

BACHELOR THESIS

THE TRACEABILITY OF

MEDICAL EQUIPMENT

THROUGH HOSPITALS AND

RETIREMENT HOMES

Dennis Rieffe

S1239619

CREATIVE TECHNOLOGY & INDES B.V.

EXAMINATION COMMITTEE:

CHAIRMAN: O. BANOS LEGRAN, PHD

CRITICAL OBSERVER: DR. IR. B.J.F. VAN BEIJNUM

EXTERNAL MEMBER: E. WOLDRING, MSC

18-01-2017

 ii

 iii

“The wisest men follow their own direction”

Euripides (484 BC – 406 BC)

 iv

 v

Abstract

Staff working in healthcare and retirement homes is facing high workloads and accordingly high

stress levels are reported by healthcare personal. Healthcare staff has to work in an effective way to

reduce their workload. In hospitals and retirement homes valuable time is lost when searching for

medical devices and supporting aids like lifts, beds, etc. Another disadvantage of lost equipment is

that the required maintenance is not conducted at the correct moment. A system that easily tracks and

finds such devices would save valuable time and accordingly would reduce the work stress of

healthcare staff and improve the quality of work. This thesis describes the feasibility study of a simple

and low cost tracking system for medical devices based on existing IT infrastructure available in

every hospital and retirement homes nowadays: A Wi-Fi network.

An indoor Wi-Fi fingerprint system was developed, tested and evaluated. This study has shown that a

tracking system based on Wi-Fi position is feasible.

Even though the current system is functional, it is recommended that the interface, hardware and

implementation method are improved before commercialisation.

 vi

 vii

Acknowledgements

Thank you very much to Oresti Banos for being my supervisor and helping me to the finish line. The

support was very helpful and appreciated. I enjoyed the freedom and the trust he gave me to explore

my own possibilities but also the extensive and helpful feedback he provided when asked for.

I would also like to thank Bert-Jan van Beijnum for his guidance and for reviewing my work. His

welcome advice kept me on to the right path.

A special thanks to Erik Woldring and the personnel from Indes. I am very glad for the chances and

opportunities Indes gave me. The way the project was set up and the given freedom allowed me to

learn a lot from the experience. Moreover, advice was always given when solicited.

 viii

Table of contents

Abstract ... v

Acknowledgements ... vii

Table of contents ..viii

List of figures .. ix

List of tables ... x

List of boxes .. xi

List of abbreviations and acronyms .. xii

1. Introduction ... 1

1.1. Defining scope ... 1

1.2. Research questions .. 2

2. State of the art ... 3

2.1. Measurement principles .. 3

2.2. Time of flight .. 3

2.3. Angle of arrival ... 5

2.4. Signal strength ... 6

2.5. Signal behaviour .. 7

2.6. Filter .. 10

2.7. Wireless communication technologies .. 11

3. Requirement analysis .. 14

3.1. Introduction of stakeholders .. 14

3.2. Overview of interview findings ... 14

3.3. List of requirements .. 16

4. System design ... 18

4.1. Choice of technique ... 18

4.2. Advantages and disadvantages .. 19

4.3. Architecture ... 20

5. Implementation ... 24

5.1. Tag ... 24

5.2. Server .. 28

6. Evaluation ... 40

6.1. Setup and method for searching times experiment.. 40

6.2. Experimental results: searching times ... 42

6.3. Setup and method for accuracy experiment .. 42

6.4. Experimental results: accuracy .. 43

6.5. Discussion ... 45

6.6. Evaluation of requirements ... 47

7. Conclusion and future work .. 49

 ix

7.1. Conclusion ... 49

7.2. Future work ... 50

8. References ... 51

Appendix A ... 52

Appendix B ... 53

List of figures

Figure 1: Schematic of the TOA localization in two dimensions. The two sided arrows indicate the

distance from the transmitters (at (x1,y1) and (x2,y2)) to the object (red diamond). The object could

theoretically be at both intersections of the object; further analysis of the available data or additional
information should determine which location to eliminate [3]. .. 4
Figure 2: Schematic of the AoA localization in two dimensions. (x1, y1) and (x2, y2) are two

transmitters and the red diamond at (x,y) is the object. The two sided arrows indicate the distance

between the transmitters and the object. The angles θ1 and θ2 are shown by the circular arcs [3]. 5
Figure 3: Schematic of the propagation of a signal from a directional antenna [3]. 6
Figure 4: Schematic illustration of the structure of an antenna array. The distance d indicates the

distance between each antenna and θ indicates the angle of arrival [5]. ... 6
Figure 5: A example of how signals travel through a building. The blue dots represent the

transmitters. The further away from the transmitters the weaker the signal becomes. Red represents

the strongest signal and blue the weakest signal. The RSSI value from different transmitters are

collected at different locations and stored in a database [8]. .. 7
Figure 6: Schematic of the attenuation principle. The amplitude of a signal decreases over time. 8
Figure 7: Schematic of the principle of absorption. The undulating lines indicate where the signal was

absorbed into a materials [10]. The horizontal line indicates the change in material. 8
Figure 8: Schematic of the principle of reflection [10]. The horizontal line indicates the change in

material. .. 8
Figure 9: Schematic of the principle of Scattering. A signal encounters an object (dot) and scatters in

all directions [10]. .. 9
Figure 10: Schematic of the principle of refraction. When encountering a new material, the signal

bends to another, new direction. The horizontal line indicates the change in material [10]. 9
Figure 11: Schematic of the principle of diffraction, the signal encounters an object and travels around

the object [10]. The vertical interrupted line represents an obstacle that causes the signal to bend. 10
Figure 12: Schematic illustration of the multipath effect. Two or more signals originating from the

same transmitter arrive simultaneously at the same receiver. Both waves may have travelled different

paths. [11]. .. 10
Figure 13: Flow chart of the different subsystems and how the different subsystems are related to each

other. The dotted arrows represent the location at which the subsystem is based. 21
Figure 14: Flow chart giving the steps the user can perform when using the system to define their

search. ... 23
Figure 15: Photograph of the used Raspberry Pi connected to the powerbank. 24
Figure 16: Class diagram of the classes from the software package which runs on the Raspberry PI. 25
Figure 17: Flow chart of all the steps the server performs once a search is initiated. 28
Figure 18: Class diagram generated by Eclipse of all the classes and their relations on the server side.

 .. 29
Figure 19: Map of the ground (left) and first (right) floor of the Zilverling building at the University

of Twente [26]... 38
Figure 20: Map of the ground (left) and first (right) floor of the Zilverling building with all collected

fingerprints (each represented by a bright red dot) The map itself is the Google Maps map [26]. The

red dots were added to map by having the program display every single fingerprint. The exact

location of each fingerprint is given by its x and y coordinates from the .csv file. 38

 x

Figure 21: Map of the first floor of the Zilverling building illustrating the fingerprint nearest to the

location of the stool, represented by the bright red dot [26]. .. 40
Figure 22: Photograph of the searching times experiment setup. The stool was placed in the middle of

the lunch break area on the first floor of the Zilverling building. The red square indicates the

Raspberry Pi attached to the powerbank. .. 41
Figure 23: Map of the ground floor of the Zilverling building giving the location of the experimental

starting point, represented by the blue dot [26]. ... 41
Figure 24: Map of the ground floor of the Zilverling building giving the actual position of the

Raspberry Pi in the first and second position. The locations are respectively indicated with the blue

dots labelled 1 and 2. Two sets of measurements were performed at the second location. 43
Figure 25: Map of the ground floor of the Zilverling building. The actual location of the Raspberry Pi

is indicated by the blue dot. The fingerprints that were returned for the experiment with the Raspberry

Pi placed in the hallway are displayed by red dots and labeled with their fingerprint ID. The distances

between the actual location and fingerprints 15 and 24 are respectively 5 and 7 meters. 44
Figure 26: Map of the ground floor of the Zilverling building. The actual location of the Raspberry Pi

is indicated by the blue dot. The fingerprints that were returned for the experiment with the Raspberry

Pi placed in the SmartXp are displayed by red dots and labeled with their fingerprint ID. The

distances between the actual location and fingerprints 1, 2, 3 and 4 are respectively 7, 6, 2 and 5

meters. The fingerprint added for the last part of the experiment, fingerprint 65, was added at the

exact same location as the blue dot. Since the location of the Raspberry pi and fingerprint 65 coincide,

the distance between those two is 0 meters. .. 45

List of tables

Table 1: Overview of the different transmitter techniques and their respective ranges [1], [15] 13
Table 2: A Strength Weaknesses Opportunities Threats (SWOT) analysis of Wi-Fi fingerprinting,

taken from Justin Stook, Planning an indoor Navigation service for a smartphone with Wi-Fi

fingerprinting localization, 2011 [15]. .. 18
Table 3: Overview of the different major elements of the system and which elements use which

subsystem. ... 21
Table 4: Summery of the different elements in the system and their purposes 22
Table 5: Summary of all classes in the program on the server side. For every class a small explanation

is given about their role in the system. .. 30
Table 6: Example of the database. The BSSID’s, RSSI’s and (x, y) coordinates are given for each

fingerprint. .. 33
Table 7: Experimental data of 20 subjects. The table gives the time (in seconds) in which the subjects

were able to find the object with or without the software. The location given by the algorithm was

accurate for all 10 subjects that used the software. Some of the control subjects were unable to find

the object within the time limits, and their time was set to 300s. ... 42
Table 8: Measurements at the hallway locations (location 1). The result is a fingerprint ID. The

distance between the actual location and the returned fingerprint was determined and is also given in

the table. .. 43
Table 9: Measurements at the Smart XP locations (location 2) before adding an extra fingerprint. The

result is a fingerprint ID. The distance between the actual location and the returned fingerprint was

determined and is also given in the table. ... 43
Table 10: Measurements at the Smart XP locations (location 2) after adding an extra fingerprint. The

result is a fingerprint ID. The distance between the actual location and the returned fingerprint was

determined and is also given in the table. The previously returned fingerprints are also included in the

table. .. 44
Table 11: Statistical analysis of the searching time data processed in SPSS. The data consist of the

sample size, mean, standard deviation and standard error mean for the data of subjects with or without

the use of the IPS software. ... 45

 xi

Table 12: Statistical analysis of the searching times data processed in SPSS. The results include, but

are not limited to the significance, and mean difference. A T-Test with a 95% confidence interval was

performed on the data to acquire the statistical analysis of the results of the experiment for the

influence of the software to the searching times. .. 46

List of boxes

Box 1: Class AP, a struct based implementation of the values. .. 25
Box 2: Method onReceive, responsible for collecting the values ... 26
Box 3: Method startServer, responsible for sending the values .. 27
Box 4: Class Search responsible for collecting the user input .. 31
Box 5: Methods Start and filterList responsible for receiving and filtering the data 32
Box 6: Class Database, the struct setup for one unique fingerprint .. 33
Box 7: Method addPoints, responsible for loading the data from the .csv file to the memory 34
Box 8: Method findValue, resposible for adding fingerprints to the .csv file 35
Box 9: Method startAlgorithm resposible for collection all the values .. 36
Box 10: Method startComparing responsible. for comparing all the values in the database with the

measured value .. 37
Box 11: Method sortList, responsible for sorting the resultList on the lowest value from the result of

the Euclidean distance ... 37
Box 12: Method startLoading, responsible for loading and drawing the Image and the red dot at the

specific location .. 39

 xii

List of abbreviations and acronyms

A-GPS Assisted GPS (see GPS)

AOA Angle of Arrival

AP Access Point

BSSID Basic Service Set Identifier

dBm Decibel milliWatt

GPS Global Positioning System

IEEE 802.11 See WLAN

IPS Indoor Positioning System

INS Inertial Navigation System

LAN Local Area Network

LOS Line of Sight

MAC Medium/Media Access Control

RFID Radio Frequency Identifier

RSSI Received Signal Strength Indication

SSID Service Set Identifier

TDOA Time Difference of Arrival

TOA Time of Arrival

TOF Time of Flight

UWB Ultra-Wide Band

Wi-Fi Wireless Fidelity

WLAN Wireless LAN (see LAN)

XML eXtendible Markup Language

 1

1. Introduction

In front of you lies the Bachelor Thesis report of Dennis Rieffe. This thesis is conducted at Indes

B.V., based at the Kennispark Twente next to the University of Twente. Indes promote themselves

with: “Creating product people can rely on”. Indes started out designing various products for a

diverse customer base. During the years, the focus of Indes shifted and they started broadening their

pool of employees with engineers. The company now works on the implementation and development

phase as well as the design phase. An example of the projects Indes worked on in the past, is the

development of the Sparta ION.

During this project Indes collected extensive e-bikes knowledge. E-bikes have a special motor that

does not work independently but partially takes over the work the cyclist has to perform. This

technology reduces the amplitude of problems like hills and headwind and makes them less

challenging. Based on this idea, the addition of a supporting motor to existing technology would

create new opportunities in a variety of applications.

The use of this idea for medical purposes is elaborated in this report since moving hospital beds can

be a difficult and awkward task. A caster wheel could be placed under different medical appliances to

make their handling easier. Through pressure sensors in the handle, this technology can help hospital

or retirement home personnel in their daily chores. It could be used in combination with hospital beds,

patient lift and food trolleys. In practice it is too expensive to implement this technology on every

piece of equipment. Combining bed movers (which can be easily added to a hospital bed) and casters

should avoid this problem.

An increased implementation of technology can already be witnessed in e.g. hospitals and fully

developed and functional technologies make the use of the above mentioned technology promising.

Unfortunately, another totally different problem arises in practice. Because there are only a few bed

movers and patient lifts available, and several staff members using them, they tend to get lost within

the premises. This causes the personnel to search for the equipment. This is a time-consuming and

costly flaw. This problem concerns on the one hand medical personnel and on the other hand

maintenance staff. In the second case, the worst case scenario is when the equipment cannot be found,

it is not checked and this may lead to malfunctioning of said equipment.

This is where the idea of Indes comes in. To assist medical personnel and maintenance staff, it would

be helpful to be able to track the equipment within the building. This would reduce searching time,

improve workload and result in more reliable medical equipment. With a trackable product, Indes has

a unique opportunity to distinguish themselves from the competition.

1.1. Defining scope

Indes has multiple healthcare products on the market. To keep this thesis feasible and to establish its

scope, initial boundaries were set by Indes. The first prototype should focus on two of Indes devices:

the patient lift and the bedmover. Those products are used in two environments. The bedmover is

mostly used in hospitals and the patient lift mainly in retirement homes. The implementation of the

system should work in both environments. The products are used in the same way in both cases. They

are available for all personnel on the work floor. Personnel share the equipment and no one has their

dedicated to one.

The bedmover is developed by Indes to change work flow. In the current situation, most hospitals

have logistics specialists that are only responsible for moving beds around. With its bedmover, Indes

has a marketable product that enables everyone to use the equipment. Every hospital member is able

to easily locate hospital beds.

In the current scenario, the logistic department is sometimes too late or they do not show up at all and

the nurses are left to do the work anyway. Personnel use the product but do not return it to its

supposed position. Therefore, the equipment gets lost within the building and the staff has to go

through the entire building in order to find the bedmover.

 2

When it comes to the patient lifts, the problem mostly occurs with the yearly check-up by the

maintenance engineers. Patient lifts are mainly used in retirement homes to lift elderly people from

their bed and to move them. During the check-up visits, the maintenance engineers aim to do all the

maintenance at once to save time, but the lifts are in use all over the building. The engineers spend

hours locating the lifts and may even miss a few. Since they cannot find them, the necessary

maintenance is not performed. Therefore, some patient lifts will be used even though the maintenance

is outdated.

Similarly, to bed movers, patient lifts get lost because personnel do not put them back after use. Inside

the retirement homes, personnel make use of the lifts and do not place it back at its supposed position.

1.2. Research questions

To solve the above mentioned problem, Indes came up with a solution: an indoor positioning system

should be created. The main research question was formulated as follows:

What is the best way for Indes to locate their bedmovers and patient lifts within a retirement home or

hospital?

To answer this question, several sub-questions were drafted.

1. What indoor positing systems are already do already exist?

2. What requirements should the system meet for a viable product?

3. Can an indoor positioning system reduce the searching time as compared to manual

search?

4. Are Indes’ clients willing to use this technique?

The answers to these questions can be found in this thesis. A literature study was conducted to answer

the first question. The knowledge gathered from the study can be found in chapter ‘State of the art’.

The requirements were setup after conducting interviews with different stakeholders and potential

users of the products. The findings from the interviews can be read in ‘Requirement analysis’. These

interviews also allowed to answer the last sub-question. According to the requirements, an indoor

positioning system was developed. The system design and implementation are visible in chapters

‘System design’ and ‘Implementation’. Experiments where performed with this indoor positioning

system to answer the third question. The setup and findings of these experiments can be found in the

chapter ‘Evaluation’.

 3

2. State of the art

Tracing is something that has been done for a while. For thousands of years’, people have been

curious as to where they are and what distance they have travelled. Especially at sea, mankind based

their navigation on stars and the sun.

In the sixties, the American army started with a more professional approach. They launched the

satellite based TRANSIT system, which was a global positioning system primarily used by the navy

to determine their exact location.

In the seventies, GPS (Global Positioning System) was develop by the American army. This made the

use of position systems popular on a greater scale. GPS can be used worldwide for location

determination. Nonetheless, a problem with GPS is that it does not work inside buildings because of

the low accuracy within buildings. It can only be precise up until 5-50 meters inside [1]. This

limitation makes GPS unsuited for tracking medical equipment in retiring homes and hospitals. Thus,

other technologies were needed.

The technology for determining the location of people or objects inside a building is called an Indoor

Positioning System (IPS). Radio waves, magnetic fields, acoustic signals or sensory information

connected to mobile tags are the main methods used for IPS. Since there is not a standard system for

IPS, there are several systems on the market. The feedback from the system can be on the device

itself, like a mobile phone or on a workstation that can follow assets through a building. Most IPS’s

consist of three different parts. Multiple transmitters emit signals that can be picked up by receivers.

The receiver’s measurements can then be sent to a server that calculates and determines the location.

To summarize, the three essential parts of a IPS are the server, the transmitters and the receivers [2].

2.1. Measurement principles

There is wide range of different technologies available on the market. In the following chapter, the

various measurement principles and their mechanisms will be explained. First, an explanation will be

given upon all the different kinds of techniques that can be used for location determination. Those

techniques are Time of Flight, Angle of Arrival and Radio Signal Strength [3]. Most of the IPS that

are now on the market use one of those techniques. Second, some wireless communication

technologies are explained. Wireless communication technologies are methods to transfer information

via a signal, e.g. Wi-Fi or Bluetooth.

2.2. Time of flight

The technique ‘Time of Flight’ (TOF) is highly applied for determining distances using radio waves.

It measures the time that electromagnetic waves (e.g. light, radio) take to travel a given distance. The

speed of light in vacuum is used as a reference, and measurements are in the magnitude of

nanoseconds. There are two main derivatives of TOF: Time of Arrival (TOA) and Time Differential

of Arrival (TDOA).

TOF has one important advantage in comparison to other methods for IPS’s: the variance and thus the

inaccuracy do not change over distance. This means that the precision of the location does not

decrease over long distances [3].

2.2.1. Time of Arrival
In the TOA approach, the transmitter sends a signal at a specific time to a known receiver. The clocks

of the receiver and the transmitter are synchronized. The receiver knows the time the signal was sent

and the time it received the signal. The elapsed time multiplied by the speed of light, gives the

distance between the two objects. In a 2D situation, knowing the distance of two transmitter points is

sufficient to arrive at the location point of the object, see Figure 1 below. Based on this idea, the

combination of several distances can also locate the object in a 3D environment.

 4

There is also an alternative, an unsynchronized method which is part of the TOA method to calculate

the distance between sender and receiver. In this scenario, the round trip is measured at the receiver

using information exchanged between the receiver and the transmitter.

Figure 1: Schematic of the TOA localization in two dimensions. The two sided arrows indicate the distance from the
transmitters (at (x1,y1) and (x2,y2)) to the object (red diamond). The object could theoretically be at both intersections of
the object; further analysis of the available data or additional information should determine which location to eliminate
[3].

2.2.2. Measuring Time of Arrival
Mathematics are used to determine the location of an object with a TOA solution. For an easy

understanding, a 2D solution will be explained. The mathematics behind a 3D solution are similar but

more complex.

Theoretically, to determine the position of an object, at least two transmitters are needed. The

measured distance gives the possible locations of the object as a circle of a radius equal to the

measured distance. Superposition of the circles of multiple transmitters gives at the most two

intersections. Those give the possible locations of the object, as can be seen in Figure 1.

There is a possibility that one of the intersection lies in an impossible location. This way it will

automatically fall off. If that is not the case, a third transmitter can be used to eliminate one of the

intersections.

In a three dimensional space, it is a little more complicated. Here, at least three anchor points are

needed to determine the location, because the measured distances result in spheres. Three equations

can be formed, also resulting in two possible locations for the object. Additional information and

knowledge of the layout can be used to eliminate one of the points.

In reality, more than three transmitters are necessary. Using more transmitters could lead to better

accuracy. This is called over-determination. In an over-determination situation, different

mathematical techniques are used to determine the location.

Time measurement of one radio wave allows the determination of the exact distance between the

object and the transmitter. For indoor navigation systems, an accuracy of one meter is quite common.

Light or radio waves take approximately 0.33ns to travel the said one meter, so a very accurate and

precise clock is required to determine the time differences of a specific wave.

The relation between received and transmitted signal is given in equation 1.

 𝑟(𝑡) = α sin(𝑡 − 𝜏) + 𝑛(𝑡) (1)

The received signal, 𝑟(𝑡) is an amplified version of the transmitted signal, with a delay of 𝜏. The

noise component is 𝑛(𝑡). The propagation delay 𝜏 is determined through the Maximum Likelihood

(ML) estimate of the correlation of the received signal and the transmitted signal [3].

2.2.3. Time Difference of Arrival
Because of the need for expensive and very good equipment with TOA, another method was

devolved. For the TDOA method there is no need for synchronizations between the transmitter and

 5

receiver. For TDOA only the different transmitters are required to by synchronised. GPS is based on a

TDOA method, since multiple transmitters send signals to the receiver. Those signals arrive at the

receiver at different times. Based on those time differences between the received signals, a location

can be determined [4].

2.3. Angle of arrival

The Angle of Arrival (AoA) method estimates the angle between the transmitter and the receiver.

Figure 2 shows the AoA method in a two dimensional setup. The angles between the sensor and the

positive x-axis at the two transmitters are θ1 and θ2 and the transmitter locations are (x1, y1) and (x2,

y2).

Figure 2: Schematic of the AoA localization in two dimensions. (x1, y1) and (x2, y2) are two transmitters and the red
diamond at (x,y) is the object. The two sided arrows indicate the distance between the transmitters and the object. The
angles θ1 and θ2 are shown by the circular arcs [3].

Once the angles are determined, the location can be determined using the following formulas

(equations 2 and 3).

 tan(𝜃1) =
𝑦−𝑦1

𝑥−𝑥1
 , tan (𝜃2) =

𝑦−𝑦2

𝑥−𝑥2
 (2)

 𝑦1 − 𝑥1 tan(𝜃1) = 𝑦 − 𝑥 tan (𝜃1) (3)

For a 3D space, a similar equation can be used, this time projecting into X, Y and Z directions. The

projections onto Y-Z plane are considered and the angle with the Z axis defined as ɸ. The formulas

for three dimensional AoA are as follows:

 𝑦𝑖 − 𝑥𝑖 tan(𝜃𝑖) = 𝑦 − 𝑥 tan (𝜃𝑖) (4)

 𝑦𝑖 − 𝑧𝑖 tan(𝜙1) = 𝑦 − 𝑧 tan (𝜙𝑖) (5)

Measuring the angle in a multipath (see Multipath under Signal behaviour) environment can be

difficult. Also, the greater the distance between the sensor and receiver, the larger the error.

2.3.1. Measuring the angle
There are two basic ways of measuring the angle. One of the methods uses a directional antenna with

a known beam pattern. The other solution is an antenna array. An important note beforehand is that

the directional/array antenna can be located either at the receiver or at the transmitter.

The first method consists of a directional antenna that emits radio signals in a particular direction. In

Figure 3, an example is given of how a directional antenna emits in a particular direction. It shows the

signal strength at an angle, when the distance between the transmitter and the receiver is kept

constant. It is not possible to determine the direction with only one antenna. The combination of the

data from the multiple antennas result in the angle of arrival.

 6

Figure 3: Schematic of the propagation of a signal from a directional antenna [3].

The second method uses an antenna array. In such an array, the elements of an antenna are separated

by a fixed distance. In the example in Figure 4 this distance is called d. The object is compared with

multiple single elements inside the array. The final angle is shown as θ in the figure.

Figure 4: Schematic illustration of the structure of an antenna array. The distance d indicates the distance between each
antenna and θ indicates the angle of arrival [5].

2.4. Signal strength

Another method developed to determine the distance between receiver and transmitter is to calculate

the propagation related loss of signal. Propagation is the way waves behave in the air. Signals are sent

in a specific direction and spread out over the area. The signal strength in an ideal area can be

determined with the equation 6. P0 is the signal strength at distance r0:

 𝑃(𝑟) =
𝑟0

2 𝑃0

𝑟2 (6)

This formula provides the distance between the receiver and the transmitter. When the distance from

three receivers is known, a method like the TOA can be used. The problem is that, most of the time,

the signal will not be in an ideal area, and will have problems with the environment. Different factors

can influence the signal. Walls, people and objects can be in the propagation line of wave. An

explanation about different factors that can influence a signal will be given in the chapter ‘Signal

behaviour’.

The strength of a signal is expressed in dBm, even though the RSSI value is mostly used for signal

strength. The difference is that RSSI is a relative index, while dBm is an absolute number

representing power levels in mW (milliwatts). The RSSI value is a measurement of how well a

receiver can ‘hear’ the transmitter and it depends on the receiver’s properties which range is used to

determine the RSSI value.

2.4.1. Fingerprinting
Fingerprinting is a specific signal strength method. This method does not calculate the length from the

receiver to the transmitter but stores certain RSS values in a database and links those to a certain grid

 7

of location points in an area. The advantage of this technique is that most of the environments’

interference is stored in the database. All the transmitters are sending their signal over the grid. For

this method to work, the entire database should be mapped manually (calibration of offline phase).

When the database is filled with data points, the system can go into online phase. These data points

are called fingerprints. There are multiple algorithms available that can calculate the location [6]. For

a normal triangulation method, three transmitters are used. The main advantage of fingerprinting is

that more transmitters can be used.

A popular and frequently used algorithm for an IPS is the k-nearest-neighbour (kNN) algorithm. The

kNN algorithm is an algorithm that selects the nearest fingerprint around a device to determine its

own location. When the algorithm can determine the nearest fingerprint, it can determine with a small

error its location within the grid. The higher the amount of stored fingerprints, the more precise the

location becomes. The Euclidean distance or Pythagorean metric can be used to compare every

fingerprint with a measured value within the database:

 𝑑(𝑝, 𝑞) = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑛
𝑖=1 (7)

When the closest fingerprint is found, the location linked to that fingerprint can be requested from the

database [7].

There are some negative sides to a fingerprinting system. Filling this database is an expensive and

time consuming step because of the calibration. It also means that the manufacturer of the system

needs to enter every area in the building. This can be a problem if there are some private rooms or

when the site is very large. A great advantage though, is that the exact location of all transmitters is

unimportant. Once the system is operational, filling a new database is all that is required to set up a

new tracking environment.

Figure 5: A example of how signals travel through a building. The blue dots represent the transmitters. The further away
from the transmitters the weaker the signal becomes. Red represents the strongest signal and blue the weakest signal. The
RSSI value from different transmitters are collected at different locations and stored in a database [8].

2.5. Signal behaviour

A signal travels through the environment it is broadcasted in. Because of influences from the

environment, changes will be made to the signal. All those influences interfere with the accuracy and

precision of the measurements that will be done to determine the correct value [9]. A few different

behaviours that can occur are described below.

2.5.1. Attenuation
Attenuation is described as the decrease of signal strength, see Figure 6. This phenomenon occurs

when the amplitude of a signal decreases over its propagation. A signal can lose its strength when

traveling through a material (air, metal…). Attenuation is a natural behaviour of signals and occurs

because of the following reasons: absorption and the negative effects of the multipath effect [9].

 8

Figure 6: Schematic of the attenuation principle. The amplitude of a signal decreases over time.

2.5.2. Absorption
One of the most common radio signal behaviour is absorption. When a signal passes through an

object, absorption occurs, see Figure 7. Materials will absorb some amount of the radio signal.

Absorption can be a leading cause of attenuation. Larger objects with high water content are a

challenge for signals within buildings since they result in high absorption. Paper, cardboard, people

and so forth can absorb significant amounts of signal [9].

Figure 7: Schematic of the principle of absorption. The undulating lines indicate where the signal was absorbed into a
materials [10]. The horizontal line indicates the change in material.

2.5.3. Reflection
When a wave encounters a surface, that is greater than the wavelength itself, the wave may bounce

into another direction. This signal behaviour is called reflection, see Figure 8. In an indoor

environment signals reflect from surfaces like wall and doors. Metal and glass are greatly known for

their reflecting properties. Whether or not a wave reflects, depends on the physical properties of both

surroundings (the present and the encountered e.g.: the air and the wood of the door) and the angle at

which the wave hits said surface [9].

Figure 8: Schematic of the principle of reflection [10]. The horizontal line indicates the change in material.

 9

2.5.4. Scattering
Scattering is a behaviour that is caused by signal propagation and multiple reflections, see Figure 9.

The presence of multiple reflections means that instead of one concentrated ray of signal, that ray

splits into several less concentrated ones with different directions. These multiple reflections occur

when the signal’s wavelength is larger than the material the signal encounters [9].

Figure 9: Schematic of the principle of Scattering. A signal encounters an object (dot) and scatters in all directions [10].

2.5.5. Refraction
If the right conditions are met, a signal can actually bend to another, new direction. This phenomenon

is called refraction, see Figure 10. An example is when light passes from air to water the direction the

angle from input is different than the angle of output [9]. This example is very well known as the

phenomenon that seems to ‘bend’ or ‘cut’ a straw at the surface of water.

Figure 10: Schematic of the principle of refraction. When encountering a new material, the signal bends to another, new
direction. The horizontal line indicates the change in material [10].

2.5.6. Diffraction
Diffraction is when the signal is bent. It occurs when a signal encounters an object, see Figure 11. The

difference with refraction is that with refraction, the signal passes through the object and with

diffraction, the signal travels around the object. There are multiple conditions to be met before

diffraction will occur. Those conditions are that the object must have a certain shape, size and

material that meet the characteristics of the signal (polarization, phase and amplitude) [9].

 10

Figure 11: Schematic of the principle of diffraction, the signal encounters an object and travels around the object [10]. The
vertical interrupted line represents an obstacle that causes the signal to bend.

2.5.7. Multipath
As explained before, signals do not move directly from the transmitter to the receiver. Because of the

above mentioned behaviours, signals move almost randomly through the room. This behaviour can

lead to the multipath effect. Multipath is a phenomenon that results in two or more path of signals

arriving at the receiver simultaneously or within nanoseconds of each other, see Figure 12. The

receiver cannot determine which signal travelled the shortest way from transmitter to receiver. This

incorrect signals can interfere with correct measurements [9].

Figure 12: Schematic illustration of the multipath effect. Two or more signals originating from the same transmitter arrive
simultaneously at the same receiver. Both waves may have travelled different paths. [11].

All these behaviours can affect the accuracy of the measurements. To determine the correct

measurement, a filter must be applied to the incoming signal.

2.6. Filter

As briefly mentioned in the previous chapter, filters are a way to clear a signal of its interference. A

physical filter is used in several areas to remove particles you do not want in your substance.

Applying a filter to a signal will have the same effect. There is a wide range of filters that can reduce

the signal noise. The filter that could be implemented for an indoor positioning system is described

below.

The Kalman filter is an algorithm that uses a series of measurements over time. It is used to get rid of

the noise within the measurements. When a Kalman filter is used, the result is more precise than one

single value measurement. It uses a Bayesian inference and estimates a joint probability distribution

over time for the variables over multiple timeframes. The Kalman filter is an iterative mathematical

process that uses a set of equations and a consecutive data input. It continues to receive new data and

keep calculation a new estimate. The advantage of using a Kalman filter in comparison to e.g. taking

an average is that the true value can quickly be determined and there is no need to wait for a large set

of data points [12].

 11

2.7. Wireless communication technologies

In the previous chapters, different techniques for signal interpretation were given. In this chapter the

different transmitters are described. The properties of the different wireless communication

technologies are summed up in Table 1.

2.7.1. GPS based
Global Positioning System (GPS) is one of the most successful positioning systems for outdoor

environments. Nevertheless, GPS has poor coverage of satellite signals in indoor environments. This

decreases its accuracy and makes the method unsuitable for indoor location estimations.

Although GPS is not useful for indoor location tracking there are possibilities where a GPS solution

can be used for tracking. With assisted GPS (A-GPS) some limitations of GPS can be overcome. A-

GPS a is a GPS based method that was enhanced by adding another tracking method to increase the

accuracy. With A-GPS, some companies were able to determine the location of an object within 5-50

meters. The accuracy depended on the different indoor environments. They were able to combine the

GPS signals with the signals from a mobile station. The wireless handset collects measurements from

both signals and combines them to a possible location [1].

2.7.2. RFID
Radio Frequency Identification (RFID) is a system that can store and retrieve data through

electromagnetic transmission. RFID systems have several basic components: a RFID reader, RFID

tags and the communication between them. A reader is able to read the data emitted by the tag. There

is a difference in protocol to transmit or receive data. RFID tags can be categorized into active and

passive tags.

A RFID tag is passive when it operates without a battery. They are mainly used to replace the

traditional barcode. Passive tags are small, light and not very expensive compared to the active tags.

They operate as follows: the receivers broadcast a signal and passive tags reflect that signal with

additional information. This information can be unique for every tag. However, the range is limited at

around 1-2 meters. Besides, the cost of the readers is relatively high.

Active RFID tags operate with a battery and are small transceivers. They can actively transmit their

ID (or any other additional data) in reply to an interrogator. The main advantage of active tags in

comparison to passive tags is that a small antenna can be placed on the tag to greatly increase the

range by up to tens of meters. In practice, active tags are being used for high-unit-value products

moving through a harsh assembly process. Both active and passive RFID system are based on a

received RSS value to determine the distance from the receiver [1], [13].

2.7.3. Cellular based
As mentioned before (A-GPS), an easy method to determine an outdoor location for mobile clients is

with the mobile network. This can also work as a standalone solution. Another name for this method

is cell-ID, but the precision is very low. Depending on the cell size the range can spread between 50

until 200 meters. In more urban areas the precision is higher because the higher amount of cell towers.

Indoor positioning based on a mobile cellular network is possible, if the building is covered by several

base stations or one base station with strong RSS which can be received by indoor mobile clients.

A possible solution for localization is the use of wide signal-strength fingerprints. A system has a

wide fingerprint database from for example six strong GSM cells. The advantage is that it can detect

signals that are too weak to have a stable connection for a phone call, but that are strong enough to

use in a fingerprint database. Inside a building with multiple stories it was able to track an object with

an accuracy of 2.5 meters. The algorithm mostly used in such a context is the kNN algorithm. In

theory the same method can be applied to the 3G mobile network [1], [9]

2.7.4. UWB
UWB stands for Ultra-Wide Band. UWB is based on sending ultrashort pulses. Normally those pulses

are less than one nanosecond long. UWB location determining has multiple advantages. In

 12

comparison to RFID systems which operate on single band of the radio spectrum, UWB transmits a

signal over multiple bands of frequencies at the same time. The range of 3.1 to 10.6 GHz decreases

the chance of interference. UWB signals are also transmitted for a much shorter duration than those

used in conventional RFID. Also, UWB tags use less power in comparison to RFID tags. Another

great advantage is that UWB can be used in close proximity to other RF signals without causing or

suffering from interference because of the differences in signal types and radio spectrum. Because

UWB has short pulses is it easier to filter which signals are correct and which are generated because

of multipath. Moreover, UWB can easily travel through walls and equipment. Nonetheless, metallic

and liquid materials can cause interference. The problem can be overcome by using multiple UWB’s.

Because of the short pulses, UWB allows for an accurate determination with TOA. The time

synchronization of UWB communication devices allows for a very accurate indoor localization. This

can be scaled down until 20 centimetres accurate. When an accurate 3D location is needed TDOA and

AoA can be combined to achieve a location [1], [9].

2.7.5. WLAN
WLAN stands for wireless local area network. It operates on a 2.4-GHz band. WLAN has become

very popular for hotspots and home- and industrial networks. The typical range for a WLAN signal

depends on the transmitter but varies at around 50-100 meters. Its official name is IEEE 802.11 and it

is currently the dominant local wireless network. The popular brand name is Wi-Fi. Because of these

properties, it is appealing to use an existing WLAN network for an indoor positioning system. Since

in most environments a WLAN network is already available, only a server should be added to the

network.

A WLAN networks works as follows: an access point transmits an available signal with information

about the transmitter itself (e.g. its SSID and MAC address). A receiver can detect this signal and

choose to make a stable connection. To determine the signal strength, a stable connection is not

required.

The most common technique when using WLAN for determining a location is with the use of RSSI.

The accuracy can then be determined at 3 to 30 meter [1], [9].

2.7.6. Bluetooth
Bluetooth operates on the 2.4 GHZ ISM band. With a typical range of 10-15 meters, the range is

shorter than that of WLAN. Despite that, Bluetooth a highly used technique. It is implemented in

most mobile phones and other mobile devices. Bluetooth tags are small size transceivers and any

Bluetooth device has a unique ID. This ID can be used for locating the Bluetooth tag. A Bluetooth

location determining system is based on three types of elements: the positioning server, wireless

access points and wireless tags. With Bluetooth it is possible to track people or assets within an

accuracy of 2 meters. Bluetooth also uses RSSI values [1], [9].

2.7.7. INS
Inertial Navigation Systems are some of the most widely used dead-reckoning systems. They can

provide continuous position, velocity and also orientation estimates which are accurate for a short

term. INS are quickly subject to drift due to noise of the sensors. Because of this, filtering is important

in an INS. The Kalman filter is widely used in GPS and INS applications to reduce the noise effect on

the measurements. The exact accuracy of INS system cannot be given, because the error margin

increases over time. For the use of an INS, only an exact starting position is needed after which the

new position can be determined with accelerometers and gyroscopes. Since the system needs to be

readjusted over time, INS is not useful as a standalone indoor positioning system, but it can be useful

in combination with another indoor position system [14].

 13

Table 1: Overview of the different transmitter techniques and their respective ranges [1], [15]

Technique Range (m) Receiver Cost

GPS 5 – 50 Active Medium

RFID 1.5 – 2 Active/passive Low

Cellular based 50 – 200 Active Medium

UWB 0.2 Active High

WLAN 3-5 Active Low

Bluetooth 2 Active Medium

INS n/a n/a n/a

 14

3. Requirement analysis

To determine the requirements, interviews were conducted with several people from different

professional expertise areas. First, the different experts will be introduced. Second, the different

findings from the interviews are elaborated. Third, a list sums up all the requirements.

3.1. Introduction of stakeholders

To acquire more knowledge about the requirements the system should meet, interviews were

conducted. Examples of question asked during the interviews are added in Appendix A. Because the

bedmover and patient lift are primarily used in two distinct environments, both user groups were

consulted. For the bedmover, which is mainly used in hospitals, an interview was conducted with a

former nurse at the Medisch Spectrum Twente (MST), Cindy van Goor. The MST is the main hospital

in Twente. Today, she holds a managing function within the Cardiology department. Annemieke van

Dijk and Robert Blokzijl were interviewed about the use of the patient lift used in retirement homes.

Both are employees of LevelUpAssist (previously known as Active4Care). LevelUpAssit is a

company that retails patient lifts to customers [16]. Annemieke van Dijk is the operational director

and Robert Blokzijl is the commercial director.

For a better understanding of technologies used today, Jan Freerk Popma, Marcel Lamers, Roy de

Jager and Frank Wopereis were also interviewed.

A global insight into the possible technologies was acquired through the answers of Jan Freerk

Popma. He is a Wi-Fi specialist at the University of Twente, and is the main administrator of the

Cisco Wi-Fi network at the University.

The interview with Marcel Lamers, the co-founder and CEO of Lone Rooftop [17] clarified the

concept of determining locations through Wi-Fi. Lone Rooftop develops cutting-edge technologies

that enhance office buildings on a technological level to improve efficiency and sustainability.

The last interview was with Roy de Jager, a security specialist at SecureLink Nederland [18] and

Frank Wopereis, an application administrator for the MST with extensive knowledge about the tracing

project at the MST. Roy de Jager did a project for the MST to set up the current network

infrastructure within the new location on Koningsplein. Some additional information about

requirements was gathered from colleagues at Indes.

3.2. Overview of interview findings

In this section, the requirements that were based on the interviews are described. All parties

recognised the problem of losing equipment.

Cindy van Goor elaborated about the problems within the MST. Numerous maintenance engineers

work on the different pieces of equipment. Because products get lost inside the MST, there are now

5000 devices that are past the maintenance date and still in use. The organization of the medical

equipment at the MST is organized per level, with three depots per floor. Personnel can lend the

equipment from a depot and are supposed to bring it back. Nevertheless, not everything is brought

back. It also occurs that equipment is moved from floor to floor, disorganizing the entire structure.

From her point of view, solving the issue through the use of the software could increase the quality of

the provided healthcare.

The experience of LevelUpAssist was more specific to the patient lifts, but they described the same

problem of overdue maintenance because of misplaced appliances. As there is not an elaborated

structure in the establishments of LevelUpAssist’s clients, all patient lifts move through the building.

The only structure retirement homes use is that in the evening, all equipment should be returned to its

respective power socket.

There is also a difference between apartment and residential group based retirement homes. The

residential group retirement homes are located close to each other but not necessarily in the same

building. In that case, maintenance engineers have to go from one building to another. If a piece of

 15

equipment is in another building than it is supposed to be, the maintenance engineer spends a lot of

time trying to locate it.

During the interviews, an interesting finding was that, even though it was presumed that there were

only two stakeholders: caregivers and maintenance engineers, managers can also benefit from the

technology. Through the finding, the pool of stakeholders was broadened with the managements of

both, LevelUpAssist and the retirement home. These two new stakeholders could implement the

technology for acquiring knowledge about the use of the equipment. This knowledge may enable for a

more efficient use and distribution of the equipment, and through the knowledge about the usage

intensity provide information about the necessity (or lack thereof) of maintenance. Together, those

improvements could have a positive effect on work ethics and efficacy.

3.2.1. System feedback
A feedback system was discussed with Cindy van Goor, Robert Blokzijl and Annemieke van Dijk.

With their help and in order to produce a fitting system, several requirements where set up.

The system should be adapted to having three types of users: the maintenance engineers, medical

personnel and both managements. Because of their different uses of the software, the different users

can favour either a portable or a desktop device or both: the system should therefore be able to run on

both.

The manner in which the information is displayed is crucial as well. All the stakeholders agreed that it

should be an easy to master and simple interface. From the interviews, three possible suggestions

came forward. The first option is a 2D map with dots representing the required devices. The second a

3D model of the building again with dots to represent the devices. The last option was a list of devices

linked with room numbers. Both parties agreed that the best feedback from the system was with the

display of a 2D map.

Two different kinds of search should be possible. The first possibility is mainly for the maintenance

engineers, and should give them the possibility to locate specific equipment or all appliances of one

type. This would enable maintenance staff to locate the equipment in need of maintenance. A second

possibility would be to allow the user to find the nearest appliance by using the user’s location. This

should take into consideration the location of the stairwells and elevators and travelling times.

Last but not least, the system should be able to tell whether the equipment is in use. This makes sure

that members of the personnel directly go to an available appliance.

3.2.2. Tracking and tracing
There are different ways to track a device. When a device is tracked continually, the system is

constantly probing and sending information to the server. It is also possible to track a device only at

the exact moment a request is done. Indes made the decision to go for the second option. Continuous

tracking would be a heavier burden for the battery. After requesting the location, it should only be

updated as long as the user wants to know the location of the device. This way, the system will save

energy.

In order to keep an eye on all equipment at any time, the location of any object should be requested

and stored automatically whenever the battery level drops too low, even though this does not occur

often.

The management of LevelUpAssist saw purpose in saving the historical locations of their equipment.

This would contradict the choice for non-continuous tracking but enable them to determine the

efficacy of the usage. This could also be of interest to the management of other companies.

3.2.3. Standalone system.
A conclusion that could be drawn from the interviews with Cindy van Goor, Robert Blokzijl and

Annemieke van Dijk was that tracking would only be effective if more equipment could be tracked.

The variety of medical equipment in retirement homes and hospitals comes from different suppliers,

so only being able to track a fraction would not allow for the technology to settle into the daily routine

and forms a significant limitation. Being able to implement the tracking technology on other large and

power supplied appliances would increase the overall attractiveness of the technology. The system

should be standalone and it should be possible to add it to certain devices. It would also be useful to

 16

enable the use of the power supply of the equipment. Even if the system is standalone but powered by

the equipment’s power supply, the tracker should somehow also function when the device’s power is

switched off since the system could request its location at any given moment.

3.2.4. Wireless communication technology
For choosing the most adequate system, the existing network infrastructure should be taken into

account. Choosing for existing technology considerably lowers the expenses related to the

implementation of the system. Some smart buildings are already equipped with a Wi-Fi and/or

Bluetooth network.

The MST has a full covered Wi-Fi network through the entire hospital. There are 960 access points,

which makes the building fit for tracking over Wi-Fi since most places will have around fifteen

different available access points.

If there is no or too little coverage in a building, it can be expensive to install or expand a network of

transmitters through an entire building. When the choice to expand the existing Wi-Fi network in a

building is made, it has another benefit: not only is the network infrastructure then capable of

implementing an IPS, it also has a better internet coverage through it.

3.2.5. Cost constraint
A constraint from the system is the implementation cost. The implementation of the system should not

be too expensive in time and money. The searching time is correlated to the accuracy of the system:

the more accurate the system, the lower the searching time. This means that the degree of searching

time reduction depends on the desired precision of the system. Some IPS’s have a precision of up to

20 cm. The downside of those setups is the price: the implementation is expensive. Keeping in mind

that the objects Indes wants to track are rather large objects, such a high precision is not required, and

localization per room (accuracy of 5 meters) would be sufficient. A precision of this magnitude would

imply that a localisation could occasionally be off by one room. Nonetheless, searching times would

be greatly reduced. Unfortunately, errors of the same magnitude in vertical direction are a bigger

issue. This means that the system should avoid these errors at all costs.

3.3. List of requirements

The final requirements are written in a complete list, is presented below. The requirements are sorted

according to the MoSCoW principle. For a viable product these requirements should be met.

3.3.1. Must-requirements

 The system must reduce searching times was opposed to manual search.

Using the system should have an important positive effect on the time medical and

maintenance personnel spend on looking for the equipment.

 The system must be combinable with two Indes devices: the bedmover and patient lift.

The first prototype must be developed to track the bedmover and the patient lift.

 The system must be implementable in two environments (hospitals and retirement

homes) as well as in different kinds of setups (premises consisting of one or several

buildings).

Because the system is supposed be used in multiple environments it must be

developed in such a way that it can be used in different environments.

 The system must be intuitive.

This requirement is added for the ease of use of the system. It must be easy to use and

easy to learn.

 The system must be able to find a specific product by entering its ID.

For maintenance engineers this is a must. In practice it happens often that they cannot

find one specific device, resulting in lacking maintenance.

 The system must be able to search for products close to the user.

 17

This is a requirement for the medical personnel. They need to find the available

device closest to them.

 The system must be standalone and applicable on multiple devices.

Multiple users are going to use the system. They must be able to simultaneously send

requests to the server. The feedback must be accessible on different platforms

(computer, smartphone, tablet)

 The system must determine a location with an accuracy of 10 meters or less.

 The error of the given feedback must not be larger than 10 meters.

3.3.2. Should-requirements

 The system should change work ethics and be a marketable product that enables

everybody to use the equipment.

To acquire the maximum result from the implementation of the system, the work

ethics should be changed.

 The system should be accessible for all personnel on the work floor for whom it is useful

to use.

This requirement focuses on which personnel should use the system. The more

personnel have access to use the system, the more the total searching time is reduced.

 The system should also be accessible for the management of the institutions.

If the management has access to the data of the usage of the equipment, it could help

in improving the work ethics.

 The costs of the implementation of the system should be profitable.

If the costs for implementation are too high, it is not worth to invest in the system.

 The system should be given on a 2D map of the building floor.

According to the different stakeholders this is the easiest way to interpret the given

information from the system.

 The system should only search for a specific piece of equipment when it is asked to do

so.

To keep the system active, power is required. To save power, the system should only

be active when needed.

 The system should keep the error in the vertical direction to a minimum.
An error margin with one room difference still greatly reduces the searching times.

When the mistake in the vertical direction (incorrect floor) is made to often, the

system would not be effective.
 If possible, the system should use of an already existing wireless communication

technology as a network environment for an IPS.
For cost reduction, should be considered if the available wireless communication

technology could be used for an IPS.

3.3.3. Could-requirements

 The system could be able to determine which product is in use or not.

This is an additional extra feature which could be implemented. If the system displays

whether or not a product is in use by another care

giver, it would improve the searching times even more.

 The system could help by analyzing the distribution and usage of the equipment.

When a certain piece of equipment is used much in a certain department than the

other, the system could contribute in good distribution of equipment throughout the

premises.

 The system could monitor the battery level and when the battery level drops below 10%

it should automatically store the location.

When this precaution is taken, the system is still partly operational without power.

 18

4. System design

In this chapter, an explanation will be given upon the different design choices. They were based on

the requirements and literature research and the market availability together with information about

the various implementations were also taken into consideration. This process resulted in the choice for

a fingerprinting algorithm in a Wi-Fi environment [1], [3], [7], [15]. The used algorithm was based on

the kNN algorithm. In Table 2, a SWOT analysis of the use of Wi-Fi for this purpose is given.

Table 2: A Strength Weaknesses Opportunities Threats (SWOT) analysis of Wi-Fi fingerprinting, taken from Justin Stook,
Planning an indoor Navigation service for a smartphone with Wi-Fi fingerprinting localization, 2011 [15].

SWOT Aspect Remark

Strengths Low-cost and low-entry Widely available at affordable prices

Able to penetrate walls where GPS

fails

Effect is depleted after thick layers, such

as thick concrete walls

In available spaces, fairly good

available signal strengths

Due to multi-path, good signal

differentiation; up to 100 m

Specific location fingerprints

available

Coverage of entire building, if access

points are well placed

Weaknesses Susceptible to variations in signal

strength over time

A recorded fingerprint cannot exactly be

reproduced

Earthbound based, requires more

infrastructure

For fingerprinting, more access points

are needed, unlike satellite based

Multi-path influenced by present

objects

The more objects there are, the more

differentiated the fingerprints will be

Might interfere with other appliances

in the 2.4 GHz ISM

For example, Bluetooth and microwaves

Site surveying and registering time

consuming

Must be repeated for interior and

movement changes, and for each

building

MAC address related – prone to

changes

If system fails, or when access point

fails, MAC cannot be used.

Speed decrease with traffic Only applicable to data transfer

Opportunities Fingerprinting does not require

geometric surveys

Time and effort can be saved on

mapping.

Fingerprinting only necessary at

selected places

It is not necessary to measure every n

meter; only at places with important

topological meaning or at least where

fingerprints are different.

Threats Bluetooth (BT) or Ultra-Wideband

(UWB) might overtake Wi-Fi for

positioning

BT rather stable, UWB powerful in

better catering multi-path + better range.

4.1. Choice of technique

There are several reasons why Wi-Fi is chosen as the main technology for further research and

testing. The main reason is because it is a relative popular technique that is already used in modern or

modernized buildings: most buildings already have an existing wireless communication technology.

Literature and the interviews suggest that it is advisable to use Wi-Fi as a basic structure [3]. When a

more accurate system is required, extra methods and techniques could be used in addition to the Wi-Fi

basis.

 19

Since most modern buildings already have an extensive Wi-Fi network, the necessary hardware

investments are limited. When this is not the case, extra access points can be purchased, which is

cheaper than an entire new wireless communication technology and it has the advantage that also

increases the building’s Wi-Fi coverage.

4.1.1. Fingerprinting
The choice to use the fingerprinting technique in combination with the kNN algorithm was made

based on literature and current available products [1], [3], [19]. According to literature, establishing a

triangulation system in an indoor environment is difficult [15]. The negative effects of signal

behaviours like multipath could influence the measurements. The technique for fingerprinting is the

same for each building as long as enough access points are available. After establishing an offline

phase fingerprint database, no additional calculations need to be done during the installation of the

system.

At present, the MST already has a Wi-Fi based indoor positioning system. Their IPS is also based on

a fingerprinting method. The system was developed by Aruba networks and is named Analytics and

Location Engine [19]. In the MST, all personnel have a Ascom Myco, an Android based work cell

phone. All phones can be tracked by the system administrators. In the hospital, this system is used for

emergency situations. On the Myco, there is a so-called ‘stress button’ that can be pressed once or

twice. When it is pressed once, another caregiver receives a notification that a colleague needs help.

The message automatically includes the location of the caregiver in need. When pressed twice, the

message goes to security. The success of this method only emphasized the choice for fingerprinting.

4.1.2. Feedback on 2D map
Literature [15] and interviews suggest that the best way to display the location of an Indes object is on

a 2D map. This can be done by a mobile app or a web application.

Depending on the request of the user, the correct floor map is showed. If the user requests a specific

object, the system should project the location of that exact object on the floor it is located at. If e.g. a

caregiver needs to know all the available objects on a specific floor, the system should answer the

specific floor with all the available objects.

4.2. Advantages and disadvantages

As can be seen in the SWOT analysis in Table 2, there are multiple advantages and disadvantages of

using a Wi-Fi based fingerprinting IPS. First, the main advantages will be discussed.

4.2.1. Advantages
The greatest advantage of using Wi-Fi is that most buildings already have an extensive Wi-Fi

network. Most of the time, when a hospital or retirement home is interested in having an IPS, the

network environment could already be sufficient for the implementation of the IPS. When it is not

sufficient, the investment in a better network environment could also be beneficial for other purposes,

e.g. a better coverage of the Wi-Fi signal throughout the building. This makes this system low cost

and low entry. Another advantage is that Wi-Fi signals are also ideal in indoor environments. Wi-Fi

signals are able to penetrate walls easily. Because of this, Wi-Fi is able to travel large distances

through closed environments whereas GPS is not.

Another great advantage of using Wi-Fi based fingerprinting is that it does not require geometric

surveys (no calculations are needed according to room size and distances). The idea behind the system

is that it is independent of the building lay-out. When using fingerprinting, the size of the rooms and

location of the AP’s are not relevant. The only important fact is what the RSSI values are on that

specific location. Filling the database is relatively easy job in comparison to doing geometric surveys.

For doing geometric surveys, specialists are needed to install the system. This is not the case for

filling a database.

 20

4.2.2. Disadvantages
Using a Wi-Fi based fingerprinting indoor positioning system also has its disadvantages. The first

disadvantage is that, with the use of the fingerprinting technique, the location cannot be determined

very accurately and it will always be an estimate of the nearest fingerprint. This means that the

accuracy of the system is correlated to the amount of fingerprints in the database. Filling a database

with enough fingerprints is a tedious and time consuming job. The system only works if there is a

recorded fingerprint close to wherever the measurement is done. It is essential to have fingerprints at

all locations the equipment could possibly be at. This could be a problem, since some locations may

be off limits.

Another flaw when it comes to a fingerprinting system is that the system is sensitive for changes in

the environment. These changes can come from two different sources, the first being that changes in

the lay out (accidental or on purpose). When a certain AP is moved from one position to another, this

influences the system greatly. The same goes for when an AP breaks down. Every change in lay out

influences the measurements. Additionally, changes to the building layout influence measurements.

The other source comes from Wi-Fi signals being sensible to traveling through water. Human bodies

exist for a great deal of water. The presence of human bodies in a room can therefore interfere with

signal strength.

A large amount of AP’s is needed for the implementation of this system since multiple AP’s need to

be visible at any location. Moreover, the 2.4 GHz wavelength is also used by microwaves and

Bluetooth. When there are a lot of Bluetooth senders and receivers this could interfere with the Wi-Fi

network and influence the measurements.

4.3. Architecture

To develop an IPS based on the mentioned system design in ‘Choice of technique’, the system must

consist of multiple elements: there are three major elements in an IPS. These three elements are the

tag, server and network environment. Most elements consist of subsystems which operate on different

major elements. In Table 3, a list of the three main elements and the different subsystem is visible.

For a Wi-Fi fingerprinting IPS with feedback on a 2D map, the components in this paragraph must be

developed. An overview of all the different subsystems and their relation between each other can be

found in Figure 13.

As can be read above, the system has an offline and an online phase. During the offline phase, the

database is filled with fingerprints and during the online phase, the measured points are compared to

the database. Thus, an IPS consists of two different programs: one to fill the database and one to

compare and determine the location. The database filler application is an addition to the normal

software package to fill the database. A summary of all elements in the system is given in Table 4.

 21

Figure 13: Flow chart of the different subsystems and how the different subsystems are related to each other. The dotted
arrows represent the location at which the subsystem is based.

Table 3: Overview of the different major elements of the system and which elements use which subsystem.

Major element Subsystem

Server Socket, Location determining software,

Database, Database filler, Interface

Tag Socket, Database filler

Network environment Socket

4.3.1. Server
The server is the main controller of the system. The server is responsible for linking all the different

parts of the system together. Different users can connect to the server and send requests to the server

about the different locations they want the server to determine. The server is stable and secure.

4.3.2. Tag
The tag is the physical object that gets tracked. A tag can be placed on the specified object that needs

to be tracked. A tag consists of a piece of hardware with a Wi-Fi chip. The Wi-Fi chip enables the tag

to connect to the network. The purpose of a tag in the system is to collect the RSSI values, MAC

addresses, and SSID that surround it and send the information to the server over the socket

connection. Every tag in the system is unique. Tags in a Wi-Fi environment will require an external

power source.

4.3.1. Network environment
For the tag to gather information about its location, it will require information from the network

environment (the network in which the tag moves around). The network consists of access points

(AP). Every AP has a unique MAC address that the tag is able to record. The AP’s are placed

logically throughout the building, so that there is enough spatial coverage. Multiple AP’s should be

visible for the tag at every position in the building.

 22

4.3.2. Socket
The socket is the connection that is established between the tag and the server. The connection can be

made via the existing network using Wi-Fi. Information that was collected by the tag must be sent

through the socket to the server.

4.3.3. Location determining software
The location determining software is an algorithm which is responsible for determining the best match

between the measured values and the values in the database. Most of the time, an algorithm is the

heart of the source code that determines the conclusion. This algorithm compares the MAC addresses

in the database to the MAC addresses it got from the tag. When a matching MAC address is found,

the RSSI values of those MAC addresses can be compared and a distance can be concluded.

4.3.4. Database and database filler
The database is an important part of the system. The database is responsible for storing the unique

fingerprints. A fingerprint is a specific location within a building. It consists of the x and y

coordinates on a map and multiple MAC addresses and RSSI values on that specific location. They all

makes each fingerprint unique. Because a fingerprint must be unique, an ID number should be added.

To fill the database, a separate piece of software (the database filler) is needed. The database filler is

responsible for easily adding MAC addresses and RSSI values to the database. While executing the

program, the user should be able to easily add fingerprints with the specific data to the database: the

program should generate a random unique number and add that to the specific database. Hereafter, the

user should be able to add the coordinates of the fingerprint on the map by selecting the location.

4.3.5. Interface
The system has an interface that consists of multiple screens. When the user starts up the application,

the first step the user can perform is to choose between whether they want to search for a specific

object or if they want to see all available objects on a specific floor. If the user decides to choose for a

specific object, a next screen should display a list of all products and their ID’s. When the input is

given, the server should search for that specific object and the system should determine the location.

The location could be given on the matching floor map.

If the user decides to search for all objects on a specific floor, the system should give another screen.

Now, the system should give the user the opportunity to select the floor they want to visualize. Again,

the server should collect the information and determine the locations. Now the feedback should be

one or several objects on the specific floor. A visualisation is provided in Figure 14.

Table 4: Summery of the different elements in the system and their purposes

Element Purpose

Server Main controller of the system

Tag Wireless trackable object

Network environment Hardware that emits signals that can be

gathered by the tag.

Socket Connection between the server and tag

Location determining software Math application for calculating the best

decision

Database Place were fingerprints are stored

Database filler Software application to fill the database

Interface Application to communicate easily between

user and server

 23

Figure 14: Flow chart giving the steps the user can perform when using the system to define their search.

 24

5. Implementation

In this chapter, an explanation will be given upon the implementation of the architecture. For testing

and experimenting purposes, a prototype has been created. In this chapter, a step by step explanation

is given about how the prototype was set up. First the hardware of the tag is elaborated. A class

diagram is given and important methods of the tag are also explained. Secondly, the same is done for

the server. For creating a prototype, the steps that are mentioned in the previous chapter were

followed. The abstract description in the previous chapter has been implemented in this chapter. The

source code of the software package can be found in ‘Appendix B’.

5.1. Tag

For the prototype it was important that an easily accessible and easily changeable piece of hardware

was used, so that a lot of changes could be made to the hardware and software during the prototype

phase. Therefore, a Raspberry Pi 3B was used [20]. A Raspberry Pi is a microcomputer developed for

educational purposes at the University of Cambridge. The advantage of using a Raspberry Pi is that it

is small and it has an 802.11n Wireless LAN chip which made Wi-Fi connection easy. It has four

available USB slots. Two of those slots were attached to a keyboard and mouse. Via the HDMI cable,

the Raspberry Pi was connected to a monitor. During the programming phase, it was connected to a

power line. During the experiments, it was possible to power the Raspberry Pi with a powerbank. The

powerbank was a solution to cover the power problem during the prototyping phase. The powerbank

used was a TP-Link TL-PB10400 Powerbank 10400 mAh [21]. The powerbank had the capacity to

power the Raspberry Pi for approximately 48 hours non-stop. The setup is visible in Figure 15.

Figure 15: Photograph of the used Raspberry Pi connected to the powerbank.

For collecting the RSSI values, MAC addresses and SSID’s from the available network, software had

to be written. For collecting these values, an Android app was developed. Android has extensive

libraries for connection management. In Android, the libraries inside android.net.wifi are available

and these libraries are very useful for requesting the needed information for connection management.

Android applications are written in at least two languages: Extensible Markup Language (XML) for

lay out and interface, and Java for the functionality. For the prototype on the Raspberry Pi, no

interface is needed, because it is only used as mobile tag in the system. When creating an Android

app, the output has an .apk extension. Normally, a Raspberry Pi runs a Linux OS. In this case a

special version of Android Marshmallow 6.0.1 based on a tablet interface was loaded on the

Raspberry Pi. This way it was possible to run the .apk files on the Raspberry Pi. The operating system

of a Raspberry Pi runs on an external Kingston 32 GB microSD card [22]. Win32 Disk Imager

successfully flashed an Android Marshmallow .img on the microSD card. The app was developed in

 25

the IDE Android Studio. It was possible to push software updates over a wireless local network to the

Raspberry Pi with the use of the Android Debug Bridge (ADB).

The software on the Raspberry Pi is built up into three main parts: a struct, a Wi-Fi Manager and a

socket. A class diagram is given in Figure 16. All the classes used on the tag are visible. The class

WifiListActivity is the main class responsible for collecting and sending the values to the server and

the class AP is a struct which holds the three important values an AP has. Further in this chapter some

important classes and methods will be explained further.

Figure 16: Class diagram of the classes from the software package which runs on the Raspberry PI.

5.1.1. Struct
A struct-like class was created. A struct is an old complex data type from the C programming

language. Originally, structs are not supported in Java. However, creating one is possible by

implementing a class with a constructor that passes variables. It is possible to add different groups of

variables under one name in the memory. The struct was named AP and consisted out of three

variables: the RSSI, SSID and BSSID. The BSSID is the basic service set identifier and is the same as

the MAC address of the AP. A single access point could thus be represented with three variables. A

list of AP’s named currentMeasurements was created. This list represented a list of all available

RSSI, SSID and BSSID values at one specific location. This location is the basic of one fingerprint.

The class AP is visible in Box 1.

Box 1: Class AP, a struct based implementation of the values.

5.1.2. WifiManager
Two methods are responsible for collecting the required values. Those two methods are onReceive

and startServer, visible in Box 2 and Box 3. A WifiManger is declared and it then requests the right

information. After this, two lists are declared. While the list results is declared, it is filled with all

available information about the current network data around the Raspberry Pi. This information is

filtered and only the BSSID, RSSI and SSID are added to the list ‘temp’. The next step is that the list

temp is sorted on the highest RSSI value. The list is now ready to be sent to the server.

public class AP implements Serializable{
 static final long serialVersionUID = 1L;
 private final String BSSID;
 private final int RSSI;
 private final String SSID;

 public AP(String BSSID, int RSSI, String SSID) {
 this.BSSID = BSSID;
 this.RSSI = RSSI;
 this.SSID = SSID;
 }

 26

Box 2: Method onReceive, responsible for collecting the values

 @Override
 public void onReceive(Context context, Intent intent) {
 WifiManager manager = (WifiManager)
context.getSystemService(Context.WIFI_SERVICE);
 Log.v("Tag", "Scan results received");
 List<ScanResult> results = manager.getScanResults();
 List<AP> temp = new ArrayList<>();
 for (ScanResult res : results) {
 AP ap = new AP(res.BSSID, res.level, res.SSID);
 temp.add(ap);
 }
 Collections.sort(temp, new Comparator<AP>() {
 @Override
 public int compare(AP ap, AP t1) {
 return t1.RSSI - ap.RSSI;
 }
 });
 Log.d("Lijst" ,Integer.valueOf(temp.size()).toString());
 currentMeasurements.clear();
 currentMeasurements.addAll(temp);
 synchronized (thread) {
 thread.notify();
 }
 adapter.clear();
 adapter.addAll(temp);
 adapter.notifyDataSetChanged();
 }
 }

 27

Box 3: Method startServer, responsible for sending the values

5.1.3. Socket
The last part of the system is the socket. The implementation of the socket can be found in Box 3.

When a series of AP’s is collected at a specific location, it should be sent to the main server. To make

the implementation more feasible, it was decided to declare a ServerSocket on the Raspberry Pi and a

Socket on the server.

The setup is as follows: every Raspberry Pi has a ServerSocket awaiting a connection request from the

computer. The computer requests a connection over the Wi-Fi network to the Raspberry Pi via a

socket. The request can be done by entering the specific IP-Address and port the Raspberry Pi is

listening on. The Raspberry Pi waits until a connection request is done. As soon as a connection

request arrives at the Raspberry Pi, it accepts the connection and starts scanning. The results are then

sent over the socket to the server. The method used to send the list over the network is the

objectOutputStream method. With this method, it is possible to send entire lists over the socket as an

object. As soon as the list is successfully sent to the server, the Raspberry Pi closes the socket

connection and starts waiting for a new request.

public void startServer(){
 try {

 WifiManager wm = (WifiManager)
getSystemService(WIFI_SERVICE);
 String ip =
Formatter.formatIpAddress(wm.getConnectionInfo().getIpAddress());
 InetAddress address = InetAddress.getByName(ip);

 ServerSocket serverSocket = new ServerSocket(4444, 50,
address);
 while (true) {
 Socket skt = serverSocket.accept();
 registerReceiver(receiver, new IntentFilter(
 WiFiManager.SCAN_RESULTS_AVAILABLE_ACTION));
 WifiManager.startScan();
 synchronized (thread) {
 if (currentMeasurements.size() == 0) {
 thread.wait();
 }
 }
 ObjectOutputStream objectOutputStream = new
ObjectOutputStream(skt.getOutputStream());
 objectOutputStream.writeObject(currentMeasurements);
 objectOutputStream.flush();
 skt.close();
 }
 }catch(IOException e){
 e.printStackTrace();
 }catch(InterruptedException e){
 e.printStackTrace();
 }
 }

 28

5.2. Server

The server is the main controller of the system. A server is normally a stable and strong computer that

is able to handle all requests of the system. In this case, a Dell Precision M2800 (RAM: 8GB DDR3;

CPU: i7-4710MQ 2.50GHz; OS: Windows 10 Pro 64-bit) [23] was used to run the software on the

server side. The software was written in Java with JDK 1.7 in Eclipse Mars.1 [24]. The location

information provided by the tag is interpreted on the server. The server performs the following actions

(1) it asks the user for their choice (a choice the user can make is which search they want to perform:

the location of a nearby device or of a specific device), (2) it requests the RSSI, SSID, BSSID values

from that tag, (3) it filters the collected information it received, (4) it compares the filtered

information with the database information, (5) it determines the nearest location and (6) it plots the

result on a map. A flow chart of the steps is given in Figure 17.

Figure 17: Flow chart of all the steps the server performs once a search is initiated.

The system on the server side is built up from different classes and methods. Every method or class is

responsible for a different part of the system. In Figure 18, a class diagram with all the different

classes and methods on the server side is given. In Table 5, all different classes are summarized and a

brief explanation is given as to what the responsibility of every class is.

 29

Figure 18: Class diagram generated by Eclipse of all the classes and their relations on the server side.

 30

Table 5: Summary of all classes in the program on the server side. For every class a small explanation is given about their
role in the system.

Class Responsibility

Main The first class that starts the program, to determine a location.

DataFinder The first class that start the program when a new fingerprint must

be added to the database. When this class is run a new fingerprint

is added to the database.

Search The class responsible for the search based on the users input. It

prompts the user to select the desired device(s).

ValueRequester ValueRequester is responsible for collecting the values from the

selected device. It uses a socket connection to connect to the

device and collects the sent data from the tag.

KNN The main part of the program. This class is responsible for

comparing the measured values with all fingerprints in the

database.

FillingDatabase This class collects all the information for fingerprints from a .csv

file and loads them into the program.

LoadingImage The class responsible for displaying a map of the building and a

dot at the nearest location.

AP A struct-like class used on both the server and Raspberry Pi to

store the important information of one AP.

Database A struct-like class for the fingerprints.

Devices A struct-like class for the different devices.

Result An inner class to model the results.

DistanceComperator An inner class used to sort the matched fingerprints.

DataPoint An inner struct-like class for the fingerprints that are needed for

the calculation done by the KNN class.

5.2.1. Choice of information
The class Search, visible in Box 4 is responsible for registering the user’s choice. First, it displays a

list of all available devices within the system. In this case, the device is the Raspberry Pi. All devices

can be added to the struct Devices. To add a device to the struct, a unique IP address and name must

be given. This happens in the method addDevices. The system prints a list of all available devices.

The user can select the specific device by pressing a number on the keyboard. The requested number

is read and the correlating IP address is used to request the proper values. For time reasons, only the

implementation of the specific device search was done.

 31

Box 4: Class Search responsible for collecting the user input

5.2.2. Request and process values
The next step of the system is that, when a specific tag is chosen, the information from that tag needs

to be requested. The start and filterList method, visible in Box 5 are responsible for requesting and

sorting the values that are sent over the socket. The socket on this side tries to connect to the selected

IP address through port 4444. An objectInputStream that can receive an object over the socket

connection is created. As soon as a connection is established, the Raspberry Pi sends its list of AP’s

over the socket. This list is sent as an object. By casting the object to a list of AP’s, it can be stored in

WifiValues. WifiValues is a list of AP’s, which are built up the same way as the struct on the

Raspberry Pi. The method filterList is responsible for filtering all the collected data and only keep the

data with a specific SSID.

public class Search {

ArrayList<Devices> allDevices = new ArrayList<Devices>();
KNN knn = new KNN();

Public void addDevices() {
 try {
 Scanner inputStream = new Scanner(file);
 inputStream.next();
 for (int i = 0; i < databaseSize; i++) {
 String data = inputStream.next();
 String[] values = data.split(",");
 Devices device = new Devices(values[0], values[1]);
 allDevices.add(device);
 }
 inputStream.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
}

public void choice() {
 Scanner scanner = new Scanner(System.in);
 System.out.println("What do you want to find? \n Availible are:");
 for (int i = 0; i < allDevices.size(); i++) {
 System.out.println((i + 1) + ": Name: "
+allDevices.get(i).getDeviceName()+ " IPAddress: "
+allDevices.get(i).getIPAdress());
 }
 System.out.println("Make your choice?");
 int choice = scanner.nextInt();
 knn.startAlgorithm(allDevices.get(choice - 1).getIPAdress());
 scanner.close();
}
}

 32

Box 5: Methods Start and filterList responsible for receiving and filtering the data

5.2.3. Database and Database Filler
The database is located on the server and stores all the unique fingerprints. The same structure as the

AP’s was used. The class Database is also based on the struct principle. In Box 6, the class database is

given. This struct contains the following data: a unique ID, a list of BSSID, a list of referencePoints

(RSSI values) and a set of x and y coordinates. An example of the database can be found in Table 6.

A .csv file is created in Microsoft Excel. The BSSID and RSSI values of each fingerprint are

automatically added to the file when the databaseFiller is run. The coordinates are then added

manually to the same file. The struct is filled with information from the file: when the program is

executed, the data from the .csv file are read by the method addPoints, visible in Box 7. A .csv file is

a comma separated values file that can easily be imported. Every line of the file is read and put into

the string data. This string is split into different parts on the delimiter “,”. This new array string can

now add the correct values to the corresponding parts in the struct. The RSSI first need to be casted

from a String to a double, before they can be properly added to the struct. In the end, every fingerprint

is added to the list allDataPoints.

public void start() {
try {
 InetAddress adress = InetAddress.getByName(IPADRESS);
 socket = new Socket(adress, 4444);
 ObjectInputStream objectInput = new
ObjectInputStream(socket.getInputStream());
 try {
 Object object = objectInput.readObject();
 //Cast them to a list;
 WifiValues = (List<AP>) object;
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
} catch (UnknownHostException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
try {
 socket.close();
} catch (IOException e) {
 e.printStackTrace();
}
filterList();
}

public void filterList() {
for (AP value : WifiValues) {
 if (value.SSID.equals(SSID)) {
 filWifiValues.add(value);
 }
}

 33

Box 6: Class Database, the struct setup for one unique fingerprint

Table 6: Example of the database. The BSSID’s, RSSI’s and (x, y) coordinates are given for each fingerprint.

Besides loading the stored data to the physical memory, the server is also responsible for filling the

database with the fingerprints. Fingerprints are collected during the offline phase. As mentioned

before, a fingerprint consists of a unique ID, a List of RSSI values and a List of BSSID values. In Box

8 the method findValue can be found. The method findValue uses the same method as valueRequester

(Box 5). This method collects all the available information from all AP’s around that position. The

limit in the database for each fingerprint is six AP’s. Six was chosen because this was the lowest

number of AP’s at multiple locations through the building. This can easily be scaled up or down if

there are more or less AP’s available. After valueRequester has been executed, the method checks if

at least six datapoints are collected. If the number is lower than six, it will return that the required

amount of available AP’s is not met. After the check, the six strongest values are added to two

ArrayList’s. The RSSI values are casted from Integer to String. All the values are collected into one

string and separated with a comma. A unique ID and the x and y coordinates are also added. Last, the

newly collected fingerprint is written to the .csv file.

public class Database {
private final int ID;
private List<String> BSSID = new ArrayList<String>();
private List<Double> referencePoints = new ArrayList<Double>();
private int xPos;
private int yPos;

public Database(int newLocation, List<String> newBSSID, List<Double>
newRefrencePoint, int newxPos, int newyPos) {
 ID = newLocation;
 BSSID = newBSSID;
 referencePoints = newRefrencePoint;
 xPos = newxPos;
 yPos = newyPos;
 }
}

 34

Box 7: Method addPoints, responsible for loading the data from the .csv file to the memory

public void addPoints() {

try {
 Scanner inputStream = new Scanner(file);
 inputStream.next();
 for (int i = 0; i < databaseSize; i++) {
 String data = inputStream.next();
 String[] values = data.split(",");
 ArrayList<String> nSM1 = new ArrayList<String>();
 testArrayString.add(nSM1);
 ArrayList<Double> nSD1 = new ArrayList<Double>();
 testArrayDouble.add(nSD1);
 nSM1.add(values[1]);
 nSM1.add(values[2]);
 nSM1.add(values[3]);
 nSM1.add(values[4]);
 nSM1.add(values[5]);
 nSM1.add(values[6]);
 Double dRSSI1 = Double.parseDouble(values[7]);
 Double dRSSI2 = Double.parseDouble(values[8]);
 Double dRSSI3 = Double.parseDouble(values[9]);
 Double dRSSI4 = Double.parseDouble(values[10]);
 Double dRSSI5 = Double.parseDouble(values[11]);
 Double dRSSI6 = Double.parseDouble(values[12]);
 nSD1.add(dRSSI1);
 nSD1.add(dRSSI2);
 nSD1.add(dRSSI3);
 nSD1.add(dRSSI4);
 nSD1.add(dRSSI5);
 nSD1.add(dRSSI6);
 int index = Integer.parseInt(values[0]);
 int xpos = Integer.parseInt(values[13]);
 int ypos = Integer.parseInt(values[14]);
 Database database = new Database(index,
testArrayString.get(i),testArrayDouble.get(i), xpos, ypos);
 allDataPoints.add(database);
 inputStream.close();
 }
} catch (FileNotFoundException e) {
 e.printStackTrace();
}

 35

Box 8: Method findValue, resposible for adding fingerprints to the .csv file

5.2.4. kNN algorithm
The algorithm is the heart of the program. This part is where the measured value and the values in the

database are compared. This class consists of three major methods: startAlgorithm, startComparing

and sortList. All three methods are based on an implementation of a kNN algorithm in Java [25]. The

method startAlgorithm (in Box 9) is responsible for collecting all available data and makes sure every

variable is a local variable. It first collects the list of all database points and stores it into a new struct

named dataPointList. At that point, all values are local variables and it is not necessary anymore to

use ‘get’ functions to request the required data. The next step is to request the measured value. It is

added to two ArrayLists of RSSI values and MAC addresses. All the required values for determining

the location are then available.

Next, startComparing, presented in Box 10, compares the values of the measurement with the

database. The method first iterates through every point in the complete database. Two numbers that

are needed later for calculations are declared. Next, it iterates through every MAC address for one

specific fingerprint. The last step is that it iterates through every measured MAC address from the

Raspberry Pi. In this three double ‘for’ loop, all MAC addresses are requested. If two MAC addresses

are identical, both relating RSSI values are request and compared to each other. The result of this

comparison is stored in the double dist. For every matching MAC address between one fingerprint

and the measurement, the Euclidean distance is calculated. The result is added to the resultList. The

dexterity of this method is that it first tries to compare all six MAC addresses with each other. In

practice, it can occur that one or two MAC addresses cannot be determined because of e.g.

public void findValue() throws FileNotFoundException, IOException {

valueRequester.start(IPAdress);
if (valueRequester.getFilData().size() < amountOfReferencePoints) {
 System.out.println("Niet genoeg values gevonden op deze
locatie...");
} else {
 for (int i = 0; i < amountOfReferencePoints; i++) {
 BSSID.add(valueRequester.getFilData().get(i).getBSSID());
 RSSI.add(Integer.toString(valueRequester.getFilData().get(i).
getRSSI()));
 }
 StringBuilder sb = new StringBuilder();
 sb.append(ID);
 sb.append(",");
 for (int i = 0; i < BSSID.size(); i++) {
 sb.append(BSSID.get(i));
 sb.append(",");
 }
 for (int i = 0; i < RSSI.size(); i++) {
 sb.append(RSSI.get(i));
 sb.append(",");
 }
 sb.append(xLoc);
 sb.append(",");
 sb.append(yLoc);
 sb.append("\n");
 pw.write(sb.toString());
 pw.close();
}
}

 36

interference. When the method fails to find a match with all six AP’s, it will try again with five and so

on. The system can print the value of the amount of matching MAC addresses. If the value is six, one

can be quite certain that the measurement is correct. If the value is lower, the measurement can get

quite incorrect. If this happens often at a location, it could be useful to add more fingerprints to the

database in that area.

The last method, sortList, is responsible for sorting the list. Two RSSI values are compared using the

Euclidean distance. The closer the RSSI values are together, the closer the measured point should be

to a specific fingerprint. So the higher the value of dist, the further away it is from that specific

fingerprint. This means that the lowest value of dist is the closest fingerprint to the measured value.

SortList is responsible to sort the list on dist values. The fingerprint that ends up highest on the list is

thus the closest fingerprint. The location of this fingerprint is then displayed on the map.

Box 9: Method startAlgorithm resposible for collection all the values

public void startAlgorithm(String choice) {
for (int i = 0; i < values.getAllData().size(); i++) {
 dataPointList.add(new DataPoint(
 values.getAllData().get(i).getReferencePoints(),
 values.getAllData().get(i).getBSSID(),
 values.getAllData().get(i).getLocation()));
}

query = new ArrayList<Double>();
queryString = new ArrayList<String>();
for (int i = 0; i < scanValue.getFilData().size(); i++) {
 Double tempDouble;
 String tempString;
 tempDouble = scanValue.getFilData().get(i).getRSSIDouble();
 tempString = scanValue.getFilData().get(i).getBSSID();
 query.add(tempDouble);
 queryString.add(tempString);
}
}

 37

Box 10: Method startComparing responsible. for comparing all the values in the database with the measured value

Box 11: Method sortList, responsible for sorting the resultList on the lowest value from the result of the Euclidean distance

public void startComparing() {
for (int i = 0; i < dataPointList.size(); i++) {
 double dist = Double.POSITIVE_INFINITY;
 int counter = 0;
 for (int j = 0; j < dataPointList.get(i).getdataBSSID().size();
j++) {
 for (int h = 0; h < queryString.size(); h++) {
 if (dataPointList.get(i).getdataBSSID().get(j).equals(
queryString.get(h))) {
 dist = dist == Double.POSITIVE_INFINITY ? 0.0 : dist;
 Double refRSSI =
dataPointList.get(i).getdataAttributes().get(j);
 Double measRSSI = query.get(h);
 Dist += Math.pow(refRSSI - measRSSI, 2);
 counter++;
 }
 }
}
 if (counter == totalRounds) {
 double distance = Math.sqrt(dist);
 resultList.add(new Result(distance,
dataPointList.get(i).getdataName()));
 System.out.println("Matching Mac adress: " + totalRounds);
 }
}
if (resultList.isEmpty()) {
 totalRounds--;
 startComparing();
} else {
 sortList();
}
}

public void sortList() {
Collections.sort(resultList, new DistanceComparator());
List<Integer> ss = new ArrayList<Integer>();
for (int x = 0; x < resultList.size(); x++) {
 ss.add(resultList.get(x).dataNumber);
}

for (Result results : resultList) {
 System.out.println("Closest Access point: " + results.dataNumber);
 System.out.println("Total Distance: " + results.distance + "\n");
}
int winner = resultList.get(0).dataNumber;
image.startLoading(winner - 1);
}

 38

5.2.5. Feedback
A 2D map by Google Maps was chosen to visualize the feedback, since Google Maps already mapped

the insides of the University of Twente buildings. The maps of the ground and first floor of the

Zilverling building at the University of Twente were juxtaposed, as it can be seen in Figure 19. This

class starts with the method startLoading which receives the fingerprint which is on top of the list

from the sortList method. The method startLoading is visible in Box 12. First, it loads both images,

the map of the building and a small red dot. Hereafter, it requests the x and y coordinate of the

specific fingerprint. Last, the method paintComponent returns the map of the building and the red dot

at the specific location. For illustrative purposes, Figure 20 gives a map all collected fingerprints

within the database.

Figure 19: Map of the ground (left) and first (right) floor of the Zilverling building at the University of Twente [26].

Figure 20: Map of the ground (left) and first (right) floor of the Zilverling building with all collected fingerprints (each
represented by a bright red dot) The map itself is the Google Maps map [26]. The red dots were added to map by having the
program display every single fingerprint. The exact location of each fingerprint is given by its x and y coordinates from the
.csv file.

 39

Box 12: Method startLoading, responsible for loading and drawing the Image and the red dot at the specific location

public void startLoading(int newWinner) {
winner = newWinner;
JFrame frame = buildFrame();
try {
 backgroundImage = ImageIO.read(new File(IMAGENAME));
 redDot = ImageIO.read(new File("reddot.png"));
} catch (IOException e) {
 e.printStackTrace();
}
xLocation = newData.getAllData().get(winner).getXvalue();
yLocation = newData.getAllData().get(winner).getYvalue();

JPanel pane = new JPanel() {
private static final long serialVersionUID = 1L;

@Override
protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(backgroundImage, 0, 0, null);
 g.drawImage(redDot, xLocation, yLocation, null);
// for (int i = 0; i < 65; i++) {
// g.drawImage(redDot, newData.getAllData().get(i).getXvalue(),
newData.getAllData().get(i).getYvalue(), null);
// }
}
};
frame.add(pane);
}

 40

6. Evaluation

In this chapter, the test setup and the experimental results are explained. Two experiments were

performed to determine if the prototype functioned the way it was supposed to. The goal of the first

experiment was to see if a Wi-Fi fingerprinting based indoor positioning system reduces the searching

time in comparison to manual search. The goal of the second experiment was to determine the

accuracy of the software that was used. The following paragraphs will elaborate upon the

experimental proceedings.

6.1. Setup and method for searching times experiment

The experiment was done at the University of Twente, inside the Zilverling building at Hallenweg 19,

7522 NH Enschede. The ground floor and first floor were used as the general area where the object

could be located. A stool with a distinctive yellow top was chosen as object to be found. The stool

represented a patient lift or bedmover. A Raspberry Pi attached to the powerbank was placed on the

stool. The object was then placed in a lunch break area at the end of the hallway on the first floor. The

setup is visible in Figure 22. The location is given in Figure 21. Two groups were formed. The first

group was asked to find the object while using the software. The second group was asked to look for

the object without the software and had to search manually. The time the subjects took to find the

objects was measured.

The experiment started at the SmartXp (red dot in Figure 23), on the ground floor of the Zilverling

building, at the University of Twente. A subject was approached and asked if they were interested in

participating in an experiment. If the subject agreed, a brief explanation was given about the

experiment. They were told that searching times of manual search and indoor positioning system

assisted search were being compared. The subjects were chosen at random and they were randomly

placed in the experimental group or control group. Both conditions are described below.

Figure 21: Map of the first floor of the Zilverling building illustrating the fingerprint nearest to the location of the stool,
represented by the bright red dot [26].

 41

Figure 22: Photograph of the searching times experiment setup. The stool was placed in the middle of the lunch break area
on the first floor of the Zilverling building. The red square indicates the Raspberry Pi attached to the powerbank.

6.1.1. Control group
The control group participants were shown a map of the ground and first floor of the Zilverling

building (Figure 19). The subjects were told that they had to find a stool with a Raspberry Pi on it, and

that it was hidden somewhere in that area shown on the map. The moment the subject walked away

and started searching, a timer was started. As soon as the subject found the object, the timer was

stopped. If the subject was interested, an explanation was given upon the system and the reason for

the experiment.

In some cases, the subject was unable to find the object within the set time limit of five minutes. If

this was the case, the experiment was stopped and the time was recorded as five minutes. The reason

behind this was that the five minutes were a long enough time to witness whether or not the system

worked. If this time limit was set higher, the effect of the use of the software would be even greater.

Figure 23: Map of the ground floor of the Zilverling building giving the location of the experimental starting point,
represented by the blue dot [26].

 42

6.1.2. Experimental group
The experimental group had to find the object but, as opposed to the other group, they used the

software. It was explained to them that a stool with a Raspberry Pi on it was hidden somewhere

within the ground and first floor of the building. As they ran the program to start their search, the

timer was started. The program was run and the location was determined by the system. The observer

registered whether the correct location was returned. A map like the map in Figure 21 was shown to

the subject. The location of the stool was now known to the subject and they were able to walk to the

object. As soon as the stool was found by the subject, the timer was stopped and the time registered. If

the subject was interested an explanation was given about the system, its purpose and how it worked.

6.2. Experimental results: searching times

The results were split up into two parts: the results from the experimental group and from the control

group. The data collected are shown in Table 7. A total of 20 subjects completed the experiment.

They were evenly divided between both groups. In normal conditions, walking from the starting point

to the location of the device would take approximately 55 seconds at a normal waking pace. The

amount of steps between the two points is approximately 100.

Table 7: Experimental data of 20 subjects. The table gives the time (in seconds) in which the subjects were able to find the
object with or without the software. The location given by the algorithm was accurate for all 10 subjects that used the
software. Some of the control subjects were unable to find the object within the time limits, and their time was set to 300s.

Subject number Searching time with

software (in seconds)

Searching time without

software (in seconds)

1 84 300

2 155 183

3 100 300

4 97 243

5 83 210

6 80 91

7 105 300

8 80 250

9 113 261

10 98 237

Average 99.50 237.50

6.3. Setup and method for accuracy experiment

The same experimental environment as before was used once again, but no participants were needed.

The goal of this experiment was to determine the precision and consistency of the IPS. Insights into

these properties helped to estimate the correctness and effectiveness of the software, and the effects of

adding a single fingerprint to the database.

The experiment was conducted at two locations at the Zilverling. The first location was a position

chosen in the hallway on the ground floor. The second position was in the SmartXp. Both locations

are displayed in Figure 24, and respectably labelled 1 and 2. While the Raspberry Pi was at both

locations, the program was run 25 times with a time delay between the runs of approximately 30

seconds. The ID of fingerprint that was returned by the system was recorded each time. The distance

between the actual location of the Raspberry Pi and the given fingerprint was estimated.

After the experiment at the second location, the SmartXp, an additional fingerprint was added to the

database at the location of the Raspberry Pi. The program was once again run 25 times and the

returned fingerprint ID was recorded.

 43

Figure 24: Map of the ground floor of the Zilverling building giving the actual position of the Raspberry Pi in the first and
second position. The locations are respectively indicated with the blue dots labelled 1 and 2. Two sets of measurements
were performed at the second location.

6.4. Experimental results: accuracy

The collected results for the accuracy experiment are given in three tables. The results of the hallway

measurements are given in Table 8. Table 9 gives the results of the SmartXp measurements. Table 10

gives the results of the SmartXp location after adding an additional fingerprint. In the tables below,

the ID’s of the returned fingerprints are given. The actual location of these fingerprints are visible on

a map in Figure 25 and Figure 26.

Table 8: Measurements at the hallway locations (location 1). The result is a fingerprint ID. The distance between the actual
location and the returned fingerprint was determined and is also given in the table.

Fingerprint ID Occurrence (absolute) Occurrence (%) Distance to actual

position

15 21 84% 5 m

24 4 16% 7 m

Table 9: Measurements at the Smart XP locations (location 2) before adding an extra fingerprint. The result is a fingerprint
ID. The distance between the actual location and the returned fingerprint was determined and is also given in the table.

Fingerprint ID Occurrence (absolute) Occurrence (%) Distance to actual

position

1 10 40% 7 m

2 3 12% 6 m

3 10 40% 2 m

4 2 8% 5 m

 44

Table 10: Measurements at the Smart XP locations (location 2) after adding an extra fingerprint. The result is a fingerprint
ID. The distance between the actual location and the returned fingerprint was determined and is also given in the table. The
previously returned fingerprints are also included in the table.

Fingerprint ID Occurrence (absolute) Occurrence (%) Distance to actual

position

1 0 0% 7 m

2 0 0% 6 m

3 0 0% 2 m

4 0 0% 5 m

65 25 100% 0 m

Figure 25: Map of the ground floor of the Zilverling building. The actual location of the Raspberry Pi is indicated by the blue
dot. The fingerprints that were returned for the experiment with the Raspberry Pi placed in the hallway are displayed by red
dots and labeled with their fingerprint ID. The distances between the actual location and fingerprints 15 and 24 are
respectively 5 and 7 meters.

 45

Figure 26: Map of the ground floor of the Zilverling building. The actual location of the Raspberry Pi is indicated by the blue
dot. The fingerprints that were returned for the experiment with the Raspberry Pi placed in the SmartXp are displayed by
red dots and labeled with their fingerprint ID. The distances between the actual location and fingerprints 1, 2, 3 and 4 are
respectively 7, 6, 2 and 5 meters. The fingerprint added for the last part of the experiment, fingerprint 65, was added at the
exact same location as the blue dot. Since the location of the Raspberry pi and fingerprint 65 coincide, the distance between
those two is 0 meters.

6.5. Discussion

In this chapter, the data acquired during the experiments are discussed. At the end of the chapter, the

limitations related to the experiments and the research are mentioned and explained.

All statistical analyses were performed using the software SPSS version 24. The mean, standard

deviation and standard error mean where calculated.

6.5.1. Analysis of the searching times experiment
The results of the searching time experiment are visible in Table 11. To assess the statistical relevance

of the experimental data, a statistical analyses was done with a 2 sample T-Test [27]. This test can

help to determine whether there is a statistical difference between the means of two groups.

Table 11: Statistical analysis of the searching time data processed in SPSS. The data consist of the sample size, mean,
standard deviation and standard error mean for the data of subjects with or without the use of the IPS software.

Experimental

conditions

Sample Size Mean Std. Deviation Std. Error

Mean

Subjects with

software

10 99.50 22.545 7.129

Subjects without

software

10 237.5 64.676 20.452

For analyzing the data, a T-Test was performed. The output of the SPSS T-Test with a confidence

interval of 95% was given in Table 12.

 46

Table 12: Statistical analysis of the searching times data processed in SPSS. The results include, but are not limited to the
significance, and mean difference. A T-Test with a 95% confidence interval was performed on the data to acquire the
statistical analysis of the results of the experiment for the influence of the software to the searching times.

Equal

Variance

F Sig. T Df Sig. (2-

tailed)

Mean

Difference

Std Error

Difference

Lower Upper

Assumed 4.495 0.048 6.371 18 0.000005 138.000 21.659 92.496 183.504

Not

assumed

 6.371 11.155 0.000050 138.000 21.659 90.409 185.591

The significance value is 0.048, which is below 0.05. This means that the ‘equal variances not

assumed’ row should be used. The significance (2-tailed) value is 0.00050. Since the value is below

0.05, it can be concluded that there is a significant difference between the measured values. The

acquired data allow a conclusion that the searching time was reduced of an average of 138 seconds

when using the prototype. This is a time reduction of 58% when compared to when no software is

used.

6.5.2. Analysis of the accuracy experiment.
The data from the accuracy experiment are analyzed in this paragraph. The first part of the

experiment, when the Raspberry Pi was placed in the hallway, returned two locations, fingerprints 24

and 15, as could be seen in Table 8. The distance between the actual location and fingerprint 15 was

shortest, and therefore fingerprint 15 was the qualitatively best feedback. From the data it can be seen

that in 84% of the experiments the program determined the best available fingerprint. The remaining

16% of the measurements did however still return a quite correct location, since even though there

was better location, the returned one was still the second best fingerprint. Nevertheless, Fingerprint

24 was not located in the hallway but in a room.

The second part of the experiment, when the Raspberry Pi was placed in the SmartXp, confirmed that

walls do have an important effect on signal strength. All returned fingerprints were located inside the

correct room. Since there are no walls inside the SmartXp, a higher difference in the returned

fingerprint was expected. As can be seen from the results in Table 9, results are distributed. Since the

most adequate fingerprint would have been fingerprint 3, only 40% of the data was determined

correctly by the program. Nonetheless, since all fingerprints were in the correct room, and considering

the intended use of the technology, any of the returned results would have resulted in the fast and

correct localization of the equipment.

The third part of the experiment, when the experiment was run at the same location as before but with

an added fingerprint, confirmed that increasing the amount of fingerprints in a specious room

increases the accuracy of the software. As can be seen in Table 10, the distribution that could be

depicted in Table 9 was eliminated. All measurements were as accurate as they could be.

Henceforth, it can be concluded that the system is effective in determining a location within the

building but has troubles when too little fingerprints are added to the database.

6.5.3. Limitations
The results of this research are promising. It appears that using Wi-Fi fingerprinting for IPS can

reduce searching times. Still, the results show some limitations. These are discussed in this paragraph.

The first limitation was the fact that the sample size for determining whether searching times were

reduced was small. There were a total of 10 subjects in each group. This is a significant number but

more subjects would increase the quality of the information and the conclusion.

The second limitation was that the system is only tested in one environment. In theory the system

should work as long as there are enough AP’s available on every position in the building. But this has

not been tested, and problems may arise that did not in this environment.

A third limitation related to the test environment was that it was a relatively small environment,

especially if compared to e.g. the size of the MST hospital. Moreover, only a small part of the

building was indexed. It would be interesting to see the extent of the decrease in searching time with

much larger environment sizes.

 47

Another limitation is that both groups only consisted of students of the University of Twente. An

aspect that characterize students from the University of Twente is that they are familiar with the

surroundings and technology. The results could be different if people with less feeling for technology

or another background would perform the search.

Additionally, the fingerprints database (see Figure 20) was small: only 65 fingerprints were added to

the database. Not all rooms were indexed and in the hallway fingerprints were registered every 5-10

meters. Increased the database should make a more accurate system possible.

6.6. Evaluation of requirements

In this paragraph, all drafted requirements from ‘Requirement analysis’ are discussed. Moreover, it is

assessed if the prototype meets the requirements that were drafted. For clarity purposes, the

requirements are once again listed below and an explanation is given as to whether each of them was

successfully implemented.

6.6.1. Must requirements

 The system must reduce searching times was opposed to manual search.

The experiments proved that the searching time can be reduced.

 The system must be combinable with two Indes devices: the bedmover and patient lift.

The prototype was a stand-alone tag, but the system could be applied to the two

devices.

 The system must be implementable in two environments (hospitals and retirement

homes) as well as in different kinds of setups (premises consisting of one or several

buildings).

The system was not tested in in both environments but they were both visited and

analyzed. It was concluded that the system should work in both environments.

 The system must be intuitive.

During experiments the subject’s behavior was analyzed and no understanding

problems were registered.

 The system must be able to find a specific product by entering its ID.

This feature was implemented in the system. The ID was the IP-address of the

specific tag.

 The system must be able to search for products close to the user.

This was not implemented in the system. Further development of the software could

implement this feature.

 The system must be standalone and applicable on multiple devices.

The feedback was now given on the laptop on which the server was running. Further

development of the system could make the server accessible for multiple clients.

 The system must determine a location with an accuracy of 10 meters or less.

 The experiment done with the prototype proved that the required accuracy of 10

 meters or less can be achieved.

6.6.2. Should-requirements

 The system should change work ethics and be a marketable product that enables

everybody to use the equipment.

This requirement was not tested but information gathered from the interviews

suggested that stakeholders are willing to change their work ethics.

 The system should be accessible for all personnel on the work floor for whom it is useful

to use.

 The requirement was not tested, however, once the technology is in place and the

 interface is accessible on different platforms with different searching features, all

 personnel that need the technology should be able to access it.

 48

 The system should also be accessible for the management of the institutions.

This requirement was not met because it fell out of the scope of the initial boundaries

set by Indes.

 The costs of the implementation of the system should be profitable.

The solution to uses a Wi-Fi based fingerprinting implementation. It is one of the

most low-prized IPS solutions.

 The system should be given on a 2D map of the building floor.

The feedback from the system was developed according to this requirement and the

location of the device was illustrated by a red dot on a 2D map.

 The system should only search for a specific piece of equipment when it is asked to do

so.

This requirement was achieved. The system does not operate until the server sends a

request for information.

 The system should keep the error in the vertical direction to a minimum.
This requirement was met. During all experiments, an error in the vertical direction

was never observed.
 If possible, the system should use of an already existing wireless communication

technology as a network environment for an IPS.
This requirement was met. The system was created and tested in the already existing

Wi-Fi wireless communication technology.

6.6.3. Could-requirements

 The system could be able to determine which product is in use or not.

This requirement was not met because it fell out of the scope of the project.

 The system could help by analyzing the distribution and usage of the equipment.

 This requirement was not met because it fell out of the scope of the project.

 The system could monitor the battery level and when the battery level drops below 10%

it should automatically store the location.

This requirement was not met because it fell out of the scope of this project

 49

7. Conclusion and future work

In this chapter, a conclusion is drawn and it is explained how the research should be continued in the

future. The structure of the main research question and sub-questions will be maintained.

7.1. Conclusion

The research question was ‘What is the best way for Indes to locate their bedmovers and patient lifts

within a retirement home or hospital?’. In order to answer this question, the sub-questions from the

chapter Introduction were answered. Once the sub-questions are answered, the main research question

will also be answered.

7.1.1. Sub question 1: what indoor positing systems do already exist?
The answer was found by looking at existing literature and observations of current applications. As

opposed to outdoor localization where there is one standard, e.g. GPS, there is no standard method for

IPS’s. All different IPS’s have different specifications and advantages and disadvantages. The

researched measurement principles where Time of Flight, Angle of Arrival and Signal Strength. The

wireless communication technologies that were analyzed were GPS, RFID, Cellular based, UWB,

WLAN, Bluetooth and INS.

7.1.2. Sub-question 2: what requirements should the system meet for a viable product?
The chapter ‘Requirement analysis’ elaborates on the subject addressed in this question. First of all,

initial boundaries and expectations for the first prototype were set up by Indes. Secondly, the

preferences of the intended user influence the functions the system should offer. Last, some technical

requirements originate from the way the system should be built and how it should handle requests. All

the requirements where sorted according to the MoSCoW principle.

7.1.3. Sub- question 3: can an indoor positioning system reduce the searching time as
compared to manual search?

In order to answer this sub-question, an experiment was performed. The experiment was described in

‘Setup and method for searching times experiment’. The conclusion that could be drawn from the

experiment was that the use of software could reduce searching times with 58% on a two floor

building. It may be assumed that search area and time saving are positively correlated.

7.1.4. Sub-question 4: are Indes’ clients willing to use this technique?
Stakeholders were given the possibility to answer this question themselves through interviews. All of

them agreed they would use the system. If Indes develops an IPS for medical equipment that reduces

searching times and increases the quality of working conditions, the stakeholders would be willing to

use it. The readiness of the clients to use the technology would increase if Indes would offer the

possibility to extend the applications by making the hardware standalone.

7.1.5. Main research question: What is the best way for Indes to locate their bedmovers and
patient lifts within a building?

The answers given to the sub-questions above help to answer this main question. The system makes it

possible to locate specific devices in large buildings. A Wi-Fi based IPS does not give a perfect

positioning, but the provided location is precise enough for the objects to be found. The system is

easy to implement in most buildings, because most buildings already have an existing Wi-Fi network.

Hence, implementation costs can remain limited. The principle behind the software is applicable for

most buildings and does not need geometric surveys. Most of the requirements that were drafted and

presented in the chapter ‘Requirement analysis’ were met according to the analyses that was done in

 50

the paragraph ‘Evaluation of requirements’. The unmet requirements can be met with additional time

and research.

In conclusion, the Wi-Fi implementation is the best option for tracking the Indes medical devices

inside buildings.

7.2. Future work

If the system should be implemented in the future, additional research should be done. There are a

few shortcomings that need to be overcome.

At this moment, there is no security implemented in the system. The information sent over the Wi-Fi

network is in plain text. It would be more secure to encrypt the information. In ‘The security of

private information for Indes equipment’ [28], a research was done to start acquiring knowledge about

this part of the system.

When the database was filled, the Raspberry Pi was placed inside the room and the program was run

to add a fingerprint to the database. It was later found that for one same location, the RSSI value

could vary over time. The database could be more accurate if every fingerprint was an average of 10

values taken at one location. A recommendation is that when the database is filled, a program is

written that takes 10 measurements and stores the average in the database.

Every fingerprint consists of 6 MAC addresses. Over time, it was found that it could be possible to

increase this number. As a recommendation, it could be very useful to extensively research the

maximum number of MAC addresses stored for one fingerprint. The higher this number, the more

accurate the system becomes.

For making the setup of the database easier, a program with an interface should be written. The

interface should somehow replace the manual entry of x and y coordinates.

It would be useful if the system could determine if the product is in use. When a caregiver is looking

for a specific object and does a search for the nearest device, knowing if it is already in use would

further decrease searching times. In this case, it can be taken into consideration that the object is not

available and suggest another device.

The experiment was done in a controlled and relatively small environment. It would be interesting to

scale up the experimental area and see how much the decrease in searching times would increase on a

larger scale. With that information, a better analysis can be done as to how much the real searching

will be reduced. From there, a calculation can be made concerning how much the cost reduction

would become if an IPS would really be used.

For making the system more useful and more versatile, the possibility of continuous tracking should

be considered. The interviews led to the conclusion that certain stakeholders would be interested in

this feature. Analyzing the collected data could be an advantageous extra feature for the management.

The last recommendation is to see if the tag could be improved. For prototyping purposes, a

Raspberry Pi was used to collect the data. A Raspberry Pi is an overclassified device to be a tag in a

real system. Another piece of hardware that can function as tag should be developed. It is important

that a Wi-Fi tag is an active tag, so it requires power. If a standalone tag is developed, the scope of the

technology will be broadened. It is not only implementable in the healthcare branch but in every

branch where larger expensive equipment is shared through buildings.

The advice given to Indes is to first make a decision: there are two options to be considered. Should

the system be with a built in tag or standalone tag? Both sides have advantages and disadvantages. To

make a final decision two follow-up researches should be done. A solution for the power problem

with a standalone tag should be found and the possibilities of the Internet of Things could be explored

with a built in tag.

 51

8. References

[1] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques

and systems,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 37, no. 6, pp. 1067–

1080, 2007.

[2] L. P. Wen, C. W. Nee, K. M. Chun, T. an Shiang-yen, and R. Idrus, “Application of WiFi-

based Indoor Positioning System in Handheld Directory System,” Proc. 5th Eur. Conf. Eur.

Comput. Conf. World Sci. Eng. Acad. Soc., pp. 21–27, 2011.

[3] S. Goswami, Indoor LocationTechnologies, no. 1. 2014.

[4] M. Werner, Indoor location-based services: Prerequisites and foundations. 2014.

[5] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “SpotFi : Decimeter Level Localization Using

WiFi,” Sigcomm 2015, pp. 269–282, 2015.

[6] P. Le Dortz, N. and Gain, F. and Zetterberg, “Wifi Fingerprint Indoor Positioning System

Using Probability Distribution Comparison,” Acoust. Speech Signal Process. (ICASSP), 2012

IEEE Int. Conf., pp. 2301–2304, 2012.

[7] K. Thapaliya and Goo-Rak Kwon, “Enhanced weighted K-nearest neighbor algorithm for

indoor Wi-Fi positioning systems,” Comput. Technol. Inf. Manag. (ICCM), 2012 8th Int.

Conf., vol. 1, pp. 515–520, 2012.

[8] Shopify,

“http://cdn.shopify.com/s/files/1/0219/9382/products/ibw_02_large.PNG?v=1401283951.” .

[9] A. D. Velasco and S. M. Delgado, “Indoor Positioning using the Android Platform,” 2014.

[10] NASA, “http://missionscience.nasa.gov/ems/03_behaviors.html.”

[11] Gaussian Wave, “http://www.gaussianwaves.com/gaussianwaves/wp-

content/uploads/2013/07/Multipath_1_copyrighted.png.”

[12] A. W. S. Au et al., “Indoor tracking and navigation using received signal strength and

compressive sensing on a mobile device,” IEEE Trans. Mob. Comput., vol. 12, no. 10, pp.

2050–2062, 2013.

[13] A. Disha, “A Comparative Analysis on indoor positioning Techniques and Systems,” Int. J.

Eng. Res. Appl., vol. 3, no. 2, pp. 1790–1796, 2013.

[14] F. Evennou and F. Marx, “Advanced integration of WiFi and inertial navigation systems for

indoor mobile positioning,” EURASIP J. Appl. Signal Processing, vol. 2006, pp. 1–11, 2006.

[15] J. Stook, “Planning an indoor navigation service for a smartphone with Wi-Fi fingerprinting

localization,” pp. 1–145, 2011.

[16] LevelUpAssist, “http://www.levelupassist.nl/.”

[17] Lone Rooftop, “https://lonerooftop.com/.”

[18] SecureLink Nederland, “https://www.securelink.nl/.”

[19] Aruba Networks, “http://www.arubanetworks.com/products/networking/ale/.”

[20] Raspberry Pi, “https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.”

[21] TP-Link, “http://nl.tp-link.com/products/details/cat-5689_TL-PB10400.html.”

[22] Kingston, “https://www.kingston.com/en/flash/microsd_cards/sdc4.”

[23] Dell, “http://www.dell.com/nl/bedrijven/p/precision-m2800-workstation/pd.”

[24] Eclipse, “https://eclipse.org/.”

[25] N. Sadawi, “https://github.com/nsadawi/KNN.”

[26] Google,

“https://www.google.nl/maps/place/Zilverling,+Hallenweg+19,+7522+NH+Enschede/@52.23

91942,6.8546106,17z/data=!3m1!4b1!4m5!3m4!1s0x47b813db72496ee9:0x349c7c8ce617ec9

5!8m2!3d52.2391942!4d6.8567993.”

[27] A. Te Grotenhuis, M., & Matthijssen, Basiscursus SPSS, Version 18. 2011.

[28] D. Rieffe, “The security of private information for Indes equipment, Course: Creative

Exploration in AS & T,” 2017.

 52

Appendix A

Does the problem of lost medical equipment sound familiar within your organization?

How is the work flow at this moment for the specialized medical equipment?

What is your professional opinion on how the work flow could be improved in the future?

What kind of wireless network technology is available within your buildings?

How accurately do you think the system should be able determine the location?

In your professional opinion, do you think that there is a demand for a system like this?

What is your professional opinion on how the feedback from the system should be returned?

Do you expect personnel is willing to work with a system like this?

Do you think management of hospitals and retirement homes are willing to invest in a system like

this?

Do you expect a lower searching time when a system could help the personnel during their work?

 53

Appendix B
package nl.dennis.structs;

import java.io.Serializable;
import java.util.Locale;

public class AP implements Serializable{
 static final long serialVersionUID = 1L;
 private final String BSSID;
 private final int RSSI;
 private final String SSID;
 private Double RSSIDouble;

 public AP(String BSSID, int RSSI, String SSID) {
 this.BSSID = BSSID;
 this.RSSI = RSSI;
 this.SSID = SSID;
 }
 public String toString(){
 return String.format(Locale.US, "%s: %d dBm %s", BSSID, RSSI, SSID);
 }

 public String getBSSID(){
 return BSSID;
 }

 public int getRSSI(){
 return RSSI;
 }

 public String getSSID(){
 return SSID;
 }

 public Double getRSSIDouble(){
 RSSIDouble = 1.0 * RSSI;
 return RSSIDouble;
 }
}

 54

package workingPackage;
import java.util.ArrayList;
import java.util.*;

/*
 * Database class. This class is build up as a struct. With the decleration of a new datapoint all the
five values in the constructor are filled.
 * every Datapoints has 5 object
 * ID
 * ArrayList MAC
 * ArrayList RSSI
 * xpos
 * ypos
 */

public class Database {
 private final int ID;
 private List<String> BSSID = new ArrayList<String>();
 private List<Double> referencePoints = new ArrayList<Double>();
 private int xPos;
 private int yPos;

 public Database(int newLocation, List<String> newBSSID, List<Double> newRefrencePoint, int
newxPos, int newyPos) {
 ID = newLocation;
 BSSID = newBSSID;
 referencePoints = newRefrencePoint;
 xPos = newxPos;
 yPos = newyPos;

 }

 public int getLocation(){
 return ID;
 }

 public int getXvalue(){
 return xPos;
 }

 public int getYvalue(){
 return yPos;
 }

 public List<String> getBSSID(){
 return BSSID;
 }

 public List<Double> getReferencePoints(){
 return referencePoints;
 }
}

 55

package workingPackage;

import java.io.FileNotFoundException;
import java.io.FileWriter;
import java.io.IOException;
import java.util.*;

/*
 * Class resposible for adding new datapoints to the csv file. Has it's own public static void main
method
 *
 *
 */
public class DataFinder {

 public static void main(String[] args) {

 DataFinder dataFinder = new DataFinder();
 try {
 dataFinder.findValue();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void findValue() throws FileNotFoundException, IOException {
 String IPAdress = "130.89.225.227";
 FileWriter pw;
 String fileName = "wifidata.csv";
 pw = new FileWriter(fileName, true);
 int amountOfReferencePoints = 6;
 String ID = "1";
 String xLoc = "50";
 String yLoc = "50";
 ArrayList<String> BSSID = new ArrayList<String>();
 ArrayList<String> RSSI = new ArrayList<String>();
 ValueRequester valueRequester = new ValueRequester();
 valueRequester.start(IPAdress);
 if (valueRequester.getFilData().size() < amountOfReferencePoints) {
 System.out.println("Niet genoeg values gevonden op deze locatie...");
 } else {
 for (int i = 0; i < amountOfReferencePoints; i++) {
 BSSID.add(valueRequester.getFilData().get(i).getBSSID());

 RSSI.add(Integer.toString(valueRequester.getFilData().get(i).getRSSI()));
 // BSSID.add(valueRequester.getAllData().get(i).getBSSID());
 //
RSSI.add(Integer.toString(valueRequester.getAllData().get(i).getRSSI()));
 }
 System.out.println(BSSID);
 System.out.println(RSSI);

 StringBuilder sb = new StringBuilder();
 sb.append(ID);
 sb.append(",");
 for (int i = 0; i < BSSID.size(); i++) {
 sb.append(BSSID.get(i));
 sb.append(",");
 }
 for (int i = 0; i < RSSI.size(); i++) {
 sb.append(RSSI.get(i));
 sb.append(",");
 }
 sb.append(xLoc);
 sb.append(",");
 sb.append(yLoc);
 sb.append("\n");
 pw.write(sb.toString());
 pw.close();
 }
 }
}

 56

package workingPackage;
/*
 * Struct class for all the devices
 *
 */
public class Devices {

 private String IPAdress;
 private String deviceName;

 public Devices(String IPAdress, String deviceName) {
 this.IPAdress = IPAdress;
 this.deviceName = deviceName;
 }

 public String getIPAdress() {
 return IPAdress;
 }

 public String getDeviceName(){
 return deviceName;
 }

}

 57

package workingPackage;

import java.util.*;
import java.io.*;

/*
 * In this class the struct Database is called and filled from a csv file created in Excel.
 * All the data is filed in a List of Databases called allDatapoints.
 * This can be called through the entire program.
 *
 */
public class FillingDatabase {

 private List<Database> allDataPoints = new ArrayList<Database>();
 private ArrayList<ArrayList<String>> testArrayString = new ArrayList<ArrayList<String>>();
 private ArrayList<ArrayList<Double>> testArrayDouble = new ArrayList<ArrayList<Double>>();
 private String fileName = "wifidata.csv";
 private File file = new File(fileName);
 private static final int databaseSize = 65;

 public FillingDatabase() {

 }

 public void startFilling() {
 addPoints();
 }

 public void addPoints() {

 try {

 Scanner inputStream = new Scanner(file);
 inputStream.next();
 //filling database from csv file
 for (int i = 0; i < databaseSize; i++) {
 String data = inputStream.next();
 String[] values = data.split(",");
 ArrayList<String> nSM1 = new ArrayList<String>();
 testArrayString.add(nSM1);
 ArrayList<Double> nSD1 = new ArrayList<Double>();
 testArrayDouble.add(nSD1);
 nSM1.add(values[1]);
 nSM1.add(values[2]);
 nSM1.add(values[3]);
 nSM1.add(values[4]);
 nSM1.add(values[5]);
 nSM1.add(values[6]);
 Double dRSSI1 = Double.parseDouble(values[7]);
 Double dRSSI2 = Double.parseDouble(values[8]);
 Double dRSSI3 = Double.parseDouble(values[9]);
 Double dRSSI4 = Double.parseDouble(values[10]);
 Double dRSSI5 = Double.parseDouble(values[11]);
 Double dRSSI6 = Double.parseDouble(values[12]);
 nSD1.add(dRSSI1);
 nSD1.add(dRSSI2);
 nSD1.add(dRSSI3);
 nSD1.add(dRSSI4);
 nSD1.add(dRSSI5);
 nSD1.add(dRSSI6);
 int index = Integer.parseInt(values[0]);
 int xpos = Integer.parseInt(values[13]);
 int ypos = Integer.parseInt(values[14]);
 Database database = new Database(index, testArrayString.get(i),
testArrayDouble.get(i), xpos, ypos);
 allDataPoints.add(database);
 }
 inputStream.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 //printData();
 }

 58

 public List<Database> getAllData() {
 return allDataPoints;
 }

 public void printData() {
 for (Database data : allDataPoints) {
 System.out.println(data.getLocation());
 System.out.println(data.getXvalue());
 System.out.println(data.getYvalue());
 System.out.println(data.getBSSID());
 System.out.println(data.getReferencePoints());
 }
 }
}

 59

w

package workingPackage;

import java.util.*;

/*
 * This class determines the difference in RSSI between the measured value and the database points.
 */

public class KNN {

 private List<DataPoint> dataPointList;
 private List<Result> resultList;
 private ValueRequester scanValue = new ValueRequester();
 private FillingDatabase values = new FillingDatabase();
 private LoadingImage image = new LoadingImage();
 private List<Double> query;
 private List<String> queryString;
 private int totalRounds = 6;
 private String choiceForDevice;

 public void startAlgorithm(String choice) {
 choiceForDevice = choice;
 values.startFilling();
 scanValue.start(choiceForDevice);
 // list to save data
 dataPointList = new ArrayList<DataPoint>();
 // list to save distance result
 resultList = new ArrayList<Result>();

 for (int i = 0; i < values.getAllData().size(); i++) {
 dataPointList.add(new DataPoint(
 values.getAllData().get(i).getReferencePoints(),
 values.getAllData().get(i).getBSSID(),
 values.getAllData().get(i).getLocation()));
 }

 query = new ArrayList<Double>();
 queryString = new ArrayList<String>();
 for (int i = 0; i < scanValue.getFilData().size(); i++) {
 //for (int i = 0; i < scanValue.getDebugData().size(); i++) {
 Double tempDouble;
 String tempString;
 tempDouble = scanValue.getFilData().get(i).getRSSIDouble();
 tempString = scanValue.getFilData().get(i).getBSSID();
 //tempDouble = scanValue.getDebugData().get(i).getRSSIDouble();
 //tempString = scanValue.getDebugData().get(i).getBSSID();

 query.add(tempDouble);
 queryString.add(tempString);

 }

 startComparing();
 }

 public void startComparing() {
 for (int i = 0; i < dataPointList.size(); i++) {
 double dist = Double.POSITIVE_INFINITY;
 int counter = 0;
 for (int j = 0; j < dataPointList.get(i).getdataBSSID().size(); j++) {
 for (int h = 0; h < queryString.size(); h++) {
 if
(dataPointList.get(i).getdataBSSID().get(j).equals(queryString.get(h))) {
 dist = dist == Double.POSITIVE_INFINITY ? 0.0 : dist;
 Double refRSSI =
dataPointList.get(i).getdataAttributes().get(j);
 Double measRSSI = query.get(h);
 // System.out.println("Database: " + refRSSI);
 // System.out.println("Measure: " + measRSSI);
 dist += Math.pow(refRSSI - measRSSI, 2);
 counter++;

 60

 }
 }
 }
 // System.out.println(i + ": the counter: " + counter);
 // System.out.println(i + ": the total rounds: " + totalRounds);
 if (counter == totalRounds) {
 double distance = Math.sqrt(dist);
 resultList.add(new Result(distance,
dataPointList.get(i).getdataName()));
 System.out.println("Matching Mac adress: " + totalRounds);
 }
 }

 if (resultList.isEmpty()) {
 totalRounds--;
 startComparing();
 } else {
 sortList();
 }

 }

 public void sortList() {

 // System.out.println(resultList);
 Collections.sort(resultList, new DistanceComparator());
 List<Integer> ss = new ArrayList<Integer>();
 for (int x = 0; x < resultList.size(); x++) {
 // System.out.println(resultList.get(x).dataNumber + " " +
 // resultList.get(x).distance);
 // get classes of k nearest instances (data names) from the list
 // into an array
 ss.add(resultList.get(x).dataNumber);
 }

 for (Result results : resultList) {
 System.out.println("Closest Access point: " + results.dataNumber);
 System.out.println("Total Distance: " + results.distance + "\n");
 }

 int winner = resultList.get(0).dataNumber;
 image.startLoading(winner - 1);
 }

 public void printValues() {
 for (int i = 0; i < dataPointList.size(); i++) {
 System.out.println(dataPointList.get(i).dataName);
 System.out.println(dataPointList.get(i).dataAttributes);
 }
 }

 public List<Result> getResults() {
 return resultList;
 }

 static class DataPoint {
 List<Double> dataAttributes = new ArrayList<Double>();
 List<String> dataBSSID = new ArrayList<String>();
 int dataName;

 public DataPoint(List<Double> dataAttributes, List<String> dataBSSID, int dataName) {
 this.dataName = dataName;
 this.dataAttributes = dataAttributes;
 this.dataBSSID = dataBSSID;
 }

 public List<Double> getdataAttributes() {
 return dataAttributes;
 }

 public List<String> getdataBSSID() {
 return dataBSSID;
 }

 61

 public int getdataName() {
 return dataName;
 }

 }

 // simple class to model results (distance + class)
 static class Result {
 double distance;
 int dataNumber;

 public Result(double distance, int dataNumber) {
 this.dataNumber = dataNumber;
 this.distance = distance;
 }

 }

 // simple comparator class used to compare results via distances
 static class DistanceComparator implements Comparator<Result> {
 @Override
 public int compare(Result a, Result b) {
 return a.distance < b.distance ? -1 : a.distance == b.distance ? 0 : 1;
 }
 }

}

 62

package workingPackage;
import javax.imageio.ImageIO;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.WindowConstants;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

/*
 * This class is responsible for loading the backgroundImage and drawing the red dot on a specific
location.
 *
 */

public class LoadingImage extends JPanel {
 private static final long serialVersionUID = 1L;
 private BufferedImage backgroundImage;
 private BufferedImage redDot;
 private FillingDatabase newData = new FillingDatabase();
 private int xLocation;
 private int yLocation;
 private int winner;
 private static final String IMAGENAME = "finalMapUt.jpg";

 public void startLoading(int newWinner) {
 winner = newWinner;
 newData.addPoints();
 JFrame frame = buildFrame();
 try {
 //Loading the images
 backgroundImage = ImageIO.read(new File(IMAGENAME));
 redDot = ImageIO.read(new File("reddot.png"));
 } catch (IOException e) {
 e.printStackTrace();
 }
 //Determine the right location for the red dot.
 xLocation = newData.getAllData().get(winner).getXvalue();
 yLocation = newData.getAllData().get(winner).getYvalue();

 JPanel pane = new JPanel() {
 private static final long serialVersionUID = 1L;

 @Override
 protected void paintComponent(Graphics g) {
 //Drawing the images
 super.paintComponent(g);
 g.drawImage(backgroundImage, 0, 0, null);
 g.drawImage(redDot, xLocation, yLocation, null);
// for (int i = 0; i < 4; i++) {
// g.drawImage(redDot, newData.getAllData().get(i).getXvalue(),
newData.getAllData().get(i).getYvalue(), null);
// }

 }
 };
 frame.add(pane);
 }

 private static JFrame buildFrame() {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 frame.setSize(1900, 698);
 frame.setVisible(true);
 return frame;
 }

}

 63

package workingPackage;

public class Main {

/*
 * Dennis Rieffe
 * An Indoor positioning system for Indes B.V.
 * 14-12-2016
 */

 public static void main(String[] args) {

// LoadingImage loadingImage = new LoadingImage();
// loadingImage.startLoading(2);

// KNN searchingNear = new KNN();
// searchingNear.startAlgorithm();

// PractiseWithKNN searchingNearPractise = new PractiseWithKNN();
// searchingNearPractise.startAlgorithm();

 Search search = new Search();
 search.addDevices();

 }
}

 64

package workingPackage;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.*;

public class Search {

 private ArrayList<Devices> allDevices = new ArrayList<Devices>();
 private KNN knn = new KNN();
 private String fileName = "devicedata.csv";
 private File file = new File(fileName);
 private static final int databaseSize = 3;

 public void addDevices() {

 try {
 Scanner inputStream = new Scanner(file);
 inputStream.next();
 // filling database from csv file
 for (int i = 0; i < databaseSize; i++) {
 String data = inputStream.next();
 String[] values = data.split(",");
 // System.out.println("ip: " + values[0] + " name: " +
 // values[1]);
 Devices device = new Devices(values[0], values[1]);
 allDevices.add(device);
 }
 inputStream.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 choice();
 }

 public void choice() {
 Scanner scanner = new Scanner(System.in);
 System.out.println("What specific device you want to find? \nAvailible are:");
 for (int i = 0; i < allDevices.size(); i++) {
 System.out.println((i + 1) + ": Name: " + allDevices.get(i).getDeviceName() +
" IP address: "
 + allDevices.get(i).getIPAdress());
 }
 System.out.println("Make your choice?");
 int choice = 0;
 try {
 choice = scanner.nextInt();
 if (choice > databaseSize) {
 System.out.println("That specific device is not availible");
 choice();
 }
 } catch (InputMismatchException e) {
 System.out.println("Wrong input, try something else...");
 choice();
 }

 knn.startAlgorithm(allDevices.get(choice - 1).getIPAdress());
 scanner.close();
 }

}

 65

package workingPackage;

import java.net.Socket;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.net.InetAddress;
import java.util.List;

import nl.dennis.structs.AP;

/*
 * This class is the requester for the values. On a raspberry pi who has a serverSocket a request can
be done for a connection.
 * The connection must be done to a specific ip adress.
 * When a connection is established the pi collects it's values and sends them back over the socket.
Next the socket will be closed.
 */
public class ValueRequester {

 public ValueRequester() {

 }
 //Name of the specific network you want to use
 public static final String SSID = "eduroam";
 //IPadress for you raspberry pi/tag.

 private List<AP> WifiValues = new ArrayList<AP>();
 private List<AP> filWifiValues = new ArrayList<AP>();
 private List<AP> debugList = new ArrayList<AP>();
 private Socket socket;
 private Search search;

 @SuppressWarnings("unchecked")

 public void start(String IPAdress) {

 String IPADRESS = IPAdress;
 search = new Search();
 //Reading the values
 try {
 InetAddress adress = InetAddress.getByName(IPADRESS);
 socket = new Socket(adress, 4444);
 ObjectInputStream objectInput = new
ObjectInputStream(socket.getInputStream());
 try {
 Object object = objectInput.readObject();
 //Cast them to a list;
 WifiValues = (List<AP>) object;
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 } catch (UnknownHostException e) {
 System.out.println("Cannot find the specific device.");
 search.choice();

 } catch (IOException e) {
 System.out.println("Cannot find the specific device.");
 search.choice();
 }

 for (AP value : WifiValues) {
 System.out.println(value);
 }

 try {
 socket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 filterList();
 fillDebugList();

 66

 }

 public void filterList() {
 for (AP value : WifiValues) {
 if (value.getSSID().equals(SSID)) {
 filWifiValues.add(value);
 }
 }
// for (AP value : filWifiValues) {
// System.out.println(value);
// }

 }
 //fake values for debugging.
 public void fillDebugList() {
 debugList.add(new AP("00:26:cb:42:22:50", -77, SSID));
 debugList.add(new AP("30:37:a6:c3:b9:b1", -44, SSID));
 debugList.add(new AP("00:26:cb:42:0d:91", -40, SSID));
 debugList.add(new AP("30:37:a6:c3:a8:a1", -73, SSID));
 debugList.add(new AP("00:26:cb:42:12:81", -91, SSID));
 debugList.add(new AP("30:37:a6:c3:b9:81", -55, SSID));

 for (AP acces : debugList) {
 System.out.println(acces);
 }

 }

 public List<AP> getAllData() {
 return WifiValues;
 }

 public List<AP> getFilData() {
 return filWifiValues;
 }

 public List<AP> getDebugData() {
 return debugList;
 }
}

 67

package nl.dennis.structs;

import android.view.View;

import java.io.Serializable;
import java.util.Locale;

/**
 * Created by super_000 on 07-Dec-16.
 */

public class AP implements Serializable{
 static final long serialVersionUID = 1L;
 private final String BSSID;
 private final int RSSI;
 private final String SSID;

 public AP(String BSSID, int RSSI, String SSID) {
 this.BSSID = BSSID;
 this.RSSI = RSSI;
 this.SSID = SSID;
 }
 public String toString(){
 return String.format(Locale.US, "%s: %d dBm %s", BSSID, RSSI, SSID);
 }

 public int getRSSI() {
 return RSSI;
 }
}

 68

package com.example.super_000.wifilistactivity;

import android.Manifest;
import android.app.ListActivity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.pm.PackageManager;
import android.net.wifi.ScanResult;
import android.net.wifi.WifiManager;
import android.os.AsyncTask;
import android.os.Build;
import android.os.Bundle;
import android.text.format.Formatter;
import android.util.Log;
import android.widget.ArrayAdapter;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.Timer;
import java.util.TimerTask;

import nl.dennis.structs.AP;

/**
 * Created by Dennis Rieffe on 05-12-16.
 */

public class WifiListActivity extends ListActivity {

 private static final String IPADDRESS = "130.89.237.52";
 private ArrayAdapter<AP> adapter;
 private Thread thread;
 private List<AP> currentMeasurements;
 private WifiManager wifiManager;
 private WifiReceiver receiver;
 Timer timer = new Timer();
 TimerTask doAsynchronousTask = new TimerTask() {

 @Override
 public void run() {
 try {
 wifiScan wscan = new wifiScan();
 wscan.execute();
 }catch (Exception e) {}
 }
 };

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M &&
checkSelfPermission(Manifest.permission.ACCESS_COARSE_LOCATION) != PackageManager.PERMISSION_GRANTED)
{
 requestPermissions(new String[]{Manifest.permission.ACCESS_COARSE_LOCATION},
PERMISSIONS_REQUEST_CODE_ACCESS_COARSE_LOCATION);
 }

 wifiManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);
 receiver = new WifiReceiver();
 currentMeasurements = Collections.synchronizedList(new ArrayList<AP>());

 thread = new Thread(new Runnable() {

 69

 @Override
 public void run() {
 startServer();
 }
 });

 thread.start();

 // Now create a new list adapter bound to the cursor.
 // SimpleListAdapter is designed for binding to a Cursor.
 adapter = new ArrayAdapter<AP>(this, android.R.layout.two_line_list_item, android.R.id.text1);
 setListAdapter(adapter);
 }

 public void startServer(){
 try {

 WifiManager wm = (WifiManager) getSystemService(WIFI_SERVICE);
 String ip = Formatter.formatIpAddress(wm.getConnectionInfo().getIpAddress());
 InetAddress address = InetAddress.getByName(ip);

 ServerSocket serverSocket = new ServerSocket(4444, 50, address);
 while (true) {
 Socket skt = serverSocket.accept();
 registerReceiver(receiver, new IntentFilter(
 WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));
 wifiManager.startScan();
 synchronized (thread) {
 if (currentMeasurements.size() == 0) {
 thread.wait();
 }
 }
 ObjectOutputStream objectOutputStream = new ObjectOutputStream(skt.getOutputStream());
 objectOutputStream.writeObject(currentMeasurements);
 objectOutputStream.flush();
 skt.close();
 }
 }catch(IOException e){
 e.printStackTrace();
 }catch(InterruptedException e){
 e.printStackTrace();
 }
 }

 @Override
 public void onRequestPermissionsResult(int requestCode, String[] permissions,
 int[] grantResults) {
 if (requestCode == PERMISSIONS_REQUEST_CODE_ACCESS_COARSE_LOCATION
 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {
 }
 }

 private final int PERMISSIONS_REQUEST_CODE_ACCESS_COARSE_LOCATION = 1001;

 public class WifiReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 WifiManager manager = (WifiManager) context.getSystemService(Context.WIFI_SERVICE);
 Log.v("Tag", "Scan results received");
 List<ScanResult> results = manager.getScanResults();
 List<AP> temp = new ArrayList<>();
 for (ScanResult res : results) {
 AP ap = new AP(res.BSSID, res.level, res.SSID);
 temp.add(ap);
 }
 Collections.sort(temp, new Comparator<AP>() {
 @Override
 public int compare(AP ap, AP t1) {
 return t1.getRSSI - ap.getRSSI;
 }
 });
 Log.d("Lijst" ,Integer.valueOf(temp.size()).toString());

 70

 currentMeasurements.clear();
 currentMeasurements.addAll(temp);
 synchronized (thread) {
 thread.notify();
 }
 adapter.clear();
 adapter.addAll(temp);
 adapter.notifyDataSetChanged();
 }
 }

 public class wifiScan extends AsyncTask<Void, String, Void> {

 protected void onPreExecute() {

 }

 protected void onPostExecute(Void results) {

 }

 @Override
 protected Void doInBackground(Void... params) {
 registerReceiver(receiver, new IntentFilter(
 WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));
 wifiManager.startScan();
 return null;
 }
 }

}

