
Multi-Tenant
Customizable Databases

Master’s Thesis

Wim van der Zijden

Supervisors:
dr. ir. D. Hiemstra (University of Twente)

dr. ir. M. van Keulen (University of Twente)
bc. S.M. van Dijk (ActFact Projects B.V.)
ing. E. Tomassen (ActFact Projects B.V.)

Enschede, February 2017



2



Voorwoord/Preface

Met het opleveren van deze scriptie is een einde gekomen aan een traject van viereneenhalf jaar
waarin ik naast mijn werk als software engineer bij ActFact anderhalve bachelor, een universitaire
master en een excellentie programma voltooid heb.

Ik ben enorm veel dankbaarheid verschuldigd aan mijn werkgever, die mij in staat heeft gesteld
deze opleidingen te volgen en altijd buitengewoon flexibel is omgesprongen met de vaak sterk
wisselende collegetijden en examenweken.

Deze masterscriptie is, net als mijn bachelorscriptie, uitgevoerd bij deze zelfde werkgever. Het
vormt de aanzet voor een ambitieus en dapper project, waarvan de uitkomst allesbehalve zeker is.
Hopelijk zal deze thesis een succesvolle kickstart kunnen betekenen.

Ik wil Eldir Tomassen bedanken, mijn technisch directeur en de geestelijk vader van deze op-
dracht. Daarnaast ben ik ook Sjoerd van Dijk dank verschuldigd voor zijn kritische blik en het
behartigen van de bedrijfsbelangen. Ook wil ik graag Djoerd Hiemstra bedanken voor het waar-
borgen van het academische niveau van dit praktisch ingestoken onderzoek. En ten slotte heeft
Maurice van Keulen vooral in de eindfase van dit project een zeer positieve invloed gehad op de
kwaliteit van het eindresultaat door zijn onbevangen, kritische blik.

In plaats van een traditionele master thesis, is deze thesis een bundeling van twee wetenschap-
pelijke papers geworden, waarvan ik de eerste in ingekorte vorm zal indienen bij de database
conferentie ADBIS 2017.

This thesis marks the end of a four-and-a-half year period in which I completed one-and-a-half
bachelor’s degree, a master’s degree and an honours programme while working as a sofware en-
gineer at ActFact.

I owe a debt of gratitude to my employer for enabling me to attend these studies and for their
remarkable flexibility with regards to the often highly variable lecture times and exam weeks.

This master’s thesis was, as my bachelor’s thesis, carried out at this same employer. It is
the preliminary for an ambitious and brave project, of which the conclusion is all but certain.
Hopefully this thesis can act as a successful kickstart.

I want to thank Eldir Tomassen, my technical director and spiritual father of this assignment. I
also owe a debt of gratitude to Sjoerd van Dijk, for his critical view and for governing the company’s
interests. Furthermore, I would like to thank Djoerd Hiemstra for maintaining the academic level
in this practice oriented research. Finally, especially in the end phase of this project, Maurice van
Keulen had a very positive influence on the quality of this work with his open-minded, critical
view.

Instead of a traditional master’s thesis, this thesis has become a bundle of two research papers,
of which I will submit the first one in an abridged version at the database conference ADBIS 2017.

3



4



Introduction

A good practice in business is to focus on key activities. For some companies this may be branding,
while other businesses may focus on areas such as consultancy, production or distribution. Focusing
on key activities means to outsource as much other activities as possible. These other activities
merely distract from the main goals of the company and the company will not be able to excel in
them.

Many companies are in need of reliable software to persistently process live data transactions
and enable reporting on this data. To fulfil this need, they often have large IT departments in-
house. Those departments are costly and distract from the company’s main goals. The emergence
of cloud computing should make this no longer necessary. All they need is an internet connection
and a service contract with an external provider.

However, most businesses are in need of highly customizable software, because each company
has slightly different business processes, even those in the same industry. So even if they outsource
their IT need, they will still have to pay expensive developers and business analysts to customize
some existing application.

These issues are addressed by Multi-Tenant Customizable (MTC) applications. We define such
an application as follows:

A single software solution that can be used by multiple organizations at the same time
and which is highly customizable for each organization and user within that organiza-
tion, by domain experts without a technical background.

A key challenge in designing such a system is to develop a proper persistent data storage,
because mainstream databases are optimized for single tenant usage.

To this end this Master’s thesis consists of two papers: the first paper proposes an MTC-DB
Benchmark, MTCB. This Benchmark allows for objective comparison and evaluation of MTC-DB
implementations, as well as providing a framework for the definition of MTC-DB. The second
paper describes a number of MTC-DB implementations and uses the benchmark to evaluate those
implementations.

5



6



MTCB: A Multi-Tenant Customizable database
Benchmark

Wim van der Zijden

University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
ActFact Projects, Josink Esweg 8, 7545 PN Enschede,The Netherlands

w.vanderzijden@actfact.com

Abstract. We argue that there is a need for Multi-Tenant Customi-
zable OLTP systems. Such systems need a Multi-Tenant Customizable
Database (MTC-DB) as a backing. To stimulate the development of such
databases, we propose the benchmark MTCB. Benchmarks for OLTP ex-
ist and multi-tenant benchmarks exist, but no MTC-DB benchmark ex-
ists that accounts for customizability. We formulate seven requirements
for the benchmark: realistic, unambiguous, comparable, correct, scalable,
simple and independent. It focuses on performance aspects and produces
nine metrics: aulbach compliance, size on disk, tenants created, types
created, attributes created, transaction data type instances created per
minute, transaction data type instances loaded by ID per minute, con-
junctive searches per minute and disjunctive searches per minute. We
present a specification and an example implementation in Java 8, which
can be accessed on this public repository: https://bitbucket.org/
actfact/mtcdb-benchmark. In the same repository an implementa-
tion can be found for a naive implementation of an MTC-DB where each
tenant has its own schema. We believe that this benchmark is a valu-
able contribution to the community of MTC-DB developers, because it
provides objective comparability as well as a precise definition of the
concept of MTC-DB.

Keywords: Multi-Tenant Customizable, Multi-level customizability, OLTP,
PaaS, Database, Benchmark

1 Introduction

1.1 Context

A good practice in business is to focus on key activities. For some companies
this is mostly branding their product [1]. Other businesses may focus on areas
such as consultancy, production or distribution. Focusing on key activities means
to outsource as much other activities as possible. These other activities merely
distract from the main goals of the company and the company will not be able
to excel in them.

7

https://bitbucket.org/actfact/mtcdb-benchmark
https://bitbucket.org/actfact/mtcdb-benchmark


Many companies are in need of OLTP1 software. To fulfil this need, they often
have large IT departments in-house. Those departments are costly and distract
from the company’s main goals. The emergence of cloud computing should make
this no longer necessary. All they need is an internet connection and a service
contract with an external provider.

However, most businesses are in need of highly customizable software, be-
cause each company has slightly different business processes, even those in the
same industry. So even if they outsource their IT need, they will still have to pay
expensive developers and business analysts to customize some existing OLTP ap-
plication. A large problem is the communication gap [2]: most developers do not
understand the business domain, and most domain experts do not understand
the technical implications of their requirements.

These issues are addressed by Multi-Tenant Customizable (MTC) applica-
tions. We define such an application as follows:

A single software solution that can be used by multiple organizations at
the same time and which is highly customizable for each organization
and user within that organization, by domain experts without a technical
background.

A key challenge in designing such a system is to develop a proper persistent
data storage, because mainstream databases are optimized for single tenant us-
age. To stimulate the development of such systems we will propose a benchmark
to compare implementations of such a data storage, the Multi-Tenant Customiz-
able database Benchmark: MTCB.

1.2 Problem Statement

To illustrate the main issues with traditional on-premises OLTP applications
we will consider the open source ERP2 and CRM3 system Compiere4 as a
quintessential example. Similar systems such as SAP and Microsoft Dynamics
Navision cope with similar problems.

Compiere’s strong suit is its Model Driven Architecture. This means that
the model of the application is defined in the Application Dictionary. The most
important elements in the Application Dictionary are Table, Column, Window,
Tab and Field. From the definitions in these elements, the user interface for the
application is built. The main advantage of this approach is that it is relatively

1Online Transaction Processing. Applications whose main concern it is to persis-
tently and reliably process live data transactions and to facilitate reporting on this
data. An OLTP application is usually backed by a relational database.

2Enterprise Resource Planning. A type of business software that consolidates many
business processes such as product planning, sales, inventory management and account-
ing.

3Customer Relationship Management. A type of business software that allows com-
panies to collect, analyse and act on customer data in order to improve sales.

4http://www.compiere.com/

8

http://www.compiere.com/


easy to add custom entities and fields to the application, according to business
needs.

However, there are also some problems with this architecture. We have iden-
tified the following problems:

1. Tedious installation procedure. An expert is needed to properly config-
ure and install Compiere. An application server and a database server must
be set up. Normally this must be done twice, in order to have both a test
and a production environment.

2. Tedious maintenance of customizations. An expert is needed to main-
tain customizations. In theory it is possible to customize the application on
the fly, but this is very risky. It is adviced to develop new functionality in
a development environment, then use a migration tool to deploy these cus-
tomizations to the test environment, and after proper testing, release them
to the production environment. This practice allows for proper versioning of
customizations.

3. Tedious development of customizations. An expert is needed to develop
customizations. In theory a non-technical expert user should be capable of
making small customizations, but this is very limited. For example, to create
custom processes, before and after save logic and callout code, it is necessary
to write Java code, which needs to be integrated into the application using
a migration tool.

4. Entanglement of the data model and the user interface. The business
logic is implemented both on the user interface and in the data model. This
makes it hard to develop alternative user interfaces on the system, because
many business rules would have to be re-implemented. For example, read
only logic on fields uses context variables which only exist in the context
of a certain user interface. Especially callout logic is very much intertwined
with the user interface. Compiere currently supports two user interfaces, a
desktop and a web based one, for each of which the callout logic is entirely
duplicated.

5. No multi-tenant customizability. To mitigate the overhead sketched
above, a solution could be to use Compiere’s multi-tenant setup. This way
costs can be shared across multiple organizations. However, because Com-
piere is not multi-level customizable, this means that organizations would
have to share customizations. So this will normally only be feasible if the
organizations are active in the same industry, have no conflicting interests
and are capable of aligning their business processes with each other.

1.3 Application requirements

Based on the concept of MTC, defined in section 1.1, we propose a radical
solution to these problems: an OLTP PaaS that is Single instance, Multi-Tenant,
Modular, Multi-Level Customizable and Multi-Interface. Each of these italicized
terms is explained in the application requirements below.

9



1. PaaS. Platform as a Service. A cloud computing service that allows cus-
tomers to develop and host applications without having to worry about many
low-level concerns such as building the application and managing the infras-
tructure needed to host it. By defining the solution as a PaaS, we indicate
that there is very little core functionality, and the application should be seen
as a basic platform for building OLTP applications.

2. Single-instance. The application should functionally be one application in
maintenance. This means that updating the application is a single action.
However, in reality, it may be that the application is hosted over multi-
ple servers and multiple databases, as long as this remains hidden for the
developers on the platform.

3. Multi-tenant. A single instance of the application should be able to host a
large number of tenants. A tenant is an organization that is using the applica-
tion. As a guideline we say that the application should be able to host about
a 1,000 tenants: 10 large tenants (50 concurrent users), 100 medium sized
tenants (5 concurrent users) and 1,000 small and single-use tenants (0 to 1
concurrent user). Instead of a tedious installation procedure that requires
hiring a professional to perform it, this system should offer a ”single-click”
installation procedure: creating a tenant should be as easy as creating an
email account. This will mitigate problem 1: the tedious installation proce-
dure.

4. Modular. Everything that is developed on the platform is developed as a
module. When creating a new tenant, existing modules can be reused. When
developing specialized modules for specific business needs, these modules
may be shared with other tenants with similar business needs in order to
cut down on development costs. This mitigates problems 2 and 3: tedious
maintenance and development of customizations.

5. Multi-level customizable. The application should be customizable on sev-
eral levels. Most importantly, the application may be customized on the
organization level. So it needs to be possible for organizations to create
customizations that are only visible on the organization level. Second, the
application may be customized on user role level. So it needs to be possible
to create customizations that are only visible when logged in as certain user
roles. And third, the application may be customized on the level of the indi-
vidual user. Customizability should be understood in a very broad sense. It
may refer to the customization of entities, fields, windows, processes, reports,
etc. This mitigates problem 5: no multi-tenant customizability.

6. Multi-interface. The model of the application should not be entangled
with the interfaces it may offer to interact with it. For example, it should
be relatively easy to implement alternative client side user interfaces using
different JavaScript frameworks. However, the word interface as used here
is not limited to user interfaces, but applies to Application Programming
Interfaces (APIs) as well. This mitigates problem 4: entanglement of the
data model and the user interface.

10



1.4 Technical Research Problem

The first challenge of designing an application as outlined above, is designing
a suitable data storage structure. Currently no standalone databases exist that
satisfy the requirement for such a data storage. To stimulate the development of
such databases, we will design an MTC-DB benchmark. To this end we formulate
the following technical research problem, using the template as proposed by
Wieringa [3]:

Improve the evaluation of Multi-Tenant Customizable Database (MTC-
DB) implementations, by developing an MTC-DB Benchmark specifi-
cation such that it is realistic, unambiguous, comparable, correct, scal-
able, simple and independent in order to enable MTC-DB developers to
assess the quality of their implementations objectively and use the result
to advertise their solution.

2 Existing Benchmarks

In this section we discuss existing benchmarks that are close to the benchmark
that we are developing. TPC-C and TPC-E are OLTP benchmarks for single-
tenant OLTP workloads. TPC-W is a discontinued benchmark for e-Commerce
implementations that was extended by Krebs et al. [4] to account for multi-
tenancy.

TPC stands for Transaction Processing Performance Council. This organi-
zation was founded in 1988 by eight companies that agreed that there was a
need for a single standards body to supervise and govern benchmarks for trans-
action processing applications [5]. Since then, they published many benchmarks,
of which three are specifically targeted at OLTP: TPC-A, TPC-C and TPC-E.
TPC-A was their first benchmark and was made obsolete in 1995. TPC-C was
approved in 1992, but the latest revision, 5.11, was published in 2010. TPC-E
was approved in 2007 and was last revised in 2015. Even though TPC-E targets
the same kind of environments, TPC-E did not formally make TPC-C obsolete.

2.1 TPC-C

The current revision of TPC-C is described in [6]. Some of the important char-
acteristics of the environments that it aims to simulate are:

1. Various transactions are executed concurrently.
2. Transactions must adhere to the ACID properties.
3. The system consists of many ”tables”5 that differ greatly in size, attributes

and relationships.

5The specification stresses that terms as table, row and column are meant to illus-
trate similar data structures as found in SQL-based databases, but may be implemented
differently.

11



To this end, the specification describes a fictional data model of a wholesale
supplier that has tables like warehouse, district and customer. In total the model
consists of 9 tables. It describes in detail which attributes each table should have
and what initial master data should be present in the system.

On this datamodel, a number of transaction profiles are described: the new-
order transaction, the payment transaction, the order status transaction, the
delivery transaction and the stock-level transaction. A complete business cy-
cle uses a combination of these transactions to simulate the flow of a business
process.

TPC-C produces four primary metrics:

1. tpmC: the business throughput per minute, measured as the number of
processed orders.

2. price per tpmC: the total cost of running the system for 3 years, divided
by the tpmC.

3. Availability date: the earliest date at which all components of the system
will be available.

4. watts per KtpmC: the cost in energy per 1,000 tpmC (optional).

2.2 TPC-E

TPC-E is described in [7]. Both in goal and specification it is very similar to
TPC-C. The main difference is that it is much more complex than TPC-C and
claims to be more realistic and have a broader coverage. Its datamodel is that
of a fictional brokerage firm. Chen et al. [8] summarize the differences as shown
in Table 1. As can be seen, TPC-E specifies more tables, more attributes, check
constraints and also tests for referential integrity.

TPC-C TPC-E

Tables 9 33

Columns 92 188

Columns per Table 10.2 5.7

Read-Write Transactions 92% 23.1%

Read-Only Transactions 8% 76.9%

Data generation Random Pseudo-Real

Check Constraints 0 22

Referential Integrity No Yes

Table 1. Comparison of TCP-C and TPC-E, based on Chen et al. [8]

12



2.3 Multi-Tenant TPC-W

TPC-W is another benchmark by the TPC. This benchmark is for e-Commerce
web applications. However, it was made obsolete in 2005 and its specification is
no longer available on tpc.org. The only original description that is still available
is a whitepaper by Smith [9]. We were not able to find the reason that the TPC-
W was made obsolete. A reason could be that web applications have evolved so
much that it was simply not representative anymore. For example, the TPC-W
is based on HTML 1.0 and does not account for Javascript and CSS.

TPC-W emulates a fictional online bookstore. It features 14 web pages that
allow users to browse, search, order and pay for products. The test is run by
using emulated browsers that simulate real users by employing random wait
times between 7 and 70 seconds.

TPC-W produces two primary metrics:

1. WIPS: the number of web interactions per second that can be sustained by
the system.

2. Cost per WIPS: the cost of the system divided by the WIPS rate.

Kreb et al. [4] enhanced TPC-W to make it into a Multi-Tenant benchmark.
To this end, they made two important changes:

1. Adding a column ”tenantId” to every table.
2. Adding a central administration mechanism for assigning primary keys.

Unfortunately, their extension does not provide clear comparable perfor-
mance metrics. The results are graphs that show how increasing tenants impacts
the original TPC-W metrics. Another problem with this benchmark is that it
does not account for customizability.

3 MTC-DB Benchmark (MTCB)

In this section we describe the MTC-DB Benchmark (MTCB) that we developed.
First we discuss the requirements we formulated, then the specification that we
designed and finally the concrete steps a developer should take to start using the
benchmark to implement and benchmark their own MTC-DB implementation.

3.1 Requirements

The design of MTCB has the following requirements:

R1 Realistic. It should be a realistic reflection of an MTC environment in terms
of performance aspects.

R2 Unambiguous. It should be as unambiguous as possible. An MTC-DB de-
veloper should be able to implement it, purely based on the specification.

R3 Comparable. It needs to provide objective and easily comparable perfor-
mance metrics.

13



R4 Correct. It needs to test for correctness. This mainly concerns the ACID
properties of database transactions: they should be atomic, consistent, iso-
lated and durable.

R5 Scalable. It needs to be easy to benchmark very small scenarios, very large
scenarios and a number of in between scenarios.

R6 Simple. It should be as simple as possible. Every added complexity should
aid one of the other requirements in some way.

R7 Independent. The specification should stand on its own. It needs to be
independent from any MTC-DB implementations. For example, there should
be no dependency on the paradigm of SQL and/or RDBMS.

3.2 Conceptual Model

MTCB not only defines the metrics to measure the performance of MTC-DB
implementations, it also defines what an MTC-DB implementation is. Our defi-
nition of MTC-DB is pure: there must be as little core functionality as possible.
For example, the Force.com platform [10] is an MTC application that has a large
amount of core functionality. For this core functionality they use traditional ta-
bles and only for the modifications by third party platform developers generic
extension tables are used. In this model, the platform developers are second class
to the native Force.com developers.

We defined the absolute minimum of core functionality to be four complex
types6 and four primitive types7. The complex types are tenant, user, type and
attribute. The primitive types are string, number, timestamp and boolean. Some
of these concepts are explained in detail below.

Tenant and User Bezemer et al. [11] give the following definition of tenant :
”A tenant is the organizational entity which rents a multi-tenant SaaS solution.
Typically, a tenant groups a number of users, which are the stakeholders in the
organization.”

This is a good basic definition, but in our model, we use an enhanced version
of this definition. A tenant as described in that definition is what we call a data
tenant. This kind of tenant mostly contains transactional data and master data,
and little to no metadata. Its data is also isolated: no other tenants can access
it.

A second type of tenant is a module tenant. This kind of tenant contains
little transactional data and no master data, and instead only metadata. Fur-
thermore, its data is not isolated: it is accessible by all tenants that have declared
a dependency on it. It can also be dependent on other module tenants itself. This
extension of the definition is necessary, because metadata needs to be shareable.
If metadata could not be shared, then each data tenant would have to build its
own application from scratch.

6Complex types are types that have attributes
7Primitive types are types that have no attributes

14



Type and Attribute Types are the metadata building blocks of the system.
A type has a name and a display name, is defined within a tenant and has some
attributes. Types can be also be enhanced with additional attributes by tenants
other than the tenant that owns them.

Attributes refer to two types: their master type and their data type. The
master type is the type that they are an attribute of, and the data type is the
type of the data that they store. This can be one of the primitive types, but
it can also be another complex type. An attribute must also indicate if it is
searchable. This determines whether the attribute can be used in the predicate
of a search query, to allow the MTC-DB implementation to optimize for this.

Search Design One of the things that should be benchmarked is how fast
search queries run in the system. We distinguish two types of queries: load by
ID and attribute search.

Load by ID Load by ID queries simulate the major workload of OLTP systems.
In typical OLTP systems that use an RDBMS for storage, a window in the user
interface of displays one row of a particular database table. To load this data,
the application must retrieve this row. If this row contains foreign key references
to other tables, then these must also be resolved.

In regular SQL, this can be done with a query of the following form:

SELECT t.ID, t.Name, t1.Name, t2.Name
FROM t,
JOIN t1 ON t1.ID = t.t1_ID
JOIN t2 ON t2.ID = t.t2_ID
WHERE t.ID = 1000;

To benchmark these type of queries, we specify Transaction Data Types
(TDT) and Master Data Types (MDT). Both are synthetic data types that are
also used for benchmarking customizability and creation of new type instances.
An MDT is a type that contains only simple attributes. A TDT also contains
complex types: references to MDTs.

Attribute search To benchmark queries with search predicates, we need to design
search data and search queries. The search queries need to be representative for
worst-case scenarios in the system and the search data needs to be generated
automatically and needs to be scalable.

To this end we defined a designated search type and a designated search
tenant, which are created in the Setup script (see section 3.3). This script also
creates a number of instances of the search type in the search tenant, dependent
on the Profile (see section 3.3).

We defined two distinct attribute searches: a conjunctive search and a dis-
junctive search. In regular single-tenant SQL, these searches have the following
form.

15



Conjunctive search:

SELECT * FROM t
WHERE a1=? AND a2=? AND a3=? AND a4=? AND a5=?

Disjunctive search:

SELECT * FROM t
WHERE a6=? OR a7=? OR a8=? OR a9=? OR a10=?

We chose these two queries because these are two extremes and if an MTC-DB
can implement these queries, they can implement all single type queries, because
any propositional formula can be translated into the conjunctive normal form
(CNF).

The search type has 10 attributes, 5 that are used by the conjunctive search,
and 5 that are used by the disjunctive search. When instantiating these types,
the attributes for the conjunctive search are populated with random integers in
the range [1, 5

√
n], and the attributes for the disjunctive search are populated

with random integers in the range [1, 5n] where n is the total number of search
type instances. Similarly, when creating the search queries, the search terms are
randomly picked from the same range.

These ranges were picked specifically to make sure that no matter how large
n gets, the searches will have approximately the same probability of returning no
results, namely 1

e , about 37%. This is true, because the probability for returning
no results for the respective queries can be expressed with the following formulas,
which both approximate 1

e for limn→∞.
Conjunctive Search:

P (n) = (1− (
1
5
√
n

)5)n

Disjunctive Search:

P (n) = (
5n− 1

5n
)5n

3.3 Specification

MTCB consists of two main parts: the model and the scripts. The model consists
of the contract of six interfaces. Every MTC-DB implementation must provide
implementations for these interfaces. The scripts uses these interfaces to run the
benchmark and report the performance metrics.

The model The model consists of six interfaces: MTCDB, PO, Type, Attribute,
Tenant and User. The most important elements of the contract of those inter-
faces is shown in tables 2 through 5.

MTCDB is the main entry point. An instance of this class must be fed to
the scripts. The most important operations that are defined on MTCDB are
createTenant(), createType(), createAttribute() and createPO().

16



PO stands for Persistent Object. This is the base contract for all entities that
must be stored persistently. Its most important operations are persist() and
several GetValueAs...() operations to retrieve a value for an attribute by
attribute name.

MTCDB Interface

addModule() Add a metadata module to the tenant in the context.

createAttribute() Add a new attribute to an existing type.

createPO() Create a new instance of an existing type.

createTenant() Create a new empty tenant.

createType() Create a new type without attributes.

createUser() Create a new user.

getByConjunction() Retrieve PO instances by conjunction (AND) of attributes and
values.

getByDisjunction() Retrieve PO instances by disjunction (OR) of attributes and val-
ues.

getPOByID() Retrieve a PO instance by ID.

getSizeOnDisk() Retrieves the total size on disk in MB of the MTC-DB.

getTenant() Get tenant by name.

getTenants() Get all tenants that exist in the system.

getType() Retrieve type by tenant and name.

getTypes() Get all types for a tenant.

initializeSystem() Set up the most elemental metadata necessary for the system.

Table 2. The contract for the interface MTCDB

Type, Attribute, Tenant and User are interfaces that extend PO. So they
contain all the operations that PO contains, including some extra operations. For
example, Type has the operation getAttributes() to get all attributes for
that type, and Attribute has the operations getMasterType() to get the
type it is an attribute of, and getDataType() to get the type of the value that
it can store.

The scripts There are three scripts: the aulbach script, the setup script and the
main script. These scripts are explained below. As input, each of these scripts
needs an implementation instance of MTCDB. The latter two also need a profile
that contains a set of parameters. How MTCDB is implemented and instantiated
is up to the specific MTC-DB implementation.

17



PO Interface

getID() 128-bit universally unique identifier for this instance as de-
fined in RFC4122: https://tools.ietf.org/html/
rfc4122.

getTenant() The tenant owner of this record.

getType() The type of this PO.

getValueAsBoolean() Retrieve the value for the attribute with this name as a three-
valued boolean (null, true or false).

getValueAsNumber() Retrieve the value for the attribute with this name as a num-
ber.

getValueAsPO() Retrieve the value for the attribute with this name as a PO
or child of PO.

getValueAsString() Retrieve the value for the attribute with this name as a string.

getValueAsTimestamp() Retrieve the value for the attribute with this name as a times-
tamp in UTC and at millisecond precision.

persist() Persist the changes to this instance.

setBoolean() Set the boolean value for the attribute with this name.

setNumber() Set the number value for the attribute with this name.

setPO() Set the PO value for the attribute with this name.

setString() Set the string value for the attribute with this name.

setTimestamp() Set the timestamp value for the attribute with this name.

Table 3. The contract for the interface PO

Tenant Interface (extends PO)

getName() A textual identifier for this tenant.

isModule() Whether this tenant is a module. A module only contains metadata, so
no master data and no transaction data.

setName() Set the name.

setModule() Set whether this tenant is a module.

Table 4. The contract for the interface Tenant

18

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122


User Interface (extends PO)

getEmail() An identifier for the user as an e-mail address as specified by RFC822:
http://www.freesoft.org/CIE/RFC/822/.

getName() Display name for this user.

setEmail() Set the email. Must throw an exception if email is not a valid email address
according to RFC822.

setName() Set the name.

Table 5. The contract for the interface User

Type Interface (extends PO)

getName() A textual identifier for this Type. Must be unique within a tenant.

getAttributes() Get all the attributes for this type in the current context.

getAttribute() Get a single attribute for this type in the current context by name.

getAttribute() Get a single attribute for this type in the current context by id.

setName() Set the name for this type.

addAttributes() Add one or more attributes to this type.

Table 6. The contract for the interface Type

Attribute Interface (extends PO)

getDataType() The data type of this attribute.

getMasterType() The type this attribute belongs to.

getName() A textual identifier for this Attribute. Must be unique within the
master type.

isSearchable() Whether this attribute is searchable. If this is true, the attribute can
be used in search predicates.

setDataType() Set the data type.

setSearchable() Set whether this attribute should be searchable.

setMasterType() Set the master type.

Table 7. The contract for the interface Attribute

19

http://www.freesoft.org/CIE/RFC/822/


TINY SMALL MEDIUM

DT Data tenants 10 100 1000

CF Concurrency Factor 1 5 10

MDT Master Data Types/Tenant 20 100 100

TDT Transaction Data Types/Tenant 80 400 400

MDT Master Data Types Instances/MDT/Tenant 2 2 2

STI Search Type Instances 10,000 100,000 1,000,000

TI Time Interval 60 300 300

MINRA Minimum Reference Attributes on TDT 2 2 2

MAXRA Maximum Reference Attributes on TDT 15 15 15

Table 8. Parameter Profiles

Profile The profile needs to be one of the options shown in Table 8. The profile
Tiny is mostly meant for development purposes, to have a benchmark profile
available that runs with minimal resources and allows for a quick test. The profile
Small is for scenarios in which the system is expected to only accommodate a
small number of tenants. The profile Medium should be a realistic scenario for
many applications that are in need of an MTC-DB layer. We purposely omitted
terms such as Large and Very Large to allow these terms to be added in the
future, because it is to be expected that computer systems will keep scaling up
as the available computing power and storage space keep growing exponentially.

The parameters mentioned in Table 8 have the following meanings:

1. DT: Data Tenants. The number of data tenants that are created in the setup
script.

2. CF: Concurrency Factor. The number of threads each benchmark operation
of the main script will use. Since there are 7 operations, the total number of
concurrent threads the main script uses is 7 times CF.

3. MDT: Master Data Types. The number of master data types that are de-
fined in the metadata module. We define master data as data that does not
refer other data, but is referred to by transaction data.

4. TDT: Transaction Data Types. The number of transaction data types that
are defined in the metadata module. We define transaction data as data that
refers to MINRA to MAXRA (see below) master data records.

5. MDI: Master Data Type Instances. The number of master data type in-
stances per tenant per type that will be created in the setup step of the test
script.

6. STI: Search Type Instances. The number of search type instances. Used for
benchmarking the search (see section 3.2).

7. TI: Test Interval. The duration of the test in seconds.
8. MINRA. Minimum Reference Attributes. The minimum number of refer-

ence attributes on transaction data types.

20



9. MAXRA. Maximum Reference Attributes. The maximum number of ref-
erence attributes on transaction data types.

Aulbach script The Aulbach script checks if the implementation is a correct
MTC-DB implementation by testing if it is capable of representing the example
MTC data structure used in the paper by Aulbach et al.[12]. This example
consists of an Account table that is used by three tenants. One tenant uses the
table with an extension for the health care industry, one with an extension for
the automotive industry and one uses it without an extension.

Setup script The setup script sets up the MTC-DB implementation for running
the main script. To this end, it creates several synthetic tenants, users, types and
attributes. The amount of data it generates is heavily dependent on the chosen
profile (see Table 8). The following actions are performed in sequential order.

1. Call initializeSystem().
2. Call createTenant() to create a metadata tenant with the name ”Main-

Module”.
3. Call createUser() to create a user for the metadata module with the

name ”admin”.
4. Create MDT number of master data types in this metadata module. For

the name attribute, use the string ”MDT” concatenated with a sequential
number starting with 1.

5. Create TDT number of transaction data types in this metadata module.
Each transaction data type has a random number of MINRA to MAXRA
reference attributes to randomly picked master data types. For the name at-
tribute, use the string ”TDT” concatenated with a sequential number start-
ing with 1.

6. Create a dedicated search type in the metadata module that contains 5
number attributes for testing the conjunctive search and 5 number attributes
for testing the disjunctive search (see section 3.2).

7. Create DT tenants with createTenant() and create a user for each tenant
with createUser(). Also add the metadata tenant to each tenant using
addModule().

8. Create a dedicated search tenant and instantiate STI instances of the search
type in it. The number attributes for the conjunctive search are populated
with random integers in the range [1, 5

√
n] and the number attributes for the

disjunctive search are populated with random integers in the range [1, 5n]
(See section 3.2 for an explanation).

9. Instantiate MDI instances of master data types for each tenant.
10. Report the size on disk of the MTC-DB.

Main script The main script consists of seven operations that concurrently run
for TI seconds. Each operation runs in CF concurrent threads, so the total
number of threads is 7 times CF. The operations are:

21



1. Create Tenants. Every 5 seconds, create a new tenant with a random name
and a dependency on the module ”MainModule”. Report the total number
of tenants created and if it managed to achieve maximum performance.

2. Create Types. Every 500 milliseconds, create a new type with a random
name for a random tenant. Report the total number of types created and if
it managed to achieve maximum performance.

3. Create Attributes. Every 100 milliseconds, create a new searchable string
attribute on with a random name for a random transaction data type for a
random tenant. Reports the number of attributes created and if it managed
to achieve maximum performance.

4. Create Transaction Data Type Instances. Constantly create trans-
action data type instances. Because these have references to MINRA to
MAXRA master data types, this workload also includes retrieving master
data types by name. Report the total number of TDI’s created.

5. Load by ID. Constantly load previously created transaction data type in-
stances by ID. This workload also includes loading all the references of the
TDT to MDTs by ID. Reports the number of TDTs loaded.

6. Conjunctive Search. Constantly perform 5-way conjunctive (AND) searches.
Only the first result is retrieved. It is designed in such a way that each search
has about 63% chance of returning a result. Reports the number of conjunc-
tive searches performed per minute. See section 3.2 for more information.

7. Disjunctive Search. Constantly perform 5-way disjunctive (OR) searches.
Only the first result is retrieved. It is designed in such a way that each search
has about 63% chance of returning a result. Reports the number of disjunc-
tive searches performed per minute. See section 3.2 for more information.

Metrics The benchmark produces the following metrics:

1. Aulbach compliance: a boolean indicating whether the implementation
is able to represent the example MTC scenario described by Aulbach et al.
[12]. Every implementation needs to score true on this metric.

2. Size on disk: the total size on disk in MB of the MTC-DB after running
the setup script. There is no maximum indication. The lower the better.

3. Tenants created: the percentage of tenants created in relation to the max-
imum possible amount. This should be 100%.

4. Types created: the percentage of types created in relation to the maximum
possible amount. This should be 100%.

5. Attributes created: the percentage of attributes created in relation to the
maximum possible amount. This should be 100%.

6. TDI created per minute: the number of transaction data type instances
created per minute while running the main script. There is no minimum
indication. The higher the better.

7. TDI loaded by ID per minute: the number of transaction data type
instances loaded by ID per minute. There is no minimum indication. The
higher the better.

22



8. Conjunctive searches per minute: the number of conjunctive searches
performed per minute. There is no minimum indication. The higher the
better.

9. Disjunctive searches per minute: the number of conjunctive searches
performed per minute. There is no minimum indication. The higher the
better.

3.4 Developer Guide

To help developers utilizing this benchmark with minimal effort, we implemented
an example implementation in Java 8. This code is available under the MIT
Licence at: https://bitbucket.org/actfact/mtcdb-benchmark. De-
velopers can clone this Git repository and follow the instructions in the readme
file. To implement their own MTC-DB implementation, they will need to write
implementations for all the Java interfaces in the MTCB codebase. They are
encouraged to refer to the example MTC-DB implementation or even use it as
a starting point if they are unsure how to proceed. Of course it is also possible
to write a non-Java implementation, but in this case the developer will have to
first implement the API himself.

4 Evaluation

The evaluation consists of two parts. First we perform a conceptual evaluation,
in which we evaluate if this benchmark fulfills the requirements we formulated in
section 3.1. Second, we perform a practical evaluation. In this part, we discuss an
MTC-DB example implementation we developed and how we used it to evaluate
the usability of the benchmark.

4.1 Conceptual Evaluation

Realistic We defined a main module that contains the metadata for types that
all data tenants use. In a real world situation it will also be the case that a large
majority of metadata is the same for each tenant.

In the main script, concurrent users create new data, while other threads
concurrently perform metadata operations. Metadata changes are a small part
of the total workload of such applications, but it is important that regular data
creation is not blocked while these operations are being performed. It was shown
by Wevers that this is a significant problem for many Relational Databases [13].

Unambiguous We provide an implementation neutral specification and accom-
pany this with an example implementation in Java 8. So wherever the specifica-
tion leaves room for multiple interpretations, the example implementation can
be referred to.

23

https://bitbucket.org/actfact/mtcdb-benchmark


Comparable The benchmark specifies a small set of parameter profiles and
produces a small number of simple quantitative metrics. This enables easy and
objective comparison of different implementations that use the same profile.

Correct The Aulbach script is a minimal test that checks if the implementa-
tion is a real MTC-DB implementation. Currently no automated check is im-
plemented for ACID compliance. On a more general note, it is not possible to
automatically guarantee complete correctness. We can only check if the imple-
mentation is consistent in itself. To guarantee correctness an audit by a human
expert will always remain necessary.

Scalable The parameter profiles allow for benchmarking a number of scenarios
of different sizes.

Simple Instead of specifying a real world data model for the main module, we
chose to use synthetic types and attributes. The same goes for the scripts that
generate data and metadata: it is randomized and without meaning. Using a
real world scenario would make MTCB extremely complex and would decrease
its scalability and flexibility.

Independent We specify an API that contains the operations that should be
supported by the MTC-DB implementation. This API places no restrictions on
the MTC-DB implementation in terms of underlying platform. For example,
even though many implementations will use an RDBMS as underlying platform,
this is not implied in the API. It should be equally possible to implement the
MTC-DB in a document-oriented database, a functional database or any other
kind of persistent storage structure.

4.2 Practical Evaluation

For the practical evaluation, we developed a naive MTC-DB implementation.
This implementation was developed in Java 8 and PostgreSQL 9.6 and is schema
based: every tenant is defined in a separate schema. It is loosely based on what
Aulbach et al. call the Private Table Layout [12]. It is available on the same
repository as the benchmark itself, in the project mtcb-schemabased: https:
//bitbucket.org/actfact/mtcdb-benchmark.

We ran MTCB for this implementation on a Centos 7 server with an Intel
Xeon E3-2200 QuadCore CPU and 32 GB RAM. For each profile we ran the
main script 10 times and report the average (µ) as well as the coefficient of
variation (σµ ) in Table 9. The reason to run it 10 times was that we noticed
considerable differences between separate runs. This can be seen from the high
variation for some metrics. We did not benchmark this implementation for the
medium profile, because it seems to not be feasible for such a large scenario. We
estimate that running the setup script would not even finish in 48 hours.

24

https://bitbucket.org/actfact/mtcdb-benchmark
https://bitbucket.org/actfact/mtcdb-benchmark


Tiny Small

Aulbach compliance True True

Size on disk 138 MB 5,471 MB

µ (σ
µ

) µ (σ
µ

)

Tenants created 40% (0.09) 5% (0.00)

Types created 100% (0.00) 100% (0.00)

Attributes created 23% (0.51) 67% (0.29)

TDI created per minute 1,504 (0.47) 2,442 (0.17)

TDI loaded by ID per minute 144,585 (0.29) 168,722 (0.21)

Conjunctive searches per minute 85,461 (0.02) 9,074 (0.06)

Disjunctive searches per minute 665,173 (0.04) 580,297 (0.06)

Table 9. The benchmark result over 10 runs for a schema based implementation,
showing the average (µ) and the coefficient of variation (σ

µ
).

This implementation scores very well on some metrics. Most notably the
disjunctive search: more than half a million per minute for both profiles. Loading
TDIs is also fast.

On some of the other metrics the implementation scores very poorly. The
largest problem is tenant creation. The implementation fails to comply with the
requirement to create a new tenant every 5 seconds. For the small scenario, it
only creates 5% of the maximum. This means it takes about 100 seconds to
create a tenant. The reason for this is that in this implementation, for each
tenant creation the database must run DDL8 to create all the tables that are
defined in the metadata module. Aside from taking a lot of time, this also causes
the implementation to score poorly on the metric Size on disk. On top of this, the
DDL statements have a disruptive nature, irregularly causing operations such as
TDI Creation to be stalled for considerable times. This causes a high variation
for those operations.

Another interesting note is that the performance does not degrade much
when going from the tiny to the small profile. For some metrics, the performance
even increases. The most likely reason for this is that the medium profile has
a higher degree of concurrency, running in 35 threads, whereas the tiny profile
only runs in 7 threads. This allows the medium profile to maximize its use of
the hardware resources. However, the conjunctive search still degrades severely.
This is probably due to the stark increase in search data: 10 times as much in
the small profile.

8Data Definition Language. SQL statements that alter the data dictionary: mostly
CREATE TABLE and ALTER TABLE statements

25



5 Conclusion

These results prove that MTCB is implementable. They also show that a naive
schema per tenant RDBMS implementation is not sufficient, because it cannot
handle metadata modifications efficiently and causes a huge overhead in redun-
dant metadata storage. Future work should use this example implementation as
a baseline system. An interesting next step would be to create implementations
based on the schema-mapping techniques discussed by Aulbach et al. [12].

We believe that this benchmark is an important contribution to the commu-
nity of MTC-DB developers. Not only does it allow for objective comparison, it
also makes an attempt at a very precise definition of the concept of MTC-DB,
backed by a concrete implementation.

References

1. R. M. Locke, “The promise and perils of globalization: The case of
nike.,” MIT Working Paper, 2002. Downloaded 16 December 2016 from
https://ipc.mit.edu/sites/default/files/documents/02-007.pdf.

2. W. R. Friedrich and J. A. Van Der Poll, “Towards a methodology to elicit tacit do-
main knowledge from users,” Interdisciplinary Journal of Information, Knowledge,
and Management, vol. 2, pp. 179–193, 2007.

3. R. J. Wieringa, Design science methodology for information systems and software
engineering. Springer, 2014.

4. R. Krebs, A. Wert, and S. Kounev, Multi-tenancy performance benchmark for
web application platforms, vol. 7977 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 2013.

5. K. Shanley, “History and overview of the tpc,” 1998. Accessed 16 December 2016
on http://www.tpc.org/information/about/history.asp.

6. Transaction Processing Performance Council, “TPC BENCHMARK C Standard
Specification Revision 5.11,” 2010.

7. Transaction Processing Performance Council, “TPC BENCHMARK E Standard
Specification Version 1.14.0,” 2015.

8. S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson, I. Pandis,
and R. Stoica, “Tpc-e vs. tpc-c: Characterizing the new tpc-e benchmark via an
i/o comparison study,” SIGMOD Record, vol. 39, no. 3, pp. 5–10, 2010.

9. W. D. Smith, “Tpc-w: Benchmarking an ecommerce solution,” 2000. Accessed 16
December 2016 on http://www.tpc.org/tpcw/tpc-w_wh.pdf.

10. salesforce.com, “The force.com multitenant architecture: Understanding the de-
sign of salesforce.com’s internet application development platform,” 2008. Ac-
cessed 4 January 2017 on http://www.developerforce.com/media/
ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf.

11. C.-P. Bezemer and A. Zaidman, “Challenges of reengineering into multi-tenant
saas applications,” Delft University of Technology Software Engineering Research
Group. Technical Report Series, 2010.

12. S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-tenant
databases for software as a service: Schema-mapping techniques,” in SIGMOD ’08.
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pp. 1195–1206, ACM, 2008.

26

http://www.tpc.org/tpcw/tpc-w_wh.pdf
http://www.developerforce.com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf
http://www.developerforce.com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf


13. L. Wevers, “A persistent functional language for concurrent transaction process-
ing,” Master’s thesis, University of Twente, 2012.

27



28



Evaluating Multi-Tenant Customizable Database
Implementations

Wim van der Zijden

University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
ActFact Projects, Josink Esweg 8, 7545 PN Enschede,The Netherlands

w.vanderzijden@actfact.com

Abstract. For most companies IT activities distract from their main
activities and should therefore be outsourced whenever possible. How-
ever, many of those companies need highly customized OLTP software.
This need is fulfilled by Multi-Tenant Customizable OLTP. To build
such a platform there is a need for Multi-Tenant Customizable Databases
(MTC-DB). We designed four MTC-DB implementations on top of a tra-
ditional relational database: two Field Based approaches and two Row
Based approaches. We compared these approaches using a previously de-
signed MTC-DB benchmark. This benchmark supplies an example im-
plementation of the benchmark and a baseline MTC-DB implementation.
The test results show that each implementation has some metrics that
it scores best on. On some metrics the Schema Based baseline system
is fastest, namely the speed of conjunctive and disjunctive searches. We
conclude that future work should try to combine the four implementa-
tions and develop a smart query planner that can decide which execution
method is best for each individual query.

Keywords: Multi-Tenant Customizable, Multi-level customizability, OLTP,
PaaS, Database, Benchmark

1 Introduction

For most companies IT activities distract from their main activities and should
therefore be outsourced whenever possible. However, most existing cloud solu-
tions are not sufficient, because many companies are in need of highly customized
OLTP1 software. A solution for this predicament is Multi-Tenant Customizable
(MTC):

A single software solution that can be used by multiple organizations at
the same time and which is highly customizable for each organization
and user within that organization, by domain experts without a technical
background. [1]

1Online Transaction Processing. Applications whose main concern it is to persis-
tently and reliably process live data transactions and to facilitate reporting on this
data. An OLTP application is usually backed by a relational database.

29



This is especially interesting from a vendor point of view, because in compar-
ison to multiple single tenant solutions, it is much easier to deploy new tenants,
to update all tenants at once and to scale up.

These kind of applications need an MTC Database (MTC-DB) as a storage
structure. In this paper we discuss four different MTC-DB implementations and
use the benchmark MTCB that we introduced in previous work [1] to evaluate
them. To this end, we formulate the following technical research problem, using
the template proposed by Wieringa [2].

Improve the development of Multi-Tenant Customizable OLTP (MTC-
OLTP), by developing a Multi-Tenant Customizable Database (MTC-
DB) such that it is compliant with the benchmark MTCB [1] and scores
significantly higher on the benchmark’s metrics than the baseline system
in order to enable developers to use this MTC-DB to develop MTC-
OLTP platforms.

In previous work [1] we provide a more extensive motivation and description
of MTC-OLTP, as well as a problem analysis of existing on-premises OLTP and
a description of the application requirements for such systems.

2 Literature Review

2.1 MTCB: A Multi-Tenant Customizable DB Benchmark

In previous work we developed a benchmark for MTC-DBs called MTCB [1].
This benchmark specifies six interfaces that an MTC-DB should implement, and
defines nine metrics that are to be reported. Furthermore, it specifies three pa-
rameter profiles: tiny, small and medium. The use of these profiles allows for easy
comparison of MTC-DB implementations. See Table 1 for an overview of these
parameter profiles. Aside from the benchmark specification, there is an example
implementation available in Java 8 and a compliant MTC-DB implementation
in Java 8 and PostgreSQL 9.62.

This baseline MTC-DB implementation is called schema based and is similar
to what Aulbach et al. [3] call the Private Table Layout. The evaluation of this
implementation shows that it is fast in search queries, but very slow in metadata
operations, especially creating tenants, and also has a very large overhead in size
on disk because of redundancy of metadata in PostgreSQL’s data dictionary.
Being able to create tenants quickly and without much overhead is important,
because an MTC-OLTP should ideally offer a one click registration process that
makes it easy to try out the application.

This benchmark has a very pure view on what an MTC-DB is: it must be
fully customizable. This means that an approach such as the Extension Table
Layout as discussed by Aulbach et al. [3] is not sufficient, because this approach

2The example implementations are available on https://bitbucket.org/
actfact/mtcdb-benchmark

30

https://bitbucket.org/actfact/mtcdb-benchmark
https://bitbucket.org/actfact/mtcdb-benchmark


TINY SMALL MEDIUM

DT Data tenants 10 100 1000

CF Concurrency Factor 1 5 10

MDT Master Data Types/Tenant 20 100 100

TDT Transaction Data Types/Tenant 80 400 400

MDT Master Data Types Instances/MDT/Tenant 2 2 2

STI Search Type Instances 10,000 100,000 1,000,000

TI Time Interval 60 300 300

MINRA Minimum Reference Attributes on TDT 2 2 2

MAXRA Maximum Reference Attributes on TDT 15 15 15

Table 1. Parameter Profiles in the MTC-DB Benchmark [1]

assumes that a large part of the data model is the same for each tenant. In this
benchmark only very basic metadata concepts are part of the core data model:
the primitive types string, number, timestamp and boolean and the complex
types tenant, user, type and attribute.

2.2 Relational Databases

The Relational Database Management System (RDBMS) is by far the most
commonly used type of database in OLTP applications, and in fact, in any
application that is in need of persistent storage. Because of its widespread use
we will assume that the reader is familiar with relational databases, including
their design using Entity-Relationship Diagrams (ERD), the Structured Query
Language (SQL) that is used to manipulate them and the concept and purpose
of data normalization.

Despite their widespread use, RDBMS’s do not have native support for multi-
tenant customizability. In this section we will discuss how they can still be used
in such an environment.

Three Approaches to MTC-DBs Jacobs et al. [4] introduce three funda-
mentally different approaches to using a relational database as an MTC-DB.

– Shared machine: each tenant has its own database process, and multiple
tenants share the same machine. A strong advantage of this approach is
isolation between tenants, complemented with the disadvantage that sharing
data is complex. A major downside is that it requires massive duplication of
metadata of the core functionality of the platform.

– Shared Process: tenants share the same database process, but get their
own tables. This approach is favoured by the authors. A disadvantage that
the authors fail to mention is that this also requires duplication of the core

31



platform metadata in the DBMS’s data dictionary. It also forces the DBMS
to duplicate the query cache for each tenant.

– Shared Table: applications share tables. It scales better than shared process
and is also more efficient in pooling resources. The major problem of this
approach is that a lot of concerns that are normally handled by the DBMS,
must now be handled in the application. For example: access rights, query
optimization and constraint enforcement.

Schema-Mapping Techniques Aulbach et al. [3] describe seven ways to
provide mappings for single-tenant schemas to multi-tenant schemas. These are
described below. Figure 1 illustrates these techniques by showing the appropri-
ate data structure for these techniques using a simple example. In this example
there is an Account table that is used by three tenants: 17, 35 and 42. Tenant
17 has an extension for the health care industry and tenant 42 has an exten-
sion for the automotive industry. The Basic Layout is not illustrated, because
it cannot express this scenario because it does not support multi-tenant cus-
tomizability. Figure 1 only shows the data tables. Additional tables are needed
to store metadata like field names.

– Basic Layout. Each table has a tenant ID column and tables are shared
among tenants. This approach does not provide multi-tenant customizability
- instead, tenants must share customizations.

– Private Table layout. Each tenant has their own tables. This works quite
well for a limited amount of tenants. When there are many tenants, the Data
Dictionary of the database may grow too large to handle.

– Extension Table layout: A combination of the Basic and Private Table
layout. Tenants share tables, but extension tables are used for custom fields.
Extension tables may also be shared. This setup leads to less tables than in
the Private Table Layout, but the number of tables still grows proportionally
with the number of tenants.

– Universal table layout. This is a layout where one generic table is used
to store arbitrary entities. It has a tenant column, a table column, and a set
number of generic data columns (eg. 250). This approach has its origin in a
1983 paper by Maier and Ullman [5]. The main advantage of this approach
is that no DDL3 is required for adding new customizations. A downside is
that these generic columns do not allow for indexing. Another downside is
that the rows in this table will contain a large amount of null values. The
DBMS must be able to handle this efficiently.

– Pivot table layout. The value of each field is stored in a separate row
in a pivot table. For each data type there is a pivot table, eg: Pivot int,
Pivot str, etc. The advantage over the Universal Table Layout is that it
does not circumvent typing. Therefore, meaningful indexes can be created
on these tables.

3Data Definition Language. SQL Statements that alter the data dictionary such as
CREATE TABLE and ALTER TABLE.

32



Fig. 1. Schema mapping techniques by Aulbach et. al.[3] Gray columns indicate meta-
data.

33



– Chunk Table Layout. This layout combines multiple pivot tables into one
table. The values of multiple fields are stored in one row. These groups of
fields are called chunks. This approach has all the benefits of the Pivot Table
Layout, but reduces the number of rows needed. The price to pay for this is
that the query-transformation logic becomes more complicated.

– Chunk folding. This approach combines the Extension Layout with the
Chunk Table Layout. The application’s core entities are represented with
conventional tables and the extensions are modelled in chunk tables, one
chunk table for each conventional table.

Of these techniques, the Chunk Table Layout is proposed by the authors.
Its advantage over the Pivot Table Layout is a reduction of metadata overhead.
Another advantage is that the logical entity can be constructed from less rows.
The advantage over the Universal Table Approach is that it automatically in-
corporates a structure to add indexes. A clear disadvantage of this approach is
that the query transformation is much more complex, because the chunks need
to be resolved.

The Chunk Folding technique is also proposed by the author and is their
method of choice. Its main advantage over the Chunk Table Layout is that often
it may not be necessary to join the extension tables. Therefore, a lot of the
times the performance may be similar to a Basic Table Layout structure. Its
main advantage over the Universal Table Layout is that the tables can contain
much less columns.

An important characteristic of these techniques is that the size of the chunks
can be manipulated with. This way, a middle ground can found between the
Universal Table Layout and the Pivot Table Layout.

2.3 Document Databases

An interesting alternative to a relational database are document databases such
as MongoDB [6]. The characteristics of these databases is that they do not re-
quire DDL and that they are optimized for navigational access through embed-
ded document structures. However, a central design principle of these databases
is to store data unnormalized. This approach seems unsuitable for the problem
at hand, because we in fact need to further normalize our data. For a regular
relational database, the data is normalized for a single tenant. In this research,
we are looking for an effective way to normalize over multiple tenants, i.e. re-
move the data redundancy that exists over multiple tenants. Because documents
databases move in the opposite direction, this makes them unsuitable by defi-
nition. However, as a secondary storage they will probably be very interesting.
For example, as an ”eventually consistent” database that is optimized for full
text search.

2.4 Graph Databases

A new upcoming paradigm in databases is the graph database, such as Neo4j
[7]. In a graph database, the relations between entities are first class citizens, as

34



opposed to relational databases, where the entities are first class citizens. This
makes graph databases very promising for business applications, because it is
much faster to navigate through a path, than in SQL, where each navigation to
a related table requires an expensive join-operation.

However, we were not able to find any previous research into multi-tenant
setups with graph databases. Another problem is that graph databases are much
less well-studied than relational databases, and therefore it is hard to know how
the internals work exactly, and what kind of setups will increase or decrease
performance. We can also assume that the stability will be lower than with one
of the major RDBMS’s.

2.5 Functional Databases

The functional database, sometimes referred to as a persistent functional pro-
gramming language, is yet another alternative for the Relational Database. Ex-
tensive research has been done in this topic, for example by Wevers [8]. However,
currently there is no production ready implementation of this concept in sight,
which makes it unsuitable for our purposes.

2.6 Column Based Databases

There also exist relational databases that break with the traditional row-based
paradigm, and implement a column based approach instead. This seems similar
to what Aulbach et al. [3] call a Pivot Table Layout. The most notable imple-
mentation of such a database is MonetDB as described by Manegold et al. [9].
However, this database does not seem suitable for the following reasons:

1. Even though it has been in development for over 20 years, it seems stuck in
an academic, experimental phase. It does not seem to be used in production
environments very much. We have not been able to find examples of enter-
prise production systems using MonetDB. Another sign that it is hardly in
use is the lack of questions on the popular programming Q&A site Stack
Overflow: only about 275 questions with the tag ’monetdb’. As a compari-
son: there are about 12,000 questions with the tag ’neo4j’, and around 63,000
questions with the tag ’postgresql’4.

2. MonetDB does not natively support multi-tenancy. It is an alternative im-
plementation of an RDBMS and as such does not necessarily solve any of
the problems discussed here.

3 Approaches

For designing our own approaches we used the benchmark discussed in section
2.1. We reused the provided Java 8 API and developed four implementations,

4These numbers were based on information on http://stackoverflow.com/
tags on 7 January 2017

35

http://stackoverflow.com/tags
http://stackoverflow.com/tags


based on two distinct approaches, both based on an RDBMS. The reasons we
chose a classic SQL-based RDBMS are:

1. Stability: SQL databases have been the number one choice for enterprise
applications and have proven to be very stable.

2. Well-known: the mechanics, architecture and theory behind SQL Databases
is well-known and well-documented.

3. Lack of viable alternatives. As this point in time, there simply do not
seem to be many viable alternatives.

The two approaches are based on the techniques discussed in 2.2. We call
them the Field Based and Row Based approaches. They are based respectively on
the Universal Table Layout and the Pivot Table Layout. We chose these methods
because these are the most fundamental extremes. For each approach we also
developed an alternative implementation that differ in the way the conjunctive
and disjunctive search search were implemented.

One shortcoming of the description of the approaches discussed by Aulbach
et al. is that the metadata model is not considered. The metadata model contains
data such as field names. In our model we design the metadata model in detail,
partly because it is required by the MTC-DB Benchmark that we are using,
but also because the metadata model is an essential part of any MTC-DB. For
example, it would be impossible to account for modularity without including
the metadata model in the implementation. Modularity is necessary to allow
metadata to be shared over multiple tenants, which is a crucial part of an MTC-
DB.

3.1 Field Based Approach

Because the Row Based Approach is built as an extension of the Field Based
Approach, we first discuss the Field Based Approach and then discuss the differ-
ences in the Row Based Approach. The Field Based Approach is similar to the
Pivot Table Layout as discussed in 2.2. The main difference is that this model
also accounts for modularity - metadata can be reused over multiple tenants. An-
other difference is that instead of having one table for each database datatype,
it uses just one table for all data. This is cleaner and makes little difference in
performance, because we can create indexes that ignore NULL values.

The ERD5 for the Field Based Approach is shown in figure 2. Each entity of
this diagram is discussed below.

Tenant The basic meaning of a tenant is something like ”an organizational
entity which rents a multi-tenant SaaS solution.” [10] In the MTC-DB Bench-
mark, this definition of tenant has been extended. To allow for modularity and
shareable metadata over multiple tenants, a distinction is made between data
tenants and module tenants. A data tenant is a tenant that holds isolated master

5Entity Relationship Diagram. A common technique to model relational databases.

36



Fig. 2. ERD for the Field Based Approach.

and transaction data for one organization, and little to no metadata. A module
tenant is a tenant that only holds shared metadata that can be used by data
tenants and other module tenants.

Each row in the database references a single tenant, the owner of the record.
Tenants may be dependent on other tenants, as defined by the recursive many-
to-many relationship in Figure 2.

Type Table and Attribute Table The Type Table is used to define the types
in the system. The Attribute Table is used to define attributes on these types.
Types have 0 or more attributes. A type with 0 attributes is a simple type and
a type with multiple attributes is a complex type. An example of a simple type
is Number. An example of a complex type is Account, as used in the running
example illustrated in Figure 1. Each attribute has two references to a type: the
type that it belongs to, and its datatype. The datatype will often be a primitve
type, but may be a complex type as well. For example, let’s say we have the
type Order. Order may have the following attributes:

1. DocNumber: datatype String
2. Customer: datatype Customer
3. OrderDate: datatype Timestamp
4. GrandTotal: datatype Number
5. IsShipped: datatype Boolean

The Attribute Table also has a reference to the Tenant in which it was defined.
This is needed because an attribute may be defined in a different tenant than
the tenant that defined its type.

37



Lookup Table The Lookup Table stores all the actual tenant data, in other
words, the instantiations of complex types. It uses one row per field and has a
separate column for each data type: PO, Text, String, Number, Timestamp and
Boolean. PO stands for persistent object and is a reference to the instantiation of
another complex type. The others are primitive types. In a particular row, only
one of these columns will hold a value, the others will be empty. For each of these
columns an index is maintained, e.g.: (Attribute, POValue, Row), (Attribute,
StringValue, Row), etc. Row is included in these indexes to enable the query
optimizer to do an ”index only scan” - it can use just the index to get the row
id, and does not need to access the Lookup Table itself. Finally, it also has an
index on (Attribute, Row). This index is needed for updating values.

Considerations An important aspect of this approach is that every single field
is indexed. This could have a big adverse impact on the performance of inserting
and updating data. If this is the case we could extend the model with a second
Lookup Table without indexes on the value columns and use this table to store
the values for attributes that do not have to be indexed.

Fig. 3. Example data for the metadata tables using the running example from Figure
1.

38



Fig. 4. Example data for Field Based approach using the running example from Figure
1. Read in combination with the metadata in Figure 3.

Example In Figure 3 and Figure 4 we show how the running example by
Aulbach et al. from Figure 1 can be represented in this table structure. To
increase the readability of this example, whenever an ID references a record in a
different table, the name of that record is added in parenthesis. In the Lookup
Table, some unused columns have been left out, such as TimestampValue and
BooleanValue.

3.2 Row Based Approach

Because the Row Based Approach is an extension of the Field Based Approach,
we will only discuss the differences with the Field Based Approach. Its ERD is
shown in Figure 5.

PO Table The main difference is that we have an extra table: PO. PO stands
for persistent object. This table stores all data for all tenants, using one row per
instance. This is in contrast with the Lookup Table in the Field Based Approach,
which uses one row for each field.

The PO Table has one column that refers to the tenant owner of the record,
one column referring to the type that it is an instance of, and 250 generic variable
length string columns, named c0 through c249. These columns are used to store
the attribute values. When storing data, the values are converted to strings,
and when retrieving the data, the values are converted from strings back to
their original datatype. The Attribute Table has an extra column ColNo that
indicates which generic column is used to store the values for that attribute.

39



Fig. 5. ERD for the Row Based Approach

Despite using the PO Table to store all data, the Lookup Table from the
Field Based Approach is still used as well, but only for storing values for indexed
attributes.

Example In Figure 6 we show how this model can be used to represent the
running example by Aulbach et al. from Figure 1. To increase the readability of
this example, whenever an ID references a record in a different table, the name
of that record is added in parenthesis. The Lookup Table has been left out,
because it is only used for indexing in this model, so not needed to represent the
example. This example should be understood in combination with the example
of Figure 3.

3.3 Query Transformation

Based on these two approaches, we developed four implementations: Field Based,
Field Based Alternative, Row Based and Row Based Alternative. In this section
we will discuss how a number of typical OLTP queries were implemented in these
implementations. For this we will use the running example from Figure 1. First
we will show what the query would look like in the Private Table Layout, then
we will show how these were implemented. The metadata is queried separately,
but we will not discuss this, because this is very straightforward.

Creating a new instance

Create a new Account for Tenant 42 with name Small and Dealers 10

40



Fig. 6. Example data for Row Based approach using the running example from Figure
1. Read in combination with the metadata in Figure 3.

41



For this query type there is no difference in the alternative implementations.
The Field Based Approach inserts one row into the Lookup Table for each non-
null attribute. The Row Based Approach inserts one row into the PO Table, but
also one row into the Lookup Table for each non-null indexed attribute.

Private Table Layout:

INSERT INTO T42_Account (ID, Name, Dealers)
VALUES (5, ’Small’, 10)

Field Based and Field Based Alternative:

INSERT INTO Lookup (Tenant, Type, Attribute, Row,
StringValue, NumberValue)

VALUES
(17, 2, 0, 5, ’Small’, NULL),
-- 17=Hospital X, 2=Account, 0=Name
(17, 2, 3, 5, NULL, 10)
-- 17=Hospital X, 2=Account, 3=Beds
-- Only non-null attributes are inserted

Row Based and Row Based Alternative:

INSERT INTO PO (Tenant, Type, ID, c0, c3)
VALUES (17, 2, 5, ’Small’, ’10’)
-- 17=Hospital X, 2=Account
-- Additional inserts in the Lookup Table are needed for each

attribute that is indexed

Update existing instance

Update the number of beds to 150 for the Account with ID 1 in Tenant
17

For this query type, there is no difference in the alternative implementations.
If the field is updated from non-null, the Field Based Approach performs the
update statement below. If it is updated from null, then the insert statement
from section 3.3 is used. If the field is updated from non-null to null, then a delete
statement is used. The Row Based Approach updates the PO Table, but also
needs a similar statement as the Field Based Approach when updating indexed
attributes.

Private Table Layout:

UPDATE T17_Account
SET beds = 150
WHERE ID = 1

Field Based and Field Based Alternative:

42



UPDATE Lookup
SET NumberValue = 150
WHERE Row = 1
AND Attribute = 2 -- Beds
-- If the value is updated from null, this should be an

insert.

Row Based and Row Based Alternative:

UPDATE PO
SET c1 = ’150’
WHERE ID = 1

Disjunctive Search

Select all rows from Account for Tenant 17 where name is ’Acme’ or beds
equals 1042

This query was implemented differently in each implementation. In Field
Based, multiple queries are combined with UNION to achieve the result. In Field
Based Alternative, no UNION, but only JOIN is used. In both cases the query re-
turns 1 row per field, ordered by row. The object is constructed in the application
layer.

In Row Based a similar method as in Field Based is used, but it returns one
row per instantiation. In Row Based Alternative the Lookup Table is not used,
and instead the unindexed PO Table is queried directly.

Private Table Layout:

SELECT * FROM T17_Account
WHERE Name = ’Acme’
OR Beds = 1042

Field Based:

SELECT l.*
FROM Lookup l
JOIN Lookup l0
ON l0.Attribute = 0 -- Name
AND l0.StringValue = ’Acme’
AND l0.Row = l.Row
WHERE l.Tenant = 17 -- Hospital X
AND l.Type = 2 -- Account
UNION
SELECT l.*
FROM Lookup l
JOIN Lookup l0
ON l0.Attribute = 2 -- Beds

43



AND l0.NumberValue = 1042
AND l0.Row = l.Row
WHERE l.Tenant = 17 -- Hospital X
AND l.Type = 2 -- Account
ORDER BY Row
-- Returns a row for each non-null attribute in Account

Field Based Alternative:

SELECT l.*
FROM Lookup l
JOIN Lookup l0
ON l0.Attribute = 0 -- Name
AND l0.Row = l.Row
JOIN Lookup l1
ON l1.Attribute = 2 -- Beds
AND l1.Row = l.Row
WHERE l.Tenant = 17 -- Hospital X
AND l.Type = 2 -- Account
AND (l0.StringValue = ’Acme’
OR l1.NumberValue = 1042)
ORDER BY l.Row
-- Returns a row for each non-null attribute in Account

Row Based:

SELECT po.*
FROM PO
JOIN Lookup l0
ON l0.Attribute = 0 -- Name
AND l0.StringValue = ’Acme’
AND l0.Row = po.ID
WHERE po.Tenant = 17 -- Hospital X
AND po.Type = 2 -- Account
UNION
SELECT po.*
FROM PO
JOIN Lookup l0
ON l0.Attribute = 2 -- Beds
AND l0.NumberValue = 1042
AND l0.Row = po.ID
WHERE po.Tenant = 17 -- Hospital X
AND po.Type = 2 -- Account

Row Based Alternative:

SELECT *
FROM PO
WHERE Tenant = 17 -- Hospital X

44



AND Type = 2 -- Account
AND (c0 = ’Acme’
OR c2 = ’1042’)

Conjunctive Search

Select all rows from Account for Tenant 17 where name is ’Gump’ and
hospital is ’State’

As with the disjunctive search, this query was implemented differently in each
implementation. Field Based uses only JOIN, and Field Based Alternative uses
INTERSECT to merge intermediate results. Row Based uses only JOIN as well,
and Row Based Alternative skips the Lookup Table and queries the unindexed
PO Table directly.

Private Table Layout:

SELECT *
FROM T17_Account
WHERE Name = ’Gump’
AND Hospital = ’State’

Field Based:

SELECT l.*
FROM Lookup l
JOIN Lookup l0
ON l0.Attribute = 0 -- Name
AND l0.Row = l.Row
JOIN Lookup l1
ON l1.Attribute = 1 -- Hospital
AND l1.Row = l.Row
WHERE l.Tenant = 17 -- Hospital X
AND l.Type = 2 -- Account
AND l0.StringValue = ’Gump’
AND l1.StringValue = ’State’
ORDER BY Row
-- Returns a row for each non-null attribute in Account

Field Based Alternative:

SELECT l.*
FROM Lookup l
JOIN Lookup l0
ON l0.Attribute = 0 -- Name
AND l0.StringValue = ’Gump’
AND l0.Row = l.Row
WHERE l.Tenant = 17 -- Hospital X
AND l.Type = 2 -- Account

45



INTERSECT
SELECT l.*
FROM Lookup l
JOIN Lookup l0
ON l0.Attribute = 1 -- Hospital
AND l0.StringValue = ’State’
AND l0.Row = l.Row
WHERE l.Tenant = 17 -- Hospital X
AND l.Type = 2 -- Account
ORDER BY Row
-- Returns a row for each non-null attribute in Account

Row Based:

SELECT l.*
FROM PO
JOIN Lookup l0
ON l0.Attribute = 0 -- Name
AND l0.Row = po.ID
JOIN Lookup l1
ON l1.Attribute = 1 -- Hospital
AND l1.Row = po.ID
WHERE po.Tenant = 17 -- Hospital X
AND po.Type = 2 -- Account
AND l0.StringValue = ’Gump’
AND l1.StringValue = ’State’

Row Based Alternative:

SELECT *
FROM PO
WHERE Tenant = 17 -- Hospital X
AND Type = 2 -- Account
AND c0 = ’Gump’
AND c1 = ’State’

4 Evaluation

Because we implemented the approaches directly on the Java API of the bench-
mark MTCB [1], running the benchmark to evaluate them required no extra
effort. For each approach we ran the main script ten times for each profile. The
result is show in Table 2. For each metric we report the average (µ) and the co-
efficient of variation (σ

µ ), unless for Size of disk, because this is reported by the
setup script, which was only run once for each approach for each profile. We also
include the results for the baseline system provided by MTCB, a schema based
implementation. We did not run this baseline for the Medium profile because
we estimated that it would take over 48 hours for it to even finish running the

46



F
ie

ld
B

a
se

d
F

ie
ld

B
a
se

d
A

lt
R

ow
B

a
se

d
R

ow
B

a
se

d
A

lt
S
ch

em
a

B
a
se

d
µ

(
σ µ

)
µ

(
σ µ

)
µ

(
σ µ

)
µ

(
σ µ

)
µ

(
σ µ

)

T
IN

Y
S
iz

e
o
n

d
is

k
(M

B
)

3
6

3
6

3
8

3
8

1
3
8

T
D

I
cr

ea
te

d
p

er
m

in
u
te

5
,6

5
7

(0
.0

8
)

5
,5

2
3

(0
.0

8
)

4
,1

2
9

(0
.2

1
)

6
,0

0
3

(0
.1

4
)

1
,5

0
4

(0
.4

7
)

T
D

I
lo

a
d
ed

b
y

ID
p

er
m

in
u
te

1
0
8
,7

9
7

(0
.2

8
)

1
3
6
,0

8
6

(0
.3

6
)

4
9
,6

8
5

(0
.3

1
)

5
1
,2

7
9

(0
.2

3
)

1
4
4
,5

8
5

(0
.2

9
)

C
o
n
ju

n
ct

iv
e

se
a
rc

h
es

p
er

m
in

u
te

6
4
1

(0
.1

1
)

5
1
5

(0
.1

0
)

6
3

(0
.1

1
)

2
2
,0

0
0

(0
.1

4
)

8
5
,4

6
1

(0
.0

2
)

D
is

ju
n
ct

iv
e

se
a
rc

h
es

p
er

m
in

u
te

2
6
3
,9

9
4

(0
.0

4
)

6
0

(0
.1

4
)

6
3
,9

2
4

(0
.0

3
)

1
1
,6

6
5

(0
.0

5
)

6
6
5
,1

7
3

(0
.0

4
)

S
M

A
L
L

S
iz

e
o
n

d
is

k
(M

B
)

2
9
9

2
9
8

3
2
8

3
2
8

5
,4

7
1

T
D

I
cr

ea
te

d
p

er
m

in
u
te

4
,1

6
3

(0
.1

3
)

4
,8

9
3

(0
.0

6
)

4
,3

6
5

(0
.1

0
)

8
,7

0
2

(0
.0

9
)

2
,4

4
2

(0
.1

7
)

T
D

I
lo

a
d
ed

b
y

ID
p

er
m

in
u
te

1
4
7
,3

9
1

(0
.3

1
)

1
5
3
,5

2
8

(0
.2

4
)

5
0
,6

0
1

(0
.4

1
)

6
1
,3

7
7

(0
.3

7
)

1
6
8
,7

2
2

(0
.2

1
)

C
o
n
ju

n
ct

iv
e

se
a
rc

h
es

p
er

m
in

u
te

1
0

(0
.0

0
)

4
8

(0
.2

8
)

1
0

(0
.0

3
)

2
,5

3
3

(0
.0

1
)

9
,0

7
4

(0
.0

6
)

D
is

ju
n
ct

iv
e

se
a
rc

h
es

p
er

m
in

u
te

2
0
1
,6

8
1

(0
.3

0
)

1
3

(0
.0

4
)

5
6
,9

0
9

(0
.2

1
)

1
,2

3
8

(0
.0

1
)

5
8
0
,2

9
7

(0
.0

6
)

M
E
D
IU

M
S
iz

e
o
n

d
is

k
(M

B
)

2
,9

0
8

2
,9

0
6

3
,2

0
7

3
,2

0
5

N
/
A

T
D

I
cr

ea
te

d
p

er
m

in
u
te

6
6
6

(0
.0

3
)

7
6
8

(0
.0

4
)

3
,0

6
7

(0
.5

4
)

9
,3

2
3

(0
.0

2
)

N
/
A

T
D

I
lo

a
d
ed

b
y

ID
p

er
m

in
u
te

1
3
2
,3

0
8

(0
.3

4
)

1
4
2
,6

6
1

(0
.4

0
)

5
4
,8

0
8

(0
.2

8
)

6
2
,9

5
0

(0
.3

2
)

N
/
A

C
o
n
ju

n
ct

iv
e

se
a
rc

h
es

p
er

m
in

u
te

1
0
5

(0
.0

1
)

4
(0

.0
5
)

3
2

(0
.3

6
)

2
6
0

(0
.0

2
)

N
/
A

D
is

ju
n
ct

iv
e

se
a
rc

h
es

p
er

m
in

u
te

2
0
0
,9

8
1

(0
.0

2
)

4
(0

.0
0
)

6
0
,1

3
6

(0
.0

3
)

1
2
4

(0
.0

2
)

N
/
A

T
a
b
le

2
.

M
a
in

b
en

ch
m

a
rk

re
su

lt
s

fo
r

1
0

ru
n
s

fo
r

a
ll

p
ro

fi
le

s,
sh

ow
in

g
th

e
av

a
ra

g
e

(µ
)

a
n
d

th
e

co
effi

ci
en

t
o
f

va
ri

a
ti

o
n

(
σ µ

).

47



setup script. The hardware that the benchmark was run on is a Centos 7 server
with 32 GB RAM and an Intel Xeon E3-2200 Quad Core CPU.

The metrics Aulbach compliance, Tenants created, Types created and At-
tributes created were omitted from the results table because all of our approaches
score 100% on these for all profiles. However, the Schema Based approach does
fail the Tenants created and Attributes created metrics, as discussed in previous
work [1].

All implementations pass the basic Aulbach compliance test, which means
that they are capable of representing the running example by Aulbach et al. as
discussed in Section 2.2.

In terms of Size on disk, the Row Based methods have about a 10% overhead
in comparison with the Field Based methods for maintaining the PO Table.
There is hardly any compensation in terms of the size of the Lookup Table,
because nearly all attributes in MTCB are indexed. Both approaches improve
greatly on the Schema Based approach. The reason that Schema Based is about
20 times as big for the Medium profile is that each schema adds its own duplicate
metadata to the PostgreSQL data dictionary.

All our approaches are fully compliant with the metadata creation metrics
Tenants created, Types created and Attributes created. This is because in our
approaches this comes down to little more than adding a row to a table. In
Schema Based expensive DDL operations have to be executed, which is why this
approach fails to be compliant. It is also the reason that the setup script for
Schema Based is so slow.

Massive differences can be seen in the results for the metrics Conjunctive
searches per minute and Disjunctive searches per minute. The Schema Based
Approach vastly outperforms the other approaches on these metrics. From the
other approaches, the best achiever for the disjunctive search is Field Based, at
200,000 for the Medium profile. The worst achiever is Field Based Alt, at only
4 per minute. It is peculiar that this difference is so massive, because the Field
Based Alternative uses a query that is functionally equivalent to the one used
by Field Based. The reason is that in the Field Based Approach the PostgreSQL
query planner fails to use the Number Value Index (Attribute, NumberValue,
Row). Other relational databases may not make this mistake.

For the Conjunctive search, nearly all implementations perform quite poor.
But aside from the Schema Based implementation, the Row Based Alternative
clearly outperforms the others. The Row Based Alternative does not use the
Lookup Table, but queries the unindexed PO Table directly. It turns out that
this is the best strategy for the Conjunctive search in this benchmark. The reason
for this is that the attribute values have very low selectivity: there are only 5

√
n

distinct values for a search type that has n instances. In these cases, it is much
faster for the DBMS to simply retrieve all instances for that type and tenant
and iterate over all of them.

The TDI created per minute results shows an anomaly. The Row Based Al-
ternative unexpectedly outperforms Row Based, but they only differ in how the
conjunctive and disjunctive search were implemented. The reason is that the

48



TDI creation metric uses a disjunctive search to retrieve Master Data Type In-
stances by name. Because there are only 2 instances per tenant, this predicate
also has a very low selectivity, so it is better to skip the index.

Some metrics show a quite high coefficient of variation. For example, the
metric TDI loaded per minute shows values between 0.23 and 0.40. There are
a lot of factors influencing the performance of PostgreSQL. This is one of the
downsides of implementing the MTC-DB on an existing RDBMS. When building
and benchmarking a system that was built from scratch, it should be much easier
to get consistent test results. However, the variation is still low enough to draw
conclusions from the results.

5 Conclusion

These benchmark results show that in general our approaches are viable. On
nearly all metrics there is at least one approach that scores very well, except
for the conjunctive search. However, the conjunctive search may be useful to
benchmark, but is a very extreme scenario: in the Medium profile it is making
a selection out of 1,000,000 records based on five attributes with extreme bad
selectivity. In a production scenario, we could block such queries for regular users
and only allow them for premium users.

It seems that each approach has its merits, so it is not possible to conclude
that one approach is the best. For searching, sometimes it is best to use just
the Lookup Table, and sometimes it is best to skip it completely and query the
unindexed PO Table. We recommend future work to look into a hybrid approach
that combines the Field Based and Row Based approaches. This hybrid approach
should contain a smart query planner that uses statistics and machine learning
to decide the best query to use.

References

1. W. van der Zijden, “Multi-tenant customizable database benchmark,” 2017. Mas-
ter’s paper, University of Twente.

2. R. J. Wieringa, Design science methodology for information systems and software
engineering. Springer, 2014.

3. S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-tenant
databases for software as a service: Schema-mapping techniques,” in SIGMOD ’08.
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pp. 1195–1206, ACM, 2008.

4. D. Jacobs and S. Aulbach, “Ruminations on multi-tenant databases,” in Daten-
banksysteme in Business, Technologie und Web (BTW 2007), 12. Fachtagung des
GI-Fachbereichs ”Datenbanken und Informationssysteme”, DBIS, 2007.

5. D. Maier and J. D. Ullman, “Maximal objects and the semantics of universal
relation databases,” ACM Transactions on Database Systems, vol. 8, no. 1, pp. 1–
14, 1983.

6. S. Chickerur, A. Goudar, and A. Kinnerkar, “Comparison of relational database
with document-oriented database (mongodb) for big data applications,” in 2015

49



8th International Conference on Advanced Software Engineering & Its Applications
(ASEA), pp. 41–47, IEEE, 2015.

7. C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A comparison
of a graph database and a relational database,” in ACM SE ’10 Proceedings of the
48th Annual Southeast Regional Conference, ACM, 2010.

8. L. Wevers, “A persistent functional language for concurrent transaction process-
ing,” Master’s thesis, University of Twente, 2012.

9. S. Manegold, M. L. Kersten, and P. Boncz, “Database architecture evolution: Mam-
mals flourished long before dinosaurs became extinct,” Proceedings of the VLDB
Endowment, vol. 2, no. 2, pp. 1648–1653, 2009.

10. C.-P. Bezemer and A. Zaidman, “Challenges of reengineering into multi-tenant
saas applications,” Delft University of Technology Software Engineering Research
Group. Technical Report Series, 2010.

50


	 MTCB: A Multi-Tenant Customizable database Benchmark 
	 Evaluating Multi-Tenant Customizable Database Implementations 

