
September 12, 2015

INTERNSHIP

DIRECT AEROACOUSTIC
SIMULATION USING COM-
PRESSIBLE FLOW SOLVER

Mark Böke, s0169617

Mechanical Engineering
Applied Mechanics

Supervisors:
Prof. T. Imamura, The University of Tokyo
Prof. A de Boer, Twente University

Title: Direct aeroacoustic simulation using compressible flow solver
Subtitle: Flow interactions of an airfoil and a cylinder

Period: 6 January 2014 - 11 April 2014
Name: Mark Böke
Student ID: s0169617
Master: Mechanical Engineering
Master track: Applied Mechanics

Supervisor University of Tokyo: Prof. T. Imamura, Associate Professor Aeronautics and Astronautics
Supervisor University of Twente: Prof.dr.ir. A de Boer, Professor Applied Mechanics

The University of Tokyo
Graduate School of Engineering
Department of Aeronautics and Astronautics
7-3-1 Hongo, Bunkyo-ku,Tokyo 113-8656, Japan
P: +81 3 3812 2111

University of Twente
Faculty of Engineering Technology
Chair of Applied Mechanics
PO Box 217
7500 AE Enschede, the Netherlands
P: +31 53 489 24 60

Page II

Abstract

During this study the interactions between a cylinder and an airfoil are studied. The presence of a cylin-
der decreases the flow speed at the bottom of the airfoil, creating more lift and less drag. Under higher
attack angles, however, the effect for the lift diminishes. The increase in lift is the biggest if the cylinder
is placed near the trailing edge, however this effect is small in comparison to the effects of the attack
angles.

With respect to acoustics, the cylinder acts as an acoustic source. The flow of the airfoil alters the
flow speed at the cylinder and thereby altering the shedding frequency. The airfoil acts as an acoustic
mirror for higher frequencies. This reflects the sounds coming from the cylinder back downward. This
effect is less present when the cylinder is placed near either edge of the airfoil. The effects at the bottom
of the airfoil is relatively small while on the upper side of the airfoil, the effects are influenced more. The
biggest reduction in downward sound radiation was depending on the angle of attack. The optimum
angle of attack was around 7 degrees.

A goal for the research group, with this program, was to create an easy to use software package which
can be used by people with minor experience with respect to flow simulations. The software indeed
did not need much work for the set-up of meshes and other tedious work that are often the case in
flow simulations. However, a certain level of knowledge is still needed. The user can model physically
impossible situations and use settings that create inaccurate measurements. The results will than be
unusable while an inexperienced user might feel it does.

A final mention is made of a near field effect. When the cylinder and airfoil are placed close to each
other, an anomaly occurred for low angles of attack. The lift drastically increased and the drag was
inaccurate as well. The effect could not be explained by physical means and might results from a faulty
set-up or errors caused from the internal calculations. A source of this problem was not found.

Page III

Preface

Between January 6, and April 11, 2014, I have been positioned at the Department of Aeronautics and
Astronautics at The University of Tokyo, Graduate school of Engineering, as a research student. Here I
was assigned to simulate the subsonic flow around a combination of geometries.

The internship is part of the master program of Mechanical Engineering at the University of Twente
in Enschede, the Netherlands. The first year of the master program consist of courses which are fo-
cused on Applied Mechanics. The second year of the master program consists of an internship which
takes about a quarter year, and a final Thesis project which will take three quarters of a year.

During this internship, I have been supervised by Prof. T. Imamura, who is the associate professor
at the Department of Aeronautics and Astronautics. While letting me free in my assignment, his feed-
back and ideas guided me towards the results I will present in this report for which i am grateful. Next to
the actual assignment, Prof. T. Imamura also gave me a small project to work on which could improve
the way the students at the department could work on their projects. This project has been received very
well and will be implemented in the software package of the department. This made me feel appreciated
and that i was doing something useful for the department as well. Thanks to Prof. K. Rinoie, Prof. T Ima-
mura and the Master students who where studying at the lab, I not only got to learn about the research
at the Department, but also got to see more of the Japanese culture and hospitality. I had a great ex-
perience and learned a lot at the Department of Aeronautics and Astronautics at the University of Tokyo.

I would also like to express my gratitude towards Dr. J. O. Entzinger for bringing me into contact with
Prof. T. Imamura. Furthermore, I would like to thank him for the arrangements he took in advance of my
arrival and during my stay in the form of documents, facilities and information about Japan. His efforts
made my stay in Tokyo a comfortable and enjoyable experience.

Page IV

Contents

1 Introduction 1
1.1 Aircraft Noise . 1
1.2 Gear Noise . 1

2 software packages 2
2.1 Flow Solver . 2
2.2 ParaView and Tecplot . 2
2.3 Data conversion . 3

3 model validation 4
3.1 Single cylinder . 4

3.1.1 Mesh size . 5
3.1.2 Field size . 6
3.1.3 Other configurations of the mesh . 6
3.1.4 Time step . 7
3.1.5 Number of sub-iterations . 7
3.1.6 Averaging . 7
3.1.7 Reynolds Number . 8

3.2 Airfoil . 8
3.2.1 Boundary condition . 8
3.2.2 Angle of attack . 9

4 Interaction between Cylinder and Airfoil 10
4.1 influence of Cylinder on Airfoil . 10
4.2 Influence of Airfoil on Cylinder . 12
4.3 location of the cylinder . 13

4.3.1 distance to the airfoil . 13
4.3.2 location in flow direction . 14
4.3.3 location of the cylinder in 2-D . 15
4.3.4 small gap artifacts . 15

4.4 cylinder size . 17

5 conclusion 20

Page V

List of Figures

2.1 Schematic overview of the conversion software . 3

3.1 Regimes of fluid flow across circular cylinders . 4
3.2 Mesh of the reference case . 5
3.3 Strouhal number and calculation time . 5
3.4 PSD at different mesh sizes . 5
3.5 PSD with and without acoustic mesh . 6
3.6 PSD with and with changed wake . 6
3.7 Strouhal as a function of the time-step size . 7
3.8 PSD with different sub-iterations . 7
3.9 Strouhal to Reynolds number . 8
3.10 Flow speed over the top boundary with Navier-Stokes . 8
3.11 Flow speed over the top boundary with Euler . 8
3.12 Regions over which the flow values are plotted . 9
3.13 Flow values at the front side of the airfoil . 9
3.14 Flow values at the rear side of the airfoil . 9

4.1 Mach number on the airfoil surface . 10
4.2 change to lift-curve with presence of the cylinder . 10
4.3 change to drag-curve (total and airfoil only) with presence of the cylinder 11
4.4 change to lift-curve with presence of the cylinder for Time Average and Transient Solutions 11
4.5 Strouhal Number in the presence of an airfoil . 12
4.6 Acoustic effects due to the airfoil . 12
4.7 Effects of distance between airfoil and cylinder . 13
4.8 Lift and Drag coefficients at distance 0.4 and 0.2 . 13
4.9 Lift and Drag coefficients at distance 0.4 . 14
4.10 SPD due to streamwise cylinder location . 14
4.11 Polar plot at first frequency due to streamwise cylinder location 15
4.12 Surface plot of Lift coefficient for multiple cylinder locations 15
4.13 Surface plot of Drag coefficient for multiple cylinder locations 16
4.14 deviation of lift coefficient . 16
4.15 Vorticity at time step 12000 for three different cases . 17
4.16 Time averaged Mach number . 17
4.17 Overview of the geometry for different cylinder sizes . 18
4.18 Drag coefficient of cylinder and the whole geometry for different cylinder sizes 18
4.19 Strouhal Number for different cylinder sizes . 19
4.20 First peak for the Power Spectrum Density measured in downward direction 19
4.21 Directive pattern for first peak frequency in the Power Spectrum Density diagram 19

Page VI

List of Tables

3.1 Parameters without acoustic refinement . 6
3.2 Parameters with changed wake . 6
3.3 Parameters with different sub-iterations . 7
3.4 Parameters different Reynolds numbers . 8
3.5 Table for comparing values with original paper . 9

Page VII

Chapter 1

Introduction

1.1 Aircraft Noise

After the second world war, in the fifties, the first commercial jet propelled airplanes came into ser-
vice1. These new engines where more reliable, faster and cheaper than piston engines which led to a
large growth in commercial air travel. It became cheaper to fly and the world became more reachable
for long distance travel. The downside of this innovation and the resulting large growth in civil aviation
is the growth in annoyance for people living close to airports due to to increased activity and noise levels.

Since the late sixties a lot of effort is put in the reduction of aircraft noise. The noise coming from
aircrafts can be categorized in three different types. These are the noise from the engine, the noise as
a result of aerodynamic interaction with the airframe and noises caused by the airplane systems. This
last type however is very small in comparison with the other two types of noise.

In the early years of the jet engines, a large portion of the noise was caused by these engines. Since
then a lot of development has been done. An example of this is the bypass engine which came into
service in the early seventies2. They where initially designed to reduce fuel usages but an reduction in
noise was also achieved. After this, more innovations and optimizations caused even more reduction in
engine noise. This resulted in the fact that the jet noise has now a comparable level as the noise caused
by the airframe in descending and landing conditions.2,3

Airframe noise is caused by detaching flow from the airplane and collapsing eddy’s. This effect is
the largest when the airplane is approaching the runway, landing and taking off2,3. This is due to the
fact that equipment like the landing gear and high lift devices are deployed.4 These devices have sharp
edges or have non aerodynamic optimized shapes. Therefore a lot of detaching flow is present.

1.2 Gear Noise

High lift device can be analyzed with relative ease with the use of scale models. For the landing gear
this is a lot harder. One reason for this is the fact that the landing gear is a complex system with mul-
tiple sized objects5. The wheels are large, while the carrying construction has a diameter of about an
order size difference, then there are the small systems and safety pins which are even smaller. These
different sized objects also cause noise at different frequencies. A scale model will leave out small part
of the construction and therefore also the noise at higher frequencies. Simulating the flow around the
landing gear is also difficult because of these small parts and large total dimensions. Therefore a lot of
acoustic research on landing gear is done in wind tunnels on full scale.

One of the main problems of this method is that the flow around the landing gear is influenced by
the presence of other objects nearby like the wing of the airplane. A full sized plane or wing structure is
very inconvenient and expensive for wind tunnel experiments because a very large wind-tunnel would
be needed. Different airplane parts are analyzed in different ways and therefore, these tests are not
combined. The influence of these parts on each other are not calculated but have to be estimated. This
report will focus on a simplified case of this influence from a nearby wing on landing gear aerodynamics
and visa versa. The goal of this report is to create more insight in these interactions.

Page 1

Chapter 2

software packages

2.1 Flow Solver

The flow solver that is used for the simulations for this report is a software package that is developed in
house at The university of Tokyo at the department of Aeronautics and Astronautics. The flow solver is
designed to make it easier to start a flow simulation, even if the user does not have much experience
with computational fluid dynamics. This flow solver does not only solve the flow problem, but also im-
plements the mesh. The user only needs to specify the boundary shape of an object and the minimum
cell size of the cells at the boundary. The generated grid is Cartesian and the maximum difference in
cell size of adjacent cells is four for a two-dimensional flow6. This results in an grid which is easy to
generate and that will not have large irregularities.

The flow solver can analyze flows with the both compressible Navier-Stokes equations, which are shown
in equation 2.1, or Euler equations which are the same equations but without the viscous terms. Both
sets of equations can be solved in both two and three dimensional cases. These governing equations
are discretized with the cell-centered finite volume method. The software package is still under devel-
opment and therefore the results can change a little bit from version to version. As a final remark, due
to the short nature of the assignment and to protect copyright no insight is provided in the underlying
programming, Numerical methods and used calculation step. More information about the software can
be found in the paper ”Unsteady flow simulation around cylinder under airfoil using Cartesian-based
flow solver”6.

δ

δt

∫∫∫
V

ρ dV +

∫∫
δV

ρ(~u− ~udV) · ~n dS = 0

δ

δt

∫∫∫
V

ρ~u dV +

∫∫
δV

(
ρ~u(~u− ~udV) + p ¯̄I − ¯̄τ

)
· ~n dS =

∫∫∫
V

ρ~f dV (2.1)

δ

δt

∫∫∫
V

ρE dV +

∫∫
δV

(ρE(~u− ~udV) + p~u− ¯̄τ · ~u+ ~q) · ~n dS =

∫∫∫
V

ρ~f · ~u+ Q̇ dV

The equations that will be used in the simulations are the Navier-Stokes equations. The cylinder will
have a boundary layer and stagnation in the wake. In these areas the viscous effects are important and
cannot be neglected. Therefore the Euler equations cannot be used. The simulations will be done in
two dimensions to simplify the problem as much as possible. Adding a third dimension to the problem
will not only make it more complex and harder to analyze, but will also add a lot of calculation time.
However, by doing this we assume that the flow is also acting two dimensional which might not always
be the case.

2.2 ParaView and Tecplot

The flow solver creates a couple of files which represent the flow state at certain time instances and
files with an average flow state over a certain time. These files mostly contain long lists of number with
values of variables at certain locations. These numbers alone do not give a deep understanding of
the situations and therefore visualization software is of use. The flow solver is not designed for visual
output and therefore, other software is required. At the department of Aeronautics and Astronautics at
the University of Tokyo, Tecplot is used for this visualization. This software however, is only available at
a few computers due to a limited number of licenses.

Other software that could be used, and sometimes already is used, is ParaView. This software is
available on the Internet for free and therefore gives the students more flexibility while analyzing their
data. The downside of using ParaView comes with the format of the output data from the flow solver.
ParaView cannot open the files that are used and therefore, a lot of work has to be done for every
analysis if a student wants to use ParaView.

Page 2

2.3 Data conversion

The conversion of the data from the flow solver to a format that ParaView can use was not yet available.
Therefore as a part of the assignment, a way to convert this data had to be found. To obtain an easy and
quick way to convert this data, a C++ program is written. The code is added to this report in appendix
A. In figure 2.1 a schematic overview of the workings of the program is given.

The conversion software converts the data into a VTK file format. This format is chosen for multiple
reasons. First of all, it is a file type that can be read by multiple software packages across multiple
platforms including ParaView. A second reason is because the files are written in ASCII which means
the file is readable as plain text and easier to handle. And last but not least, there were clear guidelines
available on the Internet how such files should be built up.

Figure 2.1: Schematic overview of the conversion software

As a first step, the program takes the data file and subtracts all important data from the header. This
information contains the names of the variables, and in what order they are stored. The size of each
sector is also defined in this section. After this, coordinates of mesh nodes are copied and reordered
into an array.

The next step is the most complicated because it converts the face oriented information in cell ori-
ented information. In the old file format, for every face two nodes are stored which suspend it, then
the elements on each side are listed. In the new file format, the nodes are stored directly with their
elements. By storing and sorting the nodes per element, halve of space needed for this data can be
saved. In the final step, the data of all cell variables are copied line by line. The converted data can not
only be red by ParaView, but also saves up to 25 percent in disc space per output file.

Two versions of the program are created, one version can convert one file at a time and will convert
any file that has the basic output format. The second version can convert all instantaneous result files
at once. The software is only available for two dimensional output files but adjusting it for a third di-
mension should by easy. The created program forms a convenient way for the students to view the
calculated data with less restrictions. The small time needed for the conversion and the reduction of
necessary disc space also shows that it could be useful to implement such an output feature in the flow
solver itself.

Page 3

Chapter 3

model validation

Before starting the simulations on the more complex configuration in which cylinder and an airfoil are
combined, both situations will be inspected independently. This is done to validate the model and the
assumptions that are made for this model. The reference case is based on the parameters that are
chosen in the paper ”Unsteady flow simulation around Cylinder under airfoil using Cartesian-based flow
solver”6, in which the same set-up is studied. Each parameter will be changed one by one, while the
rest of the parameters is kept as in the reference case.

3.1 Single cylinder

First a single cylinder case will be studied. The single cylinder case is a well studied case for which
much is known. An example of this is the shedding regiment and frequency and their dependency on
the Reynold number as seen in figure 3.1. This kind of knowledge makes it easier for the parameters
to be tested and configured. As an example, important parameters that need to be checked are for
example the size of the elements used and the size of the time-steps that are used. The solution should
be independent of these parameters while the calculation time should be kept short. In the following
paragraphs, each of these parameters will be covered with the single cylinder simulation.

With respect to the cylinder diameter, the Reynolds number will initially be set to 1 000. This is equal to
10 000 with respect to the airfoil. This Reynolds number is actually on the high side, but had to be used
because it is the same case in the paper on which the research is based. It can than also be used as a
reference case. The reason that the chosen Reynolds number is to high is because turbulence will be
present in the vortex street7, this will cause the vortexes to break down in three dimensions. This effect
is not taken into account in a two dimensional analysis. The used method is actually more applicable to
Reynolds numbers between 90 and 150 in which the flow is assumed to be fully laminar. The accuracy
of the two dimensional approximation will be tested. For the first approximation, the expected values for
the Strouhal number will be linearly interpolated from the lower Reynold number region.

Figure 3.1: Regimes of fluid flow across circular cylinders7

The basic situation that will be inspected has a mesh size of one hundredth of the cylinder diameter at
the cylinder face. There are 4 layers of equal cell sizes before the cells become courser. The cells in
the wake region are twice as course as the cells near the cylinder wall. An acoustic refinement field is
applied in which the cells are 32 times courser then those next to the cylinder. The mesh is shown in
figure 3.2. The total mesh size extends to 100 times the chord length of the airfoil. Therefore it is a 1000
times the cylinder diameter.

Page 4

Figure 3.2: Mesh of the reference case

3.1.1 Mesh size

When doing simulations, mesh size is an important part of the considerations that need to be made.
The smaller the elements you use, the closer your solution will be to the continuous solution. However
the downside of smaller elements is that more elements are needed to cover the same area and thus,
more time is needed for all the calculations. The number of elements needed will grow with the order
of the dimensions used in the simulation. In a two dimensional case, this means that when the mesh is
halve the size, 22 = 4 more elements are needed. This also implies that roughly 4 times more calcula-
tion time is needed. Therefore a good balance between mesh size and computational time needs to be
sought.

In figure 3.3, the Strouhal number is shown against the calculation time. For rough element sizes ,
which are on the left side of the image, it is clear to see that a refinement has a positive influence on
the estimation of the shedding frequency. For smaller meshes however, this effect diminishes while the
time needed for a simulation rapidly grows. In figure 3.4 the power spectrum density in the far field
is plotted. This power spectrum density is also calculated by the software delivered by the university
of Tokyo. Here, two phenomena are visible. The first one is the shift of the frequencies which is the
same effect as seen with the Strouhal number. The Strouhal number is directly connected to the first
frequency as this is the frequency of vortex shedding which defines the Strouhal number as shown in
equation 3.1. The vortex shedding frequency is defined as f , L is the characteristic length and U is the
speed of the far-field flow.

St =
fL

U
(3.1)

The shedding from vortexes from the cylinder is slower for a rougher mesh. The second phenomena
is the amount of visible frequencies. A rough mesh cannot contain high frequency waves because the
wavelength will be to short to be capture in few elements. As a rule of thumb, around 6 elements are
needed to describe the acoustic wave. In the case of 0.02*diameter, the acoustic mesh is 0.064. This
results in maximum a describable frequency of 2.6 Hz. A mesh that is to fine introduces a lot of noise
into the system. The reason for this is not clear.

Figure 3.3: Strouhal number and calculation time ∗ Figure 3.4: PSD at different mesh sizes

Page 5

3.1.2 Field size

The size of the computational domain is of importance because we want a uniform far-field flow. where
compressibility and reflection are no issues. Due to build up of the mesh, the cells in the far field are
quite large and therefore relatively ’cheap’. Any effects caused by a flow region that is to small should
therefore be prevented. In the analysis with a single cylinder, only small influences are noticed. However
the far field size should be 100 times the chord size by a rule of thumb.

3.1.3 Other configurations of the mesh

Next to the original mesh configuration, a couple of other configurations are tested. In the first case
the refinement box for the acoustic region is left out. The results are as expected. The cells on the
outer area are much courser which means that these cells cannot carry the higher frequency waves.
It does not change the near field flow however and therefore the forces on the cylinder and the lower
frequencies remain the same.

Reference
case

Without acoustic
refinement

Strouhal
number 0.2344 0.2327

Drag
coefficient 1.527 1.516

Lift
coefficient 0.009 0.007

Table 3.1: Parameters without acoustic refinement

Figure 3.5: PSD with and without acoustic mesh

The other alterations on the mesh are considering the wake region. For one case, the wake is not
refined. When the wake of the cylinder is not refined, the shedding of the vortexes is not properly sim-
ulated. This effect can be seen in the lower Strouhal number and the frequency shift in table 3.2 and
figure 3.6.

For the final case, an extra refinement region for the wake is added in which the vortexes move along
with the flow. The results from this analysis show that this extra refinement has no positive or negative
effect on the frequency peaks and the drag coefficient. However, an artifact at the end of this wake
region creates more background noise. Therefore, and for the fact that the computational time is higher,
no extra wake region will be implemented.

Reference
case

Without
wake

With extra
wake

Strouhal
number 0.2344 0.2176 0.2341

Drag
coefficient 1.527 1.510 1.526

Lift
coefficient 0.009 -0.005 0.009

Table 3.2: Parameters with changed wake

Figure 3.6: PSD with and with changed wake

∗The case with finest element size 0.0005 had twice the threads for calculating

Page 6

3.1.4 Time step

The size of the time steps is import for simulation time dependent data. If the time step is to course,
data can be lost. However for simulating the same length of time, the total number of steps needs to
increase. The total simulation time is therefore inverse linearly related to the time step. In figure 3.7, the
Strouhal number is plotted against the inverse of the time step. Decreasing the step size by half and
thus increasing the necessary calculation time by two will only result in a two percent increase in the
Strouhal number Therefore, the time-step is chosen to be 0.01. The number of iterations needed follows
from this number, the amount of time steps it takes to converge to a repetitive signal and the amount of
iterations needed for averaging.

Figure 3.7: Strouhal as a function of the time-step size

3.1.5 Number of sub-iterations

The number of sub-iterations are the number of iterations done before moving on to the next time step.
The number of sub-iterations needed is depending on how quick a result converges to the real value.
The more sub-iterations are used, the more time it will take per time-step en therefore the more time it
will take to finish the simulation. As seen in table 3.3 and figure 3.8 In the case of one and five sub-
iterations, the Strouhal number is effected by the small number of sub-iterations. For the case of 10 and
20 sub-iterations, both result in almost the same PSD. Therefore the only 10 sub-iterations will be used.

Number of
Sub-iterations 1 5 10 20

Strouhal
number 0.0879 0.2183 0.2344 0.2342

Drag
coefficient 1.549 1.532 1.527 1.530

Lift
coefficient -0.146 0.062 0.009 -0.005

Table 3.3: Parameters with different sub-iterations

Figure 3.8: PSD with different sub-iterations

3.1.6 Averaging

For the averaging, a large enough time frame needs to be chosen to make a correct average. For
example, when an average is made of 1.5 waves, the starting point influences the value of the average.
This can add op to more then 20 percent of the amplitude of vibration. Typically, with at least 12
wavelengths of data, this influence will be smaller then 2.5 percent. This means that with a shedding of
at least 0.4 Hz, 3000 iterations are needed for a good average.

Page 7

3.1.7 Reynolds Number

As mentioned at the beginning of this chapter, the flow regiment for which this situation is valid has a
Reynolds number between 90 and 150. The results above are all obtained at a Reynolds number of
1000. Therefore only the amount of change due to refinement in the Strouhal number, drag and lift
coefficients are checked and not if they converge to the expected value. In this last paragraph, the
case with the found parameters is used for different Reynolds numbers. For the cases with a smaller
Reynolds number, the values can be checked if they are close to known values.

Reynolds
number 100 150 300 600 1000

Strouhal
number 0.1648 0.1844 0.2105 0.2275 0.2344

Drag
coefficient 1.353 1.345 1.397 1.458 1.527

Lift
coefficient -0.001 0.001 0.000 0.000 0.009

Table 3.4: Parameters different Reynolds numbers

Figure 3.9: Strouhal to Reynolds number

3.2 Airfoil

In this chapter the single airfoil case is studied. This done with two reasons. First of all, a simplification
is done on the boundary in which a slip boundary condition is implied. It should be tested if there is
a difference between the Navier-Stokes calculations, which are done for this simulation, and the Euler
equations which are used for inviscid flows. Due to the non viscosity, these equations normally need
the non slip boundary condition. The second reason is to verify the findings with the paper Unsteady
flow simulation around cylinder under airfoil using Cartesian-based flow solverCartesianFlowSolve. In
this paper the same software is used to look at a similar situation. Therefore the results should also
approximately be the same.

3.2.1 Boundary condition

As said before, the boundary condition that is applied to the airfoil is a slip boundary condition. It is
verified if the Navier-Stokes and the Euler equations give approximately the same results. The difference
in these methods doesn’t lie in the fact that the normally applied boundary condition is different, but
comes from the fact that the Euler equations govern the inviscid flows while Navier-Stokes takes this
viscosity into account. Therefore at a slip boundary on a thin object in a flow, the influence of the
calculation method should be small. In the figures 3.10 and 3.11, the flow speed in X-direction is shown
for the Navier-Stokes and Euler cases respectively. Incoming flow has angle of 4 degrees. The

Figure 3.10: Flow speed over the top boundary with Navier-Stokes

Figure 3.11: Flow speed over the top boundary with Euler

Page 8

difference is visible in these plots but the effect is very small. Plots are made to get a closer look at the
flow variables near the edge. In figure 3.12 the regions over which is plotted are shown. The result in
figures 3.13 and 3.14 show that there are only minor differences between the two calculation methods.

Figure 3.12: Regions over which the flow values are plotted

Figure 3.13: Flow values at the front side of the air-
foil

Figure 3.14: Flow values at the rear side of the air-
foil

3.2.2 Angle of attack

In this section, the same cases as in the paper Unsteady flow simulation around cylinder under airfoil
using Cartesian-based flow solver are solved. This is done for the cases with alpha 0 and 4. As shown
in table 3.5, the cases for the single airfoil are approximately the same.

Drag Lift
Angle 0 Angle 4 Angle 0 Angle 4

Reference Paper 0.009 0.018 0.000 0.476
Current simulations 0.008 0.016 0.000 0.471

Table 3.5: Table for comparing values with original paper

Page 9

Chapter 4

Interaction between Cylinder and
Airfoil

In this chapter, the interaction between the cylinder and the airfoil will be studied. It is assumed that the
cylinder partially obstructs the flow, thus slowing it down at the lower side of the airfoil. It is assumed
that this will influence the lift coefficient of the airfoil. The influence of the airfoil on the cylinder is also
assumed to be mainly a flow speed difference. The flow speed is shown to be of a large influence on the
acoustic power of the shedding noise8. furthermore, this change in flow speed could possibly influence
the shedding frequency of the cylinder and thereby change the frequency of tonal sound measured. At
last but not least, the airfoil acts as a barrier which might deflect the noise, coming from the cylinder
back downward. In the next section, these assumptions will be verified. Furthermore, alterations to the
set up will be made to investigate the influence of these changes.

4.1 influence of Cylinder on Airfoil

As mentioned in the introduction of this chapter, it is assumed that the presence of the cylinder will
cause the flow at the bottom side of airfoil to slow down. This on its turn, increasing the pressure on
the bottom side of the airfoil and thereby causes an increase in lift. This assumption appears to be true
for a small angle of attack and is visible in the images 4.1 and 4.2. The lift coefficient is increased from
0 to 0.089. For a little larger angles of attack the increase in lift due to the presence of the cylinder

Figure 4.1: Mach number on the airfoil surface

Figure 4.2: change to lift-curve with presence of the cylinder

Page 10

is slightly decreasing. At even larger angle of attacks (larger than 12 degrees) the lift of the airfoil
decreases due to the presence of the cylinder. The point of most lift decreases both in hight and angle
of attack due to cylinder presence. For high angles of attack, the drag of the airfoil is reduced by the
presence of the cylinder. This is due to the fact that for higher angles of attack, the airfoil moves toward
the wake of the cylinder.

For smaller angles attack, the drag on the airfoil also increases, while for larger angles of attack
the drag on the airfoil decreases, as can be seen from image 4.3. From this fact, and from what we
seen in the lift curve, we could conclude that for small angles of attack, the local angle of attack on
the airfoil is increased. For larger angles of attack, the airfoil will have less drag and lift from the flow,
because the airfoil will move into the wake of the cylinder. Next to the change in the airfoil flow, the
cylinder introduces a lot of drag of its own to the system. Introducing a cylinder would therefore not
improve flight conditions of an airfoil.

Figure 4.3: change to drag-curve (total and airfoil only) with presence of the cylinder

An important thing to mention is the following. Under the conditions at which the airframe is spectacled,
a steady solution gives the same result as a transient solution because the flow around the airfoil is
steady. When the cylinder is introduced, the flow field around the airfoil changes. The airfoil will not
only be subjected to another flow field, but the flow field will also be transient and therefore cannot
be analyzed with the steady analysis. From the result in figure 4.4 we can see that the assumtion
U(t)=U(0)+U’ does not imply that a steady solution could be used because U’ does have influence on
the drag and lift coefficient. It should be kept in mind that even though the assumptions made for an
easy case apply well, the situation might change when other factors are applied like an extra geometry.

Figure 4.4: change to lift-curve with presence of the cylinder for Time Average and Transient Solutions

Page 11

4.2 Influence of Airfoil on Cylinder

It was assumed that the influence of the airfoil on the cylinder is both aerodynamically and acoustic. The
presence of the airfoil will probably influence the flow field which lead to different drag and lift coefficients
as well as a different shedding frequency. For low angles of attack the drag on the cylinder increases,
the flow speed on the side of the airfoil increases. Therefore the drag on the cylinder will be larger. For
larger angle of attacks. The stagnation region of the airfoil will move to the bottom side of the airfoil. The
cylinder will therefore have to coop with a smaller flow speed which will cause the drag on the cylinder to
decrease. Because the flow along the airfoil is deflected a little, the local incoming flow on the cylinder
will be directed downward a little. This causes a negative lift coefficient in global coordinates.

Figure 4.5: Strouhal Number in the presence of an airfoil

The Strouhal number is also a little bit higher at low angles of attack and lower at higher angles of
attack. This is also caused by the fact that the incoming flow is disturbed by the airfoil. The Strouhal
number is scaled with the flow speed of the far field. However, due to airfoil the local speed is a little
increased for small angles of attack and decreased for large angles of attack. This will cause other
shedding frequencies.

Figure 4.6: Acoustic effects due to the airfoil

In the power spectrum it is clearly visible that for low angles of attack, the frequencies are higher than
for higher angles of attack. For the lowest angles, this frequency is higher than without an airfoil. For
the higher angles, this frequency is lower than than the case without an airfoil. For the small angles of
attack, the peak, and thus the sound level is higher. In the polar plot, it if clearly visible that the airfoil
not only changes the amount of sound generated, but also the directivity. On the top side of the airfoil,
the sound is blocked by the frame and is therefore smaller than the single cylinder case. On the bottom
side of the airfoil, the noise increases due to reflection of the sound on the airfoil.

Page 12

4.3 location of the cylinder

In the paper ”Unsteady flow simulation around Cylinder under airfoil using Cartesian-based flow solver”6

it was shown that the location on of the cylinder was important for the strength of the effect with which the
two geometries influence each others flow-field. This is logical because a flow is more disturbed closer
to an object, and therefore the disturbance felt by the other geometry is also larger when it is closer
to the object. In the paper ”Unsteady flow simulation around Cylinder under airfoil using Cartesian-
based flow solver” only two points are compared at different distances from the center of the airfoil. In
this chapter, more values for the distance are checked. After that the influence of the cylinder location
along the length of the airfoil is checked and finally a grid of locations is made to see the differences in
the influence in the full area. After this, the size ratio between the airfoil and the cylinder will also be
inspected.

4.3.1 distance to the airfoil

When the cylinder gets closer to the airfoil, the effects due to its presence increase. This means that for
low angles of attack, the lift increases while for higher angles of attack, the lift decreases. The drag also
increases a little bit further. When getting to close to the airfoil however, these effects tend to get out of
hand and are non realistic.

Figure 4.7: Effects of distance between airfoil and cylinder

In figure 4.7 it is visible that for distances larger than 0.3c the effects on the drag and lift are almost
linearly increasing. If the distance gets smaller the effects are not linear and predictable anymore. In
figure 4.8 we can see that for distances smaller than 0.3 the lift curve makes a jump in lower angles
of attack while for high angles of attack the results return to normal. It can be concluded that for low
angles of attack and small gap sizes, a strange anomaly occurs. For both higher angles of attack and
larger gap sizes this does not occur and the results look normal. These effects will be explained in the
paragraph ’small gap artifacts’ (paragraph 4.3.4).

Figure 4.8: Lift and Drag coefficients at distance 0.4 and 0.2

Page 13

4.3.2 location in flow direction

When the cylinder is placed at different locations along the length of the airfoil, different lift and drag
coefficients are found. The location in this direction is therefore also inportant. As can be seen in image
4.9. The drag is highest when the cylinder is placed in the middle of the airfoil and is smaller when the
cylinder is placed towards one of the edges of the airfoil. For larger angles of attack, the placement of
the cylinder where the maximum drag occurs shifts backward. The least drag will then occur when the
cylinder is placed near the leading edge. For the lift, a maximum is found near the trailing edge. For
larger angles of attack this effects are still there, although the effect will be small compared to the effect
induced by the angle of attack.

Figure 4.9: Lift and Drag coefficients at distance 0.4

In the downward direction, the acoustic power caused by the flow around the cylinder is largest when
the cylinder is placed at 0.3 chord length from the leading edge. This is possible due to the fact that
more sound is reflected by the airfoil, and the direction in which the sound is reflected is downward as
well. The effects however are relatively small and therefore hard to see in in figure 4.10. When the
cylinder is near one of the edges, more waves can go upward and the reflection by the airfoil is more
horizontally oriented. At a low angle of attack, the frequency of the sound is higher when the cylinder
is near the trailing edge. When the angle of attack increases, the lower frequency is on both edges.
On the upper side of the airfoil, a region with low sound levels is present. This might be caused by the
fact that the airfoil is directly in the way of the sound waves. Those sound waves that are then traveling
around both edges arrive in opposing phase at the measuring point, causing destructive interference.

Figure 4.10: SPD due to streamwise cylinder location

Page 14

Figure 4.11: Polar plot at first frequency due to streamwise cylinder location

4.3.3 location of the cylinder in 2-D

When varying both the distance to the airfoil and the stream-wise location of the cylinder, a grid can be
created to show a landscape diagram of the lift and drag on the combined geometry. Far away from
the airfoil, this landscapes looks like a neat curved plane. When getting closer to the airfoil however,
the landscapes starts to become rough and inconsistent, some of the effects occurring also seem the
be counter intuitive. In image 4.12 for example, the lift coefficient drastically increases for a distance of
0.2c under the thicker part of the airfoil. For distances over 0.3c the results look more like a surface.
This also looks to be the case for smaller distances when the cylinder gets closer to the trailing edge.

Figure 4.12: Surface plot of Lift coefficient for multiple cylinder locations

In figure 4.13, we can see that in the same locations, and thus in the same simulations, the drag
coefficient of the total geometry drops. The effects that are mentioned will be further analyzed in the
paragraph ”small gap artifacts”. If we ignore these result for now, the conclusion would be that the best
lift and drag coefficients are found if the cylinder is placed near the edges of the airfoil, and mainly the
trailing edge in small proximity to the airfoil.

4.3.4 small gap artifacts

Earlier in this paper, it is mentioned that for small gaps between the airfoil and the cylinder, under a small
angle of attack, the results of the drag and lift coefficients change drastically in comparison to the results

Page 15

Figure 4.13: Surface plot of Drag coefficient for multiple cylinder locations

of other analysis. The drag differs largely from place to place and increases a lot and the lift increases
substantial. Next to these huge changes in the forces on the geometry, a lot of broad spectrum noise is
measured and visible in the PSD plots. To see why the forces on the geometry differ so much, the time
dependent forces are inspected relative to an estimated average. The estimated average is based on
figure 4.8 in which the low lift coefficients are assumed to be linear depending on the angle of attack. In
figure 4.14 the deviation of the lift in four cases are shown. The first two cases are either with a large
gap size, or a large angle of attack. These cases have a structured wave around their average value.
For an angle of 0 degrees, the lift deviation does not look as wave like as the other two simulations do
further more, the whole signal lies above the estimated average. For an angle of attack of 3 degrees,
the signal first appears to be stable around the estimated average before the lift also increases. As a
side note it could be mentioned that, although the two latter cases are compared with estimated values,
the start up effects look similar to the stable cases. This is not the case if the average lift is used that is
plotted in 4.8. This implies that at the start, the solution tries to converge to the estimated value before
it destabilizes.

Figure 4.14: deviation of lift coefficient

The oscillations in the lift coefficient and the frequencies visible in the PSD are connected to the vortex
shedding from the cylinder. Therefore, the wake region and the shredded vortexes are further inspected.
The vortexes are visualized with the vorticity at time step 12000 in figure 4.15. The three cases from
top to bottom are at a distance 0.4 chord lengths and angle 0 degrees, at a distance 0.2 chord lengths
and angle 0 degrees and at distance 0.2 chord lengths and angle 9 degrees. It is clearly visible that in

Page 16

the top and bottom cases, alternating vortexes are created which then start to form two shear layers. In
the middle case, which is the case for a small gap and a small angle of attack, the vortexes shed and
fall apart in a more chaotic way.

Figure 4.15: Vorticity at time step 12000 for three different cases

The time averaged Mach number around the geometry is plotted in figure 4.16. From left to right, these
are again the cases for a distance 0.4 chord lengths and angle 0 degrees, a distance 0.2 chord lengths
and angle 0 degrees and a distance 0.2 chord lengths and angle 9 degrees. The middle case does
again differ from the other two in a way that under the airfoil trailing edge, a stagnation region exists
in which the flow speed drops close to 0 Mach. There could not be found any explanation for this
phenomena. From the papers about a flow around a cylinder near a plane9,10, it could be said that an
coupling between the boundary layer on the airfoil and the shedding of the cylinder exists. The ratio
of the gap size over cylinder size would then be of influence for the shedding regiment. The effects
mentioned in these papers do however involve the boundary layer on the plane, which is absent on to
airfoil for the implied boundary conditions.

Figure 4.16: Time averaged Mach number

To see if the boundary on the airfoil is of influence on this effect the boundary condition is changed to a
non-slip boundary. The mesh size on the wall is also changed to the 0.001c from 0.004c.

4.4 cylinder size

As part of the research, the size of the cylinder is changed at a distance of 0.4 cord lengths from
the midpoint of the airfoil. The range of diameters that is tested lies between 0.05c and 0.15c with a
change in the diameter 0.01c per simulation. In this paragraph, the results for the larger cylinder sizes
are shown in red and the smaller cylinder sizes are depicted in blue. The variations in the geometry are
shown in image 4.17.
Changing the size of the cylinder has multiple effects on the results. First of all, the frontal area of the
cylinder changes in size and thus, the drag of the cylinder changes which on its turn, influences the
total drag coefficient. This change in drag coefficient is mainly caused by the cylinder drag and the drag
of the airfoils remains unchanged. It could be assumed that the cylinder size has almost no influence

Page 17

Figure 4.17: Overview of the geometry for different cylinder sizes

on the drag of the airfoil, or at least not at this distance.

Figure 4.18: Drag coefficient of cylinder and the whole geometry for different cylinder sizes

The second effect that is noticed is a large change in the shedding frequency. As we can see in
image 4.19, the changes in the Strouhal number are only minor. The shedding frequency is therefore
depending on the free stream flow speed which remains unchanged and the diameter of the cylinder.
In figure 4.20 this change is also visible. It is clearly visible that the change in frequency is quite
substantial with this change. Next to the change in frequency, a change in amplitude can be seen as
well. First the amplitude grows with smaller cylinder size before it starts to drop. The cause of this is
best visualized in the directive plot for the first peaks in the PSD. With a higher frequency, the acoustic
power drops and the area in the diagram gets smaller. Higher frequencies however are better reflected
by the airfoil These two effects have an opposing effect and therefore cancel out each other. Therefore
the downward measured sound level does not drop as fast or even rise when compared with the upper
side of the airfoil.

Page 18

Figure 4.19: Strouhal Number for different cylinder sizes

Figure 4.20: First peak for the Power Spectrum Density measured in downward direction

Figure 4.21: Directive pattern for first peak frequency in the Power Spectrum Density diagram

Page 19

Chapter 5

conclusion

The goal of this report was to create more insight in the interaction between the landing gear and a
wing. This case is greatly simplified for the sake of computation time and simplicity of the problem. The
study is done in a two dimensions, the landing gear is replaced by a circle to represent a wheel and
the wing is replaced by a symmetrical airfoil. For this simplified case, the validation was derived from
known simple cases like the separate cases of the cylinder and the airfoil. From these simulations a set
up could be derived witch could correctly calculate the solution for this problem. The 2D assumption
for a Reynolds number of 10 000 is not fully correct and the result might therefore differ from a real live
scenario. This is due to the fact that in natural conditions three dimensional turbulence would occur.
This implies that the actual shedding frequency is lower than the one shown in the simulations.

First a lift curve was constructed for the airfoil an for the case where the cylinder was placed at
a distance of 0.4 chord-lengths from the airfoil center. A small increase for the lift was noticed on small
angles of attack, a drop in lift was noticed for larger angles of attack. The case where the cylinder was
placed at a distance of 0.2 chord lengths for the airfoil center showed a larger increase in lift was visible
for small angles of attack and a bigger decrease for high angles of attack. When the angle of attack
was to low however, a jump and irregularity in the lift was found for this case. These solutions seem to
be incorrect. The same effect was visible for other locations of the cylinder where the distance between
cylinder and airfoil was small.

For the location of the cylinder minor changes can be seen in the lift and drag coefficients. The
change in acoustic spectrum is better visible because small changes in the flow speed will have a more
noticeable influence on the frequency and magnitude of the sound that is generated. Next to that, the
sound profile is influenced by airfoil by blocking and reflecting the sound waves. The relative location of
the airfoil to the cylinder is therefore of importance.

When the size of the cylinder is changed, the influence on the flow changes, but a lot more will
the sound profile be changed. Again the frequency and magnitude of the sound are changed. However,
the amplitude changes enough to let the sound be reflected downward better and a lot less power of
the sound reaches the top side of the wing.

Page 20

References

[1] R. G. Psuhkar, “Comet’s tale,” Smithsonian Magazine, 2002 June 2002.

[2] D. P. Lockard, “The airframe noise reduction challenge,”

[3] W. Dobrzynski, “Almost 40 years of airframe noise research: What did we achieve,”

[4] S. M.J.T., Aircraft Noise.

[5] Y. P. Guo, “Experimental study on aircraft landing gear noise,”

[6] T. Imamura and Y. Takahashi, “Unsteady flow simulation around cylinder under airfoil using
cartesian-based flow solver,”

[7] J. H. Lienhard, “Synopsis of lift, drag and vortex frequency data for rigid circular cylinders,” 1966.

[8] T. N. Krasil’nikova, “Dipole nature of sound radiation by free turbulance,”

[9] P. W. Bearman, “Flow around a circular cylinder nenar a plane boundary,”

[10] S. J. Price, “Flow visualization around a circular cylinder near to a plane wall,”

Page 21

1C:\Users\Mark\Desktop\Internship\...\VtkConverterSingleFile\VtkConverterSingleFile.cpp

/*File te translate flow-data files to vtk format (Legacy format)
Made by Mark Böke*/

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <sstream>

using namespace std;

int main()
{
 string filename;
 string newfilename;
 //open a file of the users choise; will normaly be .plt or .dat format
 cout<<"Please input the name and extension of the file you wish to convert \n";
 cout<<"if the file is not in the same folder, type whole adress \n";
 cin>>filename;
 cout<<"\n";

 size_t length=filename.find_last_of("."); //find the extension
 newfilename=filename.substr(0,length); //remove extension from the name
 newfilename.append(".vtk"); //add new extension
 cout << "\nNew file will be called: " << newfilename << "\n \n";

 ifstream oldfile (filename); //open the choosen file
 if (oldfile.is_open())
 {
 //Global variables
 int nNodes (0); //number of nodes
 int nFaces (0); //number of faces
 int nElements (0); //number of elements
 int nVariables (0); //number of variables
 int nData (4); //number of data that needs to be required before

moving on
 std::vector<string> variableNames; //list of names of variables
 std::string fileLine; //string used
 int posNodeData (0); //position of the first nodal data (X,Y) used for

intiation of data copying
 int posElementData (1); //position of the first elemental data (Rho, U, V,

 P, Cp, Mach, aux) used for intiation of data copying
 int nCellPoints (0); //counts the total number of nodes in all cells

together; most nodes therefore are multiple times counted; used in vtk datatype

 //Read Overall data (Number of Nodes,Elements,Faces,Variables and Names of Variables)
 while (oldfile.good()) //this means if no flag occurs
 {
 std::string searchQueryN ("Nodes="); //search querry used to find the data about the

number of nodes, this is case sensitive
 std::string searchQueryF ("Faces="); //search querry used to find the data about the

number of faces, this is case sensitive
 std::string searchQueryE ("Elements="); //search querry used to find the data about the

number of elements, this is case sensitive
 std::string searchQueryV ("VARIABLES="); //search querry used to find the data about the

amount and names of the variables, this is case sensitive

 std::size_t strtSelect; //local help parameter for cutting text
 std::size_t endSelect; //local help parameter for cutting text
 getline(oldfile,fileLine);

 strtSelect=fileLine.find(searchQueryN); //searches for "Nodes="
 if (strtSelect!=std::string::npos) //if the search statement did not return the end

of line position
 {
 strtSelect+=searchQueryN.length(); //puts the begin marker

after the searchquerry
 endSelect=fileLine.find(",",strtSelect); //finds the delimiter and

puts the end marker there
 string alfa=fileLine.substr(strtSelect,endSelect-strtSelect); //copy's the number from

the file as text
 nNodes=atoi(alfa.c_str()); //conversion of the text

2C:\Users\Mark\Desktop\Internship\...\VtkConverterSingleFile\VtkConverterSingleFile.cpp

into an integer
 nData--; //one less datatype to

find
 }

 strtSelect=fileLine.find(searchQueryF); //searches for "Faces="
 if (strtSelect!=std::string::npos) //if the search statement did not return the end

of line position
 {
 strtSelect+=searchQueryF.length(); //puts the begin marker

after the searchquerry
 endSelect=fileLine.find(",",strtSelect); //finds the delimiter and

puts the end marker there
 string alfa=fileLine.substr(strtSelect,endSelect-strtSelect); //copy's the number from

the file as text
 nFaces=atoi(alfa.c_str()); //conversion of the text

into an integer
 nData--; //one less datatype to

find
 }

 strtSelect=fileLine.find(searchQueryE); //searches for "Elements="
 if (strtSelect!=std::string::npos) //if the search statement did not return the end

of line position
 {
 strtSelect+=searchQueryE.length(); //puts the begin marker

after the searchquerry
 endSelect=fileLine.find(",",strtSelect); //finds the delimiter and

puts the end marker there
 string alfa=fileLine.substr(strtSelect,endSelect-strtSelect); //copy's the number from

the file as text
 nElements=atoi(alfa.c_str()); //conversion of the text

into an integer
 nData--; //one less datatype to

find
 }

 strtSelect=fileLine.find(searchQueryV); //searches for "Variables="
 if (strtSelect!=std::string::npos) //if the search statement did not return the end

of line position
 {
 endSelect=strtSelect; //puts

 endSelect at the start of the Variables area for the following alternating search querry
 while(endSelect<fileLine.length()&&strtSelect<fileLine.length()) //as

long as the two markers are within the length of the line
 {
 strtSelect=fileLine.find("\"",endSelect+1)+1; //find

 the first next "-sign and put the begin marker here
 endSelect=fileLine.find("\"",strtSelect+1); //

finds the first next "-sign and put the end marker here
 if(endSelect>0&&strtSelect>0) //only

 perform this action if the line did not accidentaly started over
 variableNames.push_back(fileLine.substr(strtSelect,endSelect-strtSelect)); //copy

's variable name from the file
 else
 break;
 }
 nVariables=variableNames.size(); //

count the number of variables extracted
 nData--; //one

less datatype to find
 }
 if (nData<=0) //if all datatypes are found, stop searching
 break;
 }
 std::cout << "Overall Data found\n";

 //Finds first numerical line
 oldfile.seekg(0); //go to begin of the file

 while (oldfile.good()) //this means if no flag occurs
 {
 std::size_t found(0); //local number variable set to

3C:\Users\Mark\Desktop\Internship\...\VtkConverterSingleFile\VtkConverterSingleFile.cpp

zero every line
 posNodeData=oldfile.tellg(); //safe the beginning of this line

as the first nodal data
 getline(oldfile,fileLine); //read a new line from the file
 found=fileLine.find_first_not_of(" -.0123456789",1); //starting from position one, if

this line does contain another symbol, found gets that position
 if (found==0||found>fileLine.length()) //if found is eather zero or to

large, the line does not contain another symbol
 break;
 }
 std::cout << "position of first numerical data is: " << posNodeData << "\n";
 /* Gathering of global data is finished */

 //Create fresh flowCart.vtk file
 ofstream newfile (newfilename); //creates an empy vtk file with the same name as

the original file
 if (newfile.is_open()) //if this works
 {
 newfile << "# vtk DataFile Version 3.1\n"; //These four lines are basic

information for opening the vtk file
 newfile << "This Flow data is converted to vtk format\n"; //which will be at the head of

 the file
 newfile << "ASCII\n"; //
 newfile << "DATASET UNSTRUCTURED_GRID\n"; //

 //Copy Nodal location data (X and Y)
 newfile << "POINTS " << nNodes << " FLOAT\n"; //The basic information for

the points is written in the file
 vector<vector<float>> nodeLocation(nNodes, vector<float>(3)); //A new vector is created in

which the data of all nodes will be temporarily stored
 oldfile.seekg(posNodeData); //Reset the reading point of

the plt file to the beginning of the nodal data
 for (int i=1; i<=nNodes; i++) //copy all X data //Repeat the next part once

for every node:
 {
 getline(oldfile,fileLine); //extract a line from the plt

file
 nodeLocation[i-1][0]=atof(fileLine.c_str()); //convert it to a number and

then store it in the vector (as x-data)
 }
 for (int i=1; i<=nNodes; i++) //copy all Y data //Repeat the next part once

for every node:
 {
 getline(oldfile,fileLine); //extract a line from the plt

file
 nodeLocation[i-1][1]=atof(fileLine.c_str()); //convert it to a number and

then store it in the vector (as y-data)
 nodeLocation[i-1][2]=0; //set z data to 0 //store a 0 in vector (as z-

data) because the result is 2D and thus has no z component
 }
 for (int i=1; i<=nNodes; i++) //for every node: save the

data in the vector to the vtk file
 newfile << nodeLocation[i-1][0] << "\t" << nodeLocation[i-1][1] << "\t" << nodeLocation[i-

1][2] << "\n";

 std::cout << nNodes << " lines of nodal data converted \n";
 posElementData=oldfile.tellg(); //ask location to later find

the location of the data for the variables
 nodeLocation.~vector(); //destroy the vector with

temporary data for the vectors

 //First skip all Variables Data
 for (int i=1; i<=nElements*(nVariables-2); i++) //for all non X and non Y

variables
 {
 getline(oldfile,fileLine); //skip this line (nothing is

done with fileLine)
 }
 std::cout << "Variables data skipped \n";

 //Create Element location data (suspension nodes)
 vector<vector<int>> faceData(nFaces, vector<int>(2)); //create a vector for the data

, this will be stored as First Node, Second Node

4C:\Users\Mark\Desktop\Internship\...\VtkConverterSingleFile\VtkConverterSingleFile.cpp

 vector<vector<int>> elementData(nElements, vector<int>(17)); //create a vector for the
element data which will be reconstructed from the face data; 17 rows for a maximum of eight faces (of
two data points) and one counting value

 for (int i=1; i<=nFaces ; i++) //repeat the next section for
every face

 {
 getline(oldfile,fileLine); //get information form the plt

 file
 std::stringstream stream(fileLine); //make a stream of this line
 stream >> faceData[i-1][0]; //get the number of the first

node from the steam
 stream >> faceData[i-1][1]; //get the number of the second

 node from the stream
 }
 std::cout << "Nodal data of faces aquired \n";

 for (int i=1; i<=2*nFaces ; i++)//link nodal data to elements //for every face this has to
be done two times

 {
 getline(oldfile,fileLine); //read which element contains

this face
 int elementNumber=atoi(fileLine.c_str())-1; //convert this element number

to an integer
 if (elementNumber>=0) //if the element number

excists, do the following
 {
 int n; //

create a temporary counter
 if (i<=nFaces) //if i

 is smaller then the number of faces, i needs to be used hereafter
 n=i; //
 else //if i

 is larger then the number of faces, we should start counting again (or substract the number of faces)
 n=i-nFaces; //
 elementData[elementNumber][elementData[elementNumber][0]+1]=faceData[n-1][0]; //

store the first nodal data for this face in the first free spot in the element data vector
 elementData[elementNumber][elementData[elementNumber][0]+2]=faceData[n-1][1]; //

store the second nodal data for this face in the second free spot in the element data vector
 elementData[elementNumber][0]+=2; //put

the information of two extra filled cells in the counter cell
 }
 }
 std::cout << "Elemental data of faces aquired \n";

 //the element data will now look as follows [8 nodes
(1 2) (3 4) (3 2) (4 1) 0 0 0 0 0 0 0 0]

 for (int i=0; i<nElements; i++) //cleaning up nodal data of the elements //do the following
 for every element

 {
 for (int j=2; j<elementData[i][0]; j++) //start at the

second node and do this for every node:
 {
 int k=j+1; //for all cells

behind the current one
 while (k<16)
 {
 if (elementData[i][j]==elementData[i][k]) //search for

another cell with the same information
 {
 if (k % 2) //if this double

information is in an odd cell
 {
 std::swap(elementData[i][j+1],elementData[i][k]); //switch the

location of the same information with the cell behind the first one
 std::swap(elementData[i][j+2],elementData[i][k+1]); //switch the other

 node (from the same face) with the cell therafter
 }
 else //if this double

information is in an even cell
 {
 std::swap(elementData[i][j+1],elementData[i][k-1]); //switch the other

 node (from the same face) with the cell behind the first one
 std::swap(elementData[i][j+2],elementData[i][k]); //switch the

5C:\Users\Mark\Desktop\Internship\...\VtkConverterSingleFile\VtkConverterSingleFile.cpp

location of the same information with the cell therafter
 std::swap(elementData[i][j+1],elementData[i][j+2]); //switch the two

nodes of the face in position
 }
 } //after this, the element data looks as follows [8 nodes

(1 2) (2 3) (3 4) (4 1) 0 0 0 0 0 0 0 0]
 k++;
 }
 }
 elementData[i][0]=elementData[i][0]/2; //now the number

of nodes is halved (because every node is displayed double)
 for (int j=1; j<=elementData[i][0]; j++) //for all nodes
 elementData[i][j]=elementData[i][j*2-1]-1; //copy their

number and put them in the spot where they will end up in; also substract 1 because vtk starts its
nodal information with node 0

 for (int j=elementData[i][0]+1; j<17; j++) //for all non
nodes

 elementData[i][j]=0; //these will be
zero

 nCellPoints+=elementData[i][0]+1; //count the number
 of nodes in this cell and also count the information cell (for the way vtk reads is data herafter)

 }
 std::cout << "Elemental data completed \n";

 newfile << "\nCELLS " << nElements << " " << nCellPoints << "\n"; //save the basic

line for the elements in the vtk file
 for (int i=0; i<nElements; i++) //for every

element
 {
 newfile << elementData[i][0] << "\t"; //save the number

of nodes for this element
 for (int j=1; j<=elementData[i][0];j++) //for every node

in this element
 {
 newfile << elementData[i][j] << "\t"; //save the number

of this node in the same line
 }
 newfile << "\n"; //start a new line

 for the next node
 }
 newfile << "\nCELL_TYPES " << nElements << "\n"; //save the basic

line for the element type in the vtk file
 for (int i=1; i<=nElements; i++) //for every

element
 newfile << "7 "; //save element

type 7 (polygon)
 newfile << "\n";

 std::cout << nElements << " lines of element data converted \n";

 //Copy Element Variables data
 oldfile.seekg(posElementData); //go back to the

point where all the data of the variables was stored
 newfile << "\nCELL_DATA " << nElements << "\n"; //save the basic

line for all variable data for element centered data
 for (int i=2; i<nVariables; i++) //for all the

variables individualy
 {
 newfile << "SCALARS Cell_" << variableNames[i] << " FLOAT\n"; //save the basic

lines for this variable
 newfile << "LOOKUP_TABLE default\n"; //
 for (int j=1; j<=nElements; j++) //for every

element
 {
 getline(oldfile,fileLine); //load a line from

 plt file
 newfile << fileLine << "\n"; //save it to the

vtk file
 }
 newfile << "\n";
 }
 std::cout << nElements*(nVariables-2) << " lines of variable data converted \n";
 newfile.close();

6C:\Users\Mark\Desktop\Internship\...\VtkConverterSingleFile\VtkConverterSingleFile.cpp

 std::cout << "succesfully created vtk file \n"; //if everything
went well, the following line should print and the file will close

 }
 else
 {
 cout << "Unable to create file\n"; //the following

error occurs if there could not be made a new file named flowcart.vtk
 system("pause");
 }
 oldfile.close();
 }
 else
 {
 cout << "Unable to open file\n"; //the following

error occurs if there couldn't be a file opened named flowCart.plt
 system("pause");
 }
 return 0;
}

Page 28

	Introduction
	Aircraft Noise
	Gear Noise

	software packages
	Flow Solver
	ParaView and Tecplot
	Data conversion

	model validation
	Single cylinder
	Mesh size
	Field size
	Other configurations of the mesh
	Time step
	Number of sub-iterations
	Averaging
	Reynolds Number

	Airfoil
	Boundary condition
	Angle of attack

	Interaction between Cylinder and Airfoil
	influence of Cylinder on Airfoil
	Influence of Airfoil on Cylinder
	location of the cylinder
	distance to the airfoil
	location in flow direction
	location of the cylinder in 2-D
	small gap artifacts

	cylinder size

	conclusion

