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“Data! Data! Data!” he cried impatiently. “I can‘t make bricks without clay!”

— Sherlock Holmes, The Adventure of the Copper Beeches written by Arthur
Conan Doyle





Management Summary

Table 1: Terminology

Risk Component Term Description

PD
Expected AR

Analytically determined AR, which describes the

expected AR assuming that the ODR for each

rating correspond with the PD ratings of the model.

Implied AR

Simulation determined AR, which describes a

distribution of AR values that result from

simulated defaults according to the PD ratings

of the model. The mean of this distribution is

the same as the Expected AR.

Realized AR AR based on the actual model’s performance.

LGD

Implied Gini
Approach developed by the bank to determine

an implied AR based on the LGD estimations.

Implied AR

Simulation determined AR, which unlike the

implied Gini and the implied AR for PD models

uses the actual observed loss distribution. The

approach simulates a distribution of ARs taking

into account portfolio characteristics.

Expected AR The mean of the Implied AR for LGD models.

Realized AR AR based on the actual model’s performance.
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MANAGEMENT SUMMARY viii

In this study we attempt to find a systematic approach to set indicative benchmark values
for the discriminatory power of an LGD model measured via the Accuracy Ratio (AR), which
is a summary statistic for the discriminatory power of a classification model. LGD models
are relatively new compared to PD models, but the last years have seen a significant num-
ber of papers discussing the LGD model. Unfortunately, there is not yet an approach which
indicates whether a model’s performance is sufficient in terms of discriminatory power. For
these reasons the bank found it difficult determining what a sufficient level of discriminatory
power for an LGD model is. Currently, they have set the threshold values fixed for each
portfolio measured via the AR.

Various approaches to measure discriminatory power for LGD models exist and some are
addressed in this thesis. Our investigation primarily focuses on the AR, which is also known
as the Gini at the bank or Powerstat. The main reason to focus on the AR is that the bank
uses this technique primarily to assess the discriminatory power of LGD models.

Implied Gini

As the bank felt that a threshold on discriminatory power that is the same for LGD models re-
gardless of the underlying portfolio are not appropriate, it started a project which was aimed
to find the AR that was implied by the LGD model. Initial research by the bank showed that
the score of the AR is heavily dependent on the underlying product class for which the LGD
model has been built. In order to find the potential discriminatory power of a model, the
bank has developed the implied Gini coefficient. This approach was intended to indicate
how well a model in potential can discriminate between the size of potential losses of debt
instruments.

The idea of the implied Gini followed from a similar approach that has been developed for PD
models, which indicated an expected AR if the PD model performed to its function. However,
unlike the approach of the implied AR for the PD models the implied Gini for LGD models
relies on a significant number of assumptions. We critically assessed these assumptions
and found that the approach could not be generalized for four portfolios that were available
for our investigation. Hence, based on our test results we conclude that the implied Gini
is in its current form not valid. Adjusting the approach is not a possibility given the current
available data and due to some critical assumptions that do not hold true.

Influencing Factors and Alternative Approach

Although the initial research question was to validate the implied Gini, the goal for which
the approach was developed still stands. Therefore, we looked into factors that give more
insight in the resulting AR. From our test results we conclude that factors such as probabil-
ity of cure, variance, fraude and tolerance levels influence the AR heavily if they are highly
present in a portfolio. Therefore, we are confident enough to conclude that setting a perfor-
mance benchmark for LGD models that is fixed over all portfolios is unrealistic (the current
situation). Due to portfolio characteristics it might be impossible for some LGD models to
achieve this benchmark. Therefore, we argue that benchmarks should be set up dependent
on the portfolio, while taking the characteristics of the portfolio into account.



In order to set these indicative benchmarks that depend on the portfolio characteristics we
developed the implied AR, which is a simulation driven approach that uses actual loss distri-
bution instead of the estimations.1 For the development of an alternative approach we had
to make choices due to the limit availability of data and cope with the current data quality.
For the development of the alternative approach we limited ourselves by using the AR as
a summary statistic. The main reasons for this choice are that for other summary statistics
similar questions remain (e.g. ”what are acceptable values?”), and that the usage of the AR
is common practice at the bank (and industry).

Within the process of developing an alternative approach we had to cope with several issues
that cannot be solved due to the lack of data availability. Only the estimated LGD and the
corresponding losses were available with some overall information concerning the portfolio,
such as the historical cure rate. Therefore, we had to make choices, which can be consid-
ered to be non-optimal. We argue, however, that regardless of this limitation, we can still
proof that the current review approach of the bank can be improved by taking into account
different portfolio characteristics. The alternative approach for the implied Gini we developed
in this research still indicates that setting the same fixed threshold value for each portfolio
is unnecessary penalizing particular portfolios. Our approach gives more insight in realistic
AR values for specific portfolios compared to the current situation.

We acknowledge that the approach of the implied AR still relies on some basic assumptions
that cannot be tested due to the lack of data or due to data quality. However, if more data
becomes available or the data quality improves it could be the case that some assumptions
are not necessary any more (e.g. such as the randomness of cure or fraud). The approach
also relies primarily on quantitatively measurable factors that influence the AR. There might
be, however, qualitative factors that indicate that it is more difficult for some portfolios to
achieve higher levels of discriminatory power than others. In our research we found it diffi-
cult to objectively pinpoint these factors as they are in our opinion very context dependent.
Nevertheless, we think that the implied AR helps with the understanding of what (quantita-
tively) drives the AR for LGD models and therefore helps to set up indicative benchmarks for
discriminatory power measured via the AR.

1The name ’implied’ is strictly taken not correct, but due to the project implied Gini is currently taken on as a
working title.
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Chapter 1

Introduction

In 2004 the Bank of International Settlements (BIS) published Basel II, which is the inter-
national standard for the amount of capital that banks need to hold in reserve to deal with
current and potential financial and operational risks (Persaud & Saurina, 2008).2 Part of
this framework are the estimates of risk components for determining the amount of capital
required for a given exposure. Subject to certain minimum conditions and disclosure require-
ments, some banks have received supervisory approval to use the Internal Ratings-Based
(IRB) approach for determining their own internal risk components (BCBS, 2006). Following
from the framework of Basel II the risk components include the following measures:

1. Probability of default (PD).

2. Loss given default (LGD).

3. Exposure at default (EAD).

4. Effective maturity (M).

In the credit risk literature significant attention has been devoted to the estimation of the
PD measurement, while much less attention has been devoted to the LGD measurements
(Caouette et al., 2008). LGD is defined as the credit that is lost by a financial institution
in the case a debtor defaults, expressed as a fraction of the exposure at default (Bastos,
2010). The accuracy of the LGD estimations are essential for computing economic capital
and potential credit losses (Gupton, 2005). If a financial institution has accurate estimates
of the risk components and models with adequate discriminatory power, it would mean in
principal that a financial institution could gain a competitive advantage over its competitors
as it is better in separating the ‘bad’ instruments from the ‘good’. Therefore, it is necessary
that a financial institution is capable to estimate and validate the risk models used for finding
the risk measures properly.

In order to determine the discriminatory power of an LGD model Rabobank uses the Gini
coefficient (Gini), which is also known as the Accuracy Ratio (AR) or PowerStat. The term
AR will be used in the remainder of this thesis as it used more frequently in literature. Pre-
vious research by the bank has indicated that the AR is an adequate measure to determine
the discriminatory power of an LGD model. In this thesis, however, some critical side notes
on the AR are given. The AR is described in Chapter 2.

2Additional regulations were added in Basel III.
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CHAPTER 1. INTRODUCTION 2

Measuring the discriminatory power of LGD models is relatively new compared to PD mod-
els, which means that there is less experience in modelling those type of models. In recent
years more research and best practices on LGD models emerged, but compared to PD
models it is still significantly less. The relative inexperience in modelling the LGD model
component has made it difficult to determine what a sufficient level of discriminatory power
for an LGD model is compared to PD models.

Hence, the bank started a project to find indicative benchmarks for discriminatory power
measured via the AR. Initial research showed that the score of the AR is heavily dependent
on the underlying product class for which the LGD model has been built. In order to find
the maximum attainable discriminatory power of a model, the bank has developed the so-
called implied Gini coefficient. This approach was intended to indicate how well a model in
potential can discriminate between the size of potential losses of debt instruments. It was
intended to derive an indicative benchmark for discriminatory power from the implied Gini.
The realized AR (via historical data) indicates the actual performance of a model on discrim-
inatory power. If the realized AR is above the threshold derived via the implied Gini, then
the model is perceived to have performed to its abilities according to the bank. The formal
definition of the implied Gini that has been developed by the bank is presented in Chapter 3.

In this study we review the approach developed by the bank and recommend whether it can
be used in its current form. We review the underlying assumptions on the implied Gini made
by the bank and research alternative methods for setting the target value for the discrimina-
tory power of LGD models based on the AR. We provide recommendations on which method
should be used for setting a target value of the discriminatory power. This chapter has the
following outline:

Section 1.1: We describe the background and motivation of this study.

Section 1.2: We present the research objective.

Section 1.3: We describe the research approach.

Section 1.4: We cover the research questions, which are to be answered in this thesis.

Section 1.5: We present the outline of the thesis.

1.1 Credit Risk at Rabobank

The Rabobank is an international financial services provider operating on the basis of coop-
erative principles (Rabobank Group, 2015). It offers services such as retail banking, whole-
sale banking and private banking. Furthermore, in 2015 it was the second largest bank in
the Netherlands measured in total assets (TheBanks.eu, 2016). One of the core activities of
the Rabobank is providing savings and borrowing services, which leads to a private sector
loan portfolio (outstanding credit) of EUR 426,157 million euro compared to the total assets
of EUR 670,373 million (Rabobank Group, 2015).

According to Caouette et al. (2008) credit can be defined as ”nothing but the expectation
of a sum of money within limited time,” which means that credit risk is ”the chance that this
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expectation will not be met”. In order to cope with the risk that a debtor is not able to meet
his financial obligations the bank has to hold capital. For this form of risk mitigation banks
are required to hold mandatory regulatory capital and in addition they can hold economic
capital, which is an internally computed measurement by banks to manage their risks. As a
result of these regulations in 2015 the Rabobank reserved EUR 17.0 billion of which 86% is
for credit and transfer risk. The bank computed their economic capital to be EUR 26.7 billion
of which 54% attributes to credit and transfer risk.

In accordance with the regulation, the bank uses the advanced IRB approach to calculate
its regulatory capital for credit risk for basically the whole loan portfolio. In accordance with
the supervisor the Standard Approach (SA) is used for some portfolios with relatively limited
exposure and a few small foreign portfolios as the advanced IRB is not suited (Rabobank
Group, 2015). The difference between the two approaches is the way in which the risk-
weighted assets (RWAs) are computed, which is the input variable for computing the first
pillar capital requirements of Basel II. As Hull (2012) describes, the total required capital is
computed via Eq. (1.1).

Total Capital = 0.08 · (credit risk RWA + market risk RWA + operational risk RWA) (1.1)

The current SA prescribes that external credit ratings are used as input in order to determine
the (credit risk) RWA, while for the advanced IRB the banks supply their own estimates of
the PD, LGD, EAD, and M to estimate the RWA (BCBS, 2015; Hull, 2012). In Chapter 2
a detailed overview of the Basel II framework and its risk components (especially the LGD
component) is given. We describe how these risk components are used to compute the
RWA via the (advanced) IRB approach.

As the bank is allowed to estimate its own risk components for a large part of its portfolio
(under compliance of supervisory standards) it is important that the estimates are accurate.
Underestimation of the risk components means that the mitigation of risk is not sufficient
and extreme losses on the loan portfolio are not covered. Overestimation of risk is also un-
desired as the bank then holds additional capital, which does not yield a return.

It is important that the estimates of a risk model are accurate, but a model can be accurate
in estimating the total portfolio losses without correctly estimating the risk components on an
individual (observation) level. If a risk model is not able to differentiate between the ’good’
and ’bad’ loans, it should be considered as invalid because clients with an actual high credit
risk will have to post relatively less collateral compared to clients that are in reality less risky.
Therefore, it is not only important to validate the estimates of the risk models, but also the
discriminatory power of the risk models. Kraft et al. (2002) indicates that there is no formal
definition for the discriminatory power of risk models. For that reason, study follows the def-
inition given by Prorokowski (2016), namely ”the ability to differentiate between defaults and
non-defaults, or high and low losses”. For LGD models the discriminatory power would then
be the ability to differentiate between the severity of losses.

In order to gauge the risk models for improving the quality and accuracy of the estimates,
banks conduct a process called backtesting. This process is defined by BCBS (2005) as
”using statistical methods to compare estimates of the three risk components to realised out-
comes”. The bank uses a graphical representation of the realized scores against estimated
scores as well as the AR in order to assess the discriminatory power of its LGD models.
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It has developed the implied Gini to create a target value for the assessment. We review
the original approach that has been developed by the bank and we suggest an alternative
approach to set indicative benchmarks for discriminatory power via the AR.

1.2 Research Objective

The objective of this study is to develop an approach to set indicative benchmarks for mea-
suring discriminatory power via the AR. The general method should provide guidance in
setting a target value for the discriminatory power of an LGD model. The indicative bench-
marks should give the bank insight in the performance of the model on discriminatory power.
It helps the bank in deciding, whether the model can be accepted or should be redeveloped.
Part of this study is the review of the implied Gini developed by the bank. The method has
been developed on the basis of assumptions that not have been validated or proven to be
correct prior to this study. Before the implied Gini can be applied for model validation, it is
required that these assumptions are investigated in-depth and tested on their validity. The
first part of this study focusses on the validity of the current method.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

As the goal of this study is to develop a new general approach to set indicative benchmark
values for LGD models this study can be described as theory oriented research following the
design methodology for setting up a research project by Verschuren & Doorewaard (2007).
They distinguish two types of theory oriented research, namely theory developing and the-
ory testing. This study contains both types as we review the approach developed by the
bank (implied Gini), which is theory testing oriented, while we also develop a new approach
for setting indicative benchmarks for LGD models, which is theory developing oriented.

(Goal) Develop a systematic approach to set indicative benchmark values for the discrimi-
natory power of an LGD model measured via the AR.

1.3 Research Approach

Before the actual study can start, it is important that all stakeholders agree on what the
scope and content of the research is. A good approach to get an agreement and to man-
age expectations is making use of a research model, which allows every stakeholder to
get a quick overview of the contents of the study. Resulting from the contextual framework
from which the study subject originates (see Section 1.1) and the research objective (see
Section 1.2) it is possible to derive a research approach. This model is visualised in Fig. 1.1.

It is necessary to establish a theoretical framework (Phase A), before the process of theory
testing and development can start. This framework forms the basis for establishing aca-
demic references and best practices from the industry, which provide validation techniques
to test the implied Gini. Furthermore, the framework provides an overview of alternatives
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Figure 1.1: Research Approach.

and possible ideas to develop new approaches. Besides the theoretical framework, it is im-
portant to create a clear description of the method including all its assumptions, which is the
subject of the validation process. Based on the test results following from the application of
the validation techniques and the theoretical framework, it is possible to determine whether
the current method of the implied Gini is valid for measuring the discriminatory power of a
LGD model (Phase B). The results of Phase B determine, whether the implied Gini is taken
into account as a valid alternative for setting indicative benchmarks for measuring the dis-
criminatory power of an LGD model. In Phase C different approaches for setting indicative
benchmarks are examined and developed. For all the valid methods the (dis-)advantages
are compared (Phase D), which after consideration leads to a recommended method (Phase
E).

1.4 Research Questions

From the research objective and model it is possible to derive the questions that this study
has to answer. The main research question of this study is:

(Main) Which factors should the bank take into account to determine the indicative bench-
marks for the discriminatory power of an LGD model?

To answer this question, the working of LGD models in general and the process of validation
need to be described first in order to create a contextual framework and a general under-
standing. Once the framework has been established and the challenges concerning LGDs
have been described, methods for assessing discriminatory power of an LGD model are
discussed.

(1.1) Which methods are available to assess the discriminatory power of an LGD model?

(1.2) How do the current LGD models differ from each other?
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(1.3) What are the differences between a PD model and an LGD model for measuring and
benchmarking discriminatory power?

If a general overview is created of possible methods to assess discriminatory power the
current workings of the implied Gini and its assumptions can be explored in-depth. The
current method of the implied Gini is based on the research done by the bank.

(2.1) How does the current method of the implied Gini coefficient work?

(2.2) Which assumptions have been made for developing the implied Gini?

After the explanation of the implied Gini method, it is required to validate the assumptions
that have been made.

(3) Do the assumptions for the implied Gini hold?

If the method is valid, it can be used to get more insight in establishing the benchmark for
backtesting the discriminatory power of an LGD model via the AR. Regardless of whether
the implied Gini is valid or not, it still does not provide a solution to setting an actual threshold
value for the back-test of discriminatory power for an LGD model. The second part of the
study focusses on what drives the AR score of an LGD model and when an LGD model is
considered to be ’good’.

(4) Which factors impact the AR score of an LGD model?

Based on the answers on all the research questions possible approaches for setting in-
dicative benchmarks of an LGD model are developed. After the comparison of the possible
methods a suggested systematic approach for establishing a benchmark value is presented.

1.5 Outline

The remaining part of the thesis has the following structure:

Chapter 2: We provide an in-depth analysis of LGD models, the discriminatory power and
the methods to assess this attribute. The findings from literature are put into
context of this study. We conclude this chapter with the answer to the first
sub-questions.

Chapter 3: We explain the current method for determining the implied Gini coefficient.
Furthermore, we describe the main differences between PD and LGD models
that are relevant for measuring discriminatory power as there exist a similar
concept of an implied AR value for PD models. The chapter concludes with
the answers to sub-questions 2.1-2.2.

Chapter 4: We focus on the underlying assumptions of the implied Gini coefficient and
investigates whether there is empirical and theoretical evidence in support of
these claims. Furthermore, we discuss whether the implied Gini is possible
as a method and if necessary adjustments are needed in order to make the
method valid. We conclude with the answers to sub-question 3.
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Chapter 5: We investigate LGD models more in-depth and determine which characteris-
tics impact the AR score of an LGD model. Within this chapter we develop
an alternative approach for establishing a threshold value based on the AR
given the limitations on data in practice. We conclude with the answers to
sub-question 4.

Chapter 6: We propose an approach to set indicative benchmarks for testing the discrimi-
natory power of an LGD model based upon the approach we develop in Chap-
ter 5.

Chapter 7: We provide our final conclusions on this study and discuss future research.



Chapter 2

LGD Models and Their
Discriminatory Power

Before the method of the implied Gini is discussed in-depth, it is necessary to establish a
common understanding of risk models in general, and the challenges for modelling LGDs.
Therefore, this chapter firstly elucidates the framework of Basel II for the (advanced) IRB
approach. Secondly, an overview of processes and common practices in modelling and
validating LGD models is given. The overview is based on findings from literature as well
as internal documents and practices at the Rabobank. Finally, approaches for measuring
the discriminatory power as well as the method for determining the AR of an LGD model is
discussed.

The terminology, used in the internal documentation at the Rabobank, is adopted in this the-
sis as well for consistency reasons. The term LGD refers to the loss given default estimate,
which is expressed as a percentage of the Exposure at Default (EAD). The actual observed
loss has the term loss rate (LR) and is expressed as a percentage of the observed EAD.
The LGD and LR term are sometimes also called estimated LGD and the realized LGD. This
documentation will use the terms from the latest policy documentation, hence LGD and LR
are used.

This chapter has the following outline:

Section 2.1: We discuss the Basel II Framework for the (advanced) IRB approach.

Section 2.2: We illustrate the complexity of modelling of LGD models as a lot of factors
have to be taken into account.

Section 2.3: We describe a high level overview of the validation process and approaches
for estimating LGDs.

Section 2.4 We describe the general structure of risk models used at the bank.

Section 2.5: We give an overview of techniques for assessing the performance of LGD
model.

Section 2.6: We give an overview of techniques for assessing the discriminatory power.

Section 2.7: We describe the internal guidelines and processes of LGD validation at the
bank.

Section 2.8: We provide answers to the first sub-questions.

8
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2.1 The Basel II Framework for the (advanced) IRB Approach

As discussed in the introduction, the BIS published in 2004 Basel II, which is i.a. a com-
prehensive framework of standards on how to measure various risk components and forms
the basis on the amount of regulatory capital a financial institution has to reserve in order to
cope with various risks. This section will focus on the regulatory and economic capital that is
kept for dealing with credit risk. This is part of the first pillar of Basel II (which in total consists
of three different pillars). The first pillar of Basel II describes the conditions and guidelines
for determining the minimum capital requirements. It differentiates between three forms of
risk, namely credit, operational and market risk (BCBS, 2006). An overview of the structure
of Basel II based on BIS documentation can be found in Fig. 2.1.

Figure 2.1: The Basel II framework as drafted by BCBS (2006).

Technically the IRB approach can be split up into two different approaches, namely the foun-
dation IRB approach and the advanced IRB approach. The difference between the two
approaches is that for the foundation approach the PD is estimated by internal models of a
financial institution, but the LGD and EAD are determined on fixed values provided by the
supervisor. In the advanced approach the bank uses internal models to estimate the PD,
LGD and EAD. M is computed in the same way for both approaches, if M plays a role in the
portfolio (DNB, 2007). If a bank has received supervisory approval, it may use the advanced
IRB approach. Using the IRB approach has benefits for the regulators as well as the finan-
cial institutions. Financial institutions are incentivised to take on customers with low scores
for PDs and LGDs as they result in lower risk weightings and therefore lower capital reserve
requirements. It results in some form of self-surveillance, which also decreases the costs
of regulation and potential legal battles with banks (Balin, 2008). As this study primarily
focuses on LGD models we only the advanced IRB Approach is discussed in detail.

As is described in the BIS documentation3 the following equations are to be used to derive
the RWA, which is used as input for calculating the minimum required capital via Eq. (1.1).

3International convergence of capital measurement and capital standards by BCBS (2006).
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Please note that the PD and LGD are measured in percentages, and the EAD is measured
as a currency in the BIS documentation. The PD value represents the probability that the
loan will go into default within one year. The LGD is expressed as the fraction of the EAD
that is lost if the loan goes into default (see Chapter 1). The ln in Eq. 2.2 denotes a natural
logarithm. N(x) in Eq. 2.3 denotes the cumulative distribution function of a standard normal
random variable. G(z) denotes the inverse cumulative distribution function for a standard
normal random variable (see BCBS, 2006).

R = 0.12 · 1− e−50·PD

1− e−50
+ 0.24 ·

(
1− 1− e−50·PD

1− e−50

)
(2.1)

b = (0.11852− 0.05478 · ln PD)2 (2.2)

(2.3)K =

(
LGD ·N

(
(1−R)−50 ·G(PD) +

(
R

1−R

)0.5

·G(0.9999)

)
− PD · LGD

)
· (1− 1.5 · b)−1 · (1 + (M − 2.5) · b)

RWA = K · 12.5 · EAD (2.4)

Eq. 2.1 - 2.4 illustrate how the RWA for credit risk is determined under the advanced IRB
approach. The correlation R and maturity adjustment b are input values among the LGD, PD
and M estimates for the computation of the capital requirements K. The RWA is a function
of K and the EAD estimate. There are some adjustments for specific asset classes, which
are not treated in this study. For a complete overview see the documents published by the
BIS (see References). The output of Eq. 2.4 is used as input for Eq. 1.1.

Economic capital is, as mentioned in Chapter 1, the internal estimate of the capital that is
required to be held by a financial institution in order to cope with the risk it is taking. A more
formal definition is that economic capital is the allocated capital a financial institution needs
in order to absorb losses over one year with a certain confidence level (Hull, 2012). Regula-
tory capital is, more or less, computed via one-size-fits-all rules created by the BCBS. Hull
(2012) states that ”economic capital can be regarded as a ’currency’ for risk-taking within a
financial institution”. He explains that a business unit is only allowed to take a certain risk
when it has allocated the right amount of economic capital, and the profitability of the busi-
ness unit is measured relative to the allocated economic capital. The latter is measured via
the risk-adjusted return on capital (RAROC), which is not discussed further in this study as
it lies beyond the scope of this research.

In Fig. 2.24 a typical density function for credit losses can be found, which describes the
likelihood of losses of a certain magnitude (BCBS, 2005). Capital reserved to cope with risk
is used to cover unexpected losses (UL). The confidence level depends on the credit rating a
financial institution wishes to pursue. If a bank for instance wishes to maintain an AA credit
rating, then their probability of default in one-year would be about 0.03%. This suggests
the confidence level for the determination of the amount of economic capital should be set
at 99.97% (Hull, 2012). For financial institutions the expected losses (EL) of credit are a

4Figure from “An Explanatory Note on the Basel II IRB Risk Weight Functions” by BCBS (2005).
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useful measure as well, as that indicates the amount it should hold in reserve from fees and
interest revenues to absorb the losses that are likely to occur over the course of a year thus
it is an important input factor for loan pricing decisions (Herring, 1999).

Figure 2.2: Probability density function of losses (BCBS, 2005).

The expected loss from defaults is determined via the risk components PD, LGD and EAD,
which are estimated for each counterparty i. Hull (2012) shows that the total expected losses
from defaults are then: ∑

i

EADi · LGDi · PDi (2.5)

The LGD is related to the recovery rate (RR), which is the amount that is recovered from a
defaulted credit. It has the following definition (expressed in percentages):

RR = 1− LGD (2.6)

From Basel II we conclude that it is crucial to have accurate estimations for the risk compo-
nents to determine the necessary capital required for absorbing the potential risks. In the
upcoming sections more attention will be paid to which factors affect the LGD and how it is
validated.

2.2 Factors Affecting the LGD Scores

The LGD becomes relevant if a particular obligor has gone into default, which will start the
process of trying to (partly) recover or salvage the outstanding credit. Default for a particular
obligor has been defined by the BCBS (2006) if one or both of the following conditions has
been met:

• The obligor is unlikely to pay its credit obligations to the financial institute in full from
the creditors perspective, without recourse by the bank to actions.

• The obligor is past due more than 90 days on any material credit obligation to the
banking group.

How the LR is measured by a financial institution depends on how it records default events
on its debt instruments. There are examples of events in which, according to the definition
by BCBS (2006), an obligor went into default (for instance it is more than 90 days past due



CHAPTER 2. LGD MODELS AND THEIR DISCRIMINATORY POWER 12

on credit obligations), but makes good on all their obligations in the next period. If a bank
ignores such events and does not record this as recoveries in the bank’s loss data, it might
underestimate the RR on loans (Schuermann, 2004). This can be considered to be a cure,
which is the event that a loan, which is declared to be in default, recovers and no loss is
observed. It should be noted that an LGD of 0% does not explicitly mean that the default
cured. Baesens & Van Gestel (2009) illustrate a similar issue of underestimating scores via
technical defaults, which they define as the event that a counterparty fails to pay timely due
to reasons that are not related to the financial position of the borrower. If a bank classifies
the technical default as a default (from the definition of Basel II), it will typically result in a
higher number of registered defaults, but in general a lower LR value.

In general, the LGD following from a default is a ratio of the losses to the EAD. One would
think that it is not possible to have losses that are larger than the EAD, but it might occur in
practice that the actual LGD is larger than 100%. There are namely various sources of a
loss, which Schuermann (2004) distinguishes into three types:

• The loss of the principal, which is the original amount that has been lent (e.g., book
value).

• The carrying cost of non-performing loans (e.g., interest income that cannot be re-
trieved).

• Workout expenses, which are e.g. costs made to collect the loan or collateral, or legal
costs.

Due to for instance high workout costs, it might occur that the LR is larger than the actual
EAD, resulting in an LR greater than 100%. Besides the workout expenses in case of a de-
fault, the seniority of the debt instrument and the posted collateral play important roles. The
seniority determines the priority for all the creditors in the case value can be salvaged from a
default. Collateral is a specific asset or property pledged to the creditor in the case of a de-
fault and used to secure debt instruments. Empirical evidence suggests that the seniority of
bonds is one of the driving forces behind an RR, as the mean recovery increases for higher
levels of seniority (Altman & Kishore, 1996). As loans are generally senior to bonds, it is ex-
pected that they will also provide higher RRs than bonds. Statistics resulting from Moody’s
database of 1970 till 2003 imply that RRs for loans are typically higher (Schuermann, 2004).
A similar correlation can be found between collateral and RR (Grunert & Weber, 2009).

Another factor that has been described by Altman et al. (2005) is the negative correlation
between the observed default rate (ODR, which is the actual number of defaults observed
in a time period, and the RR (for corporate bonds): Higher aggregated levels of the ODR
tend to coincide with lower RRs. Frye (2000) also indicates that in the US years that have a
relatively high default rate, will result in a lower RR on average. The years that he indicated
as the years with a high default rates (1990 and 1991) coincide with relatively low growth
in gross domestic product (GDP), namely 1.9% and -0.1% on an annual basis (The World
Bank, 2016). The other years in Frye’s data set had a minimum growth of 2.7%. This relation
could imply that in recessions or times of slow economic growth the RRs are lower than in
times of expansions.

Also differences between industries are observed in the average realized RR (and thus LGD)
by Altman & Kishore (1996). The industry condition is suggested to be an important deter-
minant for the RR as industry-wide distress leads to lower recoveries (Acharya et al., 2007).
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However, Qi & Zhao (2013) suggest that the impact of the industry and macroeconomic
variables on the LGD vary with the sample, model specification and modelling technique
used. Their research suggested that the debt structure of a firm should be considered for
modelling the RR.

A difference in RRs between countries is observed by Davydenko & Franks (2008). Their
research suggested i.a. that the local bankruptcy code affects the RR, as in countries that
are perceived to be debtor-friendly (e.g., France) the RR is considerably lower than in more
creditor-friendly countries. They state that the influence of the bankruptcy code is the great-
est in explaining the differences between the recoveries. Furthermore, they state that the
bankruptcy codes also result in different lending and reorganization practices as e.g. the
posted collateral in France is higher than in Germany and U.K., which are perceived to be
more creditor-friendly.

The brief overview from the literature illustrates some of the difficulties to model LGDs. A
lot of variables need to be taken into account in order to estimate a LGD correctly. Different
portfolios have their own specific LGD models. Table 1 includes, but is not limited to, factors
that influence the values of an LGD. Additional explanatory factors for LGD estimation can
be found in Peters, C. (2011).

Table 2.1: Factors that impact the LGD score.

Factor Literature

Definition and Recording of Defaults Schuermann (2004), Baesens & van Gestel
(2009)

Debt Type, Seniority and Collateral Altman & Kishore (1996), Schuermann
(2004), Grunert & Weber (2009)

Debt Structure Qi & Zhao (2013)

Default Rates and Macroeconomic Develop-
ments

Frye (2000), Schuermann (2004), Altman et
al. (2005)

Type of Industry Altman & Kishore (1996), Schuermann
(2004), Acharya et al. (2007)

Bankruptcy Code (in Country) Davydenko & Franks (2008)

2.3 LGD Modelling and Validation

This section gives a brief overview of different approaches to estimate the LGD values, and
standards and processes for validating of the LGD models.
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Approaches for LGD Estimation

In order to estimate the LGD various techniques (or combinations) can be used. There are
four approaches described by the Committee of European Banking Supervisors (CEBS)5

(2006) to estimate an LGD, which are the following:

Workout LGD calculates the (discounted) cash flows resulting from a workout
and/or collections process.

Market LGD determines the LGD estimations on the basis of the market prices
of defaulted obligations.

Implied Market LGD is similar to the Market LGD, but estimates the LGD from non-
defaulted loans, bonds or credit default instruments. The im-
plied market LGD is derived via a theoretical asset pricing model
(Schuermann, 2004).

Implied Historical LGD is a technique that derives the LGD from the realised losses on
exposures within a loan portfolio and PD estimations. CEBS
(2006) allows this technique only for the Retail exposure class
(e.g. loans made to individuals such as mortgages).

As CEBS (2006) points out, the supervisors do not require that a specific technique is used
for the LGD estimations. Nevertheless, financial institutions will need to demonstrate that
the assumptions underlying their models are justified and that the approach is appropriate
for the specific portfolios to which it is applied as the results might be different per approach.
For example, the realized workout LGD usually takes some time to be computed as it uses
the discounted values of actual cash and assets after a default has been settled, while the
market LGD is easy to observe from actual market prices. Renault & Scaillet (2004) state
that the market LGD has its drawbacks.6 They state i.a. that the trading price recovery tends
to have lower means compared to the ultimate recovery. An advantage, however, is that it
is not required to choose a specific discount rate and because the market LGD is derived
from actual market prices an investor can determine the RR if he liquidates his position im-
mediately. For the estimation of an LGD one should carefully assess the drawbacks and
advantages of the different approaches. The choice is also dependent on the type of port-
folio, as not all approaches can be used for some portfolios. For example, not all types of
portfolios have market data to derive RRs.

LGD Validation Methodology

Once an approach for the LGD estimation has been chosen and a model has been devel-
oped the process of validation may begin. An LGD model should be reviewed periodically
as it is important to see whether the LGD model is still accurate. This is done by validating
the model by i.a. backtesting and benchmarking the risk components.

The BCBS (2005) notes that the use of statistical tests for backtesting may be difficult as
the data from financial institutions may be constrained. The reason behind this might be

5Their tasks and responsibilities have been taken over by the European Banking Authority (EBA) as from
2011.

6Renault & Scaillet (2004) illustrate the differences via recovery rates, which they call ultimate recoveries and
trading price recoveries. From their description it follows that the ultimate recovery rate is 1 minus the “workout
LGD” and the trading price recovery rate is 1 minus the “market LGD”. They state that the trading price recovery
tends to lead to lower means compared to the ultimate recovery.
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Figure 2.3: Validation methodology as drafted by BCBS (2005).

the low number of defaults in a portfolio or low internal data quality. Initiatives have been
started according to the BCBS (2005) to build consistent data sets. There is an emphasis
on the validation of LGDs in the studies conducted by the BCBS, as i.a. the capital charges
are quite sensitive to the LGD (see Eq. 2.1-2.4). A high level overview of the validation
methodology drafted by the BCBS (2005) can be found in Fig. 2.3.

A practical framework for the validation of an LGD model is described by Li et al. (2009).
They define three specific performance goals, which are of interest for the credit risk man-
ager. The goals are as follows:

• Good performance on the rank-order of different LGD estimations (discriminatory power).

• Accurate predictions of the LR (calibration).

• Accurate prediction of the total observed portfolios loss amounts, which assumes that
the PD model correctly distinguishes between defaulters and non-defaulters.

Loterman et al. (2012) point out that a good ranking does not imply that the calibration is
good, but on the other hand if the calibration is good it always implies that the discriminatory
power is good as well. After the (re-)validation process Li et al. (2009) distinguishes three
possible outcomes that may result from the assessment, namely:

• LGD model is a reasonable reflection of the current portfolio and performs well enough—
no adjustments to its current form are required.

• LGD model has a (moderate) discrepancy from the original specification or a previous
revalidation process—a refit is required.
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• LGD model is significantly different from the original specification or a previous revali-
dation process, and is not likely to meet its expected performance level—a redevelop-
ment is required.

In order to validate the risk models a variety of tools and metrics are available to recognize
under-performing LGDs. As this study intends to find a valid method to establish a target
value for the discriminatory power which can be used as a benchmark in the validation
process an overview of frequently used techniques are presented in Section 2.4. The main
focus is on the assessment of the discriminatory power of LGD models.

2.4 Risk Model Structure

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2.5 General Techniques to Get Insight in the Performance of
LGD Models

Before techniques for assessing the discriminatory power of an LGD model is described,
some general techniques to get insight in the performance of an LGD model are introduced.
First possible techniques to visualise the performance of an LGD model are described. After
the description of these visualisation techniques error measures are introduced, which indi-
cates the performance of the model on accuracy and calibration. In Section 2.6 techniques
for assessing discriminatory power are discussed, which is the main focus of this thesis.

Summary Plots

According to Li et al. (2009) one of the first plots that has to be examined when validating an
LGD is the scatter plot of the LGD versus the LR. This helps to provide evidence whether the
estimations of the model correspond with the actual LRs. A good model should be able to
provide a scatter plot with points concentrated around the diagonal. A perfect model would
be able to provide a line through the origin, while having a 45◦ angle. Fig. 2.4 provides a
simplified example of the difference between the scatter plot of a ‘bad’ LGD model and a
‘good’ LGD model.

In order to see whether the assumed loss distribution corresponds with the realized loss
distribution histograms allow a good visual comparison between the two distributions. To ac-
tually see whether the LGDs and LRs originate from the same distribution various statistical
tests are at the credit risk managers’ disposal (e.g., two-sample Kolmogorov-Smirnov test).
These techniques are discussed in-depth in Chapter 4.

Another approach suggested by Li et al. (2009) is to use box-and-whisker plots to get a
sense of the magnitude and frequency of the outliers classified by the LGD buckets in order
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Figure 2.4: Examples of scatter plots for LGD data.

to grasp the characteristics of the EAD distribution as a histogram is often not enough. This
graphical approach is simply a representation of the median and the quartiles (the box) and
possible outliers (whiskers) for a particular data set. If this technique is used for getting in-
sight in the performance of an LGD model then the box-and-whisker plot can show how the
EADs of a portfolio are distributed against LGD estimations. Appendix A contains random
sample data of the EAD and LGD for 50 debtors in a portfolio. In order to construct the
box-and-whisker plot the data set is separated in 6 buckets based on the LGD estimation.
The buckets ranges are based on the ranges suggested by Cantor et al. (2006) as found in
Table 2.2. The sixth bucket is empty in our example (no estimations larger than 90%). For
the remaining buckets a box-and-whisker plot is made on the basis of the EADs contained
in a bucket. Fig. 2.5 shows the resulting box-and-whisker plot for the example data found
in Appendix A. For this data set the plot shows that the EADs have a large range in most
buckets and the spread also varies between the buckets, which is something to be taken
into account for the validation process.

Figure 2.5: Example of a box-and-whisker plot.
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Error Measures

Summary plots can be used to get a quick overview of the LGD models performance, but in
order to quantify the LGD models performance error measures can be used. One approach
suggested by Li et al. (2009) is the use of confusion matrices. These type of matrices are
used to check how a classifier model performs. In order to construct the confusion matrix for
an LGD model, it is required to have the LGD estimations and realizations (the LR). Each
LGD estimation is classified to its corresponding bucket (e.g. via the six-point scale as found
in 2.2), and the same process is followed for the realizations. We denote for each instance
its corresponding estimated LGD as LGDEST

p and its LR as LGDREA
p for p = 1, 2, ..., n with n

instances. We denote the total number of classes (e.g. the buckets as found in 2.2) as k and
each possible assignment for LGDREA

p as i = 1, 2, ..., k and for LGDEST
p as j = 1, 2, ..., k.

Each bucket has a lower bound and upper bound, which determines whether an estimation
or realization as assigned to the bucket. These bounds are denoted by LB and UB. Via
Eq. (4.10) it is possible to determine the corresponding buckets for both the estimated and
realized LGD.

cp,i,j =

1, if LBi ≤ LGDREA
p < UBi and LBj ≤ LGDEST

p < UBj

0, otherwise

(2.7)

If for each of the paired observations the corresponding classes or buckets are determined,
then it is possible to compute the confusion matrix. The idea behind the confusion matrix is
to count for each cell in the matrix the number of pairs within such a cell. The total number
of pairs in a cell is denoted via ai,j and computed via Eq. (2.8).

ai,j =

n∑
p=1

cp,i,j (2.8)

In Table 2.3 the confusion matrix for the sample data in Appendix A can be found (based
on the buckets in Table 2.2). The diagonal of the matrix shows how many LGDs have been
estimated in the correct bucket (i.e., they have been correctly classified). The other cells
of the matrix show how many LGDs have been falsely classified. Take for example the cell
(LGD 6, LGD 4), which has the value of 1. This particular instance has been estimated to be
in Bucket 4 (50% till 70%). The realized LGD of this instance is, however, above 90% and
therefore it actual ’class’ is Bucket 6.

Table 2.2: Six-point scale for LGD buckets as found in Cantor et al. (2006).

LGD Assessment Loss Range

LGD 1 ≥ 0% and < 10%

LGD 2 ≥ 10% and < 30%

LGD 3 ≥ 30% and < 50%

LGD 4 ≥ 50% and < 70%

LGD 5 ≥ 70% and < 90%

LGD 6 ≥ 90% and ≤ 100%



CHAPTER 2. LGD MODELS AND THEIR DISCRIMINATORY POWER 19

Table 2.3: Example of a confusion matrix (count-based)

Estimated LGD

Realized LGD LGD 1 LGD 2 LGD 3 LGD 4 LGD 5 LGD 6 Total

LGD 1 4 0 0 1 1 0 6

LGD 2 2 8 1 1 0 0 12

LGD 3 1 12 2 3 0 0 18

LGD 4 0 0 1 2 0 0 3

LGD 5 0 5 1 2 2 0 10

LGD 6 0 0 0 1 0 0 1

Total 7 25 5 10 3 0 50

This approach is called ’count basis’ by Li et al. (2009). The other approaches they have
described are intuitively the same, but might require more information such as EAD or ob-
served losses values, which are defined respectively as the ’total EAD basis’ and ’observed
loss basis’ approach. In the ’total EAD basis’ approach one sums the total EAD for each
cell. If the observation in the cell (LGD 6, LGD 4) is again taken as an example, the value
for that cell in the ’total EAD basis’ approach would be e11.100.000. This is 6.09 % of the
total EAD for the whole portfolio (e182.400.000), while it only represents 2% of all the ob-
servations (50). If the EADs are more or less equal in size the ’count-basis’ approach would
be appropriate, but in our example (also indicated by the box-and-whisker plot in Fig. 2.5)
the exposure at risk might be underestimated as some miss-classifications represent a large
risk.

The ’observed loss basis’ approach uses the realized losses instead of the EAD. This ap-
proach illustrates the impact of particular miss-classifications. The realized loss of the in-
stance in the cell (LGD 6, LGD 4) is e10.989.000, which is 14.75% of the total losses
(e74.488.650). The realized losses are obtained by multiplying the LR with the EAD. This
shows that the impact of this miss-classification is quite severe in our example portfolio.

Li et al. (2009) argue that, besides the overview the confusion matrix gives of the model’s
performance, there still is a need to capture the information contained by the confusion ma-
trix in a single metric. This metric allows a comparison between LGD models. They suggest
two metrics as a measurement, namely the ’percent matched’ and ’Mean Absolute Deviation
(MAD)’. The metric percent matched indicates how many LGDs are correctly estimated to
belong in the realized bucket. Looking to the confusion matrix in Table 2.3, this means that
all the values on the diagonal are the correctly estimated values. The score on this metric
is the sum of all the elements of the diagonal divided by the total number of elements in
the data set. This is defined in Eq. 2.9 for which k is defined as the number of buckets
(thus leading to a k-by-k confusion matrix), ai,j as a matrix cell (thus ai,i is the element on
the diagonal), and n represents the total number of observations in the data set. In sample
confusion matrix (see Table 2.3) 18 out of the 50 elements are on the diagonal, which leads
to a performance score of 36%.

Percent Matched =

∑k
i=1 ai,i
n

(2.9)
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The other performance metric suggested by Li et al. (2009) is the ’Mean Absolute Error
(MAE)’, which takes into account how ’bad’ the miss-classification was. They argue that a
classification for a neighboring bucket can be considered as less severe than a classification
of bucket that is further away from the actual realized bucket. For instance a classification
in the cell (LGD1, LGD2) is ’less’ wrong than a classification in the cell (LGD1, LGD6).
The standard ’percent matched’ approach does not take this into account. In order to take
the ’severeness’ of a miss-classification into account they compute the absolute deviation
between the buckets. In order to do so they have determined weights for each bucket, which
can be found in Table 2.4. These weights can of course be set differently.

Table 2.4: Weights for the MAD as found in Li et al. (2009)

Estimated LGD

Realized LGD LGD 1 LGD 2 LGD 3 LGD 4 LGD 5 LGD 6

LGD 1 0 0.1 0.2 0.35 0.575 0.825

LGD 2 0.1 0 0.1 0.25 0.475 0.725

LGD 3 0.2 0.1 0 0.15 0.375 0.625

LGD 4 0.35 0.25 0.15 0 0.225 0.475

LGD 5 0.575 0.475 0.375 0.225 0 0.25

LGD 6 0.825 0.725 0.625 0.475 0.25 0

The absolute deviation is computed by multiplying the weight for each cell with the counted
number in each cell as defined by Eq. 2.10. The wi,j is the weight for the combination (i,j)
and ai,j is the number of elements in each combination (i,j).

ADi,j = wi,j · ai,j (2.10)

If the same weights used by Li et al. (2009) are used for the sample confusion matrix in
Table 2.3 then the result for all the absolute deviations can be found in Table 2.5. Li et
al. (2009) determines the MAD by dividing the sum of all absolute deviations by the total
number of estimations in the data set (see Eq. 2.11). For the sample data set this results
in 7.15 divided by 50, which equals 14.3%. The lower the MAD is, the better the model is in
correctly estimating the LGD of a loan.

MADCM =

∑
i,j ADi,j

n
(2.11)

This error measurement is also used by Bellotti & Crook (2008), but they do not include
weights and use the RR. In addition they use the ’Mean Square Error (MSE)’. They compute
these error measures for each paired observation (thus on an individual level), while Li et
al. (2009) computes the MAD via the confusion matrix, which gives different results. The
mathematical definitions for the MSE and MAD (or MAE) can be found in Eq. 2.12-2.13
respectively. R is the realized RR and P is the estimated RR, while m denotes the number
of observations (Bellotti & Crook, 2008).

MSE =
1

m

m∑
i=1

(Ri − Pi)2 (2.12)
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Table 2.5: Example of a confusion matrix (count-based)

Estimated LGD

Realized LGD LGD 1 LGD 2 LGD 3 LGD 4 LGD 5 LGD 6 Total

LGD 1 0 0 0 0.35 0.575 0 0.925

LGD 2 0.2 0 0.1 0.25 0 0 0.55

LGD 3 0.2 1.2 0 0.45 0 0 1.85

LGD 4 0 0 0.15 0 0 0 0.15

LGD 5 0 2.375 0.375 0.45 0 0 3.2

LGD 6 0 0 0 0.475 0 0 0.475

Total 0.4 3.575 0.625 1.975 0.575 0 7.15

MAD =
1

m

m∑
i=1

|Ri − Pi| (2.13)

More error measurements are available for the calibration of LGD models, but these will not
be covered within this study.7

2.6 Measuring Discriminatory Power

The approaches in Section 2.5 can be used to validate the accuracy of the LGD model or get
a quick grasp of the LGDs performance, but give less information about the discriminatory
power of a LGD model. A lot of statistical tools8 are available to assess the discriminatory
power of PDs, but for LGDs these are not always applicable. This section introduces possible
techniques to assess the discriminatory power of LGD models. As some techniques are
mainly used for the validation of PD models, these models are explained first from an PD
perspective, before the LGD approach is explained.

Cumulative Accuracy Profile

An approach that is used quite frequently is the Cumulative Accuracy Profile (CAP), which
has been described by Sobehart et al. (2000). It is also known as the Gini curve, Power
curve or Lorenz curve (BCBS, 2005). For explanatory purposes the CAP is first explained
for PD models and Section 2.7 elaborates how it can be applied for LGD models, which is
the current approach of the bank for measuring discriminatory power of LGD models. The
CAP term used in Sobehart et al. (2000) represents the cumulative probability (of going into
default) for the entire population. The method is explained via an example. Suppose that the
following data from a PD model is available (see Table 2.6). The PD score is the expected
probability that a debtor will go into default, while the binary score of 0 or 1 reflects whether
the loan actually went into default (if the value is 1, then the loan defaulted).

7An overview can be found in the paper of Loterman et al. (2012), who tests various regression techniques
for the modelling and predicting of LGDs.

8An extensive overview can be found in Section III in BCBS (2005) written by Tasche, D.
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Table 2.6: Example data for determining the Gini of a PD model.

PD Score Default

0.10 0

0.15 0

0.20 1

0.25 0

0.30 1

0.35 1

0.40 0

0.50 0

0.55 1

0.60 1

The CAP exists out of three curves, namely the perfect model curve, the rating model curve
and the random model curve. The perfect model is a model that has perfect discriminatory
power, which means that you can exactly separate the defaults from the non-defaults. The
curve is constructed by plotting for each fraction of the population (%) the cumulative amount
of defaults as a percentage relatively to the total amount of defaults in the population. As
the perfect model perfectly separates defaults from non-defaults all the defaults are correctly
’predicted’. In order to construct the perfect model array is created, which first describes all
the default cases and then the non-default cases. Please note, that the PD scores from the
model are for the perfect model irrelevant. For the example, the following array is obtained:

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0] (2.14)

The curve is constructed by computing the cumulative defaults for each fraction of the pop-
ulation. Suppose that n is the size of the population and m is the number of defaults in the
population. Let i be the position in the array in 2.14 and ai the score. For the integers 1 till k
with k equal to the population size each point of the curve is constructed via 2.15.

(X,Y ) = (
i

n
,

∑k
i=1 ai
m

) (2.15)

Thus, for the example the following points in Table 2.7 construct the perfect model CAP
curve.

The curve of the rating model is quite similar only that the actual PD values for each obser-
vation are used for the ranking. Each observation is ranked based on the PD score from
highest to lowest (thus from highest to lowest probability to go into default). The following
array for the rating model can be obtained for the example:

[1, 1, 0, 0, 1, 1, 0, 1, 0, 0] (2.16)
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Table 2.7: Coordinates Perfect Model
CAP curve.

Fraction of
Population
(%)

Cumulative
Defaults (%)

0.10 0.20

0.20 0.40

0.30 0.60

0.40 0.80

0.50 1

0.60 1

0.70 1

0.80 1

0.90 1

1.00 1

Table 2.8: Coordinates Rating Model
CAP curve.

Fraction of
Population
(%)

Cumulative
Defaults (%)

0.10 0.20

0.20 0.40

0.30 0.40

0.40 0.40

0.50 0.60

0.60 0.80

0.70 0.80

0.80 1

0.90 1

1.00 1

Thus, the points in Table 2.8 construct the rating model CAP curve (similar to the points of
the perfect model). The random model is simply a 45◦ line trough the origin and the point
(1,1). In Fig. 2.6 the CAP curves for the example are shown. If the PD model is accurate
the CAP curve will be concave and will have a relatively high slope at the start of the curve,
which will decline towards zero.

Figure 2.6: Example of a CAP Curve. Figure 2.7: Surfaces for AR.

From these curves it is possible to derive the Accuracy Ratio (AR). The ratio is derived from
the area enclosed by the random model and the rating model (model CAP curve) divided
by the area enclosed by the random model and the perfect model (ideal CAP curve). The
value of the AR will lie between 0 and 1, with a value near 0 means that the model has lim-
ited discriminatory power and the closer it is to 1 the more it represents the discriminatory
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power of the perfect model. Suppose A is the area between the perfect model curve and the
random model curve (light plus dark gray area in 2.7), while B is the area between the rating
model curve and random model curve (dark grey area in 2.7), then the AR is computed via
Eq 2.17. For the example used the AR equals 44%.

AR =
B

A + B
(2.17)

Receiver Operating Characteristic

A concept that is closely related to the CAP curves is the Receiver Operating Character-
istic (ROC). The ROC curve is constructed by using two distributions of rating scores for
defaulting and non-defaulting debtors (BCBS, 2005).9 An example of possible distributions
for rating scores can be found in Fig. 2.8.

Figure 2.8: Possible distributions for rating scores as found in BCBS (2005).

A perfect model would be able to separate the two distributions completely, but in practice
it is more likely that they will overlap as is shown in Fig. 2.8 (BCBS, 2005). If you have
to find out which debtors will default in the next period, it is possible to introduce a cut-off
point C, which results in the classification of potential defaulters (rating score below C) and
non-defaulters, who have a rating score above C (BCBS, 2005). High PD scores express
the probability that a loan is likely to default, which typically if one uses credit risk scorecards
result in low scores. Loans with a low probability to go into default usually have high scores.
Thus, if only the PD values for each instance are available, the cut-off point represents a PD
score. If an instance has a PD value above the cut-off point it will be classified as a default
and if it has a lower PD value it will be classified as a non-default. The ROC is constructed
by computing the Hit Rates (HR) and False Alarm Rates (FAR), via Eq. 2.18-2.19. The HR
for each C is the percentage that the model correctly classifies as default, while FAR is the
percentage of non-default that has been wrongly classified as default given C.

HR(C) =
H(C)

ND
(2.18)

9Section III written by Tasche, D.
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FAR(C) =
F (C)

NND
(2.19)

In these equations H(C) are the correctly predicted number of defaults with the cut-off point
C, and ND is the total number of defaults in the portfolio. The F(C) is the number of non-
defaults that have been predicted to go into default by applying the cut-off point C, and NND

is the total of non-defaults in the sample (BCBS, 2005). The ROC curve is constructed by
taking various values for C (within the range of the rating scores), and computing the corre-
sponding HR(C) and FAR(C) values.

For the same data set used for the CAP curve it is possible to construct the ROC curve.
First the HR and FAR for various cut-off points need to be computed. The PD values from
Table 2.6 are taken as a cut-off point. The values 0 and 1 are taken as a cut-off point as
well. If the PD value of an instance is lower or equal than the cut-off point it is classified as
non-default, while higher than the cut-off point is classified as a default. The classifications
are compared to the realizations. If the classification is a default and the realization is a
default as well, then the instance is counted as a hit. If the classification is a default, but
the realization shows that the instance did not go into default, then it is counted as false. If
instance i is a hit then hi is 1 (0 otherwise) and fi is 1 if a non-default instance is classified
as default (0 otherwise). If n is the total number of instances in the data set the total sum of
hits and falsely classified instances is computed via Eq. 2.20-2.21. Table 2.9 contains the
results for each cut-off point for the example data in Table 2.6.

H(C) =

n∑
i=1

hi (2.20)

F (C) =

n∑
i=1

fi (2.21)

The values of hi and fi depend on the cut-off point C, which is a value between 0 and 1.
Suppose that we denote the outcome of whether a debtor i went into default or not with the
term ai for which the value 0 means that the debtor did not default, while the value 1 means
that the debtor defaulted. The estimated PD for debtor i is denoted with the term PDi. Then
via Eq. 2.22-2.25 we can determine the hit rates hi and false alarm rates fi for all debtors.

hi = 1 for ai = 1 and PDi > C (2.22)

hi = 0 for ai = 1 and PDi ≤ C (2.23)

fi = 1 for ai = 0 and PDi > C (2.24)

fi = 0 for ai = 0 and PDi ≤ C (2.25)

The resulting ROC curve for this particular example can be found in Fig. 2.9. Due to the
small data set used from the example this particular ROC looks blocky, but typically the ROC
curve for larger data sets will look more smooth. In order to quantify the ROC curve the Area
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Table 2.9: Example data for determining the ROC of a PD model.

C H(C) F(C) HR(C) FAR(C)

0.00 5 5 1.00 1.00

0.10 5 4 1.00 0.80

0.15 5 3 1.00 0.60

0.20 4 3 0.80 0.60

0.25 4 2 0.80 0.40

0.30 3 2 0.60 0.40

0.35 2 2 0.40 0.40

0.40 2 1 0.40 0.20

0.50 2 0 0.40 0.00

0.55 1 0 0.20 0.00

0.60 0 0 0.00 0.00

1.00 0 0 0.00 0.00

Under the Curve (AUC) is computed. Sometimes this is called the Area Under the Receiver
Operating Characteristic (AUROC), which is the same. The size of the AUC determines how
well the model performs (similar to the AR of the CAP) by the area under the rating model
curve. For the used example it is the grey area in 2.10. The AUC for the example data set is
72%.

Figure 2.9: Example of an ROC Curve. Figure 2.10: Surfaces for the AUC.

Engelmann & Tasche (2003) show that the AR is just linear transformation of the AUC as
is shown in Eq. 2.26. This means that the summary statistics of both the ROC and CAP
approach contain the same information (Engelmann & Tasche, 2003).

AR = 2 ·AUC− 1 (2.26)
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Generally, the AR or Gini is used in measuring the discriminatory power of LGD models.
As is seen from the LC curve, using the approach for constructing the CAP can be applied
to LGD models. This is not so obvious for the ROC curve as it uses binary values as an
input for constructing the hit and false alarm rates. Usually, estimated LGD scores are
continuous between 0 and 1 and not suitable to directly compute the hit and false alarm
rates. A transformation of the data is therefore required. Hlawatsch & Reichling (2010)
describe an approach to compute the ROC curve for a LGD model. For each observation
(credit) they split the EAD up in n equal sized portions. They determine for each portion of
a credit, whether it went into default or not and give it a binary value of 0 or 1 (similar to PD
models). For example if a credit has a realized LGD of 50% then the first half of the portions
would get a binary value of 1. This enables them to compute the hit and false alarm rates,
which form (if they are cumulated) the ROC curve.

Loss Capture Ratio

An approach that has been designed to measure the discriminatory power on the LGDs
ability to capture the portfolio’s final observed loss amount is the loss capture (LC) ratio de-
scribed by Li et al. (2009). As they point out it is very similar to the Cumulative Accuracy
Profile (CAP). For this approach three plots are relevant, namely the model (rating) loss
capture curve, ideal (perfect) loss capture curve and finally the random loss capture curve.
These curves are constructed in the same way as the curves for the CAP. The main differ-
ence is the data, which is for LGDs and the LR a (continuous) percentage of the EAD, while
for the CAP it is binary. An example of the LC curve can be found in Fig. 2.11. The LC ratio
is constructed similar to the AR via Eq. (2.17). The LC can be percentage weighted, which
simply uses the LGD and LR percentages as input, while it can also be EAD weighted, which
uses the LGD and LR multiplied with the respective EAD as input. The results between the
two approaches can differ especially if the portfolio is not-well balanced. In the remainder
of this thesis the percentage weighted approach for the LC ratio will simply be referred to as
AR as it essentially is the same. If the EAD weighted approach it is referred to as LC.

Figure 2.11: Example of an LC curve.
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Other Summary Statistics

Aside from these graphical approaches with a summary statistic other metrics exist to mea-
sure discriminatory power. This study considers the following:

• Pearson’s r

• Spearman’s ρ

• Kendall’s τb

Pearson’s r is the index of a linear correlation between two variables, which is described
extensively in Cohen et al. (2003). It is also called the Pearson Product Moment Correlation
coefficient. The index measures the linear correlation between two variables, which can vary
between -1 and 1. As both the estimated LGD and realized LGD are comparable scores no
linear transformation is required and we can use the raw score formula to compute r, as de-
scribed by Cohen et al. (2003). See Eq. 2.27 in which X can be for example the estimated
LGD, while Y can represent the realized LGD. A perfect model would mean that the score
for r is equal to 1 (perfect positive correlation). Pearson’s r assumes a linear relationship
between two variables, which are approximately normally distributed. Via a scatter plot the
linearity between two variables can be indicated and the data can be tested on normality.
LGDs and LR, however, generally do not have a normal distribution, which is shown in Chap-
ter 4. Via Eq. (2.27) the statistic can be computed for n pairs of X and Y.

rXY =
n
∑
XY −

∑
X ·

∑
Y√

[n
∑
X2 − (

∑
X)2][n

∑
Y 2 − (

∑
Y )2]

(2.27)

A simplification of Pearson’s r is Spearman’s ρ (or Spearman’s rank correlation test), which
only requires the ordinal position of each variable as input. It is a non-parametric test, which
does not make any assumptions on the underlying distributions of the variables. The dif-
ference between the respective ranking of a paired observation Xi and realization Yi (in
the case of LGDs) is di. This is done for all n pairs. Eq. 2.28 shows how the Spearman
rank correlation can be computed (as found in Cohen et al., 2003). In the case of a perfect
ranking for the observed and realized LGDs the index score equals 1. It should be noted
that this does not necessarily mean that the estimated and realized LGDs are the same as
the accuracy of the LGD model can be wrong, but still provide perfect discriminatory power
(Loterman et al., 2012).

ρ = 1− 6
∑
d2i

n(n2 − 1)
(2.28)

A different approach to measure discriminatory power is Kendall’s τb. This summary statis-
tic is a non-parametric measure of association, which can be computed by determining the
number of concordances and discordances in paired observations (PSU, 2016). Suppose
we have two paired observations, namely (LGDEST

i ,LGDREA
i ) and (LGDEST

j ,LGDREA
j ). LGDEST

is the estimated LGD, while LGDREA is the realized LGD (or LR). If the statements (1) or (2)
satisfy for two observations then a pair is concordant, if the statements (3) or (4) satisfy then
the pair is discordant (PSU, 2016).

(1) LGDEST
i < LGDEST

j and LGDREA
i < LGDREA

j
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(2) LGDEST
i > LGDEST

j and LGDREA
i > LGDREA

j

(3) LGDEST
i < LGDEST

j and LGDREA
i > LGDREA

j

(4) LGDEST
i > LGDEST

j and LGDREA
i < LGDREA

j

It is also possible that a pair is tied, which leads to statement (5).

(5) LGDEST
i = LGDEST

j or LGDREA
i = LGDREA

j

Via Eq. 2.29 the total number of pairs that can be constructed for n observations is com-
puted, which can be decomposed into five quantities (PSU, 2016). Eq. 2.30 shows this.
For this equation P represents the number of concordant pairs, Q the number of discordant
pairs, X0 if the pair is tied for the estimated LGDs, Y0 if the pair is tied for the realized LGDs
and (XY )0 if the pair is tied on both the estimated and realized LGDs.

N =
1

2
n(n− 1) (2.29)

N = P +Q+X0 + Y0 + (XY )0 (2.30)

Once all variables are known, it is possible to compute Kendall’s τb, which is shown in Eq.
2.31.

τb =
P −Q√

(P +Q+X0)(P +Q+ Y0)
(2.31)

2.7 Current Approach

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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2.8 Conclusion

We set out to establish a general understanding of risk models and the challenges associ-
ated with the LGDs in particular. The equations for determining the regulatory capital (2.1 -
2.4) demonstrate that the LGD estimations have a huge impact. Wrong estimates can lead
to situations in which not all the allocated capital can absorb the potential risks or too much
capital is held, which leads to opportunity costs (e.g. the capital can not be lent out or used
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for other profitable projects). Estimating LGDs is, however, quite complex as it is dependent
on many factors. Therefore, it is important to validate the LGD model and assess its perfor-
mance. Various attributes of the LGD model can be tested, and this study focuses on the
discriminatory power. Various techniques can be used to measure discriminatory power and
Table 2.10 gives an overview of the techniques described in this study. The AR is the main
technique used at the bank for assessing the discriminatory power of an LGD model. Table
2.10 provides the answer to the first sub-question.

Table 2.10: Overview of techniques for measuring discriminatory power in this study.

Technique Description Range

AR The AR (or Gini is the summary statistic for the current
approach of the Rabobank for assessing discriminatory
power, which states how well a model is able to rank and
distinguish LGDs from ’worst’ to ’best’ compared to a model
that is able to perfectly predict the LGD.

[0, 1]

AR25, AR50
and AR75

The AR used in the remaining chapters refers to the sum-
mary statistic of the CAP curve for which realized LGDs are
transformed in binary values. It should not be confused with
the term AR used in the remaining chapters, which refers to
the summary statistic of the current approach used by the
bank.

[0, 1]

AUC The AUC is the summary statistic for the ROC curve, which
assesses the ability of a model to distinguish defaulted and
non-defaulted fractions of the EAD via a threshold value.

[0.5, 1]

LC ratio The LC ratio is the summary statistic for the LC curve,
which states how well a model is able to rank and distin-
guish (weighted) LGDs from ’worst’ to ’best’ compared to
the actual observed losses. Percentage-weighted it works
the same as the AR for LGD models.

[0, 1]

Pearson’s r Pearson’s r measures the linear correlation between two
variables. It assumes that the two variables are approxi-
mately normally distributed.

[-1, 1]

Spearman’s ρ Spearman’s ρ measures the relationship between the ob-
served and realized LGD via their respective ranking.

[-1, 1]

Kendall’s τb Kendall’s τb measures the association of observations by
counting the number of concordant pairs and discordant
pairs.

[-1, 1]
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Chapter 3

Implied Gini
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This chapter has the following outline:

Section 3.1: We describe the motive behind the development of the implied Gini.

Section 3.2: We describe how the implied Gini works and is determined. Furthermore, it
creates an overview of the underlying assumptions that have been made for
the implied Gini.

Section 3.3: We describe the relation with an approach to assess the potential discrimi-
natory power of PD models.

Section 3.4: We conclude with the answers to the sub-questions 2.1 and 2.2.

3.1 Roots of the Implied Gini

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

3.2 Relation with the Expected AR for PD Models

Before the implied Gini for an LGD model had been developed by the bank, a similar ap-
proach has been developed for PD models. This approach for PD models relies on fever

31
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assumptions and it is generally accepted that the ODR can be approximated via a binomial
distribution. Via a simulation approach the bank developed the so-called implied Gini for PD
models, which serves the same purpose as the approach that is developed for LGD models.
Research by Blochwitz et al. (2005) and Hamerle et al. (2003) show that similar results can
be achieved analytically. From the implied Gini for PD models the idea arose that something
similar could be done for LGD models.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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In Chapter 2 it is stated that the AR normally has a value between 0% and 100%. The
implied AR shows that achieving an AR of 100% for your PD model is not realistic even for
a model that correctly estimates the PD. The implied AR tells us the distribution of ARs we
might expected given that our model correctly estimates the PD for each bucket or rating.
In other words the ODR corresponds with the PD for each bucket or rating. Furthermore, it
is shown that each portfolio has its own distribution of ARs, which indicates that the implied
AR is portfolio dependent.

Let’s assume that a ’perfect’ PD model would be able to predict the right number of defaults
for each rating (e.g. if 100 observations are assigned to the rating of 1% then it is expected
that on average one default is observed). This also implies that the PD model holds ’perfect’
discriminatory power for the possible ratings as you are able to separate debtors in terms
of risk. In other words each PD corresponds with the ODR. The way in which the AR is de-
termined, however, assumes that if a model holds perfect discriminatory power all defaults
are given the ’worst’ PD estimation. Thus, if you rank from ’worst’ to ’best’ based on the
PD estimation the defaults and non-defaults are perfectly separated. It would mean that you
know in advance, which debtor is going to default, which is not realistic (then you would not
have given the loan). Thus, as it is highly unlikely that a perfect separation between defaults
and non-defaults is possible, we assume that a ’perfect’ model is a model where the PD
corresponds with the ODR in each bucket or rating.

It is possible that the ODR deviates x% from the PD in a bucket. If each bucket or rating has
the same deviation (thus ODR deviates x% from the PD for each bucket or rating) then the
discriminatory power is expected to be same compared to the ’perfect’ model as the relative
ranking remains intact.

Whether a debtor goes into default or not can be viewed as process that follows a binomial
distribution for which the PD of the debtor is the probability of ’success’ (default) or ’failure’
(non-default). Thus, we can describe the process of whether debtor Xi goes into default as
a random variable, which follows a binomial distribution (3.1) for which PDi is the respective
PD of debtor i for i = 1, 2, ..., n.

Xi ∼ B(1,PDi) (3.1)

For the bucketing approach each Xi is assigned to a bucket j if PDi > PDj−1 and PDi ≤
PDj . PDj represents the probability of default for each bucket j, while PD0 equals 0. For
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the bucketing approach used at the bank j = 1, ..., 20. Each debtor i assigned to bucket j
gets as an estimate PDj . To make this distinction clear we define this process as a random
variable Yi, which denotes that an individual debtor i assigned to bucket j goes into default
or not as binomial distribution with PDj (3.2).

Yi ∼ B(1,PDj) (3.2)

For each random variable Yi we draw from a ’random experiment’, which decides whether
debtor i went into default or not. This results in a data set, which consists of paired obser-
vations with PDi which is the original estimate of debtor i and ai which represents whether
debtor i defaulted (ai = 1) or not (ai = 0). For this data set it is possible to compute an AR.

This data set represents one experiment, and in order to construct the implied AR multiple
experiments are conducted. For each experiment an AR is computed, which results in a
distribution of ARs, which we denote as the implied AR. The average of the distribution is
denoted as the sample mean AR, for which an analytic approach is addressed at the end of
this section. Hence, each AR resulting from an experiment k is denoted as Zk. The sample
mean AR can be computed via (3.3), while the implied AR for the PD model can be made
visible by plotting all k ARs in a histogram.

Z̄ =
1

k

∑
Zk (3.3)

A rule of thumb is that for the range ±3σ of the mean almost all possible outcomes of a
distribution (for a normal distribution 99,73%) are included. Therefore, the sample variance
should be computed via (3.4).

s2 =
1

k − 1

∑
(Zk − Z̄)2 (3.4)
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The implied AR is very dependent on the ratings and the number of ratings are used in the
PD model. Furthermore, the distribution of the debtors over the ratings also heavily influ-
ence the resulting implied AR. This is illustrated via an example used by Blochwitz et al.
(2005). In Table 3.1 we have illustrated an hypothetical PD model, which assign debtors to
two different ratings, namely 1% and 5%. We have made a split between a development
sample and a validation sample.

Suppose that the model performs accurately and is calibrated sufficiently. For that case the
observed number of defaults corresponds with the estimated probabilities (see Table 3.2).
For both the development and validation sample it is possible to determine the indicative
benchmarks. For the development sample we would expect on average an AR of 37.12% for
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Table 3.1: Assigned debtors per rating and sample.

PD 1% PD 5%

Development Sample 800 600

Validation Sample 200 400

the bounds (16.92%, 57.33%). The validation sample, however, has a different expectancy
and indicative benchmarks. The implied AR for validation sample is 25.15% within the range
(5.96%, 44.36%).

Table 3.2: Assigned debtors per rating and sample.

Defaults PD 1% Defaults PD 5%

Development Sample 8 30

Validation Sample 2 20

Figure 3.1: The histogram of resulting ARs
for the development sample.

Figure 3.2: The histogram of resulting ARs
for the validation sample.

This example shows that the underlying estimation model as well as the proportion of as-
signed debtors to a rating determine the implied AR. Therefore, it is difficult to make com-
parisons on models based on the AR. This is also noticed and argued by Blochwitz et al.
(2005). They argue that the AR is non-comparable in the following situations:

1. Different portfolios, same time period.

2. Same portfolio, different time periods.

3. Different portfolios, different time periods.

They state, however, that it is possible to make comparisons between rating models, which
have the same underlying portfolio from the same time period. In practice this is meaningful
when multiple rating models are developed for the same portfolio and the performances of
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Table 3.3: Implied AR for different calibrations.

ODR1

ODR2

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.01 0.00 0.17 0.27 0.33 0.37 0.40 0.43 0.45 0.47 0.48

0.02 -0.16 0.00 0.10 0.18 0.23 0.27 0.31 0.34 0.36 0.38

0.03 -0.23 -0.10 0.00 0.07 0.13 0.18 0.22 0.25 0.28 0.31

0.04 -0.28 -0.16 -0.07 0.00 0.06 0.11 0.14 0.18 0.21 0.24

0.05 -0.31 -0.21 -0.13 -0.06 0.00 0.05 0.09 0.12 0.16 0.18

0.06 -0.33 -0.24 -0.16 -0.10 -0.04 0.00 0.04 0.08 0.11 0.14

0.07 -0.35 -0.26 -0.20 -0.14 -0.09 -0.04 0.00 0.03 0.07 0.10

0.08 -0.36 -0.28 -0.22 -0.17 -0.12 -0.07 -0.03 0.00 0.03 0.06

0.09 -0.37 -0.30 -0.24 -0.19 -0.15 -0.10 -0.07 -0.04 0.00 0.03

0.10 -0.38 -0.32 -0.26 -0.22 -0.17 -0.13 -0.09 -0.06 -0.03 0.00

those ratings models need to be compared. Furthermore, it is argued by Blochwitz et al.
(2005) that it is not meaningful to describe the quality of the rating system solely via its dis-
criminatory power.

In our example from Table 3.2 the two populations cannot be compared as the two data sets
result in non-comparable distributions over the ratings. In order to check whether the popula-
tion distribution over the ratings are comparable it is possible to use the so-called Population
Stability Index (PSI). If we denote each possible rating as i, the two populations we wish
to compare as P1 and P2 with respective number of observations n and m, it is possible to
compute the relative frequency of P1 and and P2 denoted respectively as F1,i and F2,i for
each rating i via Eq. (3.5). The observed frequencies of P1 and and P2 in rating i is denoted
respectively as ni and mi.

F1,i =
ni
n

and F2,i =
mi

m
(3.5)

If the relative frequencies for each rating have been determined, it is possible to compute
the PSI value via Eq. (3.6).

PSI =
∑(

(F1,i − F2,i) · ln
F1,i

F2,i

)
(3.6)

According to the internal guidelines of the bank the PSI is considered to be ’good’ if it is
less than 0.1. It is considered to be ’medium’ of it lies between 0.1 and 0.25, while if it is
larger than 0.25 it is considered to be ’bad’. For our example the PSI value is 0.2335, which
is close to being classified as ’bad’ according to internal guidelines. It illustrates that there
is a major shift within the population and hence that the two populations are non-comparable.

Besides that one should carefully check whether the populations are comparable, one should
also take into account that the ODR of a rating can be different compared to the PD. If the
ODR is different it can affect the implied AR, and therefore discriminatory power cannot be
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seen independently from calibration. This is illustrated with the example model described in
Table 3.2. We denote the ODR of rating i as ODRi. In Table 3.3 the different expected ARs
can be found if the calibration is different than the estimated PDs. For example if the first
rating has an ODR of 2% (PD was 1%) and the second rating has an ODR of 8% (PD was
5%) then the implied AR is 34%.

If it turns out that the PD model is not correctly calibrated, then the indicative benchmarks
for measuring discriminatory power should also be re-calibrated.

Analytic Approach for the Expected AR of a PD Model

Previously, we discussed an simulation approach to determine the implied AR for PD mod-
els. In this subsection we describe the analytic approach to determine the expected AR of
a perfectly calibrated model, which has been proven by Hamerle et al. (2003). This analytic
approach to determine the expected AR corresponds with the mean of the implied AR.

Hamerle et al. (2003) show that the AR can be notated as the following:

AR =
1

1− λ̄
·Gini (3.7)

For which λ̄ is described as the average default probability of the data set. The term Gini is
defined as:

Gini = 1 +
1

N
− 2

N2 · λ̄
· (N · λ1 + (N − 1) · λ2 + ...+ λN ) (3.8)

where λ1, ..., λN are the ordered default probabilities from the lowest to the highest and N is
total number of debtors in the data set.

If we compare the outcomes with the results of the average value from the implied AR
approach, we see that they are quite close. For the example from Table 3.1 and 3.2 we see
that the analytic AR is respectively 37.10% and 25.17%, while the averages from the implied
AR are respectively 37.12% and 25.15%.

Practical Use

Under the assumption that a rating model performs sufficiently if the PD estimates for each
rating correspond with the ODR, then it is possible to determine the expected and implied
AR. The suggestion is to check whether the realized AR of a model falls within the ranges of
the implied AR, which are used as indicative benchmarks. However, it is required to check
whether the model is calibrated correctly, which means that the ODR corresponds (statisti-
cally) with the PD for each rating. If the ODR does not correspond with the PD estimates
for each rating the resulting AR is not comparable with the indicative benchmarks and the
causes for the difference(s) need to be researched. If a model is re-calibrated, then the
indicative benchmarks should be re-calibrated as well.

It is also indicated by Blochwitz et al. (2005) that it is only meaningful to compute the dis-
criminatory power (via the AR) if the underlying portfolio and time period is the same. Hence,
for the development of new PD models it is meaningful to compare different modeling ap-
proaches via the AR in order to see which one has more discriminatory power. Furthermore,
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if two populations are similar in terms of used PD estimates (and the ODR) and population
sizes, then it is possible to compare these models as well, although the data set might not
be exactly the same.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

3.3 Conclusion
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Chapter 4

Validity Tests

This chapter tests the validity of all the assumptions that have been made for the construction
of the implied Gini as it is proposed by the bank in order to assess the maximum achiev-
able discriminatory power of an LGD model. As most of the assumptions are related to the
assumption that a loss distribution follows a Beta distribution, we firstly discuss the charac-
teristics of this distribution in detail and the role of the distribution within credit modelling.
Secondly, the tests for fitting data to a specific distribution are formulated as well as tests
to check whether data comes from a specific distribution. These tests are used to test the
assumptions made by the bank. Finally, the test results are discussed and a verdict on the
validity of the implied Gini is given. In addition, it is implicated that making adjustments to
the banks approach for assessing the maximum achievable discriminatory power of an LGD
model is difficult in its current form.

It should be noted that not each assumption can be tested in a straightforward matter. It that
case a theoretical assessment is made, which demonstrates whether an assumption can be
discarded beforehand or more research is required.

This chapter has the following outline:

Section 4.1: We discuss the characteristics of the Beta distribution.

Section 4.2: We discuss typical loss distributions used in the modelling of LGDs.

Section 4.3: We outline which tests are used in the validity test of the Implied Gini.

Section 4.4: We present the test results for each underlying assumption of the implied
Gini.

Section 4.5: We discuss the implication of the test results and conclude with a verdict on
the validity of the current approach of the implied Gini.

4.1 The Beta Distribution

As it is discussed in Chapter 3, the implied Gini mainly relies on the assumption that the
loss distribution of a portfolio is beta distributed. The use of a beta distribution to estimate
recoveries or losses (via LGDs) is not uncommon in the credit risk modelling domain. It is,

38
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for example, used within commercial applications such as LossCalc, which is developed by
Moody’s (Gupton & Stein, 2002). The beta distribution is convenient in the estimation of
LGDs as a realization typically is between zero and one and due to the two parameters of
the distribution a variety of shapes can be modelled.

The two-parameter probability density function of the beta distribution with the shape param-
eters α and β is defined via Eq. (4.1) (Owen, 2008).

f(x|α, β) =
Γ(α+ β)

Γ(α) · Γ(β)
· xα−1 · (1− x)β−1, for 0 ≤ x ≤ 1, α > 0, β > 0 (4.1)

From Eq. (4.1) it can be seen that the beta distribution is modelled via multiple gamma
functions, which are defined as Γ(·). A Gamma function is defined via Eq. (C.1) (Freeden &
Gutting, 2013).

Γ(x) =

∫ ∞
0

e−t · tx−1 · dt, for x > 0 (4.2)

Johnson & Beverlin (1970) defined the beta distribution via Eq. (4.3), which includes a beta
function defined via Eq. (4.4).

f(x|α, β) =
xα−1 · (1− x)β−1

B(α, β)
, for 0 ≤ x ≤ 1, α > 0, β > 0 (4.3)

B(α, β) =

∫ 1

0
tα−1 · (1− t)β−1 · dt, for α > 0, β > 0 (4.4)

The beta function is equal to a ratio of gamma functions, which is described in Eq. (4.5).

B(α, β) =
Γ(α) · Γ(β)

Γ(α+ β)
(4.5)

Johnson & Beverlin (1970) define the expected value and the variance of the beta distribu-
tion via the two parameters of the distribution. These are defined via Eq. (4.6) and Eq. (4.7).

E(x) =
α

α+ β
(4.6)

V ar(x) =
α · β

(α+ β)2 · (α+ β + 1)
(4.7)

According to Owen (2008) the shape of the beta distribution can change dramatically with the
changes of the parameters. Owen (2008) lists a variety of possible shapes for the distribution
for different values of the parameters:

(1) α = β: the distribution is unimodal and symmetric about 0.5. A special case is when
α = β = 1, which is equivalent to the Uniform (0,1) distribution.
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(2) α > 1 and β > 1: the distribution is unimodal and skewed. The single mode of the pdf
as x = (α − 1)/(α + β − 2). The single mode defines the value at which the pdf attains
its maximum value (highest probability). The distribution becomes positively skewed if β
is greater than α, while it becomes negatively skewed if it is the opposite.

(3) α = β < 1: the distribution is U-shaped and symmetric about 0.5.

(4) α < 1 and β < 1: the distribution is U-shaped and skewed. The anti-mode (the lowest
point of the pdf) is defined as x = (α− 1)/(α+ β − 2).

(5) α > 1 and β ≤ 1 the distribution is strictly increasing and it is J-shaped without having a
mode or anti-mode. If the values are the opposite (α ≤ 1 and β > 1) then the distribution
is strictly decreasing and has a reverse J-shaped distribution.

In Fig. 4.1 and Fig. 4.2 some examples of the possible shapes as defined by Owen (2008)
can be found.

Figure 4.1: Examples of different beta distributions (1).

Fig. 4.1 and Fig. 4.2 illustrate that a lot of possible shapes for the beta distribution can be
obtained. The data of the beta distribution is measured on the open interval (0, 1). Ospina
& Ferrari (2010) argue that if the data set contains a lot of zeroes and/or ones continuous
distributions are not suitable for modelling the data. Unfortunately, the inclusion of zeroes
and ones is frequently the case when assessing the LRs of a loss distribution. They pro-
pose to use a mixed continuous-discrete distribution to model the data that is observed on
the intervals [0,1), (0,1] or [0,1]. If the data contains zeroes or ones (but not both) then they
use a mixture of two distributions, namely a beta distribution and a deterministic distribution.
The deterministic distribution is modelled in a known value c, where c = 0 or c = 1, which
depends on the data set. If we define q as the mixture parameter, then it is possible to define
the corresponding probability density function as follows:
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Figure 4.2: Examples of different beta distributions (2).

bic(x|q, α, β) =

q, if y = c

(1− q) · f(x|α, β), if x ∈ (0, 1)

(4.8)

A special case that Ospina & Ferrari (2010) describe is the case if the data contains zeroes
as well as ones. For that particular situation they propose to use a mixture between the
beta distribution and the Bernoulli distribution. The probability mass function of the Bernoulli
distribution with probability p is defined via Eq. (4.9).

f(x|p) = px · (1− p)1−x, for x ∈ {0, 1} (4.9)

Ospina & Ferrari (2010) describe this particular case as the zero-and-one-inflated beta dis-
tribution and the probability density function of this particular case is defined via the following
equation:

beinf(x|p, q, α, β) =


q(1− p), if x = 0

pq, if x = 1

(1− q) · f(x|α, β), if x ∈ (0, 1)

(4.10)
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Parameter Estimation

For the implied Gini it is necessary to determine whether the usage of the general structure
of the beta distribution is correct. A mixture model such as the inflated beta distribution or
perhaps a totally different probability distribution might describe the nature of current data
sets better. Furthermore, it is necessary to determine an approach for the estimation of the
parameters of the (inflated) beta distribution. Ospina & Ferrari (2010) recommend to use
the maximum likelihood estimation (MLE), while Owen (2008) researched the impact of dif-
ferent estimation methods in which she among others concluded that the MLE and method
of moments (MOM) perform sufficient in most situations. However, she states that MOM is
more straightforward than MLE. A further complication is that MLE is quite sensitive. In her
case the MLE was among others outperformed by the MOM in the case the sample size was
small. She argues that it would have likely done fine if it was not required to use an iterative
method to find estimators for α and β. She uses the Newton-Raphson method, which is an
iterative approach for root finding. Iterative approaches are quite sensitive to the starting
values for determining the root to which it converges.

Another approach is estimating the parameters via a chi-square function. The idea is to
minimize the chi-square value for different combinations of parameters applied in the beta
distribution. Berkson (1980) (re-)introduced this idea for different chi-square functions. Berk-
son (1980) suggests to use it as an approach to determine estimators for a probability dis-
tribution in some cases, but it is disputed whether it always provides better estimators than
the MLE by other academics. By applying the chi-square function it is possible to retrieve
estimators for the two parameters of the beta distribution. Via a simulation we can compute
the chi-square value for each parameter combination under consideration. The minimum
chi-square value can be considered to be estimators of a fitted beta distribution for a partic-
ular data set of losses.

As MOM is not outperformed by MLE in Owen (2008) and is more straightforward, we use
MOM and the minimum chi-square value to estimate parameters for a beta distribution. The
data sets for which we estimate parameters range have a minimum of 200 data points. The
estimation of the parameters for a beta distribution do not tell whether the data actually
follows a beta distribution. Therefore, we need to apply a goodness-of-fit test to check
whether the data is actually beta distributed. These tests are discussed in Section 4.3.

Method of Moments

For the method of moments it is only required to have the sample mean and variance, which
are easily obtained from the data. The moment generating function of order t for a beta
distribution is defined as follows (Owen, 2008):

E(Xt) =
Γ(α+ t)Γ(α+ β)

Γ(α+ β + t)Γ(α)
(4.11)

Then it is possible to derive the first and second moment, namely:

E(X) =
Γ(α+ 1)Γ(α+ β)

Γ(α+ β + 1)Γ(α)
(4.12)



CHAPTER 4. VALIDITY TESTS 43

E(X2) =
Γ(α+ 2)Γ(α+ β)

Γ(α+ β + 2)Γ(α)
(4.13)

In order to solve these equations we have to make use of an useful property of the gamma
function. In Gowers et al. (2008) it is shown that the gamma function has the following
property:

Γ(x) = (x− 1) · Γ(x− 1), for all x > 1 (4.14)

Evidently, we can derive Γ(x+1) and Γ(x+n) via integration by parts for which the complete
derivation as shown in Appendix C. The statements for Γ(x + 1) and Γ(x + n) are used to
solve Eq. (4.12) and Eq. (4.13). The results are the first and second moment of the moment
generating function:

E(X) =
α

α+ β
(4.15)

E(X2) =
α · (α+ 1)

(α+ β + 1)(α+ β)
(4.16)

In Appendix D the use of the statements for Γ(x+ 1) and Γ(x+n) for determining Eq. (4.15)
and Eq. (4.16) is shown. From these moments it is possible to determine a statement for
the variance in terms of the α and β parameter for the beta distribution. We know that:

Var(X) = E(X2)− (E(X))2 (4.17)

This means that the variance of a beta distribution can be determined via the parameters as
follows:

Var(X) =
αβ

(α+ β)2(α+ β + 1)
(4.18)

Owen (2008) shows that the parameters α and β can be rewritten into terms of the sample
mean and the sample variance. We denote the sample mean as X̄ and the sample variance
is determined via Eq. (4.19) for the population X1, X2, ..., Xn with n instances.

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 (4.19)
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Owen (2008) determined that the estimators for the beta distribution’s parameters via the
method of moments in terms of the sample mean and the sample variance are the following:

α̂MOM = X̄ ·
(
X̄ · (1− X̄)

S2
− 1

)
(4.20)

β̂MOM = (1− X̄) ·
(
X̄ · (1− X̄)

S2
− 1

)
(4.21)

Pearson’s Chi-Squared Test

Law (2007) states that the chi-square test is one of the oldest goodness-of-fit tests. He states
that the chi-square test can be thought of as a more formal comparison of a histogram with
the fitted density or mass function. In order to estimate parameters for the beta distribution,
we compute the test statistic of Pearson’s chi-squared test for a variety of parameter α and β
combinations. The minimum test statistic achieved for these tests can be considered as the
parameter combination that is the best fit with the data (on the assumption that the data is
beta distributed). Solely, the determination of the minimum test statistic does not tell whether
the data is actually beta distributed. In order to test whether the estimated parameters that
lead to the minimum test statistic are actually beta distributed, we can compare these values
against the critical value from the chi-squared distribution, which depends on the df degrees
of freedom and confidence interval. The minimum chi-squared statistic and critical value
are, however, very dependent on the number of bins and outliers in the data set. Alternative
approaches to test the estimated parameter combinations on which we elaborate in Section
4.3.

Suppose we would like to find the minimum test statistic for a sample data set (S). S consists
of n random variables, which we define as X1, X2, ..., Xn. We hypothesize (our null hypothe-
sis) that these random variables follow a beta distribution function F̂ with parameters α̂ and
β̂. Hence, our null hypothesis is:

H0: The Xi’s are independent and identically distributed random variables distributed via
F̂ (x|α̂, β̂).

For the purpose of minimizing the test statistic we vary the parameters α̂ and β̂ in predefined
ranges and step sizes. It should be noted that for the purpose of the parameter estimation
we do not determine whether the null hypothesis should be rejected.

In order to compute the chi-square test statistic it is necessary to divide the entire range
of the fitted distribution into k adjacent intervals, namely [a0, a1), [a1, a2), ..., [ak−1, ak) (Law,
2007). Each observation is then tallied for each interval (Law, 2007):

Nj = number of X ′js in the jth interval [aj−1, aj), for j = 1, 2, ..., k (4.22)

The next step is to determine the expected proportion pj of the Xi’s that would fall in the j th
interval if a sample from the fitted distribution would have been used (Law, 2007):
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pj =

∫ aj

aj−1
f̂(x|α̂, β̂) · dx (4.23)

In Eq. (4.23) f̂ is the probability density function of the fitted distribution. Law (2007) de-
scribes that the test statistic can be determined via:

χ2 =

k∑
j=1

(Nj − npj)2

npj
(4.24)

As described in Berkson (1980) there are multiple approaches for determining a chi-square
test statistic, but for the estimation of the parameters via a chi-square function we limit our-
selves to the approach developed by Pearson. In Berkson (1980) the resulting estimators
via different approaches varied little. The main difficulty is to find appropriate interval lengths
with sufficient observations. A rule of thumb is that each interval should at least contain five
observations. If insufficient observations are present within an interval then intervals should
be combined.

4.2 Loss Distributions for LGD Estimation

The choice to use the beta distribution for estimating a typical loss distribution is not un-
common. We addressed that normally the beta distribution is bounded on the interval (0, 1),
which makes it convenient to simulate an LGD or a RR. The basic assumption is of course
that you can either lose nothing (LGD = 0) or lose the total value of the outstanding credit
(LGD = 1). However, from practice we have seen that this is not always the case as values
outside the interval of the beta distribution can occur. Nevertheless, the use of the beta
distribution is generally accepted for estimating LGDs as the beta distribution can adapt to a
variety of shapes.

The use of the beta random variables for loss estimation is reflected in practice. LossCalc,
which is Moody’s model for predicting LGDs for bonds, loans, and preferred stock, assumes
that the actual distribution of recoveries is best reflected by a beta distribution (Gupton &
Stein, 2002). However, a variety of distribution and techniques are used to model losses
and recoveries, which not always rely on the beta distribution. Frye (2000) for example
assumes that the recoveries are dependent on the state of the economy and normally dis-
tributed.10 As the normal distribution can take on negative values it might not always be
convenient for the estimation of LGDs. Huang & Oosterlee (2011) reflect on extensions that
can cope with the (in principal) nonnegativity of LGDs found in the literature. They conclude,
however, that those models do not have the convenient economic interpretation of the pa-
rameters as in Frye (2000) and the models require that the transformed LGD is symmetric

10The inclusion of systematic risk and the state of the business cycle allows the computation of the ’downturn’
LGD, which is a value that should reflect the occurring losses during stress scenarios or a downturn. Calabrese
(2014) assumes that an LGD is a mixture of an expansion and recession (loss) distribution and that both dis-
tributions are distributed via a mixture of a Bernoulli random variable and a beta random variable (inflated beta
distribution). We do not cover downturn LGD estimation as it is outside the research’s scope.
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and homoskedastic, which sometimes is contradicted by with empirical studies. Therefore,
Huang & Oosterlee (2011) propose to use generalized beta regression (GBR) models for
modelling LGDs (with the inclusion of systematic risk) for credit portfolio losses, for which
the assumption is made that an LGD always is (conditionally) beta distributed.

Although models found in literature frequently rely on the beta assumption for LGD estima-
tion, there are implications that the recovery distributions (and therefore loss distributions)
are not beta distributed. Renault & Scaillet (2004) researched the nonparametric estimation
of the recovery or loss distribution of defaulted bonds via the beta kernel approach. They
conclude that (against common practice) the recovery distribution is not beta distributed.

If Xi, . . . , Xn is a random sample with unknown probability density function f on the unit
interval [0,1], then the beta kernel estimator of f at point x is defined as follows (Renault &
Scaillet, 2004):

f̂(x) =
1

n

n∑
i=1

K

(
Xi,

x

b
+ 1,

(1− x)

b
+ 1

)
(4.25)

The asymmetric kernel K(·) the probability density function of the beta distribution, which is
defined in Eq. (4.1). The variable b is called the bandwidth and functions as a smoothing
parameter (Renault & Scaillet, 2004). Chen (1999) has determined that the optimal band-
widths are O(n−2/5) for beta kernel estimators. Renault & Scaillet (2004) apply a rule of
thumb to determine the bandwidth. They multiply the standard deviation of the empirical
distribution of the observed data with n−2/5.

Calabrese & Zenga (2010) propose to consider the recovery rate as a mixed random variable
and to estimate the density function by a mixture of beta kernels estimators. A mixed random
variable is simply a random variable that is a mixture between a Bernoulli random variable
and a continuous random variable X on the unit interval (Calabrese & Zenga, 2010). An ex-
ample of a mixed random variable is a draw from the inflated beta distribution as described
by Osipina & Ferrari (2010), which has beta distributed continuous variable. Calabrese &
Zenga (2010) define the mixture of beta kernels estimator as:

f̂(x) =
1

n

n∑
i=1

K

(
x,
Xi

b
+ 1,

(1−Xi)

b
+ 1

)
(4.26)

Similar to Renault & Scaillet (2004), Calabrese & Zenga (2010) find that, although the end-
points of the data set are removed (the zeros and ones), the estimated probability function
of their data set cannot be replicated by the beta density function.

Sometimes an LGD is not estimated directly, but the actual lossed amount is estimated.
In this case the distribution is not necessarily required to return estimates on the interval
[0,1], but it returns a value, namely the estimated losses of a loan. It is possible to compute
the LGD expressed as a percentage by dividing the estimated losses by the total value of
the loan. Tong et al. (2013) used such an approach to model residential mortgage losses.
They fit a zero adjusted gamma model to the loss distribution, which is similar to the inflated
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beta distribution as it addresses the large mass of zero observations. Similar to the beta
distribution, the gamma distribution can take various shapes, but unlike the beta distribution
it is not necessarily bounded on a specific interval.

4.3 Validity Tests
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4.4 Test Results

This section presents the test results following from the various tests that are described in
the previous sections. Before the test results for each assumption are presented, we first
discuss the portfolio’s that are available for testing and the corresponding estimated param-
eters for the beta distribution from the various approaches discussed in Section 4.2.
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4.5 Summary and Conclusion

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX



Chapter 5

An Alternative Approach

The results from our validity test suggest that the current approach of the implied Gini is not
valid. Also, due to structure of the approach, the implied Gini is difficult to modify such that
it can be implemented as a valid approach. Hence, we need to develop an approach that is
able with the current available data to support the assessment of an LGD model’s potential
discriminatory power.

For the development of an alternative approach we have to make choices due to the avail-
ability of data and cope with the current data quality. For the development of the alternative
approach we limit ourselves by using the AR as a summary statistic. The main reasons for
this choice are that for other summary statistics similar questions remain (e.g. ”what are
acceptable values?”), and that the usage of the AR is common practice at the bank (and
industry).

Within the process of developing an alternative approach we have to cope with several is-
sues that cannot be solved due to the lack of data availability. Therefore, we have to make
choices, which can be considered to be non-optimal. As we have described in Chapter 3
the implied Gini developed by the bank only uses LGD estimates to determine a models
potential discriminatory power. Therefore, we only have these LGDs available with the cor-
responding realizations, the LRs. We acknowledge that in principle an LGD is an expected
value of a probability distribution based on various drivers or variables of a debtor. Unlike PD
models, we do not know the exact relationship between an estimated LGD and a realized
LR. In the case of PD models we know that this relationship is always binomial. For LGDs
frequently the assumption is made that this relationship is beta on a portfolio level, but from
our empirical data we concluded that this does not always hold true for each portfolio.

If we would like to assess this relationship more in-depth, we would need additional informa-
tion concerning the LGDs (aside from the fact that the number of debtors in some cases is
limited). The individual variables or drivers that led to an estimated LGD for an instance are,
however, difficult to obtain or not available anymore. If the original drivers were available,
we could have chosen to create within a portfolio different classes of debtors, which all have
their own specific characteristics. Then we would be able to determine a specific probability
distribution for the LRs of a class of debtor. The current situation concerning our data sets
is that everything is aggregated within one portfolio (based on product class or type e.g.
mortgages) without knowing the individual drivers behind the LGDs. Therefore, we cannot
truly assess in an ideal situation world situation what a ’perfect’ model estimation of an LR
would be. Given our situation we can only state that in the case of a ’perfect’ model you
would like to have estimated the loss perfectly, hence the LGD equals the LR. Strictly taken

48
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this is of course not ideal. We argue, however, that regardless of this limitation, we can still
proof that the current review approach of the bank can be improved by taking into account
different portfolio characteristics. The alternative approach for the implied Gini we developed
in this research still indicates that setting the same fixed threshold value for each portfolio is
unnecessary penalizing particular portfolios. Our approach gives more insight in realistic AR
values for a specific portfolio compared to the current situation. We discuss our developed
approach in this chapter and provide additional insights in explanatory factors that influence
the performance of an LGD model. This chapter has the following outline:

Section 5.1: We describe our proposed alternative approach, which we have developed
in order to cope with the current data availability. We explain various choices
we have made and why our approach improves the current situation. Fur-
thermore, we discuss the trade-off between the practicality of the approach
and the ’true’ perfect model.

Section 5.2: We discuss the mathematical formulation of our approach and how we can
simulate an implied AR for a specific model. We only do this for LGD mod-
els, which are of a structural type as the portfolios that are available for this
research are of this type (see Chapter 2).

Section 5.3: We address explanatory factors for estimating LGDs, which can influence
the accuracy of an LGD model and suggest an approach to incorporate the
uncertainty within our proposed alternative approach, which determines the
implied AR of an LGD model.

Section 5.4: We summarize and conclude with the answer to the Sub-Research Question
4. We also argue why, in our opinion, our developed approach helps with un-
derstanding the differences between different realized ARs between portfolios
despite the limitations of the approach due to data issues.

5.1 The Proposed Alternative

As we have addressed before our data only contains an LGD and an LR for a debtor in a
portfolio without any additional data. It is clear that portfolios have quite different charac-
teristics regarding the distribution of losses. However, for practical reasons we would like
to create a general approach that can provide insight in the performance of an LGD model
on discriminatory power, does not rely heavily on probability distributions which require data
that is currently not available and is easy to compute on the basis of the characteristics of a
portfolio.

From the available data we can determine multiple aspects of a portfolio. It is possible to
compute the variance of the realized loss distribution, we can determine the number of zero
observations and by using internal bank documents the historical cure probability for a spe-
cific portfolio. These are the factors we are able to determine for the portfolios. Due to this
limited amount of information the variety approaches we can develop are limited. Without
additional information it is, for example, impossible to determine which debtor cured or was
a default with no losses for the bank. If that were possible we would be able to split the data
set in cure cases and loss given loss (LGL) cases.
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With the information we have available we can, however, still provide valuable insights con-
cerning an LGD model performance on discriminatory power. As we know the historical cure
probability of a portfolio and the ratio of zeros of a data set, we can determine via a simula-
tion whether a zero observation either cured or actually defaulted. In order to determine the
’maximum’ attainable AR score we simply set the LGD equal to the observed losses for the
defaulted cases. For the cure cases we draw a number from the empirical loss distribution
as we would not have known in advance whether this case would cure. The approach is
mathematically defined in the next section. We acknowledge that setting the LGD equal to
the LR for LGL cases in practice not realistic. However, we do not know the ’true’ relationship
and cannot determine it based on the current situation. In Section 5.3 we assess the impact
of ’extreme’ relations between the LGD and LR to determine the impact on the AR.

Figure 5.1: Factors influencing the AR.

If only the LGD and LR values are available and some overall portfolio statistics (e.g. histori-
cal cure or fraud rate), then we propose to use this alternative approach to get more insights
in the ’maximum’ attainable AR. In general it works as follows:

1. Determine the different scenarios that can occur within a portfolio.

2. For each scenario determine how it impacts the realized losses.

3. Determine the applicable scenarios for a debtor dependent on the actual LR (e.g.
if there are observed losses then a cure scenario is not applicable).

4. Simulate the assignment of scenarios to debtors.

5. Based on the assigned scenario determine the corresponding LGD.

6. Compute the AR.

7. Repeat step 4-6 a sufficient number of times and determine the average value,
which we denote as the expected AR of a portfolio. The complete range of values
for the simulated ARs for a portfolio is denoted as the implied AR for a portfolio.
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Currently it is only possible to assess to the impact of cures on the AR as we only have
additional data on the historical cure rate of a portfolio. However, it is possible that other fac-
tors influence to AR, such as fraud cases. If we add these factors within our simulation then
we can determine an expected AR based on portfolio characteristics and set more realistic
thresholds for assessing the performance of an LGD model on discriminatory power. This
process is visualised in Fig. 5.1.

In the following sections we discuss possible explanatory factors that can be included in
our approach and the mathematical definition for including the probability of cure within our
simulation model.

5.2 Explanatory Factors

This section explains the effect of the probability of cure on the AR for an LGD model. It
suggests an approach to compute the implied AR for LGD models given that there are cures
within the data set. The approach is first generally described for the LEA variant of LGD
models used at the bank, and then for the scenario-structured LGD model. Furthermore, it
addresses the influence of the variance of the loss distribution on the AR for an LGD model
via logic reasoning.
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Unfortunately, the data quality does not allow to filter out the cures from the actual losses
as an LR of zero might also imply that simply no losses were observed (and the debtor
defaulted nevertheless). These cures affect the maximum achievable score on the AR as
this method assumes that in the case of a perfect model one should exactly predict the LR.
Hence, in the case of a cure scenario the approach assumes that one should have predicted
zero losses, while actually due to the cure scenario this is probably not true. This might lead
to a wrong idea of how the model performs as the observed AR for the model will be lower
due to the inclusion of cures. Thus, if we would like to measure the discriminatory power of
an LGD model via the AR, it should not be measured against the 100% benchmark if the
data set consists of cures. The portfolio might have a low observed AR score due to the
inclusion of a lot of cures.

This is illustrated via an example. Suppose we have a data set solely consisting of non-
zero LRs, which is denoted as S with n instances. In the case of the perfect model we
would accurately estimate each LR in S, which means that for each instance i the statement
LGDi = LRi holds. In this particular setting the AR is equal to 100%. Suppose we would
add cures to the data set, which are zero losses (hence for the cured instance j LRj = 0),
but normally the LGD will not be zero (there is always a floor value i.e. a minimum LGD).
This is based on the assumption that you cannot predict with 100% accuracy, which facility
is going to cure and becomes performing again in the case of a default. Thus, for each
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cured instance j the statement LGDj 6= 0 holds true. In order to determine for a cured
observation an LGD, we draw a number from the empirical distribution of non-zero losses,
which is denoted as data set S. The number that is drawn can be described as a random
variable Xj , which is the random LGD for the cured instance j. To illustrate the effect of
cure scenarios on the observed AR we increase the proportion of instances that have been
cured in the data set. The data set of generated cures is denoted as C with m instances.
The proportion of observations that follow a cure scenario is described via Eq. (5.1).

Cure Proportion =
m

n+m
(5.1)

In order to illustrate the effect of cures in a data set we combine the data set S with the
created cure data set C for different proportions. For the combined data set we determine
the AR. As the generated data set C is randomly created, the process of determining the
AR for the combined data set S and C for a particular proportion is repeated multiple times.
From these results we determine the average AR, which is the expected AR for an accurate
model with a certain proportion of cures. The results can be found in Fig. 5.2.

Figure 5.2: Impact of cures on the AR.

It can be seen that the presence of cures severely impacts the expected AR. Hence, it can
be considered as an important factor that has to be taken into consideration when we study
the discriminatory power of an LGD model. It should be noted that for this example it has
been assumed that the cures can occur randomly and are not correlated with the estimated
LGD. If the cure process is not truly random then the expected AR can change (although a
significant impact is expected to remain). However, for the XXXXXXX it is difficult to discrim-
inate on the basis of a cure probability (especially if there is no explicit data available for it).

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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As we wish to determine the implied AR of a portfolio we need an approach to determine
which zero loss is considered to be a cure. As we know the cure rate it is possible to make
the split between cures and zero losses. The cure rate is the fraction of the portfolio that on
average cures, thus the remainder of the zeroes is assumed to be the fraction of zero losses.
We denote the fraction of cures for a portfolio t as fracct and the fraction of a zero losses as
fraczt . The total number of zero observations is denoted as fracTOT

t . fraczt is determined via
Eq. (5.2).

fraczt = max{fracTOT
t − fracct , 0} (5.2)

This allows us to determine the probability that a zero loss is a cure in portfolio t via Eq. (5.3).

pct =
fracct

(fracct + fraczt )
(5.3)

It is then possible for each observed zero j in the data set consisting of m zeroes to simulate
whether it is a cure or a zero loss via the binomial distribution. Thus, we can describe the
process of determining that a observed zero j is either a cure or zero loss via the random
variable Xt,j with pct being the cure probability of portfolio t.

Xt,j ∼ B(1, pct) (5.4)

If an observed zero j is considered to be simply a zero loss (hence xt,j = 0) then we wish
that our estimated LGD is 100% accurate (for a perfect model). However, if a zero j is con-
sidered to be a cure (xt,j = 1) then we assume that we would have estimated an LGD (other
than zero). To simulate the process that cures receive a number we draw a number from the
empirical distribution of non-zero LRs (as we simulate the perfect model given the presence
of cures). We denote a draw from the empirical distribution of non-zero LRs from portfolio t
as Ft(1). Thus, we can describe the LGD and LR of an observed zero j in portfolio t via Eq.
(5.5) and (5.6).

LGDt,j ∼ Ft(1) and LRt,j = 0 for xt,j = 1 (5.5)

LGDt,j = 0 and LRt,j = 0 for xt,j = 0 (5.6)



CHAPTER 5. AN ALTERNATIVE APPROACH 54

The results of this process can be described as data set, which we denote as Ct for port-
folio t. As we assume that the non-zero LRs should be estimated 100% accurately, we can
denote the LGD of non-zero loss i in portfolio t for n non-zero losses via Eq. (5.7). The
resulting data set is denoted as St.

LGDt,i = LRt,i (5.7)

By combining the two data sets Ct and St it is possible to compute the AR. As the data
set Ct is a result of random process, we should repeat this process a sufficient number of
times in order to construct a distribution of ARs from which we can derive the expected AR.
We denote each experiment as k and hence the resulting cure / zero loss data set as Ct,k.
St remains constant for each experiment. For each experiment an AR is computed, which
results in a distribution of ARs, which we denote as the implied AR. The average of the dis-
tribution is denoted as the sample mean AR. Hence, each AR resulting from an experiment
k is denoted as Zt,k. The sample mean AR can be computed via (5.8), while the implied AR
for the LGD model can be made visible by plotting all k ARs in an histogram. An example of
such an histogram can be found in Fig. 5.3.

Z̄t =
1

k

∑
all k

Zt,k (5.8)

Figure 5.3: Distribution of all simulated ARs (example of Portfolio A).

A rule of thumb is that for the range ±3σ of the mean almost all possible outcomes of a
distribution (for a normal distribution 99,7%) are described. Therefore, the sample variance
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should be computed via (5.9).

s2t =
1

k − 1

∑
all k

(Zt,k − Z̄t)2 (5.9)

This process is applied to the portfolio’s A, B and C for which the results can be found in
Table 5.1.

Table 5.1: Implied AR of the portfolios.

Portfolio Expected AR Lower Bound Upper Bound

Portfolio A 58.80% 47.56% 70.04%

Portfolio B 41.84% 35.37% 48.30%

Portfolio C 65.04% 54.29% 75.79%

Scenario-Structured LGD Models

Different than the XXXXXXX, for the scenario-structured LGD models we can independently
check each component on discriminatory power. The cure scenario component is similar to
that of an PD model, and therefore it can be checked via the approach described in Section
3.3. The loss given loss (LGL) scenario can be checked regularly via the AR (against the
100%) if one thinks that 100% accuracy is a solid benchmark. Following from an expert
discussion, it is, however, urged to also check the discriminatory power for the model as
a whole. For that purpose, it is possible to use the approach described for the XXXXXXX
and to assign zero losses according to the probability of certain scenario’s. The disadvan-
tage, however, is that for scenario-structured LGD models the probability of e.g. cure is not
considered to be random. A small adjustment therefore can be considered to make an ad-
justment for that error. If the individual probabilities of cure are known for a zero loss j, then
we can describe the determination process whether it is a cure via the random variable Xt,j

with pct,j being the cure probability zero loss j in portfolio t.

Xt,j ∼ B(1, pct,j) (5.10)

Unfortunately, this data is not available. Therefore, the assumption is made for the structural
LGD model under consideration that each zero observation has the same probability of cure.
The results for this portfolio can be found in Table 5.2.

Table 5.2: Implied AR of the structural LGD model.

Portfolio Expected AR Lower Bound Upper Bound

Portfolio D 65.88% 64.88% 66.88%
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Although we cannot directly use the data from the portfolio, we can illustrate the effect of
having individual cure rates present in an LGD model. Suppose that we perfectly know in
advance what the losses will be if a facility defaults, hence we can perfectly predict the LGL.
However, all the facilities have a probability of cure. We assume that we can predict the total
number of cures for the whole portfolio (if our LGD model works perfectly). Thus, by Eq.
(5.11) we can determine our estimated LGD.

LGD = pcure · LGDcure + (1− pcure) · LGDdefault (5.11)

Recall that for the XXXXXXXs we assumed that we cannot discriminate on the basis of the
cure probability, but only know the historical cure rate of a portfolio e.g. 50%. Hence, in
order to establish a baseline for the AR we simply assume that in Eq. (5.11) pcure equals
50% for each instance. In the case of a cure we assume that the losses are negligible, thus
LGDcure equals 0%. For determining the losses in the case of a liquidation scenario we sim-
ply use the available LR distributions of the four portfolio’s. If the observed zero losses in a
LR distribution are less that 50% we simply add a number of zero’s such that we have a loss
distribution in which 50% of the instances cured. Similar to the approach for the XXXXXXXs
for each observed zero we determine whether it was a cure or not. In the case of cure we
draw a number from the corresponding LGL distribution. Once we have determined for each
instance the losses in the case of a liquidation, it is possible to assign compute the corre-
sponding LGD by (5.11).

Table 5.3: Experiments for effect of different cure rates on the AR.

Experiment PC1 PC2 PC3 PC4

Baseline 0.5 - - -

2 PC - 1 0.4 0.6 - -

2 PC - 2 0.3 0.7 - -

2 PC - 3 0.2 0.8 - -

2 PC - 4 0.1 0.9 - -

4 PC - 1 0.3 0.4 0.6 0.7

4 PC - 2 0.2 0.4 0.6 0.8

4 PC - 3 0.1 0.3 0.7 0.9

4 PC - 4 0.2 0.3 0.7 0.8

4 PC - 5 0.1 0.4 0.6 0.9

As we have simulated the LGDs and the LRs it is possible to compute the AR. We simulate
this process a sufficient number of times in order to construct the implied AR for these set-
tings. In order to make results comparable we made sure that the expected losses for each
portfolio remain the same as well as the distribution.

In order to test the effect of having different cure rates present within the LGD model, we
practically need more information on how the estimated cure rates are correlated with the
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facilities. As this information is not present, we will simulate the most extreme settings and a
random setting. The most extreme settings are either that the lowest LGLs have the highest
cure probability (denoted as setting 1), or that the lowest estimated LGLs have the lowest
cure rates (denoted as setting 2). Hence, in setting 1 the LGLs are negatively correlated
with the probabilities of cure, and in setting 2 the correlation is positive. For the random set-
ting we randomly assign probabilities of cure to the instances. We assign the probabilities
of cure on the basis of the simulated LGL distribution in which we take into account that the
correct proportions have cured. For example this means that if we have two probabilities of
cure, say 30% and 70%, and we assume that these are negatively correlated with the LGL,
then 30% of the cures originate from the upper half of the LGL distribution and visa versa.
Zero losses are a special case as they strictly taken change the LGL distribution, although
their losses are always zero regardless of their scenario. Therefore, we neglected these
instances in the LGL distribution for assigning the probabilities of cure.

Table 5.4: Test results for multiple cure rates in an LGD model (extreme cases).

Experiment Port. A Port. B Port. C Port. D

Baseline 54.62% 61.19% 59.11% 72.07%

Setting 1 2 1 2 1 2 1 2

2 PC - 1 57.06% 63.64% 62.65% 71.55% 61.36% 66.49% 73.52% 74.81%

2 PC - 2 63.67% 72.50% 67.55% 83.47% 67.29% 77.52% 77.17% 81.92%

2 PC - 3 74.56% 78.94% 75.92% 86.38% 76.23% 83.94% 82.85% 88.79%

2 PC - 4 86.24% 86.71% 87.09% 93.96% 87.52% 89.95% 90.38% 93.76%

4 PC - 1 63.22% 78.35% 69.01% 86.29% 66.91% 78.75% 76.43% 81.98%

4 PC - 2 70.12% 75.24% 75.25% 84.12% 73.07% 84.37% 79.83% 90.78%

4 PC - 3 70.47% 80.21% 79.43% 83.22% 80.87% 81.74% 84.44% 94.49%

4 PC - 4 71.88% 76.50% 76.28% 84.87% 74.27% 84.77% 80.79% 90.51%

4 PC - 5 70.44% 77.18% 79.07% 81.15% 78.34% 80.58% 83.27% 94.43%

As mentioned before we set the initial cure rate at 50%, which lead to an expected number
of cures (namely 0.5 · n for n instances). For our experiments we keep the expected number
of cures the same in order to be able to make some comparisons. We acknowledge that the
sum of binomial distributions leads to a different variance compared to the baseline binomial
distribution, while the expected value is the same. In Table 5.4 an overview of the experi-
ments we conduct to research the impact of different cure rates on the AR can be found.

We have simulated the experiments for similar population sizes found in the portfolio. The
results for the simulation can be found in Table 5.4, which denotes the expected AR for each
setting. In Fig. 5.4 an example of how the underlying distributions of ARs for an experiment
look like.

When we simply assign different cure rates randomly to the instances (while keeping the
expected value the same as the baseline), we see that if the difference between the individ-
ual cure rates increases, the difference in the expected AR increases as well. We see that
the discriminatory power increases if the difference in cure rates increases. This is simply
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Figure 5.4: Test results for experiment: 2 PC-2 of Portfolio A.

Table 5.5: Test results for multiple cure rates in an LGD model (random assignment).

Experiment Port. A Port. B Port. C Port. D

Baseline 54.62% 61.19% 59.11% 72.07%

2 PC - 1 56.89% 63.64% 61.43% 73.80%

2 PC - 2 64.38% 71.56% 68.57% 78.47%

2 PC - 3 74.42% 81.45% 78.33% 84.96%

2 PC - 4 87.01% 91.03% 89.67% 92.32%

4 PC - 1 60.26% 68.10% 65.12% 76.26%

4 PC - 2 66.23% 74.04% 70.75% 79.99%

4 PC - 3 77.13% 83.34% 80.13% 86.45%

4 PC - 4 69.54% 76.94% 73.53% 81.94%

4 PC - 5 74.25% 80.72% 77.63% 84.73%

due to the proportions of cure cases as the higher the cure probability is, the more cure
cases with this probability actually cured (as we assume that the cure model is correct). The
discriminatory power increases as the cure cases have a lower estimate LGD as explained
by Eq. (5.11). The results are presented in Table 5.5.

Variance of the Loss Distribution

Not only the cure rate plays a role in the determination of the AR for LGD models. The
distribution of the loss rates also influences the outcome of the AR. In the current approach,
unlike e.g. Spearman’s rank correlation, not only the rank of the instances, but also the size
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of the losses influences the resulting AR. Hence, if a portfolio is more unbalanced (e.g. the
variance is higher) than it is possible to achieve high values on the AR if the highest losses
are classified as the ’worst’ losses, while the ranking of the small losses does not really mat-
ter for the AR. This is illustrated via a small example.

Table 5.6: Example data for the influence of the variance of a portfolio on the AR.

LGD LRA LRB

0.10 0.10 0.30

0.20 0.20 0.40

0.30 0.50 0.50

0.40 0.90 0.70

0.50 0.80 0.60

Suppose we have the following data available from 5.6. We have an range of LGDs and cor-
responding LRs. Both portfolio’s score the same on Spearman’s rank correlation and have
the same percentage-weighted losses. The LGDs are the same for both portfolio’s, but the
magnitude of the LGDs does not affect the AR (as the AR is measured via the total losses
and not the total loss estimations). Hence, the only difference between the two portfolio’s is
the variance, which we can compute via (5.12). For portfolio A the variance is 0.10, while for
portfolio B the variance is 0.02.

Var(X) =
1

n

n∑
i=1

(xi − µ)2 (5.12)

The respective AR scores are for portfolio A 95.45% and for portfolio B 90%. Hence, we
conclude that the variance of the loss rates in the portfolio’s affects the resulting AR. This is
an aspect that should be taken into account when reviewing LGDs on discriminatory power.
Depending on the variance one portfolio can be penalized more severely for having ranked
two instances incorrectly.

Fraud

One aspect that also influences the outcome of the losses is the case of fraud, which of
course is unknown at the time credit is given (otherwise no credit would have been given).
This also affects the outcome of the AR as it is not uncommon that fraud results in high
losses. This factor is difficult to capture in an LGD model and affects the performance on
discriminatory power. After establishing baselines for different portfolios we simulate fraud
cases. This is done by randomly assigning a non-zero LR to be a case of fraud and changing
the LR to one. The results can be found in Table 5.7. Initially, the increased losses randomly
assigned in the portfolio impact the resulting AR, but the effect on the AR by increasing the
number of fraud cases decreases. This can be simply explained that initially the impact of
a high loss randomly assigned fraud case is a larger portion of the total losses and weights
more heavily on the resulting AR.
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Table 5.7: Test results for various fraud rates.
Experiment Port. A Port. B Port. C Port. D

Baseline 48.86% 37.47% 48.55% 64.75%

Fraud - 5% 43.83% 33.10% 43.08% 51.11%

Fraud - 10% 39.42% 29.58% 38.68% 41.77%

Fraud - 15% 35.43% 26.62% 34.83% 34.98%

5.3 Other Explanatory Factors for an LGD

For the approach described in Section 5.1 we assumed that each non-zero LR should be
estimated 100% accurately. However, there might be reason to deviate from this 100%
estimation. If the outcome of LR is expected to be very volatile (perhaps due to market
circumstances or regulation), one might be satisfied if the LR lies within a range of the es-
timated LGD. If that is the case, then the AR will also change, because the actual ranking
might shift. Suppose that we consider it is sufficient for an LGDt,i to lie within the range
Rt,i of LRt,i of observation i in portfolio t. Then we can redefine the data set St by drawing
random numbers for LGDt,i, which lie within the range. One approach to do that is via the
Uniform distribution (see (5.13)).

LGDt,i ∼ U [LRt,i −Rt,i,LRt,i +Rt,i] (5.13)

To illustrate the effect for various ranges on the AR a simulation is conducted. In this simula-
tion the ranges are determined to be a certain percentage under and above of the respective
LR. If we denote this percentage as rt, then the estimate for each non-zero observation i in
portfolio t is determined via Eq (5.14).

LGDt,i ∼ U [LRt,i · (1− rt),LRt,i · (1 + rt)] (5.14)

It should be noted that in this approach the values of an LGD might exceed 1. It is possible
to use other approaches to derive ranges. If we vary rt and compute the average AR of k
experiments we see that for each portfolio an impact on the AR is observed.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

If one finds it reasonable to allow estimates to deviate from the LR, then the difficulty is in
how to determine an appropriate range in which a deviation is allowed. One needs qualita-
tive arguments to state whether a deviation is allowed and one needs to determine, whether
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the portfolio characteristics are general enough to use a deviation for all observations (as we
have done in our example) or that it is required to determine the deviation for each individual
observation. The latter has of course a high workload. One might consider to include this
process in the determination of the LGD as many explanatory factors for determining the
LGD will also be a driving factor of how variable the LR can be.

There are many factors that could determine variability in the outcome of a loss process. It is
not possible to say, whether e.g. Loan-to-Value (LTV) is a driving factor in solely determining
the recoveries as also jurisdiction and the easiness to collect collateral plays a role. For
instance in particular states in the US you can simply transfer the collateral (e.g. your house)
of a mortgage to the bank, which relieves you of your obligations regarding that mortgage.
Hence, if your portfolio consists of e.g. multiple jurisdictions then it is impossible to state
something about acceptable ranges for the whole portfolio. If that is the case you should
individually review each observation and determine acceptable ranges per observation. An
overview of possible explanatory factors is given in Chapter 2.

5.4 Summary and Conclusion

As the implied Gini approach turned out to be difficult to maintain given the results in Chapter
4, we set out to try to indicate portfolio characteristics, which impact and partly explain the
performance on discriminatory power. This chapter mainly focused on quantitative aspects
of a portfolio as qualitative aspects (described in Chapter 2) are very context (or opinion)
dependent on how these drivers impact the AR.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The outcome of the simulation results in a distribution of ARs, which is dubbed as the implied
AR (for consistency reasons with the implied Gini)11. The expected AR is simply the mean
of this distribution.

For assessing the impact of the cure rate we made a distinction between the XXXXXXXs and
the scenario-structured LGD model. Due to their structure, the XXXXXXXs do not allow to
explicitly derive an individual cure rate for an observation. Therefore, we have assumed that
zero observations have the same probability of cure for the whole portfolio. In the scenario-
structured LGD model an explicit probability of cure is estimated. For our current data sets
these probabilities are, however, not available. In order to still assess the impact of having
different cure rates in one portfolio we computed LGDs from a simulated LGL distribution
with various settings of cure rates. The results indicate that the AR is affected if the LGD
allows different amounts of ratings. Hence, these aspects should be taken into account for
the review an LGD model. More research is, however, needed on this matter as we are
unable to determine with the current data set how the probability of cure is correlated to the

11Although the term is perhaps not suitable as ’implied’ suggests that the AR follows from the LGD model,
while in our approach we reason the AR from the loss distribution, which is independent from the LGD model.
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drivers that lead to an LGL estimation.

We also indicated that the variance of a portfolio (or the balance) plays a determining role in
the computation of the AR. Due to the nature of the AR some instances (e.g. due to higher
losses) impact the resulting AR more heavily than others. Similar to the variance, fraud
cases also impact the AR heavily as fraud is difficult to predict, but can attribute to a large
proportion of the losses that are suffered in a portfolio.

Another aspect that we looked into is how different tolerance levels influence the AR. Devi-
ation from the LR negatively influences the resulting AR for a portfolio. However, in practice
the estimated LGD always deviates from the observed LR and in order to coop with that it is
possible to use certain tolerance levels in which an LGD is acceptable although it deviates
from the corresponding LR. Setting these levels are arbitrarily and should be discussed in-
ternally.

We conclude that the described factors, such as probability of cure, variance, fraude and
tolerance levels influence the AR heavily if they are highly present in a data set. Therefore,
setting a performance benchmark for LGD models that is fixed for each portfolio is unrealis-
tic (the current case). Due to portfolio characteristics it might be impossible for some LGD
models to achieve this benchmark. Therefore, we argue that benchmarks should be set
up dependent on the portfolio, while taking the characteristics of the portfolio into account.
Therefore, we have developed an approach to cope with the current data availability and the
different explanatory factors.

If only the LGD and LR values are available and some overall portfolio statistics (e.g. histori-
cal cure or fraud rate), then we propose to use this alternative approach to get more insights
in the ’maximum’ attainable AR. In general it works as follows:

1. Determine the different scenarios that can occur within a portfolio.

2. For each scenario determine how it impacts the realized losses.

3. Determine the applicable scenarios for a debtor dependent on the actual LR (e.g.
if there are observed losses then a cure scenario is not applicable).

4. Simulate the assignment of scenarios to debtors.

5. Based on the assigned scenario determine the corresponding LGD.

6. Compute the AR.

7. Repeat step 4-6 a sufficient number of times and determine the average value,
which we denote as the expected AR of a portfolio. The complete range of values
for the simulated ARs for a portfolio is denoted as the implied AR for a portfolio.



Chapter 6

Possible Approach to Set Indicative
Benchmarks

In this chapter we discus an approach to set an indicative benchmark for testing the dis-
criminatory power of an LGD model. The approach of setting indicative benchmarks for
assessing performance of an LGD model is more a subjective approach of the level of dis-
criminatory power for which the bank (and regulator) is satisfied. It is difficult to find a univer-
sal score that given the portfolio characteristics determines a benchmark that that particular
LGD model should achieve minimally. It is also difficult to derive them from other banks or
academic papers as they sometimes vary in the way discriminatory power (via the AR) is
measured. Hence, the approach outlined in this chapter is based upon the determination
of the so-called implied AR given the current data availability (see Chapter 5). This means
that it includes the historical cure probabilities and, as the empirical loss distribution of a
portfolio is used, also the variance of the losses. This method can be extended by adding a
fraud component, which is described in Chapter 5 as well. Compared to the original implied
Gini, it relies less on critical assumptions on the loss distribution and it does not depend on
the estimations of the LGD model. It still has made assumptions on the cure probability,
which are difficult to validate based on the current data, but the approach relies on internal
procedure documents of the bank. Furthermore, the current approach can only cooperate
with two scenarios, namely an LGL scenario and a cure scenario, but if relevant it can be
extended with additional scenarios. This chapter has the following outline:

Section 6.1: We describe an alternative approach to the implied Gini for setting indicative
benchmarks for testing the discriminatory power of an LGD model.

6.1 Implied AR as an Indicative Benchmark

In Section 5.1 an approach for determining the implied AR for LGD models has been pro-
posed. For XXXXXXXs it assumes that each zero observation (the LR is 0) within a data
set can be either classified as a cure or a zero loss. If a zero observation is classified as a
zero loss then it assumes that also zero losses should have been predicted. If it is classified
as a cure, however, then the estimated LGD is determined via a random draw from the em-
pirical distribution of non-zero losses is done. After the classification process it is possible
to compute the AR. The AR is computed multiple times as we deal with randomness. The
distribution of the ARs resulting from the simulation run can be considered as the implied
AR. The sample mean of that distribution is the expected AR, while via the 3σ rule of thumb
it is possible to determine the boundaries in which a perfectly accurate model discriminatory
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power will be (given the presence of cures).

It is not suggested to use these boundaries as indicative benchmarks for XXXXXXXs, but a
minimum threshold of the lower bound (of the implied AR). It is, namely, unlikely that LGDs
perfectly correspond with the LR for each observation. If we denote LBt as the lower bound
of the implied AR for portfolio t and think that the percentage xt for portfolio t is sufficient as
a threshold, then the indicative benchmark is determined via (6.1).

BMt = xt · LBt (6.1)

For scenario-structured LGD models it is recommended that each individual component is
tested for discriminatory power. A cure component follows a binomial process similar to the
PD model and therefore, it is recommended that the approach for implied AR for PD models
is followed. An LGL component can simply follow the regular approach computing the AR
(as no filtering of cures is necessary). Following from an expert discussion, it is, however,
urged to also check the discriminatory power for the model as a whole. For that purpose,
it is possible to use the approach described for the XXXXXXXs and to assign zero losses
according to the probability of certain scenarios. The disadvantage, however, is that for
scenario-structured LGD models the probability of e.g., cure is not considered to be com-
pletely random unlike the assumption for XXXXXXs. A small adjustment therefore can be
considered to make an adjustment for that error (see Section 5.1). An indicative benchmark
can be derived in a similar fashion as for the XXXXXXXs.

This approach assumes that non-zero losses have to be estimated 100% accurately. How-
ever, there might be reason to deviate from this 100% estimation. If the outcome of LR
is expected to be very volatile (perhaps due to market circumstances or regulation), one
might be satisfied if the LR lies within a range of the estimated LGD. If that is the case, then
the AR will also change, because the actual ranking might shift. It remains difficult to find
unique characteristics for entire portfolio to support a particular deviation. However, in the
estimation process it is possible to find drivers (the same used in a scorecard approach)
to determine the allowed deviation e.g. jurisdiction or collateral. Another aspect that could
be taken into account is the heterogeneity or homogeneity of a portfolio. If instances are
quite comparable, we expect it should be easier to make accurate estimations compared to
a portfolio that is diverse.



Chapter 7

Conclusion and Further Research

In this research we attempt to find a systematic approach to set indicative benchmark val-
ues for the discriminatory power of an LGD model measured via the AR. As LGD models
are relatively new compared to PD models, but the last years have seen a significant num-
ber of papers discussing the LGD model. Unfortunately, there is not yet an approach which
indicates whether a model’s performance is sufficient in terms of discriminatory power. For
these reasons the bank found difficulty in determining what a sufficient level of discrimina-
tory power for an LGD model is. Currently, they have set the threshold values fixed for each
portfolio measured via the AR.

There are various approaches to measure discriminatory power for LGD models as some
are addressed in our research. Our research primary focuses on the AR, which is also
known as the Gini at the bank or Powerstat. The main reason to focus on the AR is that the
bank uses this technique primary to assess the discriminatory power of LGD model.

Implied Gini

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Influencing Factors and Alternative Approach

Although the initial research question was to validate the implied Gini, the goal for which
the approach was developed still stands. Therefore, we looked into factors that give more
insight in the resulting AR. From our test results we conclude that factors, such as probabil-
ity of cure, variance, fraude and tolerance levels influence the AR heavily if they are highly
present in a portfolio. Therefore, we are confident enough to conclude that setting a perfor-
mance benchmark for LGD models that is fixed for each portfolio is unrealistic (as it is the
current case). Due to portfolio characteristics it might be impossible for some LGD models to
achieve this benchmark. Therefore, we argue that benchmarks should be set up dependent
on the portfolio, while taking the characteristics of the portfolio into account.
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In order to set these indicative benchmarks that depend on the portfolio characteristics we
developed the implied AR, which is a simulation driven approach that uses actual loss dis-
tribution instead of the estimations.12 This approach computes a distribution of ARs, which
results from randomly assigning zero observations to be either a cure or an actual zero loss
per simulation run. For the XXXXXXXs it is then possible to setup an indicative benchmark,
which is a fraction of the lower bound of the implied AR. Scenario-structured LGD models
can be tested per scenario, but in an expert discussion it was argued that the model as
whole should also be tested. In the implied AR is possible to account for different scenario’s
such as assigning individual probabilities of cures and LGL to instances. Furthermore, it is
possible to add extensions to the implied AR such as the possibility of fraud.

We acknowledge that the approach of the implied AR still relies on some basic assumptions
that cannot be tested due to the lack of data or due to data quality. However, if more data
becomes available or the data quality improves it could be the case that some assumptions
are not necessary any more (e.g. such as the randomness of cure or fraud). The approach
also relies primarily on quantitatively measurable factors that influence the AR. There might
be, however, qualitative factors that indicate that it is more difficult for some portfolios to
achieve higher levels of discriminatory power than others. In our research we found it diffi-
cult to objectively pinpoint these factors as they are in our opinion very context dependent.
Nevertheless, we think that the implied AR helps with the understanding of what (quantita-
tively) drives the AR for LGD models and therefore helps to set up indicative benchmarks for
discriminatory power measured via the AR.

Further Research

As we indicated, the implied AR still has some open ends. The implied AR currently only
accounts for two scenarios either a cure or a loss given loss scenario (including fraud). How-
ever, there might be other scenarios worth and relevant to research their impact on the AR.
Furthermore, we limited ourselves to the AR for measuring discriminatory power as it is the
bank’s primary tool to measure the performance of a model on this aspect. The AR has,
in our opinion, some serious deficits in the case portfolio’s losses are not balanced. In that
case a small fraction of instances can determine the AR and the ranking of the remainder
does not matter anymore. Therefore, we would recommend in further research to address
more attention to alternative approaches. We have described some alternatives in Chapter
2, but there are more approaches or alternatives available to measure discriminatory power
(e.g. the H-measure or the MAUC, which is variant of the AUC). Nevertheless, also for these
methods the question still remains what levels of discriminatory power are sufficient.

Benchmarking discriminatory power is one thing, but improving models with different tech-
niques can also be helpful. Academic papers such as Loterman et al. (2012) suggest that
different techniques from those currently employed at the bank might lead to higher discrim-
inatory power. Further research in these methods is considered to be helpful to advance
LGD models, but we acknowledge that some complex techniques (although promising) are
not practical as they are difficult to review as they are sometimes viewed as a ’black box’
approach by some practitioners.

12The name ’implied’ is strictly taken not correct, but due to the project implied Gini is currently taken on as a
working title.
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Appendix A

Example EAD Dataset
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Appendix B

Computation of AR25, AR50 and
AR75
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Appendix C

Derivation of Gamma Function
Properties

This appendix shows how the necessary properties of the gamma function for determining
the MOM estimators for the beta function are determined. The gamma function is defined
as the following integral:

Γ(t) =

∫ ∞
0

yt−1 · e−y · dy, for t > 0 (C.1)

Via integration by parts it is possible to derive an equation for Γ(t + 1) and Γ(t + n), which
we need to determine the estimators for the MOM approach. Integration by parts states that:

∫
u(x)v′(x)dx = u(x)v(x)−

∫
v(x)u′(x)dx (C.2)

We define Γ(t+ 1) as the following integral:

Γ(t+ 1) =

∫ ∞
0

yt · e−y · dy, for t > 0 (C.3)

Hence, for the integration by parts we define the following:

u(t) = yt (C.4)

du(t) = t · yt−1 (C.5)

dv(t) = e−ydy (C.6)

v(t) = −e−y (C.7)
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Thus, we can make the following statement:

Γ(t+ 1) = lim
a→∞

[−yt · e−y]|y=by=0 + t ·
∫ ∞
0

yt−1 · e−y · dt (C.8)

Provided that t > 0, we can state:

Γ(t+ 1) = − lim
a→∞

[
at

ea

]
+ t · Γ(t) (C.9)

Via the L’Hôpital’s Rule we can rewrite the first term (the limit), but before we apply L’Hôpital’s
Rule we need to rewrite the statement. First, we take the natural logarithm of the numer-
ator and denominator. Second, we take the exponent of the numerator and the denominator.

− lim
a→∞

[
bt

eb

]
= − lim

b→∞

[
et·ln(b)

eb

]
(C.10)

The next step is to combine the denominator with the numerator:

− lim
b→∞

[
bt

eb

]
= − lim

b→∞

[
et·ln(b)−b

]
(C.11)

We can rewrite the statement such that we can apply L’Hôpital’s Rule and determine the limit:

− lim
b→∞

[
bt

eb

]
= − lim

b→∞

[
e
t·b·

(
ln(b)

b
−1

)]
(C.12)

Within the exponent we can clearly indicate that the first b goes to infinity, but for the fraction
within the exponent we get infinity over infinity. Hence, we can apply L’Hôpital’s Rule. Thus:

lim
b→∞

[
ln(b)

b

]
= lim

b→∞

[
1

b

]
= 0 (C.13)

This means that we can write the statement as follows:

− lim
b→∞

[
bt

eb

]
= − lim

b→∞

[
e
t·b·

(
0−1

)]
(C.14)
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Hence, as b is multiplied with −1, we get an exponent of minus infinity. This means that the
limit will go to 0. Thus, we can write:

− lim
b→∞

[
bt

eb

]
= 0 (C.15)

This means that we can rewrite the gamma function Γ(t+ 1) as:

Γ(t+ 1) = t · Γ(t) (C.16)

The second gamma function we would like to rewrite is Γ(t+ n). We can reiterate the state-
ment from (C.18) to find an expression for Γ(t+ n). (C.18) shows that:

Γ(t+ n) = (t+ n− 1) · Γ(t+ n− 1) (C.17)

Reiterating this step leads to a statement for Γ(t+ n) for t+ n > 0. Hence:

Γ(t+ n) = t · (t+ 1) . . . (t+ n− 1) · Γ(t) (C.18)



Appendix D

Determining the First and Second
Moment of the Beta Distribution

This appendix shows how Eq. (4.15) and Eq. (4.16) are determined by applying the result-
ing statements from Appendix C. We have the following statements for respectively the first
and second moment of the moment generating function for a beta distribution:

E(X) =
Γ(α+ 1)Γ(α+ β)

Γ(α+ β + 1)Γ(α)
(D.1)

E(X2) =
Γ(α+ 2)Γ(α+ β)

Γ(α+ β + 2)Γ(α)
(D.2)

We can rewrite Eq. (D.1) as follows:

E(X) =
α · Γ(α) · Γ(α+ β)

(α+ β) · Γ(α+ β) · Γ(α)
(D.3)

Rearranging this statement leads to the first moment for the beta distribution as found in Eq.
(4.15):

E(X) =
α

α+ β
(D.4)

Similarly, for Eq. (D.2):

E(X2) =
α · (α+ 1) · Γ(α) · Γ(α+ β)

(α+ β) · (α+ β + 1)Γ(α+ β) · Γ(α)
(D.5)

Rearranging this statement leads to the first moment for the beta distribution as found in Eq.
(4.16):

E(X2) =
α · (α+ 1)

(α+ β) · (α+ β + 1)
(D.6)
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Appendix E

Loss Distributions of the Available
Portfolios
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Appendix F

Estimated Beta Parameters

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

78



Appendix G

Anderson-Darling Test Results
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Appendix H

Bootstrap for Sum of Individual Loss
Distributions
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