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Abstract—Face recognition is an important research topic in
computer vision and biometrics and has become an important
component in society. Face recognition is used in crime fighting
and person identification at airports. With the increasing interest
in applications of face recognition, the need for real-time face
recognition has arisen. In order to perform face recognition,
the facial features (e.g. eyes, nose, mouth) have to be localised.
Usually, this is done by ’detection’ in each individual frame. This
is an inefficient method for dynamic footage, since the location
information of facial features from previous frames is not used.
A more efficient method is ’tracking’.

This paper is about the feasibility of facial feature localisation
in dynamic footage using video tracking algorithms. This research
is conducted with the aim of improving the speed of a 2D
face recognition system on a smartphone. A C++ framework
is realised in order to compare 4 video tracking algorithms and
2 widely used facial landmark localisation software libraries. The
region-of-interest of the different video tracking algorithms is set
automatically. A database is composed to evaluate the different
algorithms on accuracy, precision, robustness and speed. With an
ideal landmark detector, 2 of the 4 video tracking algorithms are
able to outperform a state-of-the-art facial landmark localisation
method on precision and accuracy.

Index Terms—Facial landmark tracking, detection, real-time.

I. INTRODUCTION

Face recognition is one of the most studied research topics
within the field of computer vision during the last decades.
It has a wide range of applications, e.g. surveillance, human-
computer interaction and secure access. The accurate local-
isation of facial features, also referred to as facial fiducial
points or facial landmarks [1], is of great importance to the
performance of a face recognition system [2]. Examples of
such landmarks are eye corners, corners of the mouth and tip
of the nose. Facial landmarks are used to calculate the face
pose and the face scale that allows for normalisation. The
normalisation is needed to make the faces comparable and
make face recognition possible. Only a few primary landmarks
are needed, the outer corners of the eyes and the tip of the
nose are already enough to perform the normalisation [3].

In static footage (images) the facial landmarks are localised
by facial landmark ’detection’. In dynamic footage (video) it is
unnecessary to perform detection in each frame. When detec-
tion is performed in each individual frame, information from
preceding frames is not used. The location of facial landmarks
in preceding frames can be used to find the facial landmarks
in the current frame. Therefore, it is more efficient to perform
’tracking’ instead of detection. In this paper, tracking is defined
as the process of locating a moving object over time using
information of previous frames. An advantage of tracking over

detection is that an object tracking method is more robust to
changes in pose/viewpoint, which an object detection method
may not be trained for. To perform accurate localisation of
facial landmarks in dynamic footage an algorithm using both
detection and tracking is needed. In this paper the focus is on
the tracking part. The two research questions on which this
paper is based are:

1) Which video tracking algorithms are usable for real-time
facial landmark tracking on a mobile device?

2) What is the performance of the video tracking algorithms
used for facial landmark tracking, in comparison with
existing facial landmark localisation methods?

Facial landmark tracking has been proven extremely chal-
lenging. This is due to a variety of factors, e.g. the variety
in human faces, occlusions, illumination changes, different
expressions and pose variations. This led to a whole range of
solutions to the tracking problem. Some tracking algorithms
claim to be better than state-of-the-art tracking algorithms.
Many times the comparison is unfair because the algorithm is
trained on the same database as it is tested on [4]. There are
a few benchmark papers in which (facial landmark) tracking
algorithms are tested on the same database [4, 5]. These bench-
marks provide insightful information about the performance
of different tracking algorithms. The normalised cumulative
error curve is often taken as measure for the performance
of a tracking algorithm. To rank the algorithms in order of
performance, the area under the normalised cumulative error
curve is used. Although the cumulative error plot is a strong
measurement tool for the overall precision and accuracy, there
are more aspects which have an impact on the performance of
an algorithm. An additional measurement tool is used in this
paper to evaluate the robustness of the compared algorithms.

The aim of this paper is to explore which video tracking
algorithms are suitable for real-time facial landmark tracking.
This exploration is conducted with aim of improving the
speed of a 2D face recognition system on a smartphone.
The current face recognition system on the smartphone uses
STASM [6] to localise the facial landmarks. STASM is a C++
software library for finding facial landmarks in faces. STASM
is too slow to make real-time facial recognition possible.
Furthermore, STASM is not a tracking algorithm, for each
frame a face is detected and a model of points is fitted onto the
face. As described above, it makes more sense to do tracking
instead of detection in dynamic footage.

In order to find an answer to the research question, sub-
questions have been formulated and categorised as follows:
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1) State-of-the-art

a) Which algorithms are used for facial landmark
localisation?

b) Which video tracking algorithms perform in real-
time and are sufficiently accurate for facial land-
mark tracking?

2) Performance evaluation

a) Which databases can be used for evaluation of the
tracking algorithms?

b) How is accuracy and precision defined for tracking
algorithms?

3) Parameters

a) What is the optimal region of interest for video
tracking algorithms?

b) At what intervals should detection of the facial
landmarks occur?

An answer to the sub-questions is obtained by doing both
literature research and conducting experiments.

The remainder of this paper is organised as follows: In
section II, related work on tracking algorithms and facial
landmark localisation is discussed. The realised framework is
described in section III. Section II and III give an answer to
sub-questions: 1a, 1b and 2a. The next section IV describes the
experiments that are conducted to compare the performance of
the different tracking algorithms. This is followed by section
V in which the results are presented. These two sections give
an answer to the remaining sub-questions: 2b, 3a and 3b. In
section VI the findings are discussed. Finally, in section VII
the paper is concluded by answering the two main research
questions of this paper and the recommendations for further
research.

II. RELATED WORK
A. Tracking algorithms

Object tracking has been investigated extensively during
the last decades. There are different approaches and they all
have their own advantages and disadvantages. There is no
perfect method that handles occlusions, rotations, illumination
changes etc. the best. The aim of this section is not to discuss
all the existing tracking algorithms but to discuss the methods
that are interesting for facial landmark tracking. Also methods
that are used for facial landmark localisation are discussed.

It is difficult to categorise object tracking algorithms be-
cause tracking algorithms often use a combination of several
techniques to locate objects. S. Phimoltares et al. categorise
the algorithms based on the type of information used. They de-
fine five categories: geometry-based, color-based, appearance-
based, edge-based and motion-based landmarking algorithms
[7]. O. Celiktutan et al. use a different categorisation for
tracking algorithms, first they make a distinction between,
model-based methods and texture-based methods. These main
categories are subdivided respectively in two sub categories
explicit methods and implicit methods, transform-based meth-
ods and template-based methods [1].

In this paper the distinction between online and offfine track-
ing methods is made. Online methods include the approaches

that do not need training in order to perform tracking. These
methods use information of previous frames in the tracking
process [5]. Consequently, offline tracking methods are the
methods that need training in order to be able to track objects.
The offline methods often include an object detector and then
fit a statistical model on the detected object. These methods
visually perform the task of a tracker but actually perform
detection in each frame. The interest in this paper is in the
online tracking algorithm because they do not need extensive
training and are therefore widely applicable.

Popular examples of offline methods use Active Shape Mod-
els (ASMs) [8] and Active Appearance Models (AAMs) [9].
Both models require training of a statistical model. Methods
that make use of an ASM iteratively deform a statistical shape
model, which is represented by a set of model points, to fit to
a target object. The ASM algorithm looks also at the image
appearance around every model point for the best texture
match. The simplest method is to assume model points lie
on strong edges. The AAM is a generalisation of the ASM.
The ASM approach uses only information near the modelled
edges, the AAM makes use of all the information in the image
region (i.e. the texture across the target object). The statistical
shape model limits the degree of deformation of the object that
can be detected. Furthermore, both ASMs and AAMs require
a good initialisation, otherwise these methods are prone to
getting stuck at local minima [1] (i.e. when the initialisation
is too far from the true solution, the model will not converge).
A major advantage of the offline approach is that this circum-
vents drifting [10]. Popular landmark localisation software that
uses an ASM is STASM [6].

Recently, a new high-speed landmark localisation algorithm
was presented in [11]. An ensemble of regression trees (ERT)
is used to estimate the faces landmark positions. An imple-
mentation of this algorithm is available in the C++ software
library: Dlib [12]. The ERT approach is more accurate than
STASM [11], tested on the HELEN database [13]. Another
popular C++ library is Deformable Shape Tracking (DEST)
[14] which is also based on the ERT approach and makes use
of a statistical model. In figure 1 an example of the iterative
statistical shape model deformation is shown using DEST.
Respectively, from left to right, iterations 1, 6 and 11 (last
iteration) are shown. In figure 1, the landmark points of the
eyes are too far from the true solution and do not converge.

Figure 1: Example of iterative statistical shape model deformation
using DEST.
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A widely used approach to the tracking problem is optical
flow estimation. Optical flow is used to study a large variety
of motions. One of the most popular methods is the Lucas-
Kanade algorithm. This method is developed by Bruce D.
Lucas and T. Kanade and presented in [15]. The algorithm
estimates the displacement for the local neighbourhood of a
pixel. One pixel does not give enough information for match-
ing with another pixel. It is better to use multiple pixels, i.e. a
neighbourhood around a pixel. For every point that is tracked a
movement vector is obtained by comparing the pixel intensities
of two consecutive images. Many improvements have been
made to the Lucas-Kanade algorithm. J. Bouguet reduces the
resolution of images first and then applies the Lucas-Kanade
method [16], he proposed a pyramidal implementation of the
classical Lucas-Kanade algorithm.

An efficient approach to real-time tracking is introduced
by D. Comaniciu et al. in [17]. The proposed approach uses
an isotropic kernel to spatially mask the target object. Then
a smooth similarity function is applied which translate the
tracking problem to a maximum similarity search around the
previous location. The mean shift procedure, first described
in [18] by K. Fukunaga et al., is used to perform optimisa-
tion. The kernel-based approach is described in depth by D.
Comaniciu et al in [19]. Since the introduction of the kernel-
based approach, this has been a widely used approach in object
tracking. The top ranking tracker, named Struck [20], in the
recent benchmarking paper of Y. Wu et al. [5] makes use of
kernels.

Adaptive tracking-by-detection algorithms [S5] have shown
to be very successful. These methods update an object detector
during run-time. Kalal et al. proposed a successful tracker
called Predator [21]. This method decomposes the problem
into three sub tasks: Tracking, Learning and Detection (TLD).
Results from the tracker are used as training data for the
detector. The detector uses all appearances of the object
that have been observed and can correct the tracker if it
fails. Another successful adaptive visual object tracker was
presented in [20] by S. Hare et al. The proposed method
is called: Structured Output Tracking with Kernels, (Struck).
Struck is based on structured output prediction and uses a
kernelized structured Support Vector Machine (SVM) which
is learned online to provide adaptive tracking. To allow for
real-time performance, a budget maintenance mechanism is
realised for the online structured output SVMs.

Correlation filters recently obtained considerable attention
due to computational efficiency. J. F. Henriques et al. proposed
a method, named CSK [22] and uses correlation filters in
a kernel space. This method is able to process hundreds of
frames per second [5]. KCF (Kernelized Correlation Filter)
method is an improvement to CSK and is proposed in [23].
KCF has been shown successful and able to outperform TLD
and Struck, while running at hundreds of frames per second
[23].

To aid object tracking, feedback systems are used. A popular
method used in control theory is the Kalman filter [24].
Another often used method to aid tracking is particle filters
[25]. The particle filter approach is inspired by the inability of
the Kalman filter to perform object tracking with significant

background clutter and noise. The Kalman filter assumes the
system is linear and that noise in the system and measurements
is white and Gaussian. These assumptions are often invalid
[26].

B. Benchmarking

There is a variety of different databases available to evaluate
object trackers. For object tracking a popular benchmark is
described in [5]. Although, there are a lot of benchmarks avail-
able for facial landmark localisation in static images. Limited
effort has been made towards benchmarking facial landmark
tracking algorithms in videos. In [4] the first comprehensive
benchmark for long-term facial landmark tracking is presented.
The videos in the corresponding video database, called 300
Videos in the Wild (300-VW) database [4, 10, 27], have been
annotated using the mark-up as is shown in figure 2. Another
popular annotated video database is the Talking Face [28],
which has a simular mark-up as the 300-VW database.

/ f.

Figure 2: The 68 points mark-up used in the 300-VW database.

III. IMPLEMENTATION

In the exploration towards a suitable method for facial
landmark tracking on a mobile device, several algorithms
are considered applicable. A C++ framework is realised in
Microsoft Visual Studio 2015 in order to compare the different
video tracking algorithms. The framework includes 4 video
tracking algorithms and 2 state-of-the-art facial landmark
localisation software libraries. In this section the framework
is described. Furthermore, the properties of the implemented
video tracking algorithms are discussed.

A. Framework

In this paper, the focus is on tracking algorithms. A stand-
alone facial landmark localisation system needs a landmark
detector. The landmark detector is used to initialise the tracker.
In order to compare the effect of different tracking algorithms
an ’ideal’ landmark detector is used. The annotated data
files (ground-truth files) of the videos are used as an ideal
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landmark detector. The coordinates of 5 landmarks (outer eye
corners, nose tip and mouth corners) are passed to the different
tracking algorithms. The trackers will track the points for
a number of frames. After a certain number of frames, the
tracker is re-initialised by the detector. After re-initialisation,
the trackers will again track the facial landmarks. A schematic
representation of the framework using a detection rate of
once every 50 frames is shown in figure 3. In this paper, the
detection rate is defined as the number of frames per detection.

| jiel § 41T

|Detectc|r

|Detectc|r Tracker

Landmark coordinates (x, y) Landmark coordinates (x, y)

Figure 3: Schematic overview of the framework, detection rate is 50
frames/detection

The outer corners of the eyes, nose tip and mouth corners
are chosen as landmarks to track because these landmarks can
be used for normalisation, as was mentioned in section I. An
example of the video output of the framework is shown in
figure 4. The tracked landmarks are represented by (green)
dots. Each landmark is in the middle of a (blue) square. This
square is called the region-of-interest (ROI). The ROI, also
referred to as window size or search area, is different for each
video. The measures of the ROI are dependent on the scene in
the video and the scale of the face, this will be elaborated in
section IV-B. The results of the different trackers are visualised
using different symbols and colors. For each tracker a different
symbol (triangle, square etc.) and color is used. As a result,
the output of the various trackers can be monitored.

Figure 4: Example of a tracked frame with 5 landmarks and their
ROI. The image is obtained from the 300-VW database [4, 10, 27].

In the main function of the framework, the frames of the
videos are loaded and stored in a 2-dimensional array. This
array is passed to the individual trackers. In the first frame
of each video the inter-ocular distance (IOD) is calculated.
The IOD is defined as the Euclidean distance between the

Tracker ‘e

outer corners of the eyes. In figure 2, the IOD is denoted by
douter- The 10D is calculated using the obtained coordinates
from the ideal landmark detector. The IOD is used to set the
ROI of the different landmarks. The ROI of each landmark
is different for each tracking algorithm. Results of tracking
algorithms are stored in separate files. These files are used for
testing and evaluation.

B. Lucas-Kanade (LK) Point Tracker

Optical flow is considered suitable for landmark tracking
on a mobile device because it can be used to observe a
large variety of motions [26], i.e. static observer and moving
object, moving observer and static object, moving observer
and moving object. This last scenario is most likely on a
mobile device. A sparse optical flow method is used because
specific points are of interest. The Open Source Computer
Vision (OpenCV) library [29] includes an implementation of
the Lucas-Kanade (LK) method. This implementation is based
on a sparse iterative version of the Lucas-Kanade optical flow
in pyramids [16].

The LK tracker from the OpenCV library is implemented
in the C++ framework because it is able to run in real-
time. The real-time performance is facilitated by the use
of a pyramidal representation of the frames. The pyramidal
representation allows the tracker to handle large pixel motions,
i.e. larger than the used ROIL. The ROI can be kept relatively
small which is advantageous for the computational load. The
pyramid representation is built in a recursive manner, starting
from the original frame. Assuming the Full HD camera of
the mobile device is used, it would be useless to go above a
pyramidal level of 5 (5 lower resolution frame representations).
For example, 1920 x 1080 pixels is the resolution of the image
at level 0. The image resolutions of the subsequent levels are
respectively 960 x 540, 480 x 270, 240 x 135, 120 x 67 and
60 x 33 pixels. In the framework 5 pyramidal levels are used
for resolutions of 1280 x 720 pixels and 4 pyramidal levels
are used for all resolutions below 1280 x 720 pixels.

OpenCV uses a corner point detector to initialise the LK
tracker. The corner point detector is not used in the framework
because the framework uses an ideal landmark detector. Fur-
thermore, the corner point detector finds the most prominent
corners in the image. Landmarks such as the nose tip are often
not defined by prominent corners.

C. Discriminative Scale Space Tracker (DSST)

In the face recognition system on a mobile device the facial
image is captured by hand. This will introduce a varying
scale of the face in the captured video. The Discriminative
Scale Space Tracker (DSST) [30] performs well in image
sequences with significant scale variations. Moreover, the
DSST is the best performing tracker in the Visual Object
Challenge (VOT) 2014 [31]. Therefore, the DSST tracker
might be a good solution to the landmark tracking problem.
The DSST implementation of the Dlib C++ software library
is used.

The DSST is an extension to the Minimum Output Sum
of Squared Errors (MOSSE) tracker [32] with robust scale
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estimation. The MOSSE tracker is limited to estimating the
translation between frames, the DSST tracker adds robust scale
estimation. The MOSSE tracker is initialised in the first frame.
The object is tracked by correlating the trained filter (which
models the appearance of the object) over a search window.
The maximum value in the correlation output is the new posi-
tion of the object. The correlation filter of the tracker is then
updated, the filter is trained during run-time. The correlation
is computed in the Fourier domain because computing the
correlation is an element-wise multiplication in the Fourier
domain. The DSST estimates the target size by learning a
one-dimensional discriminative scale filter. The scale filter is
trained by extracting sample patches of different scales around
the current position of the object. Intensity features and the
HOG features (histogram of oriented gradients) are used for
the translation filter.

D. Kernelized Correlation Filters (KCF)

The high-speed tracking algorithm with Kernelized Correla-
tion Filters (KCF) [23] is also implemented in the framework.
This tracking algorithm is considered suitable for landmark
tracking because it performs in real-time [31]. A realisation
of the KCF algorithm is available in the OpenCV library. The
implementation is extended with color features which result
in superior performance for visual tracking [33].

E. Structured Output Tracking with Kernels (Struck)

The Structured Output Tracking with Kernels (Struck)
method [20] is based on structured output prediction. The
method uses a kernelized structured output SVM, which
is learned online. This allows for adaptive tracking, which
is beneficial for facial landmark tracking. Facial landmarks
deform due to facial expressions. As was mentioned in the
previous section, this method uses a budget mechanism in
order to perform in real-time.

The Struck algorithm is implemented using the code from
the authors. The code of the authors is open source and is
available on GitHub [34]. The code is modified in order to
include it in the framework. No changes have been made to
the operation of the algorithm. The default settings are used,
this means Haar features and a Gaussian kernel are used.

FE. Zero-effort tracker

For reference purposes a zero-effort tracker is realised in the
framework. This tracker does nothing, as the name already
implies. After detection of the landmarks, the tracker does
nothing and stays in the same place. The zero-effort tracker
is used as a baseline in the performance experiments. The
experiments are described in the next section.

G. Landmark localisation software

For comparison purposes, facial landmark localisation soft-
ware is included in the framework. For detection of highly
non-rigid objects, cascade regressors are currently the state-
of-the-art. An ensemble of regression trees (ERT) can be used

to localise landmarks and achieve super real-time performance
with accurate results [11].

The Dlib software library includes an implementation of the
ERT method with a face detector. The Dlib Facial Landmark
Detector (DFLD) is included in the framework. Furthermore,
the DEST software library is included in the framework.
Both software libraries use the ERT method to find facial
landmarks. The two software libraries use different face de-
tection methods. The face detector in DFLD is realised using
Histogram of Oriented Gradients (HOG) features combined
with a linear classifier. Furthermore, an image pyramid and
sliding window detection scheme are used. The DEST library
uses the face detector of OpenCV. OpenCV uses the Viola
and Jones algorithm for face detection. This algorithm uses
Haar features and a cascade of classifiers. In comparison with
the face detector of DFLD, the face detector of OpenCV
does not use pyramids. Instead of pyramids, the features are
scaled. Both libraries come with pre-trained classifiers and
shape models.

DLFD and DEST perform face detection in each frame. An
advantage of the face detection in each frame is that the meth-
ods do not drift. However, face detection is computationally
heavy and takes the most time. Therefore tracking algorithms
will be faster but are prone to drifting.

A disadvantage of DFLD and DEST is that these methods
are prone to pose variations. Usually models are trained for
frontal faces. If a face in the video turns to the side, the face
detector fails to recognise it as a face. The video tracking
algorithms are more robust to changes in pose, assuming the
video tracker is initialised correctly. In a practical application
the face detector in the framework, see figure 3, also needs
training. If the tracker is not initialised correctly it will
track points without physical meaning. Therefore, a practical
application should have a feedback system. The feedback
system should indicate whether the detected points are real
landmarks.

IV. EXPERIMENTS

In this section the experiments are described that are con-
ducted to analyze the performances of the different tracking
algorithms. The 4 video tracking algorithms (KCF, DSST, LK,
Struck) and 2 state-of-the-art landmark localisation software
libraries (DEST, DFLD) are compared. In this paper the per-
formance is defined as a combination of accuracy, precision,
robustness and speed.

A. Database

Evaluation of the algorithms is done using annotated videos
of the 300-VW database [4, 10, 27] and the Talking Face (TF)
database [28].

The 300-VW database contains 114 annotated videos. All
videos show only one person. The average duration of a
video is 64 seconds (25 - 30 frames/second). The videos are
annotated semi-automatically, visual inspection was performed
to find incorrectly annotated landmarks. All frames have been
annotated using the same mark-up (68 landmarks) as is shown
in figure 2. The videos vary in pixel resolution and spatial
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resolution. The database is divided into 3 categories. The first
category contains videos in well-lit conditions and without
occlusions of another person or a hand. The second and
third category contain respectively videos in unconstrained
conditions and videos in completely unconstrained conditions
including the illumination.

The TF database consists of one video that contains 5000
frames and shows a person engaged in a conversation. It cor-
responds to 200 seconds of recording (25 frames/second). The
resolution of the video is 720 x 576 pixels. The data is semi-
automatically annotated with a 68 point model. The model
has corresponding points with the eye corners, nose tip and
mouth corners of the 300-VW database mark-up. The frames
in the database have been visually checked and the annotation
is sufficiently accurate to represent facial movements [28].
Therefore, the database is considered suitable for evaluation
of facial landmark tracking algorithms.

To keep the experiments manageable, a small database was
composed of 20 videos. The database contains 19 videos of
the category one videos of the 300-VW database and the
video of the TF database. Visibility of the face is necessary
in an application for face recognition. Therefore, the videos
in category two and three of the 300-VW database are left
out. The videos in the composed database aim to evaluate
algorithms that could be used in naturalistic well-lit conditions.
The composed database is divided into the following two
categories:

o Category one: Contains 14 videos of people recorded in
well-lit conditions. The database consists of 13 videos
from the 300-VW database and the video from the TF
database. This category contains facial videos without
occlusions such as glasses, hair and beards. Example
frames of category one are shown in figure 5.

o Category two: Contains 6 videos of people recorded in
well-lit conditions. The 6 videos are obtained from the
300-VW database. This category contains facial videos
with occlusions such as glasses, hair and beards. Example
frames of category two are shown in figure 6.

Figure 5: Example frames of category one videos in the composed
database. [4, 10, 27]

The videos are saved as image sequences with the name
corresponding to the frame number. This is done because the
annotation is stored in separate files for each frame. Loading
the frames with corresponding annotation file is easier by using

Figure 6: Example frames of category two videos in the composed
database. [4, 10, 27]

image sequences. All videos are set to a length of 500 frames
with in the first frame a complete view of the frontal face.

B. Region-of-interest optimisation

To allow for an automatic landmark tracking system, the
ROI of the tracker has to be determined automatically. The
tracker must adjust the ROI according to the scale of the face
in the given input footage. The ROI is defined here as a square
region with in the middle the corresponding landmark, see
figure 4. The size of the face in the video varies with the
distance between the face and the camera. When the scale of
the face is large, a too small ROI for the facial landmarks
will decrease the performance of the tracker and vice versa.
The best window size is dependent on different factors, e.g.
the speed of the movement and background. This experiment
covers sub-question 3a mentioned in section 1. The question
on which this experiment is based is:

What is the optimal region of interest that must be used
for tracking of the individual landmarks and how can this be
made generic for any input video?

From the detected landmarks the IOD can be calculated. The
IOD does not differ much among humans and can therefore
be used in the determination of the ROI. To find an answer
to the question in this experiment, first the relation between
ROI and IOD is determined. The relation between the 10D
and the measures of the ROI is expected to be linear. The
hypothesis can be supported by an example. When a facial
video is downsampled by a factor of 2, the maximum amount
of movement (in pixels) between frames is also halved. Hence,
the dimensions of the ROI can be half the size of the ROI in
the original image. In order to determine the relation between
IOD and ROI, the following was done:

The ROI is dependent on the scene in the video. In order
to keep the scene constant while varying the IOD, a video
is down sampled in 4 steps. Each step, the resolution of the
video is reduced by 20% in both coordinate directions relative
to the original resolution. For example, when the resolution of
the original frame is 1280 x 720 pixels, the resolution of the
video in the first step is 1024 x 576 pixels. The re-sampling
is performed using ’pixel area relation’ because this avoids
aliasing [35]. After down-sampling the video by 4 different
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factors, there are 5 instances of the same video including the
original video. The resolution is different for every instance
of the video and therefore the IOD is different in each video.
Next, the optimal ROI is determined for the different tracking
algorithms (KCF, DSST, Struck, LK) in every instance of
the video. Then, the ROIs are plotted against the different
IODs. This is done separately for the 3 different types of
landmarks (the outer eye corners, tip of the nose and the mouth
corners). This gives the relation between ROI and 10D for
each landmark. The experiment is repeated for 2 other videos
(different scenes). The obtained relation between ROI and IOD
for the different algorithms is assumed to be true for the rest
of the videos. In order to make the estimation complete the
optimal ROI is determined for the other 11 videos in category
one of the composed database.

As a result of the varying sizes of the faces in the videos, a
normalised error measure must be used in order to compare re-
sults from different videos. The normalised root-mean-square
error (NRMSE) is used as an error measure, normalised with
the IOD. This error measure gives a normalised distance to
the ground-truth and is given as a fraction of the IOD. The
NRMSE is computed as:

SNl - e+ (- )
douterN

In equation 1, the summation is used to obtain an average
for both the eye corner landmarks and the mouth corner
landmarks. The ¢ and g subscripts define respectively tracker
coordinates and ground-truth coordinates. dyq¢e iS the 10D
which is defined as the Euclidean distance between the outer
corner of the eyes, as is shown in figure 2. Therefore dyter
is computed as:

NRMSE = (D

2 2
douter = \/(«Igeye - zzq.eye) + (yg.eye - ylg.eye) 2

The optimal ROI is defined as the window size that results in
the best performance of the tracker, i.e. the smallest deviation
from the annotated data. A normalised threshold error is set at
0.08 of the IOD. Above a normalised error of 0.08 the tracking
is too far off [4]. The threshold error is used to establish
whether landmarks have been found with sufficient accuracy.
A Cumulative Error Distribution (CED) curve can be used
to indicate the accuracy and precision of an algorithm. The
CED curve shows the percentage of frames within a certain
normalised error. The slope of the curve is a measure for
the precision of the tracking algorithm and the value at the
threshold error is a measure for the accuracy of the tracking
algorithm. The Area Under the Curve (AUC) of the CED curve
is used to rank the tracking algorithms with respect to precision
and accuracy [4, 5]. When the AUC is plotted against the
different measures of ROIs, the optimal ROI correspond to
the highest AUC value in the graph. A deviation of 2% from
the optimal AUC is used to define a left an right boundary
for optimal ROI. This margin is used, because in many cases
the curve is flat and has no clear optimum. The 2% margin
resulted in a better visualisation of the relation between ROI

and IOD. The steps to obtain the relation between ROI and
IOD are shown with intermediate results in Appendix A.

Finally, an average of all the optimal window sizes is
calculated. This results in the ROI as fraction of the 10D, for
each landmark and algorithm. The obtained relations are used
in the framework to facilitate the automatic landmark tracking
system. Only the category one videos from the composed
database are used in the determination of the optimal ROI. The
category two videos can give a wrong indication of the ROI
as a result of occlusions. The obtained values for the optimal
ROI as fraction of the IOD are also used for the category two
videos. This is valid because the category two videos have
similar scenes as the category one videos.

C. Frame rate

The algorithms that are implemented in the framework
are selected because of their speed and accuracy. In this
experiment the frame rate of the algorithms is determined. The
tracking algorithms and both DEST and DFLD are compared
with respect to speed. The question in this experiment is:

Which tracking algorithms will perform in real-time on a
mobile device?

During run-time of the framework the average frame rate
of the different algorithms is calculated and stored in separate
files. This is done for all 20 videos of the composed database.
The average frame rate is calculated by using timers. Before
the start of a tracking algorithm a timer is started. Directly
after the tracker is finished the timer is stopped. The timer is
not re-initialised between frames. The reason for this is that
the average frame rate can directly be calculated. The total
value of the timer is divided by the number of frames. This
directly results in an average frame rate for the video.

The best way to obtain the frame rates on a mobile device
is to run the framework on a mobile device. Due to time
limitations, the framework is not realised on a mobile device.
However, the framework is not realised on a mobile device an
estimation is made of the frame rates. Since the architecture
of a laptop and a mobile device are very different you can
not simply compare hardware. Therefore, an educated guess
is made of the frame rate based on the time that is needed to
do face detection on a mobile device [36]. The estimation is
based on the amount of time an iPhone 5S needs to complete
face detection (using OpenCV). According to [36] an iPhone
5S needs 235ms to complete face detection on an image with
a resolution of 463 x 397 pixels. This is the performance on
a single core of the iPhone. On average the face detection
(also using OpenCV) on a (4GB RAM, 2 x 2.1 GHz CPU, 64
bit Architecture) laptop takes 526ms on an image of 1280 x
720 pixels. The laptop uses approximately 22% of both CPUs
which equals one core utilised at 88%. The resolution of the
image on which the laptop is performing face detection is
approximately 5 times larger than the resolution of the image
on which the iPhone 58S is performing face detection. If it is
assumed that the duration of face detection scales linear with
the resolution of an image, then an iPhone 5S needs 1175ms to
complete face detection on an image of 1280 x 720 pixels. An
iPhone 5S will perform face detection approximately 2.2 times
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slower than the laptop that is used. Therefore, to estimate the
frame rates on a mobile device the frame rates obtained on
the laptop are divided by a factor of 2.2.

D. Detection rate

An important part of the facial landmark localisation process
is the detection phase, see figure 3. In the detection phase a
minimum error is introduced, i.e. this is the lowest error the
tracking algorithm can obtain. In this paper the detection rate
is defined as the frames per detection. The detection rate is
an important trade off that has to be made. A lower detection
rate, means more detections per video which increases the
computational load. A higher detection rate means the tracker
is synced less frequently. If the tracker is not robust, a higher
detection rate will increase the error by a significant amount.
Therefore, it is important to know what the influence is of
different detection intervals on the performance of the video
tracking algorithms. The overall performance is used in this
experiment. The overall performance is defined as the average
of the accuracy and precision performances for the 3 different
landmark types. The question in this experiment is:

What is the influence on the overall performance of a video
tracking algorithm for different detection rates?

For this experiment only the TF database is used, all 5000
frames of the video are used. The optimal ROI of each
individual video tracking algorithm is manually determined
beforehand by analyzing the first 500 frames. This is done
in the same way as as is described in section IV-B. In the
determination for the optimal ROI a detection rate of once
every 50 frames is used. This correspond to once every 2
seconds, this detection rate is chosen because it is a realistic
detection rate for facial landmark detectors.

E. Accuracy, precision and robustness

To compare the different algorithms on accuracy, precision
and robustness, all videos of the composed database are
processed by each algorithm. The optimal ROIs as fraction
of the IOD, obtained in the first experiment, are used to set
the window size. The ROI is set in the first frame using the
IOD. Each video has a frontal view of the face in the first
frame. A detection rate of 25 frames/detection is used. The
results of the frame rate experiment show that a detection
rate of 25 frames/detection is a realistic detection rate for
landmark detectors. CED curves are plotted to determine the
accuracy and precision. In order to evaluate the robustness, the
normalised point-to-point error is plotted against the frame
numbers. This way, the normalised error over time can be
shown.

V. RESULTS
A. Region-of-interest optimisation

In order to obtain the relation between ROI and IOD, 5
videos with different resolutions are created, this is described
in the previous section. For each landmark, the relation be-
tween ROI and IOD is linear. This holds for the 4 different
video tracking algorithms. To illustrate the obtained relation,

one result is shown in figure 7. The relation between ROI
and IOD is also linear for the tip of the nose and the mouth
corners. It is superfluous to show all the individual results.
The interest is in the average ROI as fraction of the IOD for
all videos, this is shown in table 1.

ROl as function of 10D, outer eye corners, KCF
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Figure 7: ROI as function of different IODs for the outer corner of the
eyes of the KCF algorithm. A video of category one of the composed
database is used. The formulas correspond to the lines in the graph. y
is the ROI and x is the IOD. The (red) dotted line indicates the right
boundary of the optimal ROI an the (blue) solid line indicates the
left boundary of the optimal ROI. There is no significant performance
change for the tracker in between these lines.

The ROI for the different landmarks in the framework is
a square region. The ROI is calculated as a fraction of the
IOD, the optimal ROIs can be found in table 1 for each
landmark. Multiplying the IOD of the person in the video with
the factors in table 1 results in the ROI that must be used for
the corresponding landmark.

KCF DSST Struck LK LK*
Outer Eye Corners  0.543  0.557  0.581 0.438  0.326
Tip of the Nose 0.455 0375  0.395 0219  0.326
Mouth Corners 0.477  0.511 0.711 0.322  0.326

Table 1: The optimal ROI as a fraction of the IOD. In order to find
the optimal ROI for a certain landmark and tracker, the IOD should
be multiplied with the value in the table.

* The LK algorithm in the framework uses the same ROI for all
different landmarks. The average of the ROIs in LK column is used
to set the ROI of the LK algorithm in the framework.

B. Frame rate

The frame rates for an iPhone 5S are estimated using the
estimation described in section IV and are shown in table 2.
The composed database contains 20 videos, 10 videos have
resolution 1280 x 720 pixels and 6 videos have resolution 780
x 580 pixels. The rest of the videos have different resolutions
and are therefore left out of the experiment. During the frame
rate measurements neither custom parallelisation nor GPU
ported calls are used.

The frame rate of DFLD and DEST decrease when the
image resolution is larger. This is as expected because the
algorithm has to detect a face in a larger search area. The frame
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Resolution g’g 3¢ KCF DSST LK  Struck DFLD DEST
(pixels) (pixels) (fps)  (fps) (fps)  (fps) (fps) (fps)
780 x 580  115.9 47 36 730 14 2.1 1.6
1280 x 720 745 93 36 430 1.3 0.8

Table 2: Average frame rates on a iPhone 5S. These frame rates are
obtained by dividing the average frame rates on the used laptop by a
factor of 2.2. The table is used to give an indication of the possible
frame rates on a mobile device.

rate of the KCF algorithm depends on the size of the ROI,
i.e. the frame rate increases for a shorter IOD (smaller ROI).
The frame rate of the LK tracker decreases with an increasing
image resolution and decreasing windows size (smaller ROI).
For the LK tracker the same behaviour is expected as is shown
for the KCF tracker. An explanation for difference in behaviour
is the different number of pyramidal levels the LK tracker uses
for different image resolutions. The DSST and Struck tracker
show unexpected behaviour, their frame rate remains constant.
The fact that the implementations of the DSST and the Struck
tracker are optimised for single object tracking, might be a
reason for the constant frame rate. Multiple instances of the
trackers are started to track all landmarks. The KCF tracker
and LK tracker are able to handle multiple objects and show
different behaviour compared to DSST and Struck.

C. Detection rate

The best ROIs for each landmark are determined before-
hand, as is described in section IV-D. The used window sizes
can be found in table 3. For the Lucas-Kanade implementation
the same window size is used for the different landmarks.

KCF DSST Struck LK*
Outer Eye Corners 49 x 49 41x41 51x51 31x3l1
Tip of the Nose 45x45 37x37 49x49 31x3l
Mouth Corners 33x33 35x35 43x43 31x3l

Table 3: ROIs in pixels used during the detection rate experiment.
* The implementation of the LK algorithm uses for all landmarks the
same window size.

The AUC of the CED curves for the different algorithms
is calculated for different detection rates. The AUC is plotted
as function of the detection rate. The results are shown for
the detection rate (frames/detection) ranging from 5 to 50
frames/detection, in figure 8. The results of a wider range,
ranging from 25 to 250 frames/detection are shown in figure
9.

D. Accuracy and precision

The accuracy and precision is visualised using CED curves.
The CED curve of each tracker is visualised in figure 10 and
11. The performance is visualised for the 3 different types of
landmarks. Figure 10 shows the average performance of the
trackers in the category one videos. In figure 11, the average
performance of the trackers in the category two videos is
shown. The results are shown on a separate page in order
to compare the results. The results are shown on page 11.

AUC as function of detection rate
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DEST has a poor performance, due to failures of the face
detector. Two examples of face detection failures are shown in
Appendix B. Faces are detected in places where no faces are,
this results in a large normalised error. When face detection
failures happen frequently, this results in a poor accuracy as
is the case for DEST.

Note that the video tracking algorithms have an offset in
the y-direction. Every 25 frames the video trackers are synced
with the ground-truth. Therefore, 20 points of the the 500
tracked points have an normalised point-to-point error of 0.
This corresponds with 4% or 0.04 on the y-axis in the CED
plots.
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E. Robustness

The robustness of the different algorithms is plotted in
figure 12 and figure 13 for respectively category one videos
and category two videos of the composed database. The
results are shown on a separate page in order to compare
them. The results are shown on page 12. For readability
the normalised error is averaged by the number of detection
cycles. A detection rate of 25 frames/detection is used, there
are 20 detection cycles. Therefore, the values at frame number
1 correspond to the average normalised error of frames 1 +
25n (for n = 0,1,2 ... 19). The frame number on the x-axis
indicates the frame number between two landmark detections.
At the first frame the algorithms are set equal to the ground-
truth points. The (blue) dotted line is DFLD and does not
have a normalised error of 0 at frame 1 because it does face
detection in each frame and is not synced with the ground-
truth points.

As a measure of deviation, the standard deviation is used
and indicated by error bars. In order to compare the scale of
the error bars in the robustness plots, the scale of the axis is
the same for all robustness plots.

Both the baseline and DEST graph are not included in
the robustness plots. These graphs are left out because they
resulted in unreadable graphs. The baseline graph rises very
quickly, to show the full baseline graph the scale of the y-
axis is to large to see differences between the video tracking
algorithms. The graph of DEST is excluded because the face
detector of DEST detects face at places where there are no
faces. This results in a rapidly jumping graph and makes the
other results unreadable.

VI. DISCUSSION

Based on the CED curves, it can be said that the LK
tracker is the best performing tracker for the nose tip in
both the category one and category two videos. Furthermore,
the LK tracker performs best for the outer eye corners and
the mouth corners in the category two videos. DSST is the
best performing algorithm for the outer eye corners and the
mouth corners in the category one videos. DEST has a poor
performance, this is due to failures of the face detection. The
KCF tracker and Struck tracker have similar performances.
The CED curves show that if the trackers (using an ideal
detector and a detection rate of 25 frames/detection) are
initialised correctly, at least 90% of the tracked points is below
the normalised threshold error of 0.08. For the category one
videos, the trackers: KCF, Struck and DSST, have less accurate
results for the nose tip compared to their performance for
other landmarks. For the LK tracker it is exactly the opposite.
The LK tracker and DSST are the most accurate and precise
video tracking algorithms of the 4 compared video tracking
algorithms.

From the results of the detection rate experiment, it can
be concluded that the LK tracker is the worst performing
tracker for long term tracking. In the detection range of 5
to 25 frames/detection, the difference between performance
of the different tracking algorithms is small. In the range
of 25 to 250 frames/detection the performance of the LK

tracker decreases rapidly. Interesting to see is that Struck, KCF
and DSST (with an ideal landmark detector) have a better
performance compared to DEST and DFLD at a detection rate
of 150 frames/detection. This correspond to a detection once
every 6 seconds. Important to notice is that a facial landmark
localisation system using the structure as is shown in figure 3,
with DFLD used to initialise for example a LK tracker, will
never outperform the stand-alone DFLD. This results in an
increase in speed at the cost of accuracy. The tracker cannot
compensate for the errors introduced by the detector.

In the robustness plots, the LK tracker is significantly more
robust during tracking of the nose tip, compared to the other
tracking algorithms. The standard deviation of the LK tracker
for the nose tip is approximately 3 times lower compared to
the other tracking algorithms in the category one videos. For
the category two videos the standard deviation of DSST and
the LK tracker for the nose tip is significantly lower compared
to the other tracking algorithms. The DSST is on average more
robust while tracking outer eye corners and mouth corners than
the LK tracker. The absolute values of the curve of DSST
and DFLD in the robustness plots is approximately identical
independent of the landmark type.

Based on the results for the frame rates, the LK tracker
is the fastest tracking algorithm and is able to perform in
real-time (+ 20 frames/second). The second fastest tracker is
KCEF, followed by DSST and Struck. The implementations of
DSST and Struck, used in the framework, are not optimised
for multiple objects. Although, no custom parallelisation is
used, multi-threading might be implemented in the different
libraries. Therefore, in order to make a fair comparison be-
tween speed of the different algorithms the experiment must
be conducted on the same number of cores with the same
number of threads.

VII. CONCLUSION

In this paper, the performance of 4 different video tracking
algorithms (LK, Struck, DSST, KCF) in facial landmark
tracking is compared using a C++ framework. In order to
compare the video tracking algorithms with state-of-the-art
facial landmark localisation software, 2 facial landmark local-
isation software libraries (DFLD, DEST) are included in the
framework. The ROI of the video tracking algorithms is made
generic. The ROI is set as a fraction of the IOD in the first
frame. The algorithms are compared on accuracy, precision,
robustness and speed.

To conclude the paper, the research questions, stated in
section I, are answered. The LK tracker and DSST (both using
an ideal landmark detector) outperform DFLD on accuracy,
precision and speed for the 3 different facial landmarks in
both video category one and two. DEST is not used in the
performance comparison, because the results are invalid due
to face detection failures. The KCF tracker and Struck (both
using an ideal detector) do not outperform DFLD on accuracy,
precision and robustness. The LK tracker and DSST are usable
for facial landmark tracking, but the LK tracker can perform in
real-time, which DSST cannot. Therefore, based on the results
the LK is the most usable tracking algorithm for real-time
facial landmark tracking on a mobile device.
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Figure 12: Average normalised error plots of the 3 different landmarks
in the category one videos. For readability the average of the 500
frames is taken with intervals of 25 frames (one detection cycle). The
standard deviation is indicated by the error bars. Also for readability
reasons, the error bar of only one algorithm is shown at each data
point. At each data point, the same symbols as in figure 10 and 11
are used to indicate the different algorithms.
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Figure 13: Average normalised error plots of the 3 different landmarks
in the category two videos. For readability the average of the 500
frames is taken with intervals of 25 frames (one detection cycle). The
standard deviation is indicated by the error bars. Also for readability
reasons, the error bar of only one algorithm is shown at each data
point. At each data point, the same symbols as in figure 10 and 11
are used to indicate the different algorithms.
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A. Recommendations

For future work, it is recommended to perform a fair
comparison between the frame rates of the different tracking
algorithms. The algorithms have to be tested in the same
conditions in order to compare their speed.

Furthermore, the CED curves presented in this paper
show the accuracy and precision of the video tracking al-
gorithms using an ideal detector with a detection rate of 25
frames/detection. When a non-ideal detector is used, the CED
curves will shift to the right. Therefore, the tracking algorithms
need to be tested using a non-ideal detector.

Finally, if a non-ideal landmark detector is used, the detector
will not have negligible operating time. The framework as is
shown in figure 3 cannot be used anymore. This is due to the
fact that a detector is slower than a tracker. If the structure as is
shown in figure 3 is used, the output frame rate is still limited
by the landmark detector. When the output frame rate is set to
the frame rate of the tracker, the detector will always initialize
the tracker to coordinates of n frames ago. Where n is the
number of frames it takes to detect the landmarks. Therefore,
a solution to the interaction between landmark detector and
landmark tracker has to be found when a non-ideal landmark
detector is used.
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APPENDIX A

In this appendix the steps of the window size experiment are
shown with intermediate results. This is done for clarification
reasons. For each downsampling step the CED curves for
different ROIs are plotted. In figure 14 the CED curves are
plotted for the outer eye corners in a certain video. The first
down sampled instance is used. The resolution is therefore
80% of the original image resolution in each coordinate
direction.
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Figure 14: CED curves of the outer eye corners for different window
sizes. This is the CED curve of the the first down sampled video
instance of a certain video from category one.

The plot in figure 14 is unreadable and therefore the AUC

of the different CED curves is plotted against the different
ROlIs, this is shown in figure 15.
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Figure 15: AUC plotted as function of different window sizes.

The points at the intersections between the 2% margin
(dotted line) and the AUC curve, as function of the window
size (solid line), are used to find the relation between the ROI
and IOD. The steps described in this appendix are performed
for all 5 instances of the same video with different resolutions.
This gives the relation between ROI and IOD for one specific

landmark and one specific algorithm. The relation that is
obtained is shown in section V in figure 7. The steps described
in this appendix are performed for all the different landmarks
and all the different algorithms for 3 different videos. The
obtained relation between ROI and IOD is assumed to be the
same for the other videos in the composed database.

APPENDIX B
DEST FACE DETECTION FAILURES

In figure 16, two examples of the face detection failure of
DEST are shown for a category one video and a category two
video.

(a) category one video

(b) category two video

Figure 16: DEST face detection failures



