly from hardware acceleration, can uti-
lize the flexibility of the Xillybus IP core to operate more efficient by optimizing the data
transmission flow[45]. Traditional programming data flow, such as given in Figure 3.3, where
we call a function and then wait for it to return its value, is not an efficient way to call an
offloaded function on the FPGA. Instead we want to separate the original program in two parts
(i.e. threads) as shown in Figure 3.4, where the first thread only sends data to the offloaded
function and the second thread receives and processes the result. Using this multi-threaded
programming paradigm to pipeline the HW/SW co-design minimizes the hardware’s latencies,
since neither the writing or the reading partition of the original program is effectively waiting
the latency time. Therefore, the throughput of the co-design will be increased.

Figure 3.4: Optimal use of Xillybus IP core for streaming applications.

In the (semi-)automated offloading use scenario we are not able to implement this concept
as we have no intention to automatically transform the Haskell program into a multi-threaded
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representation. However, in the manual use scenario we can leave it up to the user to partition
the Haskell program with this pipelined technique. Therefore, we need to give the user access to
the separate read and write functions for interfacing with the offloaded functions on the FPGA.

3.2.3.1 Data serialization

On either sides of the interconnection data has to be transformed into messages that are ready
for transmission over the FIFO buffers. The chosen Xillybus IP core configuration can be
modelled as an abstract channel that can only transmit 32-bits words at a time. So a method
of serializing any data set to a 32-bits word list is required to transport any type of argument
or result data.

In the FPGA implementation this can be achieved by using a specific Bitpack package
[46] in the CλaSH compiler. It is coincidently the optimal solution, because in an FPGA a
parallel set of data can be directly interpreted as being serialised by means of correct wiring
and multiplexers. However, this is not the case for a software implementation on the Haskell
side of the interconnection, which will be our next design space exploration. Within Haskell
there is a choice of also using the same Bitpack package or creating a custom serialising module
that uses Haskell’s own optimized serialization packages.

The name of the CλaSH package Bitpack already implies that it packs data to a vector
of bits. This is useful in a hardware representation, but for a processor that has a 32-bits
architecture, it means that serialization would involve a significant amount of bit operations.
So essentially the design space exploration can be rephrased to if serialising at a bit level or at
32-bits word level (i.e. Wordpack) is more optimal.

Serialization method HPS overhead Function re-
strictions

Implementation
difficulty

Score

Weighting 1 2 1

Bit level − + ++ 3.75
32-bits Word level 0 − −− 2

Table 3.3: Design space exploration for serialization of function argument and result data.

In Table 3.3 is an overview of the serialization method design space exploration. The HPS
overhead for serialization can be potentially reduced by restricting the offloadable function
type to one that consists of byte or word sized data types common to a 32-bits architectural
processor. Most of the Haskell programs are designed using these word sized data types, but
it does restrict the offloadable function to a specific subset of CλaSH data types, which can
be undesired in specific cases. For example, 32 booleans3 can be combined in a single 32-bits
word in the Bitpack method, but in the Wordpack method, which uses the standard Haskell
serialization modules, it will be represented as 32 separate bytes (or possibly even in 32-bit
words). This will cause the transported message to become considerably larger.

The Wordpack method also introduces a problem that potentially results in more program
runtime overhead and makes automatic offloading nearly impossible without literally copying
the internals of the Bitpack module. In the case of the Bitpack method, the serialization
function and the protocol header is parametrized at compile time due to CλaSH requiring fixed
size vector types. However, the default serialization modules of Haskell operate on unknown
sized lists. This essentially means that the program has to perform additional computations to
serialize the data and create the protocol header at runtime.

3A boolean can be either ’True’ or ’False’, which can be represented as a 1-bit data type.
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The final argument in this topic of the design space exploration is the implementation
difficulty. The Bitpack method is already available and is considerably easier to implement, as
it is just a matter of adding the pack and unpack functions in the right stages of the polymorphic
interfacing function as introduced in Figure 3.3. Besides having to create the Wordpack module
itself, it also includes additional hardware on the FPGA side to filter some of the mentioned
side effects.

The conclusion of this design space exploration is that the bit-level serialization provided
by the Bitpack module in CλaSH is the optimal choice. Because we have chosen this solution
an additional requirement, shown in List 3.1, is necessary to offload functions.

A function that is to be offloaded should have an argument and result type that can have
the BitPack[46] class constraint, i.e. the pack and unpack functions can be applied to the
argument and result types of the offloadable function.

List 3.1: Additional requirement for a offloadable function imposed by the Bitpack module in CλaSH.

3.2.3.2 Automation of function offloading

In section 2.3 two potential methods for automatic function offloading were introduced and in
this section these two options are explored and a choice is made for the optimal solution. The
first method regarded creating a pre-compiler and the second approach was by using a Core
plugin. The design space exploration overview can be seen in Table 3.4, which will subsequently
be explained.

Automatic offloading
method

Implementation
difficulty

User interac-
tion

Extendibility Score

Weighting 1 1 1

Pre-compiler − − + 2.67
Core Plugin − ++ 0 3.33

Table 3.4: Design space exploration for two potential automatic function offloading methods.

Developing a Core plugin has the disadvantage that additional knowledge of the GHC API is
required. As already mentioned in section 2.3 this involves the understanding of the Core type
and how to modify it. The pre-compiler approach requires the implementation of a parser, tree
modifier method and an unparser, which can all be done through standard Haskell programming.
Even though only a subset of the Haskell grammar has to be parsed in order to complete its task,
the pre-compiler still requires a significant amount of work in order to be implemented. The
Core plugin uses the built-in Haskell parser. For these reasons, the implementation difficulty
for both methods is estimated to be relatively equal.

Either method requires a basic set of user interactions and requirements that are listed in
List 3.2.
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• All the function offloading requirements listed in List 2.3 and List 3.1 are required.

• The functions have to be annotated, as shown in the example in chapter 1, such that they can be
identified by the pre-compiler or Core plugin.

• Either the module that contains the offloadable functions should be completely compilable by
CλaSH (e.g. no Haskell Prelude and no annotations) or the user has to copy those functions in
a separate module. This is necessary to compile the FPGA partition, which is something that is
shown in chapter 4.

List 3.2: User interactions and other requirements necessary to make semi-automated offloading possi-
ble.

In addition to List 3.2, both methods have their own additional requirements and user
interactions. The pre-compiler method requires us to do an additional compiling stage, in
which it generates updated Haskell files with the replaced offloadable functions and a top-entity
Haskell module file that can be used for the FPGA architecture compilation. These slightly
altered files are then to be compiled again with the normal Haskell compiler to run the program
with offloaded functions.

The Core plugin method, however, only requires the user to add an additional compiler
annotation to the module containing the offloadable functions such that the Core plugin will be
applied to the compilation process of that module.

The last criterion in this topic of the design space exploration is related to how easily the
methods can be extended in the case that Haskell itself or CλaSH is modified in the future. The
pre-compiler will be most likely accessible to any user that has a basic understanding of Haskell
and so intuition would say it to be the most extendible option. As previously mentioned the
Core plugin requires the knowledge of the GHC API and Core type, but if that knowledge is
present then it would not be much more complex to extend the plugin in comparison to the
pre-compiler. As shown by the final scores in Table 3.4 the Core plugin method is the optimal
solution.

3.2.4 DSE overview

At this point we have explored all the important design space exploration topics and for each
topic the optimal solution was chosen. The prominent choices made were as follows:

• The SoCKit development board is chosen as the implementation platform.

• The Xillybus IP core is used to manage the interconnection configuration.

• The interconnect is configured to have a single up- and downstream FIFO buffers to
communicate between the FPGA and CPU.

• Protocol checksum and additional message reliability measures were not deemed necessary
for this proof of concept. Only a basic protocol is to be used.

• The Bitpack package from the CλaSH compiler is used to serialise data on the ARM.

• The Core plugin is used to automate the process of function offloading.

In the next section these choices will be included in the design of the proposed solution.
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3.3 Design overview

Combining the background information in chapter 2 and the design space exploration choices
made earlier in this chapter, we can describe the overview of the design. In section 1.2 we had
chosen to divide the proposed solution in two partitions. The first part featured the fundamental
basis that will allow for function offloading, whereof we can see the design in Figure 3.5, and
the second part implements the actual automation of function offloading.

SoCKitFPGA fabric (HW) ARM processor (SW)

FIFO

FIFO

Demultiplexing and
deserialisation logic

Serialisation and
multiplexing logic

Offloaded
function(s)

(using dataflow)

Polymorphic
interfacing
function

Serialisation

and message

builder

Message

extracter and

deserialisation

Software
partition of
co-designed

Haskell program

Figure 3.5: Design overview of the fundamental implementation of function offloading.

Figure 3.5 shows that the design consists of several components. The design shall be imple-
mented on the SoCKit board that features the FPGA and ARM processor. The interconnect
between these two components is configured as a up- and downstream FIFO buffer pair. As
chosen in subsubsection 3.2.3.1, both the hard- and software partitions will use the BitPack
class functions from CλaSH to serialize and subsequently deserialize data. Similarly, both par-
titions will also make use of the same protocol, as proposed in subsubsection 3.2.2.3, in order
to associate data with the appropriate offloaded function. In subsection 3.2.3 we already saw
the proposed design of the polymorphic interfacing function, which includes the steps of serial-
ization, protocol application and sending and receiving of data. Additionally, this polymorphic
function will also have a split version, i.e. a separate write and read function, such that it allows
for the pipelined HW/SW co-design.

In combination with the previously mentioned design aspects, the FPGA architecture will
also have the design requirements that are listed in List 3.3. When the FPGA architecture
implementation meets these design requirements, then it will be usable for all the three use
scenarios specified section 3.1.
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• An FPGA architecture is required that can be generated in both the manual and semi-automated
use scenarios by merely providing the list of offloadable functions. This imposes that it should be
implemented in a CλaSH design.

• The architecture shall be connected to the read and write FIFO buffers as chosen in subsubsec-
tion 3.2.2.2. This allows the architecture to always keep its top-level input and output signals
identical and thus allowing an automated generation process.

• The user should be able to either implement an offloadable function as pure, Mealy, Moore type,
or a combination thereof, which, as described in section 2.2, can be achieved by using dataflow
principles.

• A basic protocol error detection should be implemented to alert users if they have made mistakes
in the manual use scenario. Error correction is not the goal for this proof of concept. In addition,
a manual reset is also required on the FPGA implementation.

List 3.3: Requirements for the FPGA architecture design.

Now that the design of the fundamental basis for function offloading has been described,
we can proceed with describing the design of the semi-automated process of function offloading
that is primarily performed by the Core plugin as chosen in subsubsection 3.2.3.2. Essentially,
this semi-automated process will be able to take a software-only Haskell design that meets
specific requirements, and subsequently transform it into a HW/SW co-design, as pictured in
Figure 3.6. The Core plugin is designed to output the altered software partition and also the
top-entity module that is used to generate the hardware partition. After this process the right
most block of this figure is essentially a parametrized equivalent of Figure 3.5.

Annotated
software-

only
Haskell
design

Core
plugin

HW
partition

SW
partition

Figure 3.6: Design of the automated function offloading process.

In the next chapter the designs of Figure 3.5 and Figure 3.6 are implemented in order to
realize the proof of concept as proposed in section 1.2.
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4 Implementation

In the previous chapter we made the best possible choices in our design space exploration. These
design choices were subsequently used to create a design for our proposed solution that we
described in section 1.2. This chapter briefly describes the resulting implementation and how it
may be used. It will also mention some of the major obstacles found during implementation and
how they affected the final implementation. The majority of the required files to reproduce the
exact implementation of this thesis can be found in the GitHub repository[53]. The associated
code is intended to be mostly self-explanatory.

This chapter, regarding the implementation description, is divided in the three major par-
titions of the SoC platform, namely the CPU, FPGA, and the interconnect in-between them.

4.1 Interconnection

In chapter 3 we concluded that using the Xillybus IP core to manage the interconnect instead
of building one ourselves was the best solution. The IP core has been configured with the
IP Core factory[43], such that it facilitates the device files as listed in Table 4.1. Both the
xillybus read 32 and xillybus write 32 device files represent a FIFO buffer that will be used for
the communication between the CPU and FPGA. The IP core and the DMA buffers on the
CPU have been automatically set by the IP Core factory for minimal latency and maximal
bandwidth. The IP core factory indicates a maximum bandwidth of 200 MBytes/s for both the
up- and downstream FIFO buffers. The dual-clock FIFO IP cores [47] in the FPGA fabric are
configured to a buffer depth of 256 words. In our case, reasoning about optimizing the buffers
(in order to reduce used memory elements) is not possible as there is no exact knowledge of the
HW/SW co-designs of future users. Therefore, it is left up to the future users themselves to
optimize the buffer sizes. In addition, the actual FIFO buffers are implemented as dual-clock IP
cores. This allows the FPGA architecture to be manually set to a desired clock domain rather
than the domain the Xillybus IP core utilizes.

Name Direction Data width Details

xillybus read 32 FPGA to host 32-bits Used as FIFO

xillybus write 32 host to FPGA 32-bits Used as FIFO

Table 4.1: Xillybus IP core device files

In the previous chapter we have already read how we can connect the Haskell program
and FPGA logic to the chosen interconnect configuration. In short, our custom FPGA logic
is to be connected to the FIFO IP cores in the Quartus template project and the Haskell
programming user-space can access the FIFO buffer device files with the file operation functions
in the standard IO library.
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4.1.1 Message protocol

As already mentioned in subsubsection 3.2.2.3, using a single FIFO buffer and offloading multiple
functions requires the use of a protocol. The protocol is implemented as shown in Figure 4.1.

# Bits 32 32 32 32 32 32 32 32

Contents Start
flag

Function
Identi-
fier

Data
length n

Data
0

Data
1

.. Data
n-1

Data
n

Figure 4.1: Protocol for data transmission through the interconnect FIFO buffers.

All data types of the protocol are of the FIFO 32-bit signed integer type, which we will
refer to as the XillybusType. The start flag is a fixed value to indicate the start of a new
message. The function identifier is used to identify which offloaded function the data belongs
to. Additionally, the protocol is also used to specify the length of the data as required for the
design and implementation of the FPGA architecture.

Additional hardware, or software, is required to transmit the data sequentially as was already
seen in section 3.3. On the FPGA, for instance, the received data has to be deserialized to a
parallel representation with the original argument type of the offloaded function. Once all
sequential data has been received and made available in parallel, then it may be inserted in the
offloaded function, as will become clear in the next section. After the offloaded function has
produced a valid output, it will have to be serialized again in order to be transmitted back to
the HPS. The same protocol in Figure 4.1 is also applied to the returning output data.

Although the data type of the function identifier and data length is a 32-bit signed integer,
it is unrealistic and impractical to have a large amount of offloaded functions or extremely long
data messages. However, as this is a proof of concept, these values will not be restricted. At
the end of this thesis, the potential points for optimisation of this protocol are discussed.

4.2 FPGA architecture

When a Haskell function meets the prescribed requirements of List 3.1, it may be offloaded
onto the FPGA. We will need to design an FPGA architecture based on data-flow principles,
because the offloaded function should only be executed if a valid input argument is available.
This data-flow approach allows for a pure, Mealy, or Moore function to be executed for exactly
one clock cycle, which then produces the resulting output that has to be sent back to the Haskell
program.

The data-flow type [48] is given in Listing 4.1 and the graphical representation can be see
in Figure 4.2 as the central block. A dataflow function in CλaSH can essentially be described
as a circuit with bidirectional synchronisation channels that functions as follows:

• The input valid signal has to be asserted before a data-flow function should consume input
data, i.e. the input contains valid argument data.

• The data-flow function must only update its output when the incoming back-pressure
ready signal is asserted, i.e. the hardware on the output is ready to receive the result
data.
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1 S igna l i −− Incoming data .
2 −> S igna l Bool −− Flagged wi th a s i n g l e input v a l i d b i t .
3 −> S igna l Bool −− Incoming back−pressure , ready b i t .
4 −> ( S i gna l o −− Outgoing data .
5 , S i gna l Bool −− Flagged wi th a s i n g l e output v a l i d b i t .
6 , S i gna l Bool −− Outgoing back−pressure , ready b i t .
7 )

Listing 4.1: Data-flow type in CλaSH [48]

The higher-order CλaSH functions pureDF, mealyDF, or mooreDF can be used to create a
dataflow representation of the offloadable functions. Additionally, if desired in the manual use
scenario, the dataflow composition combinator function seqDF can be used to combine multiples
of these three composition functions into a sequence of dataflow typed function.

Naturally, it is also possible for the user to create their own Signal based function which
adheres to the dataflow principles and has the function type as was given in Listing 4.1. This
custom function should then be lifted to the correct dataflow type using the liftDF before it
can be used for function offloading.

Now that we have a data-flow representation of our offloaded function, we can begin to
implement the serialization logic blocks around it. This can be divided in a deserializer and a
serializer partition as was described in subsection 4.1.1. Such a deserializer block will transform
the serialized data from the incoming FIFO buffer, which is received over the span of several
clock cycles, to a parallel representation that is required by the data-flow function argument
type. This is achieved by first writing each serialized data element into a subsequent element
of a storage vector. Once this vector is full with all serialized data, then it will be deserialized
into data with the argument type of the offloadable function, which is achieved by using the
unpack function of the BitPack class, as chosen in subsubsection 3.2.3.1.

In turn, the deserializer block will do the reverse of the serializer to return the output data
of the data-flow function over the interconnect. Both serialization logic blocks have been imple-
mented as sequential logic in the form of a mealy machine, because the (de)serialization process
requires a number of clock cycles that is equal or higher than the word length of the data in its
serialized form.

Implementing such serialisation blocks in Haskell requires additional compile-time informa-
tion as the compiler itself cannot calculate the serialized data length from merely knowing the
original data type. This additional information is a set of 2 pairs of type-level naturals, which
we will refer to as the serialization naturals. A pair of type-level naturals represent the total
word size of the serialized data and the zero-bit extensions needed to achieve this word size
from the original data type. An offloadable function with separate argument and result data
types requires for each type a pair of type-level naturals. In the following example we find a
practical case of what a pair in the serialization naturals can be:

”The offloaded function’s input data that has the type of ’Vec 5 (Signed 8)’, i.e. 40-bits
of data, has to be serialized into data with the type ’Vec n (Signed 32)’ such that it
can be transmitted over the FIFO buffer (which acts as a 32-bits channel). As can be
seen from this serialized type, the length n is unknown at compile-time. As we can only
transport data in multiples of 32-bits, the original 40-bits argument has to be extended
with several bits. The serialization naturals pair for this data type has to be: d40/32e = 2,
and the number of zero-bit extensions that are necessary to achieve this word size is:
(d40/32e ∗ 32) − 40 = 24. This results in a serialized representation with the data type
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’Vec 2 (Signed 32)’”.

These serialization naturals are either manually inserted as function arguments or have to
be computed by means of compile-time code execution with Template Haskell (TH), which will
be explained later on.

A graphical representation of a data-flow wrapped function in-between the serialization
blocks, which we will call the function wrapper, is shown in Figure 4.2.
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Figure 4.2: An overview of the function wrapper containing a single data-flow wrapped offloadable
function in-between the serialization blocks.

This function wrapper has been implemented as a higher-order function with the type from
Listing 4.2. The function type reveals that it is parametrizable with the data-flow composition
of the offloaded function and the serialization naturals as initial input arguments.

1 functionWrapper : : ( . . . )
2 => ( DataFlow Bool Bool i o )
3 −> ( s e r i a l i z a t i o n na tu ra l s )
4 −> S igna l ( Xil lybusType , Bool , Bool )
5 −> S igna l ( Xil lybusType , Bool , Bool , Bool , Bool )

Listing 4.2: Type of the serialisation wrapper for offloadable functions

In order to allow the automatic offloading of more than one Haskell function simultaneously,
we need to represent all the offloadable functions in a vectorized form. However, as vectors in
Haskell can only have elements with the same type and therefore it is paramount that we can
wrap the offloadable functions into the monomorphic functionWrapper type from Listing 4.3.

1 functionWrapper : : S i gna l ( Xil lybusType , Bool , Bool )
2 −> S igna l ( Xil lybusType , Bool , Bool , Bool , Bool )

Listing 4.3: Function wrapper type after parametrizing

Now that we have a way to create a vectorized representation of all the offloadable functions,
we can proceed to describe the implementation of how it is connected to the FIFO IP Cores
in the FPGA fabric. To allow FIFO messages to reach the corresponding offloaded function
in the vector, we have to demultiplex the received serialized data by means of a demultiplexer
logic block. The protocol implementation as described in subsection 4.1.1, allows us to indicate
for how long incoming data should be multiplexed to which offloaded function in the list.
Subsequently, the multiplexer has to do the reverse of the demultiplexer, in order to send the
function result data on the interconnect FIFO. Again, both the multiplexer and demultiplexer
blocks are written as Mealy machines. This implementation, which we will call the top wrapper,
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can be seen in Figure 4.3. In the middle of this figure we see the multi-layered grey blocks,
which represents a list of the function wrappers functions from Figure 4.2.
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Figure 4.3: An overview of the top level wrapper in the FPGA architecture.

The type of this top wrapper function is shown in Listing 4.4. The first input represents
the vector of wrapped functions as previously mentioned. After applying the function vector
argument, the top-level block diagram of the FPGA architecture will look like Figure 4.4. This
figure shows a bundle of four output error signals, which are connected to the LEDs on the
SoCKit development board in the Quartus template project. What these errors represent will
be explained in the in-depth user manual on [53].

1 topWrapper : : ( . . . )
2 => ( Vec n ( S igna l ( Xil lybusType , Bool , Bool ) −> S igna l ( Xil lybusType ,

Bool , Bool , Bool , Bool ) ) )
3 −> S igna l ( Xil lybusType , Bool , Bool )
4 −> S igna l ( Xil lybusType , Bool , Bool , Bool , Bool , Bool , Bool )

Listing 4.4: Type of the higher-order top wrapper function

Top wrapper
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Figure 4.4: The top level diagram of the FPGA architecture.

The complete FPGA architecture is designed with data-flow principles in mind. For instance,
if the outgoing FIFO buffer is full we will, by way of back-pressured signals, halt all the previous
blocks in the architecture until we can move our data out again. The architecture is designed in
such a way that only an offloaded function can be used when the previous function result data
has been sent onto the outgoing FIFO buffer. This means that for a pipelined utilization of an
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offloaded function (as proposed in Figure 3.4) the minimum latency for calling, and receiving
the results of the called offloaded function will be dependent on previous calls to offloaded
functions.

Below, the two ways of resetting the complete FPGA architecture (and also the FIFO
buffers) are described:

• A manual FPGA architecture specific reset (push button) or a complete FPGA hard reset.

• A reset state by means of the Xillybus IP core when both the FIFO buffer device files are
not being accessed by the Haskell program.

The first method will always be available, but the second method may not always be desired in
HW/SW co-designs where the device files may be closed during runtime. Therefore, including
this reset method is left up to the user, which will be described in the use guide.

This architecture meets all the design requirements set in List 3.3. The FPGA architecture
can be compiled in CλaSH with a top-entity function that merely applies the vector of offloadable
functions in their respective data-flow compositions and the associated serialization naturals
arguments. Due to this relatively simple compilation process, it becomes possible to achieve
automatic function offloading, which is something that will be discussed in a later section.

This implementation does, however, introduce the additional offloadable function require-
ment in List 4.1.

A composition of the offloadable function and a higher-order data-flow function
of CλaSH [48] has to be exist, i.e. the function can be passed as an argument
to either the pureDF, mealyDF, mooreDF function, or liftDF. In the manual use
scenario these dataflow compositions–when possible– may be combined into a larger
offloadable function by using the seqDF combinator function.

List 4.1: Additional requirement for an offloadable function.

At the end of this chapter it will be explained how we can use this FPGA architecture in
practice, but first we will look at the rest of the design implementation.

4.3 HPS implementation

Now that the FPGA architecture, SoC interconnect, and the protocol have been implemented,
the Hard Processing System (HPS) implementation of the co-design will be described. This sec-
tion starts with the implementation for the manual use scenario and it ends with the extension
that allows for the semi-automated use scenario.

The HPS implementation in its simplest form, i.e. not a pipelined implementation as shown
in Figure 3.4, can be described as a process, either manually or automated, in which the
annotated offloadable function is replaced with a parametrizable polymorphic Haskell function.
In Figure 3.3, we have already seen a proposed behavioural representation of this polymorphic
function and in Figure 4.5 the implementation of it is pictured.
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Figure 4.5: Implementation of the replacement function offloadTemplate.

This function implementation, which we shall refer to as the offloadTemplate function, has
the type shown in Listing 4.5. Similar to the FPGA architecture implementation, the offload-
Template function has two arguments that are used to parametrize the function, namely the
function identifier integer and serialization naturals. The integer argument is used to associate
messages to the correct function and the serialization naturals are identical to the ones used in
the FPGA architecture, as explained in the previous section. In this manual use scenario it is
the task of the user to apply the protocol correctly, i.e. the function identifier has to be equal
to the index of the offloadable function in the listed representation on the FPGA architecture.
Once parametrized, the replacement offloadTemplate function will have the same function type
as the original offloadable Haskell function. This allows the Haskell program to call upon the
replaced function as if it was never modified.

1 offloadTemplate : : ( . . . )
2 => Int −− The func t i on i d e n t i f i e r
3 −> ( s e r i a l i z a t i o n na tu ra l s )
4 −> ArgumentType
5 −> ResultType

Listing 4.5: Type of the polymorphic offload template function

It is not possible to simply replace an offloadable function in a Haskell program with the
offloadTemplate if it is a sequential Mealy or Moore function (in which the function states
are to be managed on the FPGA architecture itself). For such a sequential function it is ex-
pected that the main Haskell program passes the previous function state as an argument in
the next function call. In this case we can either simply loop back the function state when
the replaced offloaded function is called or the user is required to manually modify the main
Haskell program to handle the function as a pure function. The first solution is the easiest
approach, but the second method is more preferable for an optimized design as it completely
removes the overhead in the main program of having to pass the state data for each function call.

As we have seen in Figure 4.5, the offloadTemplate function consists of several consecutive
steps. When the offloadTemplate function is called from the main Haskell program it starts by
serializing the argument data with the BitPack CλaSH module. The protocol is then applied to
this serialized list of data to form a message that contains the offloaded function identifier, the
data length, and the serialized data itself. This message is subsequently written to the FIFO
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buffer device file or in case the FIFO is full it will halt the program until the writing task can
be completed.

In subsection 3.2.3 it was also noted that the IO monad is introduced when we use the
impure functions for accessing the device files of the interconnect. This was solved by using
the unsafePerformIO function [42] to allow executing I/O operations in a pure function (i.e.
IO a → a). An IO function that has been made pure with the UnsafePerformIO function can
have the undesired side effect that Haskell will only evaluate the result once due to its lazy
evaluation and return this initial value again in subsequent function calls. This has been solved
by enforcing strict evaluation with the $! Haskell operator, but it might be more appropriate
as future work to approach this IO monad problem differently by, for instance, creating and
forcing a designer to use an Offload monad for offloaded function calls.

Once the message has been successfully written, the function will start reading from the re-
turning FIFO buffer. It will keep doing so until the exact amount of bytes have been read from
the buffer to reconstruct the offloaded function result data message. The resulting message is
then quickly verified for protocol errors and subsequently the serialized result data is extracted.
This data is deserialized into the data with the function result type and is then returned to the
main Haskell program.

In chapter 2 we have set the requirement that an offloadable function should be written in
CλaSH compilable functions. This means that a traditional Haskell program with variable sized
lists and a superset of data types, has to interface with CλaSH code. Most of the numerical data
types, including fixed- and floating-point data types, can be coerced to and from CλaSH types
by using the fromIntegral function. The coercion requires that the data types are explicitly
defined beforehand. Coercing between a list and a fixed sized CλaSH vector can be achieved
with the two following functions:

• The toVector function may be used to convert a list to a vector.

• The standard CλaSH toList function can be used for vector to list conversions.

4.3.1 Manual pipelined implementation

In chapter 3 it was concluded that in the manual use scenario, it was desired to allow users access
to a split version of the offloadTemplate function. These separate write and read functions will
allow for users to increase the overall throughput of their HW/SW co-design by pipelining their
application, as shown in Figure 3.4.

The write function behaves almost exactly like the first part of the offloadTemplate function
as shown by the steps on the top row of Figure 4.5 and the read function is mostly identical to
the bottom row. Due to limited implementation time, the write function simply returns a write
success boolean to the function that called it. In a future version of this proof of concept, this
may be replaced with the IO monad or a dedicated Offload monad to indicate failures in a more
Haskell programming-friendly manner. The write function type is listed above in Listing 4.6
and the lower type is that of the read function.

For pipelined applications, the FIFO buffer device files must remain open during its com-
plete lifespan, or else the data in the DMA buffers will be flushed, which, besides significantly
increasing the latency, may also cause data loss in the read FIFO buffer. In our previous non-
pipelined co-designs this will not be a potential problem, because all data is guaranteed to have
been written and read from the FIFO buffers before the device files are closed. This means
that the file descriptors in the pipelined applications should only be once opened at the start
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of the main function. Subsequently, these file descriptors should then be passed as the Handle
argument of the read and write functions as given in Listing 4.6.

1 offloadwriteTemplate : : ( . . . )
2 => Int −− The func t i on i d e n t i f i e r
3 −> Handle −− Opened f i l e d e s c r i p t o r o f the wr i t e FIFO dev i c e f i l e
4 −> ( argument s e r i a l i z a t i o n na tu ra l s )
5 −> ArgumentType
6 −> Bool
7
8 offloadreadTemplate : : ( . . . )
9 => Int −− The func t i on i d e n t i f i e r

10 −> Handle −− Opened f i l e d e s c r i p t o r o f the read FIFO dev i c e f i l e
11 −> ( r e s u l t s e r i a l i z a t i o n na tu ra l s )
12 −> ResultType

Listing 4.6: Type of the polymorphic offload write template function

A problem now rises for the pipelined read function when we want to read with more than
one thread concurrently. The issue in this case is that the read function will possibly receive
messages on the shared FIFO that are meant for other offloaded function calls. And once read
from the FIFO buffer, we are not able to put them back. The most prominent solution to this
problem, which falls outside the scope of this thesis, is to configure the Xillybus IP core such
that each offloaded function has a separate FIFO buffer pair and their associated device files.
Each FIFO buffer pair is then able to use a unique version of our designed FPGA architecture.
This solution allows a pipelined HW/SW co-design to efficiently use each separate offloaded
function due to that the Xillybus IP core manages FIFO buffer data in the DMA buffers of
the CPU. A second, but more computational intensive method to solve the concurrent reading
problem, is to create a main thread that acts as a master reader, which will divert the messages
to the correct slave reading threads.

4.3.2 Automatic offloading core plugin

The HPS implementation, up to this point, only allows for the manual use scenario as described
in section 3.1. This section describes the extension that was implemented to achieve the semi-
automated offloading use scenario. The FPGA implementation already has the potential for a
(semi-)automated generation, which allows us to mainly focus on automating the transformation
of an offloadable function into the polymorphic function offloadTemplate. In chapter 3 we
already decided to use the Core plugin in order to modify the Haskell program at compile-time
and we also set the preliminary requirements for it in List 3.2. For this implementation, it
was chosen to generate the FPGA architecture top-entity module 1 during the Core plugin
execution.

In order to automate the process of changing one or more offloadable functions, we required
the user to annotate them. This is achieved by adding the following annotation [12] in the
module for each targeted offloadable function:

{-# ANN functionName pureOffload #-}

In this annotation the functionName should be replaced with the actual targeted function
identifier, such as shown in the example in Listing 1.2. This allows the Core plugin to search
through all the function bindings in the current Core module for the annotated function(s). The

1Top-entity module is used to automatically compile the FPGA architecture with the annotated offloadable
functions
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pureOffload keyword indicates to the Core plugin that a function should be offloaded as a pure
function. In the current implementation the mealyOffload and mooreOffload variants have not
been fully implemented for reasons that are discussed further in this section, but instead they
will notify the user to use manual offloading instead.

A Core plugin can only be active in the scope of the module it has been assigned to. In
this automated function offloading implementation, this means that dividing the offloadable
functions in more than one Haskell module will only be possible if data is shared in between
Core plugin passes by using intermediate files. This has not been implemented for this proof of
concept, but is expected to be possible in future updates. To ensure the plugin will be applied
to our module of choice, and the annotations are in-scope, the two lines from Listing 4.7 have
to be added at the top of the module.

1 {−# OPTIONS GHC − f p l u g i n=Of f l oad . Plugin . Of f l oadP lug in #−}
2 import Of f load . Plugin . Of f loadAnnotat ions

Listing 4.7: Required lines of Haskell code to allow for assigning the Core plugin to a module in the
semi-automatic function offloading implementation

In Figure 4.6 we can see a flowchart that describes the behaviour of the Core plugin. The
dashed blocks in the chart represent the generation process of the top-entity module file during
the plugin. This file is made available in the current compiler directory. Once the initial part of
the top-entity file has been generated, the plugin will start looping over the available function
core bindings. When an annotated binding is found, it will extract the argument and result
types. The grey block in Figure 4.6 represents the process of generating the previously described
offloadTemplate function with the two preciously extracted types.

Once a Haskell module has been parsed into a Core module, it can no longer be modified
with standard user-space Haskell functions. Modifying this Core module by exclusively using
Core type functions is, aside from being a complex task, also rather impossible in our case. For
instance, if we want to automatically calculate the serialization naturals for the offloadTemplate
function, then we require compile-time execution of code. In the manual use scenario Template
Haskell was used to achieve this, but that can not be applied to a Core module in a Core plugin
without some form of interactive Haskell compiler.

For this implementation it was chosen to generate temporary Haskell modules on the fly,
that will contain the generated and parametrized offloadTemplate function. Such a temporary
module is subsequently compiled to an intermediate Core module and the relevant function
binder is then brought into scope of the initial Core module. This can be considered an un-
desirable method, because dynamic linking errors can occur when we copy a function binding
from one Core module to another Core module. In our case a linker error will occur because the
BitPack and KnownNat classes and the entire module containing the polymorphic offloading
template function were not in scope of the initial Core module. To solve our dynamic linking
errors, we will have to require users to add these classes and module to the original module
containing the offloadable functions. This is achieved by inserting the three lines of code from
Listing 4.8 in the Haskell module containing the offloadable functions.

1 import Of f load . Haske l l . Of f loadFunct ions
2
3 makeClassesInScope : : ( BitPack Bit , KnownNat 0) => ( ) −− r e qu i r ed f o r Core p l u g in
4 makeClassesInScope = ( )

Listing 4.8: Required lines of Haskell code to allow for semi-automatic function offloading
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Once these classes are in-scope of the module that is being modified by the Core plugin,
then linking errors are resolved by constructing the new function type with the in-scope linked
classes. For this exact reason an additional offloadable function requirement is necessary, as
described in List 4.2 to get the BitPack class in the scope of the first Core module. An example
of this will be given later on.
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entity module
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tion types

Generate new
core bind
with types

Replace original
corebind
with new
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Figure 4.6: Flowchart of the Core plugin implementation.
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A module containing the offloadable functions and which is used for semi-automated
offloading, must contain the code from Listing 4.8.

List 4.2: Additional requirement for an offloadable function in the semi-automated use scenario.

We can now proceed with replacing the original function binder with the newly generated
polymorphic function offloadTemplate that has been parametrized with the function types. In
the last step of the loop in the flowchart in Figure 4.6 the function binding name is appended
to the offloaded functions list in the top-entity file for the FPGA architecture. By doing this for
each loop iteration, we can assure that the function identifier on the Haskell partition is exactly
identical to the index function list on the FPGA part.

This loop will be active for as long as there are new annotated functions available and when
it finally ends, the CλaSH top-entity module is finalized and the modified Core module will be
used in the final Haskell compiler phase to generate the executable.

In the manual use scenario implementation, we have already stated that the offloadable
sequential Mealy and Moore functions require additional modification to the main Haskell pro-
gram to remove the managing of state data. In addition, the initial states of these sequential
functions have are not known at compile time for the FPGA architecture, which prevents us
from automating the offloading process. For these two reasons, it was chosen that we will have
to restrict the Core plugin to allow only pure offloadable functions for the semi-automated use
scenario.

4.4 Overview

All the resulting code of this implementation of the design from section 3.3 has been combined in
a folder that represents the (unofficial) Haskell offload package. This package can be downloaded
from the GitHub repository [53] into the development directory of choice. In chapter 6 the
verification process of the implementation is described. In the next chapter is a brief user
manual given that describes the intended workflow for both the manual and semi-automated
use scenario. The next chapter also formally lists the Haskell HW/SW co-design requirements
that were encountered during the design and implementation phases of this thesis.
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Up to this point of the thesis we have been targeting this proof of concept for two use scenarios:
semi-automated and manual Haskell function offloading. The final implementation imposes
several requirements on a Haskell HW/SW co-design, which were already described during the
design and implementation phases in previous chapters. These requirements have been formally
listed in the following first part of this chapter. The manual and semi-automated use scenario
have a different, but partly overlapping, set of requirements. For both the use scenarios, the
following requirements are applicable:

• All Haskell functions that are to be offloaded should adhere to the following requirements:

* The offloadable functions are completely compilable to a hardware description lan-
guage1 by CλaSH.

* By default an offloadable function should be in the form of either one of the following
abstract types [24]:

– Pure function: i -> o

– Mealy function: s -> i -> (s, o)

– Moore function: (s -> i -> s) -> (s -> o)

* A composition of the previously mentioned offloadable functions and a higher-order
data-flow function of CλaSH [48] has to be exist, i.e. the function can be passed as
an argument to either the pureDF, mealyDF, or mooreDF function.

* The argument and result types should both be able to have an instance of the class
BitPack [46], such that the functions pack and unpack can be applied to them.

• In order to compile the FPGA architecture with the listed representation of offloadable
functions, all the targeted functions have to be within one or more Haskell modules that
exclusively consists of CλaSH compilable functions.

• It is required that the user only designs a set of offloaded functions that, in combination
with the rest of the FPGA architecture and Xillybus IP core, will fit within the resource
budget of the FPGA.

• The user is required to fulfil the task of preventing non-deterministic behaviour by assign-
ing the correct clock frequency to the FPGA architecture such that, in all possible system
states, the propagation delays of the logic will not exceed the clock period.

• The software partition of a Haskell co-design should be thread-safe when calling upon
offloaded functions, such that no race conditions can occur.

1In this implementation only a VHDL Quartus project was prepared, but Verilog should be possible too with
some additional work.
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In addition to the shared requirements, for each use scenario there are also separate require-
ments. For the semi-automated use scenario the following implementation requirements apply:

• Offloadable functions in the Core plugin can only be offloaded as pure functions, i.e. with
the type: i -> o. The said type should not contain any separately defined types, because
the Core plugin does not have access to them in the intermediate files. Each offloadable
function should be annotated as described in subsection 4.3.2.

• All the offloadable functions should be in a single Haskell module that exclusively consists
of CλaSH compilable functions2

• The GHC compiler should be started with the -package ghc command line argument.
This is necessary as the Core plugin requires access to the GHC API modules3.

• The module containing all the offloadable functions should contain the additional code
from Listing 4.7 and Listing 4.85 in order to facilitate automated function offloading with
the Core plugin.

For the manual use scenario the following implementation requirements apply:

• In addition to the three allowed basic offloadable function types (i.e. pure, mealy, and
moore), it is also allowed to manually create sequential combinations of them, which are
to be connected using the dataflow composition combinator function seqDF from CλaSH
[48].

• It is also allowed to manually offload a function that is Signal type based [24]. It must be
liftable to the dataflow type using the listDF function from CλaSH [48].

• It is the user’s task to apply the protocol parameters correctly to the polymorphic func-
tions and FPGA architecture. This implies that the function identifiers should be unique
and that they are matching between the hardware and software partitions. Addition-
ally, the serialization naturals required by the functions should be correctly given (either
calculation using Template Haskell or manually).

• It is the task of the user to modify the main program to allow for the sequential Mealy or
Moore functions. This means removing the process of folding the states

• The user should use the pipelined optimization approach with only a single reading thread,
unless the in subsection 4.3.1 mentioned solutions are used.

Now that all the important requirements and restrictions for both use scenario have been
listed, we can continue with describing the actual intended usage of the implementation. This
user manual in this chapter will only briefly describe the steps involved in using the proof
of concept, whereas the GitHub repository [53] contains a more in-depth user manual with
practical examples. It is presumed that an identical development set-up of this thesis is available
as described on the GitHub repository [53] and that the required files (i.e. our unofficial Haskell
Offloading package) from this proof of concept have been downloaded and placed into the current
working directory. If we recall the proposed workflow in subsection 2.2.1, then we already have
a structural overview on how the implementation should be used for both scenarios.

2This occurs due to that this proof of concept does not take into account that multiple instances of the Core
plugin can be active. In that case it would then result in duplicates of function identifiers and an incorrectly
generated top-entity module for the hardware partition.

3Can be circumvented by compiling and installing the offloading Core plugin as GHC.Plugin.
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Semi-automatic offloading guide The semi-automated function offloading implementation
should be used as described in the following steps:

1. Start with a Haskell software-only design in module A.

2. Re-write the functions that will be offloaded according to the previously listed require-
ments for automated offloading and transfer them from module A into module B, which
now will become an imported module of module A. Subsequently, simulation should verify
the desired functional behaviour before proceeding.

3. The desired offloadable functions in module B should now be annotated and additional
code is to be added to module B such that the Core plugin can be correctly invoked as
stated in the automated offloading requirements above.

4. Compile module A (with module B as an import) to an executable object file with GHC
on the ARM, which results in the software partition of the co-design. The Core plugin will
also automatically generate the top-entity module file that is used by CλaSH to generate
the FPGA architecture that contains the hardware partition of the co-design.

5. The resulting top-entity module file has to be compiled with CλaSH4, which will parametrize
and generate the desired FPGA architecture in VHDL. The annotations and additional
Core plugin code in module B should be removed again or commented out5 in order to
allow compilation with CλaSH.

6. The resulting VHDL files are to be added to the Quartus template project and synthesized
to a programmable FPGA bitstream4.

7. The FPGA bitstream should now be uploaded to the ARM in order to program the
FPGA at boot-time. Once the FPGA has been configured, then the in step 4 generated
executable object file may be used to start the HW/SW co-designed Haskell program.

Manual offloading guide The manual offloading process allows for either a normal or a
pipelined design by using the standard offload function or the separate write and read functions
respectively. The process is somewhat different to the automated use scenario as shown in the
following enumerated steps:

1. Start with a Haskell software-only design in module C.

2. Re-write the functions that will be offloaded according to the previously listed require-
ments for manual offloading and move them into one or more separate modules, which we
will call the module set D. Subsequently, simulation should verify the desired functional
behaviour before proceeding.

3. Create the top-entity module for the CλaSH compilation process of the hardware partition.
A template file is available on [53], which includes practical examples. Import the module
set D and correctly fill in the argument vector of offloadable functions of the topWrapper
function in the template file.

4. The resulting top-entity module file has to be compiled with CλaSH, which will parametrize
and generate desired FPGA architecture in VHDL.

4On the faster x86-based host PC
5Actually, creating a copy of module B in step 2 and manually importing it instead is also possible.
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5. The resulting VHDL files are to be added to the Quartus template project and synthesized
to a programmable FPGA bitstream.

6. The desired offloadable functions in the module set D should now be manually replaced6

with the offloadTemplate function or in the case of a pipelined design with the offload-
WriteTemplate and offloadReadTemplate functions. This includes the correct assignment
of function identifiers and serialisation naturals. The module C, which calls upon the re-
placed offloadable functions, should now be modified accordingly. In the case of a pipelined
utilization of the offloadable function, the module C should be converted into a design
with separate write and read threads.

7. Compile module C (with the module set D as an import) to an executable object file with
GHC on the ARM, which results in the software partition of the co-design.

8. The FPGA bitstream is uploaded to the ARM in order to program the FPGA at boot-
time. Once the FPGA has been configured, then the in step 7 generated executable object
file may be used to start the HW/SW co-designed Haskell program.

The actual in-depth user manual for both use scenarios is found on the GitHub repository
[53]. Additionally, it includes all the information to re-produce the exact same set-up and
subsequently the same results of this thesis and it includes several practical examples such as
the benchmarked functions in the next chapter.

6It is recommended to make a copy of module set D here to retain the old functions
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6 Results

With the implementation as given in chapter 4, combined hardware and software designs in
Haskell can be developed and implemented relatively quickly. It is self-evident that these type
of system designs are desired to be implemented efficiently. It is therefore necessary to analyse
the performance of this proof of concept in several scenarios, but first we will need to know that
the implementation is working correctly according to our design. This verification has been
performed by initially testing each of the main design components separately as follows:

• The Xillybus IP core configuration has been extensively tested with C-code demonstration
applications as provided by Xillybus.

• The FPGA architecture implementation has been tested in the CλaSH interactive compiler
using a custom test-bench, which functions similarly to the in- and output FIFO IP cores
to which it will be connected in the template HDL project. This test-bench allows for
verification of the implementation with all possible average and boundary test scenarios,
i.e. full/empty FIFO buffers, different data sets, and all potential offloadable functions.
Subsequently, the FPGA architecture has also been tested on the SoC itself with an
adapted demonstration application of the Xillybus IP core.

• Subcomponents of the HPS implementation, including the Core plugin, have been verified
in the interactive compiler of Haskell. In order to verify the complete HPS implementation,
a single FIFO buffer was used on the FPGA side of the interconnect, which directly loops
back the serialized data to the HPS in order to simulate the FPGA architecture. This
allowed for verifying many of the major test scenarios with the restriction that only
offloadable functions were allowed that had the same argument and result type.

Subsequently, all three combined components have been verified with test-benches that are
similar to the performance benchmarks in the next section.

6.1 Performance benchmarks

In this section we will see the results from benchmarking our proof of concept with several
different offloadable functions on the following three platforms:

• A laptop with an Intel core i7 processor [49].

• Only the ARM of the SoCKit.

• The ARM and FPGA of the SoCKit.
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The first two platforms will feature software-only designs and the last option is intended for
the HW/SW co-design counterparts. The Criterion benchmarking library [50] is an often used
tool to test the performance of Haskell functions, however, it is not thread-safe and therefore
we will use our own test-bench instead. This test-bench calculates the execution time of a given
Haskell function by means of the following steps:

1. Store initial time t0.

2. Execute the Haskell function N times1.

3. Store final time tn.

4. Calculates the individual execution time with the formula: (tn − to)/N .

The resolution of the timing function in Haskell is not sufficient to time an individual offloadable
function execution correctly, therefore the test-bench has to execute the offloadable function
multiple times and the resulting time is then divided by the amount of executions. This amount
of offloadable function executions N has been set to 104 by default. It is important to realize
that the test-bench itself introduces additional overhead due to its implementation in step 2,
which means that the resulting execution times are not exclusively of the offloaded functions.
However, as the same test-bench is used on all of the three platforms, it is assumed that
these benchmarks will still indicate the effectiveness per platform and to a certain extent the
performance per function. Additionally, all test-benches have been compiled to an executable
object file as opposed to just executing them in an interactive GHC environment, which results
in a better performance.

In the next part of this section an analysis is performed on the benchmark results of the
following three offloadable functions: a trivial multiplication, a matrix multiplication, and a
FIR-filter.

Multiplication benchmark This first benchmarked function is the 32-bits signed integer
multiplication as pictured in Figure 6.1. The corresponding Haskell description is given in List-
ing 6.1. This simple function can be used to estimate the minimal latency that each offloadable
function will have when calling upon them in a non-pipelined fashion.

*
Input 1

Input 2
Output

Figure 6.1: Multiplier structural block

1 mult : : ( Signed 32 , Signed 32)
2 −> Signed 32
3 mult ( ia , ib ) = ( i a ∗ ib )

Listing 6.1: A 32-bits signed integer multiplier
Haskell function

The results of benchmarking the multiplication function on the different platforms is shown
in Table 6.1. As expected, the software-only benchmark on the Intel processor is considerably
faster than the ARM processor. The HW/SW co-designed benchmark shows an execution time
of more than a millisecond, which is a factor 70 higher than the software-only design on the
ARM. Therefore, it may be concluded that offloading simple functions onto an FPGA in a
non-pipelined fashion will result in a significantly lower system throughput.

1The lazy evaluation in Haskell will not fully evaluate the benchmarked function results as they are not used.
This is solved by forcing a strict evaluation by applying the show function to the complete result list.
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Platform Execution time* (µsec)

Intel processor 1.2
ARM processor 17
ARM + FPGA SoC 1186

Table 6.1: Benchmark results of a 32-bits signed integer multiplier function. *The execution time
includes overhead of the test-bench.

Matrix multiplication The second benchmarked function is a matrix multiplication. An
important aspect of this function is that it requires more data to be transferred between the
FPGA and CPU for each function call. For instance, matrix multiplying the matrix A with
matrix B will result in matrix AB, as given below, and thus all three matrices will have to be
transferred over the interconnect to or from the offloaded function.

A =


a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
. . .

...
an,1 an,2 · · · an,m

 , B =


b1,1 b1,2 · · · b1,p
b2,1 b2,2 · · · b2,p

...
...

. . .
...

bm,1 bm,2 · · · bm,p



AB =


(AB)1,1 (AB)1,2 · · · (AB)1,p

(AB)2,1 (AB)2,2 · · · (AB)2,p
...

...
. . .

...
(AB)n,1 (AB)n,2 · · · (AB)n,p


Equation 6.1 shows that each entry in the matrix AB is essentially a dot product of a row of
matrix A and a column of matrix B.

(AB)ij =
m∑
k=1

AikBkj (6.1)

The Haskell description of the benchmarked matrix multiplication function is given in List-
ing 6.2. It is designed to multiply two matrices with both a length and width of 3 and 16-bits
signed integer data types in each entry. The output of the function is also a matrix of the same
specification. This means that the serialized argument data has a length of nine 32-bits words
and subsequently the result data has a length of five. The matrix multiplication function is
considerably more complex in comparison to the previously benchmarked multiplication func-
tion as it contains 27 multiplications and 18 additions.

1 matrixMult : : ( ( Vec 3 ( Vec 3 ( Signed 16) ) ) , ( Vec 3 ( Vec 3 ( Signed 16) ) ) )
2 −> ( Vec 3 ( Vec 3 ( Signed 16) ) )
3 matrixMult ( matrixA , matrixB ) = map (multVectors ( transpose matrixB ) ) matrixA
4 where
5 multVectors matrixBT row= map (dotProduct row ) matrixBT
6 dotProduct rowA rowB = f o l d (+) (zipWith (∗ ) rowA rowB)

Listing 6.2: A matrix mutliplication Haskell function for 3 by 3 matrices

The benchmark results of the matrix multiplication function are given in Table 6.2. It shows
that the HW/SW co-designed benchmark has an execution time that is merely a factor 5 larger
than the software-only benchmark on the ARM. The main reason for this improvement with
respect to the benchmarked multiplication function, is that the function can be completely
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implemented on an FPGA in parallel, which means that it only takes a single clock cycle on
the FPGA to calculate the result instead of multiple clock cycles on the CPU. This benchmark
also shows that the offloaded function execution time, which is 1.8 milliseconds instead of the
previous 1.1 ms, is considerably influenced by the size of the argument and result data types.
The main reason for this observation is that the data has to be serialized four times, which
–especially in software– can be a somewhat computational intensive task for large and complex
data types.

Platform Execution time* (µsec)

Intel processor 24
ARM processor 365
ARM + FPGA SoC 1818

Table 6.2: Benchmark results of a matrix multiplication for 3-by-3 matrices with 16-bits signed integer
types. *The execution time includes overhead of the test-bench.

FIR-filter The last benchmarked function is the FIR-filter, which was already extensively
described in section 1.1. The benchmarked FIR-filter has been parametrized to a 24th-order
filter with 32-bits signed integer data types, which means that it contains 24 multiplications
and 23 additions. In contrast to the previous two pure type functions, this FIR-filter function
has been offloaded as a Mealy type function, which means that the state vector (i.e. registers) is
managed on the FPGA instead of transferring it between the CPU and FPGA for each function
execution. The resulting function that is called upon by the main test-bench program to execute
the offloaded function has therefore the type: Signed 32 -> Signed 32. The coefficient vector
of the FIR-filter is deemed trivial for this benchmark as it does not feature any of the potential
optimizations that were proposed in section 1.1.

Platform Execution time* (µsec)

Intel processor 28
ARM processor 425
ARM + FPGA SoC 1128

Table 6.3: Benchmark results of a 24th-order FIR-filter function with 32-bits signed data types. *The
execution time includes overhead of the test-bench.

The results of the benchmark are given in Table 6.3. The difference between the execution
times of the software-only benchmark on the ARM and the HW/SW co-designed benchmark
has been further reduced to 2.7. Therefore, it is estimated that when a function is sufficiently
computational intensive, then it may become advantageous to offload it in a non-pipelined
fashion. However, as will be shown in the next section, a pipelined utilization of this specific
offloaded FIR-filter function will actually increase the performance significantly.

6.1.1 Pipelined benchmark

All three previously benchmarked functions have also been benchmarked in a pipelined fashion
as proposed in Figure 3.4. This means that a write and a read thread run separately on the
CPU processor, which essentially allows for omitting the minimal latency that is introduced by
the data transmissions between the FPGA and CPU. In this pipelined test-bench the latency
between the read function results is benchmarked.
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Table 6.4 includes the results of the pipelined benchmarking of the three functions. It show
that the pipelined multiplication function is still about five times slower than the software-only
multiplication on the ARM. This was to be expected as the serialisation and execution on the
FPGA will always be slower than a single local multiplication on the ARM itself. Secondly, the
pipelined matrix multiplication shows that it also has no actual advantage over a software-only
variant on the ARM, which mainly can be explained by the serialization process of the larger
matrix data types. Lastly, the pipelined FIR-filter does show a significant improvement factor
of about 5.2 in comparison to the software-only variant.

Function Read latency* (µsec)

Multiplication 82
Matrix mult. 370
FIR-filter 82

Table 6.4: The pipelined benchmark results of the three previously benchmarked functions. *The read
latency includes overhead of the test-bench

The implementation of function offloading in this thesis allows for even more complex off-
loadable functions in comparison to these three functions, which will most likely have a much
greater performance gain in a HW/SW co-design. For instance, with the manual offloading use
scenario, it is possible to combine multiple offloadable functions in a pipelined fashion, or even
to create offloadable functions that take multiple clock cycles to produce their results.
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7 Discussion and conclusion

Our primary problem for this thesis was formulated in the introduction as follows: ”How can we
automatically offload selected functions of a Haskell program onto an FPGA and subsequently
call upon them remotely from the remainder of the Haskell program?”. This problem has been
primarily solved through means of successfully implementing a proof of concept that allows for
an either manual or semi-automated approach of function offloading within Haskell. The final
implementation is not fully automated, as was demanded by the problem formulation, however
this thesis does indicate that it is theoretically possible by means of a scripted co-compilation
process.

Up to now, the topic of hardware/software co-design in the functional language Haskell has
not yet been extensively researched. In the reviewed literature there were some interesting
ideas that could prove useful for future work. For instance, introducing our implementation
of function offloading to the distributed programming environment of Cloud Haskell can be
potentially very interesting to achieve more efficient distributed systems.

In the paper of Teich [1] on the review HW/SW co-design, he mentioned that additional
methodologies are required for these types of co-designs. Haskell, in combination with CλaSH,
allows for many of these co-design methodologies, such as:

• Design space explorations, because reasoning about HW/SW co-designs in Haskell is easier
due to its close relation to hardware architectures.

• Co-simulation, which is possible through the interactive compiler environment of Haskell
combined with HDL simulators (e.g. Modelsim) [4]

• Co-compilation or co-synthesis. In this thesis it is shown that co-compilation can be partly
achieved by using compile-time partitioning and modifications with a Core plugin.

Therefore, we can conclude that, with more research and tool development, an extensive method-
ological approach to HW/SW co-design in Haskell is possible.

During the thesis there were some issues encountered that took a considerable amount of
time. One major issue was the extensive amount of time put into the ARM cross-compiler,
which later on turned out to be impossible in its current implementation. Ideally, this cross-
compiler would still be desired over compiling Haskell on the ARM itself, as was discussed
already in Appendix B. In the following sections the design, implementation, and result phases
of this thesis are discussed and associated conclusions and recommendations are given.

7.1 Design and Implementation

The design phase introduced several interesting observations and issues. The first topic of the
design space exploration proposed an alternative platform that could allow for the full automatic
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use scenario. This alternative is a desktop computer with an FPGA board connection through
a PCIe bus. It is expected that we can port our proof of concept SoCKit implementation onto
this alternative platform without too much effort, because we can also use the Xillybus IP core
for the PCIe bus connection in order to configure it similarly to our current FIFO buffer based
configuration. Besides that this alternative platform should be capable to fully automate the
process of function offloading, it can also be used to achieve a higher performance with the more
powerful hardware as was shown by the software-only benchmark results in chapter 6.

The Xillybus IP core was mainly chosen to reduce time spent on the implementation of the
desired interconnect configuration between the FPGA and CPU. However, the Xillybus IP core
also imposes the following disadvantages:

• Paid license required for commercial use.

• Interconnect data width is by default restricted to 32 bits.

• Xillybus IP core project is restricted to Quartus II version 13.0sp1.

• IP core is only (re)configurable on the Xillybus website, which prevents automated gen-
eration of an advanced co-design.

• The IP core has an unnecessarily large footprint on the FPGA due to the additional
functionalities it provides but are unused in the proof of concept.

Due to these restrictions it might be interesting as future work, to replace the Xillybus IP core
with a self-designed version in the future. Additionally, the combination of the Xillybus IP
core and our implementation of the FPGA architecture does not allow for parallel execution of
offloaded functions. Therefore, it would be interesting for the newly designed interconnect to
integrate a method of generating a FIFO buffer pair for each offloaded function automatically,
which was also a proposed solution in subsubsection 3.2.2.2 to allow multiple offloaded functions
for pipelined applications.

The implementation of the protocol used to communicate between the CPU and FPGA
can be optimized with respect to the data widths. Mainly the header, function identifier and
data length words can be combined into a single 32-bits word. Furthermore, error correction
of the messages might be desired for future co-design platforms that include a less reliable
interconnection between the FPGA and CPU.

The FPGA architecture has been designed to be automatically generated with a vector of
offloadable functions as input argument, but if only a single function should be offloaded, then
a less complex architecture might be desired (i.e. the (de)multiplexing hardware and possibly
even the protocol is unnecessary). This can be used to slightly reduce the control overhead
and to achieve a smaller hardware design and a better performance. Subsequently, the software
partition can also be slightly simplified for a reduced control overhead.

The Core plugin implementation uses intermediate evaluation of Haskell modules to generate
the replacement expression for the original offloadable functions. This is not the proper solution,
but creating the replacement function from only the context of the original Core module can
be considered as being too complex and in certain ways even impossible.

A restriction introduced by our Core plugin implementation is that all offloadable functions
should be in the same Haskell module. If this restriction is not adhered to, and multiple instances
are invoked of the Core plugin, then the automatically generated hardware partition top-entity
file will be overwritten and the offloadable function identifiers will be duplicated. As stated in
subsection 4.3.2, this can be solved in future work by sharing the required data in-between the
invoked Core plugin instances.
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An additional set restriction to the Core plugin is that merely pure functions can be auto-
matically offloaded. As previously mentioned, the primary reason for this restriction is that it
requires the initial state of the Mealy/Moore functions to be manually specified for the hard-
ware partition and preferably the remaining software partition has to be modified. However, if
desired, this restriction may be removed in future work by forcing the user to specify the initial
state themselves in the hardware partition and using the offloadable function replacement that
simply loops back the state data to the main Haskell program.

7.2 Results

The benchmark results of section 6.1 show that a non-pipelined co-design with a simple offloaded
function will result in a lower throughput than an identical software-only design. Offloading a
computational intensive function, however, can result in a co-design with a higher throughput
than its software-only counterpart. However, using the offloaded functions in a pipelined fashion
is a considerably more effective co-design approach due to the fact that the data transport
latencies may be neglected. The results in subsection 6.1.1 show that a non-optimized 24th-order
FIR-filter will perform up to 5.2 times better when offloaded. It may therefore be concluded
that pipelined Haskell HW/SW co-designs are more efficient, however, pipelining is difficult to
be automatically applied as it requires complex modifications to the software-only partition.
Instead it is recommended to focus more on the manual approach of function offloading, such
as forcing the user to manually create a multi-threaded co-design.

The benchmark results also show that the offloadable function type influences the co-design
performance, which can be largely explained by the fact that calling an offloadable function
includes four serialization steps. The current implementation of CλaSH is not optimized for
simulation performance, i.e. no in-lining, and therefore it might be recommended as future
work, to improve the serialization process in software by updating CλaSH or alternatively using
the more restricting implementation of (lazy) byte-wise data packing as mentioned in chapter 3
instead of bit-wise.

7.3 Final recommendations

We have already seen some recommendations for future work in the previous sections of this
chapter. In this section some final recommendations are given.

As briefly mentioned in section 2.2, extending the current dataflow implementation in CλaSH
to support sequential Signal -based functions is desirable for function offloading. These Signal -
based functions can be more complex than Mealy/Moore typed functions and are also more
intuitive to use with normal Haskell programming due to its internal list-based design.

It is also recommended as future work to remove the unsafePerformIO method in the manual
offloading implementation, such that a co-designed Haskell program explicitly shows that it uses
the impure offloading functions with the IO monad and that it should use the associated design
practices.

Lastly, it might also be interesting as future work to make this thesis’ implementation of
HW/SW co-design available for other common programming languages such as C/C++. This
may be realized by creating a library to interface with offloaded Haskell functions similar to the
current implementation.
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A Higher-order Haskell functions

The table, in Figure A.1, shows the structural representations of the higher order functions
map, zipWith, foldl, scanl, and mapAccumL. The figure originates from the slides of the course
Embedded Computer Architectures 2 at the University of Twente.

Figure A.1: Higher-order functions in Haskell and their structural representation.
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B SoCKit development kit

This appendix features as a technical overview of the SoCKit development kit. It also contains
additional background information that is used in the thesis.

There are multiple SoC solutions available on which this thesis project can be realized.
For this thesis, a particular SoC platform was already chosen as a potential candidate, namely
the SoCKit development board (revision C). It is a board specifically designed for System-on-
Chip (SoC) application and is created by Arrow Electronics[30] and produced by TerasIC Inc
[31]. It contains a Cyclone V SoC, as seen in Figure 3.1 [32], which features an Altera FPGA
(5CSXFC6D6F31C8ES) and a Hard Processing System (HPS) containing a Dual-core Cortex-
A9 ARM (Advanced RISC Machine) processor and several peripherals. This ARM processor is
capable to run and also compile Haskell code as shall be described in section B.3. An overview
of the SoCKit board can be seen in Figure B.1. Due to its numerous peripherals and interfaces,
which are either accessible by the FPGA (e.g. with provided IP blocks) or directly from the
HPS, this board can be deployed for multiple solutions.

Figure B.1: SoCKit development board overview [31]
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The FPGA contains 42K Adaptive Logic Modules (ALMs), 5662 Kbit embedded memory, 6
fractional Phase-locked loops (PLLs) and has access to 1GB DDR3 SDRAM. The CPU runs by
default at 925MHz, has 64KB of scratch RAM and also has 1GB of DDR3 SDRAM available.
The development board can be used as a standalone desktop computer with its onboard VGA
video output and USB input, but in order to keep more of the system resources free it is
interfaced with by means of a remote secure shell (SSH) network connection. In summary, the
specifications of the SoCKit are more than sufficient to create the proof of concept for this thesis
assignment.

B.1 SoC Interconnect

The HPS and FPGA fabric are connected through a set of third generation Advanced Micro-
controller Bus Architecture (AMBA) bus bridges with the Advanced eXtensible Interface (AXI)
protocol by ARM Ltd[33]. This bus architecture is an open-standard specifically designed for
on-chip interconnections of functional blocks in SoC designs. An overview of the interconnect
within the Cyclone V SoC is displayed in Figure B.2. It features three types of bridges, namely:

• HPS-to-FPGA bridge. Bus with HPS as master and configurable bus width of 32, 64 or
128 bits. Used for high bandwidth transactions.

• FPGA-to-HPS bridge. Bus with FPGA as master and configurable bus width of 32, 64
or 128 bits. Used for high bandwidth transactions.

• Lightweight HPS-to-FPGA 32 bits bridge. Used for low latency register access.

Figure B.2: Cyclone V HPS-FPGA Interconnection overview

The default method to utilize this interconnection, provided that either an Altera supplied
or a customized Linux image with a board support package is used, is by setting up a system
with Altera’s Qsys tool in Quartus and their SoC Embedded Design Suite (EDS) [35].
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B.2 HPS operating system

The Cyclone V HPS has a specific boot flow in order for it to work. As shown in Figure B.3,
it starts with a minimal configuration and loading of the preloader in the scratch RAM during
the ’BootROM’ stage. The ’preloader’ stage initializes functions such as I/Os, pin multiplexing,
PLLs and other peripherals. It will then initialize the SDRAM interface such that the boot-
loader can be stored there. The ’bootloader’ stage sets up the operating system (OS) related
environment. And finally the ’Linux’ stage is reached, which the user can subsequently use to
start applications.

BootRom Preloader U-boot Linux

Figure B.3: Cyclone V HPS boot flow stages.

To increase performance and usability of the SoC system a SD-card of sufficient size and
speed should be used1. The SoCKit itself comes with three basic and relatively dated Linux
OS images, which for example don’t contain a working package manager that could be used
to install Haskell or other relevant packages. For this reason other options were investigated.
There exist a number of third-party created Linux image, but there is also an option of building
a custom image. In essence all SoCKit Linux images are to be created using a Golden System
Reference Design (GSRD)[34] that utilizes Altera Quartus and its Qsys tool, the Yocto project2

and Altera SoC Embedded Design Suite. With this approach it is possible to create a system
based on a recent Linux distribution to get a working package manager.

B.3 Haskell on the ARM

This last section is about running Haskell programs on the SoCKit. The Haskell compiler, GHC,
is also available for the ARM processor. However, the ARM processor on the SoCKit is not
very efficient for compiling Haskell due to its rather small memory and low clock speed. For this
reason a cross-compiler was investigated and built to compile programs on a more capable host
computer. Building a cross-compiler 3 [37] consist of the first two stages as shown in Table B.1.
Stage 0 is the GHC compiler installed on the host computer itself, which is a version installed
from the GHC download page. Then the libraries used for building the stage 1 are downloaded
and built using the stage 0 compiler. Then the actual cross-compiler at stage 1 is built, which
targets the ARM processor.

Stage 0 libs boot Stage 1 libs install Stage 2

Built on — host host host host

Runs on host host host target target

Targets host — target — target

Table B.1: Stages involved in the building process for a GHC compiler [37]. Host is the development
PC and target is the ARM processor.

1For this thesis a Kingston 32GB Micro SDHC Class 10 card was used.
2An open source project that provides templates, tools and methods for creating a custom Linux-based system

for embedded products.
3An exemplary project of how this is done for the Raspberry Pi [36]
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Cross-platform Haskell compiler building is still in a development phase and therefore some
limitations and the occasional bugs are available. The most relevant restrictions are that in
the stage 1 cross-compiler there can be no dynamic loading and no Template Haskell (TH) due
to missing libraries, which are only available on the target platform [38]. Dynamic loading is
required for CλaSH to work, due to for example a typechecker plugin that is used. TH is an
extension on the GHC compiler, which is used to execute Haskell code at compile time. As we
will show in a later chapter, the ability to run TH is paramount as it is used to automatically
offload functions. There is at least one solution [39] to circumvent the TH problem by using an
external process to run TH code, but this was deemed as too much work for this thesis project.
So the only option is to have the GHC compiler on the ARM processor. This can be done
by cross-compiling GHC itself to be a native GHC compiler on the ARM target processor, as
can be seen in the last two columns of Table B.1. On some Linux distribution for the SoCKit
platform, such as the upgraded Ubuntu image used in this implementation, there are package
managers available which can install GHC (version 7.10.3) from the repository. This way, also
any additional GHC packages can be installed, such as CλaSH. However, this process, and any
future Haskell compilations, will take a considerable amount of time, due to the low performance
of the ARM processor. A solution for this last mentioned problem would be to run the SoCKit
image in a virtual machine on the host computer with the QEMU machine emulator. Mainly
this allows for more memory than the standard 1GB on the SoCKit, but it also may provide a
boost in processor clock frequency.

59



Bibliography

[1] J. Teich, ”Hardware/Software Codesign: The Past, the Present, and Predicting the Future”, Pro-
ceedings of the IEEE, vol.100, Issue: Special Centennial Issue, pp. 1411-1430, May 13 2012

[2] A.A. Jerraya, W. Wolf, ”Hardware/Software Interface Codesign for Embedded Systems”, Computer,
vol.38, no. 2, pp. 63-69, February 2005, doi:10.1109/MC.2005.61

[3] Intel newsroom webpage detailing their view on FPGAs being a critical part of their growth
strategy. Last seen 29-8-2016. https://newsroom.intel.com/editorials/intels-fpga-future-
here-to-stay/

[4] J.G.J. Verheij, ”Co-simulation between CλaSH and traditional HDLs”, Master’s thesis, University
of Twente, August 2016 http://essay.utwente.nl/70777/
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