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Foreword 
 

The Danish philosopher Søren Kierkegaard once wrote  

“Life can only be understood backwards; but it must be lived forwards.” 

After two years of studying at the University of Twente, I now understand that these years have been the most 
influential part of my life yet. After a lot of hard work, long nights, many collaborative assignments, and a lot of 
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“(mathematical) problems are of two sorts: some are like nuts one cracks open with a sudden hard blow; 
others are like walnuts that one soaks in water for days until the tough skin peals away of itself.” 

This turned out to be the one of my most important life lessons yet. By taking the risk and uncertainty of 
working on something that is not immediately obvious or apparent, the most elegant and beautiful solutions 
reveal themselves to you. With this in mind, I looked for opportunities in Twente to learn and I tried to follow 
my interests. During the master Industrial Engineering & Management, I took courses from Mechanical 
Engineering, Computer Science and Applied Mathematics not knowing beforehand if I would be able to finish 
those courses. And indeed, sometimes I did not finish some courses due to a gap in my knowledge, sometimes I 
got high grades, but in every case I made sure that I learned something from these courses. Looking back, I 
have a rich collection of experiences that helped me in finding my strengths, weaknesses, and passions. I am 
sure these experiences will help me in my further career. I am very grateful that I have had the opportunity to 
study at the University of Twente.  

I would like to thank Prof. dr. Marianne Junger for accepting my initial thesis proposal, helping me find the 
right subject when the first subject did not appear feasible and guiding me through the process of doing 
research with her extensive research experience. I am really grateful for all the help I received, the collaborative 
moments and the quick communication. It was truly a pleasurable experience. Next, I would like to thank Dr. 
Chintan Amrit who took the effort to sit down and think with me about the research and most of all in assuring 
me if I was on track and what I was to expect. This was really important to me and helped me to stay confident 
in the process of writing this thesis. I would also like to thank Dr. Soumik Mondal, who is an expert in 
Keystroke Dynamics and took the time to sit down with me to share his experience on how to approach the 
data. From PricewaterhouseCoopers I would like to thank my supervisor Jos Aussems, for thinking with me, 
helping me with managing this thesis and for asking the right questions to guide me in the right direction. I 
look forward to working with you in the future.  

On a personal level, I would like to thank my significant other, Marjolein Kouwen, who supported and stood by 
me in good times but also during stressful moments while writing this document. Your resilient personality is 
inspiring. I would also like to thank my parents, Bert and Erica Huisman, who have supported me during my 
studies. You have always wished the best for me and I am grateful to have you as my parents.  

I hope you will enjoy reading this thesis. 
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Abstract 
 

This thesis addresses the possibility of using keystroke dynamics to detect deceptive messages without looking 
at the contents of the message. Keystroke dynamics (KD) is the detailed timing information that describes 
exactly when each key was pressed and when it was released as a person is typing at a computer keyboard. KD is 
considered a behavioral biometric. Deceivers often exhibit behavioral and physical traits as a consequence of 
their deception. In this thesis, it is tested if deceiving causes changes in a deceivers typing rhythm. One recent 
paper (Banerjee, Feng, Kang, & Choi, 2015) already confirmed this hypothesis with high accuracies, by also 
considering the content of the message. However, doing so is highly privacy invasive. Therefore, it is useful to 
analyze if KD solely can be used to detect deception.  

First, the literature on deception detection and keystroke dynamics is studied to gain insights in the two 
research fields. Based on insights from the literature reviews, an experiment to gather data (n = 30) within 
PricewaterhouseCoopers (PwC) is designed, the characteristics (features) of the data are extracted and methods 
with which this data can be analyzed are selected and used. The messages will be modeled differently than in 
the study of Banerjee et al., which does not take into account that keystroke dynamics is a biometric property 
and consequently is different from person to person. The features that are used in this thesis are dwell time, 
four flight time variants and the pauses between words. A best-of-three selection method is used to select the 
three most appropriate features for each participant individually. The (machine learning) methods used are 
scaled Manhattan distance based metric, Naive Bayes, Support Vector Machine, k-Nearest Neighbor, C4.5, and 
Random Forest. The corpus of Banerjee et al. is available and is used for comparison to the PwC dataset using 
the same features and methods. A deviation from Banerjee et al. is that the PwC dataset contains four messages 
per participant (two truthful and two deceptive) whereas Banerjee et al. only gathered two messages per 
participant (one truthful and one deceptive).  

The best performing algorithm was k-Nearest Neighbor which could successfully tell deceptive and truthful 
message apart for 13% – 15% of the participants. In most cases for 80% of the participants or more it was not 
possible to discriminate truth from deceptiveness by the keystroke dynamics of the messages alone. The 
classification showed an extreme classification bias which means that both messages were either classified as 
deceptive or truthful. A random sample (n = 100) of the Banerjee et al. corpus seems to confirm this finding as 
the accuracies are almost identical. To conclude, it did not seem possible for most participant using these 
datasets, features and methods to discriminate between truthful and deceptive messages. 
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Glossary 

 

Confusion matrix A matrix consisting out of four classification categories where the total number 
of each category is presented.  

Document Object Model An object orientated approach of structured elements, e.g. HTML. 
Dwell Time The exact key press duration. 
Feature A characteristic of the data (e.g. typing speed) 
Four-Factor Theory An elaboration on the leakage hypothesis that describes the variables that 

accumulate the leakage hypothesis. These variables are arousal, negative affect, 
cognitive effect and behavioral control 

Flight time The time between the press- and/or release combinations of two (or more) 
keys. 

Instance A data point. 
JavaScript A client-side programming language for the browser. 
jQuery A JavaScript library that contains a lot of JavaScript functionality. 
Key event A keypress resulting in a consecutive keydown and keyup event of a certain key. 
Key press The event where the computer registers that a key is pressed. 
Key up The event where the computer registers that a key is released. 
Leakage Hypothesis A hypothesis that states that liars would experience involuntary physiological 

reactions driven by increased arousal, negative affect, and discomfort that 
would “leak out” in their nonverbal behavior cues. 

Milgram Experiment A study done by psychologist Stanley Milgram to measure the willingness of 
participants to obey the instructions of an authority to perform acts conflicting 
with their personal conscience.  

True/False 
Positive/Negative 

Correct (true) or false (false) classification of an instance (data point) to either 
the positive or negative class. 

XMLHttpRequest A request initiated from the client side using JavaScript to make a HTTP 
request to another page. 
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Why do almost all people tell the truth in ordinary everyday life? Certainly not because a god has forbidden them to lie. 

The reason is, firstly because it is easier; for lying demands invention, dissimulation, and a good memory. 

--- 

Friedrich Nietzsche, Human, All Too Human, II.54, 1878/1996 
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1. Introduction 

1.1. Background 

Deception is defined as “a message knowingly transmitted by a sender to foster a false belief or conclusion by 
the receiver” (Buller & Burgoon, 1996). Using this definition, deception may take a variety of forms ranging 
from pure fabrication to half-truths, vagueness and concealments (Carlson, George, Burgoon, Adkins, & White, 
2004). Over the course of centuries, humans have been trying to read between the lines and crack the code of 
deception. Deception is ubiquitous and is often used to gain an advantage over others. The scientific field of 
deception detection is built upon hypotheses and theories, for example the leakage hypothesis (Ekman & 
Friesen, 1969) and the four factor theory (Zuckerman, DePaulo, & Rosenthal, 1981). Conclusive statements are 
difficult to make because many theories are connected to human traits (e.g. emotions) that are not fully 
understood yet. Thorough research is also difficult because it is hard to encounter real life situations where 
genuine deception can actively be monitored. Many studies are focusing on physiological- and behavioral 
changes because these traits are observable and measurable. For example, it was found that deception can be 
recognized by looking at the dilation of the pupils (Wang et al., 2010) and by monitoring the pitch of the voice 
(Patil, Nayak, & Saxena, 2013). 

Since the rise of the Internet, deception has found its way into computer-mediated communication (CMC). A lot 
of people have fallen prone to malicious digital actors through email, chat sessions or other applications. The 
anonymity the internet provides has caused a lot of misdemeanour. Scammers can send fake emails to persuade 
vulnerable receivers to enter their credentials. The insurance industry suffers from false claimants, who can 
now submit a claim through a website or online form. Some users in chatrooms take on different identities to 
prey on inexperienced users which sometimes escalates to harmful events like extortion. In a lot of cases, 
deception is used to intentionally send a message that fosters a false belief by the receiver. The difficulty in 
recognizing a deceiver in a digital environment is that, aside from the written text, there are no clues that can 
indicate deception. In real life communication, blushing or gaze aversion is often perceived as a clue to 
indicating deceptive intent (Vrij, 2008). In a CMC environment, these traits are non-apparent and the receiver’s 
only option is to classify the intent of a message based on its content. Since the keyboard and mouse are some of 
the few (or only) input devices that users on the Internet have, it would be useful to assess whether these input 
devices can yield clues that can help in assessing the intent of a message. If the intentions of a deceiver can be 
determined on forehand by clues from the keyboard or mouse, then users can be protected from self-inflicted 
damage by acting upon malicious intent.  

Keystroke dynamics is the detailed timing information that describes exactly when each key was pressed and 
when it was released as a person is typing at a computer keyboard.1 Keystroke dynamics has proven to be rather 
useful as a biometric in research to authenticate or even identify unique users. Behavioral biometrics often have 
the advantage of being unobtrusive but are considered far more fallible than physiological biometrics (Revett, 
Gorunescu, Gorunescu, Ene, & Santos, 2007). Keystroke dynamics does also not meet the European access 
control standards such as EN-50133-1 (Rybnik, Panasiuk, Saeed, & Rogowski, 2012) yet which makes the 
application of the behavioral biometrics not suitable for first-step verifications. The technique is often 
combined with other forms of authentication, for example second step authentication where not only the 
correct password is necessary but also the right typing metric. The research on keystroke dynamics has a strong 
focus on authentication. About 89% of the papers focus on authentication, where 5% focus on identification and 
in 6% of the cases it is not explicitly mentioned (Teh, Teoh, & Yue, 2013).  But the scientific community has also 
turned towards more applications than just identification and authentication, such as emotion recognition 
(Epp, Lippold, & Mandryk, 2011; Vizer, Zhou, & Sears, 2009). These applications could yield valuable insights 
with regard to online marketing.  

As mentioned earlier, often behavioural changes indicate deception. There is a need for deception detection in 
CMC environments as the Internet. Considering that users often only use a mouse and keyboard in these 
environments, it would be useful to study the relation between typing behaviour (as described by Keystroke 
Dynamics) and deception. It can therefore be hypothesized that the typing behaviour (KD) of an individual that 
writes a deceptive message differs from the typing behaviour when he writes a truthful message. Looking at 
deception detection, there are many examples of (sometimes unexpected) behavioural changes when deceiving, 
like an increase in pause duration or a decrease in response length (Vrij, 2008). Such characteristics could also 
be apparent in typing behaviour.  

                                                             
1 https://en.wikipedia.org/wiki/Keystroke_dynamics 
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At the time of writing, only one paper is published that used high level keystroke dynamics to help classify 
deception (Banerjee et al., 2015) in addition to another approach (stylometry). The results of this study were 
quite high, with classification accuracies of over 90%. However, a common semantical deception detection 
technique (that looks at the word usage) as a baseline raised the accuracy up to 80% higher. The quantitative 
keystroke dynamics features (like message length and deletion key usage) therefore only increased the accuracy 
with a few percent. While looking at the contents of a message is privacy invasive, it may be more interesting to 
see how accurately only KD can be used to perform a more in depth analysis can help in understanding how 
deception and typing behaviour are related. For PricewaterhouseCoopers (PwC), the relevance of this study lies 
in the business value. If deceptive behavior can be assessed by looking at the keystrokes, then PwC can turn this 
technique into a business case. Using keystroke dynamics for deception detection could yield an interesting 
value for assessing the validity of online reviews or for insurance companies who want to be able to 
automatically assess the validity of claims. Insurance companies could greatly benefit from distinguishing 
deceptions as fraudulent claims cost billions of euros annually.  

1.2. Objectives 

The objective of this thesis is assess if deception can be detected using keystroke. This can be done by studying 
the relevant literature and to test the gained insights in practice.  
 
By understanding these two fields of study and the conjunction between them, the opportunities of correlating 
the two can be further explored. In order to succeed in finding an appropriate approach of correlating the two 
fields of study, a relevant in-depth literature review is necessary. These in-depth studies yield a lot of knowledge 
on both subjects. Studying the theory of deception and the challenges of doing research in this domain yields 
insights in what can be expected of deception and how people respond to it. A description of the state of 
Keystroke Dynamics as well as successes in the applications and the common approaches yields insights in what 
characteristics can be derived from the data and what methods can be used to analyze this data.  
 
Once a theoretical fundament is established, the theory will be tested out in practice. It is known that deception 
induces changes in behavior and/or physiological traits. Sometimes these changes are so subtle that they 
cannot be easily detected by a human. Keystroke dynamics may be such an indicator. Changes in the typing 
behavior, consisting out of multiple keystrokes per second, cannot be processed easily by a human brain. 
Therefore, computer supported analysis is done to analyze all the keystrokes.  
 
Once the data is collected and the data is analyzed, the results can be compared to the dataset (corpus from 
(Banerjee et al., 2015)). The researchers already reported high accuracies using stylometry. This thesis will 
assess whether discrimination between truthful and deceptive messages is also possible without looking at the 
contents of the message, i.e. without using stylometry.   
 

1.3. Approach 

This paragraph will discuss what methodology is used and how the objective can be achieved.   

According to a popular poll conducted by KDNuggets2, there are a few methodologies available for data science 
projects. The poll reveals that most studies (43%) follow the CRISP-DM methodology for their data-mining 
projects. However, there is an increasing trend of researchers who use their own methodology (28%). CRISP-
DM is a very useful method to give structure to a data-mining project. CRISP-DM assumes there are data 
available and a research question as driving force. Also, the refined and extended successor ASUM-DM3 retains 
the method but focuses also on the infrastructure/operations side of implementing a DM project. However, the 
method on its own does not indicate how to set up a research design to collect data. Therefore, the approach in 
this thesis will be influenced but not guided by the CRISP-DM methodology, and thus follows a self-defined 
approach. This approach starts with a literature review, data collection, followed by data preparations, 
modeling, and evaluation. Deployment is not a goal of this thesis, as it is uncertain whether patterns will 
emerge and there is only a limited amount of time. This approach has more similarities with the approach of 
(Shmueli & Koppius, 2011). This is done following the sequential steps of goal definition, data collection & study 
design, data preparation, exploratory data analysis, choice of variables, choice of methods, evaluation, 

                                                             
2 http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html 
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validation, model selection and finally model use and reporting. Aside from a change in the order, this method 
will decide the structure of this document. 

First, a literature study is done to gain knowledge about the subjects Keystroke Dynamics and Deception 
Detection.  This literature overview should give a good impression on the research and the current state of both 
fields. Afterwards, the research questions can be formulated. When the research questions are formulated, a 
facilitating research will be designed.  

This research design will be key to generating a dataset. The executive part of the research that is designed will 
be exposed to PwC employees. The research has to comply with certain conditions resulting from the literature 
study.  

After enough participants have completed the research, the data can be modeled and explored to review the 
characteristics. Preparing and modeling the data is then necessary because the raw data from the webserver 
needs to be processed into a useful format, from which the characteristics can be easily extracted. Also, the data 
should be modeled meaningfully with an eye on the methods that will be used. The literature on Keystroke 
Dynamics describes ways to extract useful characteristics from the data. These characteristics will be explored 
in the context of deception detection.  

The exploratory analysis should indicate which characteristics are useful for the classification of deception. 
These characteristics can then be used with the methods that come forth out of the KD literature. 

1.4. Scope 

Since there is an overlap of two fields, data science and psychology, a clear scope is important to formulate 
answers to the research question. First, in this thesis the focus will not be on hypothesizing new theories about 
deception. The literature on deception is used as necessary background and to find a way to design an 
experiment to generate data. Philosophical discussions about deception will therefore not be handled in this 
thesis. This thesis may be considered mainly a data science project, which means that the focus is on data 
science and finding patterns in the data. Therefore, the current knowledge about keystroke dynamics will be 
thoroughly studied and possible new insights may be generated during this thesis. Mainly, knowledge of both 
fields will be applied for this application. This thesis is written with the assumption that KD is a biometric 
(Moskovitch et al., 2009). The goal of this thesis is to design an experiment, test the data and answer the 
research question.  

Looking at the keystrokes of a user is a highly privacy sensitive subject. As keystroke dynamics may be 
considered a biometric, logging keystroke behaviour may be equivalent to logging biometrical data of 
individuals. This thesis will not deal with the privacy consequences that correlating deception and keystroke 
dynamics may imply. This thesis will also not deal with the contents of the message, as it tries to look for 
patterns without using the semantical meaning of the message. 

1.5. Thesis structure 

In chapter 2, a literature study is done on keystroke dynamics and deception detection to generate ideas for the 
experiment and to assess the current state of both research fields including the hypothesis that are established. 
The methods with which the data can be analyzed are also discussed. In chapter 3, the research question is 
formulated and a research design is described. A data collection method is explained that is used to create a 
dataset based on the results of chapter 2. In chapter 4, the appropriate keystroke characteristics from literature 
are treated and selected. In chapter 5, the data is explored and possible relevant features are tested to find 
patterns that may hint on deception. In chapter 6, the data analysis phase is explained. In this chapter the data 
is analyzed using the selected methods and the first results are presented. In chapter 7, the results are analyzed 
and discussed. In chapter 8, the research question is answered and ideas for future work are outlined. 

  

                                                                                                                                                                                                               
3 https://developer.ibm.com/predictiveanalytics/2015/10/16/have-you-seen-asum-dm/ 
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2. Review of Related Literature 
This thesis lies in the intersection of two topics: keystroke dynamics and deception detection. In sub-chapter 2.1 
and 2.2, the literature of Deception Detection (DD) and Keystroke dynamics (KD) will be studied respectively. 
In sub-chapter 2.3, successful methods with which keystroke data is analyzed will be explained and selected for 
further use. Then in sub-chapter 2.4, the performance measure with which the results of the methods can be 
analyzed will be explained. 

2.1. Deception detection 

2.1.1. Scope 

The concept of deception can be defined as “a message knowingly transmitted by a sender to foster a false belief 
or conclusion by the receiver” (Buller & Burgoon, 1996). When this definition is used, deception can take a 
variety of forms ranging from pure fabricated lies to half-truths, vagueness and concealments (Carlson et al., 
2004). Deception detection has proven to be a difficult terrain to study. Over the last decades a lot of 
researchers have looked for ways to distinguish truth from lies.  

Deceptive communication can be detected by considering different categories of cues. There exist verbal cues 
(e.g. language style or message content), nonverbal cues, contextual cues and meta-cues (Carlson et al., 2004). 
Verbal and contextual cues will not be considered in this thesis. Meta-cues are typically detectable interaction 
between two or more of sets of cues that itself will serve as an additional cue. Since deceivers are in charge of 
their behavior, they may strategically adapt it to mask their deceit. Ambiguous change in multiple cues may 
indicate deception. However, meta-cues are not considered in this thesis because the feature is too advanced for 
the analysis that will be done in this thesis. The scope of this literature is to look at the nonverbal behavior, 
specifically keystroke dynamics, to estimate if it contains cues that might indicate deceptive behavior.     

2.1.2. Theoretical approach 

To find why measurable differences between a truth teller and a deceiver occur, it is useful to understand the 
theoretical framework that researchers have established. The theoretical framework describes the causal 
variables that accumulate behavioral changes. In 1969, it was hypothesized that liars would experience 
involuntary physiological reactions driven by increased arousal, negative affect, and discomfort that would “leak 
out” in their nonverbal behavior cues (Ekman & Friesen, 1969; Elkins, Zalfeiriou, Burgoon, & Pantic, 2014). The 
leakage cues reveal what liars are trying to hide, for example how they really feel. Whereas the deception cues 
indicate if deception is occurring, without spoiling the type of information that is being concealed. Building 
upon this hypothesis was the four-factor theory (Zuckerman et al., 1981) which postulated four potential causes 
of leakage: Arousal, Negative affect, Cognitive effect and Behavioral control. It is important to state that this 
model is limited to behavior that can be discerned by human perceivers without the aid of any special 
equipment (DePaulo et al., 2003).  

From these four factors, arousal has the most dominant role. It is theorized that a person who engages in deceit 
finds that to be distressing. This results in an increased level arousal. The relation between deception and 
arousal however is not deterministic. Deceit does not inevitably trigger arousal. There are many lies that 
perpetrate everyday life, like giving compliments for the benefit of others, which do not evoke arousal. Arousal 
is not always detectable, as people are able to mask their inner feelings to a certain degree. Another important 
aspect is that other factors can also cause arousal. For example, a person can experience arousal by telling a 
difficult truth which may cause behavior that is also present when being deceptive (e.g. increase in pauses). 
Lastly, behavior during arousal may vary from person to person (Elkins et al., 2014).  

Negative affect means that the deceiver generally has a feeling of guilt or fear when deceiving. Cognitive effect 
stems from the prediction that lying is a more cognitive complex task than telling the truth, a cognitive burden 
the deceiver can be aware of. (DePaulo et al., 2003). Lastly, deceivers may also try and control their behavior in 
such a manner that it becomes unnatural. These mechanisms have been richly studied whereas researchers 
have mostly focused on manifestations of these mechanisms. It was Ekman (1985 – 1992) who conceptualized 
the role of emotions in deceiving. He stated that by understanding the emotions that liars feel, it may be 
possible to predict behavior that may distinguish liars from truth tellers. Think of guilt and fear when a deceiver 
lies, as a driving force for changes in behavior (e.g. speech or muscular activity).  
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2.1.3. Human evaluation 

The most common way to evaluate the performance of deception detection is done by placing a person in front 
of a group of peers and instruct the person tell a lie. In one of the earlier papers on deception detection, 32 
persons answered four questions in front of six peers with randomly assigned high or low motivational 
conditions. The difference in motivational conditions for deception is due to the fact that many of the lies 
perpetrated in daily life are uninvolving nor arousing. The research showed that lies with highly motivational 
conditions were harder to detect verbally, but more readily detected when non-verbal detectors were available. 
Lies that were planned on forehand were no more or less detected than lies that were not planned. Planned 
responses however, were perceived as more deceptive, more tense and less spontaneous by the judges 
(DePaulo, Lanier, & Davis, 1983). This study indicated a change in behavior when a person is motivated to lie 
and this behavior often exhibits sub-conscious changes in behavior. The accuracy to distinguish deception from 
truth is often compared to the probability of guessing, with a measured average of 54% as research has shown 
(Bond & DePaulo, 2006). It is studied however, that professionals in lie detection are much more accurate in 
detecting a lie then the average layperson when behavioral clues can be detected in real time (Ekman, 
O’Sullivan, & Frank, 1999). Deception detection has been studies in forensic contexts, but researchers have 
found that other areas are equally relevant. For example, deception detection has been studied at an insurance 
company. It has been showed that operators were only able to correctly classify 50% of the false claimants over 
the telephone. In the study, claimants said little and both truthful and deceptive statements were equal in 
quality based on the Criteria-Based Content Analysis (CBCA) (Leal, Vrij, Warmelink, Vernham, & Fisher, 2013). 
Another study showed that there is an improvement of deception detection when people get trained to detect 
lies. Training makes a difference in lie detection performance. It did not seem to make a difference if the person 
is trained by electronic means or by traditional lecture-based delivery. The results are the same (George et al., 
2004). In another study, a specific experiment (i.e. Concealed Information Test) was evaluated to be useful to 
detect criminal intent. It can be concluded that humans are bad performers in the detection of deception. 

2.1.4. Other methods 

In order to enhance the effectiveness of deception detection, researchers have turned to other tools to discern 
lies from truth. The best known method is the polygraph which detects changes in autonomic reactions by 
measuring bodily functions like respiration rate, skin conductivity, heart rate, blood pressure, capillary dilation 
and muscular movement.4 The tool was primarily developed between 1895 and 1945 and is still the most used 
method. The autonomic reactions are hard to control by the conscious mind and can give away deception. 
Because the protocol for administering the polygraph examination requires a lengthy (3 – 5 hours), multiphase 
interview to obtain reliability, and because background investigations are often preceded, the polygraph is 
unsuitable for rapid screening environments and automation (Elkins et al., 2014). The evaluation of the results 
of the polygraph are often performed manually. The polygraph does give an indication on the scoring and the 
probability of deception, however most examiners base their decision on their own judgement of the scores. 
When considering laboratory studies, it was suggested that the polygraph tests is about 82% accurate at 
identifying deceit. In 16% of the cases a deceiver would be falsely indicated as innocent. From the innocent 
group 88% was correctly classified. The false positive rate of falsely accusing an innocent participant was 9% 
(Vrij, 2008). However, often those laboratory results are overestimations as the experiments are too sterile. The 
real accuracy is often much lower. More recent and proving to be more effective, is the Voice Stress Analysis 
(VSA). Using this method, stress can be inferred by speech. It is shown that VSA performs better than the 
Polygraph in the detection of stress (Patil et al., 2013). Stress does not automatically infer lying, but a 18-year 
long field study has shown that stress has a strong predictive force when it comes to deception. A random 
sample of 279 subjects consisting out of suspects, criminals, defendants, persons of interest and court-ordered 
mandates were interviewed along with a VSA. The results revealed that a population was tested where 91.7% of 
the participants were deceptive. Of those tested who were deceptive, 100% had a stress indication. Also, all of 
the subjects where no stress was indicated by the VSA, were later exonerated from any wrongdoing. In 95% of 
the cases, VSA could correctly predict the true intent of a subject (Chapman, 2012). VSA is now also considered 
as an important decision support tool to make a sophisticated estimation of deceptive intent. VSA is being 
applied to call centers of insurance companies to indicate the validity of a claim. There are more examples of 
behavioral metrics that have been studied. There is linguistics, where researchers have developed an automatic 
linguistic tool that analyses text and searches for deceptive clues. This technique looks at the words of the 
deceptive message (i.e. to assess what a person is saying). Another way to discover deceivers is by looking at the 
eye behavior, blinks, body posture, gesture and movements. Facial expressions are also a large terrain of study.  

                                                             
4 https://en.wikipedia.org/wiki/Lie_detection 
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Since no tool seems reliable enough to conclude a false testimony, most tools are used supportive to final 
human judgement.  

2.1.5. Deception detection in Computer-Mediated Communication 

Since the rise of the internet, the popularity of Computer-Mediated Communication (CMC) has expanded 
voraciously. In a lot of cases, CMC is even the preferred way of communication over real-life communication. 
The anonymity the internet provides creates the perfect breeding place for deception. Email, chat, and online 
forms are just some examples of the many possibilities of Computer-Mediated Communication over the 
internet. These are also examples of where deception takes place. Deception mediated by the computer takes a 
whole different form then real-life deception.  

There has been attention for research on deception in CMC. Nonverbal cues such as vocal pitch, gestures or 
facial expressions are often not included in this type of communication. As stated earlier, CMC comes with a 
different context than real-life communication. Nonetheless, research shows that people perform just as bad (or 
worse) to detect deception on the computer as they do in real life. One study showed that 60.3% of the test 
group (n=93) failed to detect a fake web shop. Out of this group 30 missed the deception where 26 issued a false 
alarm (Grazioli & Wang, 2001).  In later study by the same researcher, the same concept was applied to a group 
of MBA students (n=80). Using a one-way ANCOVA the researchers were able to prove that the subjects could 
not discriminate between the clean and the deceptive site (Grazioli, 2004). Most studies were focused on the 
reasons why people fall for deception, like fake web shops and phishing campaigns.  

2.2. Keystroke dynamics 

2.2.1. Chronology 

The origins of keystroke dynamics came from the time when telegraphs were introduced. Every sender 
exhibited a certain rhythm, or signature, by which the experienced receiver could recognize the sender. The 
same way an autograph can be distinguished uniquely to assert endorsement while the authority may not be 
physically present. This biometric migrated from and to other forms of communication until the first statistical 
research was done in 1980 (Gaines, Lisowski, Press, & Shapiro, 1980). The experiments were conducted on 
seven secretaries in which they were asked to retype the same three paragraphs at two different times over a 
period of four months. The results were promising but the sample size was too small for a significant statistical 
result (Monrose & Rubin, 2000). The research ignited the curiosity of researchers because the publications 
started rising the next years, as shown in Figure 1. 

2.2.2. Authentication and identification 

A survey of 187 papers will be used to describe the current state of KD in the scientific community in this sub-
chapter (Teh et al., 2013). This survey gives insight on how researchers have set up their experiments. When it 
comes to device freedom, 35% reported the usage of a predefined standard device against 17% where the user’s 
own device was used. In terms of platform usage, 44% of the experiments was done by logging from the OS 
where 17% was done via the web. From all the experiments about 83% performed static keylogging where only 
10% were continuously logging. Also, about 33% of the experiments had a number of participants of 20 or less, 
about 50% was between 21 and 50 participants. However, sample collection can be divided into several sessions 
over a period of time. This reduces the initial load for the participant but also reflects typing variability. 
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Figure 1 - Number of publications per year on keystroke dynamics (Teh et al., 2013) 
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According to the survey, there are many methods with which the KD data is analyzed. Methods that have been 
used for KD vary from the most popular distance based metrics like Euclidean (Giot, El-abed, & Rosenberger, 
2009), Manhattan and Mahalanobis distances to other statistical methods like the (weighted) probability 
measures (Monrose & Rubin, 1997), k-Nearest Neighbor, Bayesian (Monrose & Rubin, 2000), Hidden Markov 
Model (Gould, 2005) and Gaussian Density Function (Lau, Liu, Xiao, & Yu, 2004). Machine Learning 
techniques were also a popular candidate. Common techniques as the neural network (Revett et al., 2007) 
showed great success in authentication. Other methods often employed were decision trees, fuzzy logic (Mondal 
& Bours, 2014), Support Vector Machine (Xiaojun, Zicheng, Yiguo, & Jinqiao, 2013). Statistical methods 
accounted for approximately 61% of the studies where machine learning was used in about 37% of the studies. 
Generally, the classification accuracies are quite high whereas some studies achieve an accuracy over 95%.  

The sizes of the datasets that have been gathered for analysis in most cases the number of participants was 
either smaller than 10 (31%) or the number of participants was simply not known (30%). In another 20% of the 
cases, the number of participants was a number between 11 – 20. There are some datasets freely available either 
as a benchmark (Killourhy & Maxion, 2009) or to test different algorithms e.g. GreyC dataset (Giot et al., 
2009). The dataset that was used to detect deception has also been released (Banerjee et al., 2015) and is freely 
available. 

Over the years, authentication and identification using keystroke dynamics has proven to be very successful. It 
is therefore a logical consequence to see the technique applied in the industry. Next to many startups trying to 
exploit the technique, larger companies have also embraced KD.  

2.3. Methods 

The literature shows that there have been a lot of different approaches to analyze the keystroke data ranging 
from classical statistical methods to advanced machine learning approaches. Machine learning methods have 
the advantages of finding relations in complex data. In this sub-chapter, the methods that will be used in this 
thesis are discussed. 

2.3.1. Distance metric  

In order to perform the classification, a distance metric can be used. Distance metrics are often used for 
keystroke dynamics, the most common being the Euclidean, Manhattan and Mahalanobis metric. As the 
Mahalanobis takes the covariance into account, it is not suitable for this classification task. According to a 
benchmark study, the (scaled) Manhattan metric outperforms the (scaled) Euclidean metric (Killourhy & 
Maxion, 2009). Scaling (or normalizing) is important because some features attain a different value range than 
others. 

In the training phase, the mean 𝑚𝑖 and the mean absolute deviation 𝑠𝑖 of each feature in the feature set of the 
training data of a participant is calculated. The scaled Manhattan distance metric 𝑑 is calculated as  

𝑑 = ∑
|𝑚𝑖 − 𝑦𝑖|

𝑠𝑖

𝑛

𝑖=1

 

where i denotes the i-th element in the mean vector 𝒎, the test vector of an instance 𝒚 and the mean absolute 
deviation vector 𝒔. A key event from the test set is then classified as belonging to the set for which the distance 
to that set is the smallest. For example, if the distance to the deceptive dataset is smaller than the distance to 
the truthful set, the key event is classified as deceptive. Consider the key event from the test set y that has a 
Manhattan distance 𝑑𝑑 with respect to the deceptive training set and a Manhattan distance 𝑑𝑡 with respect to 
the truthful training set. Then the key event 𝒚 is classified according to the smallest distance. 

𝒚 = {
𝑑𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑑𝑑 < 𝑑𝑡

𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑙 𝑑𝑑 > 𝑑𝑡
 

If more key events of a message are classified as deceptive, the whole message can be considered deceptive. 
However, if more key events of a message are classified as truthful, then it is more probable to consider the 
messages as truthful.  
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2.3.2. Choice of algorithms 

The classification problem of this thesis is called a two-class (or binary) classification problem. For this specific 
problem, several supervised machine learning algorithms can be used. There exist many algorithms and there is 
not a conclusive way to find out which algorithm is the best. Choosing the best Machine Learning algorithm is 
in some aspects almost more a craft than it is a science. Some methods that were used, as described by a recent 
survey, are k-Nearest Neighbor (kNN), k-Means methods, Bayesian classifiers, fuzzy logic, Boost learning, 
Rnadom Forests, Support vector machine (SVM), Hidden Markov Methods and Artificial Neural Networks 
(Zhong & Deng, 2015). A survey studied the 10 most influential algorithms in the research community (Wu et 
al., 2008). These algorithms were C4.5, k-means, Support Vector Machines (SVM), Apriori, EM, PageRank, 
AdaBoost, k-Nearest Neighbor (kNN), Naive Bayes (NB) and Classification and Regression Trees (CART). Now, 
not all these algorithms are suitable for a two-class classification problems.  

The algorithms that are suitable are Naïve Bayes, SVM, C4.5 (decision tree), kNN and lastly Random Forest 
(RF) which falls under the CART umbrella and is most suitable for this task. In this paragraph, these algorithms 
will be explained.  

2.3.3. Naive Bayes 

Naive Bayes classifiers are a family of supervised learning methods based on Bayes’ theorem. This conditional 
probability model has the naïve assumption that every pair of features is independent. Bayes’ theorem states 
that 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛|𝑦)

𝑃(𝑥1, … , 𝑥𝑛)
 

Given a class 𝑦 and a dependent feature vector 𝒙. By using the naïve assumption that  

𝑃(𝑥𝑖|𝑦, 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑃(𝑥𝑖|𝑦), ∀𝑖. 

The relation can then be simplified into 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛

𝑖

𝑃(𝑥1, … , 𝑥𝑛)
 

Since the divisor on the right side of the equation is constant given the input,  

𝑃(𝑦|𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)

𝑛

𝑖

⇒ 𝑦̂ = arg max
𝑦

𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)

𝑛

𝑖

 

This technique can be reformulated in the sentence: given the previous instances and the total chance of being 
in the class y, what is the highest probability of the feature being in the class.  

Naïve Bayes (NB) is a famous approach as the model is easy to understand and functions quite well in practice 
despite its naïve independence assumption. NB is not the ideal candidate for classifying key strokes as Naïve 
Bayes was originally designed to handle categorical features. Although not the perfect, NB is a very quick and 
often effective method. 

There are roughly three different NB models: Gaussian, Multinomial and Bernoulli. Since the features mostly 
contain continuous features (as will be shown later in the thesis), the multinomial and Bernoulli models are not 
suitable for the classification task as these models work exclusively with nominal and binary features 
respectively. For that reason, only the Gaussian approach is used.  

2.3.4. Support Vector Machine 

Support Vector Machine is an algorithm based on the Vapnik-Chervonenkis theory about statistical learning. 
The algorithm is fit for regression and classification and is mostly used for linear problems but can be extended 
to non-linear problems as well. The algorithm is very popular as it is considered flexible and fast while accurate.  
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The goal of a linear SVM is the creation of a hyperplane that functions as a decision boundary to make binary 
classifications for p-dimensional instances. SVM does not only create a hyperplane that is able to classify the 
training instances, but also searches for the hyperplane with the best fit. The best fit is found by maximizing the 
distances of the instances between the two classes perpendicular to the hyperplane.   

 

Figure 2 - SVM with a maximal margin hyperplanes and optimal hyperplane 

Consider a dataset of n instances  

(𝒙1, 𝑦1), … , (𝒙𝑛 , 𝑦𝑛) 

where 𝒙𝑖 is an p-dimensional vector and 𝑦𝑖 ∈ {−1,1} indicates the class of the instance. A hyperplane has to be 
found that divides the instances based on their class and maximizes the margin between the instances. The 
margin is the distance to the closest instances 𝒙𝑖 for both classes. Since the assumption is that the data is 
linearly separable, the hyperplane can be described by 

𝒘 ∙ 𝒙 + 𝑏 = 0 

where 𝒘 is normal to the hyperplane and  
𝑏

||𝒘||
 is the perpendicular distance from the hyperplane to the origin. 

First, two hyperplanes that are closest to the two different classes with no instances in between them can be 
described by 

𝐻1 = 𝒘 ∙ 𝒙 + 𝑏 = 1, 𝐻2 = 𝒘 ∙ 𝒙 + 𝑏 = −1 

The distance between the two maximum margin hyperplanes is equal to 
2

||𝒘||
 . This objective is to minimize ||𝒘||. 

No data points should fall between the margins of the hyperplanes creating a constraint for each class. For class 
𝑦 = 1, the equation 𝒘 ∙ 𝒙𝒊 − 𝑏 ≥ 1 should be satisfied and for class 𝑦 = −1, the equation 𝒘 ∙ 𝒙𝒊 − 𝑏 ≤ 1 should be 
satisfied. Due to the construction of 𝑦, this can be written as  

𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1 ∀𝑖 

However, this constraint will not always be satisfied since real data is often not fully linearly separable. 
Therefore the constraint can be relaxed slightly to allow for misclassified points. This is done by introducing a 
positive slack variable ξ𝑖 such that 

𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) − 1 + 𝜉 ≥ 0, 𝑤ℎ𝑒𝑟𝑒        𝜉𝑖 ≥ 0,   ∀𝑖 

Maximizing it subject to the constraints yield the following optimization 

min ||𝒘|| + 𝐶 ∑ 𝜉𝑖

𝑖

        𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡         𝑦𝑖(𝒙𝑖 ∙ 𝒘 + 𝑏) − 1 + 𝜉 ≥ 0  ∀𝑖  

where the parameter C is in charge of the degree in trade-off between the size of the margin and the penalty for 
the slack variable. The non-linear implementation of the classifier is done by applying the kernel method to the 
optimal hyperplanes. This means that every dot product is replaced by a nonlinear kernel function. There are 
many implementations of kernels with the most common being the polynomial and Gaussian radial based 
function.  
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2.3.5. K-Nearest Neighbor 

K-Nearest Neighbor (kNN) is a non-parametric method that can either be used for classification as well as for 
regression. The general idea is to classify instances by looking at the k nearest neighbors (usually based on the 
Euclidean distance). If the majority of the neighbors belong to a certain class, then the instance is also classified 
as such. Often, a weight is assigned to the neighbors to account for the differences in proximity making close 
neighbors more important than distant ones.  

 

Figure 3 - Example of kNN with k = 3 and k = 7 

Consider the example in Figure 3 where no distance weighing is applied. If 𝑘 = 3 is chosen, then the instance at 
the center of the inner circle will look at the three instances in its vicinity and notice that there are two empty 
circles and one solid circle. The instance will then be classified as an empty circle. Increasing the k to 7 yields a 
classification to a solid circle, as there are more solid circles. This becomes very useful if there are random 
instances in the multi-dimensional features space. The algorithm is fast and effective, making it very popular. 
Mathematically, the algorithm can be defined as follows. Consider the feature pairs 

(𝒙1, 𝑦1), … , (𝒙𝑛 , 𝑦𝑛) 

where 𝒙𝑖 denotes the vector of features of an instance i whereas 𝑦𝑖  indicates the class of said instance either -1 or 

1. Given some classified instance 𝒙 without classification, reorder the known instances such that ||𝒙1 − 𝒙|| ≤

⋯ ≤ ||𝒙𝑛 − 𝒙||. Then the instances can be selected up to k, and with this new reordering, the class can be 
decided by 𝑦 = 𝑠𝑔𝑛(∑ 𝑦𝑖𝑘 ) where the sign function outputs either a -1 when the sum is lower than 0 (and more -
1 class members are in the vicinity) and 1 when higher. In order to not classify an instance as class 0, the 
number k should ideally be uneven. Obviously, the known instances are in the training set and the unknown 
instances are in the validation set. To account for instances further from the instance itself, weighing is often 

applied with a factor 
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
, making instances further away less relevant to the classification outcome.  

2.3.6. Decision Trees: C4.5 and Random Forest 

Decision trees are suitable for classification and regression jobs. Some well-known and highly effective 
algorithms are the C4.5 and the Random Forest. CART is often used as an acronym for Decision Tree. CART 
implementations are very similar to C4.5 whereas the only difference is that CART constructs a tree based on a 
numerical splitting criterion which is recursively applied to the data. From CART, Random Forest is a well-
known and effective algorithm.  

Decision trees are flexible and intuitive objects used in classification and regression. The goal of a decision tree 
is to predict the class (or value) of a target instance based in the features of that instance. The tree consists out 
of nodes, branches and leaves. A node is a decision rule corresponding with one of the features of the vector. 
The node then branches to different nodes or leaves depending on the value of a specific feature of an instance. 
Leaves represent the lowest nodes which do not further branch but assign a conclusive value to the node. If the 
target variable can attain continuous values then these trees are called regression trees. Other often occurring 
types are binary trees.   
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Figure 4 - Simple example of an decision tree with nominal and continuous decision nodes 

A decision tree is built from the training set using the concept of entropy and information gain. The tree is 
constructed top-down from the root node. Consider the training set T consisting of instances 𝑡𝑖 

𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑛 

Each instance then consists out of a p-dimensional feature vector 𝒙𝑖 and a corresponding class variable 𝑦𝑖  such 
that 𝑡𝑖 = {𝑥𝑖 , 𝑦𝑖}. At each node, an attribute of the feature vectors is chosen that most effectively splits the 
instances into their respective class based on the entropy. The entropy is a measure to calculate the 
homogeneity or purity for each of the resulting subsets. If the subsets can be perfectly divided then the entropy 
is 0 and when the subsets are completely homogeneous the entropy is 1. The entropy of a (sub)set is calculated 
with the formula 

𝐸 = ∑ −𝑝𝑖 log2 𝑝𝑖

𝑛

𝑖=1

 

where n is the number of classes in the set and 𝑝𝑖  is the relative frequency of class i. Each resulting subset after a 
split has a different entropy value and the average of these values is called the information gain. To create the 
average, the entropy is often weighted by the size of each subset. The goal is to find the feature that splits into 
subsets that maximizes the information gain. The information gain is calculated by subtracting the weighted 
sum of the entropy of the created subsets from the entropy of the parent set. If that optimal feature has been 
found, the algorithm is recursively applied on the newly created subsets.   

C4.5 (or J48 in WEKA) is an extension of the ID3 algorithm and the predecessor of the newer C5.0 algorithm 
which is more efficient. Since the C5.0 is patented, the C4.5 is usually implemented. Random Forest differs 
from C4.5 by using not one but multiple trees. Random forest uses a combination of trees and whereas each tree 
can have its own training set to increase the classification accuracy. Random Forest initially creates random 
subsets of instances, whereas the subsets are allowed to overlap. For each subset, a decision tree is generated. A 
new instance is classified using all decision trees, and the new instance is labeled with the class that has the 
most recommendations from the random forest. Random forests can be enhanced by bagging. By using 
bagging, noisy and unbiased models are averaged to create models with low variance. This is done by 
considering all the features for each node for a split. Decision trees are quite effective in general, and RF 
compensates for local errors or deviations in the total dataset. 

2.4. Performance measures 

The method to identify the success of the classification is by using performance measures. Since the hypothesis 
of this thesis can be formulated as a binary classification problem, there are a few appropriate measures that 
will be treated here.5 Estimating the performance of an algorithm is not simply done by looking at the accuracy. 
The interpretation of the measures greatly relies on the objective. Performance measures can give directions on 

                                                             
5 https://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf 
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tuning the algorithm to the desired prediction. The interpretation of the performance measures is important 
and will ultimately help in formulating an answer to the hypothesis.  

2.4.1. Confusion matrix 

One of the most important classification concepts is contained in the Confusion matrix (or error matrix). This 
matrix is a table that represents the performance of an algorithm and from which other metrics can be derived. 
The columns of the matrix represent the instances in a class as classified by the algorithm and each row 
represents to what class instances actually belong. The matrix makes it easy to see if the system is confusing two 
classes, hence the name. This matrix can categorize into two categories (e.g. positive and negative) and counts 
the correctly classified (true) or falsely classified (false) instances per class. Now, a success is when an instance 
is predicted correctly as a true positive (𝑡𝑝) or a true negative (𝑡𝑛). An error is when an instance’s class is 
predicted incorrectly such that it is either a false positive (𝑓𝑝) or a false negative (𝑓𝑛).  

 CLASSIFICATION  
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True positives 
 

 
False negatives 

 
𝑃 

 
False positives 

 

 
True negatives 

 
𝑁 

 𝑃̂ 𝑁̂  

Figure 5 - Confusion Matrix 

Because of the topic of this thesis, the formulation becomes a bit counter intuitive. Since deception is often 
regarded as negative, it would seem logical to consider deceptive instances as negative instances. However, in 
this thesis the focus is on detecting deception. This means that the deceptive instances are labelled as positive 
instances and instances coming from truthful messages are labelled negative instances (meaning that they do 
not originate from deception). This means that a 𝑡𝑝 classification means a correct classification of the instance 
originating from a deceptive message. 𝑓𝑝 are instances that are supposedly truthful but classified as deceptive. 
𝑓𝑝 are instances that were derived from deceptive messages but classified as truthful. 𝑡𝑛 are instances that 
originate from truthful messages and are classified as such. The sum of the actual deceptive (positive) instances 

is 𝑃 with 𝑃 = 𝑡𝑝 + 𝑓𝑛 and the sum of actual truthful (negative) instances is  𝑁 with 𝑁 = 𝑓𝑝 + 𝑡𝑛. Then 𝑃̂ and 𝑁̂ 

with 𝑃̂ = 𝑡𝑝 + 𝑓𝑝 and 𝑁̂ = 𝑓𝑛 + 𝑡𝑛 represent the sum of the instances as classified by the algorithm to the 
respective classes. Now from this matrix, several metrics can be formulated. 

2.4.2. Accuracy 

The accuracy is the total number of correctly classified instances proportional to the total number of instances.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

This is the most popular measure because it yields a value between 0 and 1 where 1 is a perfect classification 
and 0 is a classification where all the instances were classified incorrectly. A high accuracy does not 
consequently mean that the classification objective is done. When there are many more negative instances than 
positive instances, and all the instances are classified as negative, the accuracy alone gives a wrong impression. 
The interpretation of the accuracy is dependent on the goal of the objective. The inverse of the accuracy is also 
called the classification error  

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

2.4.3. Recall and specificity 

Precision and recall are two measures which are often used together to assess the effectiveness of a 
classification. However, for the classification of truthful and deceptive messages, recall and specificity yield 
more insight. Consider the instances classified as true positives and false negatives (i.e. all instances originating 
from deceptive messages).  Recall, also true positive rate (TPR), is the fraction of correctly classified deceptive 
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instances divided by all the actual deceptive instances. It can also be described as ‘the completeness (quantity) 
of the results’. The specificity, also named the true negative rate (TNR), is the fraction of correctly classified 
truthful instances divided by all the actual truthful instances.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
=

𝑡𝑝

𝑃
, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑡𝑛

𝑁
 

When the recall (or specificity) is high, most of all the deceptive (or truthful) instances were correctly classified. 
When one of the parameters is high and the other parameter is low, the classification is biased as instances of 
both types are all classified as either deceptive or truthful. This indicates that the classification algorithm is not 
able distinguish the instances effectively. When both values are low, the classification algorithm confuses the 
test data and the training data and this indicates that the classification is bad.  

Now consider a deceptive message in the test set consisting out keystrokes. If the recall of the classification of 
the keystrokes is higher than 0.5, then this indicates that more keystrokes from the message were correctly 
classified than there were incorrectly classified keystrokes. This makes it more probable that the message as a 
whole is indeed of deceptive intent instead of truthful. If the recall is lower than 0.5, then more than half of the 
keystrokes (originating from the deceptive message) were classified as originating from a truthful message. The 
message is then incorrectly classified as truthful. The same reasoning can be applied to truthful messages and 
specificity. For that reason, these measures are important in the classification of messages for each individual. 
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3. Methodology 
In the previous chapter, a literature review was done to explore the current state of deception detection and 
keystroke dynamics. A research question will be formulated in this chapter using the insights from the literature 
review in sub-chapter 3.1. After the research question is formulated, an experiment will be designed in sub-
chapter 3.2 to collect the data that can be used to answer the research question. 

3.1. Research question 

The literature on deception detection shows that people are not good in detecting deception. The accuracy of 
correctly detecting deception is often measured to be equal to the probability of guessing (Bond & DePaulo, 
2006). The accuracy is sometimes even lower due to biasedness. In CMC-environments, deception appears to 
be equally hard to detect. There are tools available to assert if a person is deceptive, from an obtrusive tool 
called the polygraph to a very effective voice analyzer. However, there is no tool readily available for a CMC-
environment like the Internet, where no visible or verbal clues are present. For plain text messages, people have 
to assess the messages based on its content.  

Based on the research, it is known that deception is a cognitive challenging task. For example, the greater 
cognitive challenges involved in lying result in longer response latencies and more speech hesitations (DePaulo 
et al., 2003). It is also known that cognitive challenging tasks have an influence on the typing behavior (Lim, 
Ayesh, & Stacey, 2014; Vizer et al., 2009). Therefore, the goal of this thesis is to assess if deceiving (making 
statements up or writing statements with which you deeply disagree in order to comply) as a cognitive 
challenging task influences the typing pattern.  

There has not been a lot of research done on using keystroke dynamics to detect deception. Exactly one recent 
paper on using keystroke dynamics to detect deceptions has been found (Banerjee et al., 2015). In the study, 
users were asked to write two essays about a subject. Both and truthful and a deceptive essay had to be written. 
Using stylometry (i.e. study of linguistic style), the researchers were able to generate a high classification 
accuracy as high as 80%. The essays also considered other metrics, i.e. the number of backspaces, mouse-up 
events, arrow keys, the timespan of writing the entire document and the average timespan of writing a word, 
keystrokes, spaces, non-whitespace keystrokes, and interval between words. Adding these features to the 
stylometry approach resulted in an increase of the accuracy of a few percent. The researchers stated that for 
some essays the results were statistically significant and there is some empirical evidence that a change in 
typing can indicate deceptive behavior. However, looking at the content of a message is privacy invasive. It is 
therefore useful to look at the effectiveness of keystroke dynamics for deception detection without using the 
contents of the message. 

In order to attain the objectives described in the previous paragraph, the following research question is defined: 

RQ:  Can keystroke dynamics be used to detect deceptive messages without looking at the contents 
of the message?  

To answer this research question, sub-questions are drafted to structure the research. 
 
The first sub-question describes the incentive to do a literature study on deception detection. Answering this 
sub-question leads to a justification on why research on deception detection is important and which challenges 
the field faces. It also yields insights in how an experiment can be designed to lead people to deceive. 
    

S1.   What insights does the literature about deception detection yield?   
 
The second and third sub-question describe the incentive to do a literature study on keystroke dynamics. These 
sub-questions are important to find the characteristics in the data that can be considered as biometrical and 
that yield different values for a deceptive message and a truthful message. In order to test the hypothesis, it is 
also important to understand what methods are used to analyze the keystroke data and how a message can be 
classified as deceptive or truthful.  
 

S2.  What characteristics can be extracted from the typing rhythm data that change when people are 
deceptive and when they are not?  
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S3. What are the methods that one can use to discriminate between truthful and deceptive 
messages using only the keystroke data? 

Lastly, the corpus from the study of Banerjee et al. is freely available. In order to assess the quality of the 
acquired dataset, the results can be compared to the results of Banerjee et al. The corpus can be modeled 
similarly to the PwC dataset and the same classification can be applied to assess the results.  

S4.  How does the dataset in this thesis compare to the dataset from the other researchers?  

3.2. Research design 

3.2.1. Conditions 

In order to make the analysis as meaningful as possible, it must be carefully considered to what conditions the 
experiment must comply in order to generate usable data. Preferably, the experiment should be close to a real 
life scenario. In this sub-chapter, the research design of the data collection phase will be explained. 

Various researchers suggested some characteristics that are important to understand media differences. Some 
of these characteristics are especially germane for deception research, these are: synchronicity, symbol variety, 
cue multiplicity, tailorability, and rehearsability (Carlson et al., 2004). Synchronicity (or interactivity) pertains 
to the speed of interaction. Tailorability is the possibility of the medium to adjust the message to individual 
recipients. Synchronicity and tailorability will add a lot of complexity to the research in terms of design, 
creation and execution. It is therefore decided that there will be a one-way communication between the 
assignment (experiment) and the participant. Symbol variety stands for the different symbols with which the 
communication can take place. Cue multiplicity stands for the number of simultaneous information channels 
that the medium supports. Since the keystroke dynamics will be used, the symbol variety and multiplicity is 
limited to the keyboard. And lastly, rehearsability, which refers to the degree of which the medium gives the 
participant time before and during the interaction to generate a message. It was found that rehearsal reduces 
arousal induced when lying (Carlson et al., 2004), as the saying ‘practice makes perfect’ implies. By rehearsal, 
the individual can think about different possible answers and assess the reliability of each statement. Then he 
can pick the one that he finds most plausible. By doing so, an individual is better prepared to lie and may have 
more confidence in his statement than if he would have to improvise. It is therefore important to make sure that 
the participant does not need to think about what type of answers he is supposed to give on forehand.  

The participant should be given some time to adjust to doing an experiment before starting the real experiment. 
This means that the participant has time to adjust to the keyboard such that changes in the patterns are not just 
due to the fact that the participant is becoming comfortable. This should not be a large amount of text, 
otherwise the participant may become fatigued. It should be large enough to become comfortable with the 
environment. 

The typing pattern of each individual is unique to a certain degree. Therefore, the data that is collected per 
individual must contain samples of deceptive and non-deceptive messages. The participant should not copy a 
certain text because that will not correctly simulate normal typing behavior, but rather his copying ability. Also, 
the assignments and context in which the samples are typed should be comparable, such that any changes are 
not due to the fact that the participant changes context.  

Literature states that in order to study deception well, the participant should not be indifferent about his lies. 
White lies can simply go unnoticed whereas other types of deception induce more cognitive effect.  The greater 
the incentive to succeed, the harder he will try to cover up his lies. For example, consider a person sending an 
email to his employer with a false report of sickness to get a day off. In order to write this mail, the person needs 
to make up some illness and make it sound credible. It is expected that if the participant has to think more on 
what he is going to write, this will result in more cognitive strain than when he would just truthfully write that 
he is in good health and looks forward to going to work. It is expected that this strain will increase when the 
topic the participant is writing about is more important to the person and his credibility is at stake. This creates 
a strong incentive to formulate his argumentation as good as possible. In the same manner, it is expected that a 
participant will be more engaged taking a stance on abortion than when he is defending his favorite color. As 
the topic becomes more controversial implies that the participant will be more engaged. This can be formulated 
in a condition. The topic on which the participant has to lie about has to be relevant and important to the 
participant.  
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It is known that the typing behavior of an individual changes over time (Lau et al., 2004) and depends on the 
type of activity or application (Dowland, Fvrnell, & Papadaki, 2002). The experiment should calculate for these 
variables. This means that the data collection of both deceptive as non-deceptive messages per individual 
should happen in the same session. Otherwise, a change in typing rhythm may be due to the fact that the typing 
rhythm changed over time.  

Now these conditions can be used to shape the experiment.   

3.2.2. Study design 

The main goal in this paragraph is to create an experiment where keystrokes can be logged and where the 
participant types both deceptive and truthful messages. The experiment in this thesis is comparable to the only 
known existing experiment on keystroke dynamics and deception (Banerjee et al., 2015). In this study, the 
researchers used amazon Turk to ask participants to write two essays about a subject, a truthful and a deceptive 
one. The subject was randomly selected to be either gun control, gay marriage or a restaurant review. The main 
idea in this thesis is to perform a similar experiment and do a more in-depth analysis with more than one 
truthful and deceptive message per participant and without using stylometry. The researchers concluded that 
there is indeed a change in pattern, and this thesis will examine how effectively this change can be used to 
discriminate between truthful and deceptive messages. In this paragraph, the design of the experiment is 
explained. For the experiment, a website was created that made the participant write four essays, two truthful 
essays and two deceptive essays. A more detailed description of the design of the website, implementation of the 
key logger and an assessment of the accuracy of the webserver can be found in Appendix A.  

In order to let the participants get comfortable with the keyboard, a few small sample texts are retyped by the 
participant. By doing so he may forget the activities or things that were on his mind before the experiment. This 
is also done to let the participant focus on the experiment by giving the participant the feeling the experiment 
has started. After a sample text is retyped, the experiment will begin. The texts are arbitrary and consist out of 3 
sentences.  

The participants are then informed about the incentive of the experiment. The study will be transparent in the 
goal it pursues. This is mandatory because this experiment will take place in the office of 
PricewaterhouseCoopers. Without background on the experiment some of the questions could be quite sensitive 
for some actors within PwC. In order to avoid conflicts it was chosen to be transparent about the goal of the 
research. The participants had to continue by clicking a button with by which they indicated that they agreed 
with the fact that the recorded data will be used for the experiment. Banerjee et al. also instruct the users on the 
incentive of the study. Telling the participant on forehand about the incentive of the experiment might be 
considered a weakness, as the participant can prepare himself or will tend to focus on his typing behavior 
instead of doing the assignment. But since the participant will be instructed to be deceptive he is expected to 
understand the goal of the thesis nonetheless.  

The assignments on which the participant has to answer deceptive questions can be randomized. In that way 
the participant cannot prepare himself for answering the questions, which is said to influence the behavior by 
rehearsability (Carlson et al., 2004). The assignments on which the participants have to deceive should be 
randomized such that the participants cannot prepare beforehand. 

After agreeing with the conditions, the opinion of the participants on four statements were asked. The subjects 
could agree or disagree with the statement. The statements were all work related and were inspired by the 
Global People Survey. That is a survey that PwC distributes over his employees to get a general idea of what 
employees think of their job at PwC. The Global People Survey was just finished by the time this experiment 
was set up. Based on the survey, the employees have a strong opinion on these subjects given the recent results 
of the Global People Survey. All statements are connected to their employment and development in the 
company and question their day-to-day activity. The statements were 

1. The brand PwC stands for a high quality of service. 
2. PwC knows how to leverage available knowledge and expertise effectively when performing projects. 
3. PwC collaborates very well with other PwC offices abroad when performing projects for international 

clients. 
4. PwC is well capable of implementing innovative ideas. 
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After the true opinions were answered, the participant was asked to motivate his true opinion on two 
statements. For two other statements, the participant was asked to motivate the opposite of his true opinion on 
the statement. The statements for which he had to write a statement opposing his true opinion (or writing the 
deceptive statement) were randomly chosen. For example, consider a participant who answered true for all four 
statements. That participant would be asked to motivate why he thinks two randomly selected statements are 
true and he would be asked to motivate why he thinks the other two statements are false. The statements that 
corresponded with the true opinion and with the opposite opinion were randomly selected. Hence, the 
participant could not anticipate on which question he was supposed to deceive and on which question he could 
give his true opinion. The statements had to be at least 100 words long. The choice of words is based on the fact 
that approximately 1000 characters per truthful/deceptive dataset is needed (Domingos, 2012). There are about 
5 letters in a word, so 2 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 ∙ 100 𝑤𝑜𝑟𝑑𝑠 ∙ 5 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑 = 1000 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠. This is in line with 
the study of Banerjee et al, who also required at least 100 words per statement. 

After that, the participants were asked to fill in some metadata. The metadata that was collected is browser 
version, age, sex, self-assessed typing skill and how long they work for PwC. The experiment is further 
anonymized because the answers should not be traceable back to the participant.  

A deviation from the study of Banerjee et al. is the choice to change the subject per assignment. The original 
study had people write two messages on one topic consecutively. There were two ‘flows’: writing the truthful 
text before the deceptive one, and vice versa. A weakness in that approach is that participants can simply negate 
the statements. For example, consider a participant writing a review for a restaurant he has visited. The 
participant then poses some arguments, like the food was great. If he then has to write a deceptive review, a 
review for a restaurant he has not visited, he can actually get influenced by the previous answers. He can simply 
copy his previous statement or negate it. That way he does not have to come up with new answers because he 
has mainly already thought about the subject. In this experiment, every statement is work related but every 
statement is also different from the other. Therefore, the participant has to consider every statement 
independently. Another difference is that four messages are acquired instead of two. 

For a more detailed discussion on the experimental setup, specifically on the weaknesses of the design and the 
transparency, see the discussion in paragraph 8.2.  

3.2.3. Dataset 

The data collection took place in the period July 25, 2016 – September 25, 2016. The data was collected on a 
business unit of PricewaterhouseCoopers. The survey was sent to about 294 people from which 41 people 
responded. From those respondents, seven were rejected, as the respondents did not finish the assignment 
properly. Another four responses were rejected, as the participants did not comply by not following up the 
assignment correctly. Thus resulting in a dataset of 30 participants. Metadata was collected from the 
participants. The age ranged from 23 to 37 years with an average age of 29 years. From the participants, 24 
people were male and 6 people were female. Most participants worked at PwC between 1 and 2 years, all the 
participants worked at PwC at the time of participation. It was asked how they considered their typing skill and 
the participants evaluated their typing skills to be as showed in Table 1.  

Typing skill Bad Below average Average Above average Good 

# of participants 0 0 11 7 12 

 

The whole dataset contained a total of 66.097 key events which results in an average of 2230 key events per 
participant and a mean of 550 key presses per message. The distribution of key events for all the messages (4 x 
30 participants) are shown in  Figure 6, where the x-axis shows the type of message (either truthful or 
deceptive) and the y-axis shows the number of key events that were recorded while creating the message. 

Table 1 - Distribution of typing skills 
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Figure 6 – Distribution of key events per message 

The messages were written in an average time span of 153 seconds for a truthful message and 142 seconds for a 
deceptive message, whereas two extreme gaps needed to be removed for some truthful messages. In Figure 7, 
again all the messages are plotted with the x-axis shows the type of a message and the y-axis shows the time in 
seconds between the first and last key event of a message. 

 

Figure 7 - Writing time per message 

In the next chapter, the features that can be extracted from the keystrokes will be treated.  
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4. Data processing 
Data processing is defined as collecting and manipulating the data to produce meaningful information. In order 
to do so, the data must be validated, sorted, summarized, aggregated, analyzed and finally classified. In this 
chapter the means by which data is collected, processed and analyzed are presented. There are multiple tools 
available to analyze the data. The analysis can be done by WEKA, for which the data needs to be transformed 
into the .arff format. The data is first transformed with code written in MATLAB to transform the keystrokes 

into meaningful features.  

In sub-chapter 4.1, some terminology and background on the logged keystroke information is treated. In sub-
chapter 4.2, the features that can be derived from the logged keystroke data are explained.  

4.1. Keystrokes 

4.1.1. Logged keystroke 

Data modeling means making the data ready for analysis. In this paragraph, the logged keystrokes are treated. 
The keystrokes consist of a few variables. These variables are a counter, the char code, the timestamp and the 
type. The counter is an incrementing integer that decides the order in which the keystrokes are logged. The char 
code is an integer corresponding to a specific key. A table of the char codes and the corresponding key function 
can be found in appendix A.4. The timestamp is an integer that corresponds with the exact millisecond a 
keystroke is logged by the browser. The timestamp can correspond with the internal clock of the computer or 
with the session time of the browser. The origin is not important as the timestamps are only relevant with 
respect to other timestamps. The type is a character that defines whether a keystroke describes the pressing (D) 
or the release (U) of a key. In Figure 8, a sample of keystrokes can be found with the counter, char code, 
timestamp and type consecutively.   

 

Figure 8 - Example of an array of keystrokes 

Since the pressing and release of a key always yields two keystrokes, the total number of keystrokes of a 
message is always an even number.  

4.1.2. Key event 

A key event is defined as the interaction with a key by pressing and releasing. A key event can be represented by 
two keystroke lines as described in chapter 4.1.1. These lines have some requirements and characteristics. For a 
key event, the keystroke with type D always comes before the keystroke with type U. The character codes of 
both key strokes of a key event are identical, the types are different and the timestamps also differ. During a key 
event, other key events may be initiated, as more keys may be pressed and released at the same time. However, 
for a key event 𝑖, the keystroke representing the press comes before the keystroke representing the press of key 
event 𝑖 + 1. Therefore, the indices of the key events are ordered by the timestamps of the keystrokes 
corresponding with the key press. 

4.2. Features 

4.2.1. Choice of features 

The field of Keystroke Dynamics describes the behavior of a person. According to the literature, the behavior is 
described by features which are characteristics extracted from data. In this paragraph, the relevant and useful 
features are selected from the literature to be used to analyze the behavior and to answer the research question.  

According to a survey, the dwell time and the (di-graph) flight time were the most common features with an 
occurrence of 41% and 49% respectively in 163 reviewed papers on keystroke dynamics (Teh et al., 2013). 
Another 5% of the papers used keyboard pressure. The remaining 5% of the papers focused on typing speed, 
typing sequence difficulty, frequency in typing error and sound of typing. The features that will be considered 
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are the dwell time, (di-graph) flight time, typing speed and frequency in typing error. The typing sequence 
difficulty will not be considered as it is unpopular and more suitable for password authentication (as often 
special characters are used). Keyboard pressure and sound of typing will not be considered due to the nature of 
the experiment. At the end of this chapter, some features such as the pause rate and other quantitative features 
will be treated that were inspired by the literature on deception. 

4.2.2. Dwell time  

The dwell time (sometimes called the duration time or hold time) is the amount of time a key is pressed down. 
It is shown that the dwell time is a consistent metric and changes from person to person (Lau et al., 2004). Let 
𝑡𝑖

𝑥 be the timestamp of when a key is pressed, let 𝑖 denote the 𝑖𝑡ℎ key event and let 𝑥 be the type with 𝑥 =
{𝑑𝑜𝑤𝑛, 𝑢𝑝} that describes the pressing and release of a key respectively. Let the dwell time 𝑑𝑖 be a difference 
between the timestamps 𝑡𝑖 of the pressing and release of the key event 𝑖. The dwell time can be written as 

𝑑𝑖 = 𝑡𝑖
𝑢𝑝

− 𝑡𝑖
𝑑𝑜𝑤𝑛 , 𝑑𝑖 > 0 

Many studies use a summary of the dwell time for each possible character, such as creating bins or using the 
mean and standard deviation (Teh et al., 2013). In order to maintain as much information as possible, the dwell 
time will not be summarized. The dwell time will be calculated for each key event instead which can then be 
used for analysis.  

4.2.3. Flight time 

The second concept focusses on interactions between multiple keys, which consequently yields a lot more 
features. Consider the interaction between two keys events. The flight time (sometimes called latency) is 
defined as the time between the press and/or release of different key events. This results in four interpretations 
of the flight time. It can be the difference between two key presses, two key releases, press-release or release-
press of two key events. If two consecutive key events are considered, it is called a digraph. For the difference 
between two key events with one key event in between, a trigraph. The possible combinations of flight time 
features grows quickly when key events are allowed to lie between the two key events that are considered. When 
no key events lie in between (when the permutation possibilities over the press (D) and release (U) of key event 
𝑖 and 𝑖 + 1 are considered) there are 4 possible features combinations. When one key event is allowed to lie in 
between (such that the permutation possibilities between key event 𝑖 and 𝑖 + 2 are also considered), another 4 
possible features are possible and the total grows to 8 possible features. According to a survey, the di-graph 
flight time is considered the most effective and is the most popular with a usage of 80% in the studies where 
flight time is considered (Teh et al., 2013). For that reason, the di-graph flight time is also chosen in this thesis 
where no key events should lie in between two sequential key events that are considered. Let the flight time be 
the distance 𝑙𝑖 between two consecutive key events 𝑖, then 

𝑙𝑖 = 𝑡𝑖+1
𝑥 − 𝑡𝑖

𝑥, 𝑥 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛} 

The resulting combinations can be found in Table 2. The Up – Down and Up – Up flight time can become 
negative, indicating that the latter (second) of two sequential key events is either pressed or released before the 
release of the former (first) key event respectively. 

Name Notation Description 

Down – Down Digraph 𝑡𝑖+1
𝑑𝑜𝑤𝑛 − 𝑡𝑖

𝑑𝑜𝑤𝑛 Strictly positive as 𝑡𝑖+1
𝑑𝑜𝑤𝑛 > 𝑡𝑖

𝑑𝑜𝑤𝑛 

Down – Up Digraph 𝑡𝑖+1
𝑢𝑝

− 𝑡𝑖
𝑑𝑜𝑤𝑛 Strictly positive as 𝑡𝑖+1

𝑢𝑝
> 𝑡𝑖

𝑑𝑜𝑤𝑛  

Up – Down Digraph 𝑡𝑖+1
𝑑𝑜𝑤𝑛 − 𝑡𝑖

𝑢𝑝
 Either positive or negative 

Up – Up Digraph 𝑡𝑖+1
𝑢𝑝

− 𝑡𝑖
𝑢𝑝

 Either positive or negative 

Table 2 - Different combinations to the flight time 

Figure 9 shows the dwell and flight time representations for two consecutive key events. These features and 
their descriptions are based on work done by (Bours, 2012).  



  

31 
 

 

Figure 9 – Dwell time and flight time combinations between two consecutive key events  

4.2.4. Typing speed rate  

The typing speed rate is the frequency with which keys are pressed. This feature can indicate the flow of a 
message. The feature can indicate if a person is typing faster or slower. Typing speed changes throughout the 
message. When the typing speed rate is 0 at a given time, this may also be considered a pause. Typing speed is 
typically summarized to be used in login security (Revett, Magalhães, & Santos, 2005). Other approaches chose 
to calculate the typing speed per interval, for example of 1 minute (Kolakowska, 2010). In this thesis, the typing 
speed is calculated per key event. The typing speed feature can be defined as the number of key events for which 
the timestamp falls in the interval centered around the current key event. Let 𝑡𝑖 be the timestamp in 
milliseconds of key event 𝑖 and consider an interval of 1000 milliseconds, then the typing speed 𝑡𝑠𝑖 of key event 
𝑖 can be defined as 

𝑡𝑠𝑖 = |{𝑡𝑗: 𝑡𝑖 − 500 ≤ 𝑡𝑗 ≤ 𝑡𝑖 + 500}|, ∀𝑗 

Where | ∙ | is the cardinality of the set (i.e. number of elements in the set) and 𝑗 denotes all the key events 
coming before and after key event 𝑖.   

4.2.5. Deletion rate 

The deletion rate is a feature describing the number of characters that are deleted. The deletion rate is known to 
be modeled as a quantitative feature describing whole message, for example a passphrase or a text fragment 
(Kolakowska, 2010). The effectiveness of modeling this feature per key event (similar to the typing speed), 
greatly depends on the usage and might therefore be not so useful at it may result in a lot of meaningless 
elements. In order to understand usage of the deletion keys, a quantitative approach can yield more insight. 
Therefore, a quantitative approach is chosen for the exploratory analysis.  

4.2.6. Pause rate 

The pause rate is a measure for the time in which there is no interaction with the keyboard while writing a 
message. The pause rate does not appear as a common feature in the literature. However, since deceiving is a 
cognitive intensive process and the literature has shown that deceivers often display longer pauses in their 
responses (Vrij, 2008), this feature could yield useful insights. 

The pause rate is a measure for the time between two key events. Technically, this feature resembles a special 

case of the flight time (i.e. Up – Down or {𝑡𝑖+1
𝑑𝑜𝑤𝑛 − 𝑡𝑖

𝑢𝑝
: 𝑡𝑖

𝑢𝑝
< 𝑡𝑖+1

𝑑𝑜𝑤𝑛}). As has been mentioned earlier, key events 

may overlap resulting in a negative flight time. A key event also focusses on typing whereas the absence of key 
events is considered a pause. Given that pauses are not ubiquitous during typing of a word, it is more relevant 
to look at the pauses between the writing of words than the pauses between key events. Each time a word is 
written, the participant may take a moment to think, where the pauses may be different depending on the intent 
of the message.  

4.2.7. Other quantitative features 
Despite the fact that there are no other obvious features apparent in the literature, it was shown that deceivers 
are more hesitant in conversations and display smaller response lengths. These quantitative features may be 
considered by looking at the length of the message, the deletion rate (see 4.2.5) and the writing time.  
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5. Exploratory data analysis 
In this chapter, the data is analyzed in order to find promising approaches that will help in the classification of 
the data. Clustering is the main task of exploratory data mining. Clustering is grouping a set of objects in 
clusters such that objects in the same clusters are more similar to each other than those in other clusters. In 
order to find these similarities (in this thesis called features), the data is studied in detail. This chapter 
enhances the intuition about the data and helps in finding the best clustering parameters for the data. The 
research that has been done on DD and KD uses high-level features and there is a scarcity in detailed analysis of 
the data. In order to analyze the data, the features that were introduced in the literature are studied. The 
descriptions of these features can be found in chapter 4.2. The PwC dataset is used which consists of 120 
messages written by 30 employees (i.e. 4 messages per employee). The features will be analyzed for each 
participant individually, as keystroke dynamics is a biometric in sub- chapter 5.1 and 5.2. The PwC dataset will 
be compared to the dataset of Banerjee et al in sub- chapter 5.3. Finally, in sub-chapter 5.4 the features that will 
be used in this thesis will be chosen. 

5.1. Analysis of key events 

5.1.1. Approach 

In this paragraph, the basic features that are often presented in literature are treated. These features are the 
dwell time, di-graph flight time and the typing speed. All these features can be calculated for all key events 
except for the last key event as there is no consecutive key event. Since each participant may exhibit different 
behavior and given the fact that (typing) behavior is unique from person to person, the analysis is done for each 
participant individually. That means that the truthful messages need to be compared to the deceptive messages 
of each participant. If the typing behavior is different according to the feature, then this might indicate that 
discrimination of the two types of messages is possible for that person and feature. Consequently, this means 
that the appropriate set of features may be different for each user.   

In order to assess the differences between the two types of data (features coming from either the deceptive 
messages or the truthful messages), the Probability Density Function (PDF) is used. The PDF displays with 
what probability a certain value of the feature appears in the message. The values the feature can attain are 
plotted on the x-axis while the probability is plotted on the y-axis. The PDF can be used to visualize and 
calculate the differences of each feature between the two types of messages. The absolute difference in area 
between two PDFs can be calculated for each feature, by plotting a PDF of both the deceptive and truthful 
message in the training set of each user. This yields a difference value that reflects the difference of the feature 
between the truthful and deceptive training set. A PDF has an area that is equal to 1. In order to get the best 
insight on the differences between two PDFs, the absolute value of the difference over the whole domain are 
added up. The lower bound of the difference is 0, when the PDFs perfectly overlap. The upper bound for the 
difference between two PDFs is 2, which occurs if the two PDFs do not overlap at all. In Figure 10, a plot of two 
PDFs is shown. In the plot, the marked area represents the difference between the two PDFs. The advantage of 
this measure is that the differences for frequent and incidental feature values adjust their significance on the 
measure according to their occurrences. This means that differences in frequent values have a larger impact on 
the difference measure than infrequent values. 

 

Figure 10 - Example of two PDFs where the grey area represents the difference 
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5.1.2. Dwell time 

The dwell times can be plotted on the x-axis and the y-axis represents the probability of the dwell time. The 
PDFs of the dwell times of the two message types of participant 2 are shown in Figure 11. The plots of the 
deceptive and truthful data look quite similar. The corresponding difference between the PDFs is roughly equal 
to 0.17, which can therefore be considered low. 

 

Figure 11 - Empirical PDFs for dwell time per message type of participant 2 

Given the plot and the difference measure, it can be decided if the dwell time is an appropriate feature for this 
person. The difference measures for all users is given in  Table 5. The mean difference for all users is 0.25. This 
is in contrast with the statistical tests, which showed statistical significance for 9 participants. The dwell time 
was eventually not chosen for any participant, which will further be treated in chapter 5.4. 

5.1.3. Flight time 

There are four different types of di-graph flight times. The PDFs can be plotted to see differences between the 
two types. The plots for participant 2 are shown in Figure 12. The difference values of the PDFs in this plot are 
0.37, 0.36, 0.33 and 0.33 for the Down-Down, Down-Up, Up-Down and Up-Up flight times respectively. All the 
plots confirm that there are differences in both the PDFs. The range of values the flight-time attains is much 
larger than for the dwell time. The PDFs generally shown that there are more high-valued flight times for the 
deceptive messages than there are for the truthful ones. The average differences between the PDFs for all types 
of flight times lies between 0.44 – 0.45. Although the statistical tests showed that there were fewer participants 
for which the differences were statistically significant than there were for dwell time, the feature was adopted 
the most in the feature sets. As will be shown in the features selection further on, the different variants of the  
flight times were used in approximate 95% of the cases. 

 

Figure 12 – Empirical PDFs of the four flight times and the two message types for participant 2 
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5.1.4. Typing speed 

In this paragraph, the typing speed is treated. The typing speed per key event is the number of key presses that 
occur within 500 milliseconds of the key event. The fastest typing speed while writing a messages was 30 key 
presses per second, which was achieved by holding a key longer than 500 milliseconds. This behavior most 
often occurred with the shift key, as this key is often pressed when starting a sentence. These high typing speeds 
are not considered in this analysis because they do not reflect the true typing speed the participant performs. 
Without considering the long key presses, the average typing speed does not exceed 10 characters per second 
for each user.  In Figure 13 the PDFs are plotted of the typing speed of deceptive and truthful messages for 
participant 2. The difference value for these PDFs is 0.2575.  

 

Figure 13 - CDF of typing speed of the two types of messages of participant 2 

The typing speed showed the highest number of participants for which the differences were statistically 
significant. The feature was chosen for about 4 participants.  

5.1.5. Statistical difference 

In order to assess the differences in the data, a statistical test is done. This test will not be used for feature 
selection, as both the training and test set are used but give insight in the data. Also, the statistical test can be 
compared to the dataset of Banerjee to see if there are significant changes. The statistical test that will be used is 
the Mann-Whitney U-test, a test often used to find out if two signals come from a different source. In Table 3, 
the results of the statistical tests are shown. When a p-value of 0.05 is set as a threshold, the number of 
participants with a statistical significant difference are 9, 7, 9, 3, 3 and 13 for dwell time, down-down time, 
down-up time, up-down time, up-up time and typing speed respectively. The features for which the differences 
are statistically significant are denoted with asterisk (*). Although insightful and possibly hinting on the 
outcome of the results, the statistical significance will not be used in choosing the features. The difference in 
significance may be due to the fact that the flight times can attain very high (and low) values, e.g. the domain is 
wide. This increases the standard deviation which clearly has an influence on the results.  
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Deletion             Typing spree                         Pause 

 Power 
of test (U) 

Dwell time 
(p-value) 

Down – Down 
(p-value) 

Down – Up 
(p-value) 

Up – Down 
(p-value) 

Up – Up 
(p-value) 

Typing speed 
(p-value) 

1 728696 0,45 0,79 0,60 0,93 0,87 0,95 
2 370348 0,04* 0,00* 0,00* 0,00* 0,00* 0,00* 
3 770182 0,02* 0,01* 0,00* 0,25 0,06 0,00* 
4 451863 0,61 0,32 0,22 0,57 0,37 0,75 
5 712185 0,40 0,14 0,07 0,10 0,07 0,00* 
6 1188750 0,17 0,08 0,04* 0,37 0,25 0,14 
7 137326 0,67 0,98 0,92 0,89 0,95 0,30 
8 377363 0,94 0,76 0,79 0,57 0,70 0,73 
9 741744 0,82 0,51 0,80 0,85 0,83 0,39 

10 493350 0,13 0,09 0,29 0,12 0,38 0,00* 
11 953019 0,06 0,00* 0,00* 0,01* 0,00* 0,00* 
12 471744 0,45 0,94 0,96 0,89 0,92 0,28 
13 673221 0,89 0,75 0,71 0,92 0,80 0,24 
14 833112 0,13 0,02* 0,00* 0,22 0,12 0,00* 
15 504444 0,57 0,66 0,65 0,83 0,75 0,89 
16 837188 0,18 0,45 0,31 0,52 0,38 0,03* 
17 675193 0,09 0,04* 0,02* 0,14 0,08 0,00* 
18 17685 0,01* 0,05 0,02* 0,23 0,14 0,01* 
19 364161 0,00* 0,91 0,26 0,33 0,88 0,21 
20 1277276 0,04* 0,75 0,76 0,47 0,71 0,05 
21 238602 0,01* 0,67 0,24 0,47 0,96 0,71 
22 793788 0,03* 0,26 0,01* 0,63 0,61 0,00* 
23 416185 0,30 0,92 0,70 0,58 0,95 0,32 
24 163011 0,05 0,04* 0,14 0,01* 0,04* 0,00* 
25 846299 0,72 0,10 0,07* 0,27 0,16 0,08 
26 710525 0,00* 0,98 0,18 0,50 0,51 0,67 
27 99408 0,57 0,91 0,82 0,68 0,92 0,64 
28 1196443 0,07 0,02* 0,00* 0,44 0,13 0,30 
29 401520 0,65 0,27 0,10 0,52 0,34 0,01* 
30 28091 0,01* 0,60 0,33 0,88 0,56 0,02* 

Table 3 - Mann-Whitney U-test for the key event features 

5.2. Analysis of specific interactions 

5.2.1. Introduction 

In this paragraph, some features are studied that cannot be modeled per key event. The literature implies that 
lying is a cognitive intensive process and it is shown that deceivers display longer pauses and lower response 
lengths consequently (Vrij, 2008). In this chapter, these characteristics are treated and modeled into features to 
be reviewed. Figure 14 shows the char codes (on the y-axis) plotted against the timestamps of all key events of a 
message. Each circle represents a key press. The arrows point to different places in the message where deletion, 
typing or a pause occurs. These figures are insightful to generate an idea on what happened while the 
participant was writing the message, but visually analyzing the 120 messages did not yield a new insight. 

 

 

 Figure 14 – Time series of categorized key chars of a participant  
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The deletion keys also show a certain pattern. For small corrections, the key is used one time. In a lot of cases 
however, the key is used frequently to delete a large amount of text. It would be useful to recognize this 
behaviour and to find out if the frequency and length with which these deletion moments occur is influenced by 
the intent of the message. Furthermore, the typing speed or pause rate may indicate the thoughts a user has put 
in while writing a message. Writing a deceptive message could supposedly cost more time as the participant has 
to come up with arguments. Or maybe will be done faster as he is proficient with lying. That is what will be 
analysed in the coming paragraphs.  

5.2.2. Quantitative message properties 

In this paragraph, some quantitative properties between the deceptive and truthful messages will be analysed. 
The properties are message length, time to write the total message and the deletion rate. These aspects are 
derived from the literature on deception, which states that often these traits also change for real-life deceivers 
(Vrij, 2008). 

First, the message length is analysed. Deceivers are said to produce shorter answers. This might be reflected in 
the number of key events per message. In Figure 15, the number of key events are plotted per message type and 
participant (x-axis). The figure indicates that there is no quantitative pattern visible that discriminates truthful 
from deceptive messages. The number of key events per message seem distributed randomly. It is shown that 
each participant has messages of equal size. The number of key events does not visually indicate cues that 
discriminate deception from truthfulness. 

 

Figure 15 - Key events per message of each participant 

Key events do not reflect the length of the message properly. The number of key events may increase as a user 
presses the shift or delete, but this does not change the size of the semantical message consisting of alphabetic 
characters. The true number of alphabetic characters of each message can be plotted against the number of key 
events that was needed to form this message, to see the differences between the messages per intent. In Figure 
16, the true message length is plotted against the number of key events. The plot does not show a difference 
between the two types of messages, as both the truthful and deceptive messages are equally distributed 
throughout the range.  

 

Figure 16 - Plot of true message length against  the number of key events 
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Now the literature on deception also showed that deceivers need more time to formulate an answer (Vrij, 
2008). In Figure 17, the writing time in seconds is plotted for each message per user. The figure shows that 
writing time does not obviously discriminates messages by intent per person. The messages are distributed 
rather homogeneously which will not favour a classification job based on this metric.  

 

Figure 17 - Plot of the writing time in seconds for each message per user 

Lastly, the number of deletions can be plotted against the total number of key events. Deletions may have a 
predictive force when it comes to deception, as participants may be more hesitant about their writing when they 
are deceptive. In Figure 18, the number of deletions is plotted against the key events of the corresponding 
message. It is shown in the plot that the truthful and deceptive messages are spread homogenously. This makes 
deletion per length of message unfit for classification.  

 

Figure 18 - Number of deletions against the total number of key events of a message’ 

To conclude, the features considered in this sub-chapter do not show visible differences that are suitable to be 
used for classification. 

5.2.3. Pauses between words 

After writing each word, the participant may take a pause. During these pauses, the participant may do several 
things. He may continue writing, take some time to think, look for spelling errors, or check the contents of his 
written words. The pauses during these breaks might be indicators to deception. In order to analyse these 
pauses, each part in the text where two words are separated is analysed. This separation is typically 
characterized by a space. In Figure 19, the PDFs of the messages of participant 2 are plotted. The plot does not 
show obvious differences between the two messages, with a difference value of 0.3744.  



  

38 
 

 

Figure 19 - Pauses between words per message type of participant 2 

5.2.4. Statistical differences 

The quantitative features, as displayed in chapter 5.2.2, show no visible difference between the two types of 
messages. The pause rate however, did show some differences. In this sub-chapter, the statistical properties of 
the pauses between words of the two message types for each participant will be calculated. For the statistical 
test, a Mann-Whitney U-test will be used. The results are shown in Table 4. A p-value of 0.05 is chosen. The 
number of participants with statistical significant differences in the pause rate between words is 1. 

 Power Pause rate 
(p-value) 

1 16650 0,87 
2 7497 0,92 
3 18785 0,20 
4 8512 0,56 
5 17391 0,36 
6 23618 0,33 
7 3176 0,66 
8 5895 0,36 
9 13448 0,06 

10 11020 0,22 
11 19292 0,00* 
12 10034 0,85 
13 12740 0,66 
14 19623 0,76 
15 11250 0,93 
16 17922 0,33 
17 13659 0,27 
18 441 0,50 
19 6825 0,25 
20 29507 0,17 
21 5792 0,13 
22 18236 0,17 
23 7473 0,10 
24 3328 0,25 
25 16888 0,76 
26 14453 0,92 
27 1922 0,90 
28 22038 0,79 
29 8954 0,89 
30 528 0,08 

Table 4 - Mann-Whitney U-test for the pause rate 
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5.3. Analysis of dataset of Banerjee et al. 

In order to assess the quality of the PwC dataset, the features of the PwC dataset will be compared to the corpus 
(dataset) of Banerjee et al., which is freely available6. The dataset was created using Amazon Turk, an online 
platform where participants can do experiments to be used for AI research in exchange for a small amount of 
money. The corpus consists out of three datasets. The first dataset was created by participants who wrote both a 
truthful and false restaurant review. The second and third dataset was created by letting participants write a 
small essay about their stance on gun control and gay marriage. The data was labelled according to the stance 
on the subject, which was answered initially before writing the essays. The datasets consist out of 1000, 800 
and 800 texts respectively where each unique participant wrote 2 reviews/essays, both truthful and deceptive. 
Each unique participant contributed to only one dataset. 

For a good comparison, the gun control dataset is chosen. The design of the experiment comes close to the 
design in this thesis and the classification results were good. Because the dataset was created by 400 
participants, the data is sampled to 100 participants whom are randomly chosen. The features as treated in this 
thesis, are calculated for each participant and their (deceptive and truthful) messages.   

5.3.1. Statistical difference 

In order to compare the dataset to the PwC dataset, a statistical test is done. The statistical test that is used is 
the Mann-Whitney U-test. The results (U- and p-value) are shown in Appendix B.2. With a threshold of p < 
0.05, the number of participants with statistical significant features are 34, 29, 31, 23, 19 and 53 for the dwell 
time, down-down time, down-up time, up-down time, up-up time and typing speed respectively. The threshold 
for the pause rate is also chosen to be p < 0.05. This threshold resulted in a statistical significant difference in 
the pauses between words between the two types of messages for 14 participants. 

5.4. Feature selection 

In this chapter the features that can be used for classification were studied. In chapter 5.1, the most common 
features were studied per key event. The features were dwell time, flight time and typing speed. In chapter 5.2, 
the quantitative properties of the messages were explored such as the message length, time to write the message 
and deletion rate. It was found that these quantitative features do not possess predictive characteristics that can 
be used for distinguishing truthful from deceptive messages. The pauses between words were also studied for 
each participant and between the message types.  

By looking at the PDFs and calculating a difference value, the suitability of a feature for each participant can be 
assessed. The results of the difference in values for each participant can be found in Table 5. In order to select 
the best features, a best-of-three approach is taken. That means that the three features with the highest 
difference value compared to the other features are chosen. The pause rate is modeled in a different way than 
the other features. Since there are fewer words than key events, there are consequently fewer pause rate 
instances. For that reason, the pause rate will be considered different from the feature set consisting out of the 
three features that are selected from the dwell time, flight times and typing speed. In paragraph 5.4.1 the PwC 
dataset will be considered and in paragraph 5.4.2 the dataset of Banerjee et al. will be considered.  

5.4.1. PwC dataset 

The PDFs of the messages per participant were analyzed and a difference rate was calculated. In Table 5, the 
difference values for the pauses between words can be found for each participant. The features annotated with 
an asterisk (*) are the features with the highest difference value and are adopted in the feature set of that 
participant. 

It is shown in the table that adoption rate for the dwell time is non-existent, as no participants had a higher 
difference value than other features. The adoption of the typing speed was higher, with 4 participants having a 
large enough difference value*. The flight time appears as the most effective discriminating feature, with an 
adoption rate of 18, 24, 19 and 25 for the Down-Down, Down-Up, Up-Down and Up-Up respectively.  

  

                                                             
6 http://www3.cs.stonybrook.edu/~junkang/keystroke/ 
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Participant Dwell  
time 

Down-down Down-up Up-down Up-up Typing  
speed 

Pauses 

1 0,29 0,33 0,45* 0,36* 0,36* 0,16 1,05* 
2 0,20 0,42 0,52* 0,46* 0,45* 0,28 0,79* 
3 0,20 0,25 0,26* 0,29* 0,32* 0,20 0,59* 
4 0,28 0,37 0,40* 0,38* 0,40* 0,15 1,12* 
5 0,24 0,33 0,38* 0,38* 0,36* 0,20 1,06* 
6 0,16 0,37* 0,39* 0,41* 0,36 0,15 0,99* 
7 0,47 0,65* 0,66* 0,59 0,67* 0,22 1,42* 
8 0,25 0,43 0,55* 0,48* 0,53* 0,28 1,44* 
9 0,15 0,39* 0,35 0,41* 0,39* 0,26 1,20* 

10 0,13 0,48* 0,45* 0,43 0,46* 0,25 1,11* 
11 0,22 0,37 0,42* 0,34 0,41* 0,38* 1,03* 
12 0,22 0,40 0,46* 0,40* 0,43* 0,33 0,98* 
13 0,25 0,32 0,38* 0,36* 0,34* 0,25 0,95* 
14 0,12 0,40* 0,39* 0,37 0,31 0,43* 0,67* 
15 0,21 0,46* 0,40* 0,37 0,45* 0,16 1,21* 
16 0,19 0,30* 0,40* 0,29 0,37* 0,14 0,91* 
17 0,19 0,40* 0,46* 0,39 0,40* 0,39 0,97* 
18 0,67 1,22* 1,29* 0,96 1,10* 0,43 2,00* 
19 0,27 0,59* 0,58* 0,54 0,57* 0,13 1,12* 
20 0,15 0,34* 0,35* 0,35* 0,30 0,19 1,12* 
21 0,24 0,49* 0,45* 0,41 0,49* 0,13 1,12* 
22 0,28 0,31* 0,30 0,32* 0,39 0,26 0,79* 
23 0,17 0,33 0,36* 0,44* 0,41* 0,20 1,38* 
24 0,22 0,54* 0,44 0,47* 0,47* 0,40 1,27* 
25 0,21 0,34* 0,33 0,42* 0,34* 0,13 1,01* 
26 0,42 0,33 0,35* 0,45* 0,41* 0,22 0,99* 
27 0,41 0,56 0,56* 0,51 0,57* 0,66* 1,25* 
28 0,21 0,42* 0,41 0,42* 0,46* 0,16 1,01* 
29 0,18 0,36* 0,33 0,35* 0,34 0,45* 1,12* 
30 0,39 0,67* 0,67* 0,71* 0,58 0,19 1,41* 

Table 5  - Difference measure of the PDFs for each user and feature 

5.4.2. The Banerjee et al. dataset 

The feature selection procedure for the Banerjee et al. dataset is similar to the feature selection of the PwC 
dataset. The PwC dataset has the advantage that there are two deceptive and two truthful messages per 
participant available, whereas the Banerjee et al. dataset only has one message per type available. In order to 
separate the training and test set, the messages are divided in half. The first quarter and third quarter of a 
message is used to select the features and for training, whereas the second quarter and fourth quarter of the 
message is used as the test set. The features showed some strange behavior for some users. Figure 20 shows the 
first two key events of the fake essay of participant 1563 on gun control. The dwell time for the first key event is 
8 milliseconds, which is very low compared to other participants. However, the flight time seems normal. 

 

Figure 20 - First two key events of participant 2 

The difference values for the features can be found in appendix B.3. The dwell time was non-existent using the 
best-of-three method, and was not chosen for a particular feature set. The typing speed was selected for 7 
participants. The flight time had the highest selection rate with an adoption for 63, 82, 64 and 84 participants 
for the down-down, down-up, up-down and up-down flight time respectively. 
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6. Data analysis 
Now that the data is modeled and the features are extracted from the data, the next step is to produce a 
meaningful analysis by using methods as selected in chapter 2.3. In sub-chapter 6.1, the approach to analyzing 
the dataset will be explained. In sub-chapter 6.2, the distance based classification will be considered. In sub-
chapter 6.3, classification of the PwC dataset using machine learning methods will be considered. Finally, in 
sub-chapter 6.4, the classification of the Banerjee et al. corpus using machine learning will be considered.  

6.1. Approach 

6.1.1. Datasets 

In the PwC dataset, each participant yields one complete dataset consisting out of two truthful and two 
deceptive messages. The PwC dataset is naturally divided into four subsets, i.e. the four messages with the 
corresponding intent. The dataset of Banerjee et al. contains only one deceptive and truthful message per 
participant. The analysis will be done using a distance based approach and using machine learning. For each of 
these approaches, the data is split differently.  

First the distance based classification method is considered. Both the training and test sets of both datasets are 
50% of the total, resulting in a 50/50 division. For the PwC dataset, two messages (one truthful and one 
deceptive) are randomly selected to be used for training. These are the same messages for which the features 
were selected. The remaining two messages will be used as the test set. The training set is used to adjust the 
classification method parameters and the test set is used to validate the effectiveness of the classification 
method to new data. This yields the division as shown in Figure 21. Since each message consists of 
approximately 500 key events, both the training and test sets will consist of an average of 1000 key events per 
participant. The training set of the Banerjee et al. dataset consists of the first and third quarter of each message. 
This is the same split for which the features were selected. The second and fourth quarter of the message will be 
used for validation (test set).  For the classification, both the feature set and the pause rate as discussed in 5.4 
will be used. 

 

Figure 21 – Exhaustive 2-fold cross-validation 

The WEKA experimenter uses other means to split the data. This means that for the machine learning methods, 
a different kind of split will be used. A cross-validation approach with 4 folds and 5 iterations is used. This 
approach can be used for both the PwC dataset as well as for the Banerjee et al. dataset (in their paper, a 5-fold 
cross validation approach was used for classification). The pause rate will not be considered for machine 
learning as the pause rate is a 1-dimensional feature which is not appropriate for the algorithms. Only the 
feature set will be tested. Samples from the results  

6.2. Distance based classification 
6.2.1. Classification of the PwC dataset 

The distance based classification is calculated by the sum over the feature vector of the absolute difference to 
the mean of the test set normalized by the mean average deviation of the test set. In chapter 5.4, a set of features 
was selected for each user. After calculating the mean vector and mean absolute deviation vector for both types 
of the training set per participant as explained in 2.3.1, the classification performance can be evaluated for each 
instance. When the distance to the truthful training set is smaller than the distance to the deceptive training set, 
an instance is considered truthful and vice versa. If more instances of a message are closer to the truthful 
dataset, the whole set of instances is considered a truthful message and vice versa.  

The results of the classification are presented in Table 6, which represents the total 60 messages in the PwC test 
set. The top row depicts the actual deceptive messages and the bottom row depicts the actual truthful messages 
and each row sums to 30 for each type of each participant. The left column depicts the messages that are 
classified as deceptive and the right column depicts the messages that are classified as truthful. For one 
participant, both messages were classified wrong. For another participant, both messages were classified 
correctly. For each of the remaining participants, one message was incorrectly classified and one message was 
correctly classified.  
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 Classification 
Actual 
Class 

18 12 
18 12 

Table 6 – Confusion matrix for the classification using the key event feature sets 

Since the features of the pause rate cannot be modelled per key event, this feature will be treated separately. 
The distance-based classification method yields the classification results as displayed in Table 7. For two 
participants, both messages were classified wrong. For three participants, both messages were classified 
correctly. For each of the remaining participants, one message was incorrectly classified and one message was 
correctly classified. The classification shows the same classification bias as for the classification using the 
feature set. 

 Classification 
Actual 
Class 

18 12 
18 12 

Table 7 - Confusion matrix for the classification using the pause rate 

The individual classification results per participant can be found in Table 8 where each row represents one 
participant. The table shows the 𝑡𝑝, 𝑓𝑝, 𝑡𝑛 and 𝑓𝑛 of the key events coming from the two types of messages in the 
test set. Choosing the largest number to classify the message (𝑡𝑝 aginst 𝑓𝑝 and 𝑡𝑛 against 𝑓𝑛) from each test set 
type is chosen, the results as in Table 6 and Table 7 will appear. Ideally, when one of the two classification 
approaches (feature set or pauses) performs badly, a combined classification rate can be calculated to enhance 
the performance. In this case however, the feature set and the pause rate show the same bias. Combining the 
accuracies does not result in a better performance. In the cases where either the feature set or the pause rate 
performs better than the other, combining the accuracy would result in a decrease of the accuracy instead of a 
rise as the performance overall is bad.  

 Key event feature set Pauses 
Participant Deceptive Truthful Deceptive Truthful 

1 TP FP FN TN TP FP FN TN 
2 192 452 183 399 15 63 21 67 
3 81 444 46 387 8 48 7 60 
4 202 610 75 201 38 89 12 31 
5 218 286 183 214 32 29 23 32 
6 98 377 123 566 21 86 19 82 
7 472 378 436 340 66 52 57 62 
8 151 182 112 143 15 35 15 35 
9 433 15 458 20 26 10 51 9 

10 300 236 323 249 85 6 77 7 
11 323 301 258 243 35 19 52 26 
12 338 286 420 525 69 17 98 34 
13 259 169 364 249 57 1 93 0 
14 337 332 520 400 52 3 51 1 
15 243 378 337 343 40 49 35 70 
16 269 370 185 263 20 34 21 46 
17 389 327 391 282 62 46 61 36 
18 247 218 363 322 32 40 48 43 
19 160 5 86 5 7 7 4 2 
20 353 209 300 212 29 3 49 10 
21 326 420 281 488 6 125 5 128 
22 189 129 177 147 49 1 44 5 
23 514 96 544 69 65 24 68 25 
24 288 217 222 162 35 35 29 19 
25 197 35 197 41 26 0 37 1 
26 497 218 458 200 71 23 78 12 
27 18 37 332 526 51 135 30 90 
28 142 172 136 72 19 2 33 3 
29 434 406 409 393 99 16 99 15 
30 261 232 247 187 61 10 42 19 

Table 8 - Confusion matrices of all the key features per user 
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6.2.2. Classification of the Banerjee et al. dataset 

The PwC dataset can be compared with the Banerjee et al. dataset. The confusion matrix of the distance based 
classification using the feature sets is presented in Table 9. There was one participant for which both parts of 
the messages were classified incorrectly. For another 5 participants both the parts of the messages were 
classified correctly. For the remaining 94 participants both messages were either classified as deceptive or 
truthful. 

 Classification 
Actual 
Class 

56 44 
52 48 

Table 9 - Confusion matrix for the classification of messages using the key event feature sets 

The confusion matrix of the distance based classification using the pause rate is presented in Table 10. There 
were two participants for which both the parts of the messages were classified correctly. For the remaining 98 
participants both messages were either classified as deceptive or truthful. 

 Classification 
Actual 
Class 

51 49 
49 51 

Table 10 - Confusion matrix for the classification of messages using the pause rate 

The results and a comparison will be further treated in chapter 7. 

6.3. Classification of PwC dataset using machine learning 

In this sub-chapter, the algorithms which will be used for classification are tuned. Afterwards, the PwC dataset 
is classified using the algorithms and the classification performance is presented. A test message is classified as 
truthful or deceptive if the specificity (true negative rate) or sensitivity (true positive rate) of the classification 
exceeds 0.5 respectively. This means that more key events of a message are classified correctly then incorrectly, 
making it more probable that the message is of the specific type. 

6.3.1. Naive Bayes 

The are no relevant parameter that can be adjusted for the Gaussian Naive Bayes (the prior class probability is 
not suitable for this task). In Table 11, the confusion matrix together with the important performance indicators 
is presented. The classification is done using 4-fold cross-validation. The table shows the average accuracy and 
standard deviation over all 30 participants from the PwC dataset. For all 30 participants, both messages were 
either classified as truthful or deceptive. The sensitivity and specificity do not reflect properly what happened 
for each participant individually, as each of the metrics are summaries of the 30 participants. The standard 
deviation is quite high, implying that either the sensitivity or specificity was quite high and the other one quite 
low. And for other participants, this was the other way around. Therefore, summaries do not reflect properly 
what is actually happening. The confusion matrix together with a description for how many people the 
classification bias occurred is a better approach. 

    𝝁 𝝈 
 Classification  Accuracy 0.50 0.06 

Actual 
Class 

17 13  Sensitivity 0.56 0.44 
17 13  Specificity 0.44 0.48 

Table 11 - Confusion matrix and performance indicators for NB for the feature set 

The NB implementation in WEKA is able to deal with continuous data, as the program uses a Gaussian 
distribution by default for numerical features. Discretizing the features beforehand may increase the 
performance and accuracy of the algorithm slightly (Kaya, 2008). However, despite the fact that there are 
optimizations possible, the general performance of Naïve Bayes is highly biased and seems not fit for this 
classification task.  

6.3.2. Tuning SVM 

SVM can be tuned using two parameters and by selecting different kernels. The 𝛾 parameter defines the 
influence a single instance can have on the algorithm and the parameter C defines the degree of accepting 



  

44 
 

instances that are not separable. When 𝛾 is high, the kernel will look for values in its vicinity and this may result 
in overfitting. While as the 𝛾 becomes low, the reach of the kernel may become too large and the SVM is not 
able to capture the complexity of the data and will yield similar results to a linear SVM. Since 𝛾 is only used in 
kernels and needs to be low for the kernels to show different behavior compared to linear models, the 𝛾 value 
will be set to 1𝑒−12. This value will guarantee low bias but may result in high variance. When C is low, it will 
accept most instances that lie on the wrong side of the hyperplane and when C→ ∞, no instances in the wrong 
side of the hyperplane are accepted. The C value is more relevant for optimization. There is a wide choice of 
kernels which can be chosen, but the most popular are the linear SVM and the Gaussian Radian Based Function 
(RBF) kernel. These functions will therefore be tested and the accuracy of these will be evaluated.  

For a linear kernel, a change in the C value has little to no significant effect as the SVM algorithm shows 
extreme bias. When C=0.1, the sensitivity or specificity is either 0 or 1, indicating that all the keystrokes are 
either classified as deceptive or truthful. Raising the parameter to 10 does not yield different classification rates. 
The confusion matrix can be found in Table 12. For all participants, all keystrokes were either classified as 
deceptive or truthful.  

For the RBF kernel, the results were similar to the linear kernel. The C value seemed of no influence on the 
classification and for all participants, the classification was biased. Meaning that both messages were either 
classified as truthful or deceptive with a specificity and/or sensitivity being exactly one.  

 Classification   Classification 
Actual 
Class 

17 13  Actual 
Class 

17 13 
17 13  17 13 

Table 12 -  Confusion matrix for the SVM linear (left) and RBF (right) kernel using the feature set 

6.3.3. Tuning k-NN 

k-Nearest Neighbor algorithm has two parameters that can be used for tuning. The first one is obviously the 
number k, which should be uneven as an even number may cause ambiguity as the classes are equally present. 

The second parameter is the distance weighing. For this classification, the popular weighing scheme 
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 is 

used. This weighing scheme decreases the importance of a neighboring class depending on the distance of the 
neighbor to the instance that needs to be classified.    

The specificity and sensitivity were both distributed around 0.5 for low values of k. The model became more 
biased with an increase in k, resulting in an increase in the difference between the specificity and sensitivity 
became larger. The best classification results were the best for k = 3, resulting in the classification performance 
as shown in Table 13. For 2 participants, both messages were classified incorrectly. For another 4 participants, 
both messages were classified correctly. For the remaining 23 participants, only one message was classified 
correctly. 

 Classification 
Actual 
Class 

16 14 
13 17 

Table 13 - Confusion matrix for kNN classification using the feature set 

6.3.4. C4.5 

Generally, decision trees may have difficulties with large feature sets. Since there are only a small number of 
features for each participant, this becomes no problem for the decision tree. Another downside to decision trees 
is that the trees may grow too deep and overfitting will occur. In order to account for this, pruning nodes may 
prevent suboptimal splits to occur. In WEKA, default pruning is applied to nodes that only classify two 
instances to maintain generalizability. The most important factor that WEKA can optimize is the confidence 
factor c that is used for pruning where smaller values incur more pruning.  

Tuning the parameter c did not seem to have any significant effect on the results. The specificity and sensitivity 
were either 0 or 1 for most users, indicating a large classification bias. The confusion matrix with the 
classification performance is shown in Table 14. For one participant both the messages were classified correctly. 
For the remaining 29 participants, both messages were either classified as deceptive or truthful. 
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 Classification 
Actual 
Class 

18 12 
17 13 

Table 14 - Confusion matrix for C4.5 classification using the feature set 

6.3.5. Random forest 

The implementation of random forest is straightforward in WEKA and not many parameters are available for 
optimization. The max number of features to use per tree does not increase the classification, as there are 
already not many features. The number of trees used is automatically optimized in WEKA. In Table 15, the 
confusion matrix of the classification can be found. For one participant, both messages were classified 
incorrectly. For another 6 participants, both the messages were classified correctly. For the remaining 23 
participants, both messages were either classified as deceptive or truthful. 

 Classification 
Actual 
Class 

19 11 
15 15 

Table 15 - Confusion matrix for RF classification using the feature set 

6.4. Classification Banerjee et al. dataset using machine learning 

The Banerjee et al. dataset can be classified using machine learning as a benchmark. Not all algorithms will be 
used as a comparison. The algorithms Naïve Bayes, k-NN and C4.5 are chosen as the classification results were 
good compared to the other algorithms, the algorithms are well known and are inexpensive. First the 
algorithms will be tuned, after which the best classification results will be considered. 

6.4.1. Naive Bayes 

The results for the NB classification are displayed in Table 16. There was exactly one participant for who both 
messages were classified correctly. For the rest of the participants, both messages were either classified as 
deceptive or truthful. The classification shows a strong biasedness towards deceptive messages.  

 Classification 
Actual 
Class 

64 36 
63 37 

 Table 16 - Confusion matrix for classification for NB using the feature set  

6.4.2. k-NN 

The results for k-NN were convincingly the best when k = 9. The results of the classification can be found in 
Table 17. The classifications shows a strong bias towards deceptive messages. For 2 participants, both the 
message parts were classified incorrectly. For another 15 participants, both the message parts were classified 
correctly. For the remaining 83 participants, the parts of both messages were either classified as truthful or 
deceptive. 

 Classification 
Actual 
Class 

77 23 
65 35 

Table 17 - Confusion matrix for classification for k-NN using the feature set 

6.4.3. C4.5 

Lastly, the decision tree C4.5 will be tested. Changing the parameter c did not improve or decrease the 
classification. A c-value of 0.25 is used for the classification, which is displayed in Table 18. For one participant, 
the parts of both the messages were classified correctly. For the other participants, the parts of both messages 
were either classified as deceptive or truthful. 

 Classification 
Actual 
Class 

73 27 
72 28 

Table 18 - Confusion matrix for classification for C4.5 using the feature set 
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7. Results 
In this chapter, the results of the (exploratory) data analysis phase will be discussed. In sub-chapter 7.1, the two 
datasets used in this thesis are compared. In sub-chapter 7.2, the results of the distance based classification of 
both datasets is considered. In sub-chapter 7.3, the results of the machine learning methods of both datasets is 
considered. 

7.1. Dataset comparison 

In order to detect changes in the data for both the PwC and Banerjee et al. dataset, statistical tests were done in 
chapter 5. Each feature of the whole dataset was tested, where all the instances of a feature from one or more 
deceptive messages were compared to all the instances of a feature from one or more truthful messages. The 
statistical test was done with the Mann-Whitney U-test. The number of participants for which each feature was 
found to be significantly different, are displayed in Table 19. The distribution of statistically significant features 
follows more or less the same pattern for both datasets. Some of the low acceptance rates may be explained due 
to high variability in the dataset, as the Up – Down and Up – Up flight times may take the highest range of 
values of all features.  

 PwC dataset (n = 30) Banerjee et al. (n = 100) 
Dwell time  9 (30%)  34 (34%) 

Down – Down 7 (23%) 29 (29 %) 
Down – Up 9 (30%) 31 (31%) 
Up – Down 3 (1%) 23 (23%) 

Up – Up 3 (1%) 19 (19%) 
Typing speed 13 (43%) 53 (53%) 

Pause rate 1 (3%) 14 (14%) 

Table 19 - Number of participants for which the differences of the dataset were statistically significant 

After the statistical tests were done for all participants and features of the whole dataset, the features for each 
participant were selected. The feature selection process was done using a best-of-three approach. First the 
difference value between the PDFs of the training set (containing a truthful and deceptive message/part of 
message) were calculated. The three features with the highest difference value were selected to populate the 
feature set of that participant. For the pause rate, no features were selected as this feature was modeled 
differently and classified separately. In Table 20, the adoption rate is presented. The adoption rate is the 
number of participants that accepted the feature in their feature set (one of the three features with highest 
difference value). The adoption rate shows similarities between the two datasets, as the Down - Down, Down - 
Up and Up - Up flight times are very near. It is also remarkable to see that the dwell time was not accepted in 
both cases.  

 PwC dataset (n = 30) Banerjee et al. (n = 100) 
Dwell time 0 (0%) 0 (0%) 

Down – Down 18 (60%) 63 (63%) 
Down – Up 24 (80%) 82 (82%) 
Up – Down 19 (63%) 46 (46%) 

Up – Up 25 (83%) 84 (84%) 
Typing speed 4 (13%) 7 (7%) 

Table 20 - Adoption rate of the features for both datasets 

7.2. Distance based classification results 

The distance based classification (using a Manhattan metric) was done for both the PwC dataset as well as for 
the sample of the Banerjee et al. dataset. The classification was also done for the feature set (best of three 
features) and the pause rate. In Table 21, the results of the classification is displayed. The rows indicate if (parts 
of the) messages of a participant are both classified correctly (both correct), classified incorrectly (both 
incorrect) or if the model is biased towards classifying both messages as one type (biased). The distribution of 
the results are similar. Most of the participants had a classification bias. 
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 PwC dataset (n = 30) Banerjee et al. (n = 100) 
 Both correct Both wrong One wrong Both correct Both wrong One wrong 

Feature set 1 (3%) 1 (3%) 28 (93%) 1 (1%) 5 (5%) 94 (94%) 
Pause rate 3 (1%) 2 (6%) 25 (83%) 2 (2%) 0 (0%) 98 (98%) 

Table 21 - Distance based classification results 

7.3. Performance of the algorithms  

In Table 22, the results for the classification using machine learning algorithms is presented. The rows indicate 
if (parts of the) messages of a participant are both classified correctly (both correct), classified incorrectly (both 
incorrect) or if only one message is classified correctly indicating that the data is unclear and not separable. 
Generally, the classification performance is bad as for most participants the model becomes biased. The 
performance was the best for RF and k-NN, which had the highest number of participants for which both 
messages were classified correctly. The results show that the algorithms treat both the datasets in the same 
manner, which yields equally bad results.   

 PwC dataset (n = 30) Banerjee et al. (n = 100) 
 Both correct Both wrong One wrong Both correct Both wrong One wrong 

NB 0 (0%) 0 (0%) 30 (100%) 1 (1%) 0 (0%) 99 (99%) 
SVM 0 (0%) 0 (0%) 30 (100%) - - - 
k-NN 4 (13%) 2 (6%) 26 (86%) 15 (15%) 2 (2%) 83 (83%) 
C4.5 1 (3%) 0 (0%) 29 (96%) 1 (1%) 0 (0%) 99 (99%) 
RF 6 (20%) 1 (3%) 23 (76%) - - - 

Table 22 - Number of participants for each classification result 
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8. Conclusion and Discussion 
In this chapter, the research questions are answered in sub-chapter 8.1. Sub-chapter 8.2 contains a discussion 
on the results and sub-chapter 8.3 describes future research directions. 

8.1. Conclusion 

In this sub-chapter, the (sub) research questions are answered. 

S1.   What insights does the literature about deception detection yield?  
  

A broad overview of the state of the art of deception detection is given in literature study in paragraph 2.1. The 
research on deception detection spans decades, focusing on a challenge that has kept humans concerned for 
millennia. Hypothesis that stem from research indicate that deceiving is a broad term for sending a message to 
fosters a false believe. In order to be deceptive, the sender has to write a message that contains a statement with 
which the sender intrinsically disagrees or knows is not (entirely) true. Since real world deceptive detailed 
keystroke data is hard to conceive, an experiment had to be designed to force participants into being deceptive. 
In this experiment, participants were asked their opinion about a subject they cared about: their work. The 
questions were designed in collaboration with an experienced senior manager at PwC. It was mentioned that 
the research was anonymous in order for people to feel safe to answer the questions. The experiment was also 
designed to be full disclosure. The experiment deviated from an existing experiment by gathering more 
questions (a total of 4 messages) and by using different questions throughout the experiment such that for each 
task, a new answer had to be generated. Once the opinions of four statements were answered, two opinions 
were randomly selected and reversed. The participant was then asked to defend the four statements, two 
statements to explain their true opinion and two statements that they disagreed with. This design was created 
using literature (Carlson et al., 2004) to create the experiment in a CMC-environment.   

The first insight from the literature on deception detection is a direct consequence of the definition of a 
deceptive message (Buller & Burgoon, 1996). This definition states that a deceptive message can take a lot of 
forms ranging from a full fabricated lie, to a half-truth, concealment and vagueness. Due to this broad 
definition, a scope on the interpretation of deception has to be established to prevent ambiguity in the research 
design. Other important insights come from the four-factor (Zuckerman et al., 1981) and the leakage hypothesis 
(Ekman & Friesen, 1969). These theories build upon each other where the four-factor theory defines factors that 
the deceiver experiences when deceiving. Arousal is defined to be the most prominent factor. The leakage 
hypothesis describes how these factors manifest itself in a behavioral and physical manner. More recent studies 
and surveys describe in more detail how the people expect deceivers to behave and how deceivers actually 
behave (Vrij, 2008). People tend to be very bad in deception detection as the accuracy of detecting deception is 
often equal to the chance of guessing or worse due to biasedness (Bond & DePaulo, 2006). Research on 
deceiving in a CNC environment is scarce.  

S2. What characteristics can be extracted from the typing rhythm data that change when people are 
deceptive and when they are not?  

In paragraph 2.2, an extensive study was done on the chronology of keystroke dynamics. The literature 
overview covers the methods and characteristics that were used to assess topics like authentication, 
identification and emotion recognition. Some scholars mention that the challenge in keystroke dynamics is 
finding new characteristics (or features). However, some features already have so much success in the earlier 
mentioned topics that they are referred to as behavior biometrics. These were treated in Chapter 4. This thesis 
asserted that given the fact that other (behavioral) biometrics change when people are deceptive, keystroke 
dynamics such as a biometric may also change. The features that can be considered a biometric are dwell time 
(the time a person holds a key), the flight time (the time it takes to press and/or release consecutive keys, the 
typing speed, the capitalization rate, the special key rate, the deletion rate, the pause rate, punctuation rate, 
unrelated keys rate and special key rate. Now these features have a lot of overlap. Some features were identical 
or not suitable for this thesis. Therefore, the most important behavioral features were chosen to test the 
hypothesis. These features were the dwell time, digraph flight time and the typing speed. Also the pause rate 
between words was considered separately. 

In Chapter 5, an exploratory study was done to enhance the intuition about the data and to discover possible 
new patterns. Some statistical tests were performed on the dataset next to a feature selection phase, in which a 
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difference value was calculated. There was a large difference between the results of the statistical tests and the 
difference values. This might be due to the standard deviation of some of the features, which resulted in a 
decrease in statistical significance for the users. The dwell time was eventually not chosen at all. The dwell time 
was chosen in 95% of the cases. The typing speed approximately a third of the cases. Other (quantitative) 
characteristics were also studied in this thesis. The quantitative characteristics analyzed were the lengths of the 
messages in time and key events, and the deletion rate. These characteristics did not seem to be distinguishable 
visually and where not used for analysis. 

S3. What are the methods that one can use to discriminate between truthful and deceptive 
messages using only the keystroke data? 

Since the accessibility of fast computers and the possibility to store and exchange data, machine learning has 
taken a flight in the last decades. In chapter 2, the chosen algorithms are chosen based on their performance 
and popularity. Since no baseline classification on deceptive messages has been performed yet, the performance 
of these methods is assessed. Each message can be modeled as a collection of key events described by 
biometrical keystroke dynamics features. Each message therefore becomes a dataset of instances (i.e. key 
events) and different machine learning methods can be used to classify or discriminate truthful and deceptive 
messages. The machine learning methods were then optimized by using performance measures defined in 
paragraph 2.4. The classification was done for each participant individually, as keystroke dynamics is a 
biometric has different classification requirements for each participant. The algorithms were Naive Bayes, 
Support Vector Machine, k-Nearest Neighbor, C4.5 and Random Forest. Next to machine learning, a distance 
metric classification was also applied as this has been effectively applied in the past. The best performing 
algorithms were then chosen to assess the predictability of the messages of each of the user and the final results 
in chapter 7 showed the performance of the algorithms on the datasets.  

S4.  How does the dataset in this thesis compare to the dataset from the other researchers?  

There is a corpus available that was collected by Banerjee et al. The PwC dataset was compared to a random 
sample (n = 100) out of the dataset of Banerjee et al. The corpus has the disadvantage that there is only one type 
of message available per participant. That means there is one truthful and one deceptive message (essay) 
available for each unique individual. The questions for each participant were also the same. This can be a 
disadvantage, because being deceptive can become equal to negating the previous statement. In their paper, 
each message was modelled as an instance and the quantitative properties were used for classification, yielding 
a high classification rate (with stylometry). The PwC dataset has 4 messages, from which two deceptive and two 
truthful. The truthful and deceptive assignments were randomized and each question was different.  
 
Despite the differences, it was found that the classification results, statistical significance, feature selection were 
equally distributed for both datasets. This might indicate that both datasets have a similar quality and that 
there is no discrimination between the two samples for this assignments. 
 

RQ:  Can keystroke dynamics be used to detect deceptive messages without looking at the contents 
of the message?  

In the results of chapter 7, it is found that machine learning methods perform equally bad or worse than 
guessing. The literature on deception detection stated that humans are as bad as chance, most of the time even 
worse than guessing due to biasedness. The same performance is found when classifying deceptive messages 
with the PwC dataset. The data does not seem separable in most cases as all the keystrokes of both the truthful 
and deceptive message are classified as if they would belong to either one class. The methods could often not 
discriminate the two types of messages. It can therefore be stated that with the given experiment and dataset, 
machine learning is not better in predicting deceptive messages than a human would be able to guess. The 
comparison with the Banerjee et al. dataset seems to confirm this. Using these features, this dataset, this 
experiment and these methods, correct classification is not possible.  

8.2. Discussion 

In most studies on deception, researchers instructed their participants to lie during experiments. Another 
common way to acquire data to study deception was done by studying tapes or recordings of courtrooms and 
interrogations. In other words, places where truth and lie eventually untangle and where the nonverbal 
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behavioral clues can be studied afterwards. Although some studies show some success with these procedures, it 
is not necessarily true that instructed deception does not tamper with the arousal, negative effect or discomfort 
that genuine deception induces.  

This study instructs users to lie, as most studies do. A weakness in this design may be that an instruction to 
deceive can be considered a form of obedience. It is possible that obedience can tamper with the hypothesized 
effects of deception mentioned in the literature. These effects are important because they are said to be the 
driving force behind the leakage of non-verbal clues as stated by the leakage-hypothesis (Ekman & Friesen, 
1969). Moreover, voluntary deception is more common in practice than instructed deception. The participant 
could feel less guilty about following morally doubtful instructions, as shown by the famous Milgram 
Experiment (Milgram, 1963). However, this weakness can be addressed with two counterarguments.  

First of all, it is very hard to create an experiment that complies to the non-instructive criteria without 
involuntarily creating other questionable causal variables. Imagine an experiment where one participant has to 
deceive another participant. Then this experiment will only work on the premise that there is an (assumed) 
information asymmetry between the sending and the receiving party. Otherwise no false belief can be fostered. 
There must be an incentive that will motivate the participant to make up a deceptive message, as people are 
usually guilt averse (López-Pérez & Spiegelman, 2013). The deceptive message has to be quite long because 
enough keystrokes have to be recorded for analysis. In order for a participant to be able to consciously depart 
from some contextual truth, a lot of contextual truth has to be created. This way the game becomes information 
intensive. It also means that if the receiver decides to depart from this contextual truth, he has to make up his 
own deceptive context. But does that mean that making up a story equals deceiving? And if it does, why are 
people not instructed to make up a story nonetheless? How can it be measured, and to what degree do 
participants want to be credulous? This results in many philosophical questions about deception and the 
human emotions that go beyond the scope of this thesis, but may be eligible for further research.  

Secondly, it is not known how people experience their own deceptive behavior in a CMC-environment. It seems 
obvious to use the four-factor theory (Zuckerman et al., 1981) from real life deception to deception in a CMC-
environment. However, this is not necessarily true. Deception in a CMC-environment is different as visible 
behavioral clues are not apparent. This reduces the chance to be caught and might influence the arousal. Also, 
the deceiver is often alone, can think more about his answers and does not directly face the consequences of his 
lying. Furthermore, we found no research on how deceivers feel after or while lying in a CMC-environment. 
Therefore, these factors should not and cannot be extrapolated in this research.  

Evaluations with some participants after the study revealed that most participants were aware that they were 
expected to defended a statement with which they did not agree. In some cases, the participant did have the 
idea that they behaved differently. The participants indicated that they thought differently when they had to 
write a deceptive statement. Since each participant categorized their own typing skill as average or good, it is 
possible that due to the proficiency in typing, the biometrical behavior is influenced or mitigated. Thereby, 
leading to the creation of a homogenous set where detection deception becomes very diligent and difficult. It 
may also be the case that no deception can be detected through analyzing keystrokes, but to confirm this more 
research has to be done.  

8.3. Further research 

In order to gain more insight, better datasets could be supplied. Although it is hard to find a good source for 
data collection, putting participants under more pressure could yield different outcomes. The downside to this 
is that the research may become unethical. Another direction is that more data should be collected. More 
keystrokes can indicate a better convergence towards the true values of the features. In order to do so and not to 
fatigue the participants, the data collection phase can be extended over the course of multiple days. By following 
the behavior of multiple participants over a longer period of time, more qualitative study can be done to 
aberrant behavior and new insights might generate more insights on a more generic approach to the research. 
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A. Experimental design 

A.1. Instrumentation 

A.1.1. Web environment 

In order to be able to reach out to the whole business unit, an accessible environment had to be created. Key log 
functionality is readily available in most programming languages, so choosing a platform is strongly dependent 
on the needs of the study. In this paragraph it is described what environment is chosen, how and in what format 
the keys will be logged and the reliability of the key logger is assessed. 

In order to reach out to the whole business unit, some conditions need to be considered. The target group 
consists out of employees (consultants) who are often on the road. The data collection took place during the 
holidays, so the office was quite empty. Due to strict policies it was not convenient to distribute software 
throughout the company. In order to be able to reach all the employees of the business unit, it was decided that 
the appropriate environment for this experiment would be a web environment.  

The website was hosted on a webserver on the domain abhuisman.nl.  The webpage was built with the 
framework Bootstrap (v. 3.3.6) which depends on a stripped version of jQuery (v. 1.12.3.min). The webpage 
needs to be able to log the keystrokes on the client-side and must then pass the keystrokes on to the server-side. 
This way the log files can be stored on the server.   

The group of participants use a corporate laptop. This laptop has a 64-bit Windows 8.1 Enterprise edition 
installed. The laptop is a Lenovo ThinkPad (i7-4600U @ 2.1 GHz, 12 GB RAM) and the updates on the laptop 
are done automatically. This means that most laptops run the standard browser Internet Explorer 11 (v.11.0.31) 
at the time of writing. However some may use other browsers. The website should work on the common 
browsers (Chrome, IE, Firefox, Safari and Opera). The bootstrap framework supports all these browsers mostly 
with backwards compatibility with the exception of some old versions of Internet Explorer. But since the 
updates are done automatically, it is expected that most users will have the newest version of IE.  

A.1.2. JavaScript Key logger 

This thesis will focus on collecting the timestamp of keystrokes. A timestamp with an accuracy of 1 millisecond 
is deemed sufficient (Hosseinzadeh & Krishnan, 2008). Other attempts as a source of features have been tested, 
like keystroke pressure (Revett et al., 2005), typing sequence difficulty (De Ru & Eloff, 1997), frequency of 
typing error (Kolakowska, 2010) and sound of typing (Nguyen, Le, & Le, 2010). But these acquisition methods 
are in general not very popular. They are also hard to acquire and have no practical added value to the study yet, 
as the techniques are often not applied. 

The key logger will be written in JavaScript, which is the most popular client-side programming language 
available for web browsers. There is a library for JavaScript called jQuery that automated and optimized a lot of 
JavaScript functionality. jQuery has three functions available for the logging of keys. The keypress, keydown 

and keyup event. According to the documentation7, the keypress event is sent to an element when the browser 

registers keyboard input. The event is similar to the keydown event, but also registers when a key stays pressed. 

It triggers each time another character is inserted. The keydown and keyup event trigger each time a key is 

pressed or released respectively. The events can be attached to any element in the browser. Since we want to log 
continuously over the course of the experiment, the events will be attached to the document object. This is 

done because all keypresses will eventually find their way up the DOM to the document element, due to event 

bubbling. The only way keys are logged, is when the focus is on the browser.  

When the keyup and keydown functions are triggered, they return an event with information on what 
happened. The event contains some useful information, for example if the alt/control/shift key was pressed 
simultaneously, a timestamp, a key/char code together with the corresponding key, and the type of the event 
(key up or down). This data can be thankfully used to store important aspects on the keystrokes.   

The event contains a timestamp. Naturally, JavaScript contains certain methods to accurately log the time. It is 
possible to use the function Date.now() logs time in milliseconds. One can use the stopwatch object which can 

log ticks at a certain moment to a high degree of accuracy. One can also use performance.now() to get a high 

                                                             
7 http://api.jquery.com/{keypress, keyup, keydown}/ 
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degree of accuracy. Initially Date.now() was used. This has the disadvantages that it is executed after the 

event was sent. So when there are some other intensive tasks running on the client side (or on the laptop in 
general), lags could occur. A few tests showed that the value in event.timeStamp always had a lower value 

compared to the other two functions. Therefore the timestamp in the event is considered most accurate and is 
used as the timestamp. This has the advantage that if the event is not yet handled, the user will also receive no 
feedback on his screen. And might adjust his behavior accordingly. The timestamp was rounded to the smallest 
integer, resulting in an integer in milliseconds. 

The event sent by the functions also contained either a char code or a key code. This depended on the browser 
and caused some confusion. jQuery however, handles it nicely. It normalizes the event to the event.which 

property which contains the true code for the button pressed.  

In order to prevent some unwanted behavior, some functionality in the web environment is cancelled. The tab 
key is cancelled as it yields no added value and might cause some unwanted behavior. The control button is also 
disabled, as it is not desirable that participants will copy pieces of text. In that order, the alt key was also 
disabled to prevent people from pressing alt-tab to move to another window during the experiment. 

Now that the keystrokes are registered with an accompanying timestamp, the logs need to be sent to the server. 
JavaScript can send GET and POST requests to servers with the XmlHttpRequest object. In order to send a 

request, an instance of the object has to be created. The instance requires the specification of the request (GET 
or POST). It also needs the URL to which the request should be sent. Then some headers need to be sent in 
order for the server to understand what is being received. And finally, the request can be send accompanied by 
the parameters that contain the information. The time the request takes is not very important for the quality of 
the data, since the event generated at the key interactions contains the parameters. In case it happens that one 
requests arrives earlier at the server than a request that was created earlier, a counter also sends a variable with 
the request. This is done such that the order in which the requests are sent (and consequently, the order in 
which the events were triggered) can be backtracked if any delays occur. 

Only IE is able to distinguish left from right control-, alt- and shift keys. 8 Shift keys are said to be an important 
distinction feature for identification. For deception, this might not be the case. It does not sound rational that 
participants will start using the right shift key instead of the left one when they are deceptive.  

The code for the JavaScript key logger can be found in Appendix A.1 together with the PHP code in Appendix 
A.3 to handle the AJAX requests.  

A.1.3. Log format 

The format in which the keystrokes will be logged is stored in a csv-format. CSV stands for comma separated 
values and is easy to process. The logged format is shown in Table 23. 

 COUNTER KEYCODE TIMESTAMP TYPE 

Type: Integer  ∈ ℕ Integer ∈ ℕ ∩ [4,222] Integer ∈ ℕ Character ∈ {𝐷, 𝑈} 

Example: 215 88 1486422506 D 

Table 23 - CSV format for the logged keystrokes 

The counter keeps track of the sequence as is processed by the browser. The counter is incremented each time 
an event (keyup or keydown) is triggered. The key code is retrieved from the event.which property and 

resembles ACII code in most cases. There are some exceptions depending on the older browser versions, so 
ideally the browser version should also be logged. The timestamp is extracted from the event, as is mentioned 
earlier. The type stands for either a keydown (‘D’) or a keyup (‘U’) event.  

While analyzing every possible key event, it was found that not all keys were used during research. From 
scanning all the messages, the results were that there are 59 distinct charcodes that can be used as nominal 
values for analysis. 

                                                             
8 http://help.dottoro.com/ljgjxtkf.php  
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A deficiency with requests from the client to the server side (and as often happens with communication 
protocols) is that sometimes the request do not reach the server. While some trial results were analyzed, it was 
seen that this is also the case for the XmlHttpRequests. This can have many causes. Either the client is too 

busy with (too many) other tasks, or the server is temporarily unavailable. In order get a good idea of what the 
webserver is able to handle, a small script is written in JavaScript to simulate human typing behavior and assess 
the reliability of the webserver. 

The typing speed depends largely on the typing skills of the participant. A small assessment showed that the 
time between the keyup and –down events is usually not smaller than 50 milliseconds. Also, the time between 
two consecutive keydown events is about 200 milliseconds. The aim of the study is to collect at least 2000 key 
events resulting in 4000 keyup and -down events. The reliability can be assessed with the use of the functions 
setInterval() and setTimeout() to loop a keyup and –down event consecutively. The time between the 

keyup and –down is set to 50 milliseconds. The time between a new key event is set to 200 milliseconds. Over 
the course of half an hour the requests were done continuously, which resulted in about 18000 keypresses 
logged.  

This means that approximately 4 people can type simultaneously.  In Table 24, the results for a small 
simulation are found. The clients ran simultaneously. It is shown that per message there will always be a 
specific error. This will result in more work during the data handling and a less reliable pattern.  

Sent messages Non arrivals Successful requests  
/ error 

Error probability  
/ request 

2952 4 738 0.001355 

2574 2 1287 0.000777 

1822 3 607 0.001097 

3352 2 1676 0.000589 

Table 24 - XMLHttpRequest statistics 

In order to account for these inaccuracies, the number of simultaneous requests are reduced by sending batches 
of events to the server instead of two messages per key event. The batch size was set to 10 which means that five 
key events (one key-up & one key-done) are enough to make a request. This way, the total number of requests to 
the servers are divided by 10. In Table 25, the statistics for four simultaneous clients are shown. 

Sent requests Non arrivals Successful requests  
/ error 

Error probability  
/ request 

1004 3 335 0.002988 

2140 0 2140 0 

2040 0 2040 0 

2110 0 2110 0 

Table 25 - XMLHttpRequest batch statistics 

Due to the fact that there are a lot less requests, the non-arrivals have gone down while the same number of key 
events are sent. In order to be really sure that all keystrokes arrive, another measure is built in. A 
XMLHttpRequest that receives another HTTP response other than 200 (OK), gets send again within a 

second. This process is repeated until the request finally arrives. For a final time, four simultaneous clients were 
initiated that performed key-events on the webpage every 200 milliseconds. All initiated requests arrived 
correctly and there were no errors. 
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A.2. Keylogger in JavaScript  

 

$(document).on('keyup keydown', function(e){ 

 //Remove Shift, Ctrl & Alt 

 if(x == 9 || x == 18){e.preventDefault();} 

 else{ 

  //Checks if the variable record is set to true 

  if(record){ 

   var timestamp = Math.round(e.timeStamp); 

   var x = e.which; 

   sender++; 

   count++; 

   e = e || window.event 

   var x = e.charCode || e.keyCode; 

   var eventType; 

   if(e.type == 'keyup'){eventType = 'U';}else{eventType = 'D'}; 

   //Create datastring 

   recording += count+","+x+","+timestamp+","+eventType+"\r\n"; 

   //If there are 10 items in the recording string, send the log to the server 

   if(sender == 10){ 

    //Create XMLHttpRequest 

    var message = recording; 

    var http = new XMLHttpRequest(); 

    http.open("POST","keylogger5.php",true); 

http.setRequestHeader("Content-type","application/x-www-form-

urlencoded"); 

           

    //Resends the ajax request if the server times out. 

    http.onreadystatechange=function() { 

     if (http.readyState === 4){   //if complete 

      if(http.status === 200){  //check if "OK" (200) 

       //success – do nothing 

      } else { 

       //resend 

       sendLine(message); 

      } 

     }  

    } 

    http.send("log="+encodeURIComponent(message)+"&session="+session); 

    sender = 0; 

    recording = ""; 

   } 

  } 

 } 

} ); 

 

function sendLine(message){ 

 var http = new XMLHttpRequest(); 

 http.open("POST","keylogger5.php",true); 

 http.setRequestHeader("Content-type","application/x-www-form-urlencoded"); 

    

 //Resend if not complete 

 http.onreadystatechange=function() { 

  if (http.readyState === 4){   //if complete 

   if(http.status === 200){  //check if "OK" (200) 

    //success – do nothing 

   } else { 

    //resend 

    setTimeout(function(){sendLine(message);}, 1000); 

   } 

  }  

 } 

 http.send("log="+encodeURI(message)+"&session="+session); 

} 

 

 

 

$(document).on('keyup keydown', function(e){ 

 //Remove Shift, Ctrl & Alt 

 if(x == 9 || x == 18){e.preventDefault();} 

 else{ 

  //Checks if the variable record is set to true 

  if(record){ 

   var timestamp = Math.round(e.timeStamp); 

   var x = e.which; 

   sender++; 

   count++; 

   e = e || window.event 

   var x = e.charCode || e.keyCode; 
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A.3. Receiver in PHP 

 

A.4. JavaScript Char Codes 

Key Code 

  

Key Code 

  

Key Code 

backspace 8 e 69 numpad 8 104 

tab 9 f 70 numpad 9 105 

enter 13 g 71 multiply 106 

Shift 16 h 72 add 107 

ctrl 17 i 73 subtract 109 

alt 18 j 74 decimal point 110 

pause/break 19 k 75 divide 111 

caps lock 20 l 76 f1 112 

escape 27 m 77 f2 113 

page up 33 n 78 f3 114 

page down 34 o 79 f4 115 

end 35 p 80 f5 116 

home 36 q 81 f6 117 

left  37 r 82 f7 118 

up arrow 38 s 83 f8 119 

right arrow 39 t 84 f9 120 

down arrow 40 u 85 f10 121 

insert 45 v 86 f11 122 

delete 46 w 87 f12 123 

0 48 x 88 num lock 144 

1 49 y 89 scroll lock 145 

2 50 z 90 semi-colon 186 

3 51 left window key 91 equal sign 187 

4 52 right window key 92 comma 188 

5 53 select key 93 dash 189 

6 54 numpad 0 96 period 190 

7 55 numpad 1 97 forward slash 191 

8 56 numpad 2 98 grave accent 192 

9 57 numpad 3 99 open bracket 219 

a 65 numpad 4 100 back slash 220 

b 66 numpad 5 101 close braket 221 

c 67 numpad 6 102 single quote 222 

d 68 numpad 7 103 Space 

as published by https://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes based on the 
jQeury normalized event.which parameter. 

<?php 

$log  = $_POST['log']; 

$session  = $_POST['session']; 

$filename =    $session . ".txt"; 

$fp   =  fopen($filename, "a"); 

 

fwrite($fp, $log); 

fclose($fp);  

?> 

 

<?php 

$log  = $_POST['log']; 

$session  = $_POST['session']; 

$filename =    $session . ".txt"; 

$fp   =  fopen($filename, "a"); 

 

fwrite($fp, $log); 

fclose($fp);  

?> 

https://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes
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B. Exploratory analysis results 

B.1. Frequencies of char codes in dataset 

 

Char code Deceptive Truthful Char code Deceptive Truthful Char code Deceptive Truthful

1 0 0 75 585 600 149 0 0

2 0 0 76 789 842 150 0 0

3 0 0 77 547 515 151 0 0

4 0 0 78 2322 2345 152 0 0

5 0 0 79 1303 1374 153 0 0

6 0 0 80 445 420 154 0 0

7 0 0 81 2 9 155 0 0

8 2736 2907 82 1348 1470 156 0 0

9 0 0 83 840 876 157 0 0

10 0 0 84 1727 1816 158 0 0

11 0 0 85 337 335 159 0 0

12 0 0 86 571 545 160 0 0

13 18 4 87 528 482 161 0 0

14 0 0 88 19 35 162 0 0

15 0 0 89 31 39 163 0 0

16 1841 2051 90 214 224 164 0 0

17 18 61 91 1 4 165 0 0

18 1 3 92 0 0 166 0 0

19 0 0 93 0 0 167 0 0

20 2 2 94 0 0 168 0 0

21 0 0 95 0 0 169 0 0

22 0 0 96 0 0 170 0 0

23 0 0 97 0 0 171 0 0

24 0 0 98 0 0 172 0 0

25 0 0 99 0 0 173 0 0

26 0 0 100 0 0 174 0 0

27 0 0 101 0 0 175 0 0

28 0 0 102 0 0 176 0 0

29 0 0 103 0 0 177 0 0

30 0 0 104 0 0 178 0 0

31 0 0 105 0 0 179 0 0

32 4382 4531 106 0 0 180 0 0

33 1 0 107 0 0 181 0 0

34 0 0 108 0 0 182 0 0

35 11 10 109 0 0 183 0 0

36 1 5 110 0 0 184 0 0

37 207 147 111 0 0 185 0 0

38 7 1 112 0 0 186 7 6

39 93 58 113 0 0 187 2 2

40 5 2 114 0 0 188 103 117

41 0 0 115 0 0 189 14 5

42 0 0 116 0 0 190 244 236

43 0 0 117 0 0 191 10 9

44 0 0 118 0 0 192 2 0

45 0 0 119 0 0 193 0 0

46 52 4 120 0 0 194 0 0

47 0 0 121 0 0 195 0 0

48 30 23 122 0 0 196 0 0

49 5 4 123 0 0 197 0 0

50 2 0 124 0 0 198 0 0

51 2 3 125 0 0 199 0 0

52 2 5 126 0 0 200 0 0

53 1 2 127 0 0 201 0 0

54 0 1 128 0 0 202 0 0

55 0 1 129 0 0 203 0 0

56 1 0 130 0 0 204 0 0

57 13 20 131 0 0 205 0 0

58 0 0 132 0 0 206 0 0

59 0 0 133 0 0 207 0 0

60 0 0 134 0 0 208 0 0

61 0 0 135 0 0 209 0 0

62 0 0 136 0 0 210 0 0

63 0 0 137 0 0 211 0 0

64 0 0 138 0 0 212 0 0

65 1685 1691 139 0 0 213 0 0

66 313 365 140 0 0 214 0 0

67 488 423 141 0 0 215 0 0

68 1162 1206 142 0 0 216 0 0

69 4351 4421 143 0 0 217 0 0

70 185 198 144 0 0 218 0 0

71 550 603 145 0 0 219 2 2

72 497 470 146 0 0 220 5 0

73 1584 1653 147 0 0 221 0 0

74 278 312 148 0 0 222 39 41

Total 32561 33536
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B.2. Statistical test for Banerjee et al. 

 
U-value Dwell time Down-down Down-up Up-down Up-up Typing speed 

 
U-value 

 
Pause rate 

1 562457,5 0,00 0,11 0,73 0,01 0,14 0,00 17128 0,45 

2 2883565 0,32 0,66 0,23 0,84 0,89 0,26 67327 0,03 

3 302538,5 0,69 0,74 0,77 0,64 0,52 0,19 8184 0,55 

4 1229251,5 0,00 0,85 0,04 0,11 0,99 0,63 27900 0,61 

5 325574,5 0,05 0,00 0,00 0,05 0,03 0,00 9715 0,11 

6 207839,5 0,85 0,98 0,92 0,94 0,85 0,85 6156 0,85 

7 883239 0,37 0,01 0,03 0,05 0,11 0,00 20798 0,27 

8 571880 0,71 0,67 0,93 0,87 0,72 0,29 12395 0,57 

9 588052 0,65 0,16 0,20 0,11 0,13 0,05 16218 0,81 

10 288652 0,36 0,73 0,50 0,94 0,97 0,67 7625 0,98 

11 182275 0,68 0,57 0,48 0,59 0,65 0,01 5832 0,52 

12 441974 0,19 0,76 0,75 0,92 0,92 0,47 13130 0,32 

13 345420 0,89 0,00 0,00 0,00 0,00 0,00 9367 0,27 

14 406392 0,39 0,03 0,07 0,04 0,06 0,00 10042 0,96 

15 700861 0,00 0,74 0,48 0,15 0,58 0,78 17615 0,38 

16 412528 0,13 0,22 0,58 0,08 0,15 0,17 10584 0,76 

17 290378 0,57 0,09 0,20 0,07 0,15 0,00 7353 0,23 

18 208059 0,83 0,20 0,18 0,19 0,16 0,00 5923 0,05 

19 533511 0,49 0,45 0,63 0,50 0,72 0,05 12814 0,49 

20 854236,5 0,00 0,16 0,54 0,01 0,08 0,00 17438 0,45 

21 307323,5 0,51 0,91 0,83 0,84 0,80 0,04 7744 0,05 

22 188190 0,82 0,18 0,32 0,21 0,37 0,23 5828 0,84 

23 721216 0,56 0,91 0,94 0,81 0,88 0,11 16673 0,20 

24 241159 0,00 0,94 0,10 0,15 0,94 0,93 7502 0,37 

25 194575,5 0,19 0,22 0,16 0,40 0,32 0,02 6372 0,04 

26 218460 0,51 0,27 0,44 0,30 0,44 0,36 6498 0,96 

27 474012 0,12 0,01 0,00 0,01 0,01 0,00 10452 0,11 

28 855600 0,00 0,12 0,03 0,47 0,20 0,32 23814 0,69 

29 962200 0,10 0,13 0,43 0,09 0,29 0,40 20874 0,47 

30 327125,5 0,00 0,08 0,50 0,03 0,21 0,35 8190 0,83 

31 423054 0,45 0,51 0,55 0,42 0,39 0,13 12095 0,10 

32 390792 0,26 0,63 0,95 0,59 0,91 0,20 9510 0,63 

33 690308,5 0,00 0,00 0,00 0,00 0,00 0,00 20447 0,02 

34 349308 0,58 0,83 0,78 0,88 0,84 0,22 8483 0,95 

35 1121148 0,01 0,32 0,01 0,74 0,34 0,70 24973 0,65 

36 178752 0,11 0,00 0,00 0,01 0,00 0,00 6268 0,27 

37 214700 0,96 0,65 0,54 0,77 0,71 0,91 6625 0,29 

38 401247 0,01 0,01 0,00 0,67 0,08 0,00 12925 0,46 

39 307372,5 0,01 0,05 0,51 0,00 0,05 0,00 8063 0,77 

40 308176 0,00 0,00 0,00 0,03 0,01 0,00 7865 0,89 

41 486297 0,25 0,79 0,78 0,64 0,94 0,95 12040 0,06 

42 275445,5 0,27 0,01 0,01 0,06 0,04 0,00 7353 0,19 

43 478840,5 0,23 0,69 1,00 0,38 0,55 0,24 10677 0,71 

44 571857 0,44 0,81 0,74 0,94 0,78 0,24 16571 0,73 

45 393669 0,30 0,19 0,19 0,46 0,39 0,01 9440 0,15 

46 379561 0,89 0,04 0,04 0,17 0,18 0,00 9434 0,96 

47 464787 0,81 0,34 0,28 0,33 0,58 0,29 13860 0,47 

48 258620 0,09 0,12 0,03 0,57 0,26 0,22 7493 0,88 
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49 529914 0,16 0,58 0,37 0,58 0,39 0,06 16167 0,02 

50 522006 0,01 0,81 0,34 0,42 0,83 0,24 16502 0,94 

51 1487992,5 0,00 0,97 0,12 0,21 0,78 0,85 33291 0,17 

52 439845 0,32 0,69 0,76 0,44 0,56 0,67 10733 0,99 

53 466306,5 0,00 0,00 0,21 0,00 0,01 0,00 12656 0,13 

54 463133,5 0,39 0,01 0,00 0,12 0,03 0,00 11880 0,02 

55 1006397 0,09 0,08 0,38 0,06 0,12 0,00 21780 0,19 

56 265220 0,03 0,74 0,29 0,73 0,65 0,50 7430 0,70 

57 474345 0,11 0,15 0,24 0,14 0,22 0,00 13764 0,07 

58 341510 0,02 0,03 0,32 0,00 0,02 0,00 9316 0,12 

59 980172 0,37 0,35 0,55 0,13 0,19 0,03 23883 0,01 

60 332167,5 0,00 0,20 0,72 0,05 0,23 0,00 8246 0,00 

61 622557,5 0,02 0,77 0,60 0,19 0,55 0,98 14229 0,88 

62 289535 0,31 0,01 0,04 0,01 0,02 0,00 8107 0,50 

63 235698 0,21 0,26 0,76 0,25 0,61 0,01 7119 0,34 

64 316386 0,00 0,03 0,00 0,53 0,10 0,00 8319 0,64 

65 514444 0,00 0,00 0,00 0,17 0,00 0,00 17370 0,01 

66 293740 0,00 0,54 0,49 0,11 0,77 0,23 5614 0,93 

67 357100,5 0,08 0,03 0,01 0,42 0,18 0,00 9387 0,40 

68 293986 0,00 0,61 0,19 0,94 0,46 0,88 8456 0,92 

69 208545,5 0,35 0,07 0,36 0,04 0,09 0,00 6272 0,55 

70 262810 0,35 0,11 0,07 0,23 0,11 0,00 8894 0,80 

71 284031 0,00 0,01 0,17 0,00 0,05 0,00 8607 0,01 

72 288579,5 0,11 0,77 0,30 0,69 0,70 0,42 6888 0,80 

73 417994,5 0,00 0,02 0,00 0,63 0,08 0,00 11466 0,29 

74 232200 0,05 0,69 0,23 0,76 0,62 0,44 5885 0,47 

75 412993,5 0,03 0,22 0,93 0,06 0,30 0,56 11610 0,93 

76 206612 0,06 0,76 0,28 0,44 0,97 0,83 6498 0,92 

77 264984 0,80 0,01 0,02 0,03 0,04 0,00 6383 0,75 

78 276760 0,35 0,27 0,27 0,39 0,38 0,05 7360 0,97 

79 816060 0,80 0,01 0,00 0,11 0,01 0,00 15225 0,00 

80 257712 0,97 0,03 0,05 0,03 0,04 0,00 7547 0,90 

81 293670 0,00 0,14 0,01 0,77 0,21 0,01 7680 0,14 

82 647797,5 0,31 0,56 0,86 0,45 0,75 0,97 18285 0,91 

83 274560 0,00 0,00 0,00 0,06 0,00 0,00 7946 0,00 

84 752815 0,03 0,27 0,62 0,04 0,14 0,07 19293 0,67 

85 397670 0,60 0,64 0,67 0,22 0,55 0,51 9238 0,99 

86 952544 0,90 0,78 0,62 0,49 0,66 0,00 26928 0,08 

87 929100 0,02 0,73 0,04 0,19 0,94 0,47 23814 0,58 

88 479655 0,20 0,14 0,02 0,45 0,25 0,26 11448 0,79 

89 484428 0,70 0,46 0,49 0,83 0,76 0,25 13750 0,66 

90 375061 0,00 0,00 0,00 0,00 0,00 0,00 11303 0,00 

91 1295775 0,97 0,04 0,16 0,04 0,08 0,04 46116 0,71 

92 448362 0,58 0,17 0,27 0,06 0,19 0,00 10961 1,00 

93 454537 0,02 0,16 0,01 0,91 0,25 0,00 9150 0,36 

94 308100 0,22 0,27 0,06 0,55 0,18 0,00 9044 0,92 

95 220765 0,02 0,16 0,38 0,03 0,12 0,00 5668 0,47 

96 277455 0,00 0,01 0,00 0,10 0,01 0,00 8531 0,05 

97 460728 0,23 0,71 0,35 0,93 0,73 0,00 9782 0,09 

98 252006,5 0,72 0,00 0,00 0,00 0,00 0,00 7366 0,00 
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99 156584 0,54 0,16 0,19 0,40 0,42 0,00 5512 0,19 

100 411340 0,58 0,44 0,66 0,26 0,62 0,54 8910 0,66 

 

B.3. Difference value for Banerjee et al. 

 

Dwell time Down-Down Down-Up Up-Down Up-Up Typing speed Pause rate 

1 0,22 0,40 0,35 0,35 0,35 0,20 0,95 

2 0,18 0,31 0,33 0,28 0,33 0,30 0,68 

3 0,22 0,38 0,38 0,42 0,41 0,16 0,89 

4 0,15 0,29 0,34 0,30 0,34 0,19 0,89 

5 0,23 0,49 0,43 0,40 0,49 0,28 1,05 

6 0,26 0,66 0,75 0,64 0,74 0,15 1,41 

7 0,15 0,47 0,49 0,48 0,47 0,19 1,38 

8 0,16 0,53 0,53 0,49 0,52 0,11 1,38 

9 0,16 0,39 0,52 0,47 0,48 0,11 1,26 

10 0,25 0,56 0,47 0,54 0,55 0,23 0,89 

11 0,24 0,40 0,39 0,37 0,37 0,38 0,87 

12 0,19 0,40 0,44 0,49 0,45 0,25 0,97 

13 0,30 0,47 0,47 0,35 0,38 0,40 1,07 

14 0,18 0,35 0,42 0,36 0,41 0,19 0,93 

15 0,25 0,39 0,40 0,33 0,38 0,19 0,95 

16 0,31 0,38 0,37 0,35 0,39 0,22 0,97 

17 0,26 0,37 0,49 0,48 0,53 0,34 1,17 

18 0,28 0,43 0,48 0,44 0,46 0,30 1,06 

19 0,34 0,41 0,44 0,43 0,43 0,13 1,01 

20 0,23 0,38 0,36 0,36 0,39 0,31 1,20 

21 0,18 0,44 0,49 0,47 0,50 0,21 1,34 

22 0,23 0,43 0,45 0,39 0,37 0,32 1,05 

23 0,24 0,31 0,29 0,31 0,31 0,29 0,82 

24 0,42 0,48 0,54 0,51 0,52 0,18 1,39 

25 0,18 0,38 0,43 0,39 0,41 0,20 0,75 

26 0,22 0,38 0,47 0,31 0,47 0,19 1,00 

27 0,19 0,41 0,42 0,40 0,44 0,25 1,04 

28 0,15 0,39 0,38 0,38 0,41 0,23 1,08 

29 0,22 0,47 0,48 0,49 0,46 0,14 1,10 

30 0,32 0,52 0,40 0,53 0,56 0,21 1,44 

31 0,18 0,38 0,44 0,37 0,40 0,16 0,98 

32 0,23 0,36 0,41 0,34 0,35 0,22 0,80 

33 0,27 0,39 0,45 0,38 0,35 0,60 0,86 

34 0,35 0,42 0,42 0,48 0,47 0,11 1,13 

35 0,13 0,28 0,32 0,36 0,32 0,14 1,01 

36 0,10 0,54 0,57 0,64 0,65 0,37 1,30 

37 0,20 0,41 0,37 0,34 0,44 0,13 0,85 

38 0,22 0,41 0,43 0,46 0,45 0,35 1,11 

39 0,20 0,40 0,41 0,43 0,43 0,32 1,07 

40 0,22 0,51 0,57 0,56 0,59 0,20 1,23 

41 0,24 0,42 0,47 0,37 0,36 0,16 0,97 

42 0,24 0,43 0,51 0,45 0,40 0,24 1,11 
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43 0,17 0,33 0,40 0,33 0,32 0,22 1,02 

44 0,15 0,46 0,44 0,35 0,38 0,13 0,89 

45 0,16 0,36 0,45 0,37 0,39 0,27 0,85 

46 0,19 0,53 0,55 0,42 0,48 0,09 1,33 

47 0,27 0,47 0,40 0,44 0,46 0,36 1,11 

48 0,13 0,47 0,41 0,39 0,51 0,13 1,24 

49 0,19 0,41 0,42 0,41 0,41 0,26 1,24 

50 0,13 0,31 0,41 0,36 0,40 0,30 0,91 

51 0,31 0,36 0,37 0,38 0,39 0,14 1,08 

52 0,18 0,44 0,45 0,48 0,40 0,25 1,16 

53 0,21 0,32 0,40 0,30 0,32 0,24 0,87 

54 0,14 0,29 0,44 0,27 0,40 0,13 1,10 

55 0,14 0,26 0,31 0,28 0,30 0,30 0,91 

56 0,30 0,49 0,54 0,50 0,50 0,07 1,11 

57 0,17 0,41 0,52 0,40 0,53 0,36 1,07 

58 0,20 0,42 0,36 0,38 0,33 0,43 0,87 

59 0,24 0,45 0,40 0,39 0,35 0,23 1,10 

60 0,22 0,38 0,39 0,45 0,37 0,29 1,23 

61 0,30 0,38 0,37 0,39 0,42 0,30 1,14 

62 0,25 0,46 0,39 0,46 0,46 0,52 0,99 

63 0,28 0,40 0,32 0,49 0,37 0,41 0,96 

64 0,35 0,43 0,42 0,36 0,40 0,18 1,05 

65 0,25 0,38 0,49 0,38 0,40 0,24 0,95 

66 0,37 0,49 0,57 0,48 0,55 0,17 1,19 

67 0,16 0,26 0,33 0,31 0,38 0,26 0,88 

68 0,27 0,46 0,54 0,48 0,51 0,22 1,11 

69 0,27 0,34 0,35 0,26 0,41 0,22 0,91 

70 0,33 0,46 0,44 0,38 0,42 0,32 0,98 

71 0,28 0,47 0,45 0,46 0,50 0,21 1,04 

72 0,23 0,51 0,43 0,49 0,51 0,12 1,31 

73 0,26 0,42 0,48 0,35 0,43 0,14 1,00 

74 0,24 0,37 0,45 0,42 0,44 0,32 1,15 

75 0,13 0,35 0,36 0,36 0,42 0,32 0,94 

76 0,26 0,40 0,50 0,45 0,48 0,31 1,02 

77 0,23 0,39 0,37 0,35 0,37 0,23 0,77 

78 0,15 0,50 0,52 0,42 0,44 0,11 1,16 

79 0,29 0,35 0,34 0,40 0,42 0,24 0,88 

80 0,39 0,52 0,47 0,42 0,55 0,36 1,14 

81 0,26 0,39 0,44 0,42 0,45 0,21 1,14 

82 0,24 0,34 0,45 0,38 0,45 0,19 1,14 

83 0,47 0,55 0,69 0,56 0,70 0,31 1,39 

84 0,15 0,31 0,36 0,35 0,39 0,17 0,78 

85 0,17 0,24 0,28 0,25 0,24 0,08 0,83 

86 0,19 0,24 0,27 0,24 0,26 0,23 0,84 

87 0,24 0,36 0,39 0,34 0,33 0,11 0,83 

88 0,29 0,46 0,58 0,47 0,51 0,27 1,14 

89 0,19 0,49 0,44 0,46 0,51 0,20 1,24 

90 0,76 0,94 0,73 0,95 0,92 0,40 1,01 
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91 0,18 0,40 0,37 0,30 0,39 0,19 0,76 

92 0,23 0,50 0,47 0,46 0,49 0,13 1,25 

93 0,24 0,38 0,42 0,45 0,41 0,22 0,95 

94 0,18 0,38 0,39 0,40 0,45 0,28 1,24 

95 0,27 0,40 0,41 0,38 0,46 0,12 1,27 

96 0,27 0,41 0,52 0,53 0,51 0,43 1,03 

97 0,29 0,39 0,41 0,46 0,49 0,37 1,06 

98 0,09 0,53 0,56 0,51 0,60 0,32 2,00 

99 0,20 0,40 0,42 0,32 0,45 0,33 1,00 

100 0,22 0,37 0,29 0,32 0,36 0,30 0,90 
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C. Header for the .arff files for WEKA 

 

 

@relation  user 

 

@attribute  feature1 numeric 

@attribute  feature2 numeric 

@attribute  feature3 numeric 

@attribute  class  {0,1} 

 

@data 


