UNIVERSITY OF TWENTE

DEPARTMENT OF SERVICES, CYBERSECURITY AND SAFETY

MASTER THESIS

Deep Verification Learning

Committee:
Author: Prof. Dr. Ir. R.N.J. VELDHUIS
F.H.J. HILLERSTROM Dr. Ir. L.J. SPREEUWERS

Dr. Ir. D. HIEMSTRA

December 5, 2016

Deep Verification Learning

Fieke Hillerstrom

December 5, 2016

Abstract

Deep learning for biometrics has increasingly gained attention over the last years.
Due to the expansion of computational power and the increasing sizes of the available
datasets, the performance has surpassed that of humans on certain verification tasks.
However, large datasets are not available for every application. Therefore we introduce
Deep Verification Learning, to reduce network complexity and train with more modest
hardware on smaller datasets. Deep Verification Learning takes two images to be
verified at the input of a deep learning network, and trains directly towards a verification
score. This topology enables the network to learn differences and similarities in the first
layer, and to involve verification signals during training. Directly training towards a
verification score reduces the number of trainable parameters significantly. We applied
Deep Verification Learning on the face verification task, also it could be extended to
other biometric modalities. We compared our face verification learning topology with
a network trained for multi-class classification on the FRGC dataset, which contains
only 568 subjects. Deep Verification Learning performs substantially better.

1 Introduction

Deep learning face recognition has been extensively studied during the last years and has
obtained impressive results [2-6]. Deep learning methods automatically learn to extract
the discriminative features for the task they are trained on. The increasing availability of
computational power and training data allows dor the training of deeper networks, and has
increased the recognition performances immensely. We introduce Deep Verification Learning
to reduce the network complexity and enable training on smaller datasets (see Figure 1).

Most of the state-of-the-art deep learning face recognition systems use convolutional
networks (abbreviated ConvNets). For face verification, commonly a framework based on
multi-class classification is used |5| (see Figure 2). The classification layer of the network
is removed, whereafter a feature vector remains. The network is replicated and on top of
these feature vectors, a new verification layer is trained (see Figure 2). We define this type
of learning as ‘Identification Learning’. The state-of-the-art systems are trained with the
currently available large datasets and achieve excellent performances.

One of the challenges in deep learning face recognition is data bias |5]. The deep networks
are usually trained with large datasets, but do not generalize well to new face verification

Verification

—>| ConvNet | =
score

Figure 1: Deep Verification Learning. Two images are presented as input of the network
and the system is directly trained towards a verification score. Face images are preprocessed
images from the FRGC dataset [1].

Training setting i Verification setting

Score for

N input Nl H R
classes e '] ConvNet QQ/"@P
- & S I
= _ D W K| Similarity Verification
—| ConvNet |ZXUEYSg | Multiclass | o 5 measure score
| classification H o
H 'Y K
i ConvNet |

Figure 2: Identification Learning convolutional network. Left: Training for multi-class
classification. Right: Two networks are replicated in verification setting. The networks
have the same fixed weights W. A new top-layer is trained. Face images are preprocessed
images from the FRGC dataset [1].

Dataset #Images | #Subjects | Access | Source

LFW |[7| 13,233 5,749 Public | Celebrity search
CelebFaces+ 8] 202,599 10,177 Public | Celebrity search
CASTA-WebFace 9] 494,414 10,575 Public | Celebrity search
MS-Celeb-1M [10] 10M 100K Public | Celebrity search
Social Face Classification 4.4M 4,030 Private | Facebook
(Facebook) 2]

Google [4] 100-200M 8M Private | Undefined
Megvii Face Classification |5 5M 20K Private | Celebrity search
FRGC [1] 39,328 568 Public | Photo sessions

Table 1: Datasets used for training deep learning face recognition networks and their char-
acteristics.

applications. Depending on the type of application, the availability and sizes of the datasets
differ (see Table 1). The availability of training data is limited for applications that do
not utilize public web images. For those applications, like access or border control, it is
interesting to investigate less complex deep learning architectures, that train on smaller
datasets.

We propose a Deep Verification Learning system, directly trained for a verification score,
applied for face recognition (see Section 3). We applied Deep Verification Learning on
the task of face recognition and it could be extended towards other biometric modalities.
We hypothesize that Deep Verification Learning will outperform an Identification Learned
network on the face verification task, when small datasets are used. Deep Verification
Learning offers several advantages over Identification Learning. Training a network in pairs
enables the creation of extra training samples. Providing two images as input of the network
enables it to learn face similarities and differences directly at the first layers, and to use these
in the higher layer. Training towards a verification score instead of multi-class classification
reduces the number of network parameters drastically. In our experiments, for example, the
number of parameters reduces from 36,316 for Identification Learning to 13,772 for Deep
Verification Learning. Given these advantages, we hypothesize that our network can train
more effectively on small datasets.

We investigate the ability of Deep Verification Learning by comparing Deep Verification
Learning with Identification Learning (see Section 4). We explore the benefits of increasing
the dataset size in a controlled manner. The research questions addressed in this paper are:

1. Can Deep Verification Learning result in similar or better face verification performance
then Identification Learning?

2. What is the effect of the number of images in a dataset on the face verification per-
formance of both Deep Verification Learning and Identification Learning?

(a) What is the effect of the number of images per subject in a dataset on face
verification performance?

(b) What is the effect of the number of subjects in a dataset on face verification
performance?

We will first describe the related background for our research in Section 2. We explain the
details of Deep Verification Learning in Section 3, whereafter we describe our experiments.
Finally we present our conclusions and recommendations.

2 Related Work

Face verification has gained the interest of researchers for several decades, improving its
performance. Traditional face verification systems use model-based features (e.g. LBP [11]
and Gabor wavelets [12]), often combined to enhance performance. Deep learning systems
are able to automatically learn the important features from the input, which eliminates the
need for model-based features.

Deep learning face verification systems typically incorporate the spatial information in
images by using convolutional networks [2,3,5,13|. Convolutional networks reduce the num-
ber of parameters in a network, allowing for deeper topologies. Commonly, a framework
based on multi-class classification is taken [5|. The networks are trained for a multi-class
classification task, to identify all the subjects in the training set (see Figure 2). The iden-
tification layer is removed and a feature vector remains. A similarity measure is added for
verification (see Figure 2). We define this type of training as ‘Identification Learning’. Dif-
ferent types of top layers can be used. Examples of untrained methods are the inner product
between two normalized feature vectors |2] or the L2 norm [5|. Possible trained methods are
the weighted-x? distance, Joint Bayesian [14], and a new-trained neural network [14]. Deep-
Face [2| takes a Siamese network and trains a top softmax-layer, which takes the absolute
difference between two feature vectors as input, to predict a similarity score. They report
overfitting to the trainingdata when fine-tuning the Siamese pre-trained feature extractor.
However, in an ensemble it enhanced the verification accuracy.

Most of the traditional and deep learning topologies extract the features of two faces
separately. Verification signals can be incorporated in the learning process to enhance train-
ing. DeepID2 |15] combines verification and identification signals into a joint cost function
with a hyperparameter A. The fully connected layer is connected to the last convolutional
layer and the last max-pooling layer. FaceNet [4] uses a triplet loss function during training,
which minimizes the distance between genuine pairs and maximizes the distance between
imposter pairs, by using feature vectors of three images in the loss calculation. The triplets
used for training are selected depending on the verification difficulty.

Typically the networks contain multiple convolutional layers in combination with max-
pooling layers and followed by fully-connected layers. Because different face regions have
different local statistics, locally connected layers could be used in the higher layers [2,13,
14]. Locally shared weights enable the extraction of specific features from different face
regions and was first introduced by Hung et al. |[28]. An ensemble of multiple networks
trained for different face regions could enhance performance [5,14]. Most architectures
use the output of a non-final fully-connected layer as feature vector for face verification.
Deep Verification Learning trains directly towards a verification score, instead of using an
intermediate representation.

The datasets used for training these deep networks are commonly large and contain
mostly public available web images (see Table 1). The trained networks do not generalize well
to new applications, as investigated by Zhou et al. |5]. They found a big gap in performance
when transferring a convolutional network trained on a large dataset of celebrities from the
internet, towards a real-world security application. In case of controlled applications, only
small datasets are available. Deep Verification Learning trains in pairs, which enlarges the

RBM output layer/ =
face verification prediction
RBM hidden layer (00000000)
High-level

relational | e)

features - =
. Feature extraction layer
Multiple -~ =
ConvNets cee e e
Feature extraction layer
Low-level ~ =
rél:&orréil y i’;l'.‘ﬂ,;z’;\ Feature extraction layer [',\Vi’;lz‘.wu}l
AN R
Face region AR , /i
pairs with | X ‘] .
_ different 2= " 5
input modes 7 \
Filter pair 4+ Filter pair

Face pair in _
comparison
% 1

Figure 3: System architecture of the hybrid ConvNet-RBM model, proposed by Sun et al..
Image from [13].

number of training batches. It reduces the number of parameters in the network as follows:
with a dataset of N subjects, the last layer of an Identification Learning network is an
N-way softmax-layer. If the second last layer has a length K, the number of parameters
for this last fully-connected softmax-layer is K - N. In case of Deep Verification Learning
the output softmax-layer is a two-way softmax-layer, causing for 2 - K parameters. Deep
Verification Learning reduces the number of parameters to be trained significantly. Because
of this considerable parameter reduction, we hypothesize that Deep Verification Learning
outperforms Identification Learning.

Sun et al. [13] proposed a similar verification learning architecture, which takes two
images at the input and is trained towards a verification score (see Figure 3). They train
twelve groups, each containing five different convolutional networks. The twelve groups are
trained for different face regions, some in color, some in gray values. The five networks in
every group are trained on different bootstraps of training data. They average the output
of eight different input modi (flipped and exchanged input region pairs). The outputs of
those 5x12 convolutional networks are two times averaged pooled and followed by a top
layer classification RBM. However, their architecture is rather complex and trained on a
large dataset, CelebFaces, containing 87,628 images of 5,436 persons. Our aim is to design a
less complex network that can train on smaller datasets. Therefore we propose a simplified
version of the architecture proposed by Sun et al., containing a basis of their proposed
network.

3 Deep Verification Learning

We introduce a Deep Verficication Learning network, based on the architecture proposed by
Sun et al. [13]. The network takes two images as input and is directly trained towards a ver-
ification score. The proposed topology is shown in Figure 4 and contains four convolutional
layers, which enables it to extract features hierarchically. The first three convolutional layers
are each followed by a max-pooling layer, which provides a simple rotation and translation
invariance. The Rectified Linear Unit (ReLU) f(x) = maxz(0,z) [16] is used as activation
function. Two grayscale images are presented as input of the network, each in a separate
channel. The expected dimensions of the input images are 31x39 pixels (WxH). A fully-
connected layer is connected to the last convolutional layer, to be able to fuse the outputs
of the different filters. The fully-connected layer is followed by a two-way softmax-layer;

eri

Pt = gmoyerrs With z; the sum of all the inputs to output neuron ¢. The softmax-layer

Convolutional .
Max-pooling

layer 1 i .
Input layer Y layer 1 cm};g;urt';na' Max-pooling conyolutional .
28x36x20 layer 2 layer 3 Max-poolinge o ional
31x39x2 14x18x20 12x16x40 layer 3 layer 4 Fully-
= 28 14 6x8x40 4x6x60 connected
) 12 6 4 2x3x60 1x2x80 layer
o ! 2 Softmax
1 layer
18 3 111 o ﬁ/
2x2 1]
2x2 e i L
G201 > 40 - Filter 2x2x60 80
20 Filter 3x3x40
Filter 3x3x20

Filter 4x4x2

Figure 4: Deep Verification Learning convolutional network. At the input two grayscale
images are presented, each in a separate channel. The network is directly trained towards a
verification score. Network based on the topology proposed by Sun et al. [13]. Face images
are preprocessed images from the FRGC dataset [1].

predicts a chance for two classes, genuine pairs and imposters pairs. Because the outputs of
the softmax add up to one, the score for the genuine class is used as verification score, with
a score of one belonging to genuine pairs and zero to imposter pairs.

Hu et al. |17] evaluated the use of RGB and grayscale images for face recognition convo-
lutional networks and found that colour images do not deliver a notable improvement. Using
grayscale images reduces the complexity of the network and the number of parameters to
be trained. To limit the number of parameters, only a single model is trained with the full
facial area as input. We did not apply model averaging or models trained for specific facial
regions. The number of parameters in the network, excluding the final softmax-layer, is
13,612. The softmax-layer adds 160 parameters. In the case of Indentification Learning, the
final softmax-layer adds 80 - NV parameters, which increases the trainable parameters in the
network immensely. With 170 subjects, the number of parameters would have doubled. As
can be seen in Table 1, datasets used for training deep networks have way more subjects than
170 and Deep Verification Learning thus reduces the number of parameters significantly.

4 Experiments

We compared the Deep Verification Learning system to an Identification Learned convo-
lutional network, to evaluate the advantages of our proposed training architecture. The
networks are compared in three experiments, related to the research questions. The first
experiment evaluates the verification performance of both Deep Verification Learning and
Identification Learning. The second and third experiment explore the benefits of increasing
the dataset-size in a controlled manner, in which a distinction is made between a dataset
increase via extra subjects or via extra images per subject.

4.1 Experiment setup
4.1.1 Network architectures

The architectures of both systems to be compared are identical, except for the input and
output layer. The Deep Verification Learning network is shown in Figure 4 and discussed
in Section 3. The Identification Learned network is first trained for the classification task,
as shown in Figure 5. The network is trained to output a probability score for the input to
belong to one of the N classes, via an IN-way softmax-layer. When training has completed,
the classification layer is removed and a feature vector is obtained. The two feature vectors
of the images to be compared are normalized to have zero mean and unit variance and taken
as input for a new-trained two-way softmax-layer. With x4 and zpg referring to normalized
feature vectors, the input for the softmax-layer is |z 4 — x| (see Figure 6). Normalizing the

Convolutional)
Max-pooling

layer 1 Convolutional i
layer 1 layer 2 Max-pooling conyolutional)
Input layer 28x36x20 layer 2 layer 3 Iwax_poulmgConvolutional Fully-
14x18x20 12x16x40 layer 3 layer 4 connezted
31x39 28 6x8x40 4X6x60 Softmax
14 12 2x3x60 layer
6 4) 1x2x80 layer
Bl ==
2x2 |
> 40 EgElR! 80 N
20 Filter 3x3x40
Filter 3x3x20

Filter 4x4

Figure 5: Training the convolutional network for multi-class classification. Single images
are provided at the input, belonging to IV subjects. The N-way softmax-layer calculates a
probability score for these N subject classes. Face images are preprocessed images from the
FRGC dataset |1].

Feature
Vector

A
Additionally
| trained
Filter 3x3x40 80

Filter 3x3x20 |A - B|
Softmax
layer

Filter 4x4

Same fixed weights |

2x2

> 40

20 - Filter 3x3x40
Filter 4x4 Filter 3x3x20

Figure 6: Identification Learned convolutional network for face verification. The networks
are trained on multi-class classification (see Figure 5) and are identical. The feature vec-
tors of both images are taken as input for a two-way softmax-top-layer. Face images are
preprocessed images from the FRGC dataset [1].

input vectors turned out to result in higher verification performances in our experiments,
probably because the ReLU activation function is activated at zero and expects the input
data to be zero centered. Similar to Deep Verification Learning, one of the two outputs is
taken as verification score. The weights of the networks are shared and fixed when training
the new softmax-layer.

4.1.2 Training settings

The networks are trained using mini-batch stochastic gradient descent with backpropagation
and a mini-batch size of 32. Before every epoch, the order of the training samples is shuffled.
The learning rate is fixed at 0.005. These training settings are based on recommendations
by Bengio in [18|. The cost function is the negative log-likelihood C(z) = —log(p;), with
t denoting the target class. The cost function is normalized to the number of samples in
target class ¢, to compensate for an unbalanced dataset. Xavier initialization [19] is used to
initialize the weights and the biases are initialized to zero.

Early stopping |20] is applied, to prevent the networks from overfitting. A Deep Ver-
ification Learning validation set is created, with pairs of face images. The Identification

Learning validation set contains single face images from the N target classes in the training
set. During a training epoch, the cost on the validation set is evaluated after training every
ten mini-batches. The parameters resulting in the lowest cost on the validation set are saved
as ‘best parameters’. When training does not improve the cost on the validation set for sev-
eral epochs, training is stopped and the saved ‘best parameters’ are taken as final model.
When training for multi-class classification, the rank-1 recognition score of the Identifica-
tion Learning validation set is evaluated after every epoch. Because the validation set for
multi-class classification contains images of the same subjects, overfitting on these subjects
can occur. To reduce this effect, the ‘best parameters’ are only updated if these parameters
result in the lowest rank-1 recognition score. When this rank-1 recognition score does not
improve for several epochs, training is stopped and these ‘best parameters’ are taken as the
parameters of the final model.

4.1.3 Datasets & preprocessing

The first experiment is performed using the controlled images of the FRGC dataset |1], which
contains 24,614 controlled images, from 568 subjects. The second and third experiment use
a combination of twelve different public datasets, merged and used by Zeng et al [21]. These
combined datasets contain 438,319 images of 13,671 subjects. For both datasets, 50% of
the subjects is used for the training set, the other 50% for the validation set which is used
for the final model evaluation and in the early stopping algorithm. Using the validation
set for both the model evaluation and in the early stopping algorithm adds a bias to the
results. The bias occurs in the decision when the networks start to overfit on the training
set and when training should be stopped. The validation set is not used for updating the
parameters itself. Therefore the images in the validation set do not influence the features
that are learned. For a particular training set and network combination we expect that
the network starts overfitting around the same number of training iterations when tests are
repeated. All models in the comparison are trained and evaluated using the same method
and same validation set and thus contain the same bias. Looking at these arguments we
expect the bias in the results to be small and to have no influence on the comparison.

The input images are preprocessed, before presenting them to the network. They are
converted to grayscale values and registered on the eyes, using annotated coordinates. The
images are cropped to a fixed box around the eyes’ coordinates and scaled to a fixed size
of 31x39 pixels. Thereafter the images are histogram equalized and converted to have zero
mean, in order to provide a balanced input for the ReLU. When training the convolutional
network for multi-class classification, the network is trained on single images and their target
subject class. From all the available images in a training set 90% is randomly selected for
actual training, the remaining 10% is used for validation in the early stopping algorithm.
Deep Verification Learning trains with genuine and imposter pairs, equal in number. The
number of genuine pairs Ng., that could be generated, increases quadratically with the
number of images N;,, per subject Nger, = Ny - (Nim — 1) - % To keep the training data
balanced, a maximum is set on the number of genuine pairs generated per subject, specified
for each test later on. Data augmentation is applied in the training set, by adding all
possible modi (see Figure 7). In the validation sets, the genuine and imposter pairs are
equally distributed over the subjects.

4.2 Performance comparison

The first research question is studied by comparing the two architectures on their verification
performance. The performances are evaluated using the controlled images of the FRGC
dataset. The subjects are randomly split in training and validation sets. The details of the
sets are specified in Table 2. The Deep Verification Learning dataset contains genuine pairs
for every subject, with a maximum of 66 pairs. In the validation set the genuine pairs are
equally distributed. The initialization and training of both networks is repeated five times

:éﬁ

T
%*@@

b=

(a) Input modi for (b) Input modi for verification
training on classifica- learning.
tion task.

Figure 7: Data augmentation is used for the training set.

#Subjects | #Images | #Training pairs
Training set verification 284 11,920 32,136
Validation set identification 284 1,192 -
Validation set verification 284 12,694 10,000

Table 2: Dataset details for the performance comparison.

with the exact same dataset, to diminish the variations. The ROC curves of all ten tests
are shown in Figure 8. The ROC curves of the Identification Learning networks show a
higher variance than in Deep Verification Learning. The variance in the Area Under Curve
(AUQ) is 1.4 x 107% and 3.0 x 1078, respectively. We selected one of the networks trained
for multi-class classification and re-training the top layer five times, to explore the cause of
this variance. The ROC curves of these retrained top layers are shown in Figure 9 and the
variance in the AUC is 3.0 x 107”. We conclude that the variance in performance is created
in the first training stage, when the network is trained for the multi-class classification task.

The verification performance of an Identification Learned convolutional network is highly
dependent on the multi-class classification training. We expect that the difference in variance
is caused by the high number of trainable parameters. The Deep Verification Learning model
has only 13,772 parameters to train, as opposed to the 36,316 parameters of the Identification
Learning network. With a dataset of only 10,728 training images, it is likely that the
multi-class classification network overfits and depends more heavily on the randomness of
initialization and training.

Deep Verification Learning performs substantially better than Identification Learning in
our experiments. However, some remarks have to be made. Only one type of newly-trained
top layer for Identification Learning is evaluated. Other types of top layers could enhance
the verification performance. The dataset used for testing has its limitations. Only the
controlled images are used, which limits the diversity in images. The number of images
is low compared to the number of parameters in the networks, especially in the case of
Identification Learning this can lead to overfitting. Further experiments should be done on
datasets with a higher variety. In our experiments we limited the number of genuine pairs
per subject, to keep the dataset balanced. More training pairs could be formed and may
increase the verification performance when all possible genuine pairs are used in a balanced
way. In that case certain genuine pairs could be presented more frequently during training,
or the cost function could be normalized towards the subject occurrence in the dataset.

4.3 Dataset configuration comparison

Increasing the amount of training data typically improves the performances in deep learning.
Datasets could be expanded by adding more subjects to a dataset and/or by adding more
images per subject. We attempt to evaluate the effect of both aspects separately, by changing

ROC plot ROC plot
1.0r_ 1.0
0.8 //’ 0.8
o i 8
o e
v 0.6 0 0.6
> 2
% %
20.4 204
() [}
2 2
= =
0.2 0.2
%35 0.2 0.4 0.6 0.8 1.0 085 0.2 0.4 0.6 0.8 1.0

Figure 8: ROC curves for the five Deep Ver-
ification Learned networks (black) and the
five Identification Learned networks (gray)
on the FRGC controlled dataset.

False positive rate

False positive rate

Figure 9: ROC curves for the five re-trained
top layers with the same fixed convolutional
network.

Increasing number of images per subject

#Subjects | #Images per subject | #Images total | #Gen. pairs per subject | #Training pairs
211 20 4,220 190 80,180
211 40 8,440 780 329,160
211 80 16,880 3,160 1,333,520
211 160 33,760 12,720 5,367,840
Increasing number of subjects
#Subjects | #Images per subject | #Images total | #Gen. pairs per subject | #Training pairs
211 20 4,220 190 80,180
422 20 8,440 190 160,360
844 20 16,880 190 320,720
1688 20 33,760 190 641,440
Validation set
#Subjects | #Images per subject | #Images total | #Gen. pairs per subject | #Training pairs
6,835 All available 221,562 Equally distributed 20,000

Table 3: Dataset details for testing with increasing number of images per subject, increasing
number of subjects in the dataset, and the validation set.

the number of images per subject and subjects in a dataset in a comparable manner. The
composition of the datasets in both tests are summarized in Table 3. 50% Of the subjects
are used in the training set, from which the training data for every test is sampled. The
validation set is kept the same in every test. Because the numbers of images per subject
is equal over the whole dataset, every possible genuine pair is generated. The networks are
trained on the datasets specified in Table 3 and tests are repeated three times.

The Area Under Curve values of these tests are shown in Figures 10 & 11. Adding
extra images per subject to the dataset gives remarkable results. Contrary to the expected
increase in performance, the performance in fact declines. The Deep Verification Learning
performance is more affected by this than Identification Learning is. We expect that the
decline in performance is caused by the network strongly overfitting on the training data.
Because only the subjects with 160 images or more are used in the training set and the
training data is sampled from a set of combined datasets, there is a bias in the datasets
used for the training data. It turned out subjects from only two datasets, Multi-PIE [22]
and CASIA-WebFace [23|, met this requirement of containing a minimum of 160 images per

1.0

0.9

=]

©

L)

e

X X o oe
)

Area Under Curve
o
~

o
o

X X

0.5
X

0.40

20 40 60 80 100 120 140 160 180
Images per subject in training set

Figure 10: Area Under Curve values for the
Deep Verification Learned networks (x) and
the Identification Learned networks (o), for
different number of images per subjects in

0.92

X
'3 X
X
X
0.90 b4 % %
9 .
c
3 0.88 .
d
3 .
f= Y .
= 0.6 .
.
o o
< ° .
o
0.84
.
0.82
0 200 400 600 800 1000 1200 1400 1600 1800

Number of subjects in training set

Figure 11: Area Under Curve values for the
Deep Verification Learned networks (x) and
the Identification Learned networks (o), for
different number of subjects in the dataset.

the dataset.

Test Imp. different datasets Imp. same datasets
80 Images per subject 0.729 0.469 0.693 0.719 0.735

160 Images per subject | 0.542 0.514 0.684 0.718

844 subjects 0.899 0.898 0.902 0.898 0.900
1688 subjects 0.897 0.899 0.897 0.904

Table 4: AUC values for Deep Verification Learning network for different imposter pair
construction in the trainingset. Imposters are formed within all the possible datasets (left)
or imposter pair forming is restricted to subjects within the same dataset (right).

subject and were sampled into the training set. Creating these immense numbers of training
pairs for only two type of datasets, causes overfitting to these types of data and prevents
the networks from generalizing well on the new type of data from the validation set. We
recommend repeating these experiments on datasets with the same type of images as those
in the final application, to prevent creating a bias by overfitting on specific datasets.

Another remarkable result is found when increasing the number of subjects in the training
set. For Identification Learning the performance increases, as expected. For Deep Verifi-
cation Learning the performance declines when too many subjects are added. In this test,
subjects in the training set are sampled from all subjects having 20 images or more. There-
fore in this experiment more datasets are represented in the training set. A possible cause of
the decline in performance could be the way the network learns. In case of Deep Verification
Learning it is possible to learn to compare type of images (different datasets), instead of
recognizing faces. When training in pairs, it is possible to compare the type of images for
a genuine/imposter decision; different type of images are unlikely to form a genuine pair.
When increasing the number of training pairs, this could cause overfitting to the type of
images represented in the training set.

In order to investigate this hypothesis, we repeated part of the experiment with a training
set in which the imposter pairs are formed only within a dataset. In this case imposter pairs
are from the same type of images as genuine pairs and it is no longer possible to learn
on the type of images. We found a small increase in performance (see Table 4), but not
sufficient enough to draw conclusions. More experiments should be performed to investigate
the performance decrease in our experiments.

10

5 Conclusions & Recommendations

We introduced Deep Verification Learning and applied it to face verification. We compared
Deep Verification Learning with networks trained for multi-class classification and evaluated
the verification performance on the FRGC dataset, to answer our first research. Additionally
we evaluated the effect of different dataset-sizes on the verification performance. We found
a notable improvement in face verification performance when Deep Verification Learning
is used instead of Identification Learning. Increasing the dataset-sizes does not improve
the verification performances as expected, but in fact the performance declines. Care must
be taken in training set selection, to prevent the networks from overfitting. Adding extra
images or subjects from a type other than that used in the final application, creates a bias
and counteracts the performance benefit from Deep Verification Learning.

Despite the promising results of our Deep Verification Learning network, more extensive
experiments should be done. The experiments should be performed with a separate valida-
tion set for the early stopping algorithm, which is not used in the final model evaluation.
This set should contain subjects that are not present in the training and test set. We recom-
mend the use of cross-validation to better estimate the general verification performances of
each network. The FRGC dataset is limited in variety and number of subjects. More uncon-
trolled conditions and different types of datasets should be tested. The network should be
compared to state-of-the-art face recognition systems, using one of the existing evaluation
protocols. The tests regarding the influence of different dataset sizes, should be performed
in a way that dataset bias is not possible. Ideally a large dataset with the same type of
images is used, to avoid overfitting on one type of dataset.

The learning process is important for the final network performance. More insight into
the current working of the network should be obtained, to examine whether the current
learning process could be improved. We concentrated on the simplicity of our network
and did not do any hyperparameter selection, and recommend this for futher work. We
also advise to investigate advanced techniques that are found to enhance performance and
learning. Adaptive learning rate schemes [24,25], dropout |26] and batch normalization [27],
for example. We recommend to investigate the effect of these techniques on Deep Verification
Learning. Our proposed network could be extended with locally shared weights in the higher
layers, however this increases the number of parameters. Another way to specifically learn
features for different face regions, is to train different networks for different face patches.
We recommend to investigate this for face patches that appeared to be distinctive in earlier
research, for example in the work of Spreeuwers et al. [29].

Datasets should be carefully constructed to prevent the networks from overfitting. Effort
should be made to obtain a training set with the same type of images as is used in the final
application. The optimal number of images per subject and number of genuine/imposter
pairs compared to the number of subjects in the dataset should be found. Normalizing the
cost function for the number of genuine/imposter pairs per subjects, or presenting pairs
more frequently, removes the need for dataset balancing and enables the generation of more
genuine pairs per subject. However, generating too many training pairs could cause over-
fitting, and in our case turns out to harm the performance. Data augmentation could be
extended to increase the dataset size by artificially adjusting the available training data.

References

[1] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Mar-
ques, J. Min, and W. Worek, “Overview of the face recognition grand challenge,” in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, pp. 947-954, ITEEE, 2005.

11

2]

[18]

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-
level performance in face verification,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1701-1708, 2014.

Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition with very deep
neural networks,” arXiv preprint arXiv:1502.00873, 2015.

F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 815-823, 2015.

E. Zhou, Z. Cao, and Q. Yin, “Naive-deep face recognition: Touching the limit of 1fw
benchmark or not?,” arXiv preprint arXiv:1501.04690, 2015.

Y. Zou, X. Jin, Y. Li, Z. Guo, E. Wang, and B. Xiao, “Mariana: Tencent deep learning
platform and its applications,” Proceedings of the VLDB Endowment, vol. 7, no. 13,
pp- 1772-1777, 2014.

E. Learned-Miller, G. Huang, A. RoyChowdhury, H. Li, G. Hua, and G. B. Huang,
“Labeled faces in the wild: A survey,”

Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from predicting
10,000 classes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1891-1898, 2014.

D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” arXiv
preprint arXiv:1411.7923, 2014.

Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset and benchmark
for large-scale face recognition,” in Furopean Conference on Computer Vision, pp. 87—
102, Springer, 2016.

T. Ahonen, A. Hadid, and M. Pietikdinen, “Face recognition with local binary pat-
terns,” in Furopean conference on computer vision, pp. 469481, Springer, 2004.

L. Shen and L. Bai, “A review on gabor wavelets for face recognition,” Pattern analysis
and applications, vol. 9, no. 2-3, pp. 273-292, 2006.

Y. Sun, X. Wang, and X. Tang, “Hybrid deep learning for face verification,” in Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 1489-1496,
2013.

Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from predicting
10,000 classes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1891-1898, 2014.

Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by
joint identification-verification,” in Advances in Neural Information Processing Sys-
tems, pp. 1988-1996, 2014.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks.,” in Ais-

tats, vol. 15, p. 275, 2011.

G. Hu, Y. Yang, D. Yi, J. Kittler, W. Christmas, S. Li, and T. Hospedales, “When face
recognition meets with deep learning: an evaluation of convolutional neural networks
for face recognition,” in Proceedings of the IEEE International Conference on Computer

Vision Workshops, pp. 142-150, 2015.

Y. Bengio, “Practical recommendations for gradient-based training of deep architec-
tures,” in Neural Networks: Tricks of the Trade, pp. 437-478, Springer, 2012.

12

[19]

[20]

[21]

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks.,” in Aistats, vol. 9, pp. 249-256, 2010.

L. Prechelt, “Early stopping-but when?,” in Neural Networks: Tricks of the trade,
pp. 5569, Springer, 1998.

D. Zeng, H. Chen, and Q. Zhao, “Towards resolution invariant face recognition in
uncontrolled scenarios,” in Biometrics (ICB), 2016 International Conference on, pp. 1-
8, IEEE, 2016.

R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,” Image and
Vision Computing, vol. 28, no. 5, pp. 807-813, 2010.

D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” arXiv
preprint arXiv:1411.7923, 2014.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul,
pp- 2121-2159, 2011.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting.,” Journal of Ma-
chine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

G. B. Huang, H. Lee, and E. Learned-Miller, “Learning hierarchical representations
for face verification with convolutional deep belief networks,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2518-2525, IEEE, 2012.

L. J. Spreeuwers, R. Veldhuis, S. Sultanali, and J. Diephuis, “Fixed far vote fusion
of regional facial classifiers,” in Biometrics Special Interest Group (BIOSIG), 201}
International Conference of the, pp. 1-4, IEEE, 2014.

UNIVERSITY OF TWENTE

DEPARTMENT OF SERVICES, CYBERSECURITY AND
SAFETY

MASTER THESIS APPENDIX

Deep Verification Learning

Committee:
Author: Prof. Dr. Ir. R.N.J. VELDHUIS
F.H.J. HILLERSTROM Dr. Ir. L.J. SPREEUWERS

Dr. Ir. D. HIEMSTRA

December 5, 2016

Contents

1 Introduction

2 Convolutional Networks
2.1 Convolutional networks architecture
2.1.1 Neural networks
2.1.2 Convolutional layer
2.1.3 Poolinglayer oL
2.1.4 Fully-connected layer
2.1.5 Output layer
2.1.6 Activation functions

3 Training Convolutional Networks
3.1 Gradient descent
3.2 Regularization oL
3.2.1 Weightdecay
3.22 Earlystopping oL
3.23 Dropout
3.3 Additional techniques

4 Convolutional Networks & Face Recognition

5 Insight in Convolutional Networks
5.1 Deconvolutional networks

6 Practical Implementation

Bibliography

Chapter 1

Introduction

This appendix contains background information for my master thesis in Deep
Learning Face Recognition. It provides resources to understand convolutional
networks, their training procedure, common practice and practical recommen-
dations about their implementation. It focuses on the details related to my
work.

Besides the explanation and backgrounds I provide, there are some general
sources of information that I found really useful. These sources are listed below.

e Lectures of the CS231n course from Stanford University on Convolutional
Neural Networks. Provides a clear explanation of convolutional networks
and practice. - Click

e Course notes beloning to the CS231n lectures.
http://cs231n.stanford.edu/

e Deep Learning book by Ian Goodfellow, Yoshua Bengio and Aaron Courville
[1]. Provides a broad overview in Deep Learning.
https://github.com/HF Trader /DeepLearningBook

https://www.youtube.com/watch?v=yp9rwI_LZX8&list=PL16j5WbGpaM0_Tj8CRmurZ8Kk1gEBc7fg
http://cs231n.stanford.edu/
https://github.com/HFTrader/DeepLearningBook

Chapter 2

Convolutional Networks

2.1 Convolutional networks architecture

Convolutional networks (ConvNets) are designed to process data that contain a
repetitive structure. Convolutional networks have evolved from neural networks.
Instead of using matrix multiplication, the convolution operator is used in at
least one of the layers of the network [1]. They are composed of a series of
stages, which contain different layers. The first layers are mostly convolutional
and pooling layers, followed by fully connected layers and an output layer.

2.1.1 Neural networks

A neural network consists of interconnected processing units. A processing unit
computes the output (activation) y = f(z) from external inputs (see Figure 2.1).
f is called the activation function and z is calculated by mapping the inputs
Z1,...,Tp, weights wy, ..., wp and bias b to the actual input z. y = f(z) with z =

O
&

Figure 2.1: A processing unit calculates the output y = f(2) based on the inputs
1, ...,Lp, weights wy, ..., wp and bias b.

Several activation functions could be used, which are discussed in paragraph
2.1.6.

A neural network contains multiple processing units, connected in several
layers (see Figure 2.2). The first layer consists of input neurons, the final layer

of output neurons. The middle layers are called hidden layers. From one layer to
the next, the neuron computes a weighted sum of all the input from the previous
layer and passes the result through the activation function. y! = f(z!) with z} =
Speq wh .y 4 b The weights and biases of the network are trained using
gradient descent (see section 3.1), to minimize a predefined cost function.

input layer 1%t hidden layer L* hidden layer output layer

& @ & =W
() Q-\Q ()

SRR T

Figure 2.2: Architecture of a multi-layer neural network. [2]

2.1.2 Convolutional layer

In a convolutional network the outputs of each layer form a feature map. The
convolutional layer detects local conjunctions of features from the channels in
a feature map [3]. A feature map is obtained by convolving the input channels
with linear filters, one filter for each channel. The output of these convolutions
are summed to form one channel in the output feature map. Multiple filter
pairs are used, to extract different features from the input. This is illustrated
in Figure 2.3. The feature map in layer L contains four channels and is filtered
by filterbank with two filters wi,wy to the layer L 4+ 1, which contains two
channels. After the convolution operation, a bias term is added to the outputs
of the convolution and an activation function is applied.

Denote the channels of a feature map with K channels as *, k = 0..K and
i,7 to the pixel location in the output feature map. The k' channel at layer [
is defined as y*(®), the filter weights as w*(®), the bias b*() and the activation
function f(.). The output channel y*® is now defined by:

yfj(” = F((w*D x 2)5; + BFD)

The number of input channels differs for every layer. In the first layer the input
is the image itself and the number of input channels depends on the color map.
For example, grayscale images have one channel, RGB images three. In higher
layers the number of input channels is equal to the number of different filters
used in the previous layer. The weights w can be represented as a 4D matrix,
with shape [#filters, #input channels, filter width, filter height]. The weights
of all the filters in every layer and the biases are trained using gradient descent
(see Section 3.1).

There are three hyperparameters that define the convolutional layer: depth,
stride and zero-padding. The depth refers to the number of filters pairs in the
filterbank, each trained to look for something different in the input. In the
example of Figure 2.3, the depth is two. The stride defines the step size in the

Layer L Layer L+1

w2 [
w2
0 wl[]
wl
ﬂ O
1 |

Figure 2.3: Example of a convolutional layer. w; and wy filter different features
out of layer L, making the depth of the filterbank two. Image based on [4].

convolution operation. When a stride of one is used, the filters slide over the
whole image, like normal 2D convolution. When the stride is two, the filters are
moved two pixels at a time, jumping over the input image. This results in smaller
output volumes. Zero-padding defines the number of zeros padded around the
border before convolution. This enables the control of the spatial size of the
output. The use of the convolution operator instead of matrix multiplication
reduces the number of parameters to be trained, because the connectivities are
sparse and the parameters shared. This is motivated by the idea that interesting
features are repetitive and location invariant in the input data. The use of
multiple layers allows to learn more complex structures from the input image.

2.1.3 Pooling layer

The pooling layer down-samples the input feature map by subsampling non-
overlapping partitions of the input image to produce a single output. It provides
a form of rotation and translation invariance. It reduces the dimensionality of
the intermediate layers and therefore the number of parameters to be trained.
Typically max-pooling is used, although other pooling operators exist. The max-
pooling operator outputs the maximum value for non-overlapping partitions of
the input image.

2.1.4 Fully-connected layer

After several convolutional and pooling layers, the output represents high-level
features from the input image. To be able to learn non-linear combinations
of these features, one or more fully-connected layers are added. In contrast
to a convolutional layer, in a fully-connected layer every output is connected
to all the input pixels as in classical neural networks. The output of the last
fully-connected layer can be seen as an extracted feature vector of the input
image.

2.1.5 Output layer

An output layer is added to the network and adds a final feature transformation.
The output layer is again a fully connected layer, but with a different activation
function. The choice of type of output unit is coupled with the choice of the cost
function, in order to perform efficient training and prevent vanishing gradients.
Classification problems with two classes can use the sigmoid activation function.
The sigmoid function is defined as

1

o) = l1+e®

The sigmoid function is often combined in training with the maximum log-
likelihood, because it avoids saturation of the sigmoid [3]. When saturation
occurs in gradient descent, the unit will not learn anymore, because the gradient
approaches zero. The softmax function can be used to represent the probability
distribution over n classes and can be seen as a generalization of the sigmoid
function [3]. The softmax function is defined as

Zi

- &
B Zj ez

Again training with the maximum log-likelihood works well, because the log
undoes the exponential operation of the softmax. The negative log-likelihood
cost function strongly penalizes the most active incorrect prediction [3].

softmax(z);

2.1.6 Activation functions

Many types of activation functions are available. Traditional in neural net-
works the logistic sigmoid activation function was often used, probably because
sigmoids perform better when neural networks are very small |3]. However,
the widespread saturation of the sigmoid function complicates gradient-based
learning and therefore discourages the use of the sigmoid activation function in
feed-forward networks. Currently the rectified linear unit (ReLU) |5] is one of
the most popular activation functions |3|, which behaves as a half-wave rectifier
f(z2) = max(z,0). Because of the linearity the gradient remains large whenever
the node is active. The drawback is that the ReLU result in a zero gradient
whenever the input is zero or less, making it impossible to learn via gradient
descent. Therefore ReLLU units could die and never become active again. Initial-
izing the biases of the layer to a small positive value can improve the learning,
because it is more likely for the ReLU to be initialized active, allowing the
gradient to pass through [3].

There are several generalizations of the ReLLU, which all use a non-zero slope
a; when z; < 0: fi(z;) = maz(0, z;) + a;min(0, z;). Absolute value rectification
uses a = —1, resulting in the absolute value of the input. For a leaky ReLU [6]
«; is fixed at a small value. «; is a learnable parameter for a parametric ReLU
(PReLU) [7]. Maxout units divide the input z into groups of k values, outputting
the maximum element of one of these groups [8|:

Fla)s = max (2i))

where z;; = xTWmij + b;; with learned parameters. This can be interpreted as
learning the activation function, by making a piecewise approximation.

Chapter 3

Training Convolutional
Networks

3.1 Gradient descent

Deep learning networks are commonly trained with gradient descent in com-
bination with backpropagation and a cost function. The cost function val-
ues the error in the current system. Backpropagation calculates the partial
derivatives of the cost function and applies the chain rule to calculate the de-
pendency between the cost and every parameter in the system. The parame-
ters are updated every training cycle, using the learning rate and the partial
derivative of the cost to every parameter. The CS231n lectures and lecture
notes provide a good explanation of gradient descent and backpropagation;
http://cs231n.github.io/optimization-1/ & http://cs231n.github.io/optimization-
2/.

Ideally you want to calculate the loss combined for the whole training set
together, in order to take the best step in parameter updates. However, this
requires lots of computational power using the large datasets available today
and slows down the learning process. Therefore Stochastic Gradient Descent is
used which trains the network with batches from the training set. The training
set is divided in mini-batches with a fixed size. The cost is calculated for all
the samples in one batch. These costs are averaged and used to calculate the
gradients for one parameter update. Thereafter a new batch is used for a new
parameter update, until the whole training set has been passed. A single pass
through all the samples in the training set, is called an epoch. The training
is repeated several epochs, until the network converges. Before every epoch,
the order of the samples in the training set should be shuffled. Otherwise the
system will be trained on the same mini-batches every time, biasing the results
and slowing down convergence.

Different cost functions can be used and the choice of the cost function relates
to the type of output layer. Commonly used is the negative log-likelihood cost
function C = —log(p¢). Training highly depends on the initialization of the
weights and biases. A commonly used initialization at the moment is the Xavier
initialization [9]. The initialization scales with the number of parameters in a
layer, in order to keep the variance constant. Practical recommendations for

http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/

training deep architectures with gradient descent, are given by Bengio in [10].

3.2 Regularization

When training a machine learning algorithm, it is important that it generalizes
well on new data. Regularization strategies tend to reduce the generalization
error but not the training error.

3.2.1 Weight decay

Weight decay adds penalty to the cost function, which depends on the parameter
values and penalizes large weights, to reduce overfitting. Typically only the filter
weights are penalized, regularizing the biases could lead to underfitting [3]. L2
weight decay adds a term AL||w||3 = A3 3, w? to the cost function, which causes
the gradient to increase with a factor of the weight vector. A is a hyperparameter
which controls the contribution of the weight decay. L' weight decay adds
Mwll1 = >, |wi| to the cost function. The gradient increases with a constant
factor A with a sign equal to sign(w;).

3.2.2 Early stopping

Early stopping uses a validation set, sampled from the training set, during
training to evaluate when the networks starts to overfit and stop training after
no improvement on the validation set for several time. The trained parameters
that resulted in the lowest validation error are saved as final parameters. It can
be seen as learning the training time hyperparameter.

3.2.3 Dropout

Dropout is a technique to prevents overfitting and approximates combining
many different network architectures efficiently |11]. Units with their outgo-
ing connections are temporarily removed (dropped) from the network, sampling
a thinned network from the total network (see Figure 3.1). The units that are
dropped are chosen randomly with a probability p for each new training case,
from all the units except the output units. At test time all the weights are
multiplied by p in order to remain the same expected outputs as in the training
case Wt(éit = pW®. Dropping connections from the network prevents the units
to rely too much on other units. A hidden unit learns to work with randomly
sampled connections, which makes the network more robust.

The authors mention one specific regularization technique that was especially
useful for dropout, the max-norm regularization. In this case the norm of the
incoming weight vector at each hidden unit is bounded by a constant c¢. The
network is optimized under the constraint ||wl|2 < ¢. Goodfellow et al. designed
the maxout activation function to have beneficial characteristics for using in
combination with dropout [8]. The ReLU uses the 0 in the max(0, z) activation
function, which prevents the gradient from flowing through the unit in case of
a negative activation and saturate. In Maxout units, the gradient always flows
through every unit, even when it is 0, because this 0 is a function of parameters
that may be adjusted.

Figure 3.1: Left: A standard neural network. Right: An example of a thinned
network, using dropout. The crossed units and corresponding connections are
removed. [11]

There are several variants of dropout, such as DropConnect [12] and DropAll
[13] for example. These variants will not be further discussed here.

3.3 Additional techniques

There are some additional techniques used in training deep networks, which are
found to enhance performances.

Data augmentation

Data augmentation is used to exploit the available training data. Popular is
to horizontal flip the input images, take random crops or add color jittering.
Other variations are manipulation of input images or constructing new images.
Krizhevsky et al. [14] perform PCA on the RGB pixel values to change the
intensities of the RGB channels in the training images.

Batch normalization

Batch normalization proposed by Ioffe and Szegedy [15] is a technique to nor-
malize the input for every activation function, in order to keep the input closer
to the expected input range. It applies whitening to the input of every inter-
mediate layer and reduces the internal covariate shift. It is found to enhance
performance and accelerate convergence. During training the statistics of the in-
put data is captured and used for normalization. A running mean and variance
is calculated to normalize the input (see Figure 3.2).

Extra techniques
Additional to the techniques discussed above, more optimizations are possible.
Some of them are listed below with a reference towards the papers.

e Adaptive learning schedules - Adagrad [16], Adam [17]
e Hyperparameter optimization |18, 19|

e Momentum [20]

Input: Values of z over a mini-batch: B = {21, };
Parameters to be learned: v, 8
Output: {y; = BN, g(z;)}
1 & .
UB — o Z x; // mini-batch mean
i=1
o L zm:(z — ug)? // mini-batch variance
s m i=1 '
T; i b5 // normalize
VoE+e€
Yi < 7T; + = BN, g(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Input: Network N with trainable parameters O;
subset of activations {z(® }1 |
Output: Batch-normalized network for inference, Nitk
I: Ngy ¢ N // Training BN network
2: fork=1...K do
3: Add transformation y(k) = BN,Y(Ic)yﬁ(k) (:v(k)) to
Ngy (Alg.D)
4 Modify each layer in Ny with input 2(F) to take
y®) instead
5: end for
6: Train N&y to optimize the parameters © U
{y®), N E
7. Nitf « NE. //Inference BN network with frozen
// parameters
8: fork=1... K do
9: //Forclarity, z = *) 4 = 4®) 1 = uﬁf), etc.
10: Process multiple training mini-batches B, each of
size m, and average over them:
E[z] < Eplus]
Var[z] + -2 Eg[oZ]

11: In N, replace the transform y = BN, 5(x) with
- . — Bl
y= \/ Var[z]+e€ S ([B Var[z]+e)

12: end for

Algorithm 2: Training a Batch-Normalized Network

Figure 3.2: Pseudocode for the batch normalization algorithm |15].

Chapter 4

Convolutional Networks &
Face Recognition

Lots of research is done in the field of deep learning face recognition. A short
overview of some well-known papers will be given below. The networks start
with facial registration. Most of the networks use RGB images or a combina-
tion with grayscale images. The number of convolutional, pooling and fully
connected layers differs for every architectures. Some architectures train sepa-
rate models for different faces regions. As explained in the paper, most networks
train for multi-class classification and remove the classification layer to obtain
a feature vector for verification.

DeepFace from Facebook [21] uses a tridimensional facial alignment, for rigid
face registration in unconstrained scenarios. Their network architecture is shown
in Figure 4.1 and uses locally-connected layers in the higher layers. They train
for multi-class classification with a negative log-likelihood loss function and
compare different similarity metrics, the y? distance and a new-trained network.

Face+—+ from Megvii trains convolutional networks for four different face
regions (see Figure 4.4). The trained networks are 10 layers deep. The details
of the networks are not provided. They achieve 99.50% accuracy on the LFW
dataset. However, for in real-world application their accuracy is far from human
level.

Sun et al. proposed several deep learning face architectures, based on each
other; A hybrid architecture 24|, DeepID |25], DeepID2 (26|, DeepID2+ [27],
DeepID3 [28|. They all contain a variant of the same basic convolutional network

>

REPRESENTATION
|_SFClabels |

L M2 a 14 Ls; L6: F7: 8:
Calista_ Flockhart_0002.jpg Frontalization: 321118 323332 16x9x9x32 16x9%9x16 16x7x7x16 16x5x5x16 4096d 4030d
ation @152X152:3 @1420142 @71x71 @63x63 @545 @525 @1x21

Detection & Localiz

Figure 4.1: Outline of the DeepFace architecture with locally connected layers
in the higher layers (L4,L5,1.6). They use two convolutional layers (C1, C3) and
two fully connected layers (F7, F8). |21]

10

Figure 4.2: FaceNet learn with a triplet loss function to separate genuine and

—

DEEP ARCHITECTURE

d>IH|@>

0z-comozm

Batch

Negative

Triplet
= Loss

Anchor LEARNING
Negative
Anchor

Positive

imposter pairs |22

Figure 4.4: Convolutional networks are trained for four face regions in Face++

23]

Positive

[layer

| size-in

size-out

kernel

|param|FLPS|

convl
pooll
rnorml
conv2a
conv2
rnorm?2
pool2
conv3a
conv3
pool3
conv4a
conv4
conv5a
conv5
convba
convb
pool4
concat
fcl

fc2
fc7128
L2

220%x220%x 3
110x110x64
55x55x64
55x55%x64
55x55%x64
55x55%x192
55x55%x192
28x28x192
28x28x192
28x28%x384
14x14x 384
14x14x 384
14x14x256
14x14x256
14x14x256
14x14x256
14x14x256
TXTx256
TXTx256
1x32x128
1x32x128
1x1x128

110x110x64
55x55x64
55x55x64
55x55%x64
55x55%x192
55x55x192
28 x28 %192
28x28x%x192
28 x28%x384
14x14x 384
14x14x 384
14x14x256
14x14x256
14x14x256
14x14x256
14x14x256
TXTx256
TXTx256
1x32x128
1x32x128
1x1x128
1x1x128

TXT%3,2
3x3x64,2

1x1x64,1
3Ix3x64,1

3x3x192,2
1x1x192,1
3x3x192,1
Ix3Ix384,2
1x1x384,1
3x3x384,1
1x1x256,1
3x3x%x256,1
1x1x256,1
3x3x256,1
3Ix3x256,2

maxout p=2
maxout p=2

9K
0
0
4K
111K
0
0
37K
664K

148K
885K
66K
590K
66K
590K
0
0
103M
34M
524K
0

115M

13M
335M

29M
521M

29M
173M
13M
116M
13M
116M

103M
34M
0.5M

|total

| 140M | 1.6B |

Figure 4.3: Network architecture used in FaceNet [22]

Raw Image

Cropped Patches

Naive CNNs

11

Face Representation

Softmax —s

Training Phase

Multi-class

Classification

Testing Phase

PCA —> L2 Distance

Soft-max
layer

Convolutional

Convolutional

3 layer 2 Convolutional ~ Convolutional
layer 4
f ool |5 —~
39 d ’
40 60 T--.
40 60 Max-pooling -
1 20 Max-%%oling a0 Malé'%?,ozl'"g layer 3
Input layer layer 1 Y Deir hidde
identity ™
features n
(DeeplD)

Figure 4.5: Variant of the basic network architecture used by Sun et al. |25]

(see Figure 4.5). All the architectures average networks trained for different face
regions. DeepID2, DeepID2+ and DeepID3 embed verification signals into the
loss function.

A comparison of different convolutional network implementation for face
recognition is done by Hu et al in |29].

12

Chapter 5

Insight in Convolutional
Networks

Deep learning networks learn automatically to extract features from the input.
Because multiple layers are cascaded, getting an insight into the working and
learning process of the networks is not that straightforward. Several visualiza-
tion methods for convolutional networks are proposed in literature [30-32], of
which one will be discussed in section 5.1.

The CS231n course explains clearly how to monitor the training process (see
http://cs231n.github.io/neural-networks-3/). By plotting the cost and accuracy
over the training time, the choice of learning rate and the amount of overfitting
can be evaluated. The first layer of a network is relative easy to visualize, by
showing the activations in a network during a forward pass or by visualizing the
filter weights. For higher layers, these visualizations are somewhat harder to
interpret. Showing the input images that maximally activates neurons gives an
insight in what kind of inputs are important for the network. The same insight
can be achieved by occluding parts of the images to see which occlusions change
the output drastically.

5.1 Deconvolutional networks

Zeiler and Fergus propose to analyze convolutional networks by visualizing the
activities of intermediate layers using deconvolutional networks [30]. This tech-
niques reveals the input stimuli that cause activation in feature maps in any
layer of the model. To analyze an activation in a specific layer an input image,
which causes a high activation, is presented to the convolutional network and
computed towards the output of every layer (the forward path). To analyze
the given network activation the computed output in that layer is taken and
all the other activations are set to zero. This single activation is presented to
a deconvolutional network and propagated back toward the input pixel space
(see Figure 5.1: Top). The deconvolutional network makes use of layers which
unpool, rectify and filter the input activation, to reconstruct the activity in the
layer below that caused this chosen activation.

The unpooling operation is a way to approximate the inverse of the max
pooling operation. During the forward path, the locations of the maxima in the

13

http://cs231n.github.io/neural-networks-3/

¥

Layer above reconstruction Pooled maps

A \
Max unpooling ¢ Switches Max pooling
Unpooled maps Rectified feature maps
A A
Rectified linear function Rectified linear function
Rectified unpooled maps Feature maps
A A
Convolutional filtering Convolutional filtering
Reconstruction Layer below pooled maps

:)
; ;
Figure 5.1: A deconvolutional layer (left) attached to a convolutional layer

(right). The deconvolutional layer consists of unpooling, rectifying and filter
operations. Image based on [30].

max pooling operation are saved into switch variables. These switch variables
are used in the unpooling operation to place the reconstructions from the layer
above in the appropriate locations (see Figure 5.2). The ReLU non-linearity
rectifies the feature maps in the forward path. In the deconvolutional network
the reconstructed signal is passed through a ReLLU again to obtain a valid feature
reconstruction. The filter operation in the deconvolutional network is used to
inverse the filter operation of the forward path. Therefore it uses the transposed
version of the filters of the forward path, which means simply flipping the filter
horizontally and vertically. The use of these transposed filters act as a matched
filter. The projections made by the deconvnets are not samples from the model
but show the parts of the image that are discriminative.

Re%jizirﬁ?gz I I ““ Pooled Maps
U i i N A Pooli
npooling @ B 13 ooling

Gues| T @aﬂ

“ Maps Feature Maps

Figure 5.2: The pooling operation results in the pooled maps and switch vari-
ables, which saves the locations of the maxima. These switches are used in the
unpooling operation. Image from [30].

14

Chapter 6

Practical Implementation

The network is implemented using the deep learning framework for Python,
Theano [33]. A computer with Windows 7 64-bit Enterprise was used. The com-
puter included 16GB RAM, a NVIDIA GTX 980 Ti graphics card and an Intel
i5-2500 CPU. To install Theano, the manual provided on the Theano website was
followed (see http://deeplearning.net/software/theano/install_windows.html). We
used Python version 3.4. Theano interfaces with the graphical card using
CUDA. Our computer contains CUDA 6.5 combined with Visual Studio 2013.
Interfacing with the correct versions of CUDA and Visual Studio is important
in order to match the correct compilers. The manual for installing Theano let
you make a bat-file to set the correct paths. These paths should be adjusted for
the versions of software and compilers used. The bat-file used on our computer
is shown in the code below. Other toolboxes are available but I chose Theano
because it allows a lot of freedom in implementations. It is based on an easy to
learn programming language (Python) and it runs on Windows.

REM configuration of paths
set VSFORPYTHON="C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC"
set SCISOFT=%"dpO

REM add tdm gcc stuff
set PATH=Y,SCISOFT%\TDM-GCC-64\bin;%SCISOFT}\TDM-GCC-64\x86_64-w64-mingw32\bin;;PATH},

REM add winpython stuff
CALL %SCISOFT%\WinPython-64bit-3.4.4.2\scripts\env.bat

REM configure path for msvc compilers

REM for a 32 bit installation change this line to
REM CALL %VSFORPYTHON%\vcvarsall.bat

CALL %VSFORPYTHONY\vcvarsall.bat amd64

REM return a shell
Spyder.exe /k

Preprocessing and normalizing the input data turned out to be important
for the network performances. Without the normalized input data lot of filters
became dead, probably because of the suppressed ReLUs. Normalizing the cost

15

http://deeplearning.net/software/theano/install_windows.html

function towards the subjects in the training set, improved the performance,
when learning for multi-class classification. The training set should be shuffled
before every training epoch, in order to train on different mini-batches every time
and make training independent of the construction of the batches. Applying
data augmentation in the training set by flipping the input images horizontally
and changing the order of the image pairs was found to improve the performance.

During the experiments in the earlier stage of the research the verification
scores had a strong bias. The imposter scores had a wider range than the
genuine scores. Using a dataset with more imposter than genuine pairs reduced
this difference. In the final experiments we used equal number of genuine and
imposter pairs in the dataset. It is interesting to investigate the influence of
changing this ratio.

To answer the second research question, the dataset-sizes are differed in a
controlled manner. A combination of twelve different public datasets is used,
merged and used by Zeng et al. [34]. The number of subjects per sub-dataset is
summarized in Table 6.1 in combination with Table 6.2.

Increasing images per subject

Dataset index 0 1121345 6|7 9 | 10 11
Subjects per dataset | 125 [0 [0 | 0| 0| O | 0| O 0 0 86
211 Subject
Dataset index 0 112|345 |67 9 | 10 11
Subjects per dataset | 12 [0 [1[0 |0| 2 | 0] 9 4 0 183
422 Subject
Dataset index 0 1123|145 |6]| 7 9 |10 11
Subjects per dataset | 20 |0 |2 [0 | 0| 13 |0]| 25 10 0 352
844 Subject
Dataset index 0 1121345 6|7 9 | 10 11
Subjects per dataset | 49 [0 |5 [0|0 |28 | 1|49 241 0 688
1688 Subjects
Dataset index 0 112|345 |67 9 |10 11
Subjects per dataset | 99 | 0 | 5| 0| 0| 42| 1] 95 37| 0 | 1409

Table 6.1: Details on number of subjects per dataset, for dataset-size evaluation.
Corresponding datasets are listed in Table 6.2.

16

Dataset Index
Multi-PIE [35]

PIE [36]

Pointing04 |37]

ORL |38

AR (39

Faces94 [40]
Grimace [41]

FRGC v2 [42]
FERET [43]
CAS-PEAR-RI [44]
MUCT |45]
CASTA-WebFace [46]

o

© 00 ~J O Tk Wi+

— =
_= O

Table 6.2: Datasets and their corresponding index in Table 6.1.

17

Bibliography

[1]

Y. B. Ian Goodfellow and A. Courville, “Deep learning.” Book in prepara-
tion for MIT Press, 2016.

D. Stutz, “Understanding convolutional neural networks,” 2014.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

L. lab, “Convolutional neural networks (lenet).” http://deeplearning.
net/tutorial/lenet.html. Accessed August 19, 2016.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works.,” in Aistats, vol. 15, p. 275, 2011.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models,” in Proc. ICML, vol. 30, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” in Proceedings of
the IEEE International Conference on Computer Vision, pp. 1026-1034,
2015.

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Ben-
gio, “Maxout networks.,” ICML (3), vol. 28, pp. 1319-1327, 2013.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.,” in Aistats, vol. 9, pp. 249-256, 2010.

Y. Bengio, “Practical recommendations for gradient-based training of deep
architectures,” in Neural Networks: Tricks of the Trade, pp. 437-478,
Springer, 2012.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting.,”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML-13), pp. 1058-1066, 2013.

X. Frazao and L. A. Alexandre, “Dropall: Generalization of two convolu-
tional neural network regularization methods,” in International Conference
Image Analysis and Recognition, pp. 282-289, Springer, 2014.

18

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html

[14]

[15]

[16]

[23]

[24]

[25]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information
processing systems, pp. 1097-1105, 2012.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.08167, 2015.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, vol. 12, no. Jul, pp. 2121-2159, 2011.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiw preprint arXiv:1412.6980, 2014.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” Journal of Machine Learning Research, vol. 13, no. Feb, pp. 281-305,
2012.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Advances in Neural Information Processing
Systems, pp. 2546-2554, 2011.

I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance
of initialization and momentum in deep learning.,”

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701—
1708, 2014.

F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 815-823, 2015.

E. Zhou, Z. Cao, and Q. Yin, “Naive-deep face recognition: Touching the
limit of lfw benchmark or not?,” arXiv preprint arXiv:1501.04690, 2015.

Y. Sun, X. Wang, and X. Tang, “Hybrid deep learning for face verification,”
in Proceedings of the IEEE International Conference on Computer Vision,
pp. 1489-1496, 2013.

Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from
predicting 10,000 classes,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1891-1898, 2014.

Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representa-
tion by joint identification-verification,” in Advances in Neural Information
Processing Systems, pp. 1988-1996, 2014.

Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are
sparse, selective, and robust,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2892-2900, 2015.

19

[28]

[29]

Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition with
very deep neural networks,” arXiv preprint arXiv:1502.00873, 2015.

G. Hu, Y. Yang, D. Yi, J. Kittler, W. Christmas, S. Li, and T. Hospedales,
“When face recognition meets with deep learning: an evaluation of convo-
lutional neural networks for face recognition,” in Proceedings of the IEEE
International Conference on Computer Vision Workshops, pp. 142-150,
2015.

M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Furopean Conference on Computer Vision, pp. 818-833,
Springer, 2014.

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-
standing neural networks through deep visualization,” arXiv preprint
arXiv:1506.06579, 2015.

M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better analysis
of deep convolutional neural networks,” arXiv preprint arXiv:1604.07043,
2016.

Theano Development Team, “Theano: A Python framework for fast com-
putation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,
May 2016.

D. Zeng, H. Chen, and Q. Zhao, “Towards resolution invariant face recog-
nition in uncontrolled scenarios,” in Biometrics (ICB), 2016 International
Conference on, pp. 1-8, IEEE, 2016.

R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,”
Image and Vision Computing, vol. 28, no. 5, pp. 807-813, 2010.

T. Sim, S. Baker, and M. Bsat, “The cmu pose, illumination, and expres-
sion (pie) database,” in Automatic Face and Gesture Recognition, 2002.
Proceedings. Fifth IEEE International Conference on, pp. 46-51, IEEE,
2002.

N. Gourier and J. Letessier, “The pointing 04 data sets,” in Proceedings
of Pointing 2004, ICPR International Workshop on Visual Observation of
Deictic Gestures, pp. 1-4, 2004.

“Orl dataset.” http://www.cam-orl.co.uk/.

A. M. Martinez, “The ar face database,” CVC Technical Report, vol. 24,
1998.

“Faces94 dataset.” http://cswww.essex.ac.uk/mv/allfaces/faces94.
html.

“Grimace dataset.” http://cswww.essex.ac.uk/mv/allfaces/grimace.
zip.

20

http://www.cam-orl.co.uk/
http://cswww.essex.ac.uk/mv/allfaces/faces94.html
http://cswww.essex.ac.uk/mv/allfaces/faces94.html
http://cswww.essex.ac.uk/mv/allfaces/grimace.zip
http://cswww.essex.ac.uk/mv/allfaces/grimace.zip

[42]

[43]

P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, and W. Worek, “Overview of the face recognition
grand challenge,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 947-954, IEEE,
2005.

P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The feret evalua-
tion methodology for face-recognition algorithms,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 22, no. 10, pp. 1090-1104,
2000.

W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, and D. Zhao,
“The cas-peal large-scale chinese face database and baseline evaluations,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 38, no. 1, pp. 149-161, 2008.

S. Milborrow, J. Morkel, and F. Nicolls, “The muct landmarked face
database,” Pattern Recognition Association of South Africa, vol. 201, no. 0,
2010.

D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv preprint arXiv:1411.7923, 2014.

21

	Introduction
	Related Work
	Deep Verification Learning
	Experiments
	Experiment setup
	Network architectures
	Training settings
	Datasets & preprocessing

	Performance comparison
	Dataset configuration comparison

	Conclusions & Recommendations
	Introduction
	Convolutional Networks
	Convolutional networks architecture
	Neural networks
	Convolutional layer
	Pooling layer
	Fully-connected layer
	Output layer
	Activation functions

	Training Convolutional Networks
	Gradient descent
	Regularization
	Weight decay
	Early stopping
	Dropout

	Additional techniques

	Convolutional Networks & Face Recognition
	Insight in Convolutional Networks
	Deconvolutional networks

	Practical Implementation
	Bibliography

