
December 12, 2016

MASTER THESIS

Analysis, optimization, and
design of a SLAM solution
for an implementation on
reconfigurable hardware

(FPGA) using CńaSH

Authors:
Robin Appel
Hendrik Folmer

Faculty:
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Chair:
Computer Architecture for Embedded Systems (CAES)

Exam committee:
Dr. ir. J. Kuper
Dr. ir. C.P.R. Baaij
Dr. ir. J.F. Broenink
Dr. ir. R. Wester





Abstract

SLAM stands for simultaneous localization and mapping and is a mathematical problem with a
potentially heavy computational load which is usually solved on a large computational system.
Large computational systems consume a lot of energy which is not ideal for mobile robots.
A field programmable gate array (FPGA) allow developers to create reconfigurable hardware
architectures which could be more efficient in terms of energy compared to standard computer
systems because it has parallel capabilities. The goal of this project is to develop a SLAM im-
plementation on an FPGA to be more efficient in terms of energy and computation time. SLAM
is realized without the use of external systems like GPS and uses a laser range finder (LRF) +
odometry as sensor input. CλaSH is developed by the CAES-group and allows the developer to
specify strongly typed mathematical descriptions, which can be translated automatically to an
hardware description language (HDL). Due to the mathematical nature of the SLAM problem,
CλaSH is suitable for implementation. This report describes the choices, realization, and results
of a SLAM solution on an FPGA and has two main subjects: Graph-based SLAM and iterative
closest point (ICP) which are discussed below.

Graph-based SLAM

Graph-based SLAM is a method to describe the SLAM problem as a graph. The main purpose
of the algorithm is to correct noise that is present in sensor data. The errors that need to be
corrected can be described by a linear system of equations which has the size of the number
of poses that the robot has visited. The number of poses a robot visits can be large and the
computational complexity of the algorithms used to solve large matrices increases quadratically.
By restricting the algorithm on the amount of loop closing the complexity has been reduced to
only grow linear.

Since the linear system of equations contains many zeroes, sparse matrices and vectors can
be used to describe the system. However, sparse matrices in hardware create a lot of overhead
and additional complexity. Using the sparse notation for sparse matrices and vectors and the
ordinary notation for dense data, the best of two worlds is combined. Since the notation is
different, operators that combine sparse and non-sparse data is one operation are implemented.
The conjugate gradient algorithm is an iterative linear system solver that does not alter the
structure of the matrix, which is an important property with sparse matrices. By using the
sparse notations, the amount of memory and computations is reduced. A feasible hardware
structure for the conjugate gradient algorithm is proposed which has the sequential structure
which performs parallel computations.

ICP

ICP is used to find the transformation between two sensor observations (laser range scans) to
determine the movement of the robot. The ICP algorithm realized in this project contains two
parts; constructing correspondences without outlier rejection, and minimizing the error between



correspondences. A point-to-line metric with normal vectors are used for correspondence cre-
ation. Normal vectors are calculated using the fast inverse square root. For error minimization
a least square solution is constructed and solved using QR decomposition. To construct the
orthonormal matrix Q for QR decomposition the Gram-Schmidt method is used. Laser range
scanner data and the algorithms used to determine the transformation between two observa-
tions have a regular structure and a vector ALU architecture is designed as a trade-off between
resource usage (chip area) and execution time. Data is stored into blockRAMs and the control
”streams” the data through the vector ALU.

The calculated transformation by the FPGA is slightly less accurate compared to a reference
solution in MATLAB but has a performance increase per Joule of three orders of magnitude.
Due to the regular structure of the algorithms and the realized architecture the solution of the
ICP problem is suitable for an FPGA.



Contents

Abstract

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Background 5

2 Robotics and SLAM 7

2.1 Mathematics of SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Datatypes and filtering techniques for SLAM . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Loop closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Data formats in SLAM 13

3.1 Volumetric SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Occupancy grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Feature-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Loop closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Graph-based SLAM 17

4.1 Graph-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Graph construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.3 Loop closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.4 The error function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.5 The information matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.6 Minimization of errors and correction of the graph . . . . . . . . . . . . . 24

4.1.7 Correction of errors of angles . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.8 Error convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.9 Hierarchical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.10 Graph pruning: Removing non informative poses . . . . . . . . . . . . . . 26

5 Scan-matching 27

5.1 ICP: Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Finding correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.2 Unique vs non-unique correspondences . . . . . . . . . . . . . . . . . . . . 31



5.1.3 Rejecting correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.4 Minimizing the error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.5 Scoring the outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 CλaSH 41

II Design Space Exploration 45

7 Introduction to decision trees 47

8 Exploration on SLAM properties 51

8.1 Environment data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.2 Sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.3 Choice of filtering technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.4 Scan-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.4.1 ICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.4.2 NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.4.3 ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.4.4 Conclusion: ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Graph-based SLAM 59

9.1 Graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.1.1 State vector representation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.1.2 Construction of the state vector . . . . . . . . . . . . . . . . . . . . . . . . 60

9.1.3 Correction of the state vector . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2 Loop closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2.1 Finding potential loop closings . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2.2 Restriction of the amount of loop closing . . . . . . . . . . . . . . . . . . 63

9.3 Linear Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.3.1 Information matrix storage structure . . . . . . . . . . . . . . . . . . . . . 65

9.3.2 Linear solver for graph convergence . . . . . . . . . . . . . . . . . . . . . . 68

9.3.3 Joining sparse and non sparse vectors into single vector operations . . . . 72

9.3.4 Implementation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10 ICP 81

10.1 Construction of correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.1.1 Correspondence selection metric . . . . . . . . . . . . . . . . . . . . . . . 82

10.1.2 Correspondence uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.1.3 Hardware selection structure . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.2 Outlier rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.3 Error minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.3.1 Error minimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.3.2 Hardware decomposition structure . . . . . . . . . . . . . . . . . . . . . . 87

10.3.3 Memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.3.4 Vector operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.3.5 Inverse square root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.3.6 Linear solver hardware structure . . . . . . . . . . . . . . . . . . . . . . . 99

10.3.7 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



III Realisation and results 103

11 Graph-based SLAM 105

11.1 Realisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.1.1 Application specific multi use ALU . . . . . . . . . . . . . . . . . . . . . . 105

11.1.2 Fixed size sparse vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.1.3 Multiple blockRAM’s for efficient and fast access . . . . . . . . . . . . . . 106

11.1.4 Proposed ALU structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.1.5 Controlling the ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.2.1 MATLAB timing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.2.2 Hardware results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12 ICP 113

12.1 QR decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12.2 Realisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12.3 Simulation, synthesis, and timing results . . . . . . . . . . . . . . . . . . . . . . . 121

12.3.1 Numerical precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12.3.2 Simulations results using different square root algorithms . . . . . . . . . 121

12.3.3 MATLAB timing results vs hardware architecture timing . . . . . . . . . 130

12.3.4 Quartus synthesis and timing results . . . . . . . . . . . . . . . . . . . . . 131

IV Conclusions and future work 133

13 Conclusions 135

13.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

13.2 Graph-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

13.3 ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

14 Future work 139

14.1 General future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

14.1.1 Coupling Graph-SLAM and ICP . . . . . . . . . . . . . . . . . . . . . . . 139

14.1.2 Research towards automated parallelism . . . . . . . . . . . . . . . . . . . 139

14.2 Graph-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

14.2.1 Additions to the current SLAM implementation . . . . . . . . . . . . . . . 139

14.2.2 Extended additions of the algorithm and implementation . . . . . . . . . 140

14.3 ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendices 145

A FPGA 145

B Motion models for SLAM 146

Odometry Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Velocity Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



C Alternative scan-matching solutions 151
ICL: Iterative Closest Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
PSM: Polar Scan Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
NDT: Normal Distributions Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D Alternative filters for SLAM 153
Gaussian filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bayes Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Information Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Extended Information Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Sparse Extended Information Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Rao-Blackwellized particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
FastSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Loop closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

E Graph-based SLAM algorithm 164

F Feature Extraction 165

Index 167

Bibliography 172



1 — Introduction

1.1 Context

Intelligent robots play an important role amongst mobile robots these days. An intelligent fea-
ture a robot can have is the ability to learn. A disadvantage of learning in computer terms is the
amount of computations and memory it requires. A widely used set of learning algorithms for
robots can be used to make a mobile robot learn about the environment. Without knowledge
of an environment a robot is unable to perform tasks within this environment. How well the
robot represents the environment is called quality. The better the quality of the representation,
the easier it is for a robot to use the representation for navigation.However, this quality comes
at the cost of heavier algorithms. To execute these heavy algorithms, computers with a large
computational capacity can be used. These computers are heavy and demand a lot of energy
and are often not suitable to mount on a robot, especially when they need to be as light as
possible and run on batteries.

To reduce the energy usage and weight of the computer, smaller computers can be used.
Despite that these computers use far less energy, they use the same computing structure as
larger systems and are optimized for using less energy for the same amount of work. Another
type of hardware that can be used to do computations such as algorithms is called a field
programmable gate array (FPGA). An FPGA is a chip that has predefined configurable logic
blocks that can be configured to act as digital circuits. The large advantage over other chips is
the fact that the behaviour of an FPGA is not static, but can be changed by the user. By re-
configuring an FPGA it can act as any type of hardware that can also be created in digital chips.

The complexity of an algorithm can be described as the amount of computational power
that is needed to execute the algorithm. An algorithm on a normal computer is described by
software. Software divides the total complexity of the algorithm into small parts which are called
intructions. Instructions are executed over time and if the complexity of software increases so
increases the number of instructions which increases the execution time.

FPGAs can be configured to to execute computations in parallel which require hardware
resources. Physical boundaries of FPGAs restrict the amount of hardware resources and thus
the amount of parallelism. When computations become to complex and require more hardware
resources than available fully parallel solutions are not possible. If computations do not fit in
the area of an FPGA it becomes necessary to execute computation after each other over time.
A developer has to make a trade-off between resource usage (chip area) and execution time.

Implementation of heavy algorithms on FPGAs can be considered as a trade-off between the
use of time and area. Because FPGAs can be configured to be applications specific, the available
FPGA area can be used efficiently which will result in a fast and energy efficient solution. Robot

Introduction 1



algorithms are very suitable for such an implementation because of the following properties:

• The algorithms are commonly heavy ( have large computational complexity )

• Many of the computations can potentially be done in parallel

• FPGAs have deterministic behaviour which means computation times can be guaranteed

As mentioned before, in robotics a fundamental problem is the awareness of the environ-
ment. For robots to perform complex tasks autonomous it is often required that a robot needs
to navigate through an environment. For navigation a mobile robot needs to know something
about the environment, for instance, if there are obstacles in the way. The robot gathers data
about the environment using sensors and with this data it can create a map and find out its
own location in the environment. Creating a map and finding the robot position in that map
is called SLAM. SLAM stands for simultaneous localization and mapping. Mapping is a trivial
process when the robot is aware of its location. However, performing both localization and
mapping simultaneously introduces interesting new challenges, because the two processes are
completely dependent of each other. Sensors provide information about the environment or
movement of the robot but sensors always have some inaccuracy and noise which makes the
SLAM process more complex. When navigating through an environment a robot must be able
to avoid obstacles, this puts a timing constraint on the SLAM algorithm because if the SLAM
algorithm is not fast enough the robot is not able to avoid the obstacle. Because of the simul-
taneous nature, inaccuracy and noise of sensors, and timing constrains SLAM is considered to
be a complex mathematical problem with a heavy computational load. As mentioned before
complex algorithms are often executed on systems with a high computational power which are
not desirable to mount on mobile robots. A method used in robotics is to use external systems
for calculating complex algorithms. In that case the robot sends its sensor data to this external
system (base station). The communication is often wireless and therefore prone to bad quality
signals or signal loss. If, for some reason, the communication between the base station and the
robot is not available, the robot can not perform its tasks.

Because SLAM algorithms have high complexity, they often require many computational
resources. FPGAs can function as dedicated hardware created with an HDL (hardware de-
scription language). Because of the lower frequencies and potentially parallel structures, it is
possible to obtain a much lower overall energy usage and computation time, therefore realizing
a SLAM on an FPGA can have advantages.

Hardware architectures on an FPGA are usually described with languages like VHDL or
Verilog. These languages requires the developer a lot of manual work. CλaSH is developed
by the CAES-group and allows the developer to specify strongly typed mathematical descrip-
tions, which can be translated automatically to an HDL. Because of the mathematical nature
of SLAM, CλaSH is suitable tool for realizing a SLAM solution on an FPGA.

2 Introduction



1.2 Problem statement

Realizing a SLAM solution on an FPGA has potential advantages in terms of speed, computa-
tional load, and energy. To analyse these advantages a SLAM solution has to be realized on an
FPGA. The problem definition can be summarized into the following:

• How can a SLAM solution be realized into a feasible hardware architecture

• Does a hardware architecture have the potential to be more efficient in terms of perfor-
mance per joule compared to the commonly used computational systems

1.3 Approach and outline

SLAM can be solved in different ways and to realize one solution on an FPGA one must
first determine which SLAM solutions are suitable for implementation on hardware. Because
CλaSH is suitable for describing complex mathematical problems and creating hardware to
solve these problems. Therefore CλaSH will be used for the implementations in this thesis.
FPGAs come in different size and forms and the target FPGA used for this project is described
in Appendix A. Part I, Background, contains the research on the different aspects of SLAM.
Chapter 2 introduces the basic concepts, terminology and mathematics regarding robotics and
SLAM. Chapter 3 describes the two main data representations used in SLAM. After these in-
troducing chapters the project is split into two subjects; Graph-based SLAM and ICP (iterative
closest point). ICP is method to extract information about the robot’s position from sensor
data. The main focus of the authors can also be split up in these parts. R. Appel is responsible
for the Graph-based SLAM part and H. Folmer for the ICP part. Both of these subjects have
the same approach which has the following structure:

• Background, contains research and explanations of the working and structure of the algo-
rithms and concepts, Part I

• Design Space Exploration, shows and explains the different choices made, Part II

• Realisation and results, shows the realised architecture and results, Part III

• Conclusions and future work, Part IV

Graph-based SLAM ICP

Background Chapter 4 Chapter 5

Design Space Exploration Chapter 9 Chapter 10

Realisation Section 11.1 Section 12.2

Results Section 11.2 Section 12.3

Conclusions Section 13.2 Section 13.3

Future work Section 14.2 Section 14.3

Table 1.1: Structure of the report, reader can choose to read this report ”vertically” or ”hori-
zontally”

Table 1.1 shows an overview of the different parts of this report. The reader can chose to read
this report in two different ways. One way is to read each part of the report for both Graph-based
SLAM and ICP, which means that one goes through the table ”horizontally”. Another way is to
read every part for one subject, which means that the reader goes through the table ”vertically”.

Introduction 3



4 Introduction



Part I

Background

Introduction 5





2 — Robotics and SLAM

Robots are systems that perform tasks using robotics. These tasks can be various from cleaning
a house(figure 2.1a) to the exploration of a planet(figure 2.1b). Robotics are science and engi-
neering aspects that are necessary to technically enable a robot to work. Robotics consists of
mechanical, electrical, and control engineering of the physical structure, the electronic hardware
and control software.

(a) Picture of a Samsung robotic vacuum cleaner[56] (b) Illustration of the NASA’s Mars Exploration
Rover[60]

Figure 2.1

A separation can be made between autonomous and non-autonomous robots, most of the
time these have very different tasks to fulfill. Autonomous robots have the feature they do not
need any additional input from a user to perform a given task. For autonomous robots it is
very important that they are able to learn about their environment and react accordingly to
the changes the environment undergoes. Autonomous robots often have a significantly higher
complexity than non-autonomous robots, which makes autonomous robots more interesting for
scientific research.

Throughout this report a driving robot in an indoor office is considered the target. Fig-
ure 2.2a shows a two-wheeled robot with encoders and a scanning laser range finder (LRF)
(also known as laser range scanner) mounted on top. Encoders are sensors that measure the
rotations of the wheels by counting the amount of rotational steps, encoders have limited reso-
lution and do not take physical effects like slip into account. A laser range scanner is a sensor
that creates environment data by measuring the distance to the nearest object under multiple
angles using a single rotating laser range finder. Figure 2.2b shows a two-dimensional drawing
of the target robot and the beams around it are laser range measurements. The robot has a
position in the environment, which is also called state or pose. A pose in the two-dimensional
case is expressed in the coordinates x, y and an orientation θ. The orientation is the angle the
robot is facing, similar to north on compass, there is a reference orientation.

Background,Robotics and SLAM 7



A control command is a command describing where the robot needs to go in the next
timestep relative to where it is now. Therefore, the robot can be moved by giving it these
control commands, which are inputs by the user or input the robot makes up itself by a plan-
ning algorithm. The control commands used in this thesis should not be confused with control
theory which is the algorithm that controls the motors. Instead, the change of the state vector
that the robot has measured after a certain movement is called the control command. The
state vector is a vector that described the poses the robot has been. The control command is
equal to the actual change of the pose assuming the control loop that moves the robot based
on the encoders and motors is perfect. The error in this case will be the error introduced by
the encoders or whatever other sensor that is used for positioning.

In many cases, autonomous robots need to be able to navigate through an environment by
themselves. Without navigation a robot does not know where it needs to go and can therefore
not perform tasks autonomously. Whether a robot needs to deliver a package on the other side
of the street or inspect the inside of a tunnel, navigation is key.

Figure 2.2c shows an example of a map with the green line representing the path the robot
has driven, the map has been constructed by drawing the laser scans around the poses in the
green path. Later will be shown that this is only one representation of a map and other types
of representations are possible. In robotics the map is an important object, since the map
describes the environment. If a robot would like to navigate from one end of the environment
to the other, the map will describe where the robot is able to go safely.

Apart from the structure of the map, for navigation the robot needs to be aware of its
position within this map. Localization can be a difficult task for a robot, depending on what
system is behind the localization. Localization in a square building can be undetermined be-
cause despite the robot knows it is in a corner, it can still be in any of the four corners of the
building if there is no other data that depicts the specific corner.

Whenever a robot is placed in an environment without knowing its position and without
knowing the structure of the map, the task of navigation becomes even more complex. In this
case the robot really needs to learn its environment by exploration and stitch the measurements
that it does together to construct a good representation of the environment in the form of a
map. Whenever a robot visits one place multiple times it will have multiple measurements of
that part of the environment and the quality of that part of the map will increase. This feature
is fundamental and will be extensively used throughout this thesis. This phenomenon is called
loop closing and will in this chapter be further discussed in Section 2.2.1.

The process of creating a map of the environment using sensors and at the same time cor-
recting the robot path using the map is called simultaneous localization and mapping (SLAM).
Because the map can only be correctly constructed when knowing the pose of the robot, and the
pose of the robot is based on what the map looks like, SLAM can be seen as a chicken and egg
problem. The SLAM problem has however been solved by different strategies but still is an im-
portant research topic for many researchers. SLAM research focuses on alternative algorithms
and filtering techniques to create robuster and faster SLAM algorithms. SLAM is considered to
be a fundamental and complex mathematical problem, its complexity comes mainly from the
fact that sensors are not perfect and are subject to noise and inaccuracy.
Another challenge of solving the SLAM problem is the computational complexity, because the

8 Background,Robotics and SLAM



complexity grows over time, eventually a the system that runs the algorithm will run out of
computational or storage resources.

(a) A typical two-wheeled robot
with a laser-range finder (LRF)
and wheel encoders

(b) Top view of a robot with a
laser-range finder (LRF)

(c) Map of the environment, the
green line is the path that the
robot has driven

Figure 2.2: Robot illustrations, found in [2] and [5]

2.1 Mathematics of SLAM

SLAM is a mathematical problem and therefore variables are used to describe the elements
within the SLAM algorithm. Each term is used to express a set of data that can later be used
to alter one or more other sets of data by using algorithms. Several terms of the SLAM algorithm
are used in every type of SLAM and are not solution dependent, these terms are described below.

The sets of data can be split up in two groups, the first group are the sets of data that are
already available once the robot has moved to a pose, the other sets are the sets that need to
be discovered by using known data within the algorithms:

Given

• The robot’s controls: u1:T = u1, u2, u3, ..., uT

• Observations from a sensor: z1:T = z1, z2, z3, ..., zT

Wanted

• Map of the environment m

• Path (state) of the robot s0:T = s0, s1, s2, ..., sT

A mathematical model to describe control commands and observations can be found in Ap-
pendix B. Control commands and obeservations can have different forms. In this thesis, control
commands will consist of a state vector change that describes a translation and a rotation
(x, y, and θ) and the observations will consist of laser scans described by angles and distances.
Due to inaccuracy and noise in sensors data from the controls (ut) and observations (zt), SLAM
algorithms are probabilistic problem [58][55][34]. In SLAM, a probabilistic approach means that
data has a probability of the data being correct. The higher the probability, the smaller the
maximum error taken into calculations. Noise sensors introduce is often non-Gaussian, there-
fore approximation techniques are used to approach the sensor noise as Gaussian. A Gaussian

Background,Robotics and SLAM 9



is a probabilistic distribution for which many of analysis techniques are known. A probability
distribution is stated as follows:

p(wanted|given) (2.1)

Which means there is a certain distribution that describes a wanted set by a given set. In
this case the probability function of the state vector and the map can be found by given input
of control commands and observations. This is called the full SLAM problem. The following
expression is a mathematical description of the full SLAM problem:

p(s0:T ,m|z1:T , u1:T ) (2.2)

where:

• p = distribution

• s0:T = path

• m = map

• z1:T = observations

• u1:T = controls

In full SLAM the robot keeps track of all the previous poses including the current one. A
different approach from full SLAM is online SLAM where the robot is only interested in the
current pose. The probability distribution of online SLAM is shown in equation 2.3.

p(st,m|z1:t, u1:t) (2.3)

The wanted part now only contains st instead of s0:T which means only the current pose is
wanted instead of the complete state vector.

2.2 Datatypes and filtering techniques for SLAM

Within SLAM, two ways data representation can be used, the first is feature-based, described in
Section 3.2. The second way is volumetric, described in Section 3.1. In feature-based, algorithms
are used on sensor data to find distinguishable properties (features) of the environment which
are stored as landmarks. Using landmarks the robot determines its position and path and the
collection of the landmarks can be used to construct a map of the environment and localise the
robot. Volumetric SLAM only stores volumetric data of the environment. The environment
is represented as a volume filled with cells. Each cell can be free, which means the robot can
access that cell, or occupied, which means the robot can not go there. The distinction between
feature-based and volumetric SLAM influences the way data is stored and handled and therefore
the entire SLAM algorithm. Each SLAM system is essentially a filtering problem, which means
data that comes in is corrected with other data in order to increase the quality. Multiple filters
are known to be used for SLAM:

• Kalman filters

• Information filters

• Particle filters

• Graph-based filters

10 Background,Robotics and SLAM



Each of this filters has advantages and disadvantages which will be discussed in Chapter 8.
The math used for this filters has been analysed in order to make a decision of which algorithm
to use. However, the choice will be made for graph-based filtering which means the other filters
are not used. Therefore the mathematics of the alternative filters can be found in Appendix D.

2.2.1 Loop closing

One problem in SLAM is that the probability of the robot position over time decreases due
to accumulating uncertainty of long path. Loop closing is a way to increase the probability of
the position due to the recognition of an area visited before. Loop closing means that the data
from the current robot position is somehow associated with the data from a previous position.
Because of new information of the closed loop the certainty and state of the poses between the
so called ”loop closing poses” can be corrected and improved. The way loop closing is applied
is different for each variant of SLAM. A correct loop closing will improve the constructed map
drastically, however an incorrect loop closing could be catastrophic for reconstruction of the
map as can be seen in figure 2.3 where the left map is likely unusable for navigation.

Figure 2.3: The effects of wrong loop closing (left) and correct loop closing (right)

Background,Robotics and SLAM 11



12 Background,Robotics and SLAM



3 — Data formats in SLAM

3.1 Volumetric SLAM

One way to represent the world is using a volumetric representation. Volumetric represents
physical structure of the environment. Physical representation, or map (m), could either be in
3D like in figure 3.1a or 2D like in figure 3.1b. A map is constructed using sensor observations
(z1:T ) and the path of the robot (s1:T ). A probabilistic mathematical model of the map is given
in Equation (3.1).

p(m|z1:t, s1:t) (3.1)

(a) Freiburg outdoor 3D map[32]
(b) Intel research lab occu-
pancy grid[33]

3.1.1 Occupancy grid

One way of implementing 2D SLAM is by using of occupancy grids . The map is divided into
a grid with cells. Each cell of the grid has an occupancy probability. Initially this probability
is set to neither occupied or free. As soon as the robot starts detecting obstacles it will start
changing the probabilities of the cells that correspond with the detected obstacles. If a distance
to an object has been measured, the probability of occupancy of the points between the robot
and the object will decrease and the grid points of the detected object will increase. In other
situations the probabilities are left unchanged. The complete map can be considered a sum of
the individual cells (mi):

m =
∑
i

mi (3.2)

This factorization leads to the property that mi can be represented as a binary probability if a
cell is occupied (p(mi) ≈ 1) or free (p(mi) ≈ 0). Each grid cell is calculated independently and

Background,Data formats in SLAM 13



is does not have correlation to its neighbours. The distribution of the map becomes a product
of the grid cells:

p(m|z1:t, u1:t) =
∏
i

p(mi|z1:t, u1:t) (3.3)

Thrun et al. [58] describes a log odds notation to avoid numerical instabilities for probabilities
close to zero or one. The log-odds representation of occupancy grids is shown in Equation (3.4)

lt,i = log
p(mi|z1:t, s1:t)

1− p(mi|z1:t, s1:t)
(3.4)

The probabilities can be recovered using the following:

p(mi|, z1:t, s1:t) = 1− 1

1 + elt,i
(3.5)

Thrun et al. [58] suggest to use the log-odds notation in combination with the inverse sensor model
to update the probabilities of the occupancy grid. The inverse sensor model for proximity
sensors is described in Appendix B. The algorithm for simple occupancy grid mapping is shown
in Algorithm 1. The algorithm checks whether the cell mi falls into the current sensor obser-
vation zt. If this is the case then in line 3 the observation is added to the cell probability. The
value l0 represents the pprior as described in Appendix B, and can be stated as follows:

l0 = log
p(mi = 1)

p(mi = 0)
= log

p(mi)

1− p(mi)
(3.6)

Algorithm 1 Occupancy grid mapping

1: for all cells mi do
2: if mi in zt then
3: lt,i = lt−1,i+inverse sensor model −l0
4: else
5: lt,i = lt−1,i

6: end if
7: end for
8: return lt,i

Figure 3.2 shows a sample of a environment with black shapes represented by an occupancy
grid. A grey cell represents an occupied cell and each white cell means the cell is free. The
representation is somewhat pessimistic because the resolution of the cell is roughly the same as
the size of the objects, which results in oversized shapes in the occupancy grid.

Figure 3.2: An example of an occupancy grid[7]

14 Background,Data formats in SLAM



3.2 Feature-based SLAM

Feature-based SLAM is an approach to solve the SLAM problem using features for both the
localization and mapping part. Features are distinguishable properties extracted from sensor
data. Due to sensor noise and inaccuracy the position of the feature is stored with a probability,
which could modelled using a Gaussian distribution. Many SLAM algorithm support feature-
based data representation,i.e. Gaussian approaches, particle filters, and graph-based solutions.
Figure 3.3 shows an implementation of feature-based SLAM in MATLAB. In this figure the
blue arrow represents a robot at its’ state estimation with Gaussian distribution drawn as red
circle around it. The landmarks which are shown as blue asterisks have green circles showing
Gaussian distribution.

Figure 3.3: Feature-based slam example

The features that are used for feature-based SLAM are sometimes called landmarks . A
problem with landmarks is that, in a normal environment, landmarks differ in size and shape.
Therefore, the algorithms that are used to determine and distinguish landmarks are not com-
pletely part of the SLAM problem. The landmarks are distinguished by a separate vision
algorithm which should be able to recognize those differences in size and shapes. The SLAM
algorithm gets the feature locations and descriptions and compares them to the features that
have a likelihood to be seen considering the proposal distribution. Figure 3.4 shows a feature-
based SLAM algorithm which was applied to existing data set from the Victoria park located in
Sydney. The landmarks in this case are trees which are quite easy to detect with a laser range
scanner. It can be seen that each tree has a ellipse drawn around it which is actually Gaussian
distribution. The red line is the trajectory of the vehicle during the data acquisition.

Kalman- and Information filters are suitable for feature-based SLAM. These filtering tech-
niques are discussed in Appendix D.

3.2.1 Feature extraction

For feature-based SLAM, feature recognition and association is essential in order to determine
the correct translations and rotations relative to previous poses. A feature is known as a strong
detectable point in the data. In most SLAM problems, features are detectable independent of the
orientation. This way, the features’ relative position to the robot can be used to the determine
the robot’s pose in the global map. Feature recognition is, in most cases, a computer vision
problem for which exists a large amount of solutions. Which algorithm to use highly depends
on the sensors that are used and which hardware is available. There are also algorithms that
are robust at the cost of more computational complexity. An image acquired from a camera
requires a different amount of processing than an image acquired by a laser scanner. A small
amount of feature extraction techniques are briefly discussed in Appendix F.

Background,Data formats in SLAM 15



Figure 3.4: An example of feature-based SLAM on the Victoria Park dataset[47]

3.2.2 Loop closing

Loop closing in feature-based SLAM is done by matching the expected observation to the real
observation. If the robot has actually completed a loop, the object will be recognized and the
errors can be corrected by recalculating all of the robot poses given the new data. The loop
closing gives the robot a high payload but will result in a better state estimate. The loop can
only be closed if associated data is within the robot’s state distribution and is indeed recognized
as being the same features.

16 Background,Data formats in SLAM



4 — Graph-based SLAM

4.1 Graph-based SLAM

4.1.1 Introduction

The SLAM problem can be solved by different filtering techniques, in on of them the system
is represented by a graph. This method is called graph-based SLAM The graph consists of
robot poses represented by the nodes in the graph. The edges between the nodes represent
the relation between two poses and denoted by Ω. A robot pose exists of a position and an
orientation. In the 2-dimensional world, this pose contains three degrees of freedom: (x,y,θ).
In the 3-dimensional world, a robot pose has six degrees of freedom: three translational and
three rotational. In this thesis only the 2-dimensional case is discussed. The mathematical
rules are the same for the three dimensional case. The edges do not represent positions, they
represent the probability between two poses. Similar to other SLAM approaches, the positions
and their probabilities can be interpreted as Gaussian probabilities. The mean of the Gaussian
is the position of a node and the probability (Ω) is the inverse of the sigma, which determines
the width of the Gaussian. The Gaussian can have different sigma’s in different directions and
in a two dimensional representation the Gaussian will be represented by an ellipse around the
position of the robot. Each position within the ellipse has a probability probability to be at that
position. In this report, the mathematical proof behind graph-based SLAM is not discussed, it
can be found in detail in [25].
For clarification, vector notations will be depicted by an arrow above the symbol and matrices
by a bold capital letter.

Position and orientation data combined are called robot poses. Each node contains a robot
pose, there is only one robot pose at each point in time which is denoted by:

~si = (~si,x , ~si,y) , ~si,θ)

The state vector is a set of the current pose and all previous poses:

~s = {~s0, ~s1, .., ~st}

Every pose in the graph has a relation with every previous pose, which is called Ωi,j . Each
relation is non-directional, which means the relation between pose i and j is the same as the
relation between j and i. This relation is described by the probability of correctness of the pose
relative to another. Every probability is initially set to zero for each pose, only when poses are
connected by edges, the probability will become non-zero.

Edges are created when a sensor detects a relation between two poses. It is possible to
distinguish two different types of edges:

1. Edges created by consecutive odometry commands

2. Edges created by loop closing

Background,Graph-based SLAM 17



Edges created by consecutive odometry commands always describes the probability of the cur-
rent node (pose) relative to the next one.

~si → ~si+1

Edges created by loop closing are not consecutive. Loop closing is found at random and can
virtually appear between every two poses in a graph. A state vector can contain many or no
loops and therefore a lot of loop closing or no loop closing at all. The indices of the poses
that contain loop closing have no relation as they have with odometry edges. The loop closing
indices are described by i and j:

~si → ~sj , i > j

Important is that these relations do not describe positions, they describe the probability of
correctness of one pose relative to another. Before the first loop closing has occurred, the only
information about the poses of the nodes comes from odometry sensors. Once loop closing has
occurred, there will be conflicting information about the poses. The algorithm of graph-based
SLAM is used to combine the conflicting information to find an error corrected version of the
graph where the sum of all errors is as little as possible.

4.1.2 Graph construction

The nodes from the graph can be seen as a vector of tuples where each tuple consists of three
components: x, y and θ. This state vector is constructed from odometry data which consists
of angles and distances, which is actually the polar coordinate system. Each angle in the
odometry is the angle that the robot rotates before it starts translating. After the rotation
the robot translates in the direction of the new angle. Thus, in this model, there is only one
translation instead of two as described in the odometry motion model described in Appendix B.
The translations are denoted by δ. Odometry commands in datasets are in polar coordinates
which means conversion to Cartesian coordinates is necessary if the Cartesian coordinate system
is used. This conversion can be performed using trigonometric functions:

~xi+1 = ~xi + ~δx,i ∗ cos(θi+1) (4.1)

and:

~yi+1 = ~yi + ~δy,i ∗ sin(θi+1) (4.2)

In the above equations ~xi is ~si,x and ~xi+1 is ~si+1,x, δi is the translation that the robot will
make, which for most robots will only be in one direction. The action performed with this
equations is actually a frame conversion, and for robots that translate in more than one axis,
the equations are not yet complete. The complete equations with two translation axis also take
translation in the y direction into account as follows:

~xi+1 = ~xi + ~δi,x ∗ cos(θi+1) + ~δi,y ∗ sin(θi+1) (4.3)

and:

~yi+1 = ~yi + ~δi,x ∗ sin(θi+1) + ~δi,y ∗ cos(θi+1) (4.4)

The frame conversion is needed because the map and the robot have different frames. The
robot’s x-axis is aligned with the direction the nose of the robot is facing. Figure 4.1 shows
the movement of a robot with an angle and translation as odometry command. This odome-
try command seems to be in polar coordinates, but a translation in y-direction in the robot’s
frame could also be possible. The figure only shows a translation in the x-direction with the

18 Background,Graph-based SLAM



Figure 4.1: A robot that moves from position (2,2) with θ = 0 with odometry command

δx = 5, δy = 0 and δθ = atan

(
3

4

)
to position (6,5) with θ = atan

(
3

4

)

corresponding robot frames.

Figure 4.2 shows an example of a graph created by odometry. At this moment in time, the
best graph estimate that can be obtained is the raw odometry data since no other information
( such as loop closing ) is available. This graph will later be used execute the graph SLAM
algorithm.

4.1.3 Loop closing

Loop closing has been discussed earlier to be one of the main components for SLAM and can
best be explained by the recognition of features or area that a robot has observed before, and
using this information to improve the state estimate. Loop closing in graph-based SLAM is
performed when the robot’s pose estimate is within a given range of an earlier pose. The new
pose estimate will create an edge between the earlier pose and itself. Loop closing happens
between two nodes that are already in the graph, which means their positions and also their
difference in position is stored. The loop closing calculates a new relative position and the
difference with the previous position is called the error, which also has an x, a y and a θ
component. The error can be calculated by the error function, which will be explained in the
next section. An error is used to improve the pose-graph estimate.

4.1.4 The error function

Odometry commands will create a state vector ~s. This state vector consists of the poses the
robot has been. Additional edges can be formed by loop closing which means that there is a
new position relation found between two poses. The loop closing (laser) data is of better quality
than odometry since odometry data contains accumulated errors. The laser data is accurate
and contains a direct relation between the two poses.

Background,Graph-based SLAM 19



Figure 4.2: Example of a 2-dimensional graph created from odometry commands with six poses.
The blue nodes are robot poses and the errors are edges. The black square is considered to be
the map.

The difference between the same poses defined by other information is called an error. In
this case the error is the difference between the pose according to the graph, and the pose
according to the laser scan observation.

To calculate the error, two poses that an error is calculated from, have to be aligned. Align-
ment of the poses is performed by taking the observation into account. When a pose i closes
a loop with another pose j, there must be observational sensor data that makes loop closing
possible. Since the poses that enable loop closing are often not the same, the transformation
between them must be taken into account as well. This transformation is known by zij and
will, similar to poses, consist of a tuple of three items for a two-dimensional problem.

If the poses that close the loop are exactly the same, which means zij = (0, 0, 0), the error
in the loop can simply be calculated by subtracting one pose from another. If alignment zij
is not a zero vector, the difference must be subtracted from this alignment. This equation is
called the error function and is shown in figure 4.5.

The error function:

eij = zij − (~sj − ~si) (4.5)

4.1.5 The information matrix

Nodes are connected by edges which contain the probability of correctness between one pose
relative to another. Edges are not used when only adding poses to the graph from odometry.
Until loop closing the edges will be stored in a matrix which is called the information matrix.
After loop closing the information matrix will be used to correct the state vector to obtain a
better estimate.

Because it is possible for every pose to create an edge to any other pose, the number of
possible edges is the number of nodes squared, hence the data will become a matrix. The

20 Background,Graph-based SLAM



matrix will be symmetrical since the probability of pose i relative to pose j is the same as the
probability of pose j relative to pose i.

To find the places in the matrix to write, the partial derivatives of the appropriate error
function need to be found, the vector of partial derivatives is called a Jacobian. The error
function was defined by equation 4.5. The partial derivates can only have three values: 1, −1
and 0. The rules that are used to find the partial derivatives are as simple as:

xi
dxi

= 1

and:
−xi
dxi

= −1

Other partial derivatives become zero.

The partial derivatives of the error function will become:

Jij =

(
δeij
δ~si

δeij
δ~si

)
= (1 − 1)

where:

δeij
δ~si

=
δzij
δ~si
−
(
δ~sj
δ~si
− δ~si
δ~sj

)
= 1

and :

δeij
δ~sj

=
δzij
δ~sj
−
(
δ~sj
δ~sj
− δ~si
δ~sj

)
= −1

In theory, there are more partial derivatives to find as the full Jacobian would look as follows,
given (i < j) and N being the number of poses (size of the system):

Jij =

(
δeij
δ~s0

δeij
δ~s1

. . .
δeij
δ~si

. . .
δeij
δ~sj

. . .
δeij
δ~sN−1

δeij
δ~sN

)
= (0 0 . . . 1 . . . − 1 . . . 0 0)

Since there are no non-zero values rather than the derivatives to δ~si and δ~sj , the Jacobian
becomes a vector with only a 1 at the i − th position and a −1 at the j − th position. The
Jacobian can also be represented in matrix form, which can be calculated by the outer product
of the Jacobian transposed as a column-vector and the same Jacobian as row-vector:

JTij ∗ Jij =

[
1
−1

] [
1 −1

]
=

[
1 −1
−1 1

]
(4.6)

In the information matrix, the Jacobian in matrix form is multiplied with the probability of
the edge:

Hij = JTijΩijJij (4.7)

In this equation the Hij matrices are parts of the information matrix and represent a matrix
in which only four values that are non-zero representing the probabilities between two poses in
matrix form with positive values on the diagonal and negative values on the off-diagonal. Each
edge creates a matrix which can be add to create the information matrix:

H =
∑
ij

Hij ∀ij

Background,Graph-based SLAM 21



In the constructed matrix, the diagonal elements are an accumulated value of different edges,
which becomes the total probability of correctness of that node in the graph. Each off-diagonal
element tells the probability of correctness of two poses relative to each other.

For the graph in figure 4.2 the matrix would consist of 5 edges which in matrix form will
consist of 5 partial matrices. The addition of partial matrices is shown below in equation 4.8.

H = H01 + H12 + H23 + H34 + H45 =

Ω01 −Ω01 0 0 0 0
−Ω01 Ω01 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+



0 0 0 0 0 0
0 Ω12 −Ω12 0 0 0
0 −Ω12 Ω12 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 Ω23 −Ω23 0 0
0 0 −Ω23 Ω23 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Ω34 −Ω34 0
0 0 0 −Ω34 Ω34 0
0 0 0 0 0 0

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Ω45 −Ω45

0 0 0 0 −Ω45 Ω45

 =



Ω01 −Ω01 0 0 0 0
−Ω01 Ω01 + Ω12 −Ω12 0 0 0

0 −Ω12 Ω12 + Ω23 −Ω23 0 0
0 0 −Ω23 Ω23 + Ω34 −Ω34 0
0 0 0 −Ω34 Ω34 + Ω45 −Ω45

0 0 0 0 −Ω45 Ω45


(4.8)

Whenever loop closing occurs, the size of matrix H does not change, because the loop
closure occurs between already existing poses. Continuing on the previous graph and matrix,
loop closing will occur between the next pose (~s6) and the first pose (~s0 ), which is shown in
figure 4.3

The graph shown in figure 4.3 is an extension of the graph in figure 4.2. The matrix found
in equation 4.8 gets extended with a sixth odometry edge, but also with a loop closing edge
between pose ~s6 and pose ~s0, which is shown in equation 4.9.

22 Background,Graph-based SLAM



Figure 4.3: Example of a graph created from odometry commands with seven poses and one
loop closing occurrence

H = Hprevious + H56 + H60 =

Ω01 −Ω01 0 0 0 0
−Ω01 Ω01 + Ω12 −Ω12 0 0 0

0 −Ω12 Ω12 + Ω23 −Ω23 0 0
0 0 −Ω23 Ω23 + Ω34 −Ω34 0
0 0 0 −Ω34 Ω34 + Ω45 −Ω45

0 0 0 0 −Ω45 Ω45

+



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 Ω56 −Ω56

0 0 0 0 0 −Ω56 Ω56

+



Ω60 0 0 0 0 0 −Ω60

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−Ω60 0 0 0 0 0 Ω60

 =



Ω01 + Ω60 −Ω01 0 0 0 0 −Ω60

−Ω01 Ω01 + Ω12 −Ω12 0 0 0 0
0 −Ω12 Ω12 + Ω23 −Ω23 0 0 0
0 0 −Ω23 Ω23 + Ω34 −Ω34 0 0
0 0 0 −Ω34 Ω34 + Ω45 −Ω45 0
0 0 0 0 −Ω45 Ω45 + Ω56 −Ω56

−Ω60 0 0 0 0 −Ω56 Ω56 + Ω60


(4.9)

The graph in figure 4.3 shows a graph in which loop closing has occurred. There are two
instances of the ~s6 drawn in the graph, the light blue one is the one that has been constructed
from odometry and the green one is the position of ~s6 according to the observation sensor.
The green node is not present in the state vector, it only shows there is a mismatch in the
information about that node. There is a line drawn between the two instances of ~s6, this line is
not an edge, it represents the error which also implies the position of the green ~s6 node relative
to the blue version of ~s6. Because the edge that represents the loop closure (Ω60) is added to

Background,Graph-based SLAM 23



the graph, conflicting data is present in the system. The found error and information matrix
can now be used to change the graph in a weighted manner.

4.1.6 Minimization of errors and correction of the graph

To find the optimal version of the graph with the available data, the state vector needs to be
corrected. The weighted error is the error multiplied with the probability. Equation 4.10 shows
that a state vector needs to be found for which the weighted error is minimal where ~s∗ is the
best state estimate.

~s∗ = argminx
∑
ij

~eTijΩij~eij (4.10)

Equation 4.10 shows that a value of the state vector ~s needs to be found where the sum of
the squared errors is minimal. The corresponding values of matrix Ω contains the probabilities
of distances between the nodes and acts like a scalar on the error values.

To find values for ~s for which the error is small, the state vector must be changed. Just
changing the pose of one node is not a sufficient method since the relation with other nodes
is in that way neglected. The change of the state vector can be calculated by spreading the
error over the nodes while by their probabilities. If the relation between two nodes has a low
probability, it will absorb a larger part of the error than a relation with a high probability.

The update of the state vector can be defined as ∆~s, which has the same structure as the
state vector itself. ∆~s can be found by solving the linear system of equation 4.11. In this
equation H is the Information matrix as shown above, and ~b is a vector in which the errors are
taken into account.

H ∆~s = −~b (4.11)

Looking at the graph with loop closure in figure 4.4 and the corresponding H-matrix found
in equation 4.9 the complete system will look like the system in equation 4.12.



Ω01 + Ω60 −Ω01 0 0 0 0 −Ω60

−Ω01 Ω01 + Ω12 −Ω12 0 0 0 0
0 −Ω12 Ω12 + Ω23 −Ω23 0 0 0
0 0 −Ω23 Ω23 + Ω34 −Ω34 0 0
0 0 0 −Ω34 Ω34 + Ω45 −Ω45 0
0 0 0 0 −Ω45 Ω45 + Ω56 −Ω56

−Ω60 0 0 0 0 −Ω56 Ω56 + Ω60





∆~s0

∆~s1

∆~s2

∆~s3

∆~s4

∆~s5

∆~s6


=



~eijΩ61

0
0
0
0
0

−~eijΩ61


(4.12)

Vector b is a vector in which the weighted errors are accumulated to find the total set of errors:

~b =
∑
ij

~bij

Each part of ~b consists of an error and a probability of correctness of the observation edge
that created the error. Again the value of the multiplied values is multiplied with the Jacobian
which will again be a vector with a 1 at position i and a −1 at position j. The construction of
~b is shown in equation 4.13.

24 Background,Graph-based SLAM



~bij = ~eijΩijJij (4.13)

A possible way to solve the system is by inverting the inverting matrix in order to obtain
∆~s = H−1~b. Inversion is a computationally heavy operation. Hence, other solving methods
need to be considered.

The found vector ∆~s can be added to the state vector to alter the graph for the Cartesian
part ( x and y ). The changes of θ can be added as well, but applying the changes to the state
vector is performed differently as described in the next subsection.

4.1.7 Correction of errors of angles

Each pose within a two-dimensional graph consists of 3 values: x, y and θ and in state vector
form one could write: ~x, ~y and ~θ. Solving the linear systems as described in equation 4.11, re-
sults in values for ∆~x , ∆~y and ∆~θ which can be used to change the graph in order to decrease
the total error. The calculated values for ∆~x and ∆~y are already in Cartesian coordinates,
therefore the updated values of the ~x and ~y coordinates can be calculated by vector addition.

Each value of θ represents the angle the robot is facing at that position, and therefore the
angle in which it has moved from the previous position. In a constructed graph, the x and
y are independent of the values of θ since the graph is in Cartesian coordinates. Applying a
change of θ can initially also be performed using a vector addition to find the new values of θ
in the graph. After applying the calculated correction, the direction of the robot in the graph
does not match the theta values. In this case, the direction the robot is facing does not match
the direction the robot has driven. Applying the updated values of θ can only be performed
by converting the graph into polar coordinates and reconstructing the graph with the updated
values of θ.

Converting the graph to polar coordinates is performed by calculating the distances between
the nodes in the graph. This can be performed using Pythagoras’ theorem:

di =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (4.14)

Each value of di represents a distance between two nodes from the updated graph. The
updated values of θ can be used to reconstruct the graph with the same trigonometric functions
as used for graph construction earlier in this chapter:

xi+1 = xi + di ∗ cos(θi+1) (4.15)

and:

yi+1 = yi + di ∗ sin(θi+1) (4.16)

The disadvantage of this method is that applying changes in the θ direction, does also make
changes in the x and y coordinates of the graph. If error correction for x and y is done after
error correction for θ, the euclidean distance between the two nodes is larger than before θ
corrections, however, the sum of all three errors will have decreased.

4.1.8 Error convergence

Graphs can contain multiple errors because it is possible to have multiple loop closings. When
the state vector changes, the errors change accordingly. Because ∆~s is still a weighted com-
bination between odometry and observations, the sum of all errors will not be minimal after

Background,Graph-based SLAM 25



-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

7

(a) Ground truth (orange) and
odometry sensor data (blue)

-1 0 1 2 3 4 5 6 7

-1

0

1

2

3

4

5

6

7

(b) Graph corrected with up-
dated values without theta cor-
rection applied(light blue)

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

7

(c) Graph corrected and theta
correction done (light blue)

Figure 4.4: Different corrected graph plots to show difference in resulting graphs.

one iteration. When a graph is also corrected in θ-direction, the graph will become over cor-
rected. Multiple errors and an overshoot in correction introduces the need for iterations. The
sum of errors will converge after multiple iterations. The amount of iterations can be fixed or
determined by the total resulting error.

4.1.9 Hierarchical Optimization

Over time the dimensions of the state vector and information matrix will increase. The growth
of the state vector and information matrix can be limited by Hierarchical Optimization for
Graph-based slam (HOG)[27]. HOG is a method to decrease the number of poses in the state
vector based on the distance between them. Each node after the certain distance becomes the
first node of the new group. Removed poses are used to draw a resulting map, but they are
not taken into account in error convergence. Using the HOG algorithm, the computational
load reduces. Poses that are not inside the pose graph are still corrected by the correction that
is applied on the remaining higher level poses. This method can be seen as an extension of
the normal graph-based SLAM algorithm and can play a large role in implementation where
the use of resources should be limited. In hardware design, a limited amount of memory is
available which can not be exceeded, HOG could potentially be a good method to limit the
amount of used memory. If an algorithm restricts the amount of memory usage by abstracting
the map while keeping a sufficient quality of the map, the maximum length of the state vector
can increase.

4.1.10 Graph pruning: Removing non informative poses

Another method to decrease the complexity of the graph is called graph pruning[35]. The
approach is based on selecting laser scans that are most informative with respect to the map
estimate. Graph pruning aims at minimizing the expected loss of information in the resulting
map without introducing a bias during the selection of the laser scans. Graph pruning can be
a method to allow for long-term robot mapping since a robot that keeps all scans will run out
of resources earlier. In addition to that, the method can be used to directly implement SLAM
system with an environment of any given size.

26 Background,Graph-based SLAM



5 — Scan-matching

(a) Robot with a laser range
scanner taking a scan of the en-
vironment

(b) Robot with a laser range
scanner taking a scan of the en-
vironment

(c) Two scans lying on top of
each other with a yellow line
showing the transformation

Figure 5.1: Proximity scan used to determine robot movement (transformation)

To determine the robot movement it needs to know which paths it has travelled for which
odometry sensors can be used. However, odemetry sensors are know to be inaccurate because
of slippage and drift, therefore other sensors, like a laser range scanner (LRS) , can be used
to determine the movement of the robot. Proximity scans provide environmental data using
a beam-format, described in Appendix B. A beam-format means that the sensor determines
the range to an object in combination with the angle with respect to the sensor. Figure 5.1
shows a simple view of this principle where the red lines represent the beams. Figure 5.1a
shows the initial robot position, the robot takes a scan of the environment and the laser beams
register objects at the blue dots of the end of the red lines. The coordinates of the blue dots are
stored and the robot drives a bit forward with a slight rotation to the right, as can be seen in
Figure 5.1b. In the second position the robot takes another scan of the environment with the
red dots at the end of the red lines representing the detected obstacles (Figure 5.1b). Once the
robots has the two observations it determines the movement (transformation) between pose 1
and pose 2 by aligning the two scans (Figure 5.1c). The process of aligning two scans is called
scan-matching . The objective of scan-matching is locating the current robot position relative

Background,Scan-Matching 27



-2 -1 0 1 2

distance (m)

0

1

2

3

4

5

6

7

8

9

di
st

an
ce

 (
m

)

Two scans plot in the same figure

m
p

(a) Two consecutive scans
without transformation

-2 -1 0 1 2

distance (m)

0

1

2

3

4

5

6

7

8

9

di
st

an
ce

 (
m

)

Two scans plot in the same figure after the ICP algorithm

m
p

(b) Two consecutive scans
with transformation ap-
plied

(c) Robot path in the Intel data set where the
black arrow indicate the location where the
consecutive scans are taken.

Figure 5.2: Example of scan data before and after an ICP algorithm

to a previous one [41]. Scan-matching can be done by matching locally (current observation
with previous one) or globally (current observation with the already known map). A lot of
research is done in scan-matching [45], and several solutions to solve the problem are available
but only the ICP (Iterative Closest Point) is described below, other solutions are described in
Appendix C.

5.1 ICP: Iterative Closest Point

The ICP (Iterative Closest Point) algorithm has become the dominant method for aligning
multi-dimensional models based purely on the geometry from sensor data [51]. Sensor data for
ICP must be a set of one or more points in a one or more dimensional space. In the world
of SLAM ICP is used to find the rotation and translation between two sensor observations.
Figure 5.2 illustrates an example case of the ICP algorithm results applied on two consecutive
scans taken from the location indicated by the black arrow in Figure 5.2c. Figure 5.2a shows
the non transformed laser scans of the environment plotted over each other with both the robot
pose (triangles) at (0, 0). Figure 5.2b shows the result after applying an ICP algorithm, one
can see that the current observation (~p, blue dots) is aligned onto the previous observation (~m,
red dots) to know the movement of the robot. The key concept of the standard ICP can be
summarized into two steps [52]:

1. Construct correspondences between two scans

2. Construct transformation which minimizes the distances (errors) between the correspon-
dences

A correspondence is a match from point pi from the current observation ~p to a point mj from the
previous observation ~m. Figure 5.3 shows two laser scans, with correspondence variables, shown
in the zoomed box and, depending on the implementation, contains the following variables:

• Point (pix, piy) from the new observation (pi ∈ ~p)

28 Background,Scan-Matching



Figure 5.3: Laser scans with correspondence variables

• Closest point (mix,miy) to pi, from the previous observation (mi ∈ ~m)

• Normal vector (nix, niy) from pi to mi

• Error (ei) which is the euclidean distance between pi and mi

The ICP algorithm always converges monotonically to the nearest local minimum of a mean-
square distance metric, and experience shows that the rate of convergence is rapid during
the first few iterations [13]. An more elaborate explanation of the ICP algorithm is given in
Rusinkiewicz and Levoy [51]. The basic algorithm can be divided into three main stages, divided
into five sub stages:

1. Finding: Constructing correspondence pairs

• Selection: Selecting points in both sensor observations

• Matching: Finding a correspondence between the selected points

• Weighting: Weighting the correspondence pairs appropriately

2. Rejecting: Removing pairs that are less likely to be correct correspondences

3. Minimizing: Finding the rotation and translation which minimizes the error between
the correspondences.

Each stage with different options is explained below into more detail.

Background,Scan-Matching 29



(a) Distance to tangent line, taken from [63]

(b) Point to line using two
closest points, taken from
[16]

Figure 5.4: Point-to-line correspondences

5.1.1 Finding correspondences

There are different ways of generating correspondence pairs. Rusinkiewicz and Levoy [51] ex-
plain several methods for selection and rejection of pairs. For selection, one can choose to match
all available points from the current observation to the reference observation, or only a subset.
It is possible to match multiple points to a single point in the reference observation, vice versa,
or to only allow a unique correspondence.

5.1.1.1 Point-to-Point matching

The standard ICP algorithm uses Point-to-point correspondence. A correspondence is a match
between a point pi from the current observation ~p and a point mi from the previous observation
~m. All correspondences are all the matches from ~p to ~m, which allows for multiple correspon-
dences for each point. If all correspondences are found it is then up to the error minimization
part to find the best transformation such that the error between the matches is minimized. Lu
and Milios [39] propose two methods for scan-matching, both methods use odomotry as start-
ing estimation for the robot orientation. One method uses the same Point-to-point matching
as the standard ICP, but in addition, the squared distance to the origin is taken into account.
Using two correspondence sets allows to estimate the registration (rotation and translation)
accurately and it converges significantly faster than the standard ICP algorithm. The second
method of [39] is matching the tangent directions of two scans. The idea is to compute the tan-
gent directions on both scans. Then associate correspondence of scan points, assuming a known
robot orientation. From these associations a translation T is extracted using a least square
method (only translation not rotation). The current observation is then translated with the
translation T and the rotation is estimated by minimizing the distances. An error minimization
approach is described in Section 5.1.4.

5.1.1.2 Point-to-Line matching

Point-to-line matching was proposed by Chen and Medioni [17]. And it is proven that point-to-
line matching has quadratic convergence [16]. The standard point-to-line matching algorithm
uses the normal vector on the tangent line as correspondence, See Figure 5.4a. Figure 5.4b

30 Background,Scan-Matching



(a) Robot path on dataset with
unique correspondences

(b) Robot path on dataset with
non-unique correspondences

(c) Close approximation to the
ground truth of the robot path
plotted width the map of the
environment

Figure 5.5: Robot path of the Intel dataset without loopclosing. Based on ICP with odometry
input + outlier rejection

shows an approach that uses the two closest points in the reference observation without the
tangent.

5.1.2 Unique vs non-unique correspondences

For selecting correspondence pairs one can choose to only allow unique pairs or allow multiple
correspondences to a point. In most cases the choice between this does not have a huge impact
on the resulting image and iteration steps needed. However, in some cases it has some influence
which is shown in Figure 5.5 where the robot path from both unique and non-unique correspon-
dence selection is shown compared to a close approximation of the ground truth of the Intel
dataset. Figure 5.5a shows the result using unique correspondences. The black arrow indicate
the area where the robot is in roughly the same position. Most of the time the algorithm per-
forms good enough, but at some keypoints it misses some transformation. Figure 5.5b shows
the calculated robot path with the same dataset using non-unique correspondences. In general
the algorithm with non-unique correspondences has a more accurate result.
A more detailed look at a specific case shows why the non-unique preforms better in most cases.

Figure 5.6 shows a ICP algorithm performed on two observations from a laser range scanner of
a specific case where the robot is just driving around a corner. The blue dots represent the new
observation data, the red dots represent the previous observation data. Figure 5.6a shows the
initial correspondence selction. The blue lines represent a correspondence between two points.
It can be seen that there are a lot of points not matched because only one unique pair may exist.
Especially the areas pointed out by the black arrows contain few to non correspondences. With
very few correspondences each correspondence has a significant impact on the transformation.
This is why in the 9th iteration, Figure 5.6b, the the convergence of the points are heading
towards a wrong local minimum. The black arrows indicate again the areas where a lot of cor-
respondences are left out because of the unique requirement. After 15 iterations, Figure 5.6c,
the solution has converged into a local minimum and the result is a bad transformation. Com-
paring this same exact case with an ICP algorithm that does not require the correspondences
to be unique can be seen in Figure 5.7. Figure 5.7a shows the initial correspondence pairs.
Comparing this to the unique case, Figure 5.6a, one can see that the areas around the black
arrows are now filled with correspondences. After 4 iterations the points are heading toward the

Background,Scan-Matching 31



(a) Initial unique correspondences
(b) Heading towards local minimum with unique
correspondences

(c) Converged to local minimum after 15 iterations

Figure 5.6: ICP iterations for a unique correspondence case

32 Background,Scan-Matching



(a) Initual non-unique correspondence pairs
(b) Multiple non-unqiue correspondences are di-
rected into the correct way

(c) New correspondences are close to the correct
ones (d) Converged after 8 iterations

Figure 5.7: ICP iterations for for a non-unique correspondence case

Background,Scan-Matching 33



Figure 5.8: ”wave” image used in outlier rejection of Rusinkiewicz and Levoy [51]

correct solution. The correspondences arround the black arrows may not be the correct ones
but they are pointing in the right direction. Therefore in the following iteration, Figure 5.7c,
multiple correspondences are connected to the right, or the neighbor of the right point. After 8
iterations the solution is converged into the correct one, see Figure 5.7d.

5.1.3 Rejecting correspondences

For rejection of pairs a few methods are discussed in Rusinkiewicz and Levoy [51] and in
Pomerleau et al. [48]. The methods proposed are the following

• Rejection of pairs if the distance between them is above a certain user specified threshold

• Rejection of the worst n % of the pairs as suggested in Pulli [50]

• Rejection of pairs whose point-to-point distance is larger than some multiple of the stan-
dard deviation of distances [40][16].

• Rejection of pairs that are not consistent with neighbouring pairs, assuming surfaces move
rigidly [21].

• Rejection of pairs containing points on mesh boundaries [59].

• Rejection of pairs with a distance larger than the standard deviation + mean of the
errors [22].

Rusinkiewicz and Levoy [51] states that, though it may have effects on the accuracy and stability
with which the correct alignment is determined, in general does not improve the speed of
convergence. However, Rusinkiewicz and Levoy [51] draw their conclusions based on applying
an ICP algorithm with different outlier rejection techniques on a 3D image of a wave shown in
Figure 5.8, but results on 2D scanner data sometimes differ in accuracy as explained below.
The accuracy difference is in most cases very small but sometimes there can be a noticeable

difference. On example of this is given in Figure 5.9 and Figure 5.10. Both figures represent the
same input observations. The blue line represents the correspondence to the closest point from
observation ~p to ~m. The black arrows represents the dot product of the correspondence with
the normal vector. One can see the black arrows as pulling vectors on each point. Figure 5.9
shows the case with outlier rejection. correspondences with an euclidean distance between the
points that are larger than the threshold are considered outliers. The threshold taken here is
the standard deviation together with the mean. One can see that after 6 iterations the solution

34 Background,Scan-Matching



(a) Outlier rejection, threshold (std+mean), it =
0

(b) Outlier rejection, threshold (std+mean), it =
2

(c) Outlier rejection, threshold (std+mean), it =
6

Figure 5.9: ICP iterations with outlier rejection on correspondences

Background,Scan-Matching 35



(a) No outlier rejection, it = 0 (b) No outlier rejection, it = 2

(c) No outlier rejection, it = 4 (d) No outlier rejection, it = 10

Figure 5.10: ICP iterations without outlier rejection on correspondences

36 Background,Scan-Matching



has converged. Figure 5.10 shows the case of the ICP algorithm without outlier rejection. In
the first couple of iterations the results are positive (Figure 5.10a, Figure 5.10b). However in
iterations 4 (Figure 5.10c) and 10 (Figure 5.10d) a large outliers is responsible for an inaccurate
result.

5.1.4 Minimizing the error

Once correspondences are found, minimizing the error can be done in multiple ways. Rusinkiewicz
and Levoy [51] mention several methods for error minimization. Solutions based on single value
decomposition [9], quaternions [30], and orthonormal matrices [31]. The numerical accuracy
and stability are all evaluated by Eggert et al. [23], concluding that the differences among them
are small. This chapter describes the following two methods into more detail.

• Closed form solution by reducing the problem to quadratic form by Censi [16]

• Singular Value Decomposition used in the linear least square approach by Low [37]

5.1.4.1 Closed form solution by reduction to quadratic form

In APPENDIX I of Censi [16] a closed form solution for the 2D point-to-line metric is given. It
assumes that there is already point correspondence, (does not have to be the correct one) and
then it calculates the rotation and translation needed in order to minimize the error between
the point correspondences. This can be formulated into the following non-linear minimization
problem: ∑

i

||(R(θ)pi + t)− πi||2Ci (5.1)

where pi is a point in the current observation, and πi is the correspondence point in the reference
frame. R(θ) is a 2 × 2 rotation matrix. t is the translation vector. pi, πi, t ∈ R2. Ci = wiI2×2

for point-to-point metric, Ci = winin
T
i for point-to-line metric, where wi is a weight and ni is

the normal vector to the line between pji1
and pji2

. The three dimensional solution (tx, ty, θ) is

calculated using a four dimensional space, x = [x1, x2, x3, x4] = [tx, ty, cos θ, sin θ], by imposing
the constraint x2

3 + x2
4 = 1. Using Lagrange multipliers (λ) the following equation represents

the rotation and translation:

x = −(2M + 2λW )−T g (5.2)

where

M =
∑
i

MT
i CiMi (5.3)

g =
∑
i

−2πTi CiMi (5.4)

Mi =

[
1 0 pix −piy
0 1 piy pix

]
(5.5)

However, solving the Lagrange multipliers comes down to finding the roots of an quartic func-
tion (4th order polynomial). A detailed mathematical explanation and proof can be found in
APPENDIX I of Censi [16].

Background,Scan-Matching 37



5.1.4.2 Linear least squares by approximating θ ≈ 0

Low [37] proposes a method for minimization using a linear system using least squares approach.
The object of minimization is to reduce the sum of the squared distance between each source
point and the tangent plane at its corresponding destination point (see Figure 5.11). More
specifically, if si = (six, siy, siz, 1)T is a source point, di = (dix, diy, diz, 1)T is the corresponding
destination point, and ni = (nix, niy, niz, 0)T is the unit normal vector at di , then the goal of
each ICP iteration is to find Mopt such that

Mopt = argmin
M

∑
i

((Msi − di) • ni)2 (5.6)

M is a 3D rigid-body transformation composed of a rotation and translation matrix shown
below:

(M)(α, β, γ, tx, ty, tz) =


r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz
0 0 0 1

 (5.7)

With
r00 = cos γ cosβ

r01 = − sin γ cosα+ cos γ sinβ sinα

r02 = sin γ sinα+ cos γ sinβ cosα

r10 = sin γ cosβ

r11 = cos γ cosα+ sin γ sinβ sinα

r12 = − cos γ sinα+ sin γ sinβ cosα

r20 = − sinβ

r21 = cosβ sinα

r22 = cosβ cosα

(5.8)

By using a linear approximation that θ ≈ 0, the following can be approximated: sin θ ≈ θ and
cos θ ≈ 1. Using the approximation α, β, γ ≈ 0, the following transformation matrix can be
derived:

(M)(α, β, γ, tx, ty, tz) ≈


1 αβ − γ αγ + β tx
γ αβγ + 1 βγ − α ty
−β α 1 tz
0 0 0 1

 ≈


1 −γ β tx
γ 1 −α ty
−β α 1 tz
0 0 0 1

 (5.9)

Using the approximated transformation matrix, Equation (5.6) can be rewritten into a least
square problem.

xopt = argmin
x
|Ax− b|2 (5.10)

This is a standard linear least-squares problem and they propose to use singular value de-
composition (SVD) for solving. Further mathematical derivation and explanation why the
approximation is needed, and how the matrices are constructed can be found in Low [37].

SVD requires one to break down the A matrix into the product of three matrices [11]. An
orthogonal matrix U , and a diagonal matrix S, and the transpose of an orthogonal matrix V .

A = USV T (5.11)

where UTU = I, V TV = I, the columns of U are orthonormal eigenvectors of AAT , the columns
of V are orthonormal eigenvectors of ATA, and S is a diagonal matrix with the square roots of

38 Background,Scan-Matching



Figure 5.11: Point-to-plane error between two surfaces, taken from [37]

the eigenvalues from U or V in descending order. Solving a linear least square problem with
SVD goes as follows [36]:
Given the linear least squares as:

argmin
x
|Ax− b|2 (5.12)

Using the orthogonality of U and V , r = rank(A), and the size of A = m× n, the system can
be written down as follows:

|Ax− b|2 = |UT (AV V Tx− b)|2 = |S V Tx︸︷︷︸
=z

−UT b|2 =

r∑
i=1

(sizi − uTi b)2 +

m∑
i=r+1

(uTi b) (5.13)

The minimum norm solution with i = 1, ..., r is

xopt =
r∑
i=1

uTi b

si
vi (5.14)

Further mathematical derivation and proof can be found in Leykekhman [36], Golub and Reinsch
[24], and Baker [11].

5.1.5 Scoring the outcome

5.1.5.1 Separate scoring for key and non-key scans

Not every scan-match has the same certainty or is converged to zero error. In constructing a
plot one might want to keep track of the quality of a scan-match. Guo et al. [28] suggest two
scoring methods. One for key scans and one for non key scans. A scan is considered a key scan
if they are for example used in loop closing. Non key scans are most of the time consecutive
scans.

Score1 = ω1 cos(me) + ω2 sin(cr) + ω3 sin(vr) (5.15)

Background,Scan-Matching 39



Score2 = ω4 sin(Score1) + ω5 sin(ki) + ω6 sin(si) (5.16)

where:

• me = Mean correspondence error enlarged by a limit value.

• cr = Ratio of correspondences to valid points in scans

• vr = Ratio of visible points from current scan and matching observation

• ki = Reciprocal of key scan index (0 if not key scan)

• si = Reciprocal of scan index

• ωi = Weights (ω1 + ω2 + ω3 = 1;ω4 + ω5 + ω6 = 1)

Score1 is used to score the match for every scan, regardless of whether it is a key scan or not.
Score2 is used in matches where a key scan is also taken into account.

5.1.5.2 Generalized score

Using the ideas of Guo et al. [28] and the pair rejecting techniques described in Section 5.1.3
an own scoring metric was created using the following formula:

score = sin(cr
pi

2
)

1

1 + τ
∑
ei

||ei||

(5.17)

where:

• cr = Ratio of correspondences to valid points in scans

• τ = Factor to scale the mean error

• ei = Vector containing all the errors

40 Background,Scan-Matching



6 — CλaSH

The number of transistors on a chip has been rapidly growing for several decades as predicted
by Moore’s Law. Because of physical limits, the size and therefore the number of transistors
per area is starting to reach limitations. Many techniques have been introduced to increase
the number of transistors on a chip by putting multiple instances of chips into one package,
or using alternatives to normal processors. The Field Programmable Gate Array (FPGA) is
a reconfigurable chip which allows the developer to create dedicated architectures for specific
applications. Because FPGAs can be used to do computations in parallel, FPGAs potentially
have better performance compared to standard processors in terms of time and energy.

Hardware descriptions for FPGAs are often created in low-level hardware description lan-
guages such as (Very high speed itegrated circuit) Hardware Description Language (VHDL)
and Verilog. Although HDLs have been the standard for years, these languages are complex
and specific. Research focuses on finding alternatives that enable designers to create hardware
descriptions by using higher level languages. The problem with most program languages how-
ever, is that they do not have (enough) separation between time and area, which happen to
be the most important factors in hardware design. By (mis-)using programming languages for
hardware design, the programming language is used as description languages which means they
become indirect and have high levels of abstraction, which makes making changes at lower levels
difficult.

CλaSH[10] is a programming language, developed by the Computer Architecture for Embed-
ded Systems group, which is based on the functional programming language Haskell[6]. CλaSH
allows developers to transform strongly typed mathematical specifications to low-level hard-
ware descriptions. Because it is possible to describe structures in a mathematical way and also
in terms of time and area, CλaSH is suitable for implementing mathematical algorithms such
as SLAM. Within the CλaSH language, parallel operations on data can be performed using
higher-order functions(HOF’s). An example of a higher order function is the map-accumulate
function. The map-accumulate function can be used to find a parallel outcome of operations of
a list on one output, and an accumulated version of a list on another.

A basic example of the map-accumulate function is shown in figure 6.2a. Each higher-order
function consists of a structure and a function. The functions contains two inputs and two
outputs which work independent of each other. An example of such a function is shown in
Figure 6.1. Horizontally the inputs are added and vertically each stage produces a product of
the input i and state s.

Timing in hardware is defined by a clock signal, the clock signal is a signal that consists of
transitions with a static period. The clock signal can be used in circuits and a clock-triggered
system is called synchronous. An example of the clock-triggered system is the register. A reg-
ister has one input and one output. The register copies the input to the output when the clock

Background,CλaSH 41



Listing (6.1) Function with two inputs and out-
puts

f s i = ( s ’ , o )
where

s ’= s+i
o = s ∗ i

(a) Function adding the inputs horizontally and
multiplies vertically

Figure 6.1: Basic function with two inputs and two outputs and corresponding code

Listing (6.2) Map accumulate function

f s i = ( s ’ , o )
where

s ’= s+i
o = s ∗ i

mapAccum f 2 [ 3 , 4 , 5 ] (a) Example of the map accumulate function
with values filled in

Figure 6.2: Map accumulate example and corresponding code

makes a transition. The output is stored until the next transition of the clock. A register can
be used to store variables over time. The combination of a combinational path that changes
the output of the register into another input for the register combined with the register itself
makes a complete synchronous system.

The functionality of the map accumulate can also be described a synchronous system. A
system with the same inputs and outputs as the map accumulate function is called a Mealy
machine . A mealy machine contains a combinational path which creates a next state and an
output from the previous state and input. Figure 6.3a shows a basic mealy machine with input
i, output o, current state s, and next state s′. The CλaSH code is shown in Listing 6.3 where
the function f could be the function from the previous example or any other mathematical
specification.

With f being a more complex function which requires control (for reusing hardware for
example) a mealy machine can be used to control the input. The mealy machine does also
control the datapath so it performs the required operation. An example of mealy machine
which controls memory and a datapath is shown in Figure 6.4a and the corresponding code in
Listing 6.4. BlockRAM is a type of synchronous memory that is available on an FPGA. The
width of the data that is written to and read from the blockRAM is configurable, the depth of
a blockRAM is FPGA specific.

42 Background,CλaSH



Listing (6.3) Mealy machine

f s i = ( s ’ , o )
where

s ’= . .
o = . .

mealy f s0 i 0

(a) Mealy machine with input i, output o, cur-
rent state s, and next state s′

Figure 6.3: Mealy machine and corresponding code

Listing (6.4) Mealy machine for control

topEnt ity = o
where

m = mealy c o n t r o l s0 s i 0
i = blockram o
o = f i m

f i m = o
where

o = . .

c o n t r o l s i s = ( s ’ , m)
where

s ’= . .
m = . .

(a) Mealy machine controlling f and memory

Figure 6.4: Mealy machine controlling external memory with corresponding code

Background,CλaSH 43



44 Design Space Exploration



Part II

Design Space Exploration

Design Space Exploration 45





7 — Introduction to decision trees

The research part of this document discusses different approaches to realize a SLAM solution.
Many choices must be made to be able to implement a solution feasible for an FPGA. To
document the fundamental choices of this project a tree structured representation of design
space exploration (DSE) approach is used. Every choice made opens up new choices and every
solution found provides new problems to be solved. A tree structure can represent these choices
and influences on different abstraction levels where the level of detail increases from top to
bottom. Since the size of the entire decision tree is too large to fit onto a single page the tree is
split up into three parts. The first, shown in Figure 7.1, represents the initial choices which are
split up into two parts, Figure 7.3, and Figure 7.2 representing the scan-matching and Graph-
based SLAM parts respectively. Note that the tree contains references to the different chapters
in this section where choices are explained. The ellipse shaped nodes represent choices, the
rectangular shaped nodes represent the different solutions, and the green colored rectangular
nodes show the chosen solution among its alternatives. The tree can be used as an index and
overview of how the different sections of this document part can be linked together.

Design Space Exploration, Introduction 47



SLAM on
FPGA

Environment data
representation(8.1)

Feature
based

Volumetric

SLAM
Algorithm(8.3)

Gaussian Particle
Graph-Based

SLAM(9)

Sensor data
type(8.2)

Visual Proximity

Matching(8.4)

ICL ICP(10) NDT PSM

Figure 7.1: DSE tree global

Graph-Based
SLAM

State vector
representation(9.1.1)

Polar Cartesian

Construction
method(9.1.2)

Odometry
and ICP
proposal

Odometry
proposal

Correction
method(9.1.3)

Just x
and y

Just θ x y and θ

Loop closing
method(9.2.1)

Eucledian
distance with

threshold

Loop closing
structure(9.2.2)

Infinite
(restricted by memory)

Fixed amount of
incoming and outgoing

loop closures

Compare
every pose

Window with
nearby poses

Information matrix
storage structure(9.3.1)

All data
sparse

All data
non-sparse

Combination of
sparse and non-sparse

Linear
Solver(9.3.2)

Cholesky
Decomposition

LU triangular
decomposition

Conjugate
gradient

Joining sparse and
non sparse vectors into

single vector operations(9.3.3)

Memory duplicates
for parallel lookup

Implementation structure(9.3.4)

Parallel Parallelized in ALU structure

Sequential lookup
(storing singular values)

Large NSV
indexed by
multiplexer

Figure 7.2: DSE tree Graph-based SLAM

48 Design Space Exploration, Introduction



ICP(10)

Correspondence
selection metric(10.1)

Point-to-Line

Correspondence
uniqueness(10.1.2)

Unique Non-unique

Hardware selection
structure(10.1.3)

Sorting
list

Comparing
foldl

Comparing
tree

Point-to-Point

Outlier rejection
(10.2)

Threshold
std+mean

User set
threshold

Worst n%
Threshold
std · τ

Mesh
boundaries

No outlier
rejection

Error
minimization(10.3)

Closed
quadratic

QR
decomposition

Hardware
decomposition

structure (10.3.2)

Fully
parallel

Multiplexing
DSP

Vector
ALU

1√
x

(10.3.5)

Non restoring
1√
x

Fast 1√
x

without

Newton-Raphson

Fast 1√
x

with

Newton-Raphson

Memory
type(10.3.3)

Registers Blockram

Hardware
layout(10.3.3)

Single
blockrams

Dual
blockrams

External
RAM

Vector
operations(10.3.4)

MAC DSP
multiplexing

Pipe-lining
Separate

mul and add

Linear solver
structure (10.3.6)

Fully
parallel

Number
ALU

Division(10.3.7)

Non-restoring Restoring SRT ( 1√
d
)2

SVD

Figure 7.3: DSE tree scan-matching

Design Space Exploration, Introduction 49



50 Design Space Exploration, Introduction



8 — Exploration on SLAM proper-
ties

8.1 Environment data representation

SLAM
on FPGA

Environment data
representation

Feature-
based

Volumetric-
based

One of the goals of the project is to have an environment representation that is usable for
navigation, for navigation a robot needs to know whether a certain place is occupied or not.
Volumetric representation does this by definition. If the map produced by the SLAM solution
has a high enough resolution it is suitable for navigation. Feature-based approaches extract
sparse information form a sensor stream [34]. The map produced consist only of extracted
features and thus some information from the sensor is discarded.

The choice was made to use the volumetric data representation because it represents the
physical structure of the real world and thus better suitable for navigation purposes.

8.2 Sensor data

SLAM
on FPGA

Volumetric-
based

Sensor
data type

Visual

Proximity

The choice for using the volumetric approach also effects the sensor choice. Proximity sensors
are a good choice because the sensor data already represents physical distances which have a
volumetric representation. Camera sensors could be used but this introduces the problem of
data association. Appendix F gives short introduction to some of the vision solutions for data
association but this is an extensive field of research. Most data association algorithms also re-
quire a lot of computational resources. So the choices for proximity sensor in combination with
volumetric based representations are a matter of time, complexity and resources. In robotics
the two popular sensors are the ultrasonic sensor and laser-range scanner. Laser range scanners
are known for their high accuracy but are unable to detect transparent and highly reflective
objects. In full sunlight the laser range scanner is subject to noisy data. An advantage of the
laser range scanner is that a lot of the current available datasets also use the laser-range data [3].
The ultrasonic sensors are able to detect transparent and reflective objects but are know for
there unreliable and inaccurate measurements.

The choice was made to use the laser range scanner due to accuracy, reliability, and dataset
availability. Proximity data from either a dataset or laser range scanner has the beam-format.

Design Space Exploration, Exploration on SLAM properties 51



8.3 Choice of filtering technique

SLAM
on FPGA

Volumetric-
based

SLAM
Algorithm

Gaussian

Particle
filtering

Graph-Based

As described in previous chapters, there are three different approaches to solve the SLAM
problem. To choose between the different approaches, an overview of the advantages and dis-
advantages of the different algorithms is show below. The Gaussian based approaches have a
lot of the advantages and disadvantages in common and are treated as one approach.
Gaussian based SLAM (dis)advantages:

Few landmarks gives a good result

Data association with two methods: point for point, or feature detection

All of the probabilities are Gaussian distributions

Matrices grow quadratically with the number of landmarks

Laser-data represents points and not specific landmark types, so conversion is needed

Particle filter based SLAM (dis)advantages:

No state explosion

Easy quality improvement by adding particles

Complexity O(nm) or with tree based data storage O(n logm) (better than Gaussian or
graph-based)

With good proposal functions few particles will give good result

Multiple storage of same data

Environment without loop closing requires significant more particles

Graph-based SLAM (dis)advantages:

Quality of the map increases over time due to error convergence

Separation of concerns in back-end and front-end

Full slam, complete path gets optimized, when error is found

HOG for efficient computations and hierarchical memory usage

Information-Theoretic Graph pruning for efficient memory usage

Matrix equation can be solved with other techniques than inversion

Error is converged by iteration, which makes the algorithm less deterministic

These advantages and disadvantages give a global overview of the possibilities. The following
section gives a more detailed description and argumentation for a choice. For an implementation
on a FPGA a couple of criteria are established in order to choose one of the SLAM solution
approaches. The following criteria are defined and explained below:

52 Design Space Exploration, Exploration on SLAM properties



• Memory/Computational scalability

• Non-linearity

• Easy of implementation

• Easy and effect of optimization of parameters and implementation

• Quality of the map

On an FPGA there is always a trade-off between time and area. Multiple data dependent
operations will result in a longer combinational path and will reduce the clock frequency. One
might choose to have intermediate states (pipe-lining) to reduce the longest combinational path
and improve the clock frequency. To store intermediate states memory is needed, be it external
or on-chip. The criteria: memory scalability, and computational scalability represents these
constraints.

Some SLAM algorithms handle non-linearities better than others. This criterion is added
because the environment and robot movements are often non-linear.

The main goal of this project is not to find the best SLAM solution and implementation
but to realize a solution on an FPGA. This means that ease of implementation is also a criterion.

In most SLAM solutions parameters must be determined in order to get a better result, also
implementation can sometimes be optimized in terms of area and time. The criterion ”opti-
mization of parameters and implementation” represents this aspect.

As stated in the problem definition, the produced map must be usable for navigation. Some
algorithms have a trade-off between complexity (memory and computation) and quality of the
map. Therefore the quality criterion is added.

Table 8.1 shows the score of each SLAM solution, the following section gives a description of
the weighted scores. Note that the scores are relative to each other and are based on volumetric
based SLAM using a proximity sensor.

8.3.0.1 Non-linearity

Kalman filter and information filters are designed to solve linear problems and are by definition
not suitable for non-linear situations. The extended versions of these filters use linearisation
to approximate. The UKF does not use approximations and with enough Sigma points the
performance on the non-linearity is better than EKF or EIF. The particle filters are by definition
insensitive to non-linearities. Even proposal functions do not have to be linear. In graph-based
SLAM is also not subject to errors with non-linearities because it uses error approximations
between poses. Appendix D describes the process of robots taking over the world. Also, the
proposal function operates under the same principle as the particle filtering version.

8.3.0.2 Memory and computational scalability

For volumetric based approaches the Gaussian-based SLAM solutions, except the SEIF, score
worse on scalability because without data association the covariance matrices grow very fast.
Operations, like inverting, and storage of these large matrices involve both a lot of computations
and memory (grows quadratically). Because SEIF uses sparse matrices both the memory usage

Design Space Exploration, Exploration on SLAM properties 53



and computations can be optimized. In case of particle filtering there is a trade-off between
memory and computational resources. One could choose to realize a fully parallel particle filter
at the cost of a lot of area for computation. If particles are calculated over time it takes more
memory to store the entire map for each particle for each iteration. Because particle filtering
only represents the last known position and the entire map for each particle it is more efficient,
in both memory and computation, compared to the Gaussian-based solution. The trade-off
between memory and computational scalability is also visible with the graph-based solutions
because HOG has an increased computational complexity but reduced memory usage with its
hierarchical representation of its data. The graph-based solution does not store the map, but
all the poses with corresponding proximity data. Depending on the environment and the path
of the robot this method could be more efficient than particle filtering. Intuitively, if the robot
continuously sees an already known world then the accuracy will improve, but the memory
efficiency in graph-based approaches is worse than particle filtering. This is due to the fact that
with graph-based approaches the new poses will be added to the pose graph, while in particle
filtering the memory usage of each particle will stay roughly the same.

8.3.0.3 Ease and effect of optimization of parameters and implementation

For Gaussian filters the parameters are relatively easy to find. In most cases it comes down to
finding the right matrices which describe the state transitions of the robot. However in UKF
and SEIF it is harder to determine the right sigma points and sparsifications which leads to
a more efficient storage and computation. For particle filtering the optimization step is very
important. Parameters like: the number of particles, the weight calculations of particles, and
the re-sampling threshold are hard to determine but has a significant impact on the quality,
and resource usage.

8.3.0.4 Ease of implementation

Standard KF and IF are easy to implement because they deal with linear situations with
constant matrices. EKF and EIF are harder to implement because the linearisations use matrices
containing approximation functions. SEIF is harder to implement because of the sparsification
using manipulators to filter out passive landmarks. FastSLAM1.0 is easier than FastSLAM2.0
because it only uses odometry as proposal function for its particles. FastSLAM2.0 also uses
its observations which means that it contains scan-matching. Graph-based SLAM also uses
scan-matching for its loop closing. For HOG optimization, multiple layers of poses must be
constructed.

8.3.0.5 Quality of map

Quality of the resulting map is a difficult thing to measure, as a constraint the map should
be usable for navigation within the environment. Wrong loop closing is the main reason for
errors that cause the map to be unusable for navigation. The quality of the EKF and EIF is
higher than the quality of the UKF with an environment that can be linearised correctly. The
quality of the particle filter does highly depend on the number of particles and the parameter
optimization, but the quality of FastSLAM1.0 is usually worse than FastSLAM2.0 due to the
less accurate proposal function. Because graph-based solutions address the full SLAM problem,
the errors will converge over time.

54 Design Space Exploration, Exploration on SLAM properties



8.3.0.6 Conclusion: Graph-based SLAM

Computational complexity, separation of concerns, scalability, and optimization methods are
the main reasons why graph-based SLAM is the most promising method. The computational
complexity of the graph-based approach depends on the number of poses while in other meth-
ods it depends on the number of landmarks. In most cases there are more landmarks than
poses. The separation of the front-end and back-end in the algorithm allows for outsourcing
or even excluding computations. One could choose to do the map construction based on the
known poses on external hardware. Another advantage of graph-based SLAM are the various
ways of optimizing for memory and computational resources. HOG, and the Graph pruning of
Kretzschmar et al. [35], allow very efficient optimizations and putting constraints on resources
without significant loss of quality and accuracy.

Design Space Exploration, Exploration on SLAM properties 55



C
om

p
le

x
it

y
N

on
-

S
ca

la
b

il
it

y
O

p
ti

m
iz

at
io

n
of

E
a
se

o
f

Q
u

a
li

ty
o
f

th
e

m
a
p

li
n

ea
ri

ty
p

ar
am

et
er

s
an

d
im

p
le

m
en

ta
ti

o
n

im
p

le
m

en
ta

ti
on

C
om

p
u

ta
ti

n
al

M
em

or
y

E
as

e
E

ff
ec

t

G
au

ss
ia

n
K

F
O

(n
2
.4

)
E

K
F

O
(n

2
.4

)
U

K
F

O
(n

2
.4

)
IF

O
(n

2
.4

)
E

IF
O

(n
2
.4

)
S

E
IF

O
(n

2
)

P
ar

ti
cl

e
F

as
tS

L
A

M
1.

0
O

(n
lo

g
m

)
F

as
tS

L
A

M
2.

0
O

(n
lo

g
m

)

G
ra

p
h

S
ta

n
d

ar
d

O
(k

2
)

H
O

G
O

(k
2
)

T
ab

le
8.

1:
A

n
ov

er
v
ie

w
of

d
iff

er
en

t
p

ro
p

er
ti

es
of

S
L

A
M
n

=
n
u
m

b
er

of
la

n
d

m
ar

k
s,
m

=
n
u
m

b
er

of
p

a
rt

ic
le

s,
k

=
n
u

m
b

er
o
f

p
o
se

s

56 Design Space Exploration, Exploration on SLAM properties



Figure 8.1: A common hallway sensor observation from a laser scan

8.4 Scan-matching

SLAM on
FPGA

Volumetric Proximity
Scan-

matching

ICL

ICP

NDT

PSM

Scan-matching is the process of determining robot movement using observations. The common
use of scan-matching is matching the current sensor observation with the previous one in order to
determine the transformation between those two. This transformation is the distance travelled
by the robot. Different ways of scan-matching are discussed in Chapter 5 and Appendix C,
below follows an explanation of the choice for a scan-matching algorithm.

8.4.1 ICL

Iterative Closest Line requires one to extract features like corners and lines from a data set. ICL
is most of the time applied on large datasets like pictures or 3D models. Extracting features
reduces a stream of data into sparse information. Laser scans often consist of 180, 270, or
360 points which is already sparse information about the environment and therefore extracting
features could likely end up with to little information for determining the translation.

8.4.2 NDT

Normal Distribution Transform has a similar problem as ICL. The world around the robot
is discretized into a grid, and then the information from the laser scan is projected into the
grid. If a grid cell contains at least three scan points the occupancy probability distribution
is constructed. Many laser scanners return a distance with a step of 1 degree, which means
that points that are far away from the robot are less clustered compared to the points that are
close to the robot. A hallway for example contains a lot of points on the side walls but not in
the middle, see Figure 8.1. The points on the side wall are good for calculating the rotation.
However, for determining the translation the points in the middle are important. In the NDT
it is likely that the points to determine the translation are left out because it requires multiple
points in a grid cell.

Design Space Exploration, Exploration on SLAM properties 57



8.4.3 ICP

Given two datasets of points the Iterative Closest Point algorithms will find the transformation
between the datasets and will handle every datapoint given by the beam sensor model as an
individual point without sparsifying the information (as done in ICL), so no data association,
extraction, or other processing is needed. There are a lot of different ICP algorithms available
each with its mathematical structure.

8.4.4 Conclusion: ICP

Because there is no need to process the sensor observations and the different mathematical
structures possible to solve the scan-matching problem the choice was made to create the ICP
and to test different rejection and error minimization techniques. The easy of implementation
and the large amount of research already available in this area also contribute to this choice.

58 Design Space Exploration, Exploration on SLAM properties



9 — Graph-based SLAM

Mathematical definitions and the most important aspects of graph-based SLAM have been
discussed in Chapter 4. Implementation of these mathematical definitions can not be carried
out without exploration of the possible approaches. The following chapters will describe the
exploration for the important choices that have been made before starting an implementation.
The design choices at higher levels have large influence on the complete implementation, while
the lower level choices barely have influence on the final design. However, it can be the case
that a higher level choice has influence on the implementability of the a lower level choice, and
has an indirect large effect when it would be implemented in a way that is out of the scope of
the design space.

9.1 Graph representation

9.1.1 State vector representation

SLAM on
FPGA

Volumetric Graph-based SLAM
State vector

Representation)

Cartesian

Polar

The two possible coordinate systems to represent the state vector in are the Cartesian coordinate
system where each point is described by an distance that it is away from the base along two or
three axes that are orthogonal to each other. The state vector can also be represented in the
polar coordinate system. The polar coordinate system describes absolute angles and relative
distances instead of absolute position coordinates. The angle is absolute which means there is
a global frame in which the angles are expressed. The distances are relative which means the
distance between the current robot pose and the next robot pose is expressed. The choice of
the state vector mostly depends on the level of difficulty to work with them. The coordinate
system which demands the least amount of computational load to solve the SLAM problem can
be considered the best choice.

The format of the state vector matters whenever the state vector is used for computations.
This happens when the state vector is created, but also when it is updated during convergence
of the error in the SLAM algorithm. Creation of the state vector in Cartesian coordinates has
been discussed in Section 4.1.2. However, creation of a state vector in polar coordinates is much
easier since it is very closely related to the format odometry data gets presented. The difference
however is that odometry data will present relative angles that the robot has moved, while the
state vector needs to represent angles in the reference frame (2-Dimensional xy-frame). Sum-
ming the angles will directly result in the state vector that represents the robot path.

Considering the way error convergence is carried out described in Section 4.1.6, it is only
possible to correct an error based on absolute values, which are always x, y and θ relative to
the reference frame. The number of dimensions in the state vector that can not immediately

Design Space Exploration, Graph-based SLAM 59



be corrected by a vector addition is only one (θ) when working with Cartesian coordinates and
two when working in polar coordinates (x and y). However, the amount of conversions is the
same since the graph needs to be converted to polar and then back to Cartesian or the other
way around. The conversions will be done as described in Section 4.1.7.

The map that is constructed at the end of the algorithm can not be represented in polar
coordinates the same way as the state vector. The map should always be represented in a global
coordinate frame which the Cartesian state vector is already in. Also for human readability,
showing the map or a path in Cartesian coordinates is much more intuitive, since it directly
represents a 2-D environment in meters instead of angles and meters relative to the base of a
coordinate system.

9.1.2 Construction of the state vector

SLAM on
FPGA

Volumetric Graph-based SLAM Cartesian
Construction of
the state vector

Odometry proposal

Odometry and
ICP proposal

The state vector represents the poses the robot has been and will eventually be used as a
basis for mapping. The state vector is constructed with sensor data between each two sequential
poses which has already been discussed in Section 4.1.2. Odometry sensors introduce noise
which results in bad proposals for loop closing. An observation sensor can not only be used
when loop closing has occurred, but also to improve the initial path created by odometry.
The transformation between two poses was defined by a translation and a rotation. Using the
combination of odometry and a scan matching algorithm, in this case the ICP algorithm, a
transformation which is created by combining odometry and ICP can be created. The laser
scans that will be passed to the ICP algorithm are represented by m as the model and p as
the (current) data. The data is matched with the model to obtain a translation and rotation,
called a transformation. By first applying the transformation found by odometry on the laser
scan data, the transformation that the ICP algorithm needs to find becomes smaller. The laser
scan data transformed by odometry is called p′. The transformation the ICP algorithm returns
can be added to the transformation. Using this method the transformation between two poses
can be calculated in an accurate and computationally light way. The transformation between
two poses (~si and ~si+1) in a graph can be written down in a mathematical way:

Algorithm 2 Combination of odometry and icp

1: Hodo =

cosθ −sinθ x
sinθ cosθ y

0 0 1


2: p′ = Hodop
3: Hicp = icp(m, p′)
4: δsθ,(i,i+1) = atan2(sinθ, cosθ)

The above algorithm consists of four steps, in the first step a transformation matrix is con-
structed from the odometry command which can be used in the second step. In the second
step the transformation matrix can be multiplied with the model which is the oldest of two
the scans. Because of this multiplication, the model is already translated and rotated to easily
match the new scan. The error that remains between the scans is the error of odometry, but
since it is only one step of odometry, this error is rather small and because it is corrected by the
ICP algorithm every step, it becomes even smaller. The third step is running the actual ICP

60 Design Space Exploration, Graph-based SLAM



-10 -5 0 5 10 15 20

distance(m)

-25

-20

-15

-10

-5

0

5
di

st
an

ce
(m

)

(a) Pose graph created by odom-
etry

-10 -5 0 5 10 15 20

distance(m)

-25

-20

-15

-10

-5

0

5

di
st

an
ce

(m
)

(b) Pose graph created by odom-
etry combined with ICP

(c) Map of the corresponding en-
vironment and highly corrected
path

Figure 9.1: Initial pose graph without loop closing created by odometry and odometry combined
with ICP

algorithm in which the transformation between the odometry transformed model and the new
laser scan is calculated. From this transformation, the difference in θ can be calculated with
the atan2 function, which is the a normal tangent function which also considers the quadrant of
the angle based one both the sine and the cosine of an angle. The robot path with ICP assisted
odometry has far less error than the version created with odometry only.

Figure 9.1 shows resulting robot paths based on odometry and ICP assisted odometry. The
map is included to show that the ICP assisted odometry is a lot better. The robot path is
rotated, this is not an error. Because the mapping will also happen in the same skewed way,
the map is essentially the same. The pose graph that is merely based on odometry does show
artifects in rotation, but also in translation, which can be seen by the length of the lines, which
are significantly shorter than the lines of the ICP assisted odometry.

Although the ICP assisted odometry robot paths are more accurate the paths constructed
only with odometry, the SLAM algorithm does effectively not change. The state vector that
needs to be corrected being different is the only thing that differs. To show the functionality
of the SLAM algorithm it would be more interesting to show the correction and convergence of
a bad proposal path, rather than a path that is good. Development time plays a role in this
choice. The SLAM algorithm is separated from the ICP algorithm while they need to be in the
same implementation to combine their transformations.

9.1.3 Correction of the state vector

SLAM on
FPGA

Volumetric Graph-based SLAM Cartesian Odometry proposal Correction method

x and y

Only θ

x y and θ

The linear equation that needs to be solved to optimize the graph when loop closing occurs
is of the standard linear form. The system that needs to be solved is described in Equation 4.11
which was denoted by:

H∆~s = −~b

Design Space Exploration, Graph-based SLAM 61



-10 -5 0 5 10 15

distance(m)

-20

-15

-10

-5

0

5

di
st

an
ce

(m
)

(a) Intel dataset odome-
try not corrected

-10 -5 0 5 10 15

distance(m)

-20

-15

-10

-5

0

5

di
st

an
ce

(m
)

(b) Intel dataset odome-
try corrected in x and y
after loop closing

-10 -5 0 5 10 15

distance(m)

-20

-15

-10

-5

0

5

di
st

an
ce

(m
)

(c) Intel dataset odome-
try corrected in x, y and
θ after loop closing

(d) Map of the cor-
responding environment
and highly corrected path

Figure 9.2: Odometry data, two different correction methods which give different results and a
corresponding map to show the possible geometry of a robot path.

This system needs to be solved for each every dimensional vector in the system, which for the
2-D case are ~x, ~y and ~θ. Each linear system can be solved independent of the corrections in
other dimensions. For convergence of errors in a graph, it is possible to correct the graph in
one coordinate system. For the polar coordinate system this convergence can be done for θ
and in the Cartesian coordinate system correction for x and y can be calculated. The quality
of resulting maps heavily depend on the correctness of the sensor and in which directions the
sensors are most prone to errors.

The algorithm can be carried out without correcting the theta direction, this would however
result in bad maps for a robot path that contains a lot of error in the angle. An example of this
difference is shown in figure 9.2. For this example one complete loop of the Intel research labs
SLAM dataset has been taken and the error minimization method of graph based SLAM has
been used to find the corrected robot path. The robot path that is only corrected in x and y
directions shows a minimized error but does not take the error of θ into account. The error in
rotation is so high, that it the final path shows two loops instead of single loop it has actually
travelled. This method is therefore not sufficient. The third robot path has been corrected in
rotation as well showing a very similar geometry to the robot path drawn on the right showing
a much further developed and corrected robot path which matches the map of the environment
well.

9.2 Loop closing

9.2.1 Finding potential loop closings

SLAM on
FPGA

Volumetric Graph-based SLAM Finding potential loop closings

Eucledian distance
with threshold

Compare every pose

Window with nearby poses

Loop closing is the name for a robot visiting a pose that it has visited before and uses this
event to correct historical data with accumulated errors with more direct data. Before a robot
path can be corrected, it needs to correspond the current measurements to historical measure-
ments to confirm a correct loop closing. There are several methods to link measurements, every

62 Design Space Exploration, Graph-based SLAM



method having its own advantages and disadvantages. The algorithm used to correspond the
data is a scan matching algorithm that detects the transformation between two laser scans with
a corresponding score. If the score of the scan match is high enough, the loop closing can be
used within the graph.

The easiest way to find corresponding data is by checking the laser scan of the current pose
of the robot against all the laser scans of previous poses. This simple approach works for small
robot paths, but the amount of laser scan matches the robot needs to execute in order to detect
correct loop closings grows over time. Laser scans are considered heavy operations, which means
that other proposals with less computational complexity are preferred.

When it is not desired that every pose gets matched to every previous pose, a loop closing
proposal method is needed. The simplest method to find loop closing is by performing scan
matching between the current pose and every other pose to find a high scored match. This
method would have a high computational complexity which is not wanted. Another possible
method to find corresponding poses is the calculation of euclidean distances between the poses
according to the pose graph. If the distance is below a threshold, the scan matching algorithm
is run with the two poses. The threshold can be a fixed pessimistic value, but it can also be a
value dependent on the certainty of the pose. If the threshold is a fixed value, there is still a
large amount of scan matches that need to be carried out, which potentially takes a long time.

Calculation of the euclidean distances between poses will be used to propose loop closings.
By using a threshold on these distance, it is only necessary to carry out ICP for the poses that
are within a given distance and angle from each other. The computational load will be reduced
because the ICP algorithm is used less.

9.2.2 Restriction of the amount of loop closing

SLAM on
FPGA

Volumetric Graph-based SLAM
Eucledian distance

with threshold
Restriction of the

amount of loop closing

Fixed amount of
loop closings

Infinite (restricted
by memory)

Because loop closing is found between the current pose and one or more previous poses, the
amount of loop closing can become very large. However, the number of actual loop closings
is most of the time not even close to the number of loop closings that can theoretically oc-
cur. Normally a minimal number of poses should pass before the robot would have made a
complete loop trough an environment. The probability of each loop closing is stored in the in-
formation matrix, position of the loop closing ( which is the error ) is stored in a separate vector.

Because there can be a large amount of loop closing, the information matrix can become

dense and the vector containing the errors can be as large
1

2
n2 where n is the length of the state

vector. Allowing this many loop closings results in a large amount of memory being used on
the FPGA, which for large systems will not be available. The amount of memory that is used
can be reduced if there are fewer loop closings.

Every loop closing has a pose which is the current pose of the robot (si) and a pose with
which the loop closing occurs (sj). The loop closing for the pose which creates the loop closing
is called outgoing loop closing. The loop closing for the pose that gets loop closed with is called
incoming loop closing. The number of outgoing and incoming loop closings per pose can be fixed
to one. Essentially fixing the amount of loop closing means that every current pose can only
close the loop with one other pose, and every pose that already has an registered an incoming

Design Space Exploration, Graph-based SLAM 63



loop closing can not again be used for loop closing. Each pose contains a boolean that expresses
whether the incoming loop closing port is still available. If the incoming loop closing port is
already used, an alternative pose to close the loop with needs to be looked for. If there are no
other loop closing proposals, the loop closing can be neglected.

(a) Graph with 13 poses showing multiple loop clos-
ings between one pose and other poses.
(pose si is pose si+4 for all i)

(b) The same as figure on the left with amount of
loop closing restricted to one per pose.

Figure 9.3: Unrestricted amount of loop closing and restricted amount of loop closing

An important factor to consider when restricting the amount of loop closing is the effect the
restriction has on the quality of the resulting map the SLAM algorithm produces. Hence, the
more successful loop closings a graph contains, the better the resulting robot path and thus the
map will be. However, if loop closing occurs ambiguously between poses, the loop closings will
correct smaller errors. A loop closing after a long period of time without loop closing has a lot
more effect on the resulting graph than loop closings right after another.

Figure 9.4 shows an example of the difference in quality between graphs that performs loop
closing to the previous loop on the left. The image also shows a figure where the loop closing is
allowed to each previous loop on the right. This is a small example but it is clearly visible that
the difference between the two graphs is minimal. Because the amount of poses between each
loop closing is high, the probability of correctness will be low after closing the loop. Whether
the second loop only closes to the end of the first loop or also to the first pose of the complete
graph has little influence because the probability of loop closing will be large in comparison to
the probability that odometry has introduced. A few small differences between the paths can
be detected, which is caused by the even higher probability of multiple loop closings. Without a
map or ground truth of the robot path, it can not be told which path is a better representation.
The errors that do remain in the graph can be corrected by other strategically chosen loop
closing in other positions of the robot path.

Each incoming loop closing can be considered as a port, which means it can be connected by
another pose to express the relation between the two poses. Each port can only be used once,

64 Design Space Exploration, Graph-based SLAM



-15 -10 -5 0 5 10 15

meters

-25

-20

-15

-10

-5

0

5

m
et

er
s

(a) Resulting graph with restricted amount of loop
closing

-15 -10 -5 0 5 10 15

meters

-25

-20

-15

-10

-5

0

5

m
et

er
s

(b) Resulting graph with unrestricted amount of
loop closing

Figure 9.4: Quality difference between restricted and unrestricted loop closing

which means that there is a high probability of all the poses being occupied after each loop.
When there is additional functionality added to prevent the robot from occupying the ports in
a single loop, the loop closings can later be made between loops that are older than one or two
loops ago. Closing the loop with older loops can therefore still be carried out without the need
for a quadratically growing memory usage. Considering the example of figure 9.4, the second
loop does not implicitly have to relate to the first pose of the previous loop, it can also relate
to the second pose. The influence of the loop closing from the second pose will not be different
from the first one as soon as the data is good enough. Whether this data is good enough is
determined by if it can be correctly expressed in a transformation found by ICP.

By restricting the amount of loop closings, the amount of memory can be reduced. The
quality of the graph does not have to suffer from this restriction method as long as the loop
closings are strategically choses. When the loop closings are proposed in a strategic way, the
quality of the state estimate and therefore the final map will be (almost) just as good, and the
restricted amount of ports is not exceeded.

9.3 Linear Solver

9.3.1 Information matrix storage structure

SLAM on
FPGA

Volumetric
Graph-Based

SLAM
Information matrix
storage structure

All data
sparse

All data
non-sparse

Combination of
sparse and non-sparse

The information matrix contains probabilities of the relations between poses. The size of the

Design Space Exploration, Graph-based SLAM 65



information matrix with size n2 where n is the number of nodes minus one. Because this
quadratic size, the required amount of memory becomes high for large graphs. Looking at the
graph SLAM algorithm, it can be seen that the matrix has a high chance of containing a lot of
zeros since only the items in the information on the diagonal and a few on loop closing positions
are non-zero. However, in a normal environment, the robot would visit a reasonable amount
(tens or hundreds) of poses before a loop will be closed. The matrix only contains non-zero
values at the positions an edge has been created. For an edge (i,j) this is always at positions:

• (i, i)

• (j, j)

• (i,j)

• (j,i)

Positions (i, i) and (j,j) are always on the main diagonal, odometry edges for which hold
j = x + 1, the two (diagonal) lines above and below the diagonal contain values. For loop
closing there is no fixed relation between i and j. However, one could say j < i because pose si
is the position that closes the loop with pose sj , which means pose si is created at that moment
while sj already existed, hence j < i. Odometry poses will only create 3 items around the
diagonal, and additional loop closing in reasonable large environment would result in a very
low density of the matrix. With a static loop amount of closing per pose, a larger state vector
would results in more sparsity in the corresponding information matrix.

9.3.1.1 Sparse matrices

A matrix with a low density is called a sparse-dense matrix or sparse matrix. The sparsity of a
matrix is a property that has to be exploited if possible. Especially whenever a matrix is very
large and only few items are non-zero. Normal matrices is built up out of vectors, these vectors
contain elements. These matrices will be called dense matrices, ordinary matrices or non-sparse
matrices from now on. In normal matrices, each value of each vector of the matrix is stored
separately in the memory. Instead of defining the value of each element, it is also possible to
generalize the value of all common elements, and only denote the deviations. The common term
for this is a sparse matrix. The sparse matrix is different than an ordinary matrix since it only
mentions the values of elements that are not zero in an ordered way. This ordered way is often
by storing the index of the element that is going to be described, followed by the value of the
element.

An ordinary 4− by − 4 matrix containing three non-zero elements could look like this:
0 0 2 0
1 0 0 0
0 0 0 0
0 0 0 3


The same matrix described in sparse form would only describe the three non-zero items

leaded by the indices describing first the column, then the row and finally the corresponding
value.

(0, 1, 1), (2, 0, 2), (3, 3, 3)

The amount of items that is needed to describe the matrix is 16 for the ordinary notation
and 9 for the sparse notation. The sparser the matrix is, the more memory saved. Also, the

66 Design Space Exploration, Graph-based SLAM



indices in the sparse matrix notation are always values between 0 and 3 for this case, but
they will always be integer values between 0 and n − 1 where n is the system size (assuming
describing an n−by−n matrix), while the values can be much more complex values than integers.

Vectors can also be written in the sparse notation. In the case of vectors the place of a
non-zero item is described by one index. It is also possible to describe matrices with sparse
vectors in one dimension and dense vectors in the other dimension. The matrix could than
either be a sparse vector of dense vectors or a dense vector of sparse vectors.

9.3.1.2 Memory

Because the final design is a hardware implementation, the required and used amount of memory
should be analysed. The disadvantage of the sparse matrix notation however is that it requires
a dynamic amount of memory. A dynamic amount of memory is often not a problem on general
platforms like PC’s or micro controllers since there is an amount of memory available which
can be allocated and freed by a memory controller. There is however still a static amount of
memory available to allocate. Exceeding physical available amount amount of memory would
cause a slower or unstable system. This memory controller is not standard implemented when
making a hardware design. When a memory controller is not available, the designer has to
account for the memory-use during design-time.

9.3.1.3 Combination of sparse matrices and static memory use

In the loop closing section(9.2.2) of this chapter, the effect of restricting the amount of loop
closing has been explored. It was concluded that the effect of loop closing restriction is small
and with proper loop closing proposals can almost be neglected. With a restricted amount
of loop closing, the matrix contains a few features that can be exploited for storage of sparse
matrices on a static amount of memory. These features are:

• Matrix is symmetrical

• The number of items per vector (column) is static

• The number of vectors is static

The second property only holds if the allowed amount of loop closing is fixed. The amount
of memory per column in terms of items would then be: 3 + 2 ∗ nlc where nlc is maximum
amount of incoming and outgoing loop closing. The third property, that the number of vectors
is static holds because the diagonal is always completely used for a graph that is exactly the
size of state vector, even when no loop closing has occurred, the matrix will not contain empty
column vectors. The first item will be an important property which will be used later in the
linear solving algorithm.

The use of the sparse matrix notation is only useful when the matrix is indeed significantly
sparse. Though it could be possible that the amount of memory needed to store the matrix is
not that much higher because they are only integer indices, the amount of additional actions
that is need to be performed can be large. The reason for this is the unpredictability of a sparse
sparse notation. In the normal vector notation, each item can simply be found by looking up
the index, while in the sparse notation the value of each index needs to be inspected before
looking up the corresponding element.

Design Space Exploration, Graph-based SLAM 67



A sparse notation will even be less predictable when the items are not sorted within a matrix
or vector, if this is however the case, a dot product between two sparse vectors will consist of
checking the existence of every index within the list of indices of the other vector and fetching
the corresponding value, before the actual computation can be carried out. In hardware design,
a search through a list and sorting a list are heavy operations, especially for vectors with a large
amount of non-zero items.

9.3.1.4 Conclusion on matrices and memory

When sparse-matrices are used to represent the matrix, the amount of memory and computa-
tions can be reduced. The choice was made to use the sparse matrix notation for the information
matrix, but the ordinary notation for vectors. The matrix can then be described by a non-sparse
vector of sparse vectors. The combination of sparse and non-sparse vectors in one system will
result in some overhead in the transformations between the two, but would potentially save an
enormous amount of memory and computations, especially for large systems. The choice to not
only use sparse matrices has not been made because all the vectors in the system ( although
they might seem sparse sometimes) do not have a fixed amount of items which makes the sparse
notation profitable.

9.3.2 Linear solver for graph convergence

SLAM on
FPGA

Volumetric
Graph-Based

SLAM
Combination of

sparse and non-sparse
Linear
Solver

Cholesky
Decomposition

LU triangular
decomposition

Conjugate
gradient

The choice of using a(partially) sparse matrix has a lot of impact on the way a linear system
containing this matrix is solved. All the systems have in common that the size of the matrix has
influence on the time to solve the system. Several algorithms allow for solving systems containing
a sparse matrix. In this section reasonable techniques are analysed to find an appropriate
method to solve the linear system.

9.3.2.1 Cholesky decomposition

Cholesky decomposition is a matrix-decomposition method which can potentially be used to
solve a linear problem with a sparse matrix. Decomposition is a method to find solutions
of linear systems without having to invert the matrix or applying row reduction. Cholesky
decomposition of a matrix is only possible whenever a matrix is positive definite which means
that the equation ~zTM~z is positive for every non-zero vector ~z. The H-matrix has this property
and is therefore suitable for Cholesky decomposition. The first step of solving a system with
a decomposition method is finding two matrices from which the product is the decomposed
matrix. With this resulting matrices, new equations can be formed which can be solved easily
because the matrix in these equations is a triangular matrix. In Cholesky the decomposition of
a matrix is given by:

A = LLT

In this equation L is a lower triangular matrix, which means all the items above and right of
the diagonal are zero. The lower diagonal matrix can be found by working from left to right
and top to bottom and can be found by square roots and subtractions. The standard equation
A~x = ~b can be rewritten as:

LLT~x = b

68 Design Space Exploration, Graph-based SLAM



Another vector (~z) can be introduced as a temporary vector, it replaces LT~x and can be used
to which can be found by forward substitution:

L~z = ~b

Forward substitution means that the equation will be solved from top to bottom, which is a
trivial operation since L is a lower triangular matrix. Every row only contains one unknown.
The value for ~z has now been found and the value for x can be solved by backward substitution,
which is substitution from the bottom to the top:

LT~x = ~z

The Cholesky decomposition will be much faster than normal row reduction, because only
the non-zero items are taken into account. However, the resulting triangular matrix will end
up having one or more non-sparse vectors. This means that the matrix representation needs
to be changed in order to support the full version of Cholesky decomposition, which makes
implementation in hardware a challenge.

9.3.2.2 LU decomposition

Another decomposition method is LU decomposition, this is also a decomposition method for
which the matrix will be decomposed into a Lower and an Upper triangular matrix. However,
in Cholesky decomposition, the upper and lower matrix are each others transpose. In LU
decomposition, the upper and lower triangular and upper triangular matrix are unique which
means the decomposition will be different. The upper and lower triangular matrices which
are also called the factors are harder to find because linear equations still need to be solved.
However, the linear equations become simple because the matrix that is decomposed is sparse
and contains few items.

Once the decomposition is found, the steps to find the actual values for the x vector are
the same. First the matrix is decomposed using linear equations which have a maximum fixed
amount of unknown variables:

A = LU

The the matrix can be seen as the product of the upper and lower triangular matrix:

LU~x = ~b

The Ux can be substituted with a temporary vector ~z which can be found by triangular sub-
stitution, just as ~x can be found by solving it using ~z:

L~z = ~b

U~x = ~z

Although LU decomposition does give different resulting matrices than Cholesky decom-
position, the matrix also contains vectors that have more non-zero items than the static size
sparse matrices support.

Design Space Exploration, Graph-based SLAM 69



9.3.2.3 Conjugate gradient algorithm

Instead of using decomposition, it is also possible to solve sparse systems with iterative algo-
rithms. The property that is required from the solver method is that unlike the decomposition
methods, there should be no matrices involved that are dense or have dense vectors. The con-
jugate gradient algorithm is an algorithm in which the error is determined based on the matrix,
the given vector, and the wanted vector. This determined error is in vector form and can be
used to manipulate the wanted vector based on a direction found with the error vector.

The conjugate gradient algorithm is an iterative algorithm which will approach the wanted
vector by decreasing the total error. The algorithm is shown in 3. An initial ~x0 is chosen to
calculate an error that needs to be converged. The error that is calculated is called the residual
vector ~r. The initial search direction is set to the initial residual vector which is defined by
~p0 = ~r0 = ~b − A~x0. A scalar α is calculated by the fractional of the squared sum of the
errors and the A matrix scaled with the search direction vector. It can be seen that the result
of A~pk is used two times, and is the only sparse matrix to non sparse vector reduction. The
rest of the vector calculations are done with non sparse vectors because the resulting vectors
are not sparse anyway. The state vector is altered by the found scalar α times the direction
vector. The calculated β scalar is calculated by the fractional of the new and current squared
errors and is used to alter the search direction. Finally the search direction is altered in step
10.

Algorithm 3 Conjugate gradient algorithm

1: initialize:
2: ~r0 = ~b−A~x0

3: ~p0 = ~r0

4: k = 0
5: repeat until convergence of r:

6: αk =
~rTk ~rk

~pTkA~pk

7: ~xk+1 = ~xk + αk~pk

8: ~rk+1 = ~rk − αkA~pk

9: βk =
~rTk+1~rk+1

~rTk ~rk

10: ~pk+1 = ~rk+1 − β~pk
11: k = k + 1

The computational load of the algorithm can be analysed by looking at the amount of oper-
ations needed for each iteration. The operation A~x in step 2 is a matrix vector multiplication
which is a heavy computation for large matrices. The complexity of this particular operation
will become less because matrix A is a sparse matrix. However, it still requires n dot products
of a sparse vector with a non-sparse vector where n is the system size. The division in step 6
is a normal division that is operated on two numbers instead of on a vector or matrix, which is
a relatively light operation compared to vector operations. Table 9.1 shows the resources used

70 Design Space Exploration, Graph-based SLAM



division scaleNSV dotNSV addNSV subNSV SMNSV

step 2 1 1

step 6 1 2, (1 shared, id=0) 1, (1 shared, id = 1)

step 7 1 1

step 8 1 1 1, (1 shared, id = 1)

step 9 1 2, (1 shared, id = 0)

step 10 1 1

total 1 iteration 2 3 3 1 3 2

total i iterations 2*i 3*i 3*i 2*i 1+2*i 1+i

Table 9.1: A resource overview for the parallel conjugate gradient algorithm

scaleNSV dotNSV addNSV subNSV SMNSV

adders n-1 n
n∑
i=0

(mi − 1)

subtracters n

multipliers n n
n∑
i=0

mi

Table 9.2: Low-level cost of the high-level functions

to execute the conjugate gradient algorithm in terms of operations. The amount of cycles will
determine the total amount of operations that the algorithm needs to perform. On an FPGA
the number of resources is limited, the resources used to perform operations like additions and
multiplications are dedicated digital signal processors (DSPs) and look-up tables (LUTs) and
performing large vector operations with operators created in LUTs will make the FPGA run
out of resources very quickly. A possible solution to this problem will be discussed in the next
level of the design space exploration.

Table 9.2 shows the hardware cost of the used vector operations in expressions of low level
components, where n is the system size. Only the sparse matrix non-sparse vector multiplication
has the variable m which is the amount of active items in the each vector. When mi = mi+1

for each value of i, which means the number of non-zero values in each vector is the same, the
total number of adders becomes n∗ (m−1) and the number of multipliers becomes n∗m for the
complete matrix vector multiplication. In practice this is the case because the number of active
elements in the sparse vectors has been fixed at 5 items. The items are not checked before they
are used for calculations so they will be used inside the multipliers and adders.

9.3.2.4 Conclusions on the linear solver

The conjugate gradient algorithm will be implemented to solve the linear systems in hardware
for graph-based SLAM. The conjugate gradient algorithm does not alter the sparse matrix and
therefore no additional memory is required to store multiple matrices which is the case in the
proposed decomposition methods. Because the conjugate gradient algorithm does not change
the sparse matrix by making it larger of creating other matrices, and consists of only vector
operations, the conjugate gradient algorithm seems like the most promising method for solving
linear systems on hardware consisting of sparse matrices with static memory.

Design Space Exploration, Graph-based SLAM 71



9.3.3 Joining sparse and non sparse vectors into single vector operations

SLAM on
FPGA

Volumetric
Graph-Based

SLAM

Combination
of sparse and

non-sparse

Conjugate
gradient

Joining sparse and
non sparse vectors

into single
vector operations

Memory duplicates
for parallel lookup

Sequential lookup
(storing singular values)

Large NSV
indexed by
multiplexer

The linear solver contains sparse vectors with a fixed size to represent the information ma-
trix and ordinary vectors to represent everything else. The conjugate gradient algorithm does
only contain one operation that concerns both these sparse and non-sparse vectors. This op-
eration is present in the initialization phase of the algorithm (A~x) and in the iterative part of
the algorithm (A~p). Effectively, the matrix vector multiplication consists of the system size
amount of dot products. These dot products between ordinary vectors is a trivial problem in
math, because it is just a pairwise multiplication of two vectors and the sum of the resulting
vector.

9.3.3.1 Coupling sparse vectors

When the dot product is performed on two sparse vectors, the operation is functionally the
same. However, i1f two sparse vectors are multiplied, it is not possible to do the multiplications
without finding the corresponding indices in the vectors. An example of a dot product of two
sparse vectors is shown in equation 9.1. Only the non-zero parts that have corresponding indices
will be used in the final answer. Therefore, the dot product can be rewritten into vectors that
only contain the items with matching indices.

(0, 5)
(2, 5)
(4, 5)
(6, 5)
(8, 5)

 •


(0, 5)
(1, 5)
(2, 5)
(3, 5)
(4, 5)

 '
(0, 5)

(2, 5)
(4, 5)

 •
(0, 5)

(2, 5)
(4, 5)

 (9.1)

The introduction of sparse matrices and doing calculations with them results in less com-
putations, but they create a certain amount of overhead that need to be taken into account
before working with them. In this case, the overhead that is introduced is the coupling of the
indices of the sparse matrices. In the particular case of a dot product, there is an advantage.
Because a dot product is a multiplication of the items corresponding to an index, every index
of one sparse vector (of which the item is always non-zero) missing in the other sparse vector
will become zero and will not alter the final outcome of the dot product. Therefore, it is only
necessary to check the presence of the indices of one vector and multiply these in order to find
the final solution of the dot product.

Figure 9.5 shows an abstract structure of the sparse vector coupling. Each index of ~v1
will be looked up in the indices of ~v2 in the green block. If the index is present in ~v2, the
corresponding value is returned, otherwise a zero is produced. Producing a zero means the
multiplication will be done, but the outcoming value will always be zero, instead of not doing
the multiplication at all like in equation 9.1. In a static hardware structure it is not beneficial
to skip the multiplication, because the possibility of doing the multiplication means that the

72 Design Space Exploration, Graph-based SLAM



Figure 9.5: Value lookup of sparse vector index to perform a dot product

hardware is already available. In the figure the only one lookup block is shown, in the fully
parallel solution, each index will go to a lookup element.

9.3.3.2 Coupling a sparse vector to a non-sparse vector

In the previous paragraph the coupling of two sparse vectors has been discussed. In the conju-
gate gradient algorithm the the dot products will be performed between a sparse vector and a
non-sparse vector. The problem with this different vectors is the fact that the way the items
are stored is different. The non-sparse vector is just a plain vector with the system size amount
of items. Effectively, each index of the sparse vector needs to be looked up in the non-sparse
vector. This lookup can be done by using large multiplexers, but large multiplexer will use
more area on the FPGA. Another method is using memories in which the it is easier to find
the value without large multiplexers. However, memories are sequential, an address is provided
and that address will be fetched or written to in the next clock cycle. A fully parallel imple-
mentation does not contain multiple clock cycles since the complete implementation is a single
combinatorial path.

If synchronous memories are used, only one block can be fetched out of a memory at a time
where each block can contain one or multiple items. If a memory only contains one item per
block, the address can be provided at the read-address input of the memory and the correct
value will directly be available at the read data output in the next clock cycle. If the block
contains multiple items, the required element needs to be extracted from the block it is in with
the help of a multiplexer with the size of the block.

The disadvantage of using memories for the storage and lookup of vectors is that they are
synchronous, which means they are dependent of a clock input and will only present one block
of data at a time. If the sparse matrix has a fixed amount of items which need to be coupled
to values from the non-sparse matrix which are all in different blocks, each block needs to be
fetched, the correct data should be extracted and stored, after which the next block can be
fetched in the next clock cycle. The amount of clock cycles needed to do for example the final
complete sparse matrix non-sparse vector multiplication will take five times as long.

Instead of extracting the data with a large multiplexer or fetching it from one memory over

Design Space Exploration, Graph-based SLAM 73



Figure 9.6: Structure of finding and fetching the correct non-sparse vector block and the correct
value value within the found block. The architecture that is connected to the first element of
the sparse vectors appears for each element.

time, it is also possible to use multiple memories, each responsible for fetching one item for from
the non-sparse vector corresponding to the index of the sparse vector. It is possible to use the
available blockram memory on the FPGA as multiple parallel accessible small memories. Each
of these small memories contains a copy of the complete non-sparse vector from which values
needs to be coupled to a sparse vector’s index.

Figure 9.7 shows the structure sparse vector to non-sparse vector coupling with multiple
memory copies holding the non-sparse vector. Because the memory will hold blocks instead
of separate values, which will be discussed in the next section, the blocks still need to be
multiplexed to find the actual corresponding value.

9.3.3.3 Conclusions on sparse to non-sparse vector coupling

To realize vector operations between sparse and non-sparse vectors, memory duplicates of the
non-sparse vectors are used. A parallel lookup of the multiple items in the vector would consume
a lot of multiplexers and a sequential look-up would result additional clock cycles which results
in a much slower overall computation time. The indices of the sparse vectors are to fetch the
correct vector parts in the memory. Once the vector parts have been fetched, the correct values
are extracted from the vector parts.

9.3.4 Implementation structure

SLAM on
FPGA

Volumetric
Graph-Based

SLAM
Combination of

sparse and non-sparse
Conjugate
gradient

Implementation
structure

Parallel

Parallelized in ALU structure

Implementation of the graph-based SLAM algorithm can be generalized to the following
steps:

1. Creation of the state vector

2. Check for loop closing

74 Design Space Exploration, Graph-based SLAM



Figure 9.7: Structure of fetching values from a non-sparse vector position, based on the indices
of a fixed size sparse vector.

3. Minimize loop closing errors

If there is no error to minimize because there are no (new) loop closings, the minimization
step can be skipped. The final solution (robot path) is constructed by running these three steps
n number of times, where n is the size of the state vector. Which means the total amount of
operations can be seen as the sum of the operations of the three steps times n. Considering that
creation of the state vector consists of trigonometric functions and multiplications, loop closing
checks consist of comparing and selecting Eucledian distances and minimizing errors by solving
a linear system using the conjugate gradient algorithm, the total amount of calculations is large.

In hardware, it is possible to spread the computational load over time and over area. Spread-
ing calculations over time is called sequential computing and has been applied in many comput-
ing systems such as PC’s, cellphones, and micro controllers over the last years. By creating a
platform that is able to run simple instructions over time, complex computations can be done.
These complex computations are created in software, which is translated into simple instructions
so it can run on the hardware platform. The only way to do more instructions in a fixed amount
of time is by speeding up the frequency with which the instructions are executed. Because of
physical boundaries, the frequency of these system is reaching its limits and the urge to share
the workload over area becomes larger. Sharing workload over area is also called parallelization,
which requires a somewhat different structure than sequential computing.

To express the differences between sequential and parallel computations, the conjugate gra-
dient algorithm will further be analysed because of its potential parallelization, the amount of
computational load and the significance in the total graph based SLAM implementation.

9.3.4.1 Sequential computations

Sequential computing does have some advantages over parallel computations, as mentioned
above. Complex problems can be described in a general software language and translated to

Design Space Exploration, Graph-based SLAM 75



(a) Example of sequential (fold) operation

(b) Example of a parallel (zip) operation

Figure 9.8: Basic operations on vectors, the fold operation has sequential nature while the zip
operation has a parallel nature

sequential instructions to be run on an ordinary processor. Because the problem is spread over
time, sequential computing is very scalable. For example will a larger state vector just take more
clock cycles before the solution is known. Sequential systems are often also more general which
makes them support many different application by changing the software, parallel systems use
specific software and are less general.

Looking at the conjugate gradient algorithm it can be seen that it mainly consists of vector
operations. It is possible to distinguish two types of operations looking at vectors, the first one
is a folding operation which is for example used to sum the values of the vector. The folding
operation is naturally a sequential operation because the amount each item needs to be add to
the previous found sum. A certain amount of parallelization can be accomplished by dividing
the operations into groups and join the groups in later stages. However, this will always restrict
amount of parallelization. The second type of vector operations is a mapping or zipping oper-
ation. Which means every item from a vector gets used without any correlation between them.
Because there is no correlation, the operation can be executed in parallel. The basic sequential
and parallel operation are shown in figure 9.8.

Looking at the vector operations within the conjugate gradient algorithm, the possibilities
for parallelization are highly present. Because the clock frequency of an FPGA is often much
lower than the clock frequency of ordinary processors, there is no reason looking into an only
sequential implementation of the graph-based SLAM algorithm on an FPGA.

9.3.4.2 Parallel computations

The fully parallel structure of one iteration of the conjugate gradient algorithm is shown in
figure 9.9, the sparse matrix non-sparse vector product is carried out first after which the rest
of the vector operations of the algorithm. The amount of functional blocks needed to do one
iteration in parallel is very high for large systems. Therefore the algorithm needs to be fit into
a sequential structure with parallelized vector operations to make the algorithm fit. Each block
of three green dots represents a vector operation of the system size amount of items.

76 Design Space Exploration, Graph-based SLAM



Figure 9.9: One parallel iteration of the conjugate gradient algorithm

Design Space Exploration, Graph-based SLAM 77



(a) Example of a parallel vector scale

(b) Example of a sequential vector scale

Figure 9.10: Sequential and parallel structure of pairwise multiplication

9.3.4.3 Sequentialized parallel computations

The difference between a sequential en parallel implementation of a scalar of a vector is shown
in figure 9.10. The important difference is placing of the functional blocks. There is no over-
head required in the parallel solution, but there is a large amount of functional blocks. In the
sequential solution, there is a certain amount of overhead that reuses the single functional block
to do the same computations over time.

However, this is only the difference between sequential and parallel computations while the
goal is compare a parallel solution to a sequentialized parallel solution. The reason one does
not want a fully parallel solution is because it is simply not possible looking at the physical
constraints of an FPGA, doing things parallel will cost resources which are not available. Espe-
cially when the system to solve is actually a large one. In the example that was used throughout
this thesis a loop closing occurs after 335 odometry commands. The distance it has travelled
is in the tens of meters which is a fairly normal environment looking at the resolution of the
sensors. To store all of the poses into memory and minimize the error using the conjugate
gradient algorithm, a system of 336 poses needs to be solved.

A system size of this amount of poses means that for a single dot product 336 multipliers
are needed for pairwise multiplication and the same amount minus one adders for accumulation.
The amount of available sufficient sized DSPs on the given FPGA is only 112. About half of
the totally available DSPs will be used for the implementation of the scan-matching algorithm
of this research. The amount of multiplications that can be done in parallel on the DSPs will
be around 50. This amount of DSPs is by far not enough to do even one single dot product
of non-sparse vectors in parallel. It is also possible to create additional multipliers in the vari-
able blocks of the FPGA ( LUTs ) which might add a few extra possible parallel multiplications.

Instead of wanting a fully parallel implementation or a fully sequential one, the algorithm
can be implemented in such a way that there are still advantages of working with an FPGA and
having the possibility to use parallel components, but also the advantages of the principle of a

78 Design Space Exploration, Graph-based SLAM



sequential processor to make the algorithm fit. This trade-off between parallel and sequential
will bring a lot of overhead since the control will needs to be dedicated to the hardware struc-
ture. This will make the hardware implementation very application specific but on the other
hand optimal for this particular algorithm.

A sequentialized parallel structure can be implemented by using a component that is reused
during the algorithm. This reused component has been constructed to do multiple operations
at the same time. The operations are of the same type which means the set of operations can
be seen as a vector operation. This component can be seen as an arithmetic logical unit (ALU)
which is used over time to complete more (time) complex instructions.

Design Space Exploration, Graph-based SLAM 79



80 Design Space Exploration, Graph-based SLAM



10 — ICP

Section 5.1 describes the iterative closest point algorithm into detail and a quick recap is given
below. ICP is an algorithm used to find the transformation between two sets of points, the
model (~m =

∑
kmi) and the data (~p =

∑
i pi). In case of a robot with a laser range scanner

ICP can be used to align two sensor observations to determine the movement of the robot. The
ICP algorithm can be summarized into two steps:

• Finding correspondences, with or without outlier removal

• Calculating the transformation which minimizes the distances (error) between the corre-
spondences

A correspondence is a match from point pi from the current observation ~p to a point mj from the
previous observation ~m and contains the following variables: contains the following variables:

• Point (pix, piy) from the new observation (pi ∈ ~p)

• Closest point (mix,miy) to pi, from the previous observation (mi ∈ ~m)

• Normal vector (nix, niy) from pi to mi

• Error (ei) which is the euclidean distance between pi and mi

The choices of the different solutions for selecting correspondences, rejecting outliers, and mini-
mizing the error to find the transformation, are found in the Sections 10.1, 10.2, 10.3 respectively.

Design Space Exploration, ICP 81



10.1 Construction of correspondences

Section 5.1.1 states several ways of selecting points to form a correspondence. This section
will explain the choices made to realize the construction of correspondences. The first choice
to make is whether to use Point-to-point matching or Point-to-line matching (Section 10.1.1).
After that is the choice of using unique or non-unique correspondences (Section 10.1.2), and the
different architectural structures that can be used to realize the selection process in hardware
(Section 10.1.3).

10.1.1 Correspondence selection metric

SLAM on
FPGA

Volumetric Proximity ICP
Correspondence
selection metric

Point-to-point

Point-to-line

Section 5.1.1 describes that the Point-to-line matching has a faster convergence rate compared
to the Point-to-point matching. Both matching types require finding the closest point. How-
ever, Point-to-line matching requires two points from dataset ~m to calculate a normal vector n,
which makes the sorting slightly more complicated, because one has to find the closest mi and
second closest point mj .

The choice was made to use the Point-to-line selection metric for its faster convergence
speed.

10.1.2 Correspondence uniqueness

SLAM on
FPGA

Volumetric Proximity ICP Point-to-Line
Correspondence

uniqueness

Unique

Non-unique

Unique correspondence matching one allows only one correspondence for each point, non-unique
allows for multiple correspondences for each point. Section 5.1.2 describes into more detail the
differences between unique or non-unique correspondence selection and the effect it has on the
results. Purely based on the quality of the results one might already choose for the non-unique
selection criteria but another advantage of this solution is that no hardware is needed for filter-
ing on uniqueness.

Based on the overall better result and the complexity of the selection process the choice was
made to go with the non-unique correspondence selection.

10.1.3 Hardware selection structure

SLAM
on FPGA

Volumetric-
based

Proximity ICP Point-to-Line Non-unique
Hardware selection

structure

Sorting
list

Comparing
foldl

Comparing
tree

Based on the previous choices the selection algorithm must find the closest and second closest
point from the previous observation with respect to the new observation. Since non-unique
correspondences are allowed, there is no need to filter out the unique ones. The selection process
must be able to find for every point (pi), from the new observation (~p), the closest (mj) and
second closest point (mk) from the previous scan (~m). This means that all the distances between
all the points in ~p and ~m must be calculated. Looking at a single correspondence one must

82 Design Space Exploration, ICP



Figure 10.1: Finding the two closest points from the set m to pi

Figure 10.2: Finding the shortest two distances in a tree structure

calculate all the distances from pi to ~m. A single squared distance calculation di = (pix−mix)2+
(piy − miy)

2 requires 2 multiplications and 3 additions. A single correspondence calculation
requires 2N multiplications and 3N additions. For N correspondences 2N2 multiplications and
3N2 additions are required. With N = 180, synthesizing this on hardware is going to be a
problem since an FPGA, as described in Appendix A, does not have that many multipliers.
The realization of the QR decomposition, described in Section 10.3.2, faces a similar problem
and solved in such a way that the same solution can be applied here. Further explanation of
the solution can be found in Section 10.3.2.

From the distances, ~d, the shortest and second shortest distances must be found. In
MATLAB and Haskell, finding these two distances is easy because it is a matter of sorting an
entire list containing all the distances and taking the first two. But sorting a list containing
N = 180 items in parallel results in a large sorting structure. This structure can be split into
slices and executed over time but it remains inefficient because only the closest and second
closest points are needed. Alternative structures can be created which require less hardware

Design Space Exploration, ICP 83



Logic Truth table Figure

Possibilities Check logic a < x b < x a < y out0 out1
a < b < x < y b < x 1 1 a b
a < x < b < y

a < x 1 0 a x
a < x < y < b
x < a < b < y

x < a 0 1 x a
x < a < y < b
x < y < a < b a < y 0 0 x y

Table 10.1: Logic and truth table of the compare inside the tree

and less execution time. Since the closest and second closest points are the only ones needed
the first idea was to generate a fold left (foldl) structure as shown in Figure 10.1. However, this
structure ends up in a long combinational path from pi to the output. A solution for this is a
tree structure as shown in Figure 10.2. The input values (distances) d0 to dN−1 are first sorted
so that the right and left input of the compare are shortest and longest distances respectively.
Knowing that the input values are sorted, the compare function becomes easier and consist
only of three compares which reduces the length of the combinational path. An overview of the
checks done in the compare function are given in Table 10.1.

10.1.3.1 Conclusion: Tree structure sorting

The choice was made to realize a tree structure because it has a shorter combinational path
compared to the foldl architecture and requires less hardware compared to sorting the entire
input.

10.2 Outlier rejection

SLAM on
FPGA

Volumetric Proximity ICP
Outlier

rejection

Threshold
std +mean

User set
threshold

Worst n%

Threshold
std · τ

Mesh
boundaries

No outlier
rejection

Section 5.1.3 describes several methods and results of rejecting outliers concluding that it could
in some cases have a minor influence accuracy and reduce iterations needed for the solution to
converge. The outlier threshold can be calculated in different ways and the results researched in
Section 5.1.3 use the standard deviation and the mean as a threshold. Calculating the standard

84 Design Space Exploration, ICP



Figure 10.3: Calculation of the standard deviation and mean

deviation σ and mean µ with the error ei between correspondences is shown in Equation 10.1.

σ =

√
1

N
((e0 − µ)2 + (e1 − µ)2 + ...+ (eN−1 − µ)2)

σ =

√√√√ 1

N
(

N−1∑
i=0

(ei − µ)2)

µ =
1

N
(e0 + ...+ eN−1)

µ =
1

N

N−1∑
i=0

ei

(10.1)

A structural overview of this calculation is given in Figure 10.3. One can see that apart
form the division and square root the algorithm has a regular structure and can be calculated
over time in order to save hardware. Section 10.1 and Section 10.3.2 have a similar problem
and the architecture to solve the mean + standard deviation can be realized in a similar way,
as described in Section 10.3.2. Section 10.3.1.3 describes the QR decomposition method for
minimizing the error. To remove outliers from the system created by the QR decomposition
one can multiply all the columns of the Q matrix with a vector containing 1’s and 0’s indicating
if a correspondence is valid and create a zero row in the Q matrix to create a zero equation in
the system.

The choice was made to do no outlier rejection. As shown in previous sections the outlier
rejection only influences the quality of the result in very specific cases (Figure 5.10, 5.9) and has
some impact on the convergence rate of the algorithm. Realizing the outlier rejection including
its irregularities of this algorithm (division and square root) requires development time which
is not available after realisation of the necessary parts of the ICP algorithm, The structure of
the algorithm, and where to split it over time has already been worked out but the realisation
of outlier rejection will be future work.

10.3 Error minimization

Once the correspondences are found, the transformation must be calculated in order to deter-
mine the movement of the robot. The goal of the minimization process is to find the trans-
formation between the current pose of the robot and the previous one. Different algorithms,

Design Space Exploration, ICP 85



discussed in the literature study in Section 5.1.4, are compared in Section 10.3.1 and the choice
was made to use a form of QR decomposition. Section 10.3.2 explains the hardware structures
that can be used to realize the QR decomposition algorithm, which has further consequences for
elements like memory (Section 10.3.3), operations like the inverse square root (Section 10.3.5),
vector operations (Section 10.3.4), a linear solver (Section 10.3.6), and division (Section 10.3.7)

10.3.1 Error minimization algorithm

SLAM on
FPGA

Volumetric Proximity ICP
Error

minimization

Closed
quadratic

SVD

QR
decomposition

Section 5.1.4 describes several algorithms for minimizing the error and this chapter will contain
the choices made and solutions found to do this minimization on hardware.

10.3.1.1 Closed quadratic form

The closed form method proposed by Censi [16] was used in MATLAB. Constructing the quartic
function can be done in a regular structure. However, solving the fourth order polynomial in
hardware requires a lot of roots, divisions, and power raising [4].

10.3.1.2 Least squares by approximation θ ≈ 0 using SVD

The method proposed by Low [37] and described in Section 5.1.4.2 approximates the rotation
θ ≈ 0 to reduce the number of variables (from 12 to 6) for the linear least square problem for
the 3 dimensional case. However, for the 2 dimensional case this is not needed since the number
of variables is 4. Further on, Low proposes to use the SVD (singular value decomposition) for
solving the linear least square problem. SVD requires one to find two orthonormal matrices and
the square roots of the eigenvalues of the A matrix in the linear least square problem A~x = ~b.
Calculating the orthonormal matrices can be done by using the Gram-Schmidt method. In case
of a 2D transformation the rank(A) = 4. Finding the eigenvalues of a 4 × 4 matrix comes
down to solving a fourth order polynomial. As mentioned with the Closed quadratic form
(Section 10.3.1.1), solving a fourth order polynomial requires a lot of hardware area/time to do
roots, divisions, and power raising.

10.3.1.3 Least squares solver using QR decomposition

Section 12.1 explains the mathematical derivation and structure of a minimization method called
QR decomposition. Advantages of this algorithm are its regular structure and that it mostly uses
basic operations (multiplication and addition). The width of the entire system N is determined
by the number of correspondences. In case of proximity sensors with a beam model the number
of correspondences are equal between every two observation. Outlier correspondences can just
be interpreted as a zero equation and will not affect the structure of the system. The algorithm
itself mostly contains dot products, both for matrix vector and vector vector multiplications.
Looking at the regular structure of the algorithm one can see that reusable hardware can be
used. There are two downsides of this algorithm. First there are 4 divisions at the end (for the
backward substitution in the row reduction process). Second, 4 inverse square roots are needed
in order to normalize a vector (orthonormal vector space).

86 Design Space Exploration, ICP



10.3.1.4 Conclusion: QR decomposition

Both the closed quadratic form and the Singular Value Decomposition method require solving a
fourth order polynomial. The SVD method also requires constructing two orthonormal matrices
while the QR decomposition method only requires one. Mainly due to its regular algorithm
structure, vector dot products with fixed length, and known methods for fast inverse square
root (Section 10.3.5) the choice was made to realize the QR decomposition method.

10.3.2 Hardware decomposition structure

SLAM on
FPGA

Volumetric Proximity ICP
QR

decomposition
Hardware decomposition

structure

Fully
parallel

Multiplexing
DSP

Vector
ALU

Section 10.3 describes that the main reason to choose for QR decomposition is its regular
structure of the algorithm and that it mainly consist of basic operations. In this chapter the
realization choices of this algorithm will be described in more detail. The first part of this
chapter consist of a full parallel algorithm structure. However, due to limited hardware the full
parallel solution is not possible to synthesize on hardware and therefore two options are consid-
ered, multiplexing DSPs and a vector ALU structure. First the QR decomposition algorithm
is explained into three steps, after which the full parallel solution is given with diagrams that
show the regular structure. Due to its regular structure the algorithm can be split into parts
and executed over time to reuse components with multiplexers and memory which is explained
in Section 10.3.2.2. A third option is considered in Section 10.3.2.3 where an ALU structure is
proposed.

The QR decomposition can be split up into three parts:

• Constructing the system A~x = ~b from correspondences

• Constructing the orthonormal matrix Q

• Constructing the (Echelon from) matrix R = QTA, and vector ~t = QT~b

Each paragraph below will give a short recap of the parts

Constructing the A matrix To create the matrix A the following data from the correspon-
dences are needed (Section 10.1):

• Point (pix, piy) from the new observation (pi ∈ ~p)

• Closest point (mix,miy) to pi, from the previous observation (mi ∈ ~m)

• Normal vector (nix, niy) from pi to mi

The calculation for one row of the A matrix and ~b vector from a correspondence is restated
below: [

nix niy (pixnix + piyniy) (pixniy − piynix)
]︸ ︷︷ ︸

Ai

[
mixnix +miyniy

]︸ ︷︷ ︸
bi

(10.2)

Design Space Exploration, ICP 87



Constructing the orthonormal matrix Q In the QR decomposition process the Gram-
Schmidt method is used to find the orthonormal vector space Q = [ ~u0, ~u1, ~u2, ~u3] . The cal-
culations of these vectors is restated in Equation (10.3). One can see that every vector ~yi
needs to be normalized, for normalization a inverse square root is needed which is explained in
Section 10.3.5. After the Gram-Schmidt method the Q matrix is the orthonormal space of A.

~u0 =
~y0

|~y0|
⇒ ~y0 = ~v0

~u1 =
~y1

|~y1|
⇒ ~y1 = ~v1 − (~v1 • ~u0) ~u0

~u2 =
~y2

|~y2|
⇒ ~y2 = ~v2 − (~v2 • ~u0) ~u0 − (~v2 • ~u1) ~u1

~u3 =
~y3

|~y3|
⇒ ~y3 = ~v3 − (~v3 • ~u0) ~u0 − (~v3 • ~u1) ~u1 − (~v3 • ~u2) ~u2

(10.3)

Constructing the (Echelon form) matrix R and ~t

R = QTA

~t = QT~b
(10.4)

Multiplying QT with A will produce an 4 × 4 matrix R, note that the lower triangular is not
needed in the R matrix, which reduces the number of computations. After the calculation of
the R matrix and ~t vector for the system R~x = ~t, finding x0, x1, x2, and x3 is a matter of
row reduction. Looking at the dot products needed to create the orthonormal matrix Q (see
Equation 10.3) one can see that these dot products are also done in the computation of the
QTA = R matrix. So the results from dot products used in the Q construction can be reused
in the computation of R.

10.3.2.1 Fully parallel

This section will show fully parallel architectures for each part of the QR decomposition.

Constructing the A matrix The calculation for one row of the A matrix and ~b vector from
a correspondence is restated below:[

nix niy (pixnix + piyniy) (pixniy − piynix)
]︸ ︷︷ ︸

Ai

[
mixnix +miyniy

]︸ ︷︷ ︸
bi

(10.5)

A structured view of the construction for the entire matrix A end vector ~b from the correspon-
dences C0, C1, ..., CN−1 can be seen in Figure 10.4.

Constructing the orthonormal matrix Q In the QR decomposition process the Gram-
Schmidt method is used to find the orthonormal vector space Q. Figure 10.5 shows the structure
one iteration of the Gram-Schmidt method. In this figure the previous normalized vector,
~u0 = ~v0/||~v0||, is used in a dot product with the vector, ~v1, and scaled accordingly. The
outcome of this dot product is subtracted from ~v1. To use the outcome ~y1 in the next Gram-
Schmidt iteration one only needs to normalize : ~u1 = ~y1/||~y1||. In a full parallel architecture
one can put 4 of the same structures of Figure 10.5 after each other to create the orthonormal
space Q.

88 Design Space Exploration, ICP



Figure 10.4: Construction of the A matrix and ~b vector using correspondences C0, C1, ..., CN−1

Design Space Exploration, ICP 89



Figure 10.5: One iteration of the Gram-Schmidt, ~y1 = ~v1 − (~v1 • ~u0) ~u0

Constructing the (Echelon form) matrix R and ~t Figure 10.6 shows the full parallel
architecture needed to construct the matrix R and vector ~t. The optimization that some of the
results of the dot products used in the Gram-Schmidt for calculating the orthonormal matrix
Q are also needed in the matrix R. Note that this optimization is not shown in the figure.
Using the variables calculated in the Gram-Schmidt method reduces the computation for the
R matrix to only calculating the diagonal (r00, r11, r22, r33). The values above the diagonal are
from the Gram-Schmidt method, and the values below the diagonal are 0.

10.3.2.2 Multiplexing DSPs

Table 10.2 shows the components used for constructing the linear system A~x = ~b, constructing
the orthonormal matrix Q, and constructing the matrix R and vector ~t. All operations require
a multiple of N multipliers and adders. This regularity is also visible in the construction
of selecting correspondences (Section 10.1). Apart from the 4 inverse square roots, the QR
decomposition contains only the two basic operators; multiplication and addition which could
be reused over time to reduce the number of components. Reusing components for operations
introduces two aspects:

• Memory, for storing data over time

• Multiplexers, for selecting different input data for the multipliers

A schematic overview of the principle of reusing components with memory and multiplexers
is shown in Figure 10.7 where 1 iteration of the Gram-Schmidt methods is done by reusing
the multipliers. Multiplexers are used to select the input for the multipliers and the yellow
blocks represent storage of data. It is important to note that the order of execution matters,

90 Design Space Exploration, ICP



Figure 10.6: Calculate Q′A and Q′~b

Design Space Exploration, ICP 91



Part Multipliers Adders

A~x = ~b

~v0 0 0
~v1 0 0
~v2 2N N
~v3 2N N
~b 2N N

Q

~u0 2N N
~u1 4N 3N
~u2 6N 5N
~u3 8N 7N

QTA R 4N 4N

QT~b ~t 4N 4N

Total components 34N 27N

Table 10.2: Components required for a full parallel realization of the QR decomposition with
N = number of correspondences

for example ~u0 must be known before able to calculate ~u1. This puts a constraint on the order
of execution if calculations are done over time. The idea of splitting data and reusing operators
can be drawn even further by also splitting up vectors. Figure 10.8 shows a structure in which
a vector is split up in 4 parts of length M and then multiplexed through the multipliers.

10.3.2.3 Vector ALU

Almost every step of the algorithm, for both selecting and minimizing, multiplications and
additions are the only operations needed. A solution for reusing those operations for all steps is
an ALU structure as depicted in Figure 10.9. To realize such an ALU structure several choices
must be made regarding the memory and vector operations. The ICP algorithm does not only
contain vector operations but also single value operations like solving the linear system R~x = ~t,
for these single operations different hardware is generated which is described in Section 10.3.6.

10.3.2.4 Conclusion: Vector ALU

Hardware limitations such as the number of multipliers, and logical units on the FPGA described
in Appendix A are the reason the choice was made to design the Vector ALU structure. Further
choices regarding the structure of the memory, vector operations, and linear solver are described
in Section 10.3.3, 10.3.4, and 10.3.6 respectively.

92 Design Space Exploration, ICP



Figure 10.7: Structure of 1 iteration of the Gram-Schmidt, ~y2 = ~v2 − ( ~u1 • ~v2) ~u1

Design Space Exploration, ICP 93



Figure 10.8: Vector multiplication split up into parts to calculate over time

94 Design Space Exploration, ICP



Figure 10.9: Memory with vector ALU structure for reusability of hardware operators

Design Space Exploration, ICP 95



10.3.3 Memory layout

SLAM on
FPGA

Volumetric Proximity ICP
QR

decomposition
Vector
ALU

Memory type

Registers

External RAM

BlockRAM

The structure of memory determines for a large part the structure of the entire solution. For
example, if the memory component can provide only one value of an entire vector at the time
then this will affect the structure of the computation. Storage on an FPGA can be done in
three ways:

• Registers

• On-board memory called blockRAM

• External RAM

Constructing the Q matrix as described above, reusing the multiplications, with N = 180 mul-
tipliers with registers requires, according to the synthesis tooling ±17000 multiplexers. This
does not take the vector splitting part into account. Storing all the values in registers and
multiplexing them in order to select the right values consumes a lot of hardware. BlockRAMs
are specialized to do storing and fetching of data. However, on FPGA the number and depth
of blockRAMs is limited. When data becomes too large external RAM can be used but this
requires special drivers in order to be able to use them. The FPGA, described in Appendix A,
contains 5140 kbits of blockRAM. Depending on whether to use a fixed-point data size of 1-8
or 27-bits the realized ICP solution requires 7 % or 11 % utilization. Since there is no need for
external RAM the choice was made to use blockRAMs.

BlockRAMs provide data one clock cycle after the request for it. Creating a single block-
RAM containing all the vectors will create an extra delay for loading two different vectors. One
can choose to create a pipeline structure to reduce these idle cycles. This pipe-lining will create
a more complex data and control path. Since the entire data for the algorithm uses only 7 % or
11 % of all the blockRAMs available the choice was made to create a dual blockRAM structure
with duplicated data. This dual structure keeps the control and data path less complex and
will allow one to simultaneously read two vectors and do a computation.

When the vector ALU calculates a summation (for dot product) it produces a single result
which is stored in a blockRAM called number blockRAM . The number blockRAM contains
single values that can be used for either vector scaling or for solving a linear system R~x = ~t.
For single number operations another ALU is created called numberAlu which is described in
Section 10.3.6. The numberAlu, like the vectorAlu, requires two inputs and for the same reason
as with the vectorAlu the choice was made to duplicate the number blockRAMs as the vector
blockRAMs are duplicated. A general overview is shown in Figure 10.13.

To reduce control complexity and increase speed the choice was made to use duplicate
blockRAM structure for both vectors and numbers.

96 Design Space Exploration, ICP



(a) Summation using a foldl construction

(b) Summation using a tree structure

10.3.4 Vector operations

SLAM on
FPGA

Volumetric Proximity ICP
QR

decomposition
Vector
ALU

Vector operations

MAC DSP
multiplexing

Pipe-lining

Separate
mul and add

There are two types of operations, namely parallel and sequential (with data dependency).
Operations like multiplication, scaling, addition, and subtraction on vectors do not have any
data dependency and can be done in parallel. Summation is an operation with data dependency
and doing it with a fold left construction (Figure 10.10a) will result in a long combinational path
from v0 to o. This could be solved with pipeline stages but that introduces timing differences
in the different vector operations which would make the control much more complex. A similar
problem can be found in the Selection process (Section 10.1), and a similar solution can be
applied here; a tree structure (Figure 10.10b). The disadvantage of a tree structure is that MAC
(Multiply Accumulate) units cannot be applied. The DSP onboard an FPGA are usually capable
to do a multiply accumulate, but this requires a foldl structure as depicted in Figure 10.10a.
But a single DSP has a longer propagation delay than a synthesised adder, therefore, putting N
DSPs in sequential order will result in a large propagation delay. The propagation delay could
also be reduced by pipe-lining, but in order to reduce the propagation delay and still keep the
control straight forward, without different timing paths, the choice was made to have separate
hardware for parallel operations and sequential operations. Sequential operations are realized
using a tree structure.

10.3.5 Inverse square root

SLAM on
FPGA

Volumetric Proximity ICP
QR

decomposition
Vector
ALU

1√
x

Non restoring
1√
x

Fast 1√
x

without

Newton-Raphson

Fast 1√
x

with

Newton-Raphson

Inverse square roots are needed in two places of the algorithm:

• Constructing correspondences: creating the normal vector

• Error minimization: normalizing vectors for the orthonormal vector space

Many square root algorithms are available but in this report two are considered: Non-restoring
square root and Fast inverse square root (with or without Newton-Raphson steps)

Design Space Exploration, ICP 97



(a) Inverse square roots from x = 0.0001 to
x = 0.0107

(b) Inverse square roots from x = 0.0107 to
x = 1

Figure 10.11: Fast inverse square root, without Newton-Raphson, compared to the MATLAB
inverse square root

10.3.5.1 Non-restoring square root

A method for solving binary a square root problem is the non-restoring square root [46], which
uses the same principles as the non-restoring division (shifting register with partial and remain-
der). The non-restoring square root is an iterative algorithm and each iteration computes 1-bit
of the square root. Iterating the algorithm as many times as the number of bits of the input
provides equal precision and accuracy as the input.

10.3.5.2 Fast inverse square root

A fast and efficient way of computing the inverse square root of a number that is used in
hardware design is known as the Fast Inverse Square root [53]. The design of this algorithm has
been used in game engines in the early 90’s. At that time they used the method to avoid using
computational heavy floating point operations. The algorithm is described in Algorithm 4.
On the FPGA, as described in Appendix A, fixed point variables are used in for all DSPs.

Algorithm 4 Fast inverse square root s = n−
1
2

1: x = n . interpret the 32-bit floating point representation n, as an 32-bit Signed integer x
2: y = x >> 1 . shift x to the right
3: z = (0x5f3759df − y) . subtract y from a ’magic number’
4: k = z . interpret the 32-bit integer representation z, as a 32-bit floating point number k
5: //s = k ∗ (3

2 − (n2k
2) . (optional) one iteration of the Newton’s method

Therefore, the algorithm require two extra steps; the conversion from fixed point to a 32-bit
floating point representation and back. Beside the conversion the algorithm requires an adder,
a shifter, a couple of multiplexers, and 3 multipliers for the Newton-Raphson method. It is
however possible to do the inverse square root without Newton’s method, Figure 10.11 plot
the difference between the fast inverse square root method and the inverse square root from
MATLAB. Figure 10.11a shows the part from 0.0001 to 0.0107 and Figure 10.11b shows the part
from from 0.0107 to 1. These figures show that the fast inverse square root is relatively accurate
and without the Newton-Raphson method it does not require 3 multipliers. However, simulation
results, as described in Section 12.3, show that without Newton-Raphson the algorithm fails to
converge.

98 Design Space Exploration, ICP



10.3.5.3 Conclusion: Fast inverse square root

The choice was made to use the fast inverse square root method with 1 iteration of Newton-
Raphson because it does not require iterations as the non-restoring square root and should be
accurate enough for finding transformations.

10.3.6 Linear solver hardware structure

SLAM on
FPGA

Volumetric Proximity ICP
QR

decomposition
Linear solver

hardware structure

Fully
parallel

Number
ALU

After the QR decomposition the system R~x = ~t must be solved in order to compute the
transformation between the observation ~p and ~q. The row reduction process using backward
substitution is shown in Equation 10.6.

x3 =
t3
r33

x2 =
t2 − r23x3

r22

x1 =
t1 − r12x2 − r13x3

r11

x0 =
t0 − r01x1 − r02x2 − r03x3

r00

(10.6)

A parallel structure can be seen in Figure 10.12. Here one can see that also the division
component is assumed to be a 1 clock cylce operation, in practice this is not the case. Many
hardware dividers have been designed, Section 10.3.7 briefly describes some and motivates the
chosen one. Linear solving occurs only once per ICP iteration, this means that for every operator
used in the linear solver the utilization is very low. For this reason the choice was made to do all
the linear solving operations in sequential time only using one DSP for the multiplication and
addition. Looking at the QR decomposition algorithm one can see that the matrix R and vector
~t are constructed by the vector ALU using dot products. These dot products produce a single
values and those are stored in a blockram containing numbers. Since the number blockrams are
also duplicated, the same principle can be applied on the number ALU as is done for the vector
ALU; using different read addresses both operands can be selected and writing the output to
both blockrams in order to keep the data the same.

10.3.7 Division

SLAM on
FPGA

Volume Proximity ICP
QR

decomposition
Number

ALU
Division

Restoring

SRT

( 1√
x

)2

Non-restoring

Over the years many research has been done in the area of division [43]. Many of these al-
gorithms, like SRT, Newton-Raphson, series expansion, have their own advantages and imple-
mentation costs. One could spend an entire master thesis finding out what is the most optimal
solution. Section 10.3.5 explains a method for finding a relative accurate inverse square root in
just one clock cycle. The inverse square root can also be used in a division:

x

y
= x · 1

y
= x · 1

√
y2 = x · 1

√
y
· 1
√
y

(10.7)

Design Space Exploration, ICP 99



Figure 10.12: Parallel row reduction to solve R~x = ~t

Figure 10.13: General overview of structure with vector ALU and number ALU with dual
blockrams

100 Design Space Exploration, ICP



In calculating the normal vectors of correspondences the accuracy of the inverse square root does
not have a large impact on the results. But in this division the inaccuracy has a larger impact,
also the inaccuracy is squared because of the multiplication. Because division is such a small
part of the entire algorithm the choice was made to implement one of the most straightforward
division for signed fixed point variables: non restoring division [46].

Realisation and results 101



102 Realisation and results



Part III

Realisation and results

Realisation and results 103





11 — Graph-based SLAM

11.1 Realisation

11.1.1 Application specific multi use ALU

The ALU structure is used to execute vector operations such as pairwise operations and sum
operations. Supporting operations on numbers can be achieved by adding control to the ALU
that makes the ALU interpret the operands differently. This interpretation can be controlled
by the operation-control signal which will be called ”opcode”. When the ALU is fixed as for
example a single number multiplier, the first item of a vectors is taken into account and the
rest of the vector is set to zero to save energy, since logic that is not transitioning will not use
energy. In the ALU division is used which is not a vector operation and therefore only one
divider is available.

11.1.2 Fixed size sparse vectors

The choice for a fixed size sparse vector as columns of the information matrix has been made
to reduce computational complexity of the algorithm. The structure of one column has been
shown in Figure 11.1. One columns contains five elements from which three elements are d− 1,
d, and d + 1 which respectively are the element directly above the diagonal, the diagonal and
the element directly below the diagonal. The other two elements are the incoming lco and lci,
which are the outgoing and incoming loop closing ports respectively. By using this structure as
column vector in the information matrix, the quality of the algorithm will be maintained and
the amount of computations and memory use will be reduced.

Figure 11.1: Fixed size sparse vector as column of the sparse information matrix

Realisation and results, Graph-based SLAM 105



size of the
state vector

storage
method

amount of items
amount of bits
per item

amount of bits

336 sparse 1.7*10ˆ3 27 45 kb
336 dense 5.6*10ˆ5 18 2 Mb
2000 sparse 1.0*10ˆ4 29 290 kb
2000 dense 4.0*10ˆ6 18 72 Mb

Table 11.1: Memory usage for different system sizes and storage methods

11.1.3 Multiple blockRAM’s for efficient and fast access

BlockRAMs are a type of memory that can be used within an FPGA implementation. The width
of the data is determined by the user which means the amount of data fetched simultaneously
is defined by the user. However, it is only possible to read one block of the data with a defined
width at one moment in time. Almost all instructions take two different operands fetched from
these blockRAMs, which means if the data that is read is in different blocks, reading multiple
variables will be done in multiple clock cycles. Section 10.3.3 describes an in depth motivation
for using multiple dual versions of block rams to be able to read two different vectors at the
same time for one operation.

The implementation uses sparse vectors and non-sparse vectors side-by-side, both vectors can
be processed by one ALU. Sparse and non-sparse vectors have different data formats, additional
logic is added to format the vectors in such a way that they can be used in the same operation.
Sparse vectors and non-sparse vectors are stored in different instances of blockRAM memories,
because they have different data lay-outs. The read addresses of the blockRAMs that store
sparse and non-sparse matrices are connected to the same control signal so both data is fetched
from the two memories simultaneously. Which data is multiplexed into the ALU is determined
by another control signal.

11.1.4 Proposed ALU structure

The properties discussed during the design space exploration have been used to make an im-
plementation of the graph-based SLAM algorithm on an FPGA. The resulting structure of the
implemented hardware structure is shown in Figure 11.2. The architecture consists of a datap-
ath that consists the logic used for computations. The ALU and other combinational paths are
shown by green blocks. The yellow blocks are storage elements. The nine large yellow blocks
are blockRAMs and the small ones are registers. The large red block is the control block which
configures the other blocks to read from the correct inputs and write to the correct outputs. The
control lines are denoted by lines that enter and leave blocks horizontally, the data is denoted
by vertical connections.

In table 11.1 the memory use of a matrix is analysed. The difference in growth of memory
between a ordinary and a sparse matrix is shown by comparing the amount of memory it would
require to store the matrices. The size of a matrix when being dense matrix is defined by the
number of items times the size per item. For sparse matrices, the total size is also defined by
the number of items times the size of the items, but the size of the item is larger, because the
index requires memory for storage as well. Storage of sparse items is performed by storing both
the value and the index of an item. The amount of bits of the index can be calculated using the
maximum number of items that the index can represent. The function that depicts the number
of bits is a logarithm of the number of items rounded upwards.

106 Realisation and results, Graph-based SLAM



Figure 11.2: Sparse vector ALU

n of bits : dlog2 (nitems)e

The SLAM problem that has been analysed in this thesis comes from the SLAM dataset
from the Intel research building. The first complete loop of this dataset contains 336 poses.
With the help of this logarithm the total amount of bits for a system with 336 poses becomes
18 for the data and dlog2(336)e = 9 for the index. The graph in Figure 11.3 shows that there is
a huge difference between the sparse and non-sparse memory usage. The larger the state vector
becomes, the more rapidly the memory usage will increase.

The implemented architecture contains one transition that connects a data output to a
control input. This is the vertical (data) connection between the indices of the sparse vectors
read from the memories, which is connected to the horizontal (control) signal read address input
of the shadow copies of the non sparse vector from which certain indices need to be fetched.
The connection is marked in red in Figure 11.4.

11.1.5 Controlling the ALU

The operation that requires both parallel multiplication and summation is the dot product. The
data path can be controlled to perform the dot product between a sparse vector and a dense
vector or between two sparse vectors.

The control path performing a dot product of two 16-wide dense vectors with the given
architecture can be done with an 8 wide vector ALU. The steps to perform this are described
in the enumeration below. Each number represents a clock cycle.

1. • Load first 8-wide part of a vector

Realisation and results, Graph-based SLAM 107



0 10 20 30 40 50 60 70 80 90 100

items in state vector ( system size )

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

st
or

ag
e 

si
ze

 (
 b

its
 )

#10 5

Figure 11.3: Storage sizes of sparse and non-sparse storage methods compared

Figure 11.4: A vertical output connected to a horizontal input, which means data is used for
control

2. • Load second vector part of the vector

• Calculate the multiplication of the dot product on the first vector part

• Store the multiplied first part of the vector

3. • Load first multiplied part of the vector

• Calculate the multiplication of the dot product of the second part of the vector

• Store the multiplied second part of the vector

4. • Load second multiplied part of the vector

• Calculate the first summation of the dot product

• Store the sum of the first part of the vector

5. • Calculate second summation and start addition from the previous found summation

• Store the found sum in the correct memory

The enumerations shown above shows the steps in which the ALU can be used to perform
a dot product. Each instruction contains can contain a load, a computational and a write
instruction. The calculation is performed one clock cycle later because only then the data from
the memory is present. Because of this delay, everything else will happen in the next clock
cycle. This behaviour can be found in the structure of the ALU by the registers behind the
control signals, except behind the memory that perform reading.

108 Realisation and results, Graph-based SLAM



Table 11.2: Amount of clock cycles necessary to perform conjugate gradient

Type Instances clk cycles parts Total

dotSVNSV 336 3 1 1008

dotNSV 3 2 42 252

scaleNSV 3 1 42 126

subNSV 3 1 42 126

addNSV 1 1 42 42

div 2 1 1 2

total 1556

The complete implementation consists of similar instructions, at least their structure is
always the same. To create a minimum amount of delay, the control has been implemented
in such a way that the ALU is idle as little time as possible. The implementation creates a
continuously flowing data stream to the ALU which results in a high throughput for such a
small system at such a low frequency.

11.2 Results

The current SLAM implementation consists of a system which has a size of 336 poses. The 336
poses contain one loop of the Intel dataset that has been discussed before. The vector width of
the implementation of the ALU has been set to 8, which means 8 computations will be done
in parallel. Since the load of the SLAM algorithm mainly consists of correction of the graph
by minimizing the error, this part will be analysed and is realized in hardware. The processor
completes vector operations in multiple clock cycles, each vector that has a length of 336 items

will split into
336

8
= 42 parts. The width of the vector ALU can be changed easily. Operations

between sparse and non-sparse vectors require additional actions that consist of using indices of
sparse vectors to lookup values of a non-sparse vectors with the help of copies of the vector in
multiple blockRAMs. This method was used to perform a dot product between a sparse vector
and a dense vector.

Given the amount of vector parts in one non-sparse vector, the amount of clock cycles
for one iteration of the algorithm can be determined. Given the resources necessary for the
algorithm which has been shown in table 9.1, the amount of clock cycles the algorithm demands
are become as shown in table 11.2.

Figure 11.5 shows the results of a graph that has converged by solving the linear systems
with the conjugate gradient hardware implementation. Both many iterations of graphslam with
few iterations of conjugate gradient and vice versa give converged results. The right figure shows
a better estimate of the path than the left figure. The amount of iterations that is necessary to
get to a sufficient estimation of the exact vector solution is dependent on the size of the system
to solve. The accuracy of the resulting vector and the convergence rate is also dependent on
the error between the exact vector and the initial guess that the conjugate gradient algorithm
is started with ~x0. An accurate proposal of the initial guess will be the input vector for the
conjugate gradient algorithm. Using a method to create an initial vector that is any good, will
decrease the amount of iterations drastically.

It is possible to stop iterations in two ways, the first is fixing the amount of iterations to
a pessimistic amount so the result will be correct. The other way of stopping the iterations is
by termination whenever the error drops below a threshold combined with an fixed maximum
amount of iterations to prevent the algorithm from executing an infinite amount of iterations.

Realisation and results, Graph-based SLAM 109



-15 -10 -5 0 5 10 15

meters

-25

-20

-15

-10

-5

0

5

m
et

er
s

(a) 10 iterations of graph SLAM and 5000 conjugate
gradient iterations per cycle

-15 -10 -5 0 5 10 15

meters

-25

-20

-15

-10

-5

0

5

m
et

er
s

(b) 5 Iterations of graph SLAM and 10000 conjugate
gradient iterations per cycle

Figure 11.5: Resulting paths with different amount of graph SLAM error convergence iterations
and conjugate gradient iterations

From these examples, the right-hand figure gives the best result by using more conjugate gra-
dient and less iterations of graph-SLAM.

The right figure of Figure 11.6 shows the difference between a graph converged in MATLAB
(the yellow path) and the results created by the conjugate gradient algorithm in hardware. The
results of the hardware implementation are very comparable despite the fact there is a small
difference in the angle between the graphs. In normal scenarios both these maps are of sufficient
quality to use for navigation.

11.2.1 MATLAB timing results

To make a comparison to hardware, the graph-based SLAM algorithm has been implemented in
MATLAB. The linear solver that MATLAB uses does not have to restrict memory use like the
hardware conjugate gradient solver. In MATLAB dynamic allocation and freeing of memory
can be used. An implementation that uses sparse matrices of the conjugate gradient algorithm
in MATLAB shows convergence of a single dimension of the SLAM algorithm in an average
of 740 ms. The linear solver that MATLAB uses is about an order of magnitude faster than
the conjugate gradient implementation on MATLAB. Using the MATLAB linear solver requires
significantly more memory than the hardware implementation.

11.2.2 Hardware results

The graph-based SLAM implementation has been implemented using CλaSH and the amount
of clock cycles per iteration are found. The transformation from CλaSH to VHDL was not
successful which means timing results are difficult to give. Due to time, hardware synthesis
was not prioritized. However, because the implementation is performed while knowing the
limitations of hardware synthesis, the vector ALU structure should not contain extensively long

110 Realisation and results, Graph-based SLAM



-15 -10 -5 0 5 10 15

meters

-20

-15

-10

-5

0

5

m
et

er
s

(a) Graph before convergence

-15 -10 -5 0 5 10 15

meters

-25

-20

-15

-10

-5

0

5

m
et

er
s

(b) Converged graph by hardware conjugate gradient
(blue) and MATLAB’s linear solver (yellow)

Figure 11.6: Results comparison of hardware conjugate gradient against MATLAB

combinational paths. The largest combinatorial path that would then occur will be the sum
operator. The sum operator sums the vector blocks which is used in the dot product. With the
vector size currently being 8, the sum operator should not result in a system that can not keep
up with the FPGA’s frequency of 50MHz. The assumption is therefore made that the complete
implementation ALU structure will is able to run at this maximum frequency. The ALU as a
combinational path has been synthesized and it shows that the amount of DSPs is equal to the
width of the vector which in this case is eight. The amount of parallelism in the non-sparse
vectors can be increased to any power of two and the number of DSPs will be the same as that
number.

The amount of clock cycles that is needed to perform one iteration of conjugate gradient
is 1556. Most of these clock cycles are used to perform the sparse matrix non-sparse vector
multiplications. The loop closing error showed in the above example is corrected in 10000
cycles. The total amount of clock cycles needed to converge the error becomes 16 ∗ 106 cycles.
Convergence with the assumed maximum frequency of the FPGA results in a convergence that
takes 320ms per dimension. The total time to complete the algorithm and converge three
dimensions with large error will add up to 960ms.

Realisation and results, Graph-based SLAM 111



112 Realisation and results, Graph-based SLAM



12 — ICP

Section 5.1 describes the introduction and background of the ICP algorithm. Section 10 explains
the choices made for algorithms and architectures. Section 10.3.1 explains the choice and
shortcomings regarding the current used error minimization methods in ICP. The choice was
made to use a linear least square problem with QR decomposition as solving method, the
mathematical derivation and details are described in Section 12.1. In the DSE several choices
are made and the realisation of chosen architectures can be found in Section 12.2. Simulations,
synthesis, and timing results can be found in Section 12.3.

12.1 QR decomposition

Low [37] explain an approach for solving the minimization using a least square problem. They
use a linear approximation that the rotation angle between matching point sets θ ≈ 0. Using
idea’s from [38],[16],Horn et al. [31] and the least squares approach found for graph-based SLAM
a method for finding the best rotation and translation to minimize the error is given below. The
rotation (θ) and translation (tx, ty) can be found by minimizing the following equation, using
homogeneous coordinates:

argmin
H

∑
i

((Hpi −mi)ni) (12.1)

with

H =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 , pi =

pixpiy
1

 ,mi =

mix

miy

1

 , ni =

nixniy
1

 (12.2)

The least squares in the form of A~x = ~b is derived from (12.1) as follows:

Hpi =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

pixpiy
1

 =

cos θpix − sin θpiy + tx
sin θpix + cos θpiy + ty

1

 (12.3)

Hpi −mi =

cos θpix − sin θpiy + tx
sin θpix + cos θpiy + ty

1

−
mix

miy

1

 =

cos θpix − sin θpiy + tx −mix

sin θpix + cos θpiy + ty −miy

0

 (12.4)

Realisation and results, ICP 113



(Hpi −mi)ni =

cos θpix − sin θpiy + tx −mix

sin θpix + cos θpiy + ty −miy

0

nixniy
1

 = 0

= cos θpixnix − sin θpiynix + txnix −mixnix + sin θpixniy + cos θpiyniy + tyniy −miyniy = 0

= nixtx + niyty + (pixnix + piyniy) cos θ + (pixniy − piynix) sin θ = (mixnix +miyniy)

=
[
nix niy (pixnix + piyniy) (pixniy − piynix)

]︸ ︷︷ ︸
Ai


tx
ty

cos θ
sin θ


︸ ︷︷ ︸

~x

=
[
mixnix +miyniy

]︸ ︷︷ ︸
bi

(12.5)
For N correspondences the following system can be constructed, where K = N − 1:

n0x n0y (p0xn0x + p0yn0y) (p0xn0y − p0yn0x)
n2x n1y (p1xn1x + p1yn1y) (p1xn1y − p1yn1x)

...
...

...
...

nKx nKy (pKxnKx + pKynKy) (pKxnKy − pKynKx)


︸ ︷︷ ︸

A


tx
ty

cos θ
sin θ


︸ ︷︷ ︸

~x

=


m0xn0x +m0yn0y

m1xn1x +m1yn1y
...

mKxnKx +mKynKy


︸ ︷︷ ︸

~b

(12.6)
The system A~x = ~b has the size of A = N × 4 and the length of ~b = N . In case of a laser range
scanner N is most of the time 180, 270 or 360, so A is a rectangular matrix. This system can
be solved using QR decomposition where A = QR. If Q is an orthonormal matrix it has the
following property:

QTQ = I (12.7)

Using the property from (12.7) and QR decomposition the following can be derived

QR = A

QTQR = QTA

IR = QTA

R = QTA

(12.8)

Using the property from (12.7) and QR decomposition the following can be derived for the
system A~x = ~b:

A~x = ~b

QR~x = ~b

QTQR~x = QT~b

IR~x = QT~b

R~x = QT~b︸︷︷︸
~t

(12.9)

R is a rectangular matrix containing an upper triangular matrix and zeros beneath it (see
Equation 12.11). In normal QR decomposition the Q matrix is produced in a unitary form,
so it would be a N × N matrix in case of this A matrix. But to solve the system A~x = ~b
the unitary Q matrix is not needed, this is due to the fact that the ~x vector only has a length
of 4. Let the Q matrix be denoted as [Q0,Q1], with the size of Q0 = N × 4, and the size of
Q1 = N × (N − 4). Then, given that the R matrix also has a 4× 4 upper triangular matrix,

114 Realisation and results, ICP



only Q0 is needed to solve the linear least square problem. From now on Q0 is referred to as Q
To create the orthonormal space Q the Gram-Schmidt method is used.

A =
[
~v0 ~v1 ~v2 ~v3

]
Q =

[
~u0 ~u1 ~u2 ~u3

]
R = QTA

~t = QT~b

(12.10)

~t = [t0, t1, t2, t3]

R =


r00 r01 r02 r03

0 r11 r12 r13

0 0 r22 r23

0 0 0 r33

 (12.11)

~u0 =
~v0

||~v0||

~u1 =
~v1 − (~v1 • ~u0) ~u0

||~v1 − (~v1 • ~u0) ~u0||

~u2 =
~v2 − (~v2 • ~u0) ~u0 − (~v2 • ~u1) ~u1

||~v2 − (~v2 • ~u0) ~u0 − (~v2 • ~u1) ~u1||

~u3 =
~v3 − (~v3 • ~u0) ~u0 − (~v3 • ~u1) ~u1 − (~v3 • ~u2) ~u2

||~v3 − (~v3 • ~u0) ~u0 − (~v3 • ~u1) ~u1 − (~v3 • ~u2) ~u2||

(12.12)

After the computation of R and Q the system R~x = ~t can be calculated, where R is a 4 × 4
matrix and ~t is a vector with length 4. Extracting x0, x1, x2, and x3 from the system R~x = ~t is
a matter of row reduction.

12.2 Realisation

The Chapter 10 explains the different choices made for both the algorithm and the structure
of the hardware. This chapter will explain the realised hardware structure for solving the ICP
problem. Figure 12.1 shows the flowchart of the ICP algorithm, given there are two observations
~p and ~m (stored in blockram), the algorithm, as explained in Section 12.1, has the following
segments:

1. Construction of correspondences between ~p and ~m

2. QR decomposition

• Construction of the system A~x = ~b

• Gram-Schmidt method for creating an orthonormal space

• Construction of the system R~x = ~t

3. Linearly solving R~x = ~t using backwards substitution

4. Applying transformation on current observation and previous transformation

5. Go to step 1

Realisation and results, ICP 115



Figure 12.1: Flowchart of the ICP algorithm where the darker blue node represents the time
when the main controller leaves control of the number blockRAM to the number controller

This entire process repeats until X iterations are done. This section explains the realized
architecture into more detail, the synthesis, timing and simulation results can be found in
Section 12.3.

An abstract view of the architecture is shown in Figure 12.2, the main architecture is shown
in Figure 12.3, this architecture is shown without any control signals in order to keep it clean.
The full architecture with all control signals is shown in Figure 12.4 and the names used in this
figure correspond to the names used in the CλaSH code. The yellow blocks in all figures represent
a type of memory, the bigger blocks are blockRAMs, while the smaller ones are registers. The
red lines represent control signals and one can see that every red line ends up in a memory
component, this is due to the fact that blockRAM has 1 clock cycle delay before it delivers
the requested data, by delaying all control signals the control becomes easier because one can
specify the wanted data (blockRAM read address) and the wanted operations (multiplexers and
vecAlu opcode) in the same clock period. The blue lines represent the delayed control signals
which go to every component except the memory components. The thick black lines are data
lines that are used for vector transport with a vector length M , which also is the width of all
the vector components like the vector blockRAMs, vecAlu, snatcher, singleValueSelector, and
the treeSorter. The thin black lines represent data lines for transporting single number data.
the green blocks are the mathematical components doing operations on the given data. Each
part of the hardware architecture will be briefly explained below.

12.2.0.1 blockRAM

There are two types of blockRAM in the system, Vector blockRAM, containing vectors and
matrices, and number blockRAM, containing single values like the cells of 4× 1 vectors and the
4× 4 matrix that are used in single value computations.

Vector blockRAMs must be able to provide two different vectors with length M . M is
the length which the vector ALU can handle in one clock cycle. Every vector in the QR
decomposition has length N which means that M must be chosen in such a way that N is a
multiple of M . blockRAMs addresses are created in such a way that one can easily select a part

116 Realisation and results, ICP



Figure 12.2: General overview of structure with vector ALU and number ALU with dual block-
RAMs

Figure 12.3: Hardware architecture without control

Realisation and results, ICP 117



Figure 12.4: Hardware architecture

of a vector/column of a matrix. A blockRAM address looks as follows:

(a0, a1, a2) (12.13)

where:

a0 is the matrix specifier, for example Q or A

a1 is the matrix column/vector selector

a2 is the column/vector part selector

Write addresses have the same format as the read addresses. To write a single value the
writeMask can be used. Each element of the vector blockRAM has a writeEnable which enables
writing a new value. Therefore, if a single value of a vector must be replaced, create a corre-
sponding write mask and create a write vector containing the new value in every place.

Number blockRAMs are smaller blockRAMs that contain single numbers like the content
of the upper triangular of the R matrix, values of the ~x vector, and values of the ~t vector, and
these numbers are used in single value calculations like the backwards substitution. Outgoing
and incoming connections to the number blockRAMs are from two different components, the
vecAlu as a result from a dot product and used in vector scaling, and the numberAlu for single
number calculations.

12.2.0.2 vecAlu

The vector ALU does all the vector operations and has the following four inputs:

• vector with length M as operand

118 Realisation and results, ICP



• vector with length M as operand

• single input value

• opcode for control

For the vector addition, subtraction, multiplication, and scaling it uses M parallel DSPs. For
the summation the ALU uses a tree structure but it does not use the onboard DSPs, instead it
uses synthesised adders. The single input is used for vector scaling and to carry over the partial
sum to the next clock cycle. It is also possible to do an inverse square root on the single value
input. The ALU has the two following outputs:

• vector with length M , which is the result of all vector operations which produce a single
vector

• single value, which is the result of for example dot products or (partial) results of vector
summations.

The single value can be stored into a register (partial result summation) or written to a number
blockRAM (result of final dot product).

12.2.0.3 vecAluControl

The vecAluControl, visible in Figure 12.2 and Figure 12.4, is the main controller of the system
and is implemented as a mealy machine, this principle is explained in Chapter 6. The main
controller is responsible for setting the right datapath using multiplexers and controlling the
blockRAMs in order to compute the entire algorithm. Most of the time the vecAluControl is in
control of the system, it is only during the linear solving of R~x = ~t that the numAluControl con-
trols the number blockRAMs, see the darker blue colored node in the flow chart in Figure 12.1.
During this linear solving most of the system is idle and no parallel computations are done and
only the number ALU is busy doing backwards substitution for which the numberAluControl
uses the number blockRAMs and numberAlu.

12.2.0.4 treeSorter

The tree sorter has the same input as the vector ALU, which are two vectors with length M from
blockRAM. As the name implies, the tree sorter has a tree structure (described in Section 10.1)
that selects the closest and second closest point from a list with distances. The two input
vectors must be two vector parts containing distances from pi to every point mi from ~m. The
tree sorter uses also a register to carry over partial results to the next clock cycle. The outputs
are two indices which can be used to pull the closest and second closest point from blockRAM.

12.2.0.5 singleValueSelector

The singleValueSelector is a large multiplexer that can pull a single value from the vector with
length M from the blockRAM. This single value can be used in vector operations like scaling
or subtraction. Subtraction is for example used in the calculation of all distances to a point pi.
So it takes a single value pi from ~p and it does the operations pi − ~m.

Realisation and results, ICP 119



12.2.0.6 snatcher

The snatcher is responsible for creating the correspondences. The tree sorter provides two
indices which can be used to pull the closest and second closest point from blockRAM. The
snatcher is build to save clock cycles and does that because no extra cycles are needed to
calculate the normal vector. To create the normal vector three points are needed: the point
(pi) from the new observation (~p), the closest (mi) and second closet (mj) from the previous
observation ~m. Equation (12.14) states the logic of creating the normal vector n.

l =

{
mi, if mix > mjx

mj , otherwise

r =

{
mj , if mix > mjx

mi, otherwise

c = (rx − lx) · (piy − ly)− (ry − ly) · (pix − lx)

∆x = lx − rx
∆y = ly − ry

[n̂x, n̂y] =


[−∆y,∆x], where c > 0

[∆x,−∆y], where c < 0

[0, 0], where c == 0

(12.14)

Where r and l are the rightmost and leftmost points frommi andmj , and n̂ is the non normalized
normal vector. To understand the working of the snatcher one must understand the flow of the
correspondence creation part. The correspondences creation part in the flowchart of Figure 12.1
shows the calculation of all the distances squared dxy between the point pi and the vector
~m. Knowing the structure of the blockRAM, it can be shown that in each clock cycle of
this correspondence creation part the blockRAM provides data (2 vectors with length M).
The tree sorter provides two indices were the closest and second closest point are located in
blockRAM. One could introduce extra clock cylces to load these points and create the normal
vector. However these points will also pass by the next correspondence search. Suppose the
correspondence search for point p0. First, all the squared distances from p0 to ~m have to be
calculated. Then these distances go through the tree sorter which provides two indices k and z
for the closest and second closest point in ~m. Starting the next iterations all the distances from
p1 to ~m have to be calculated. During this calculation the closest and second closest point for p0

pass from blockRAM to the vecAlu for distance calculations. This is the time that the snatcher
snatches these values and calculates the normal vector. This way no extra clock cycles need to
be introduced, except in the end to calculate the normal vector for correspondence CN−1. The
number of clock cycles reduced by the snatcher is 4N (N is the number of laser scan beams
in one laser scan). If N = 180 the snatcher saves 720 clock cycles, with a vector ALU width
M = 45 the reduction is approximately 15%.

12.2.0.7 numAlu

The number ALU solves the system R~x = ~t using backward substitution (row reduction from
echelon to reduced echelon form). It has non restoring divider hardware which can divide a
fixed-point number with an i-bit integer part and f -bit fractional part in i+ 2f clock cycles.

The goal of the ICP algorithm is to determine the transformation between two observations,

120 Realisation and results, ICP



after 1 iteration the transformation H01 is known where H has the following format:

H =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 (12.15)

The next iterations the algorithm computes H12, and H23 after that. In order to determine the
total transformation, from 0 to 3, one can apply the transformation on the previous transfor-
mation, for example H03 = H23H12H01. These transformation on transformation matrices are
also done in the numAlu.

12.2.0.8 numAluControl

The numAluControl controls the numberAlu to solve the system R~x = ~t and to transform the
transformation matrices over iterations. The controller is only active during the linSolve state
(See Figure 12.1).

12.3 Simulation, synthesis, and timing results

12.3.1 Numerical precision

The FPGA, Appendix A, contains DSPs which can be set in different modus; 9-,18-, and 27-bit.
For the ICP algorithm both small and large values can occur. Large values can occur because
the result of dot products of vectors with length 180 can lead to large numbers. A laser range
scanner, considered for the Intel dataset, can measure up distances up to 50 meters, a dot
product of a vector could lead to a value of 180 ·50 = 9000. In the correspondence creation very
small vectors can occur (it is the point of the whole ICP algorithm to make minimize distance
between correspondences). Normalizing small vectors with the quadratic formula means that
small values are squared which makes them smaller. If a distance between two correspondences
is 1mm = 0.001m then 0.0012 = 0.000001. The values with a the range between 9000 and
0.000001 do not fit in a fixed-point variable of 27-bit. The problem of numerical imprecision
could be solved by locally, when needed, use shift operations and guard digits to up- or downscale
variables on order to make a more exact computation. For example when normalizing vectors
one could shift the value in such a way that the fractional part becomes larger, and when
calculating a dot product one could shift the value to increase the integer part. But there is
no time in this project left to implement this and the choice was made to use a 27- bit signed
fixed-point variable an integer part of 12 and a fractional part of 15. With an integer part of 12
it is not possible to store values larger than 2048 (two’s complement signed), but looking at the
structure of the laser scans in the Intel data set it is highly unlikely that all the distances will
be 50 meters, which means that the maximum value in the system is much lower than 9000.
The choice was made to use an integer part of 12 bits, including sign bit, which leaves 15 bits
for the fractional part. The smallest value that can be expressed in 15-bit fractional part is
1/215) = 0.00003051757 which means that only very small squared values are neglected. The
different algorithms described in Section 12.3.2 are all done in 27 bit and show no numerical
instabilities due to the number of bits.

12.3.2 Simulations results using different square root algorithms

During the CλaSH simulation, fixed-point variables are used with an integer part size of 15 and
a fractional part size of 12. As a reference simulation a MATLAB implementation is used and
simulated for result comparison. Depending on the inverse square root, simulations in CλaSH

Realisation and results, ICP 121



show promising results as can be seen in Figure 12.5, Figure 12.6, Figure 12.7, and Figure 12.8.
The figures all show four different results after a number of iterations. The first (most left)
plots the initial situation, these scans are given to the ICP algorithm. The second plot shows
the result after one iteration. The third plot shows the result after 8 iterations, and the fourth
(most right) plot shows the result after 15 iterations. All figures are discussed below. The four
(inverse square root) algorithm types are as follows:

• MATLAB (a): The results of the MATLAB implementation of the ICP algorithm with
double precision floating point numbers

• Non-restoring (b): The results of CλaSH implementation with a reciprocal and Non-
restoring square root for an inverse square root algorithm

• Fast inverse square root with Newton-Raphson (c): The results of CλaSH implementation
with a Fast inverse square root plus one iteration of Newton-Raphson

• Fast inverse square root without Newton-Raphson (d): The results of CλaSH implemen-
tation with a Fast inverse square root without Newton-Raphson

The scans considered in Figure 12.5 have only a rotation difference with no translation and
one can see that all methods are able to determine the rotation. Al the solutions are almost
converged after iteration 1. However, in translation there are some differences visible and since
there is no stopping conditions all algorithms perform 15 iterations. The difference between
MATLAB and the Non-restoring square root are small and the results from the Non-restoring
method are still very accurate. Looking at the Fast inverse square root methods, translation
differences are more visible. Where the Fast inverse method with Newton-Raphson show only
a slight translation error, the method without Newton-Raphson show a significant translation
error.

The scans shown in Figure 12.6 have a low rotation difference but a large translation differ-
ence. The implementation in MATLAB and the non-restoring method perform almost identical
in terms of quality. Both methods using the Fast inverse square root lack in terms of finding
the correct translation and like the case of Figure 12.5 the method without Newton-Raphson
performs bad.

Figure 12.7 shows a case with laser scans taken in a wider area instead of a small corridor.
The MATLAB results differ little compared to the Non-restoring method and the results from
the Fast inverse square root with Newton-Raphson. Here it can be seen again that there is a
small translation error where the method is used without Newton-Raphson.

Figure 12.8 is a case with two laser scans with a rotation difference but under a larger angle,
the robot makes a 90 degree angle to go from one hallway to a orthogonal hallway and it does
that in multiple steps. These two consecutive laser scans are taken from somewhere in the
middle of that rotation. All methods perform accurate enough and only the Fast inverse square
root without Newton-Raphson shows a slight error in translation.

Looking at the overall performance of the algorithm one can conclude that the inverse
square root has a huge impact because it is used in both correspondences creation and in error
minimization.

122 Realisation and results, ICP



-2 0 2 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

start

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 1

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 8

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 15

(a) Matlab floating point

-2 0 2 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

start

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 1

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 8

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 15

(b) Non-restoring inverse square root

Realisation and results, ICP 123



-2 0 2 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

start

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 1

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 8

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 15

(c) Fast inverse square root with 1 iteration Newton-Raphson

-2 0 2 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

start

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 1

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 8

-1 0 1 2 3 4

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n
c
e
 (

m
)

iteration 15

(d) Fast inverse square root with 0 iterations Newton-Raphson

Figure 12.5: ICP algorithm performed on a laser scan with different algorithm implementations

124 Realisation and results, ICP



-3 -2 -1 0 1

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

start

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 8

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 15

(a) Matlab floating point

-3 -2 -1 0 1

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

start

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 8

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 15

(b) Non-restoring inverse square root

Realisation and results, ICP 125



-3 -2 -1 0 1

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

start

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 8

-3 -2 -1 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 15

(c) Fast inverse square root with 1 iteration Newton-Raphson

-3 -2 -1 0 1

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

start

-3 -2 -1 0 1

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 1

-3 -2 -1 0 1

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 8

-4 -2 0

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 15

(d) Fast inverse square root with 0 iterations Newton-Raphson

Figure 12.6: ICP algorithm performed on a laser scan with different algorithm implementations

126 Realisation and results, ICP



-6 -4 -2 0 2

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

start

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 8

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 15

(a) Matlab floating point

-6 -4 -2 0 2

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

start

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 8

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 15

(b) Non-restoring inverse square root

Realisation and results, ICP 127



-6 -4 -2 0 2

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

start

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 8

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 15

(c) Fast inverse square root with 1 iteration Newton-Raphson

-6 -4 -2 0 2

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

start

-6 -4 -2 0 2

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

-6 -4 -2 0 2

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 8

-6 -4 -2 0

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 15

(d) Fast inverse square root with 0 iterations Newton-Raphson

Figure 12.7: ICP algorithm performed on a laser scan with different algorithm implementations

128 Realisation and results, ICP



0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n

c
e

 (
m

)

start

0 5 10 15

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 1

0 5 10 15

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 8

0 5 10 15

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 15

(a) Matlab floating point

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n

c
e

 (
m

)

start

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

0 5 10 15

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 8

0 5 10 15

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 15

(b) Non-restoring inverse square root

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n

c
e

 (
m

)

start

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

0 5 10 15

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 8

0 5 10 15

distance (m)

0

5

10

15

d
is

ta
n

c
e

 (
m

)

iteration 15

(c) Fast inverse square root with 1 iteration Newton-Raphson

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n

c
e

 (
m

)

start

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 (
m

)

iteration 1

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n

c
e

 (
m

)

iteration 8

0 5 10 15

distance (m)

0

2

4

6

8

10

12

14

16

d
is

ta
n

c
e

 (
m

)

iteration 15

(d) Fast inverse square root with 0 iterations Newton-Raphson

Figure 12.8: ICP algorithm performed on a laser scan with different algorithm implementations

Realisation and results, ICP 129



Figure 12.9: Power analyser results from Quartus

12.3.3 MATLAB timing results vs hardware architecture timing

12.3.3.1 CλaSH/Hardware

The number of clock cycles used for one complete iteration of the ICP algorithm is depended
on several variables

(5.5
N

M
+ 4)(N + 1) + 71

N

M
+ 4

(i+ 2f)

d
+ 35 (12.16)

where

N = number of correspondences (points in a laser scan)

M = width of the vector ALU operations (parallel computations)

i = integer part of signed fixed-point

f = fractional part of signed fixed-point

d = number of non-restoring division steps taken in a single clock cycle

A laser scan from the Intel data set contains 180 points. With a vector ALU width of 45, signed
fixed-point data of 27-bits, and 6 iterations of the non-restoring division in one clock cycle, the
number of clock cycle used is 5053. Section 12.3.4 describes the synthesis and timing results of
the hardware architecture and according to the Quartus tooling the clock frequency that can
be reached is 40MHz. With a clock frequency of 40MHz and 5053 clock cycles needed for a
single iteration of the ICP algorithm means that a single iterations takes 0.13ms. Section 12.3.4
describes an optimization regarding the multipliers used in the Newton-Raphson steps of the
fast inverse square root. With these optimization the total number of clock cycles needed is 5057
and the clock frequency that can be reached is 50MHz which means that a single iteration of
the ICP algorithm takes 0.10ms. Figure 12.9 shows the results of the Quartus power analyser.
The power analysis is performed on a design with a 50MHz clock frequency and shows that
the total thermal power dissipation is 2.6 W.

12.3.3.2 MATLAB

Timing results in MATLAB cannot be determined as accurate compared to hardware simu-
lations because external factors like a non-real-time operating system. The test performed in
MATLAB for the timing results are generated on a system with an Intel(R) Core(TM) i5-3210M
@ 2.50GHz processor and are meant to give an indication. According to the MATLAB profiler
the computation of one iteration of the ICP algorithm takes approximately 18ms. According
to specification the thermal design power (TPD) of the target CPU is 35W which is usually a
small overestimation with a 100% load. Since the MATLAB algorithm only runs on one virtual
core of the processor it uses a 25% load. 25% of 35W equals 9W . These numbers are not
accurate and should be treated as indications.

130 Realisation and results, ICP



MATLAB on PC FPGA architecture

Iteration duration 18 ms 0.10 ms

Iterations per second 55 10000

Energy consumption 9 W 2.6 W

Energy consumption per iteration 0.16 J 0.00026 J

Table 12.1: Energy consumption table

12.3.3.3 Comparison

Table 12.1 shows the energy consumption table. Despite the fact that the numbers of the
MATLAB on PC are a bit inaccuracy one can clearly see that dedicated hardware can have
an advantage in both energy and speed. Although the numbers shown in the figure might not
be 100% accurate, they still show the order magnitude of the difference. For this example case
the number of parallel operations, width of the system, is 45, increasing that 90 would result in
almost half of the clock cycles needed, which would increase the speed almost twice.

12.3.4 Quartus synthesis and timing results

Synthesis results of ICP architecture, with a system width N = 180 and vector ALU width of
M = 45, from the Quartus tooling is shown in Figure 12.10. The target FPGA for synthesis
is 5CSXFC6D6F31C8ES. Figure 12.10a shows the summary of the synthesis of on architecture
using an 18-bit data representation and a fast inverse square root without Newton-Raphson
iterations. The 18-bit ICP architecture only has a logic utilization of 27% with only 15% of the
blockram used. The number of DSP Blocks used is 50 wich are used in the following parts:

• 45 for vector operations

• 1 in the number ALU

• 4 for normal vector computation

Figure 12.10c show that the timing constraints are met, the target clock speed is 50Mhz. Ac-
cording to the tooling the longest combinational path goes from blockram, through the compare
tree, to some registers (that contain the indices of the closest and second closest points). Width
a system width of N = 180 the compare tree, discussed in Section 10.1, has a depth of 7 nodes
and forms the longest combinational path between two memory components.

Increasing the number of bits for the data representation and adding the Newton-Raphson
iteration at the end of the fast inverse square root has an impact on the size and timing of the
synthesized result, as can be seen in Figure 12.10b. The system with a 27-bit data representation
has 40% logic utilization and uses 56 DSP blocks which are used for the following parts:

• 45 for parallel vector operations

• 1 in the number ALU

• 4 for normal vector computation

• 4 for the two fast inverse square roots (3 for each Newton-Raphson iteration)

Realisation and results, ICP 131



(a) Quartus synthesis summary with 18 bits, 0
iterations of Newton-Raphson, 50 MHz

(b) Quartus synthesis summary with 27 bits, 1
iteration of Newton-Raphson, 40 MHz

(c) Quartus timing: 18 bits, 0 iterations of
Newton-Raphson, 50 MHz

(d) Quartus timing: 27 bits, 1 iteration of
Newton-Raphson, 40 MHz

Figure 12.10: Quartus results

Figure 12.10d shows the timing results of the circuit with a clock frequency of 40 MHz. The
longest combinational path can be found in the inverse square root with the 3 sequential multi-
pliers for the Newton-Raphson iteration. This can be made shorter by calculating the Newton-
Raphson multiplications over time. This would have a minor influence on the number of clock
cycles needed for computing the entire ICP algorithm. The inverse square root is used in two
parts of the system, the normal vector creation (done by the snatcher), and 4 times for creating
the orthonormal space Q (done by the vector ALU). As explained in Section 12.2, the snatcher
creates normal vectors during the correspondence creation while the rest of the system is busy
calculating distances. Therefore calculating the inverse square root in multiple clock cycles will
not increase the total number of clock cycles for the correspondence creation part. However,
the inverse square root is also used 4 times in the vector normalization for the orthonormal
space Q and for each clock cycle added to the inverse square root calculation the total number
of clock cycles needed for the entire ICP iteration will increase with 4.

132 Conclusions and future work



Part IV

Conclusions and future work

Conclusions and future work 133





13 — Conclusions

13.1 General conclusions

Section 1.2 summarizes the problem definition as follows:

• How can a SLAM solution be realized into a feasible hardware architecture

• Does a hardware architecture have the potential to be more efficient in terms of perfor-
mance per joule compared to the commonly used computational systems

Both the Graph-based SLAM and ICP solutions have been designed using the same approach
and use an vector type ALU as architecture. The realized architectures with their simulations
show that both solutions are more efficient in terms of energy usage and increase speed com-
pared to the commonly used computer systems by exploiting the parallel nature of an FPGA.
Graph-SLAM specific conclusions can be found in Section 13.2, conclusions regarding the ICP
algorithm can be found in Section 13.3. The algorithms and implementations have similarities
and differences which are briefly discussed in this section.

Solving a linear system to find a transformation

Despite the fact that both solutions will calculate a transformation of points, the graph-based
SLAM algorithm will result in a large vector describing each transformation of each point, while
ICP will result in a transformation that describes the translation and rotation of the total set
of points without the possibility for the points to move independent of each other. Because
there is such a large difference between the final results of the algorithms, completely different
architectures were found and implemented during this project.

Finding correspondences and removing outliers

Both algorithms contain steps of finding correspondences and possibly removing outliers. These
steps are also different in both algorithms because format of the data is different. Correspon-
dences in ICP are created from each point to every other point, while in graph-based SLAM
only a correspondence is created from the current point to every other point. Outlier detection
in graph-based SLAM will remove outlying poses from the graph, while in ICP it will remove
outlying correspondences.

Vector ALU with a controlling mealy machine

The final implementations both consist of an ALU structure that does the (vector) computations
and a mealy machine to control the data that is processed by the ALU. The data is stored in
block RAMs from which the problem is loaded from into the registers and written back to after
the computation.

Conclusions and future work, Conclusions 135



Iterative convergence to solution

Both algorithms use an iterative process to converge to a solution. The processor structure of
both architectures provide a control mechanism for keeping track of these iterations and reusing
hardware.

13.2 Graph-based SLAM

SLAM on hardware

A hardware implementation of the graph-based SLAM algorithm has been created to prove
feasibility. During the design phase, choices have been made to converge to an efficient and
feasible design. The systems consists of a processor-like architecture with an ALU that has the
ability to perform vector operations as main component. Parallelism is an important feature
on a platform that is limited to a certain frequency and still needs to perform according to a
specification. Nevertheless, parallelism is not the only property that accelerates the algorithm.
Because each memory operation handles a vector, the amount of memory operations is less,
and because the control is application specific, the utilization factor of the ALU is much higher
than on a normal computer. Parallelism, less memory delay and dedicated control add up to a
speed advantage of much more than only paralellism.

Timing and quality of the algorithm

The current implementation converges a large graph that contains a large error in three di-
mensions in 960ms. The resulting quality of the graph is mainly dependent on the amount of
iterations of the conjugate gradient algorithm within the linear solver. The size of the resulting
error is mainly determined by the amount of times the linear solver is applied in SLAM iter-
ations. By changing the amount of iterations, the quality of the map and computation time
can be affected. Correct parameters are specific for each environment and the final task of the
robot. The amount of parallelism can be changed and for larger FPGAs it can be extended so
the algorithm will become faster. The amount of clock cycles will roughly scale linearly with
the amount of parallelism. The algorithm has been implemented in such a way that it is easy
to achieve more parallelism for larger FPGAs by only changing the vector block sizes which is
equivalent to the width of the ALU.

Deterministic computation times

The graph-based SLAM algorithm has been implemented in hardware and because a static
amount of memory is used, the amount of clock cycles needed to execute the SLAM algorithm
is also static. However, it would be a large advantage to add a stop condition which terminates
the algorithm as the error is converged. By adding a stop condition, the worst case computations
times can still be determined, but the algorithm will in practice always be faster.

13.3 ICP

The following conclusions can be drawn from researching and implementing an ICP algorithm
on an FPGA and are discussed below:

136 Conclusions and future work, Conclusions



Performance per joule increase

Section 12.3.3 shows the comparison in speed and energy usage between the implementation on
an FPGA versus the implementation in MATLAB on a PC. Note that the energy and timing
numbers for the MATLAB implementation are not very accurate but they indicate the order
of magnitude of the difference in performance per joule between the MATLAB solution and
the FPGA. The energy used for one iteration of the ICP algorithm differs with an order of
magnitude of 3 between a MATLAB implementation and a hardware architecture, concluding
that large power and speed savings can be achieved by using dedicated hardware for ICP.

Quality of the result

Section 12.3.2 show different results using different inverse square root methods and even the
one with the Newton-Raphson iterations are slightly less accurate compared to the reference
created in MATLAB. These inaccuracy are mainly caused by the inaccuracy of the inverse
square root used for normal vector creation.

ICP suitable for hardware design due to regular structure, even for higher
dimensional problems

Laser scan data has a fixed size and format and the algorithms used in this project to solve
the ICP problem have a regular structure. The regular structure of data and algorithm is
very suited for a hardware implementation and since ICP is not bounded for the 2-D case the
hardware architecture does not have to be changed fundamentally to make it work with higher
dimensional problem.

Regular structure of the designed hardware architecture allows for easily
changing the width of the system

As described in Section 12.3.3.1 the number of clock cycles needed to compute 1 iteration of
the ICP algorithm is mostly depended on two variables; the width of the system (M), and the
width of the incoming data (N). In the CλaSH code these two variables can be easily changed
and the entire system will change. The FPGA device chosen as target for this project has 112
DPSs on board but if one wants to choose another FPGA with more DPSs then the code can
be easily adapted for a suitable hardware architecture. The flexibility to change the width of
the system has also the advantage that one can easily adapt for different incoming data. The
laser scan data used in this project contains 180 distances but there are also laser scanners with
a data size of 270, or 360. Changing the size of the incoming data, or changing the size of the
FPGA will only change the width of the system, and thus influences the number of clock cycles
needed.

Problems regarding numerical stability can be fixed by using different numer-
ical representations

Section 12.3.1 explains the problem of the representation of numbers regarding the size and
precision. For the currently used data the chosen size and precision do not form a direct
problem but when changing the size or dimension of the incoming laser scans one must keep in
mind that numerical problems can arise.

Conclusions and future work, Future work 137



138 Conclusions and future work, Future work



14 — Future work

14.1 General future work

14.1.1 Coupling Graph-SLAM and ICP

Currently both solutions have a separate hardware architecture and there is no coupling between
them. In order to make a fully functional SLAM solution the two parts must be linked together
via communication channels where the Graph-SLAM solution can send positions between which
the ICP algorithm must try to find a transformation.

14.1.2 Research towards automated parallelism

The complete SLAM solution consists of both ICP and the graph-based error convergence. The
separation has been made because both algorithm are mathematically complex and have very
different properties. However, the algorithms both solve a linear system and calculate and apply
transformations. The principles that make the algorithms unique are already implemented in
the fully parallel implementation. This features are things like QR decomposition and row
reduction for ICP and sparse vector usage for graph-based SLAM. The conversion between the
fully parallel implementation and an implementation with an ALU structure is only a matter
of defining the amount of parallelization and timing parameters. The conversion into a ALU
structure is something that could be done by some kind of a compiler.

14.2 Graph-based SLAM

14.2.1 Additions to the current SLAM implementation

During the implementation of the graph-based SLAM algorithm, the focus has been on solving
the large linear systems that are needed for graph convergence. The solution works and can
minimize errors by solving the linear systems iteratively. However, the data that has been
presented to the linear solver is the data that already is a state vector in Cartesian coordinates,
which is not the standard format SLAM datasets are in. Another important feature is the loop
closing proposal function. Within the SLAM algorithm this functions is important because it
will decide whether two poses should have correlation with each other. This feature has been
discussed during design space exploration but has not yet been implemented in the current
hardware implementation. These changes have already been implemented in MATLAB and the
algorithm work as they should.

14.2.1.1 Creation of the state vector

The state vector is created by trigonometric functions which will convert a dataset of polar
coordinates into a pose graph. The trigonometric functions can be evaluated by a cordic unit,

Conclusions and future work, Future work 139



which has already been implemented in the fully parallel implementation of the SLAM algo-
rithm. Cordic is an iterative method to find the sine and cosine of angles by using only shifts,
adders, and a lookup table. Each iteration of the cordic algorithm can be divided into instruc-
tions that the ALU can execute, but since it does only contain a small amount of adders, one
iteration can easily be done in parallel. The cordic unit would then become a separate mealy
machine that evaluates the angles to construct the state vector.

Correction of the state vector in the theta direction is for a large part done in the same
way as state vector creation, which is by using trigonometric functions. However, also a square
root operation is required to find the lengths of line segments. The square root algorithm has
also been implemented in the parallel implementation and similar to the cordic algorithm, it
does consist of adders and shifters. The same method of implementation can be used as with
the cordic unit, which means one iteration of the square root can be a combinational path and
iteration can be done in multiple clock cycles.

14.2.1.2 Automated loop closing

The detection of loop closing is a combination of finding potential pairs of poses that could
possibly close the loop and confirming the loop closing pairs by running the ICP algorithm
between the two poses. Proposing loop closing pairs can consists of calculating distances between
the poses and if a distance is low, the pair is offered to ICP for confirmation. This however
requires the coupling between ICP and the SLAM algorithm which can also be considered future
work. The distance calculations however just consist of two multiplications and one addition
and thus can be done by the existing ALU implementation. The square root is not necessary
because the smallest distances are looked for anyway.

14.2.2 Extended additions of the algorithm and implementation

These improvements will increase performance and capacity of the SLAM algorithm. They do
however require an additional amount of research and much implementation time.

14.2.2.1 Improvements of the algorithm to reduce the system size dynamically

The research part discusses optimizations in the graph to reduce the amount of poses in the
graph, which means less memory will be used and less computations are needed. If the algorithm
is able to abstract the graph when the memory is fully used, the state vector of the robot could
in theory be infinite. The quality of the map would suffer from such changes.

14.2.2.2 More parallelization by parallel sparse vectors

Whenever a ALU is available that has a large amount of parallelism, which in this case will
probably be an ALU with a width of a higher power of two. For example 32, 64 still respect-
ing the amount of available DSPs that are available on the FPGA. Operations on vectors will
require less clock cycles which will make the complete algorithm run faster than it would with
a smaller sized ALU.

This improvements however, will only affect the operations on non-sparse vectors, since they
are large and can easily be split in a scalable way. Sparse vectors however do only contain five
indices with their corresponding values. Assuming that the size of the sparse matrices will
remain the same if the fixed amount of loop closing does not change.

140 Conclusions and future work, Future work



14.3 ICP

14.3.0.1 FIFO for incoming laser scans

The current systems only works with blockrams. Both observations on which the ICP algorithm
is performed on are preloaded into blockram but to couple the ICP system to other systems
it required to have some sort of communication to allow loading for new observations. One
could implement a FIFO structure where the observations are put in and the ICP system can
fetch two observations, complete the ICP algorithm, and produce a transformation plus score
(Section 14.3.0.3). Creating a communications structure from and to the ICP system results in
a more separated block which can be used as an IP (intellectual property) by other systems.
SLAM systems can then use one or more instances of the ICP system for its scan-matching
part.

14.3.0.2 Stopping condition

The algorithm now has no stopping condition, which means that it will iterate a fixed amount
of iterations but experience and results from Section 12.3.2 show that in many cases the solu-
tion has already converged and further iterations are not necessary. To implement a stopping
condition one must implement a scoring mechanism (Section 14.3.0.3). If the score of the cur-
rent found transformation is high enough then the algorithm can stop iterating. A disadvantage
could be that the number of iterations is non deterministic but with a maxbound on the number
of iteration the stopping condition will only provides a faster scan-matching process.

14.3.0.3 Scoring results

Not all transformations are 100% accurate, and scoring the correctness of a scan match is
desirable for a couple of reasons:

• SLAM algorithms will be able to use the score to determine the probability of the position

• Loopclosing can be done by matching scans and determining if loopclosing occurs based
on score

• Stopping conditions can be implemented based on score

In case of Graph-based SLAM each position in the state matrix has a certain value which
represents the probability of a position relative to another. If a scanmating is able to provide
a accurate score then it will fit nicely into the Graph-based solution. Scan matches with a low
score will be corrected more due to the higher uncertainty. For loop closing it is also important
to know the goodness of a scan. If the robot wants to find out if it has been on the current
position before it will match the current observation with a couple of previous poses and if the
score of the scan-matching is high enough the loop can be successfully closed.

14.3.0.4 Outlier rejection

In Section 10.2 the choice was made to skip the outlier rejection part due to project timing
constraints. Outlier rejection could slightly improve the quality of the algorithm but a more
important reason to implement outlier rejections is that it increases the convergence speed of
the ICP algorithm. Increasing convergence speed decreases the number of iterations needed and
with a stopping condition, (Section 14.3.0.2) one could save both energy and speed.

Conclusions and future work, Future work 141



14.3.0.5 Transforming the transformation during the correspondence creation part

Section 12.2.0.7 describes the proccess of transforming the transformation which is needed to
determine the total transformation over multiple iterations of the ICP algorithm. In the current
system the process of transforming the transformation is done after linear solving the system
R~x = ~t by the number ALU and takes 14 clock cycles. The rest of the entire system is doing
nothing those 14 clock cycles and an improvement can be made that the rest of the system can
continue performing the next iteration of ICP while the number ALU continues transforming
the transformation.

14.3.0.6 Newton-Raphson in multiple clock cycles

Section 12.3 mentions that the longest combinational path contains the 3 sequential multipli-
cations done for the Newton-Raphson iterations for the inverse square root. The long combi-
national path causes the clock frequency to drop from 50MHz to 40MHz and Section 12.3
describes that a possible way to decrease the combinational path is by doing the multiplications
in multiple clock cycles. If implemented like suggested in Section 12.3, the loss would be a total
of 4 clock cycles, but an increase in clock frequency from 40MHz to 50MHz.

14.3.0.7 Shift fixed point variables for large or small values

Section 12.3.1 describes the numerical problems with storing and calculating large and small
numbers on an FPGA. It proposes a solution to up- or down-scale variables in different places
where small or large values are known to occur. With this solution no extra bits are needed to
increase the width of every variable, only a couple of guard digits to maintain precision.

14.3.0.8 More accurate inverse square root

The fast inverse square root method is used to create a normal vector in every correspondence
in the algorithm. The inverse square root is accurate but because it is used so frequently some
inaccuracy is visible in the result. Developing a non-restoring inverse square root in hardware
(or another type of hardware inverse square root) and simulating it remains future work.

142 Appendices



Appendices

Appendices 143





A — FPGA

The SoCkit board shown in figure A.1a is an available platform which has both an ARM dual
core processor and an Altera Cyclone FPGA on a single chip. The ARM processor is capable of
running linux distributions and can easily communicate with sensors and networks. The FPGA
can be used as a dedicated processor to execute the algorithm with the data coming from the
ARM. Because the ARM and the FPGA are included in one package, the data bus that connects
them will be faster and more robust than external connections. The complexity and size of the

(a) SoCkit PCB with SoC with onboard ARM Cor-
tex A9 processor and Altera Cyclone FPGA

(b) Block diagram describing the peripherals con-
nected to the FPGA and Hard Processor System
(HPS)

Figure A.1: Development board SoCkit Arrow

algorithms that need to be implemented is quite high, therefore it is not possible to implement
the SLAM algorithm fully parallel on the FPGA. The amount of resources is simply too low
to allow for fully parallel executions. Specifications can be found in the SoC datasheet cyc [1].
The most important specifications are listed below:

FPGA: – 110K Logic elements

– 112× Variable precision DSP blocks (27×27) / 224× 18x18 multipliers

– 4 LED’s and 8 switches for debug purposes

HPS: – ARM Cortex-A9 Dual Core, 800MHz

– USB and LAN Network Interface

– 4 LED’s and 8 switches for debug purposes

Appendices, FPGA 145



B — Motion models for SLAM

The position of a robot in a 2D environment is expressed in the state st = [x, y, θ]. The motion
of the robot between two poses based on a control command is described in a motion model.
The motion model can be expressed by the following distribution:

p(st|st−1, ut) (B.1)

where:

• st = new pose

• st−1 = previous pose

• ut = control command

The above equation describes how the current position is a probability distribution of the the
previous pose and the current control command. The new position can then be used for map
construction and path correction. The motion model can be divided into two models which are
based on different sensors and user other control commands. These models are the odometry
motion model and the velocity motion model.

Odometry Motion Model

Odometry data is obtained by encoders on the wheels of the robot. The odometry model
represents the new robot position st relative to the previous pose st−1. This information can
be inaccurate because of drift and slip of the robot and noise of the sensors. A robot can
could in real life drive in fluent curved motions which are hard to express correctly in a model.
Because the positions of the robot are discrete steps, it is possible to abstract from the fluent
curves and use a simpler model, being the motion model. There are multiple ways of expressing
this odometry based motion model. One way is to use a vector containing 2 rotations and 1
translation. Odometry is then represented as a change from position (x̄, ȳ, θ̄) to (x̄′, ȳ′, θ̄′) using
u = (δrot1, δtrans, δrot2). See Figure B.1 where:

δtrans =
√

(x̄′ − x̄)2 + (ȳ′ − ȳ)2

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
δrot2 = θ̄′ − θ̄ − δrot1

146 Appendices, Motion models for SLAM



Figure B.1: Odometry motion model[55]

Velocity Motion Model

The velocity based motion model is usually applied on robots without wheels. Time (t) is used
to calculate the rotational angle (using ωt ) and translation (using vt) from the previous pose
the current pose:

ut =

[
vt
ωt

]
(B.2)

When a robot moves from (x, y, θ) to (x′, y′, θ′) it can be derived as follows:xy
θ

+

− v
ωsin(θ) + v

ωsin(θ + ω∆t)
v
ω cos(θ)−

v
ω cos(θ + ω∆t)
ω∆t

 (B.3)

A more detailed explanation and mathematical derivation can be found in Section 5.3 and 5.4
of Thrun et al. [58].

Observation Model

In order to interpret observations within the algorithms observation models can be used that
represent the sensor data of the physical world in a mathematical description. Again, due to
sensor noise and inaccuracy the model is represented in a probability distribution:

p(zt|st) (B.4)

where:

• zt = measured sensor data

• st = robot pose

Mobile robots can use different types types of sensors and multiple of them on one platform:

• Contact sensors: Bumpers

• Internal sensors:

– Accelerometers

– Gyroscopes

Appendices, Motion models for SLAM 147



– Compasses

• Proximity sensors:

– Sonar

– Radar

– Laser range scanner

– Infra-red

• Visual sensors: Cameras

• Satellite-based sensors: GPS

All of these sensors can be considered observational sensors, and will be represented by different
models. Internal and satellite-based sensors can be used for the localization part of the SLAM
algorithm. Contact, visual and proximity sensors can be used for both the localization and
mapping part. Finding transformations between different sensor observations can be used for
localization and once a position is known, the same data can be used for mapping.

Proximity sensors can be modeled using the beam-based sensor model which model repre-
sents each observation (scan) as a list consisting of K measurements.

zt = z1
t , z

2
t , ..., z

K
t

The measurements are independent of each other and in the case of laser scanner each zt
represents the total scan and each zk represent the measurement under a certain angle. Because
of sensor inaccuracy and noise the beam measurements are also modeled using a probabilistic
approach:

p(zt|st,m) =
K∏
k=1

p(zkt |st,m) (B.5)

In a volumetric representation one could discretize the world into a grid cell representation where
each grid cell contains a probability of whether it is a free space or occupied, this principle is
known as an occupancy grid and is explained further in Section 3.1.1. Proximity sensors can
be used to determine the probability of a cell to be occupied or free. In a laser range scanner
each beam (zkt ) represents a distance between the current robot position (st) and a cell (c),
see Figure B.2 uses the following formulation, where 0 ≤ pfree < pprior < pocc ≤ 1, to express
the probability of a cell being occupied, which means the probability can never become larger
than the probability that represents a free grid cell and never higher than the probability that
represents an occupied grid cell.

p(c|zkt , st) =


pprior, zkt is a maximum range reading

pprior, c is not covered by zkt
pocc, |zkt − dist(st, c)| < r

pfree, zkt ≥ dist(st, c)

(B.6)

where:

• pprior = previous probability of a cell

• pocc = constant representing probability of cell being occupied

148 Appendices, Motion models for SLAM



Figure B.2: Sensor model for a laser range scanner. It depicts the probability that a cell is
occupied depending on the distance of that cell from the laser sensor[54].

• pfree = constant representing probability of cell being free

• c = grid cell

• r = resolution of grid map

• st = robot pose

• dist(st, c) = distance between robot pose and cell

As described in Section 3.1.1 Thrun et al. [58] suggest a log-odds notation to avoid numerical
instabilities for probabilities close to zero or one, where the inverse sensor model is used
to merge the probabilities of a single observation into the grid probabilities. The function
inverse sensor model implements the inverse measurement model p(mi|zt, st) in its log-odds
form:

inverse sensor model(mi, st, zt) = p(mi|zt, st) (B.7)

Using Equation (B.6) and the log-odd notation of Section 3.1.1 an algorithm is suggested which
creates the inverse sensor model and is shown in Algorithm 5. α Represents the width of
the beam, β is the opening angle of the beam. In line 1 to 4 the range of the scan, (r) and angle
(φ) is calculated using the robot postion (st = [x, y, θ]). Line 5 checks if the measurement lies
outside the cell, or if it lies more than half a beam width behind the detected range zkt . If so,
then return the log-odd (l0) of the previous occupancy (pprior). However, if the cell is within
the range and within the beam (line 7) then the algorithm returns occupied. For all the values
that are between the object and the robot ”free” is returned, line 9 and 10.

Appendices, Motion models for SLAM 149



Algorithm 5 Inverse sensor model for laser range scanner

1: let xi, yi be the center-of-mass of mi

2: r =
√

(xi − x)2 + (yi − y)2

3: φ = atan2(yi − y, xi − x)− θ
4: k = argminj |φ− θj,sens|
5: if r > min zmax, z

k
t + α/2) or |φ− θk,sens| > β/2 then

6: return l0
7: else if zkt < zmax and |r − zmax| < α/2 then
8: return locc
9: else if r ≤ zkt then

10: return lfree
11: end if

150 Appendices, Motion models for SLAM



C — Alternative scan-matching so-
lutions

ICL: Iterative Closest Line

The iterative closest line (ICL) uses the same principle as the ICP algorithm, but instead of a
set of points, it contains a set of shapes to match [44]. In case of a laser range scanner these
shapes are often lines or corners. These shape features must be extracted first, but matching a
set of lines consisting of points is less computational expensive than matching all points. Cox
[18] uses this method for navigation inside structured buildings, like offices or factories.

PSM: Polar Scan Matching

Most proximity sensors return data in a format containing a bearing with a certain range. In
many scan-matching algorithms this data format is transformed to a standard 2D map with
x and y. Polar scan-matching (PSM ) is a point to point matching algorithm that does not
transform the proximity data to the x and y coordinate system [20].

NDT: Normal Distributions Transform

An occupancy grid represents the probability of a cell being occupied, see Section 3.1. The
Normal distribution transform [14] (NDT ) represents the probability of measuring a sample for
each position within a cell. The space around the robot is divided regularly into cells with a
constant size. The laser scan is transformed into this 2D space. Then, for each cell that contains
at least three scan points the following is done:

1. Collect all 2D-Points xi=1..n contained in this box

2. Calculate the mean µ = 1
n

∑
i xi

3. Calculate the covariance Σ = 1
n

∑
i(xi − µ)(xi − µ)T

Each cell then contains the following probability distribution for being occupied:

p(x) ∼ e( 1
2

(x−µ)TΣ−1(x−µ))

Biber and Straßer [14] propose a method where odometry is used as an initial estimation for
matching the scans. It is also mentioned that the score optimization step is done using Newton’s
algorithm. The structure of matching two scans is stated below

1. Create NDT of the first observation

Appendices, Alternative scan-matching solutions 151



2. Use odometry as first robot pose estimation, (or zero if no odometry is available)

3. For each scan point in the current observation: Map the reconstructed 2D points onto the
NDT of the first observation according to the translation of the pose estimate of step 2.

4. Calculate al the normal distributions of the two observations combined

5. Score the transformation by summing all the distrubions of each grid point

6. Calculate the new robot position by optimizing the score using one step of the Newton’s
Algorithm.

7. If convergence criterion is not met, go to step 3

152 Appendices, Alternative scan-matching solutions



D — Alternative filters for SLAM

Gaussian filters

Due to errors and noise in measurements every position in SLAM has of a probability. This
probability can be expressed by a function around the point. If a point is seen very often in the
same position, the likelihood of the position will grow and the probability function around the
position will change. In order to use Gaussian filters which are described in this section, this
believe function or functions in a N-dimensional world, should be Gaussian. A Gaussian can be
described by:

1√
2π
e

−(x− µ)2

2σ2 (D.1)

Where µ is the center of the Gaussian function and σ is the width of the Gaussian function.
The higher the sigma, the larger the uncertainty around µ. All Gaussian approaches described
in this section will have the focus on feature-based SLAM with landmarks as observations.

Bayes Filter

The estimation of a robot’s current position (pose) can be extracted from sensor and control
data using filtering[55]. One of these filter techniques is called Bayesian filtering. The filtering
uses a believe function whose definition is stated in equation D.2. The believe function uses the
probability function to estimate the pose st when considering the given observations zt and the
control command ut.

bel(st) = p(st|z1:t, u1:t) (D.2)

Using this definition for the believe function, this definition can be rewritten to a form where
the believe function is a product of on one hand the probability of the landmark observations
given the current pose, all the previous found landmark observations and all the previous and
current control inputs and on the other hand the probability of the current pose given the
previous landmark observations and the previous and current control inputs. Because of the
Bayes’ rule D.3 this believe function can be rewritten to Equation D.4. Note that in this
equation the division by B, which turns out to be a normalization term has been replaced by
the normalization symbol.

p(A|B) =
p(B|A)p(A)

p(B)
(D.3)

p(st|z1:t, u1:t) = η p(zt|st, z1:t−1, u1:t)p(st|z1:t−1, u1:t) (D.4)

The z1:t and u1:t are not necessary when the pose st is known. Therefore the z and u terms
disappear D.5 This is an application of the markov assumption.

p(st|z1:t, u1:t) = η p(zt|st)p(st|z1:t−1, u1:t) (D.5)

Appendices, Alternative filters for SLAM 153



The main idea behind using the Bayes filter is to describe the recursive relation between the
different steps in time. Therefore the previous state of the robot needs to be considered which
state is called st−1. This variable can be used since it is a parameter that was calculated in a
previous timestep. This parameter can be introduced by the law of total probability D.6.

p(A) = η

∫
p(A|B)p(B)dB (D.6)

Using this law the following statement holds:

p(st|z1:t, u1:t) = η p(zt|st)
∫
p(st|st−1, z1:t−1, u1:t)p(st−1|z1:t−1, u1:t)dst−1 (D.7)

Where the parameter ut is not used for estimating st−1 the second term becomes the believe
function of st−1. Using the markov assumption that st can be estimated from only the previous
pose and the current control output the complete function becomes:

bel(st) = η p(zt|st)
∫
p(st|st−1, ut)p(st−1|z1:t−1, u1:t−1)dst−1 (D.8)

This equation is equal to:

bel(st) = η p(zt|st)
∫
p(st|st−1, ut)bel(st−1)dst−1 (D.9)

Which confirms the recursive relation of the Bayes filter. This believe function can be split
up into two parts. The part right of the integral sign is the is the estimation and the part
before the integral is the state estimation correction by means of observations. The prediction
steps consists of the so called motion model which is is the belief of the previous state (st−1),
multiplied with the probability of the new state (st). This equation is equal to:

bel(st) =

∫
p(st|st−1, ut)bel(st−1)dst−1 (D.10)

This barred believe function is the prediction step which gives a new probability that newly
calculated position is correct. The motion model only describe the influence of odometry on the
previous position and the relative probability that the new position is correct, this is multiplied
by the previous probability to obtain the new probability to get the total probability.

Kalman Filter

According to Section 3.2 of Thrun et al. [58], the Kalman filter (KF) represents probability
distribution at time t by the mean µt and covariance Σt.

p(x) = det(2πΣ)−
1
2 exp{−(x− µ)TΣ−1(x− µ)} (D.11)

The KF can be applied to robot localization, using feature-based landmarks. The landmarks
and the current robot position is stored in the state vector µ. The first step is to predict the next
robot position. This prediction is done using the motion model of the robot. Then, using the
observation model, the prediction is corrected in the correction step. This correction step uses
the current sensor data (observation model) to correct its prediction. Equation D.11 shows that
the current position probability distribution p(x) is given using a Gaussian with a probability
(σ) and a mean (µ). The covariance matrix Σ holds the probabilities for the current position.
The number of elements in Σ is quadratically the number of elements in the state vector µ,

154 Appendices, Alternative filters for SLAM



which contains 3 + 2n elements where n is the number of landmarks, 3 because of the size of
the state st = [x, y, θ]. The entire belief is represented by the following:

x
y
θ

m1,x

m1,y
...

mn,x

mn,x


︸ ︷︷ ︸

µ



σxx σxy σxθ σxm1,x σxm1,y . . . σxmn,x σxmny
σyx σyy σyθ σym1,x σym1,y . . . σymn,x σymny
σθx σθy σθθ σθm1,x σthetam1,y . . . σθmn,x σθmny
σm1,xx σm1,xy σm1,xθ σm1,xm1,x σm1,xm1,y . . . σm1,xmn,x σm1,xmny

σm1,yx σm1,yy σm1,yθ σm1,ym1,x σm1,ym1,y . . . σm1,ymn,x σm1,ymny
...

...
...

...
...

. . .
...

...
σmn,xx σmn,xy σmn,xθ σmn,xm1,x σmn,xm1,y . . . σmn,xmn,x σmn,xmny
σmn,yx σmn,yy σmn,yθ σmn,ym1,x σmn,ym1,y . . . σmn,ymn,x σmn,ymny


︸ ︷︷ ︸

Σ

Posteriors are Gaussian if the following three properties hold, in addition to the Markov as-
sumptions of the Bayes filter.

1. The next state probability, Equation (B.1), must be a linear function in its arguments
including Gaussian noise. The motion model (Section B) is expressed using the following
equation:

st = Atst−1 +Btut + εt (D.12)

where:

• t = time

• st = state

• ut = control vector

• At = Matrix (n× n) for how the state evolves from t− 1 to t without control

• Bt = Matrix (n× l) for how the control ut changes the state from t− 1 to t

• εt = Gaussian motion noise, where its mean is 0 and its covariance will be denoted
Rt

The next state probability, Equation (B.1), can be obtained by using Equation (D.12) and
Equation (D.11). The mean µt the becomes Atst−1 +Btut and the covariance is Rt, so:

p(st|ut, st−1) = det(2πRt)
− 1

2 exp{−1

2
(st−Atst−1−Btut)TR−1

t (st−Atst−1−Btut)} (D.13)

2. The measurement probability (Equation (B.4) must also have linear arguments with Gaus-
sian noise:

zt = Ctst + δt (D.14)

where:

• Ct = Matrix (k × n) for how to map st to the observation zt

• δt = Gaussian measurement noise, mean is 0.0 and its covariance will be denoted Qt

With a mean 0.0 and a covariance Qt the measurement probability becomes:

p(zt|st) = det(2πQt)
− 1

2 exp(−1

2
(zt − Ctst)TQ−1

t (zt − Ctst)) (D.15)

Appendices, Alternative filters for SLAM 155



3. The initial belief, p(s0) is denoted using µ0 and covariance Σ0 in:

p(s0) = det(2πΣ0)−
1
2 exp(−1

2
(s0 − µ0)TΣ−1

0 (s0 − µ0)) (D.16)

These three assumptions are sufficient to ensure that the posterior bel(st) is always a Gaussian,
for any point in time t. A more detailed explanation and a mathematical proof can be found
in Section 3.2 of Thrun et al. [58]. The Kalman filter algorithm is shown in Algorithm 6.
Step 1 and 2 calculate the state µ̄t and probability Σ̄t. The state prediction is calculated by

Algorithm 6 Kalman filter

1: µ̄t = Atµt−1 +Btut
2: Σ̄t = AtΣt−1A

T
t +Rt

3: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1

4: µt = µ̄t +Kt(zt − Ctµ̄t)
5: Σt = (I −KtCt)Σ̄t

just using the motion model (control vector ut), the previous state µt−1 and the estimated
motion noise (Rt). In step 3, the Kalman gain (Kt) is calculated. This calculation involves the
sensor model (Ct) and sensor noise (Qt). The Kalman gain specifies the degree to which the
observation model, measurement zt, corrects the motion model (prediction µ̄t). In step 4 and 5
this prediction step is corrected by the Kalman gain (Kt) from step 3. Step 4 calculates the new
mean by using the Kalman gain, the observation model and the prediction µ̄t. The covariance
is also adjusted based on this Kalman gain in step 5. In each iteration of the Kalman filter the
covariance matrix must be inverted, with efficient algorithms a n × n matrix can be inverted
with O(n2.373) complexity.

Extended Kalman Filter

The assumption that a state transition and measurements are linear is not case for most practical
situations. A robot can move in directions which do not have to be linear, so the KF will not
work correctly. The extended kalman filter (EKF) overcomes the assumption by means of
linearization. The linear Equation D.12 and D.14 contain At, Bt, and Ct matrices which, in
a non linear situation will be replaced by functions g and h and thus make the probability
distribution no longer a Gaussian:

st = g(ut, st−1) + εt (D.17)

zt = h(st) + δt (D.18)

The idea of the EKF is to linearize the non linear function in order to have a posterior Gaussian
distribution. This linearization is done via the first order Taylor expansion. Taylor expansion
constructs a linear approximation of a functions value and slope. The slope is given by a partial
derivative:

g′(ut, st−1) =
∂g(ut, st−1)

∂st−1
(D.19)

A choice for the arguments for g is the previous mean µt−1 and the control vector ut because it
is likely that those arguments would be the approximation. So the linear approximation for g
becomes:

g(ut, st−1) ≈ g(ut, µt−1) +Gt(st − µt−1) (D.20)

156 Appendices, Alternative filters for SLAM



Gt is a Jacobian matrix of size n × n where n is the size of the state vector. The Gaussian
next state probability becomes:

p(st|ut, st−1) ≈ det(2πRt)−
1
2 exp(−1

2
[st−g(ut, µt−1)−Gt(st−1−µt−1)]TR−1

t [st−g(ut, µt−1)−Gt(st−1−µt−1)])

(D.21)
For the observation model, used in the corrector, the EKF applies the same principle but for
the closes approximation it takes the predictor outcome µ̄t

h(st) ≈ h(µ̄t) +Ht(st − µ̄t) (D.22)

The Gaussian next state corrector then becomes:

p(zt|st) ≈ det(2πQt)−
1
2 exp(−1

2
[zt−h(µ̄t)−Ht(st−µt)]TQ−1

t [zt−h(µ̄t)−Ht(st−µt)]) (D.23)

With these linearizations the EKF algorithm is shown in Algorithm 7:

Algorithm 7 Extended Kalman filter

1: µ̄t = g(ut, µt−1)
2: Σ̄t = GtΣt−1G

T
t +Rt

3: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

4: µt = µ̄t +Kt(zt − htµ̄t)
5: Σt = (I −KtHt)Σ̄t

The main difference between the KF and the EKF algorithm is that the linear system
matrices At and Bt are replaced by the Jacobian Gt and the linear system Ct is replaced by the
Jacobian Ht. A more detailed explanation and mathematical proofs of the EKF can be found
in Section 3.2 of [58]. The cost per step is dominated by the number of landmarks n; O(n2).
The total cost, including building a map with n landmarks is O(n3). For memory usage: O(n2).
Fast SLAM with Rao-Blackwellized uses EKF, see Section D for more information.

Unscented Kalman Filter

The Extended kalman filter uses the Taylor expansion for its linearization. The unscented
kalman filter (UKF) uses the same state distribution but it uses a set of chosen sample points,
called sigma points. Each sigma point, χ[i], has a weight w[i] and is transformed through a
non-linear function f [61][55]. The function f is the transition of the robot from pose xt−1 to
xt . Then the Gaussian is computed again from the transformed and weighted sigma points.
The points and weights must be chosen in such a way that:∑

i

w[i] = 1

µ =
∑
i

w[i]χ[i]

Σ =
∑
i

w[i](χ[i] − µ)(χ[i] − µ)T

(D.24)

There is no unique solution for χ[i] and w[i]. Wan et al. [61] suggest a method for choosing the
sigma points using the following equations

χ[0] = µ

χ[i] = µ+ (
√

(n+ λ)Σ)i for i = 1, ..., n

χ[i] = µ− (
√

(n+ λ)Σ)i−n for i = n+ 1, ..., 2n

Appendices, Alternative filters for SLAM 157



Where n is the dimension, λ is the scaling parameter. The weight of the sigma points is
calculated as follows:

w[0]
m =

λ

n+ λ

w[0]
c = w[0]

m + (1− α2 + β)

w[i]
m = w[i]

c =
1

2(n+ λ
for i = 1, ..., 2n

Once these sigma points are selected, calculated and transformed through the non-linear func-
tion it is necessary to recover the Gaussian again. This is done by substituting the non-linear
function g(x) in equations D.24:

µ′ =

2n∑
i=0

w[i]
mg(χ[i])

Σ′ =

2n∑
i=0

w[i]
m(g(χ[i])− µ′)(g(χ[i])− µ′)T

Mathematical proof and further derivation of the covariance matrix calculations can be found
in [61][55].

Information Filter

Like the Kalman filter the information filter(IF) can be used to solve the SLAM problem. The
IF uses a so called canonical representation which consists of the information matrix, Ω (inverse
covariance matrix from KF), and the information vector, ξ. This representation is shown in
Equation (D.25) and (D.26).

Ω = Σ−1 (D.25)

ξ = Σ−1µ (D.26)

Converting the information matrix and vector into the covariance matrix and mean-vector, the
information matrix should be inverted again:

Σ = Ω−1 (D.27)

µ = Ω−1ξ (D.28)

Using an inverted covariance matrix will change the prediction and correction step of the Kalman
filter, Equation (D.29) and (D.29) show the prediction and correction step of the Kalman filter
(Section D):

µ̄t = Atµt−1 +Btut

Σ̄t = AtΣt−1A
T
t +Rt

Correction step:
µt = µ̄t +Kt(zt − Ctµ̄t)
Σt = (I −KtCt)Σ̄t

Using the inverted covariance matrix, the prediction and correction steps of the Kalman filter
can be rewritten into Equation (D.29) and (D.29) (for a more detailed step by step derivation
see Stachniss [55]).

ξ̄t = Ω̄t(AtΩ
−1
t−1ξt−1 +Btut)

Ω̄t = (AtΩ
−1
t−1A

T
t +Rt)

−1

158 Appendices, Alternative filters for SLAM



Correction step:

ξ = CTt Q
−1
t zt + ξ̄t

Ω = CTt Q
−1
t Ct + Ω̄t

In comparison to the KF the IF has a more complex prediction, but the correction step is less
complex.

Extended Information Filter

similar to the Kalman filter, the information filter uses a linear model. For the extended
information filter (EIF) the linearization is the same as for the EKF. The Taylor expansion is
used as a linear estimation of the non-linear function. See Equations D.17 and D.18, both g and
h need the current state as input. In the canonical representation the state can be computed
by Equation D.18. However, in the algorithm it would be more efficient to just recover the
state estimation from the previous state, (see step 1 of the algorithm). The EIF also uses the
Jacobians Gt and Ht (see Section D). The entire EIF algorithm is stated in Algorithm 8.

Algorithm 8 Extended information filter

1: µt−1 = Ω−1
t−1ξt−1

2: Ω̄t = (GtΩ
−1
t−1G

T
t +Rt)

−1

3: µ̄t = g(ut, µt−1)
4: ξ̄t = Ω̄tµ̄t
5: Ωt = Ω̄t +HT

t Q
−1
t Ht

6: ξt = ξ̄t +HT
t Q
−1
t (zt − h(µ̄t) +Htµ̄t)

Takeover

They came in peace, they said..

Sparse Extended Information Filter

The computational complexity of the matrix manipulations in the algorithms is quite high. This
is caused by the constant calculations that involve the links between the robot and the land-
marks and between the landmarks themselves. The way data is represented in the information
matrix the matrix is suitable for optimalization. As a robot moves around in an environment
the nearest landmarks are the strongest links with the robot and the robot is most sure about its
position relative to these landmarks and the positions and distance between visible landmarks.
This type of algorithm is used to increase the computational efficiency. [55][57]

As always with feature-based SLAM there exists a set of landmarks. In this set of land-
marks there is a subset of landmarks that are active. This subset consists of at least the current
observed landmarks but can also contain other landmarks. The landmarks that are used to ob-
tain the position of the robot are called the active landmarks. All others landmarks are called
passive landmarks.

The process of separating active landmarks from passive landmarks is called sparsification.
The total set of landmarks m can can be seen as:

m = m+ +m0 +m−

Appendices, Alternative filters for SLAM 159



The information matrix can be seen as a sum of three matrices which correspond to these
landmark sets. The sparsification of the direct links is done by:

p̃ = (xt,m|z1,t, u1:t) '
p(xt,m

+|m− = 0, z1:t, u1:t)

p(m+|m− = 0, z1:t, u1:t)
p(m0,m+,m−|m− = 0, z1:t, u1:t) (D.29)

From this approximation the sparsified information matrix becomes a sum of matrices:

Ω̃t = Ω1
t − Ω2

t + Ω3
t

The matrices have been sparsified by manipulators Fmx .

Particle filters

General idea

Particle filtering is a Bayesian filtering technique to determine the state variables of a system
based on noisy measurements [8]. Unlike the Gaussian solutions particle filter can be used for
both feature-based and volumetric-based SLAM. The particle filter approximates the posterior
by a finite number of samples. The more samples are used, the more accurate the prediction
becomes. Each sample consists a state hypothesis s[j] and importance weight w[j].

χ = 〈s[j], w[j]〉j=1,...,J (D.30)

The posterior is represented as follows

p(s) =

J∑
j=1

w[j]δs[j](s) (D.31)

A commonly used type of particle filtering is the sequential importance re-sampling filter (SIRF)
which consists of four steps: prediction, update normalization and re-sampling[62]. Monte
Carlo Localization (MCL) [29] is a particle filter of the SIRF type which uses particles as pose
hypothesis, the four steps for MCL are explained in the following section.

Prediction

In the prediction step the next state is derived from the current state using an proposal dis-
tribution. The MCL uses the robots motion model, described in Appendix B, as a proposal
function for each particle (pose hypothesis) [19]. The proposal distribution with the motion
model is given in the following equation

x
(i)
k ∼ p(st|z1:t, u1:t) (D.32)

Update

In the update step, weights w
(j)
k are assigned to all particles. The current observation model

zt, described in Appendix B, can be used to determine the weights.

w
[j]
t = p(zt|x[m]

t ) (D.33)

160 Appendices, Alternative filters for SLAM



Normalization

In the normalization step all the weights of the particles are normalized to get an integral of 1.
The normalization step can be formulated as follows:

¯
w

[j]
t =

w
[j]
t

wtot
for j = 1..N

where wtot =
J∑
j=1

w[j]

(D.34)

Resampling

The re-sampling step prevents degeneracy of weights [15]. Degeneracy occurs when particles
with a high weight are given an even higher weight over several iterations. This makes the parti-
cles with a low weight insignificant [62]. Particles are replicated 0, 1 or more times proportional
to their normalized weight w[j]. The Monte Carlo particle filter algorithm is shown below:

Algorithm 9 Particle Filter

1: χ̄t = χt = ∅
2: for j = 1 do J

3: sample x[j] ∼ p(st|ut, x[j]
t−1)

4: w[j] = p(zt|x[j])

5: χ̄t = χ̄t + 〈x[j]
t , w

[j]
t 〉

6: end for
7: for j=1 do J

8: draw i ∈ 1, ..., J with probability ∝ w
[j]
t

9: add x
[i]
t to χt

10: end for
11: return χt

Rao-Blackwellized particle filter

The key idea of the Rao-Blackwellized particle filter (RBPF) is to split up the general SLAM
problem of Equation (2.2) which is restated below [26].

p(s0:t,m1:M |z1:t, u1:t) (D.35)

Since mapping with known poses is considered to be more trivial the equation is split up in a
mapping part and localization part:

p(s1:t|z1:t, u1:t)p(m1:M |s0:t, z1:t) (D.36)

It can be shown that once all the poses are known, the landmarks are independent of each other.
Which means that the mapping part of Equation (D.36) can be rewritten as follows:

p(s1:t|z1:t, u1:t)
M∏
i=1

p(mi|s0:t, z1:t) (D.37)

If, for example, EKF is used as landmark estimation then instead of a large matrix containing
all the landmarks the distribution can be realised by M 2×2 matrices which reduces complexity.

Appendices, Alternative filters for SLAM 161



The poses are known because of the localization using the particle filter. Each particle represents
a pose hypothesis and thus contains the current pose of the robot and the entire map. It is
not necessary to keep track of all the previous parts poses because the particles do not use any
methods to correct previous poses. If a particle is a bad hypothesis then it will receive a low
weight and with the resampling step it will be removed. This idea of partial particle filtering is
used in i.e. FastSLAM and FastSLAM2.

FastSLAM

FastSLAM [42] uses the Rao-Blackwellized particle filter for its localization. So each particle in
the particle filter represents a pose hypothesis and contains a map of the environment. For the
mapping part, FastSLAM uses EKF’s for each landmark. However [42] implements a tree-based
data structure which reduces the execution time. In FastSLAM 1.0 the four steps of the SIRF
particle filter are used. In the prediction step the path posterior is extended by sampling a
new pose for each sample. So each particle is extended by estimating a new pose based on the
motion model:

s
[k]
t ∼ p(st|s

[k]
t−1, ut) (D.38)

In the update step the particle weight is computed using the observation model, so it matches
the current observation with the expected observation and uses the measurement covariance to
determine how those two relate:

w[k] = |2πQ|−
1
2 exp(−1

2
(zt − ẑ[k])TQ−1(zt − ẑ[k]) (D.39)

where:

1. zt = current observation

2. ẑ[k] = expected observation

3. Q = measurement covariance

After the weight calculation all the landmark probabilities are updated using the EKF update,
see Appendix D and Algorithm 7. The update step also contains the normalization. Finally the
particles are resampled. The mathematical proof and algorithm can be found in Montemerlo
et al. [42]. The complexity of this basic implementation is O(NM) where N is the number of
particles and M is the number of map features. However, [42] proposes a tree data structure
which reduces the complexity to O(N logM).
FastSLAM 1.0 only uses the motion model as the proposal distribution for the prediction step.
FastSLAM 2.0 also considers the measurement during the sampling as a proposal distribution:

s
[k]
t ∼ p(st|s

[k]
t−1, u1:t, z1:t) (D.40)

In practice this means that FastSLAM 2.0 tries to align the current observation with the previous
one to get a better pose estimate. The FastSLAM algorithm cannot only be applied to feature-
based data representation but also volumetric-based data representation, using grid maps (see
Section 3.1). Each particle represents a possible robot path. This means that each particle
should also contain its own map. The number of particles determines the accuracy, because
more particles increases the chance of a correct particle. But storing multiple maps eventually
uses a lot of memory. The only way to limit memory use and still get a good estimate is by
resampling. Resampling in SLAM context consists of getting rid of bad particles and use the
memory it frees to store copies of good particles from which the particle filter can estimate again.

162 Appendices, Alternative filters for SLAM



This resampling step is necessary for convergence. Equation (D.41) shows the calculation of
neff .

neff =
1

Σi(w
[i]
t )2

(D.41)

What equation D.41 basically does is integrating all particle weights to find the overall quality
of the samples at that point in time. If the total weight (neff ) of the particles drops between a
certain value, resampling will be carried out.

Loop closing

In a particle filter based solution to the SLAM problem the loop closing is done by matching
the newly found observation data to old scans based on the pose distribution of the particle.
If the particle crosses a certain point where it believes to have been before, on a positive scan
match, its believe will increase drastically and resampling can be carried out.

Appendices, Alternative filters for SLAM 163



E — Graph-based SLAM algorithm

Algorithm 10 Basic Graph SLAM algorithm

1: initialize:
2: H0,0 = 1
3: repeat every timestep:
4: if (new pose added) then:
5: θt+1 = θt + ∆θ
6: xt+1 = xt + ∆dt × cos θt+1

7: yt+1 = yt + ∆dt × sin θt+1

8: H∗ = H + Hi,i+1

9: if (loop closing found) then:
10: repeat k times or until convergence :
11: H = H + Hi,j

12: ex = zi,j − (xj − xi) ∀(i, j) loop closing pairs
13: ey = zi,j − (xj − xi) ∀(i, j) loop closing pairs
14: eθ = zi,j − (xj − xi) ∀(i, j) loop closing pairs
15: bx(i) = by(i) = bθ(i) = 0 ∀i
16: bx = bx + bxi,j∀(i, j) loop closing pairs
17: by = by + byi,j∀(i, j) loop closing pairs
18: bθ = bθ + bθi,j∀(i, j) loop closing pairs
19: solve H ∆x = −bx
20: solve H ∆y = −by
21: solve H ∆θ = −bθ
22: x = x + ∆x
23: y = y + ∆y
24: θ = θ + ∆θ

25: lengthi =
√

(xi+1 − xi)
2 +

(
yi+1 − yi

)2 ∀i
26: xi+1 = xi + lengthi × cos θi ∀i
27: yi+1 = yi + lengthi × sin θi ∀i

164 Appendices, Graph-based SLAM algorithm



F — Feature Extraction

Scale Invariant Feature Transform

An algorithm that has been proven to be very robust in feature detection but also computa-
tionally heavy is the scale-invariant feature transform (SIFT) which is an algorithm that is
robust in a way that the algorithm finds the same keypoints in different images with the same
objects[38]. SIFT makes use of the Laplacians of Gaussians to determine a scale space. To find
keypoints, the extrema is searched within an image by comparing the pixel values. If the pixel
is larger or smaller than the pixels that lie around it and also then the 9 pixels in the same
area in the next and previous scale in the scale space, the pixel is a candidate keypoint. The
slope of the keypoints will also be checked to see if it is indeed a well recognizable keypoint. To
estimate orientation a histogram is created with the derivatives of the local image after which
the image is rotated around the found angle θ. The descriptors are histograms of the gradients
of the neighbouring blocks of pixels. These descriptors can be matched to compare the position
of the keypoints in different frames.

Speeded up robust features

A feature extraction technique similar to SIFT is the speeded up robust features algorithm
(SURF)[12]. The filtering in SURF is done by integrating the gray-scale values around a point
as a faster alternative to Gaussian. This is given by:

S(x, y) =

x∑
i=0

y∑
j=0

I(i, j)

SURF uses the matrix of second order derivatives (Hessian matrix) for blob detection to
detect potential keypoints and the determinant of the Hessian to detect local changes around
the point of interest. Second order derivatives will provide the position of corners explicitly.
The Hessian matrix is give by:

H(p, σ) =

(
Lxx(p, σ) Lxy(p, σ)
Lyx(p, σ) Lyy(p, σ)

)
The scaling of the images is determined by calculating an image pyramid for the image. The

image pyramid contains copies of the image in different scales. This is done by calculating the
changes around a point with different filter sizes for different sigma values and a square filter.
With this method it is possible to match the distance between the features and determine the
difference in scale between the two compared images.

Laser range scanner data

The SIFT and SURF feature extraction methods are known to be robust and precise. Feature
extraction on image data seems more straightforward than feature extraction on data obtained

Appendices, Feature extraction 165



from a laser range scanner because of the very different data representation. By means of
segmentation and shape recognition it is possible to extract lines, circles, and ellipses from data
from a laser range scanner[49].

Segmentation needs to be done to distinguish whether each point found in a laser scan
belongs to an earlier found feature. A possible method to do this is by looking at the euclidean
distance between points that are at the beginning or end of lines. Segmentation is an important
aspect of data association.

166 Index



Index

BlockRAM, 44

Closed form, 38
Conjugate gradient algorithm, 72
Correspondence, 28

Edge, 17

Feature-based, 15

Graph-based SLAM, 17

Higher-order functions, 43

ICP, 28
Information Matrix, 20
Iterative closest line, 153
Iterative Closest Point, 28

Jacobian, 21

Landmarks, 15
Laser range finder, 27
Laser range scanner, 27

Mealy machine, 44

Node, 17
Normal distribution transform, 153
Number blockRAM, 98

Occupancy grid, 13
Outlier rejection, 35

Point-to-line, 30
Point-to-point, 30
Polar scan-matching, 153
Pose, 17

Robots, 7

Scan-matching, 27
Singular value decomposition, 39
Sparse matrix, 68

Volumetric, 13

Index 167



Bibliography

[1] Altera Cyclone V device overview. URL https://www.altera.com/en_US/pdfs/

literature/hb/cyclone-v/cv_51001.pdf. (Cited on page 145.)

[2] Advanced Robotics Tutorial. URL https://msdn.microsoft.com/en-us/library/

bb905452.aspx. (Cited on page 9.)

[3] OpenSLAM. URL https://www.openslam.org. (Cited on page 51.)

[4] Quartic Formula. URL http://planetmath.org/QuarticFormula. (Cited on page 86.)

[5] SLAM Benchmarking Datasets, 2009. URL http://kaspar.informatik.uni-freiburg.

de/~slamEvaluation/datasets.php. (Cited on page 9.)

[6] Haskell, An advanced, purely functional programming language, 2014-2016. URL https:

//www.haskell.org/. (Cited on page 41.)

[7] S Anderson, F Klassner, P Lawhead, and M McNally. LMICSE: Lego Mindstorms in Com-
puter Science Education, 2001. URL http://www.mcs.alma.edu/LMICSE/LabMaterials/

AlgoComp/Lab3/occgrid.gif. [Online; accessed January 19, 2016]. (Cited on page 14.)

[8] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking. Signal Processing,
IEEE Transactions on, 50(2):174–188, 2002. (Cited on page 160.)

[9] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fitting of two 3-D
point sets. IEEE Transactions on pattern analysis and machine intelligence, (5):698–700,
1987. (Cited on page 37.)

[10] C Baaij. CλaSH, From Haskell to Hardware. URL http://www.clash-lang.org/. (Cited
on page 41.)

[11] Kirk Baker. Singular value decomposition tutorial. 2005. (Cited on pages 38 and 39.)

[12] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up Robust
Features (SURF). Comput. Vis. Image Underst., 110(3):346–359, June 2008. ISSN 1077-
3142. doi: 10.1016/j.cviu.2007.09.014. URL http://dx.doi.org/10.1016/j.cviu.2007.

09.014. (Cited on page 165.)

[13] Paul J Besl and Neil D McKay. Method for registration of 3-D shapes. In Robotics-DL
tentative, pages 586–606. International Society for Optics and Photonics, 1992. (Cited on
page 29.)

168 Bibliography

https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://msdn.microsoft.com/en-us/library/bb905452.aspx
https://msdn.microsoft.com/en-us/library/bb905452.aspx
https://www.openslam.org
http://planetmath.org/QuarticFormula
http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets.php
http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets.php
https://www.haskell.org/
https://www.haskell.org/
http://www.mcs.alma.edu/LMICSE/LabMaterials/AlgoComp/Lab3/occgrid.gif
http://www.mcs.alma.edu/LMICSE/LabMaterials/AlgoComp/Lab3/occgrid.gif
http://www.clash-lang.org/
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014


[14] Peter Biber and Wolfgang Straßer. The normal distributions transform: A new approach
to laser scan matching. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, volume 3, pages 2743–2748. IEEE, 2003.
(Cited on page 151.)

[15] Olivier Cappé, Simon J Godsill, and Eric Moulines. An overview of existing methods and
recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–924, 2007.
(Cited on page 161.)

[16] Andrea Censi. An ICP variant using a point-to-line metric. In Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, pages 19–25. IEEE, 2008. (Cited on
pages 30, 34, 37, 86, and 113.)

[17] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range images.
Image and vision computing, 10(3):145–155, 1992. (Cited on page 30.)

[18] Ingemar J Cox. Blanche-an experiment in guidance and navigation of an autonomous robot
vehicle. Robotics and Automation, IEEE Transactions on, 7(2):193–204, 1991. (Cited on
page 151.)

[19] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte carlo lo-
calization for mobile robots. In Robotics and Automation, 1999. Proceedings. 1999 IEEE
International Conference on, volume 2, pages 1322–1328. IEEE, 1999. (Cited on page 160.)

[20] Albert Diosi and Lindsay Kleeman. Laser scan matching in polar coordinates with appli-
cation to SLAM. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on, pages 3317–3322. IEEE, 2005. (Cited on page 151.)

[21] Chitra Dorai, Gang Wang, Anil K Jain, and Carolyn Mercer. Registration and integra-
tion of multiple object views for 3D model construction. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 20(1):83–89, 1998. (Cited on page 34.)

[22] Sébastien Druon, Marie-José Aldon, and André Crosnier. Color constrained icp for regis-
tration of large unstructured 3d color data sets. In Information Acquisition, 2006 IEEE
International Conference on, pages 249–255. IEEE, 2006. (Cited on page 34.)

[23] David W Eggert, Adele Lorusso, and Robert B Fisher. Estimating 3-D rigid body trans-
formations: a comparison of four major algorithms. Machine Vision and Applications, 9
(5-6):272–290, 1997. (Cited on page 37.)

[24] Gene H Golub and Christian Reinsch. Singular value decomposition and least squares
solutions. Numerische mathematik, 14(5):403–420, 1970. (Cited on page 39.)

[25] G. Grisetti, R. Kuemmerle, C. Stachniss, and W. Burgard. A Tutorial on Graph-Based
SLAM. Intelligent Transportation Systems Magazine, IEEE, 2(4):31–43, 2010. doi: 10.
1109/MITS.2010.939925. (Cited on page 17.)

[26] Giorgio Grisetti, Gian Diego Tipaldi, Cyrill Stachniss, Wolfram Burgard, and Daniele
Nardi. Fast and accurate SLAM with Rao–Blackwellized particle filters. Robotics and
Autonomous Systems, 55(1):30–38, 2007. (Cited on page 161.)

[27] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, Udo Frese, and Christoph Hertzberg.
Hierarchical optimization on manifolds for online 2D and 3D mapping, pages 273–278.
2010. ISBN 9781424450381. doi: 10.1109/ROBOT.2010.5509407. (Cited on page 26.)

Bibliography 169



[28] Rui Guo, Fengchi Sun, and Jing Yuan. ICP based on Polar Point Matching with applica-
tion to Graph-SLAM. In Mechatronics and Automation, 2009. ICMA 2009. International
Conference on, pages 1122–1127. IEEE, 2009. (Cited on pages 39 and 40.)

[29] JE Handschin. Monte Carlo techniques for prediction and filtering of non-linear stochastic
processes. Automatica, 6(4):555–563, 1970. (Cited on page 160.)

[30] Berthold KP Horn. Closed-form solution of absolute orientation using unit quaternions.
JOSA A, 4(4):629–642, 1987. (Cited on page 37.)

[31] Berthold KP Horn, Hugh M Hilden, and Shahriar Negahdaripour. Closed-form solution of
absolute orientation using orthonormal matrices. JOSA A, 5(7):1127–1135, 1988. (Cited
on pages 37 and 113.)

[32] A Hornung, K.M Wurm, M Bennewitz, C Stachniss, and W Burgard. OctoMap: An
Efficient Probabilistic 3D Mapping Framework Based on Octrees, 2013. URL https://

octomap.github.io/freiburg_outdoor_big.png. [Online; accessed February 11, 2016].
(Cited on page 13.)

[33] D Hähnel. Dataset: Intel Research Lab (Seattle). URL http://kaspar.informatik.

uni-freiburg.de/~slamEvaluation/datasets/images/intel_relations.png. [Online;
accessed February 11, 2016]. (Cited on page 13.)

[34] Margaret E Jefferies and Wai K Yeap. Robot and Cognitive Approaches to Spatial Map-
ping. In Robotics and Cognitive Approaches to Spatial Mapping, pages 1–5. Springer, 2007.
(Cited on pages 9 and 51.)

[35] Henrik Kretzschmar, Cyrill Stachniss, and Giorgio Grisetti. Efficient information-theoretic
graph pruning for graph-based SLAM with laser range finders. In Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 865–871. IEEE, 2011.
(Cited on pages 26 and 55.)

[36] Dmitriy Leykekhman. Linear Least Squares using SVD Decomposition, Fall 2008. (Cited
on page 39.)

[37] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface registration.
2004. (Cited on pages 37, 38, 39, 86, and 113.)

[38] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput.
Vision, 60(2):91–110, November 2004. ISSN 0920-5691. doi: 10.1023/B:VISI.0000029664.
99615.94. URL http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94. (Cited on
pages 113 and 165.)

[39] Feng Lu and Evangelos Milios. Robot pose estimation in unknown environments by match-
ing 2D range scans. Journal of Intelligent and Robotic Systems, 18(3):249–275, 1997. (Cited
on page 30.)

[40] Takeshi Masuda, Katsuhiko Sakaue, and Naokazu Yokoya. Registration and integration of
multiple range images for 3-D model construction. In Pattern Recognition, 1996., Proceed-
ings of the 13th International Conference on, volume 1, pages 879–883. IEEE, 1996. (Cited
on page 34.)

[41] Javier Minguez, Luis Montesano, and Florent Lamiraux. Metric-based iterative closest
point scan matching for sensor displacement estimation. Robotics, IEEE Transactions on,
22(5):1047–1054, 2006. (Cited on page 28.)

170 Bibliography

https://octomap.github.io/freiburg_outdoor_big.png
https://octomap.github.io/freiburg_outdoor_big.png
http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets/images/intel_relations.png
http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets/images/intel_relations.png
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94


[42] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A Factored Solution
to the Simultaneous Localization and Mapping Problem. In Proceedings of the AAAI
National Conference on Artificial Intelligence, Edmonton, Canada, 2002. AAAI. (Cited on
page 162.)

[43] Stuart F Obermann and Michael J. Flynn. Division algorithms and implementations. IEEE
Transactions on computers, 46(8):833–854, 1997. (Cited on page 99.)

[44] Edwin B. Olson. Robust and Efficient Robotic Mapping. PhD thesis, Cambridge, MA,
USA, 2008. AAI0821013. (Cited on page 151.)

[45] Edwin B Olson. Real-time correlative scan matching. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 4387–4393. IEEE, 2009. (Cited on
page 28.)

[46] Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford Uni-
versity Press, Oxford, UK, 2000. ISBN 0-19-512583-5. (Cited on pages 98 and 101.)

[47] P Piniés. CI-Graph SLAM execution on Victoria Park data set, 2007. URL http:

//webdiis.unizar.es/~ppinies/research_archivos/map_victoria_google.jpg. [On-
line; accessed January 27, 2016]. (Cited on page 16.)

[48] François Pomerleau, Francis Colas, François Ferland, and François Michaud. Relative
motion threshold for rejection in ICP registration. In Field and Service Robotics, pages
229–238. Springer, 2010. (Cited on page 34.)

[49] Cristiano Premebida and Urbano Nunes. Segmentation and geometric primitives extraction
from 2d laser range data for mobile robot applications. Robotica, 2005:17–25, 2005. (Cited
on page 166.)

[50] Kari Pulli. Multiview registration for large data sets. In 3-D Digital Imaging and Modeling,
1999. Proceedings. Second International Conference on, pages 160–168. IEEE, 1999. (Cited
on page 34.)

[51] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In 3-
D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on,
pages 145–152. IEEE, 2001. (Cited on pages 28, 29, 30, 34, and 37.)

[52] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-ICP. In Robotics: Sci-
ence and Systems, 2009. (Cited on page 28.)

[53] Rys Sommerfeldt. Origin of Quake 3’s Fast invSqrt(), 2006. URL https://www.beyond3d.

com/content/articles/8/. (Cited on page 98.)

[54] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD thesis, University of
Freiburg, Department of Computer Science, April 2006. (Cited on page 149.)

[55] Cyrill Stachniss. Robot Mapping, SLAM course. 2013. (Cited on pages 9, 147, 153, 157,
158, and 159.)

[56] Monika Thakur. Samsung’s robotic vacuum cleaner comes with laser point
technology, 2014. URL http://www.homecrux.com/wp-content/uploads/2014/08/

Samsung-Robotic-Vacuum-Cleaner-VR9000H_1.jpg. [Online; accessed November 9,
2016]. (Cited on page 7.)

Bibliography 171

http://webdiis.unizar.es/~ppinies/research_archivos/map_victoria_google.jpg
http://webdiis.unizar.es/~ppinies/research_archivos/map_victoria_google.jpg
https://www.beyond3d.com/content/articles/8/
https://www.beyond3d.com/content/articles/8/
http://www.homecrux.com/wp-content/uploads/2014/08/Samsung-Robotic-Vacuum-Cleaner-VR9000H_1.jpg
http://www.homecrux.com/wp-content/uploads/2014/08/Samsung-Robotic-Vacuum-Cleaner-VR9000H_1.jpg


[57] Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y Ng, Zoubin Ghahramani, and
Hugh Durrant-Whyte. Simultaneous localization and mapping with sparse extended in-
formation filters. The International Journal of Robotics Research, 23(7-8):693–716, 2004.
(Cited on page 159.)

[58] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press,
2005. (Cited on pages 9, 14, 147, 149, 154, 156, and 157.)

[59] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings
of the 21st annual conference on Computer graphics and interactive techniques, pages 311–
318. ACM, 1994. (Cited on page 34.)

[60] NASA/JPL/Cornell University. An artist’s concept portrays a NASA Mars Exploration
Rover on the surface of Mars. Two rovers were launched in 2003 and arrived at sites on Mars
in January 2004. Each rover was built to have the mobility and toolkit for functioning as a
robotic geologist., 2003. URL http://photojournal.jpl.nasa.gov/jpeg/PIA04413.jpg.
[Online; accessed November 9, 2016]. (Cited on page 7.)

[61] Eric Wan, Ronell Van Der Merwe, et al. The unscented Kalman filter for nonlinear esti-
mation. In Adaptive Systems for Signal Processing, Communications, and Control Sympo-
sium 2000. AS-SPCC. The IEEE 2000, pages 153–158. IEEE, 2000. (Cited on pages 157
and 158.)

[62] Rinse Wester. A transformation-based approach to hardware design using higher-order
functions. PhD thesis, UTwente, 2015. (Cited on pages 160 and 161.)

[63] Lei ZhangO. Weighted Point-to-Line ICP for 2D Laser Scan Based SLAM Application.
(Cited on page 30.)

172 Bibliography

http://photojournal.jpl.nasa.gov/jpeg/PIA04413.jpg



	Abstract
	Introduction
	Context
	Problem statement
	Approach and outline

	I Background
	Robotics and SLAM
	Mathematics of SLAM
	Datatypes and filtering techniques for SLAM
	Loop closing


	Data formats in SLAM
	Volumetric SLAM
	Occupancy grid

	Feature-based SLAM
	Feature extraction
	Loop closing


	Graph-based SLAM
	Graph-based SLAM
	Introduction
	Graph construction
	Loop closing
	The error function
	The information matrix
	Minimization of errors and correction of the graph
	Correction of errors of angles
	Error convergence
	Hierarchical Optimization
	Graph pruning: Removing non informative poses


	Scan-matching
	ICP: Iterative Closest Point
	Finding correspondences
	Unique vs non-unique correspondences
	Rejecting correspondences
	Minimizing the error
	Scoring the outcome


	CaSH

	II Design Space Exploration
	Introduction to decision trees
	Exploration on SLAM properties
	Environment data representation
	Sensor data
	Choice of filtering technique
	Scan-matching
	ICL
	NDT
	ICP
	Conclusion: ICP


	Graph-based SLAM
	Graph representation
	State vector representation
	Construction of the state vector
	Correction of the state vector

	Loop closing
	Finding potential loop closings
	Restriction of the amount of loop closing

	Linear Solver
	Information matrix storage structure
	Linear solver for graph convergence
	Joining sparse and non sparse vectors into single vector operations
	Implementation structure


	ICP
	Construction of correspondences
	Correspondence selection metric
	Correspondence uniqueness
	Hardware selection structure

	Outlier rejection
	Error minimization
	Error minimization algorithm
	Hardware decomposition structure
	Memory layout
	Vector operations
	Inverse square root
	Linear solver hardware structure
	Division



	III Realisation and results
	Graph-based SLAM
	Realisation
	Application specific multi use ALU
	Fixed size sparse vectors
	Multiple blockRAM's for efficient and fast access
	Proposed ALU structure
	Controlling the ALU

	Results
	MATLAB timing results
	Hardware results


	ICP
	QR decomposition
	Realisation
	Simulation, synthesis, and timing results
	Numerical precision
	Simulations results using different square root algorithms
	MATLAB timing results vs hardware architecture timing
	Quartus synthesis and timing results



	IV Conclusions and future work
	Conclusions
	General conclusions
	Graph-based SLAM
	ICP

	Future work
	General future work
	Coupling Graph-SLAM and ICP
	Research towards automated parallelism

	Graph-based SLAM
	Additions to the current SLAM implementation
	Extended additions of the algorithm and implementation

	ICP


	Appendices
	FPGA
	Motion models for SLAM
	Odometry Motion Model
	Velocity Motion Model
	Observation Model

	Alternative scan-matching solutions
	ICL: Iterative Closest Line
	PSM: Polar Scan Matching
	NDT: Normal Distributions Transform

	Alternative filters for SLAM
	Gaussian filters
	Bayes Filter
	Kalman Filter
	Extended Kalman Filter
	Unscented Kalman Filter
	Information Filter
	Extended Information Filter
	Sparse Extended Information Filter

	Particle filters
	General idea
	Rao-Blackwellized particle filter
	FastSLAM
	Loop closing


	Graph-based SLAM algorithm
	Feature Extraction

	Index
	Bibliography

