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ABSTRACT

In this report the regularization of discontinuous initial conditions of the
one-dimensional Advection Equation will be studied. The discrete initial conditions will be
interpolated using polynomial interpolation. This polynomial interpolation is convoluted with
a high order regularized Dirac-delta function. The equation will be solved using a spectral
collocation method. The convolution with the polynomial-based Dirac-delta function is
written in a matrix-vector multiplication for convenient implementation.

It is shown that this method yields stable results and higher order convergence away
from the regularization zone for different discontinuous initial conditions. The influence of
the variables of the regularized delta function is studied and explained.

Furthermore, the results are compared with the theoretical filter error. It is shown that
the solution converges according to the theoretical filter error in the case of filtered boundary
conditions and sufficiently wide regularization zones.

Keywords: Hyperbolic conservation laws, one-dimensional advection equation,
regularization, Dirac-delta, spectral collocation matrix, filtering.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND
The general one-dimensional, homogeneous hyperbolic partial differential equation

(PDE) or conservation law is given as:

∂

∂t
~Q(x, t) +

∂

∂x
~F ( ~Q) = 0, (1.1)

In which ~Q represents the q conserved quantities and ~F is the flux function. This
equation governs the behavior of a wide range of physical systems in which waves and
convection are of importance such as gas dynamics, electromagnetism and traffic flow. This
equation is able to form discontinuous solutions such as shocks in gas dynamics if the fluxes
are nonlinear.

Shocks in gas dynamics occur in a wide range of applications, such as the flow over a
supersonic airfoil, jet engines and explosions. One specific example is the combustion process
in a SCRAMJET (Supersonic Combustion Ramjet) engine. The time the fluid is inside a
SCRAMJET engine is in the order of milliseconds. In SCRAMJET combustion, the mixing is
the limiting factor and is therefore an important aspect in improving the efficiency of this
engine [10]. Therefore one is interested in high accuracy away from the shock where the
mixing occurs.

A more fundamental example is the instability that occurs when two fluids of different
density are impulsively accelerated by the passage of a shock wave. This instability is the
so-called Richtmyer-Meshkov instability (RMI), which can be considered the
impulsive-acceleration limit of the general Rayleigh-Taylor instability (RT). Supersonic
combustion in a SCRAMJET may benefit from RMI as the fuel-oxidants interface is enhanced
by the breakup of the fuel into finer droplets [2].

Commonly used numerical methods to accurately capture shock phenomena are
high-resolution versions of Godunov’s method in which Riemann problems are solved to
determine the local wave structure and limiters are then applied to eliminate numerical
oscillations. A variety of closely related approaches have also been developed for achieving
high-resolution results. These include the second order Lax-Wendroff approach and higher
order ENO (Essentially Non Oscillatory) and more recently WENO (Weighted Essentially
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Non Oscillatory) methods to name a few. For nonlinear systems of equations, solving a
Riemann problem can be expensive. A variety of approximate Riemann solvers have been
developed to simplify this process, but algorithms based on Riemann problems are still
typically expensive relative to approaches that only require evaluating the flux function [9].

Spectral methods are an efficient way of solving partial differential equations to high
accuracy on simple domains if the data defining the problem are smooth. However, in case of
non-smooth data, use of spectral methods leads to oscillations near the discontinuity. Grid
refinement will not diminish the oscillations. The generation of oscillations near
discontinuities is called Gibb’s phenomenon [12].

It is however possible to overcome the Gibb’s phenomenon. It appears that in the
solution there is still sufficient information to recover high-order accuracy using some form of
postprocessing, for instance Gegenbauer postprocessing. In the nonlinear case, the Gibb’s
phenomon may cause a stable scheme to become unstable due to amplification of oscillations.
A common way to prevent this is the use of an exponential filter. Again, some form of
postprocessing can be used to recover high-order accuracy even in the case of nonlinear
equations [5].

The aforementioned methods all emphasize sharp shock capturing abilities. In certain
applications however, one is less interested in sharp shock capturing and more interested in
high order accuracy away from the shock.

If this is the case, this leads to the possibility to use efficient spectral methods in
combination with filters to regularize discontinuities (shocks), basically sacrificing the
accuracy with which the shock is captured for high order convergence away from the shock.
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1.2 OBJECTIVE
In [11], a high-order approximation of the Dirac-delta function is presented. This

function is used to approximate singular source terms in the numerical solution of non-linear
systems of hyperbolic conservation laws (Euler equations in gas dynamics) arising in the
simulation of particle-laden flows with shocks [3], [4]. The reason for this approximation is
the fact that singular source terms can induce nonphysical oscillations in the numerical
solution [6], [7]. In [11], it is also mentioned that these delta-functions can be used to
smoothen singular sources using the operation of convolution.

In this study, the linear homogeneous one-dimensional, hyperbolic partial differential
equation (PDE) will be considered:

∂

∂t
~Q(x, t) +

∂

∂x
~Q(x, t) = 0 (1.2)

The high order regularized delta functions introduced in [11] will be used to smoothen
discontinuous initial conditions using the operation of convolution. This operation is written
as a matrix-vector product, yielding the so-called filter-matrix. The 1D advection equation
will be solved using the spectral collocation method.

Firstly, chapter 1 presents the motivation and contributions of the present study. In
chapter 2 the filter-matrix is derived and the spatial and time discretization is given. Next,
chapter 3 presents the numerical results for two initial conditions, a top-hat and a sine with
discontinuity. In chapter 4 filtered boundary conditions and (wider) support widths are used to
show that the solution converges according to the theoretical error in this case. Finally
chapter 5 summarizes the results and gives an outlook for future work.
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CHAPTER 2

FILTERING AND DISCRETIZATION

2.1 FILTERMATRIX
The filtering of discontinuities is based on convolution with the regularized delta

function as described by Suarez in [11]. The regularized delta function is a polynomial of
degree 2(m

2
+ k + 1), defined as:

δm,kε (x) =

1
ε
Pm,k

(
x
ε

)
, |x| ≤ ε

0, |x| > ε
(2.1)

This is a (m+ 1)th order accurate delta-sequence with compact support [−ε, ε]. It is a
mixed polynomial consisting of two single polynomials controlling the number of vanishing
moments m and the number of continuous derivatives at the end of the support k respectively.
The regularized delta function is uniquely determined by the following properties:

(i)

∫ 1

−1
Pm,k(ξ)dξ = 1 (2.2)

(ii)
(
Pm,k

)(i)
(±1) = 0 for i = 1, ..., k (2.3)

(iii)

∫ 1

−1
ξiPm,k(ξ)dξ = 0 for i = 1, ...,m (2.4)

In which (i) states that the area of the function equals one as the discrete Dirac-delta
function, (ii) determines the number of continuous derivatives and (iii) the number of
vanishing moments.

Suppose the data is given by the variable f(x) on the domain −1 < x < 1. Then the
filtered data, denoted as f̃(x), follows from the convolution with the regularized
delta-function:

f̃(x) =

∫ 1

−1
f(τ)δm,kε (x− τ)dτ (2.5)
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Since the regularized delta function is only non-zero within its support width, the
integration boundaries in the previous expression can be rewritten as:

f̃(x) =

∫ x+ε

x−ε
f(τ)δm,kε (x− τ)dτ (2.6)

However, in numerical methods, the data is only defined on a finite amount of discrete
points xi. Therefore the signal will be written using polynomial interpolation as described in
[8]. For a given set of data points (xi, yi) there exist a polynomial of order n such that:

f(xi) = yi 0 ≤ i ≤ n (2.7)

This polynomial can be written in different forms, in Langrangian form:

f(x) =
N∑
i=0

f(xi)li(x) (2.8)

With the so-called Lagrange polynomials given as:

li(x) = ΠN
j=0,j 6=i

x− xj
xi − xj

(0 ≤ i ≤ N) (2.9)

Applying the convolution operation, 2.6, to the polynomial interpolation, 2.8, yields:

f̃(x) =

∫ x+ε

x−ε

[
N∑
i=0

f(xi)li(τ)

]
δm,kε (x− τ)dτ (2.10)

Expanding the summation gives:

f̃(x) =

∫ x+ε

x−ε
[f(x0)l0(τ) + f(x1)l1(τ) + ...+ f(xN)lN(τ)]δm,kε (x− τ)dτ (2.11)

This can be written as:

f̃(x) = f(x0)

∫ x+ε

x−ε
l0(τ)δm,kε (x− τ)dτ + f(x1)

∫ x+ε

x−ε
l1(τ)δm,kε (x− τ)dτ + ...

+f(xN)

∫ x+ε

x−ε
lN(τ)δm,kε (x− τ)dτ

(2.12)
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So, for some value of x the filtered version of f(x) can be written as an inner product
of two vectors, a vector containing the integral of the product of the ln polynomial and the
regularized delta function (which can be evaluated analytically) and a vector containing the
data points f(xi):

f̃(x) =

(
x+ε∫
x−ε

l0(τ)δ(x− τ)dτ
x+ε∫
x−ε

l1(τ)δ(x− τ)dτ ...
x+ε∫
x−ε

lN(τ)δ(x− τ)dτ

)
·


f(x0)

f(x1)

...

f(xN)


(2.13)

So, in general, the filtered vector can be written as a matrix vector multiplication of the
’filter matrix’ with the original vector:

 f̃(x0)

...

f̃(xN)

 =


∫ x0+ε
x0−ε l0(τ)δm,kε (x0 − τ)dτ ...

∫ x0+ε
x0−ε lN(τ)δm,kε (x0 − τ)dτ

... ... ...∫ xN+ε

xN−ε
l0(τ)δm,kε (xN − τ)dτ ...

∫ xN+ε

xN−ε
lN(τ)δm,kε (xN − τ)dτ


f(x0)

...

f(xN)


(2.14)

2.2 BOUNDARIES
In the filtering process, the discrete signal is written as a polynomial and is thus only a

good representation on the domain −1 < x < 1. When filtering over the domain this leads to
problems near the boundaries, since, in that case, the regularized delta function, δm,kε extends
out of the domain. To resolve this, the data is not filtered if the delta function extends out of
the domain. This means that:

if

xi − ε < −1 or xi + ε > 1 (2.15)

The value of f(xi) should be returned, i.e. f̃(xi) = f(xi), so the i-th row of the
filtermatrix should simply become a zero-row with a one at the i-th column, for instance for
x0:

f̃(x0) =
(

1 0 ... 0
)
·


f(x0)

f(x1)

...

f(xN)

 (2.16)
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2.3 CLENSHAW-CURTIS QUADRATURE

The general expression of the terms in the filtermatrix, 2.14, is as follows:

∫ xi+ε

xi−ε
ln(τ)δm,kε (xi − τ)dτ (2.17)

Analytical evaluation of these integrals is time-consuming and therefore an accurate
numerical method is preferred. For this purpose Clenshaw-Curtis quadrature will be used.

Clenshaw-Curtis quadrature are methods for numerical integration that are based on
an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ
a change of variables x = cos θ and use a discrete cosine transform (DCT) approximation for
the cosine series.

Briefly, the function f(x) to be integrated is evaluated at the N extrema or roots of a
Chebyshev polynomial (Chebyshev points) and these values are used to construct a
polynomial approximation for the function. This polynomial is then integrated exactly. In
practice, the integration weights for the value of the function at each node are precomputed.
In that case an integral can easily be computed as follows [1]:

∫ 1

−1
f(x)dx ≈

Q∑
q=0

wqf(xq) (2.18)

Applying this to the general expression of the term in the filtermatrix, 2.17, yields:

∫ xi−ε

xi−ε
ln(τ)δm,kε (xi − τ)dτ ≈

Q∑
q=0

wqln(xq)δ
m,k
ε (xi − xq) (2.19)

Substitution into the expression for the filtermatrix yields:

F =



Q∑
q=0

wql0(xq)δ(x0 − xq)
Q∑
q=0

wql1(xq)δ(x0 − xq) ...
Q∑
q=0

wqlN(xq)δ(x0 − xq)
Q∑
q=0

wql0(xq)δ(x1 − xq)
Q∑
q=0

wql1(xq)δ(x1 − xq) ...
Q∑
q=0

wqlN(xq)δ(x1 − xq)

... ... ... ...
Q∑
q=0

wql0(xq)δ(xN − xq)
Q∑
q=0

wql1(xq)δ(xN − xq) ...
Q∑
q=0

wqlN(xq)δ(xN − xq)


(2.20)
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In order to use the Clenshaw-Curtis quadrature as shown in the filtermatrix, a
Chebyshev subgrid has to be defined at every gridpoint xi. These subdomains are thus defined
as:

xi − ε < xq < xi + ε (2.21)

If we define the number of quadrature points as Q, then the subgrids become:

xq = xi − ε · cos

(
π · q
Q

)
, k = 0, 1, ..., Q (2.22)

If the cosine-series is known, Clenshaw-Curtis quadrature that evaluates the integrand
on Q points integrates polynomials exactly up to degree Q− 1. The regularized delta function
is a polynomial of order 2(m

2
+ k + 1):

δm,kε = P (2(m
2
+k+1)) (2.23)

The polynomials in the polynomial interpolation, 2.9 are of order N − 1:

ln = P (N−1) (2.24)

Therefore the terms in the filtermatrix, are polynomials of order:

lnδ
m,k
ε = P (2(m

2
+k+1)+N−1) (2.25)

So, the optimal number of quadrature points is:

Q = 2(
m

2
+ k + 1) +N (2.26)

The Clenshaw-Curtis weights wq are calculated using an existing algorithm which
uses fast Fourier transform (FFT). Since the weights are the same on the different subdomains,
as they are shifted in space, the weights only have to be calculated on a subgrid once.
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2.4 SPATIAL DISCRETIZATION
The spatial derivatives will be discretized using the so-called spectral method.

Spectral methods are commonly used in the discretization of spatial derivatives in PDE’s due
to the exponential convergence rate in the case of smooth functions [12]. In the following the
spectral collocation method will be briefly explained.

Spectral methods are based on a global approximation of the derivative, instead of a
local approximation as is the case for finite difference methods. Spectral methods can be
divided into Galerkin, Tau and Collocation methods. Of these methods, collocation methods
are the simplest when it comes to the treatment of non-linear terms. Typically Fourier spectral
methods are used in the case of periodic boundary conditions whereas polynomial spectral
methods are used for non-periodic boundary conditions [5]. The latter will be used in the
remainder of this report.

The collocation method is based on polynomial interpolation as used in section 2.1
and is repeated for convenience:

f(x) =
N∑
i=0

f(xi)li(x) (2.27)

With the so-called Lagrange polynomials given as:

li(x) = ΠN
j=0,j 6=i

x− xj
xi − xj

(0 ≤ i ≤ N) (2.28)

To determine the derivatives at the points xi, the derivative of the interpolating
polynomial is taken:

f(xi)
′ ≈

N∑
j=0

f(xj)lj(xi)
′ (2.29)

The derivatives of the Lagrange polynomials are commonly denoted as lj(xi)′ = Di,j .
The previous expression can be written as a matrix vector multiplication:

f ′ = Df +O(N−r) (2.30)

With D the so-called differentiation matrix and r a constant that depends on the order
of approximation and the smoothness of the solution.
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Spectral collocation methods usually don’t use uniform grids. Typically Chebyshev
points are used. Using these points minimizes the oscillatory behavior near the edges of the
interval known as the Runge phenomenon [12]. The Chebyshev points are defined as:

xi = −cos(iπ/N), i = 0, 1, ..., N (2.31)

From the above formula it follows that the points are more densely spaced near the
edges of the interval.

2.5 TIME INTEGRATION
For the time integration, the 4th order Runge-Kutta scheme will be used:

k1 = ∆tL(qn, tn)

k2 = ∆tL(qn −
1

2
k1, tn +

1

2
∆t)

k3 = ∆tL(qn −
1

2
k2, tn +

1

2
∆t)

k4 = ∆tL(qn − k3, tn + ∆t)

un+1 = un −
1

6
(k1 + 2k2 + 2k3 + k4)

(2.32)

In order to obtain stable results, the CFL condition has to be satisfied:

u∆t

∆x
≤ C (2.33)

Since a Chebyshev grid has non-equispaced grid points, ∆x is the minimum value
between two points. Because the points are closely spaced near the edges of the domain this
leads to a restriction of the allowable time-step that is smaller compared to an equispaced grid.
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CHAPTER 3

NUMERICAL RESULTS

3.1 NUMERICAL VARIABLES
In this chapter the solutions of the one-dimensional advection equation will be

presented in which the initial condition is filtered using the filtermatrix as defined in 2.20.
First the results for a top-hat initial condition will be shown, followed by the results for a
sinus with a discontinuity as initial condition. In the filtering process, the support width ε of
the delta function δm,kε has to be chosen.

In [11] the optimal scaling parameter for smoothing is derived in case the numerical
integration is done using a composite Newton-Cotes quadrature rule. Under the assumption
that m, k ≥ 2 and s ≤ min(m, k)− 1, in which s is the degree of exactness of the
Newton-Cotes quadrature rule, the optimal scaling parameter is given as:

ε = O

(Np−1∑
i=0

hs+2
i

)1/(m+s+3
 (3.1)

However, as we are using Clenshaw-Curtis quadrature in the smoothing process,
s > min(m, k)− 1 and the optimal scaling parameter can’t be used.

Therefore the optimal scaling parameter for delta-sequences will be used. This is
defined as:

ε = O(N−k/(m+k+2)) = q ·N−k/(m+k+2) (3.2)

The factor q is determined empirically such that the support width ε is sufficiently
wide to get stable converging results. The factor depends on the delta function variables m
and k. For our numerical tests the values used are summarized below:

N = 32N = 32N = 32 N = 64N = 64N = 64 N = 128N = 128N = 128 N = 256N = 256N = 256
m = 1, k = 5m = 1, k = 5m = 1, k = 5 q = 2.1 ε = 0.241 ε = 0.156 ε = 0.101 ε = 0.066
m = 3, k = 8m = 3, k = 8m = 3, k = 8 q = 2.4 ε = 0.284 ε = 0.186 ε = 0.121 ε = 0.079
m = 5, k = 8m = 5, k = 8m = 5, k = 8 q = 2.2 ε = 0.347 ε = 0.239 ε = 0.165 ε = 0.114
TimestepT imestepT imestep ∆t = 0.00001

Table 3.1: Variables used in numerical experiments
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3.2 1D ADVECTION EQUATION, TOP-HAT

The 1D advection equation with a top-hat initial condition on the domain −1 < x < 1

is defined as follows:

∂u

∂t
+

1

2

∂u

∂x
= 0

u(x, 0) = 0 x ≤ −0.25

= 1 − 0.25 < x < 0.25

= 0 x ≤ 0.25

u(−1, t) = 0

(3.3)

The analytical solution is given as:

u = u0(x− 1/2t) (3.4)

The initial condition will be filtered using the filter matrix, 2.14:

f̃0 = Ff0 (3.5)

After this, the filtering isn’t used again. Next, the partial differential equation will be
solved using the discretizations described in 2.30 and 2.32.
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3.2.1 Results, m = 1, k = 5

(a) (b)

Figure 3.1: Time evolving numerical solution (a) and error (b) for N = 256, m = 1, k = 5,
ε = 0.066

(a) (b)

Figure 3.2: Numerical solution (a) and error (b) at t = 1, for the four different grids for m = 1,
k = 5
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3.2.2 Results, m = 3, k = 8

(a) (b)

Figure 3.3: Time evolving numerical solution (a) and error (b) for N = 256, m = 3, k = 8,
ε = 0.079

(a) (b)

Figure 3.4: Numerical solution (a) and error (b) at t = 1, for the four different grids for m = 3,
k = 8
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3.2.3 Results, m = 5, k = 8

(a) (b)

Figure 3.5: Time evolving numerical solution (a) and error (b) for N = 256, m = 5, k = 8,
ε = 0.114

(a) (b)

Figure 3.6: Numerical solution (a) and error (b) at t = 1, for the four different grids for m = 5,
k = 8
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3.2.4 L2 error norm convergence
In order to check the convergence outside the area with the discontinuity, the L2 error

is determined at t = 1 on the domain −1 < x < −0.556 for the three different cases. The L2

error-norm (for the whole domain) is defined as:

L2 =

√√√√ 1

N

N∑
i=0

(ui,exact − ui,numerical)2 (3.6)

The results are shown in figure 3.7. For reference, lines are plotted to show the order
of convergence.

Figure 3.7: L2 error norm convergence results for −1 < x < −0.556, top-hat initial condition
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3.3 1D ADVECTION EQUATION, SINUS WITH
DISCONTINUITY

The 1D advection equation with a sinus with discontinuity as initial condition on the
domain −1 < x < 1 is defined as follows:

∂u

∂t
+
∂u

∂x
= 0

u(x, 0) = sin(πx)− 0.5 x ≤ −0.25

= sin(πx) + 0.5 x > −0.25

u(−1, t) = sin(π(−1− t))− 0.5

(3.7)

The analytical solution is given as:

u = u0(x− t) (3.8)

The initial condition will be filtered using the filter matrix, 2.20:

f̃0 = Ff0 (3.9)

After this, the filtering isn’t used again. Next, the partial differential equation will be
solved using the discretizations described in 2.30 and 2.32.
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3.3.1 Results, m = 1, k = 5

(a) (b)

Figure 3.8: Time evolving numerical solution (a) and error (b) for N = 256, m = 1, k = 5,
ε = 0.066

(a) (b)

Figure 3.9: Numerical solution (a) and error (b) at t = 1, for the four different grids for m = 1,
k = 5
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3.3.2 Results, m = 3, k = 8

(a) (b)

Figure 3.10: Time evolving numerical solution (a) and error (b) for N = 256, m = 3, k = 8,
ε = 0.079

(a) (b)

Figure 3.11: Numerical solution (a) and error (b) at t = 1, for the four different grids for
m = 3, k = 8



20

3.3.3 Results, m = 5, k = 8

(a) (b)

Figure 3.12: Time evolving numerical solution (a) and error (b) for N = 256, m = 5, k = 8,
ε = 0.114

(a) (b)

Figure 3.13: Numerical solution (a) and error (b) at t = 1, for the four different grids for
m = 5, k = 8
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3.3.4 L2 error norm convergence
In order to check the convergence outside the area with the discontinuity, the L2 error

is determined at t = 1 on the domain −1 < x < −0.556 for the three different cases. The L2

error-norm (for the whole domain) is defined as:

L2 =

√√√√ 1

N

N∑
i=0

(ui,exact − ui,numerical)2 (3.10)

The results are shown in figure 3.14. For reference, lines are plotted to show the order
of convergence.

Figure 3.14: L2 error norm convergence results for −1 < x < −0.556, sinus w. dicontinuity
initial condition
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3.4 CONCLUSIONS
In this section it is shown that high-order convergence away from the discontinuity can

be obtained when filtering discontinuous initial conditions using the filter-matrix.
For the case of the top-hat initial condition the influence of m on the results is less

clear. Higher values of m seem to show slightly better results, however give a slight over- and
undershoot near the discontinuity and require a wider support width to give stable converging
results.

In the case of the sinus with discontinuity, the influence of m is much more clear.
Since the regularized delta function is a (m+ 1)th order accurate delta sequence, the error
introduced on the smooth parts of the sinus are much lower for higher values of m. This can
best be seen at t = 0, which is the filtered initial condition. Since the top-hat consists of
straight lines, it does not show this behavior.

It can also be seen that the introduced error is advected and that a lower error enters
the domain at the left boundary condition. This is clearest for the case m = 1.
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CHAPTER 4

THEORETICAL FILTER-ERROR

4.1 SMOOTHING OF PIECEWISE FUNCTIONS

Given a function f , let fm,kε be the function defined by the convolution:

fm,kε = (f ∗ δm,kε )(x) =

∫ x+ε

x−ε
f(τ)δm,kε (x− τ)dτ (4.1)

Then in [11], it is proven that fm,k converges pointwise to f as ε→ 0. Furthermore it
is proven that:

fm,kε (x)− f(x) = O(εm+1) for a+ ε < x < b− ε (4.2)

We are interested if this convergence is retrieved when filtering a discontinuous signal
using the filter-matrix previously defined, equation (2.20).

4.2 CONVOLUTION
In the derivation of the filter-matrix, polynomial interpolation is used since the

solution is only known on a finite amount of points. To exclude the effect of the polynomial
interpolation, first the case of ’pure’ convolution is considered for a sinus with a discontinuity.
The signal is given by:

u(x) = sin(πx)− 0.5 x ≤ −0.25

= sin(πx) + 0.5 x > −0.25
(4.3)

The convolution applied to the signal u:

ũ(x) =

∫ x+ε

x−ε
u(τ)δm,kε (x− τ)dτ (4.4)

The results are plotted for m = 1/q = 2.1, m = 3/q = 2.4 and m = 5/q = 2.2.
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(a) (b)

Figure 4.1: Filtered signal (a) and error (b) for the four different grids, m = 1, k = 5, q = 2.1

(a) (b)

Figure 4.2: Filtered signal (a) and error (b) for the four different grids, m = 3, k = 8, q = 2.4
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(a) (b)

Figure 4.3: Filtered signal (a) and error (b) for the four different grids, m = 5, k = 8, q = 2.2

The L2 error results are shown below, for convenience the lines for the theoretical
error convergence and lines to indicate the slope are also plotted.

Figure 4.4: L2 error norm convergence results for 0.098 < x < 0.3827, sinus w. discontinuity

As can be seen from the plot, the error converges exactly according to the theory as
would be expected.
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4.3 POLYNOMIAL INTERPOLATION
In the following the polynomial interpolation of the sinus with discontinuity is plotted.

Since the filtermatrix basically applies the convolution to the polynomial interpolation of a
discrete signal, it is interesting to see the result of this operation. For convenience the
expressions for the polynomial interpolation are repeated, [8]:

f(x) =
N∑
i=0

f(xi)li(x) (4.5)

With

li(x) = ΠN
j=0,j 6=i

x− xj
xi − xj

(0 ≤ i ≤ N) (4.6)

The results are shown below.

(a) (b)

Figure 4.5: Polynomial interpolation (a) and error (b) for N = 256
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4.4 FILTERMATRIX
In the following the error convergence of the (discrete) sinus with discontinuity that is

filtered using the filtermatrix, equation (2.20), is considered. The filtered signal simply
follows from:

ũ = Fu (4.7)

Next, the results are shown for m = 1/q = 2.1, m = 3/q = 2.4 and m = 5/q = 2.2.

(a) (b)

Figure 4.6: Filtered signal (a) and error (b) for the four different grids, m = 1, k = 5, q = 2.1

(a) (b)

Figure 4.7: Filtered signal (a) and error (b) for the four different grids, m = 3, k = 8, q = 2.4
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(a) (b)

Figure 4.8: Filtered signal (a) and error (b) for the four different grids, m = 5, k = 8, q = 2.2

The L2 error results are shown below.

Figure 4.9: L2 error norm convergence results for 0.098 < x < 0.3827, sinus w. dicontinuity

From the plot it can be seen that the results are not in accordance with theory. Since
the results of section 4.2 were in accordance with theory, this must have to do with the
polynomial interpolation. Looking at figure 4.5 gives rise to the idea that this has to do with
the oscillatory behavior of the interpolation and that a wider support width ε may give better
results.
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4.5 FILTERMATRIX, WIDER SUPPORT

In the following the error convergence of the (discrete) sinus with discontinuity that is
filtered using the filtermatrix, equation (2.20), is again considered. However, the support
widths are increased.

Below, the results are shown for m = 1/q = 2.1, m = 3/q = 3.3 and m = 5/q = 3.4.

(a) (b)

Figure 4.10: Filtered signal (a) and error (b) for the four different grids, m = 1, k = 5, q = 2.1

(a) (b)

Figure 4.11: Filtered signal (a) and error (b) for the four different grids, m = 3, k = 8, q = 3.3
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(a) (b)

Figure 4.12: Filtered signal (a) and error (b) for the four different grids, m = 5, k = 8, q = 3.4

The L2 error results are shown below.

Figure 4.13: L2 error norm convergence results for 0.098 < x < 0.3827, sinus w. discontinuity

From this plot it follows that the error will eventually converge according to the
theoretical error, provided that the support width ε is sufficiently wide.
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4.6 1D ADVECTION EQUATION

In the 1D advection equation, the initial condition is simply advected with the
advection speed, which also follows from the exact solution:

u(x, t) = u0(x− t) (4.8)

In case the initial condition is filtered, as was done in chapter 3, the filtered initial
condition will be advected and so will be the error introduced by the filtering. Therefore,
intuitively, we expect to retrieve the theoretical filter error convergence, O(εm+1), in the
solution of the 1D advection equation as well. In the following this will be proven
mathematically.

If we define the linear operator L as:

L =
∂

∂t
+

∂

∂x
(4.9)

Then, the 1D advection equation for the unknown u can be written as:

L(u(x, t)) = 0 (4.10)

Convolution of this expression with the regularized delta function, δm,kε , yields:

∫ τ+ε

τ−ε
L(u(τ, t))δm,kε (τ − x)dτ = 0 (4.11)

Since L is a linear operator, Leibniz’s rule can be used to take L out of the integral:

L

(∫ τ+ε

τ−ε
u(τ, t)δm,kε (τ − x)dτ

)
= 0 (4.12)

The term inside brackets is the filtered version of u, which we will write as ũ:

L(ũ(x, t)) = 0 (4.13)
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Combining equation (4.10) and equation (4.13) gives:

L(u(x, t))− L(ũ(x, t)) = 0 (4.14)

L(u(x, t)− ũ(x, t)) = 0 (4.15)

L(errorfilter) = 0 (4.16)

So that the filter error indeed behaves similar to the the solution in the sense that it is
also advected. Therefore the error of the 1D advection equation in which the initial condition
is filtered will also converge as O(εm+1).

The foregoing is verified with an example. Consider the problem from section 3.3:

∂u

∂t
+
∂u

∂x
= 0 (4.17)

u(x, 0) = sin(πx)− 0.5 x ≤ 0 (4.18)

= sin(πx) + 0.5 x > 0 (4.19)

u(−1, t) = sin(π(−1− t))− 0.5 (4.20)

The initial condition will be filtered using the filtermatrix, equation (2.20). However
when using the filtermatrix, the areas near the boundaries of the domain aren’t filtered.
Furthermore the boundary condition isn’t filtered either so that a zero-error enters the domain.
This makes it impossible to retrieve the theoretical convergence.

To resolve this, the areas close to the boundaries will be filtered as if the initial
condition outside the boundaries were known. This is off coarse not the case in a practical
problem, so this is not possible in general. In these areas the filtered initial condition is given
as:

ũ(x, 0) =

∫ x+ε

x−ε
[sin(π(τ − 0))− 0.5]δm,kε (x− τ)dτ (4.21)

for − 1 < x < −1 + ε and 1 < x < 1− ε (4.22)
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The problem with the boundary condition is resolved by applying the convolution
operation to the boundary condition, yielding a ’filtered’ boundary condition:

ũ(−1, t) =

∫ −1+ε
−1−ε

[sin(π(τ − t))− 0.5]δm,kε (−1− τ)dτ (4.23)

These integrals can again be solved using Clenshaw-Curtis quadrature as was done
with the filtermatrix.

Using the aforementioned artificial ’tricks’, the 1D advection equation with a
discontinuous sinus as initial condition is solved again to see whether the theoretical filter
error is retrieved. The support widths are chosen the same as the ones in section 4.5. For
convenience the variables used are summarized below.

N = 32N = 32N = 32 N = 64N = 64N = 64 N = 128N = 128N = 128 N = 256N = 256N = 256
m = 1, k = 5m = 1, k = 5m = 1, k = 5 q = 2.1 ε = 0.241 ε = 0.156 ε = 0.101 ε = 0.066
m = 3, k = 8m = 3, k = 8m = 3, k = 8 q = 3.3 ε = 0.391 ε = 0.255 ε = 0.167 ε = 0.109
m = 5, k = 8m = 5, k = 8m = 5, k = 8 q = 3.4 ε = 0.535 ε = 0.370 ε = 0.256 ε = 0.177
TimestepT imestepT imestep ∆t = 0.00001

Table 4.1: Variables used in numerical experiments
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4.6.1 Results, m = 1, k = 5

(a) (b)

Figure 4.14: Time evolving numerical solution (a) and error (b) for, N = 256, m = 1, k = 5,
q = 2.1 and ε = 0.066

(a) (b)

Figure 4.15: Numerical solution (a) and error (b) for t = 1 for the four different grids, m = 1,
k = 5, q = 2.1
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4.6.2 Results, m = 3, k = 8

(a) (b)

Figure 4.16: Time evolving numerical solution (a) and error (b) for, N = 256, m = 3, k = 8,
q = 3.3 and ε = 0.109

(a) (b)

Figure 4.17: Numerical solution (a) and error (b) for t = 1 for the four different grids, m = 3,
k = 8, q = 3.3
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4.6.3 Results, m = 5, k = 8

(a) (b)

Figure 4.18: Time evolving numerical solution (a) and error (b) for, N = 256, m = 5, k = 8,
q = 3.4 and ε = 0.177

(a) (b)

Figure 4.19: Numerical solution (a) and error (b) for t = 1 for the four different grids, m = 5,
k = 8, q = 3.4
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4.6.4 L2 error norm convergence
In order to check the convergence outside the area with the discontinuity, the L2 error

is determined at t = 1 on the domain −1 < x < 0.2903 for the three different cases.
The L2 error results are shown below.

Figure 4.20: L2 error norm convergence results for −1 < x < 0.2903, sinus w. discontinuity

From the previous plot it follows that the theoretical error convergence O(εm+1) is
indeed retrieved as would be expected.

4.7 CONCLUSIONS
In section 4.2 it is shown that the error of a signal that is convoluted with the

regularized delta function, converges according to the theoretical filter error.
Then in section 4.3, section 4.4 and section 4.5 it is shown that this is also the case

when the polynomial interpolation of the signal is convoluted with the regularized delta
function, i.e. using the filter matrix with sufficiently wide support widths to suppress the
influence of the polynomial interpolation.

Finally, in section 4.6 it is proven that the 1D advection equation should also converge
according to the theoretical filter error. This is confirmed in an experiment with filtered
boundary conditions and wide support widths.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this present research, the high-order Dirac-delta function presented in [11] is used
to smoothen discontinuous initial conditions for the one-dimensional advection equation that
is solved using the spectral collocation method. The filtering is based on convolution of the
polynomial interpolation of the initial condition with the regularized Dirac-delta function.
This operation is written as a matrix vector multiplication using a so-called filter-matrix.

The one-dimensional advection equation is solved for two different filtered initial
conditions using different variables for the Dirac-delta function. High-order convergence is
found outside the regularization zone. Higher values of m give higher convergence especially
for the case of the sinus with discontinuity, however they require a wider support width to
yield stable converging results.

Finally, the error is compared with the theoretical error. It is shown that in the case of
a sufficiently wide support width and filtered boundary conditions, the theoretical value is
retrieved.

For future work it is suggested that the application of filtering based on the
convolution with the high-order Dirac-delta function on non-linear equations, for instance the
Burgers’ equation and the Euler equations of gasdynamics is investigated. Furthermore the
extension to higher dimensions should be considered as well.
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