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Abstract Computational thinking is a term used to describe the thought process of 

formulating problems and their solutions in a way that can be carried out by a computer. 

Despite a growing effort to implement computational thinking skills in primary schools, 

little research has been conducted about what skills to teach at what age. This is a problem 

for teachers working in primary education, wanting to teach computational thinking skills. 

The research questions that guide this study are as follows: (1) How is age influencing the 

students’ success in tasks related to computational thinking? (2) How difficult are lessons 

about computational thinking perceived by students? (3) What are the students’ 

perceptions of their learning experiences? 210 students between the age of 6 and 12 

participated in this study, all of whom enrolled in a primary school. Lessons from the 

Barefoot Computing project are used as an introduction into two computational thinking 

subjects: abstraction and decomposition. The first main finding concerns the relation 

between age and the discussed computational thinking skills; abstraction and 

decomposition. Second, an interaction is found between gender and the abstraction task. 

Third, for both tasks, there are no significant differences between age groups on perceived 

difficulty, cognitive load, and flow. Implications and directions for future research are 

discussed. 
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Introduction 

In the Netherlands, there is increasingly more attention for computational thinking as one of the 21st 

century skills (Thijs, Fisser, & Hoeven, 2014). Computational thinking is a term first used by Wing 

(2006), and was used to describe the thought process of formulating problems and their solutions in a way 

that can be carried out by a computer. It is now more and more argued by educators that computational 

thinking should be picked up not only by computer scientists, but by everyone: it can make everyday 

activities much more efficient, and might create a better understanding of today’s pervasive usage of 

computers and software (Lee, Mauriello, Ahn, & Bederson, 2014). Up until recently, there has been little 

attention for teaching computational thinking skills in Dutch primary education. This is in contrast with 

countries around the world, like the United Kingdom, where computational thinking is implemented in 

primary school curricula. A growing effort is put in developing curricula for children that foster 

computational thinking: computer scientists are creating games (Lee et al., 2014), instruction guides for 

overlapping courses like math (Ministry of Education, 2003), and trying to get girls excited for the 

Science, Technology, Engineering and Math (STEM)-fields as well (Corbett & Hill, 2015; Modi, 

Schoenberg, & Salmond, 2012). More practical applications include physical programmable robots like 

Dash & Dot, MiP and Sphero. Programming is thought of to be closely related to computational thinking 

skills. 

Despite a growing effort to implement computational thinking skills in primary schools, there are 

still no clear guidelines on the appropriate age to implement computational thinking skills in primary 

school. This is a problem for teachers working in primary education, wanting to teach computational 

thinking skills. To increase the quality of Dutch programming education, it is important to know from 

what age lessons about computational thinking skills are appropriate. This will result in more evidence 

based curricula, which are more likely to find a permanent place in primary education. Seeing the scale of 

interest in implementing computational thinking skills in primary education, it will be of great relevance 

to also research how lessons about computational thinking are perceived by children. The research 

questions that guide this study are as follows: (1) How is age influencing the students’ success in tasks 

related to computational thinking? (2) How difficult are lessons about computational thinking perceived 

by students? (3) What are the students’ perceptions of their learning experiences? 

In this study, the following definition of computational thinking is used (Selby, 2013): 

Computational thinking is an activity, often product oriented, associated with, but not limited to, 

problem solving. It is a cognitive or thought process that reflects the ability to think in 

abstractions, the ability to think in terms of decomposition, the ability to think algorithmically, the 

ability to think in terms of evaluation, and the ability to think in generalizations. (p. 5) 
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There is some research on computational thinking for younger students, like Duncan and Bell (2015), who 

evaluated the teaching of two programming topics (i.e., programming and data representation) with 

twelve-year-olds. They found that teaching computational thinking alone is likely to be difficult without 

combining the lessons with computer science. However, they did not address lower age groups, and 

mention that existing curricula differ over which key topics to introduce at what age. This is mainly 

because programming contains demanding concepts to grasp, like abstraction. Even for most adults it 

takes time to apprehend and employ some of these concepts in practice. Research on teaching 

programming to learners who have no prior programming experience, has shown that the programming 

concepts and theories are perceived very difficult, and in result programming courses often have a lot of 

dropouts (Robins, A., Rountree, J. and Rountree, 2003; Stachel et al., 2013). Students from these studies 

have difficulties understanding the abstract concepts that are encountered in programming.  

One of the cornerstones of computational thinking is (problem) decomposition. Decomposition is 

used when a problem is too big or complex to solve at once. It is regarded as both a computational 

thinking skill as well as a problem solving skill (Polya, 1945; Wing, 2006). It is defined as breaking down 

a problem into smaller, more easily solved, parts (Selby, 2015). When planning on carrying out a large 

problem with a computer, decomposition becomes essential for the skill of programming. When 

programming, a code is produced to carry out the command of the programmer. This code should be 

carried out by a computer step by step – called an algorithm (step by step instructions to get something 

done). For decomposition, it was found that it is teachable for 5 to 6 year olds in an arithmetic setting, 

when students are still developing their number sense (Cheng, 2012). Decomposition is found to be the 

most difficult computational thinking skill to master (Selby, 2015). Selby found that one of the reasons for 

this, was that sometimes the problem to solve isn’t completely understood. Also, students appeared to 

understand the concept of decomposition, but struggled to implement the process in new situations.  

Another explanation for decomposition to be so difficult can be derived from Jean Piaget (1972). 

His theory of cognitive development distinguishes stages of development of children to adulthood, where 

from 13 years and older, children start using abstract and theoretical reasoning. Piaget states that in the 

preceding stages children are not finished forming schemas (storage and organization structures) in their 

brains, which makes it more difficult to understand the world around them until puberty (Myers, 2007). It 

would make sense that engaging in a new skill such as problem decomposition would give difficulties. 

According to Selby (2015), a way to make decomposition easier is to use problems to decompose students 

fully understand. Also, asking if they did similar exercises before (previous experience) could give 

insights on how difficult they experience decomposing a problem. Both these factors should be examined. 

Selby states that understanding decomposition is a necessary condition before assessing the other 

cornerstones (i.e., abstraction, algorithm design, evaluation, and generalizations).  
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Problem decomposition might be regarded as the most difficult computational thinking skill to 

master, abstraction is seen by various experts as the most important computational thinking skill (Hazzan, 

1999; Kramer, 2007; Se, Ashwini, Chandran, & Soman, 2015; Wing, 2006). It is stated that “the 

abstraction process – deciding what details we need to highlight and what details we can ignore – 

underlies computational thinking” (Wing, 2008, p. 3718). It is advocated to start teaching abstraction as 

early as possible, as it is one of the most fundamental ideas in computer science (Statter & Armoni, 2016). 

In computational thinking, abstract thinking is essential for recognizing similar conditions in different 

problems, which is essential for transferring lines of reasoning to other situations (Nickerson, Brand, & 

Repenning, 2015). You see those abstractions back in simulations and models, made to teach about 

concepts like gravity, physics or even history. Although decomposition is reported to be the most difficult 

computational thinking skill, abstraction should be challenging as well. Continuing Piaget’s theory, 

children should develop through the first stages of cognitive development before they can be expected to 

use abstraction for programming purposes. However, according to Kuhn, Langer, Kohlberg and Haan 

(1977), only around 35% of adolescents have achieved the abstract reasoning skills linked to the last (i.e., 

formal operational) stage. Some adults never even achieve that stage of reasoning. According to Piaget, 

the cognitive development of abstract reasoning goes hand-in-hand with the biological maturation of the 

brain (Lister, 2011). This would mean that children would consistently show the same level of abstract 

reasoning on very different problems – something we now know is not the case (Smith, 1992). According 

to neo-Piagetian theory, people still go through the developmental stages. They are, however, thought to 

develop through abstract forms of reasoning, regardless of their age (Lister, 2011). This means that people 

can become an expert in a particular subject (e.g., math), and still be a novice in another subject (e.g., 

geography), and thus show different levels of abstract reasoning depending on the subject. This implies 

that age shouldn’t have to play a role in reaching a form of abstract reasoning in a particular subject. 

Seeing how young children can exceed in forms of abstract reasoning (e.g., when practicing art or music), 

it seems clear that not only age, but (lack of) experience limits children’s level of abstract reasoning. 

When students are still novices, they should have the same skill in abstract reasoning as their younger or 

older peers. 

Now that is determined that primary school students should be able to learn abstraction and 

decomposition, it is important to look at the most efficient way to do this. Instructional methods should try 

to optimize people’s limited cognitive processing capacity, in order to increase their ability to transfer 

knowledge and skills to new situations (Mayer & Moreno, 2010). For optimizing people’s cognitive 

capacity, we look at cognitive load theory, which divides cognitive capacity into three, co-dependent parts 

(Sweller, 1994). One part is occupied with processing information and distractions not directly related to 

the learning content, such as the design of the instructional material. This part, called extraneous load, 



5 

should be reduced as much as possible. In a computational thinking lesson, this could be a small font size 

or redundant media. Then, a fixed part deals with the inherent complexity (the number and way of 

interacting elements) of the content. This is referred to as intrinsic load. In decomposition, these could be 

the steps a problem can be decomposed in. Finally, the remaining germane load is used during schema 

construction and knowledge building. The better the course design, the more cognitive space frees up for 

this part. Although cognitive load theory gives a direction for instructional design principles, De Jong 

(2010) poses some critical questions. He questions the falsifiability of the theory, because “every outcome 

fits within the theory post-hoc” (p. 125). He also criticizes the cognitive load measurements, which fail to 

distinguish all three elements, and recognizes cognitive overload. Even though these points are valid, 

cognitive load is still a concept worth exploring when looking if abstraction and decomposition are 

appropriate for primary school students. Young students could feel overwhelmed by either the complexity 

of the content, or the design of the material. This could result in students halting their efforts to make 

sense of the material, and therefore ceasing the learning process. How cognitive load should be described 

can be debated, but the presence seems very real. 

How appropriate abstraction and decomposition are for primary school students, is also linked to 

how difficult young students perceive these concepts. More difficult assignments trigger a more slow, 

analytical processing of information (Alter, Oppenheimer, Epley, & Eyre, 2007). A more difficult text, for 

example, seems to work as a warning sign for the brain to use more analytical ways of thinking, instead of 

intuitive reasoning. This means that when students experience a concept like abstraction or decomposition 

to be difficult, it does not necessarily result in inferior learning. When students feel capable and 

challenged, a state of flow could occur. Flow describes a state of mind in which a person is not over 

challenged, nor under challenged, and is completely engaged in the task (Csikszentmihalyi, 1975). During 

flow, the balance between skill and challenge is very sensitive; it can easily be disrupted (Wang & Degol, 

2013). Both the skill level and the complexity of the task should increase simultaneously in order to 

maintain a level of flow. When that is not the case, students might be disinterested when engaging in an 

(obligatory) task. Or, on the other end of the spectrum, the course material could be perceived boring, 

monotonous or unexciting. Measuring flow will give an indication if abstraction and decomposition are 

appropriate for young students; the more flow is experienced, the less cognitive overload or boredom is to 

be expected.  

The literature about computational thinking, cognitive development, perceived difficulty and flow 

give enough insights to formulate hypotheses on what to expect when studying these concepts. 
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The current study 

In the current study, lessons from the Barefoot Computing project1 are used as an introduction into two 

computational thinking subjects: abstraction and decomposition. These lessons are given to students from 

two different primary schools in the Netherlands, with students as young as six and as old as twelve years 

old. After the lesson, students are asked if they experienced a state of flow, how much cognitive 

(over)load was experienced, and to rate their learning experience, like the amount of difficulty they had 

with the lessons. In addition, their success in the task related to abstraction and decomposition is 

measured. 

 Based on the primary school students’ maturing brain and likeliness of previous experience in the 

subject, age is anticipated to correlate with students’ success in decomposition or abstraction. Also, it is 

expected that age is positively correlated with flow, and negatively correlated with students’ perceived 

difficulty and cognitive load, meaning that when students get older, they will find the tasks easier. 

Furthermore, decomposition is thought to be more difficult for students than abstraction. For 

decomposition in particular, this could result in an above average score on perceived difficulty, cognitive 

load, and a negative correlation of these two constructs with flow. Finally, although the perceived 

difficulty is expected to be high, the perceptions of students are thought of to be positive. This is based on 

the fact that the lessons provide something new, are challenging and get the students out of their daily 

routine. The older students get, the more likely it is that they already did something similar, so it is 

expected that the expected positive attitude wears off when students get older.  

 

Method 

Participants  

In this study, 210 students between the age of 6 and 12 participated (M = 9.08, SD = 1.92), all of whom 

enrolled in a primary school. The participants were collected from two different schools, one very large 

school located in Vleuten, and an average sized school in Nijmegen. There was a total of nine teachers 

who volunteered to participate in the study with their class, which lead to a total of 210 students varying 

from 1st to 6th grade. There were two 6th grade classes, no 5th grade class, for the abstraction lesson there 

was no 3rd grade and for the decomposition lesson there was no 2nd grade. The nine classes were then 

randomly assigned to one of the two conditions, where students remained in their own class. This resulted 

in the distribution displayed in Table 1. 

                                                 
1 In the UK, primary school teachers are supported in various ways to implement computational thinking skills. The Barefoot 

Computing project is one of those initiatives. On barefootcas.org.uk, teachers can download and co-operate in exemplar primary 

computing resources. The project provides workshops for teachers, with the aim to deliver new computing subjects with 

confidence, in addition to exemplar teaching activities. These activities focus on showing how computing and other subjects (e.g. 

maths, English and science) can be combined. 
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Table 1. Participant Distribution per Condition and Grade 

Condition 

Grade (Dutch: groep) 

Total 1 (3) 2 (4)  3 (5) 4 (6) 5 (7) 6 (8) 

Abstraction 28 23 - 29 - 16 25 121 

Decomposition 21 - 26 27 - 15 - 89 

Total 49 23 26 56 - 25 31 210 

 

Among the participants, the number of boys (n = 104) and girls (n = 106) were about equal. 

Students were classified as young (everyone younger than 8 years old), middle (those between 8 and 10 

years old), and old (everyone older than 10 years old). The cut-off points for the age groups are based on 

the ages on which children are admitted in grades in primary school in the Netherlands (Onderwijsraad, 

2005). All lessons were given by the same researcher, to control for the influence of the teacher on the 

lessons. The lessons were given in the students’ own classroom, with the presence of their own teacher. 

Since the participants were under-age, the parents were contacted for their permission for participation. 

Passive consent was used to collect their permission. 

 

Materials  

For the lessons, several materials were used. All materials were piloted. For this research, two unplugged 

(without computers) lessons were used as experimental manipulations (Appendices A and B). The lessons 

were translated from English to Dutch by the researcher. The researcher hereby used the steps provided by 

the World Health Organization to achieve a Dutch version of the lessons that are conceptually equal to the 

original. These steps comprise forward translation (to Dutch), expert panel back-translation (with 

supervisors), and pre-testing (i.e., a pilot) before finalizing the eventual lessons. 

 

Abstraction task 

In the abstraction task, the students paired up and received a deck of sixteen cards, containing words to 

portray, like school, shoes, and dinosaur. For example, when a student had to portray the word ‘school’, 

they had to abstract the most important details of the concept. This means they could sketch a large 

building, children, or materials like books and pens. This way they learned ignoring unimportant details 

and only including what is most important, and in doing so were abstracting. When the starting sign from 

the teacher was given, the first student drew as many sketches as possible for his or her partner, within a 

short, pre-determined amount of time. These set times are described in the procedure section. When time 

was expired, students switched in their role of drawer (which performance is measured) and guesser. 
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Guess What Cards  

A total of sixteen blank cards with one word written on it were used for the main activity of the 

abstraction lesson; guessing what sketches drawn by a partner represented. Students from the first grade 

(~ age 6) were assisted by the researcher and teacher when they could not read the word. Because the 

students asking for assistance took more time, the results from this grade should be carefully interpreted. It 

was planned to use printed Guess What? cards, provided in the slides from the original abstraction lesson. 

These cards, however, were accidentally not brought to the school location on the first data collection. 

With no available printer on such short notice, handwritten cards were crafted to use in the lesson. The 

cards were written carefully and neatly, to ensure they were readable. To retain the controllability of the 

used materials, these handwritten cards were used for all abstraction lessons. 

  

Blank sketch sheet 

In the abstraction lesson, students were guessing what sketches represent. To capture their produced 

sketches (in this study further referred to as artefacts), a blank sketch sheet was provided to every student 

pair. The students each drew on one side of the sheet. 

 

Decomposition task 

In the decomposition task, students created hand clapping, hand tutting, or hand jive sequences of 

movements. Students broke the sequence of actions down into parts and in so doing were decomposing. In 

a discussion, students were encouraged to link this idea to breaking problems down when creating 

computer programs such as animations or games. The students paired up and received a design sheet to 

document their movements. They had a limited, pre-determined amount of time to come up with a 

decomposed dance. They were instructed to make as many decompositions as possible, and to make it 

clear enough that another pair from their class could perform their dance with only their design sheet. For 

example, students could decompose a dance like the hand jive performed in the movie Grease (1978). The 

students were instructed to decompose difficult dance moves, and possibly add iterations when a dance 

move (e.g., ‘hand clap’) should occur more than once.  

 

Decomposition design sheet  

For the decomposition lesson, a design sheet was used. Two columns, called ‘part’ and ‘drawing’, 

structured their recordings of their hand clap, tut, or jive sequence. The additional instruction on the sheet 

supported students in evaluating their sequence; “Are the parts in the right order? Have you got all the 

parts? How do you start?”. 
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Lesson presentation  

A set of eight (abstraction) and nine (decomposition) slides were used in a supporting role. These slides 

contained examples, learning goals, and discussion topics, like how these skills are used when working 

with computers. The materials used in the lesson were displayed on the slides, as well as the discussion 

topics when discussing the role of abstraction and decomposition in programming. 

 

Measurements 

The constructs perceived difficulty, flow, cognitive load, and students’ perceptions were measured. The 

questionnaire used in the current study can be found in Appendix C. 

 

Perceived difficulty 

Perceived difficulty was measured by asking students to rate the lesson on three items about difficulty, 

length, and clarity on a four-point Likert scale, with a higher number representing more perceived 

difficulty. The questions were translated from the Perceived Difficulty Assessment Questionnaire, or 

PDAQ (Ribiero & Yarnal, 2010). Although the items about difficulty, length, and clarity are related, they 

are more valuable to be interpreted separately than to combine into one construct. 

 

Flow 

Flow was measured by items from the translated Flow Short Scale (Rheinberg, Vollmeyer, & Engeser, in 

Eysink et al., 2015), consisting of nine items about how students experienced the activity. Students rated 

the questions on a five-point Likert scale, with a higher number representing more flow. This is adapted 

from the original, where a seven-point Likert scale was used and a higher number represented less flow. 

An example of one of the nine items was “I had the feeling that I had everything under control”. The 

measured reliability was measured at Cronbach’s α = .68 for young students, α = .78 for middle-aged 

students, and α = .86 for the oldest students. The nine flow items (with five answer possibilities) were then 

combined into one variable, with a number between 9 (no flow) and 45 (maximum amount of flow). 

 

Cognitive load 

Cognitive load was measured by an adapted and translated version of the NASA Task Load Index. The 

students answered the five items on a five-point Likert scale, with a higher number representing more 

cognitive load. An example of a question was “How hurried or rushed was the pace of the task?”. These 

items measure mental demand, temporal demand, overall performance, frustration level, and effort. The 

TLX does not distinguish between the three types of cognitive load. The Cronbach’s α was measured too 
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low to use the separate items as one construct (α = .55, .43, and .51 for young, middle, and old students 

respectively). 

 

Perceptions 

The perceptions of the students’ learning experiences were measured by asking students to rate how much 

they liked the task on a five-point Likert scale, and describe how they would describe the lesson in one 

word. In addition, they were asked to give the lesson a grade on a scale from 1 to 10 (a way students are 

used to grade something). A five-point Likert scale is used for the other questions, because 10 points 

would be too broad of a self-reporting scale. Previous experience is measured by one item; “Did you ever 

do an activity like this before?”, with a “yes” or “no” answer option. A follow-up question is provided 

when “yes” is answered; “If yes, what did you do?”. 

Students who participated in the problem decomposition lesson got a question about their 

understanding of the problem (i.e., the decomposing of the hand clap sequences). When students indicate 

that they did not understand the problem to decompose, their perceived difficulty rating should be 

interpreted differently.  

 

Data analysis 

Abstraction task 

To measure students´ success in the abstraction task, the number of cards a student could get their partner 

to guess was counted. This way, a student who is very good at determining the important details to sketch 

(and therefore presumably is good at abstraction) would have more cards guessed by their partner than 

someone less skilled. To compare between ages, the number of cards guessed was divided by the time on 

task. 

 

Decomposition task 

Decomposition success was measured by the number of dance steps students created. A dance step is 

defined as a separate drawing of a movement, different from the previous step, and independent from of 

the number of iterations. When decomposing their dance, more skilled students would create more steps 

than less skilled students. Here too, the number of decomposed steps was divided by the time on task.  

 

Procedure  

At the start of the lesson, the researcher introduced himself to the students. Then, he explained the format 

of the lesson. First, the students participated in a 30-minute course, in which they learned either about 

abstraction or decomposition. Here, the lesson plans for abstraction and decomposition were followed, as 



11 

shown in Appendix A and B respectively. In this lesson, students engaged in a plenary discussion, where 

they were encouraged to link the practical uses of the tasks to simple computer simulations and games. 

Students were given a set time for their abstraction or decomposition task, expressed in minutes. 

For the abstraction task, students from first grade got 5 minutes, second grade got 4 minutes, fourth grade 

got 3 minutes and sixth grade got 1.5 minutes. For the decomposition task, all students got 15 minutes. 

The nature of the decomposition task asked for more time, and during the pilot it was determined 15 

minutes was suitable for all grades.  

 After the 30-minute lesson was finished, students were asked to fill in the questionnaire 

(Appendix C). All students from 1st grade (n = 49) did not fill in the questionnaire. This was decided after 

the pilot run, where students had too much trouble with reading (students start reading in 1st grade), and 

the unfamiliarity with questionnaires. The 1st grade students´ artefacts (i.e., drawings and decomposed 

dance steps) did get analysed. Students from the other grades were assisted by the researcher and their 

teacher, when they did not understand a question. 

 

Results 

Abstraction 

Success on task 

Table 2 gives mean scores and standard deviations for students in the abstraction condition on their task, 

divided in young, middle-aged, and older students.  

Table 2. Average Number of Cards Guessed Right per Minute in the Abstraction lesson per Age Group 

Age group n M   (SD) 95% CI 

Young 43   .60   (.29)   [.51,   .69] 

Middle 26 1.46   (.72) [1.16, 1.75] 

Old  46 2.60 (1.53) [2.14, 3.05] 

Note. CI = confidence interval. 

 

A one-way ANOVA showed that there were differences between all age groups on the abstraction task 

(F(2,112) = 40.901, p < .001, 𝜂𝑝
2 = .42). Pairwise comparisons using the Bonferroni procedure show that 

all age groups performed significantly different from each other. Older students performed higher (M = 

2.60, SD = 1.53) than middle-aged students (M = 1.46, SD = .72) and young students (M = .60, SD = .29). 

The difference between middle-aged and young students was significant as well. A Pearson correlation 

also showed a moderate positive correlation between age (before grouping) and the abstraction task (r = 
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.66, p < .001). This means that, on average, as students become older, their drawings from the abstraction 

task were guessed more.  

 

Perceived difficulty, cognitive load, and flow 

Table 3 gives mean scores and standard deviations for perceived difficulty, cognitive load, and flow on the 

abstraction task per age group.  

Table 3. Average Scores on Perceived Difficulty, Cognitive Load, and Flow for the Abstraction Task per Age 

Group 

Age groups 

Perceived difficulty 
 

Cognitive load  

Flow Difficulty Length Clarity 
 

Attention Rush Unsuccessful Effort Exhausting  

Young  

(n = 16) 

M 1.77 2.41 1.65 
 

2.88 2.31 1.94 2.62 1.75  36.07 

SD .87 .95 1.11 
 

1.03 1.45 1.18 1.15 1.24  6.49 

Middle  

(n = 27) 

M 1.60 2.00 1.77 
 

2.04 2.00 2.07 2.08 1.70  33.58 

SD .50 .85 .86 
 

.94 1.18 1.47 1.16 1.17  5.58 

Old  

(n = 48) 

M 1.81 2.04 1.57 
 

2.31 2.25 1.83 2.37 1.58  37.54 

SD .49 .41 .62 
 

.97 1.31 1.05 1.04 1.11  6.27 

Note. Perceived difficulty: minimum = 1 (low perceived difficulty), maximum = 4 (high perceived difficulty), 

cognitive load: minimum = 1 (low cognitive load), maximum = 5 (high cognitive load), flow: minimum = 9 (low 

flow), maximum = 45 (high flow) 

 

There were no differences in the perceived difficulty items for younger, middle, or older students. 75.7% 

of all students self-reported the abstraction task to be short, whereas 24.3% thought it lasted (too) long. 

After a one-way ANOVA analysis, it appeared that students who thought the lesson was too long (M = 

1.06, SD = 1.04) scored less on the abstraction task than students who felt it was short (M = 1.82, SD = 

1.43). This difference is significant (F(1, 107) = 6.148, p = .015, 𝜂𝑝
2 = .05). 89.1% of the students thought 

the task was clear, compared to 10.9% who felt it was unclear. The students who thought the task was 

very clear, experienced more flow (M = 39.65, SD = 5.28) than those who felt it was very unclear (M = 

29.25, SD = 5.44), through ANOVA analysis (F(3, 85) = 8.688, p < .001, 𝜂𝑝
2 = .24). There were no 

significant differences between these groups in their success on the abstraction task.  

As can be derived from Table 3, young students reported to find it more difficult to keep their 

attention during the abstraction lesson than middle or older students (F(2, 90) = 3.754, SD = .03, 𝜂𝑝
2 = 

.08). There were no differences in the other cognitive load items for younger, middle, or older students. 
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8.8% of the students from the abstraction lesson found the task mentally exhausting. These students 

experienced less flow (M = 27.6, SD = 10.67) than students who did not find it mentally exhausting (M = 

37.76, SD = 6.26), through ANOVA analysis (F(4, 87) = 4.103, p = .004, 𝜂𝑝
2 = .17). 

 

Perceptions 

There were no differences in the perceptions of the abstraction task for younger, middle, or older students. 

Students gave an average grade of 8.3 (SD = 1.8) on a scale from 1 to 10. Students (n = 15) who said to 

have done something similar before (prior experience), performed better (M = 2.69, SD = 1.57) on the 

abstraction task than those (n = 69) who had no prior experience (M = 1.83, SD = 1.32, F(1, 82) = 4.890, p 

= .03, 𝜂𝑝
2 = .06). When controlled for students with prior experience, the difference on the abstraction task 

between age groups is still present (F(2,68) = 12.355, p < .001, 𝜂𝑝
2 = .27). 

 

Decomposition 

Success on task 

Table 4 gives mean scores and standard deviations for students in the decomposition condition on their 

task, divided in young, middle-aged, and older students.  

Table 4. Average Number of Decompositions Made per Minute per Age Group 

Age group n M  (SD) 95% CI 

Young 23   .44  (.17) [.37,   .52] 

Middle 42   .50  (.15) [.46,   .55] 

Old 20 1.01  (.39) [.83, 1.20] 

Note. CI = confidence interval. 

 

A one-way ANOVA test showed that there were differences between age groups and the decomposition 

task (F(2, 82) = 40.480, p < .001, 𝜂𝑝
2 = .50). Pairwise comparisons using the Bonferroni procedure show 

that only older students (M = 1.01, SD = .39) performed significantly different from younger (M = .44, SD 

= .17) and middle-aged students (M = .50, SD = .15). A Pearson correlation also showed a moderate 

positive correlation between age (before grouping) and the decomposition task (r = .67, p < .001). This 

means that, on average, as students become older, they decomposed their dance in more steps. 

 

Perceived difficulty, cognitive load, and flow 

Table 5 gives mean scores and standard deviations for perceived difficulty, cognitive load, and flow on the 
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decomposition task per age group. There were no differences in the perceived difficulty, cognitive load 

and flow items for middle and older students.  

Table 5. Average Scores on Perceived Difficulty, Cognitive Load, and Flow for the Decomposition Task per Age 

Group 

Age groups 

Perceived difficulty 
 

Cognitive load  

Flow Difficulty Length Clarity 
 

Attention Rush Unsuccessful Effort Exhausting  

Middle  

(n = 45) 

M 
1.76 2.13 1.70  2.51 1.96 1.84 2.44 1.53 

 34.95 

SD 
.57 .63 .85  1.10 1.13 1.17 1.14 .76 

 6.73 

Old  

(n = 20) 

M 
2.00 2.25 1.70  2.45 2.55 1.90 2.80 1.35 

 32.45 

SD 
.65 .44 .57  1.05 1.19 .72 .834 .67 

 6.06 

Note. Students from the young age group did not answer these items. Perceived difficulty: minimum = 1 (low 

perceived difficulty), maximum = 4 (high perceived difficulty), cognitive load: minimum = 1 (low cognitive load), 

maximum = 5 (high cognitive load), flow: minimum = 9 (low flow), maximum = 45 (high flow) 

 

89.6% of all students reported the task to be easy, against 10.4% who found it difficult. 74.6% of the 

students reported the lesson to be short, against 25.4% who found the lesson long. The students who found 

the lesson to be short, experienced less flow (M = 30.86, SD = 7.13) than students who thought it was long 

(M = 37.65, SD = 5.18), through ANOVA analysis (F(2, 62) = 4.111, p = .021, 𝜂𝑝
2 = .12). When 

conducting a univariate analysis of variance, there appears to be an interaction effect between age and 

perceived length of the lesson (F(1, 58) = 4.976, p = .03). This means that the difference in 

decompositions made between different ages, is influenced by whether the lesson is perceived long or 

short. 16.4% of all students self-reported that they really had to concentrate during the lesson, 14.9% felt 

rushed, 9% did not feel successful in the task, 13.4% felt like they had to put in a lot of effort, and 1.5% 

found the task mentally exhausting. It was expected that students would found decomposition more 

difficult than abstraction. This difference was not found. Students from both conditions responded in 

similar proportions to the perceived difficulty questions. 

  

Perceptions 

Although the decomposition lesson got a good average grade (M = 8.3, SD = 1.9), there is a difference 

between older and middle-aged students (F(2, 64) = 5.363, p = .007, 𝜂𝑝
2 = .14). Pairwise comparisons 

using the Bonferroni procedure show that older students gave a significantly lower grade (M = 7.3, SD = 

1.6) than middle-aged students (M = 8.7, SD = 1.8). 78.8% of all students reported to like the lesson, 

84.8% said they understood the task, 57.6% likes to dance (a considerable part of the decomposition task), 
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37.9% has had (or still has) dancing lessons, and 10.4% said to have done a similar task before. There 

were no significant differences between these groups in their decomposition skill.  

 

Ancillary analyses 

Abstraction  

After analysing the results that were linked to the research questions, supportive and exploratory analyses 

were conducted. A one-way ANOVA analysis showed that there were differences between males and 

females in the abstraction task (F(1, 113) = 4.504, p = .036, 𝜂𝑝
2 = .04). However, there also appeared an 

interaction effect between gender and the three age groups (F(2, 109) = 7.334, p = .001). This is displayed 

in Figure 1a.  

 
 (a) 

 
 (b) 

Figure 1. Interaction effect between gender and age groups (a) and age (b) on the abstraction task. 

 

As can been seen in the graph, young males (M = .62, SD = .23) and females (M = .58, SD = .26) tend to 

perform basically the same on the abstraction task. This is also the case for middle-aged students (M = 

1.44, SD = .76 and M = 1.47, SD = .72 respectively). But when looking at the oldest students (older than 

10 years old), there is a strong difference between males (M = 1.87, SD = 1.06) and females (M = 3.26, 

SD = 1.62). This difference is significant (F(1, 44) = 11.717, p = .001, 𝜂𝑝
2 = .21). In Figure 1b, age is 

divided per year, to illustrate the course of the development between males and females in the abstraction 

task. There is a point visible around the age of 9.5 years old, where females start to surpass males on the 

abstraction task. Their scores on the abstraction task start increasing more rapidly than that of males. In 
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addition, it was found that flow is moderately correlated with the grade students give the abstraction 

lesson (r = .657, p < .001). Thus, when students experienced more flow, they rated the lesson with a 

higher grade. 

 

Decomposition  

There is no interaction effect between gender and age groups for the decomposition task, as displayed in 

Figure 2a.  

 
 (a) 

 
 (b) 

Figure 2. The difference between age groups (a) and the development between gender and age (b) for the 

decomposition task. 

 

However, when dividing age per year (Figure 2b), a more refined picture of the development becomes 

visible. When performing a univariate analysis of variance, an interaction effect between gender and age is 

found (F(5, 73) = 2.501, p = .04). This means that females do perform better on the decomposition task, 

but only after surpassing the age of 11 years old. 

Age was found to have a weak, negative correlation with how much students like to dance (r = -

.323, p = .008) and the grade students give to the lesson (r = -.386, p = .001). This means that when 

students get older, they like dancing less, and give a lower grade. There are no differences found in this 

trend between males and females. 

Flow has a weak correlation with how much students like to dance (r = .47, p < .001) and their 

understanding of the task (r = .438, p < .001). Thus, when students like to dance and have a good 

understanding of the task, they experience more flow. Flow is moderately correlated with the grade they 



17 

give the lesson (r = .603, p < .001), which means the grade they give the lesson becomes higher, when 

students experience more flow. Understanding of the task is also correlated moderately with how much 

they like the task (r = .509, p < .001) and the grade students give the lesson (r = .571, p < .001). Thus, 

when students have a good understanding of the task, they like the task more and give the lesson a higher 

grade. 

 

Discussion 

The aim of this study was to investigate from what age lessons about decomposition and abstraction are 

appropriate. Three main findings are worth discussing in further detail. The first main finding concerns the 

relation between age and abstraction and decomposition. Second, an interaction is found between gender 

and the abstraction task. Third, for both tasks, there are no significant differences between age groups on 

perceived difficulty, cognitive load, and flow. 

 

Abstraction 

Results show that students do not show the same level of abstraction skill across all ages, as expected. 

When students got older, they got better at the abstraction task. This is largely in line with the results of 

Marini and Case (1994). They found that the capacity for abstract reasoning begins to appear at the age of 

11 or 12. In the current study, abstract reasoning seems to appear earlier, but it is unclear at what level. In 

a study from Dumontheil (2014), it was found that on a task for relational reasoning, 7 to 9 and 14 to 17 

year olds make significant improvements during that span. This could be related to the improvements seen 

in this study around that age. It was expected that age would have a positive correlation with flow, but this 

correlation is not found. This could be because older students might not have felt as challenged as 

expected, which would make them feel bored. This could indicate that this subject is more suitable for 

somewhat younger students (i.e., 10 years old and younger).  

During the ancillary analyses, it was found that after the age of 9.5 years old, females begin to 

distance themselves of males on the abstraction task. A similar finding was reported by Statter & Armoni 

(2016), who found that “female students achieved better grades (…) in our abstract scale grading” (p. 83). 

Their study involved 7th graders (ages 13 to 14), with the main goal to develop an intervention to teach 

abstraction skills as early as possible. Also, using functional magnetic resonance imaging (fMRI), girls 

between 9 and 15 years old have been found to show significantly greater activity in brain areas linked to 

abstract thinking through language than boys of the same age (Burman, Bitan, & Booth, 2008). Boys, on 

the other hand, showed much more activity in visual and sensory brain areas. The findings of the current 

study could be related to the notion that girls develop faster cognitively than boys, due to their tendency to 
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optimize brain connections earlier than boys (Lim, Han, Uhlhaas, & Kaiser, 2015). Also, girls are believed 

to hit puberty earlier than boys; a period linked to the development of abstract reasoning (Kipke, 1999). 

When analysing how difficult the lessons about abstraction were perceived by students, the 

expectation was that the older students got, the easier the lessons would be experienced. Results show that 

there are no differences in perceived difficulty, cognitive load, or flow between age groups. This means 

that age does not influence these constructs. Although the abstraction task should be suitable for all ages 

in primary school, it was expected that younger students would have more difficulty with the task than 

older students. It could be that the task resulted in a so-called ceiling effect, meaning that the task was too 

easy for all respondents, making it difficult to differentiate between ages. When this would be the case, 

however, the correlation of the task with age, and interaction with gender, would not be present. Another 

explanation lies in the measurements. The current study used self-reporting questionnaires for a sample 

consisting in its entirety of primary school students. The questionnaires were already dismissed for 

students in 1st grade, but even in higher grades the reliability of the questionnaire is to be questioned. It 

was observed that students tend to answer in extremes on questions with a five-point Likert scale, 

sometimes out of enthusiasm (e.g., thinking the extremes represent all positive answers), out of boredom 

(e.g., not feeling like answering the questionnaire), or because they see their neighbour filling in the 

questionnaire a certain way. The inferences drawn from the self-reported questions should therefore be 

interpreted with caution. Future research should focus on measuring these constructs without self-

reporting questionnaires, but instead use interviews with the students, either individually or in small 

groups. Another result shows that students with prior experience in the abstraction task, perform better. 

Prior experience, of course, influences student achievement (Hailikari, Katajavuori, & Lindblom-Ylanne, 

2008).  

 

Decomposition 

Results show a different pattern between the decomposition task and age groups than with abstraction. 

Between the ages of 7 and 10 years old, there is no difference in performance on the decomposition task, 

also not between males and females. However, when looking at students older than 11 years old, the 

number of decompositions made per minute more than doubles, and females begin to outperform males 

significantly. This age could be an indication of an appropriate moment to invest in more lessons on 

decomposition in relation to computational thinking, as decomposition in relation to arithmetic problems 

is already taught to students as young as 5 years old (Cheng, 2012). Due to a severe lack of literature 

about gender and decomposition, it is difficult to explain the superiority of girls other than their general 

earlier cognitive development (Lim et al., 2015). 



19 

When analysing how difficult the lessons about decomposition were perceived by students, the 

expectation was that the older students got, the easier the lessons would be experienced. Also, the 

decomposition lesson was expected to be perceived more difficult than the abstraction lesson. Similar to 

the abstraction task, results show that there are no differences in perceived difficulty, cognitive load, or 

flow between age groups. This means that age does not influence these constructs. However, students’ 

perceptions of the decomposition task were significantly less positive in the oldest age group. Older 

students sometimes showed confusion in how decomposing a dance routine fits in with programming, 

when this link was discussed. This is reflected in the differences in grades per age group; older students 

gave a lower grade than middle aged students. There is no difference in gender for this difference, which 

means that older boys did not like the lessons less or more than older girls. 

The decomposition lesson was not experienced more difficult (or easier) than the abstraction 

lesson, against expectations. This is an interesting result, seeing how decomposition was thought of to be 

the most difficult computational thinking skill to master (Selby, 2015). And while Selby found that 

decomposition is very difficult, other research pleads for the difficult nature of abstraction for primary 

school students (Booth, 2013). In addition to the fact that students did not feel any significant differences 

in how they perceived the two tasks, this could mean that statements about what computational thinking 

skill is the most difficult to master, are mostly conjecture. Seeing how students responded to the 

abstraction and decomposition tasks in the current study, it seems that the tasks do not transcend each 

other in difficulty. Students with prior experience do not perform better on the decomposition task. A 

previous study by Tobias (1994) found a linear relationship between prior knowledge and interest. 

However, when including the items that resemble interest in the subject (‘I liked the lesson’, or ‘I like 

dancing’), there was still no association found. To engage in relatively simple decomposition, apparently 

prior experience is not required. 

 

Factors of influence  

For the decomposition task, it could be argued that the way the students’ success in decomposition is 

expressed (i.e., in decomposition made per minute), has low external validity. Students had to come up 

with a dance themselves, which they had to decompose. Also, a class could have had a differently oriented 

education, one that could possibly lead to better or worse performances on the decomposition task. Future 

research should make it a point of emphasis to operationalize decomposition skill in a more valid way. A 

first way to do this could be to make several decomposition tasks in different domains (e.g., eating lunch), 

to prevent students’ domain specific skills. For example, students with a dancing background could have 

benefited from this decomposition task. A second way of making more valid decomposition tasks, would 

be to add variations in the complexity of the tasks (e.g., a more extensive lunch, a lunch with different 
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kinds of food). Finally, a predetermined task (e.g., the same dance for all students) could more effectively 

differentiate students’ decomposition skill. When piloted and standardized, a norm could be made for 

different age groups.  

Also, the construct validity of the abstraction and decomposition tasks can be questioned. That is, 

was it really abstraction and decomposition that were appealed to during the tasks? The tasks are used in 

the UK national curriculum to introduce these concepts, but also call upon students’ skill in among others 

reading, drawing, creativity, motivation, and motor skills. 

 

Relevance & implications  

The current study gives directions from what age lessons about abstraction and decomposition are 

appropriate, and contributes to the scarce collection of empirical studies on computational thinking, and 

decomposition in particular. It was observed that students gradually become more skilled in abstraction 

like tasks as they become older, with females following a steeper development than males after the age of 

9.5 years old. These results are interesting and relevant. With the upcoming desires to implement 

computational thinking skills earlier in the curricula, educators should consider possible differences 

between males and females when it comes to abstraction. Compared to existing literature, the current 

study provides more insights on the differences between males and females and computational thinking, 

and the paradox that shows when faced with the reality: a considerable shortage of women in the Science, 

Technology, Engineering and Math (STEM)-fields, despite multiple studies reporting that girls perform as 

good, or even better in these fields (Corbett & Hill, 2015; Grover & Pea, 2013; Modi et al., 2012; Wang & 

Degol, 2013). Also, most existing curricula, like the national curriculum for computing in the U. K., have 

abstraction introduced around 11 years old. However, it is observed that both lessons about abstraction as 

decomposition could be introduced as early as 1st grade (6 years old), although students’ performance on 

these task will double (and eventually triple) rapidly when reaching higher grades. 

 For decomposition, it would be interesting to see what the role of cognitive load and Miller’s 

working memory theory of ‘seven plus or minus two’ would be when decomposing a problem. The steep 

development of decomposition after the age of 11 is not a flawless result, as the influences of external 

variables are still to be determined. However, since it is the age most computational thinking curricula 

start with, it does provide some insights in the development of decomposition. 

When translating the results of the current study for primary school teachers, it is important to 

describe specific guidelines. For abstraction, expect a gradual development for both boys and girls. When 

students reach 4th grade (groep 6), girls will likely start to distinguish themselves from boys on abstraction 

tasks. Additional and more challenging material would be desirable for this scenario. For decomposition, 

these effects seem to be postponed to 6th grade (groep 8). When focussing on computational thinking skills 
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that involve decomposition, a significant improvement can be expected around this grade. 

 

Conclusion  

Research to computational thinking skills in primary education is still rare. It is advised to offer primary 

school students the opportunity to get acquainted with these 21st century skills as soon as possible. As 

Kramer (2007) states, computational thinking skills are not only useful for programming or computer 

science, but for all disciplines. Some opponents feel like young children should not be exposed to more 

screen time, technology, or computers at all. That is why unplugged, hands-on learning materials should 

be developed and advocated in addition to the computer related content. Questions that started this study 

were about how difficult computational thinking skills would be for primary school students and if there 

would be a particular age at which students should be educated in these skills. It seems that students did 

not experience the unplugged lessons to be too difficult. Also, there are clear directions about the 

development of these skills through different ages. And, without anticipating gender differences, there 

were. The results of this study provide handles to continue to improve lesson material in this new and 

exciting area of education, with clues for adaptations for gender. The overall conclusion is that although 

inferences should be made carefully, abstraction and decomposition have a future in primary education. 

Especially in the advanced stage of primary education (grade 4 through 6), students start to make progress 

in their abstract reasoning. In a next study, it would be interesting to invest in closing the gap on gender 

differences. The lesson material could be extended to more difficult and easier tasks, and present these 

tasks to boys and girls from different ages. Also, it would be interesting to explore the other computational 

thinking skills (i.e., algorithms, evaluation, and generalizations) in primary school, and look for gender 

differences there. Girls in particular should be motivated by teachers to explore these STEM-fields they 

are traditionally not involved in. Although we are nearly two decades in, it is not too late to start investing 

in these 21st century skills. 
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Appendix A 

  Introduction to Abstraction Unplugged Activity – Barefoot Computing  

 

 

KS2 Introduction to Abstraction Unplugged Activity  
Guess what? 

 
Recommended Year Group: Any Key Stage 2 

Activity Duration: 30 minutes 

 
Concepts and approaches 

 

 
Overview 
This is an unplugged activity in which pupils create simple models from modelling dough or 

draw quick sketches for a partner to guess what they are representing. In doing so they learn 

they are ignoring unimportant details and only including that which is most important, and in 

so doing are abstracting. Pupils link this idea to what is and is not included in simple 

computer simulations and games. 

 
Pupil objectives 

 I can say what is important and I must include 

 I can say what is unimportant and I can ignore 

 I can say how a computer program (for example, a computer simulation or game) 
includes what is important. 

 

Introduction - (5 mins) 
 Invite two pupils to the front of the class to play a short ‘guess what’ game. Give one 

pupil a ‘guess what’ card and they must either sketch it, or make it using modelling 
dough so that their partner guesses what it is. The quicker their partner guesses 
correctly the better they have done. 

 Lead a discussion to consider what enabled the guesser to work out what item was 
being drawn or modelled. Lead to the idea that the maker had to work out what was 
most important about the item, and what could be ignored, which helped the guesser 
work out what the item was. 

 Model how to then think about and record what was included and what was ignored, 
creating a class example. You could use the table on slide 2 of the presentation or 
use a recording sheet displayed on the IWB using a visualiser. Ask pupils to help you 
think what was included and what was ignored for the item that was just guessed and 
show pupils how to add to the table. Ask pupils what other aspects might have been 
better to include and add to the table. 

 Show slide 4 of the presentation to introduce the learning objectives, if you wish. 

 

 

Main activity (15 mins) 
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 G 

 
 

roup pupils in pairs. Give each pair a few ‘guess what’ cards, a whiteboard and pen, 
modelling dough and paper (or recording sheets) to note their include, ignore notes. 
(Alternatively group pupils in threes, and one pupil thinks of the ‘guess what’ item.) 

 Pairs should now have time to play the game – with 1 player selecting a card and 
drawing or modelling the object and the other pupil guessing what has been created 
or drawn. They should then work collaboratively to work out what was included and 
what was ignored, adding notes about what might have been better. Ensure pupils 
swap roles during this time. 

 As pupils are playing: 
o Circulate around groups to ensure pupils are thinking carefully about what 

was included and what was ignored and why. 
o Stop the whole class on a couple of occasions and compare objects or 

drawings being created for the same ‘guess what’ card to discuss what 
common aspects are being included or excluded. 

 

Plenary (5 mins) 
 Select two or three pairs to share examples and discuss as a class any similarities 

and differences in what was included or ignored. Or select any notable examples that 
showed surprising or interesting approaches to abstraction, e.g. examples that 
everyone found easy or hard. 

 Ask pupils in pairs to think of computer simulation they know about (e.g a flight, 
driving, simulator at a theme park, planets simulator, fossil formation etc) or a 
computer game they know about and to think about what is included and what is not 
included. (Use slide 5/6/7 if needed).See resources for a selection of simulations that 
could be displayed if needed. 

 Share ideas as a class and lead a discussion to explain that designers of simulations 
and games need to decide what to include or ignore when creating programs and 
that the skill of working out what is important and not important to include in essential. 
You could introduce the term abstraction and explain that this is an important area of 
study in computing. 

 
Differentiation 
Support: 

Use additional targeted questions during main task to check basic understanding of what is 

important, not important. 

 
Stretch & Challenge: 

 Challenge pupils to think about any common themes of what is and is not included 
across several computer games or simulations they are familiar with e.g Angry Birds 
and Candy Crush both have simple characters, scores, levels, bright colour but do 
not have complex story lines like some questing games. Looking for patterns and 
generalised aspects is another important computational thinking skill. 

 Challenge pupils to describe a game in a minimum number of words. For example, 
Candy Crush is a timeline game. The player moves along the line solving problems in 
a step by step order. They can’t move on without succeeding. 
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Assessment Opportunities 
 Informal teacher assessment of pupils during main task and plenary. Focus on 

understanding of: 
o Thinking what is important to include. 
o Thinking what can be ignored. 
o Being aware that thinking about what is ignored or included in computer 

simulations and games is an important aspect of design 

 

Teaching notes 
Concepts and approaches 

Abstraction 
Abstraction is about simplifying things; identifying what is important without worrying too 

much about the detail. Abstraction allows us to manage complexity. In this activity, pupils 

abstract as they identify what can be ignored and what is important about the items they are 

drawing or modelling. They also consider what is ignored or included in computer 

simulations and games they know. 

 
Curriculum links 
Computing 

 Abstraction is part of the overarching aims of the computing curriculum which seeks 
to ensure that all pupils: ‘can understand and apply the fundamental principles and 
concepts of computer science, including abstraction, logic, algorithms and data 
representation.’ 

 
Art and Design: Pupils should be taught: 

 to improve their mastery of art and design techniques, including drawing, painting 
and sculpture with a range of materials [for example, pencil, charcoal, paint, clay] 

 
Prior knowledge 
None, although having done Fossil Formation or another abstraction activity is an 

advantage. 

 
Resources (see downloads below) 

 Guess what cards (or create your own topic based words) 

 Modelling material e.g. playdough 

 Individual whiteboards and whiteboard pens 

 Paper or include/Ignore recording sheet 

 Lesson presentation 

 Access to the internet and/or scratch to display simulations if needed (See slide 6 of 
the presentation for examples.) 

 
Related activities 
Fossil Formation 

Solar System Simulation 

Modelling the Internet Activity 

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239033/PRIMARY_national_curriculum_-_Computing.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239018/PRIMARY_national_curriculum_-_Art_and_design.pdf
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/lower-ks2-activity-dinosaur-fossil-animation-sequence-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/lower-ks2-activity-dinosaur-fossil-animation-sequence-activity/
http://barefootcas.org.uk/programme-of-study/simulate-physical-systems/ks2-solar-system-simulation-activity/
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KS1/2 Introduction to Decomposition Unplugged: 
Tut, clap or jive 

 
Recommended Year Group: Any Key Stage 1 or 2 

Activity Duration: 30 minutes 

 
Concepts and approaches 

 

Overview 
This is an unplugged activity in which pupils create hand clapping, hand tutting or hand jive 

sequences of movements. Pupils break the sequence of actions down into parts and in so 

doing are decomposing. Pupils link this idea to breaking problems down when creating 

computer programs such as animations or games. 

 
Pupil Objectives 

 I can break a sequence of moves down into its parts (KS1) 

 I can decompose a sequence (KS2) 

 I can say why this is useful (KS1/2) 

 I can say how decomposition is used when creating computer programs like 
animations or games (KS2 – optional) 

 
Introduction (5 minutes) 

 Show pupils a sequence of hand movements, this could be a hand jive or tutting 
moves or clapping sequence. (See resources for ideas.) The sequence needs to be 
relatively complex or long so that pupils will find it difficult to remember the parts 
without it being broken down into parts. 

 Ask pupils to now recreate the sequence without showing it to them again, or 
explaining the parts. 

 Lead a discussion around how you could teach them it in a more effective way, 
leading to the idea of breaking the sequence down into parts. 

 Explain that breaking something down into parts is called decomposition. (KS2) 

 Model how to break the sequence into parts (decompose it). Record your parts using 
either slides 4 or 5 of the presentation or using the decomposition design sheet. 

 Model how to number and/or name each part and draw an image of each part. In 
KS2 you might also add notes. (Perhaps model just breaking down the first 2 or 3 
parts.) 

 Show slide 2 or 3 of the presentation to introduce the learning objectives, if you wish. 

http://barefootcas.org.uk/wp-content/uploads/2015/02/DecompositionDesignSheet.pdf
http://barefootcas.org.uk/wp-content/uploads/2015/02/DecompositionDesignSheet.pdf
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Main Activity (10 minutes) 
 Group pupils in pairs. Give each pair paper or the decomposition design sheet on 

which to record their sequence. 

 Pairs should now have time to work out their sequence of movements and re- cord 
their decomposition. Pupils should work collaboratively discussing moves, recording 
each part, testing it out and debugging it. 

 As pupils are working: 

o Circulate around the pairs to ensure pupils are breaking down their sequence 
into parts. 

o Stop the whole class on a couple of occasions and ask selected pairs to 
demonstrate their sequence so far. 

o Ask pairs of pupils to swap their designs and try them out – to debug them. 

 
 

Sharing sequences and decompositions (10 minutes) 
 Ask a selection of pairs to teach the class their finished sequence, using their 

decomposition to help them. If possible show their design at the same time, per- haps 
using a visualiser or mobile device to mirror to an IWB. (Note: This broken down set 
of steps is an algorithm.) 

 

Plenary (5 minutes) 
 Lead a class discussion about how breaking down the sequence into parts helped 

their design process and sharing of the sequence. Points for discussion might 
include, being able to see the overall sequence of parts, being able to spot repetition, 
being able to focus on one part at a time. 

 If time, or as homework, ask pupils in pairs to think how computer programs are 
created by computer scientists, for example if they were creating a new computer 
game, say one like Angry Birds. Some designers might work on the first level of the 
game others on the next. Some programmers might work on the backgrounds, some 
on the sound, others on the action. Explain that decomposition is a fundamental skill 
when working with computers as it helps us break down complicated problems, focus 
on one part at a time and share the work with others. 

 
Differentiation 
Support: Some pupils could work in a group with an adult, perhaps photographing each part 

of their sequence. 

 
Stretch & challenge: Challenge pupils to spot any repeated moves and how they could use 

a ‘repeat command’ or replace the repeated parts with a summary name e.g replace two 

steps open hand, close hand with one step open/close hand. Decomposing the summarised 

part just once. Pupils could add a selection (an if… then… else…). For example, if wearing a 

blue jumper do the actions low, else do them high. 

 
Assessment opportunities 

 Informal teacher assessment of pupils during main task and plenary. Focus on 
understanding of decomposition e.g. are the parts in the right order, do you have all 
the parts, where do you start/end, do you repeat any parts, can you further 

http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
http://barefootcas.org.uk/sample-resources/algorithms/
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decompose a particular part? Also can pupils relate this to creating computer 
programs. 

 
 

Teaching Notes: 
Concepts and approaches 

Decomposition 
The process of breaking down a problem into smaller manageable parts is known as 

decomposition. Decomposition helps us solve complex problems and manage large projects. 

 
Decomposition is breaking a problem or system down into its parts. Sometimes we break 

those parts down further. As we decompose something we learn more about it. If we 

decompose a problem it becomes more manageable as we can deal with the parts 

separately and more easily. 

 
In this activity pupils create a sequence of hand actions, they break the sequence down into 

parts and in so doing are decomposing. They also think about how de- composition is used 

when creating computer games. 

 
Note: The resultant design pupils create after decomposing their sequence of hand actions 

is a set of instructions to perform a task, it is an algorithm. 

 

Curriculum links 
Computing: 

 Key Stage 1: Although decomposition is not explicitly mentioned in the key stage 1 
programme of study, it is used when pupils break a task down to work out the steps in 
a simple algorithm or when they choose a part of a program towork on when they 
‘create and debug programs’. 

 Key Stage 2: Solve problems by decomposing them into smaller parts 
 

PE:  
 perform dances using simple movement patterns (KS1) 

 perform dances using a range of movement patterns (KS2) 
 
 

Resources (downloadable from webpage) 
 Paper or decomposition design sheet (Note: there is a KS1 page and a KS2 page) 

 Lesson presentation (includes examples) 

 Access to YouTube to display tutting, clapping or jive examples if needed (see 
presentation slide 9) 

 
Related activities 
KS1 Crazy Characters Algorithms Activity 

http://barefootcas.org.uk/sample-resources/decomposition/
http://barefootcas.org.uk/sample-resources/algorithms/
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239033/PRIMARY_national_curriculum_-_Computing.pdf
https://www.gov.uk/government/publications/national-curriculum-in-england-physical-education-programmes-of-study/national-curriculum-in-england-physical-education-programmes-of-study
http://barefootcas.org.uk/sample-resources/decomposition/ks12-introduction-decomposition-unplugged-activity/
http://barefootcas.org.uk/wp-content/uploads/2015/02/DecompositionDesignSheet.pdf
http://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
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Vragenlijst 

Naam:………………………………………………………………………………………………………………………………………………………………………… 

Naam school:……………………………………………………………………………………………………………………………………………………………… 

Datum:………………………………………………………………………… ⃝  jongen  ⃝  meisje 

 
Geboortedatum:………………………………………………………….  (Bijv. 22 januari 2008) Leeftijd:…………………………………………… 

Groep:…………………………………………………………………………  

Instructie 

Dit is een lijst met 25 vragen. Achter elke vraag staan een paar bolletjes. 

Bijvoorbeeld: 

  Klopt niet  Klopt helemaal 

1 Ik vind de opdrachten leuk ⃝ ⃝ ⃝ ⃝ ⃝ 

 

Je kiest het antwoord dat het best bij jou past en kleurt dit bolletje in, of je omcirkelt het best passende antwoord. 

Dus als je de opdrachten heel leuk vind, kleur je het meest rechtse bolletje in. Vind je de opdrachten helemaal niet 

leuk, dan kleur je het meest linkse bolletje in. Zit het er een beetje tussenin, kies dan een ander bolletje wat beter 

past. 

Er zijn geen goede of foute antwoorden. Elk antwoord is goed als het maar je eigen mening is. Werk vlot door en 

denk niet te lang over het antwoord na, want het gaat om je eerste indruk. Sla geen enkele vraag over. Ook al is een 

vraag moeilijk te beantwoorden, probeer dan toch bij elke vraag je iets voor te stellen en een antwoord te geven. 

 
Wat vond je van de     

1 Moeilijkheid Heel moeilijk Moeilijk Makkelijk Heel 
makkelijk 

2 Lengte Heel lang Lang Kort Heel kort 

3 Duidelijkheid Heel 
onduidelijk 

Onduidelijk Duidelijk Heel duidelijk 

 

 
Vraag Helemaal niet Heel erg 

4 Hoe diep moest je nadenken tijdens de taak? ⃝ ⃝ ⃝ ⃝ ⃝ 

5 Hoe erg moest je je haasten tijdens de taak? ⃝ ⃝ ⃝ ⃝ ⃝ 

6 Hoe goed lukte de taak? ⃝ ⃝ ⃝ ⃝ ⃝ 

7 Hoe hard moest je werken voor de taak?  ⃝ ⃝ ⃝ ⃝ ⃝ 

8 Hoe onzeker, boos, of vermoeid was je? ⃝ ⃝ ⃝ ⃝ ⃝ 

 

 
Vraag 

 Klopt niet Klopt helemaal  
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9 Ik vind de opdrachten leuk ⃝ ⃝ ⃝ ⃝ ⃝ 

10 Ik vind het fijn dat je bij deze opdrachten nieuwe dingen 
leert 

⃝ ⃝ ⃝ ⃝ ⃝ 

11 Deze opdrachten vind ik nuttig ⃝ ⃝ ⃝ ⃝ ⃝ 

12 Ik hoef geen beloning. De opdrachten gaven me plezier 
genoeg! 

⃝ ⃝ ⃝ ⃝ ⃝ 

13 Deze opdrachten vond ik erg interessant ⃝ ⃝ ⃝ ⃝ ⃝ 

14 Denken ging makkelijk ⃝ ⃝ ⃝ ⃝ ⃝ 

15 De juiste gedachten kwamen vanzelf ⃝ ⃝ ⃝ ⃝ ⃝ 

16 Bij iedere opdracht wist ik wat ik moest doen ⃝ ⃝ ⃝ ⃝ ⃝ 

17 Ik had het gevoel dat ik alles onder controle had ⃝ ⃝ ⃝ ⃝ ⃝ 

 
 

 Vraag 
 Klopt niet Klopt helemaal  

18 Ik vond de opdracht leuk ⃝ ⃝ ⃝ ⃝ ⃝ 

19 Ik snapte goed wat ik moest doen ⃝ ⃝ ⃝ ⃝ ⃝ 

A Ik vind het leuk om te tekenen ⃝ ⃝ ⃝ ⃝ ⃝ 

D Ik vind het leuk om te dansen ⃝ ⃝ ⃝ ⃝ ⃝ 

A Ik teken vaak als hobby ⃝ ⃝ ⃝ ⃝ ⃝ 

D Ik heb dansles gehad ⃝ ⃝ ⃝ ⃝ ⃝ 

 

22 Als je deze les een cijfer tussen de 1 (heel slecht) 
en 10 (heel goed) moet geven, welk cijfer geef je 
dan? 

 

____________ 

   

23 Hoe vond je de les in één woord?  

______________________________________________ 

24 Heb je ooit eens zoiets gedaan zoals vandaag?  
(omcirkel het juiste antwoord) 

Ja Nee  

25 Zo ja, wat heb je dan gedaan? 
 

______________________________________________ 

______________________________________________ 

BEDANKT! 


