
University of Twente

Master's Thesis

Computing time dependent travel times in

vehicle routing problems

Author:

Mathijs W.H. Waegemakers MSc.

Supervisors:

Dr. Ir. E.C. van Berkum

Dr. Ir. M.R.K. Mes

S.K. den Heijer MSc.

March 2017

http://www.utwente.nl
https://nl.linkedin.com/pub/mathijs-waegemakers/43/a10/393
https://www.utwente.nl/ctw/vvr/People/berkum/
http://www.utwente.nl/bms/iebis/staff/mes/
http://www.nyan.cat/

i

To my father, the real map specialist.

Management summary

Motivation:

One of the products delivered by ORTEC is a software suite called ORTEC Routing & Dispatch (ORD),

which manages and optimizes the distribution process of delivering goods with a �eet of vehicles. The

optimizer within ORD uses a set of heuristics to create an e�cient distribution plan. By taking into

account tra�c congestion, by including the time dependent travel times (TD-TTs) into the distribution

plan, ORD improves the feasibility of the distribution plans and the overall solution quality by avoiding

congested areas during rush hour. Currently, all exact algorithms that are able to compute the TD-

TTs are too slow to be used in optimization heuristics. To overcome this shortcoming, it is possible

to approximate the TD-TTs in favour of fast computations. ORD has the ability to use such an

approximation algorithm, which we call the Travel Time Calculator (TTC). In this thesis, we �rst

research the accuracy of this TTC. Second, we develop a new approach which we call the Congestion

Hierarchies Algorithm (CH-algorithm).

Method:

We measure the accuracy of the TTC using the BeNeLux road network, which contains the historical

TD-TTs on the majority of the edges in the network. We take these historical travel times as the ground

truth, and exclude any real-time information from this research. Since it is possible to compute TD-TTs

exactly, we are able to measure the loss of accuracy between the approximation algorithm and exact TD-

TTs. To research under which conditions the current approach becomes inaccurate, we create three test

groups consisting of a total of 15 test sets of 2500 randomly selected origin-destinations pairs (OD-pairs).

All OD-pairs in a test set have characteristics like path length and geographical location.

The CH-algorithm we developed is a TD-SP algorithm that uses multiple overlay levels to store precomputed

congestion factors. The congestion factor is the delay percentage between the TD-TT and the free �ow

travel time (FF-TT) at a certain departure time. During optimization, the CH-algorithm calculates the

TD-TTs by computing the FF-TT and multiplying it with the corresponding congestion factor. The

method is fast as it only relies on a quick retrieval of the FF-TT, together with a table look-up and a

multiplication. A quick FF-TT retrieval is possible using an algorithm like Highway Node Routing or

Contraction Hierarchies. However, due to memory restrictions, simply storing all congestion factors is

not an option. Therefore, we do not compute the congestion factors between each pair of singular nodes,

but between areas of nodes. To bene�t from a �ne grid of areas, while remaining memory e�cient, we use

multiple overlay layers that divide the road network into quadrants. Each layer is a quadratic subdivision

of the layer above it. In the end, the lowest layer has �ne grid of many small areas, while the highest

and second highest layer consist of only one and four areas, respectively. Only for the areas that are

considered important enough, the algorithm will compute the congestion factors. If the CH-algorithm

wants to retrieve the congestion factors between an OD-pair, it will search the layers from bottom to

top to �nd the layer in which both the origin and the destination node is in area, which have congestion

factors between them precomputed.

Results:

The CH-algorithm outperforms the TTC in the majority of the experiments we ran. The results show

that the CH-algorithm is on average 34% more accurate in congested areas, compared to the TTC. It

also shows, that the CH-algorithm is on average 28% more accurate for trips with a length of at most

30 minutes, compared to the TTC. These values are weekday averages, during rush hour these values

ii

iii

increase to 38% and 33% respectively. However, we decided while designing the algorithm that some

accuracy for longer trips would be sacri�ced in favour of the shorter trips, resulting in an accuracy

drop for trips longer than 30 minutes. The accuracy decreases on average with 85%, meaning that the

average deviation increases from 1.7% to 2.7% and from 1.0% to 2.0% for trips of 2 hours and 4 hours

respectively. To put this increase into perspective, the duration of a 4-hour trip (in free �ow) on average

has an additional deviation of 2.5 minutes.

Recommendations: In this research, we present a proof of concept of the newly developed CH-

algorithm. We showed promising results that could improve the feasibility of the vehicle routing solutions.

This is bene�cial for the customer, as their distributions plans get more reliable. This means, less driver

time violations, more on-time delivery, and ultimately less rescheduling and deployment of additional

vehicles. This will eventually lead to a more reliable customer, which result in overall positive business

bene�ts. Before this algorithm can be used, we recommend to further research the four preprocessing

steps of the algorithm. We expect that there is still some potential accuracy to be gained.

Acknowledgements

A few weeks back I went to get something to eat with a former roommate and a former fellow student

of mine. During dinner, we had a wild discussion about technology, particularly about computer science

and programming. Advantages and disadvantages of di�erent languages, structures, and approaches

were discussed widely. At one point, my former roommate pointed out that it was just two years that I

knocked on his door with the question �that I wanted to learn something about programming�, and that

now we are having big discussions about things I had no knowledge of until recently. It then hit me how

much I have learned over the past two years, knowledge that is going to help me the rest of my life.

This thesis is the result of a process starting back in the beginning of 2015, after I �nished my master

in Industrial Engineering & Management, with a thesis also completed at ORTEC. Exactly one year

later I am able to present the result of my research. Although I cannot mention everyone explicitly, I

like to thank the following: ORTEC, for giving me yet another opportunity to graduate at a wonderful

company. Leendert Kok, who trusted me to come up with a solution that both bene�ts ORTEC as it

also functions as a great thesis topic. Bas den Heijer, who had the rewarding task to answer all my minor

questions about almost everything when I just started my graduation assignment. Laurien Verheijen, for

proofreading my thesis. Marloes van der Maas, also for proofreading my thesis, but even more for all

the mental support I got from you over the last two years. From the university, Eric van Berkum and

Martijn Mes, who were did an amazing job in reviewing my work, and taking the time to provide me

with great feedback. Without all of you, this thesis would not have been a success.

Looking back on this period, I am satis�ed with what I have accomplished. Looking at my thesis I can

say that I produced some useful results on computing time dependent travel times. I am even more

pleased with everything I learned during the last year, especially the C++ and C# programming skills

I developed. This, together with everything I learned during the year before that, makes that I am

currently comfortable with developing software. Looking forward, I have the opportunity to grow within

ORTEC, something I am grateful about.

iv

Contents v

This page is intentionally left blank.

Contents

Management Summary ii

Acknowledgements iv

Contents v

1 Introduction 1

1.1 Terminology . 2

1.2 Context Analysis . 2

1.2.1 Related Work . 3

1.2.2 Travel time data . 5

1.2.3 Current approach . 6

1.3 Problem Description . 6

1.4 Research Goal . 7

1.5 Research Scope . 7

1.6 Research Approach . 8

1.7 Research Outline . 8

2 Literature Review 9

2.1 Basic shortest path algorithms . 9

2.2 Hierarchical shortest path algorithms . 11

2.3 Labelling shortest path algorithms . 12

2.4 Time dependent shortest path algorithms . 12

2.5 Conclusion . 13

3 Current Methods 15

3.1 Vehicle Routing Algorithm (CVRS) . 15

3.2 Time Dependent Shortest Path Algorithm (TTC) . 15

4 Benchmarking 16

4.1 Data . 16

4.1.1 Map . 16

4.1.2 Test sets . 17

4.1.3 Representatives . 20

4.2 Evaluation criteria . 21

4.3 Setup of the experiments . 24

4.3.1 Experiment 1: The e�ect of the path length on the time dependent travel time
over di�erent departure times during the day . 24

4.3.2 Experiment 2: The e�ect of the vicinity of the representative on the time dependent
travel time over di�erent departure times during the day 25

4.3.3 Experiment 3: The e�ect of congestion on the time dependent travel time over
di�erent departure times during the day . 25

vi

Contents vii

4.3.4 Experiment 4: The e�ect of the number of representatives on the time dependent
travel time over di�erent departure times during the day 26

4.3.5 Experiment 5: The e�ect of the percentage of the shortest path shared on the
travel time gap . 27

4.4 Results . 28

4.4.1 Experiment 1: The e�ect of the path length on the time dependent travel time
over di�erent departure times during the day . 28

4.4.2 Experiment 2: The e�ect of the vicinity of the representative on the time dependent
travel time over di�erent departure times during the day 33

4.4.3 Experiment 3: The e�ect of congestion on the time dependent travel time over
di�erent departure times during the day . 34

4.4.4 Experiment 4: The e�ect of the number of representatives on the time dependent
travel time over di�erent departure times during the day 35

4.4.5 Experiment 5: The e�ect of the percentage of the shortest path shared on the
travel time gap . 37

4.5 Zoom in . 39

4.6 Conclusion . 42

5 Congestion Hierarchy Algorithm 43

5.1 General solution approach . 43

5.2 Partitioning graphs . 44

5.2.1 Grid . 45

5.2.2 Quadtree . 45

5.2.3 Kd-Trees . 45

5.2.4 METIS algorithm . 46

5.2.5 Conclusion . 46

5.3 Our travel time algorithm: Congestion Hierarchy Algorithm (CH-algorithm) 46

5.3.1 Preprocessing . 47

5.3.2 Data overview . 50

5.3.3 Calculating the TD-TT using the CH-algorithm 52

6 Experiments & Results 54

6.1 Data . 54

6.2 Evaluation criteria . 55

6.3 Setup of experiments . 56

6.4 Results . 56

6.5 Conclusion . 61

7 Conclusions and Recommendations 63

7.1 Conclusions . 63

7.2 Discussion . 64

7.3 Further research . 65

Bibliography 67

Chapter 1

Introduction

This research is conducted at the Product Development department of ORTEC within the area of

Transport & Logistics. ORTEC is a company that delivers optimization solutions in the �eld ofOperations

Research (OR), as well as consulting services in which OR techniques are applied. One of the solutions

that ORTEC delivers is a software product called ORTEC Routing & Dispatch (ORD). ORD allows

companies to manage the distribution of goods with a �eet of vehicles, and optimize their transport

planning. In literature, this process is commonly known as the Vehicle Routing Problem (VRP) [1].

Another well-known OR problem is the Shortest Path Problem (SPP), which is the problem of �nding the

path with the least impedance between two points in a graph. In this research the graph represents a road

network, therefore the costs of the edges represent travel times. Many of the existing approaches assume

that the edge weights of the graph are constant, meaning they have a single value representing the travel

time of the edge. However, in real life, the travel time of an edge can vary over time, especially in busy

urban areas. So the edges do not have a single constant value for travel time, but a time-dependent travel

time (TD-TT) depending on the time of day on that edge. Algorithms that solve the SPP on spatial

graphs with time-dependent edges, are known as Time Dependent Shortest Path (TD-SP) algorithms.

The VRP has been studied extensively over the years [2], and lately there has been an increased interest

in including real life constraints, like time windows. However, most of the proposed models assume

constant travel times between the nodes, while research shows that using TD-TTs instead of constant

TTs results in more feasible solutions. Kok et al. [3] calculate that 99% of late arrivals at customers

can be eliminated if one accounts for tra�c congestion during the o�-line planning phase. Demiryurek

et al. [4] demonstrate that including TD-TTs improves the travel time of a trip on average with 36%,

when a SP is found using a TD-SP algorithm instead of the constant travel time variant. The TD-SP

algorithm tries to avoid congested areas at the cost of a small detour, while the constant SP algorithm

does not include congestion, neglecting getting stuck in tra�c. This value rises to 68% and 43% during

the morning and afternoon commute respectively.

The TD-SP algorithms that are currently known in literature, are either not fast enough or use a gigantic

amount of the main-memory, to be even considered as a part of vehicle routing algorithms [4]. As

computational speed is an important factor within solving the VRP, the current shortest path (SP)

algorithm at ORTEC returns an estimate of the TD-TT, in favour of a faster response. Getting the

TD-TT between two locations is possible using an exact approach, but it takes a signi�cant amount

1

Chapter 1. Introduction 2

of time to calculate it. The current TD-SP algorithm in ORD works as required, but only when it is

specially con�gured for a single customer. It is possible to con�gure the TD-SP such that it functions for

all customers at once, but at ORTEC the idea prevails that this will return inaccurate travel times, and

therefore creates infeasible and non-optimal transport plans. With this research, we focus on developing

an accurate method to determine TD-TTs, which is fast enough to be used for solving VRPs for networks,

while being customer independent.

In Section 1.1 we discuss the terminology used throughout this thesis. In Section 1.2, we provide the

background of this research. Section 1.3 describes the problem we want to solve. Section 1.4 describes

the goal of this research. In Section 1.5, we describe the scope of this research. In Section 1.6 we provide

the reader with the research approach of our research, including the research questions. Finally, Section

1.7 describes the structure of this dissertation.

1.1 Terminology

This thesis contains a lot of technical terminology. Part of this terminology is related to the current

techniques used in the software of ORTEC. Even though most of the terminology is related to vehicle

routing and shortest path algorithms, researchers tend to have di�erent explanations for equal words,

making de�nitions ambiguous. We notice that ORTEC as well has its own de�nitions related to

transportation. To overcome this ambiguity problem, and to improve the readability of this thesis,

we de�ne the terminology as follows:

Route: The sequence of pick ups and deliveries performed by a truck or truck combination, starting

and �nishing at a depot.

Trip/path: Used interchangeably. Refers to the travel between a single origin and destination node.

Where a �travel� only refers to the concept of something moving between two locations, a trip or path

refers to the actual travelled path, or sequence of streets taken. Often used as �shortest path�, which is

the path with the lowest sum of the weights of the traversed edges.

Call/response: When the vehicle routing solver wants to know the travel times within a sequence of

orders with a given departure time, it sends a request to the Travel Time Calculator (TTC). We de�ne

this request as the �call� to the TTC. When the TTC has the associated travel times, it provides a

response to the vehicle routing solver. We de�ne this answer as the �response� to vehicle routing solver.

Query: A query is a term frequently used within the �eld of computer science for some kind of

information retrieval. Within this research we use the term solely for the retrieval of travel times.

We distinguish three types of queries; one-to-one, one-to-many, and many-to-many. The di�erence is the

number of origins and destinations send in the query. A many-to-many query is typically used during

optimization, as the travel times between multiple origins and destination can be retrieved at once.

1.2 Context Analysis

In this section, we provide the background of this research. Section 1.2.1 starts with the background of

the related work on the vehicle routing problem with TD-TTs. In Section 1.2.2, we describe the travel

time data ORTEC uses, and what we use in this research as well.

Chapter 1. Introduction 3

1.2.1 Related Work

Networks are typically modelled as directed graphs G = (V,E), with n nodes and m edges. Figure 1.1

gives a representation of a graph, which is generated from a map. Nodes represent junctions and edges

represent road segments, even though the opposite is possible [5]. Road networks are typical sparse and

near planar graphs with short edge distances. Every edge e ∈ E has a non-negative travel cost of te,

which represents the cost of traversing that edge. Typically, this is the travel time it takes a vehicle,

but other costs like distance costs, toll costs, fuel consumption, etc. may be included. In this research,

we focus solely on the travel time of the links. Paths in the graph consist of an origin node o ∈ V , a
destination node d ∈ V , and a corresponding path of < s → ... → t > [6]. An optimal path in graph G

is a path with a minimal total travel time. In case of route planning with free �ow travel times, a single

value is assigned to every te of e ∈ E. However, in route planning with TD-TTs, a Travel Time Function

(TTF) te(τ) of e ∈ E is assigned, where te(τ) is the cost of traveling edge e when starting at time τ [6].

Figure 1.1: A (simple) graph representation of a map. In this example, the nodes represent cities and
the edges represent the roads connecting them. The nodes in a graph used for distribution planning are
on a much smaller scale. Those nodes represent road intersections and the arcs are the roads connecting

them.

Kok et al. [3] studied the performance of four di�erent congestion avoidance strategies in a real world

setting. They focussed their research on the results of the strategies, not so much on the performance

of the strategies themselves (meaning computational time was not of interest). To solve the TD-SPP

and TD-VRP they used a TD-Dijkstra algorithm and a dynamic programming heuristic respectively.

As mentioned in the introduction, their results showed that 99% of late arrivals at customers can be

eliminated if one accounts for tra�c congestion during the o�-line planning phase. To measure the

performance of di�erent travel time strategies, they used the number of vehicle routes, total duty time,

total travel distance, number of late arrivals, number of late return times, maximum late time, and total

late time as indicators.

Ichoua et al. [7], Lecluyse et al. [8], and Van Woensel et al. [9] used tabu search to solve the TD-VRP.

All three research teams used TD-TTs that are simpli�cations of the real world, speci�cally because

no full road graph was used. Instead, a path between two nodes is simpli�ed as a single edge with a

single distance and a single TTF. The used datasets are theoretical datasets, commonly used to compare

performances of algorithms. The TTFs were based on aggregated data, provided by the Belgian and UK

government. They only used two or three di�erent road categories, hence only two or three di�erent

Chapter 1. Introduction 4

TTFs were considered. The edges consisted of randomly assigned road categories, meaning the TTFs

were also randomly distributed over the node pairs. Retrieving the TD-TT is no more than a simple

table loop up, in a n-by-n matrix. All three research teams concluded that TD-TTs show signi�cant

improvements over constant travel times, indicating the usefulness of time-dependent information.

Dabia et al. [10] and Kritzinger et al. [11] both have a similar approach as Ichoua et al. [7], only they used

a branch-and-price (B&P) and variable-neighbourhood-search (VNS) algorithm respectively to solve the

TD-VRP. Both used the Solomon instances as their dataset for the TD-VRP, therefore all paths between

the locations consist of a single edge. Dabia et al. [10] used three di�erent TTFs that they randomly

assigned over the edges. Each TTF consist of 5 time zones, each having a single value representing a

moment during the day (night, morning commute, afternoon, evening commute, and evening). Kritzinger

et al. [11] only used a single TTF, which is a function of an average day on the Vienne Highways. Both

showed that including TD-TTs into the VRP with time constraints provides substantial improvements

in the total travel time of the routes.

Donati et al. [12] and Hashimoto et al. [13] used a similar approach as Ichoua et al. [7] with TD-TTs

represented by simple table look ups. Donati et al. [12] presented the idea to calculate the TD-TT on

the �y, but chose to store the required set of paths beforehand, due to increased computational e�ort of

repeatedly calculating the shortest path. The initial road network consisted of a set of 1522 geo-referenced

nodes and 2579 arcs. Within the 1522 nodes, a set of 60 customers with given demands existed. They

used an Ant Colony System (ACS) algorithm to solve the TD-VRP, and show an average improvement

in the travel time gap of 8%. The travel time gap is the percentage between the total travel time found

with the TD-SP algorithm and total travel time found with a free �ow SP algorithm [14]. The latter

total travel time is calculated by taking the free �ow shortest path, but taking the travel time of the

time dependent graph. Hashimoto et al. [13] used the Solomon's benchmark instances and Gehring and

Homberger's benchmark instances to test their iterated local search algorithm. They incorporated three

di�erent road categories, each with a di�erent speed for the morning, daytime and evening period. They

show that their algorithm is highly e�cient.

Li et al. [14] and Mancini [15] used a local search algorithm and a Greedy Randomized Adaptive Search

Procedure (GRASP) respectively to solve the TD-VRP. To calculate the TD-TTs during optimization,

Li et al. [14] used a TD-A* algorithm to calculate the TD-SP and corresponding TD-TT. The TD-A*

algorithm is used on the Los Angeles(LA) road network dataset, which contains 111,532 vertices and

183,945 edges. They solve the TD-VRP with 1000 delivery location within 20 minutes, while achieving

accuracy similar to the state-of-the-art approach. Mancini [15] created six degree polynomial functions,

�tting the data points of the TD-TT data. His algorithm, that consisted of a construction and local

search phase and that is similar to that of ORTEC (See Chapter 3), performs 12.5% better than when

using constant travel times.

To conclude, all papers on TD-VRPs we found came to the same conclusion that the inclusion of TD-

TT leads to a better result than the constant TT variants. However, most research has been done on

extremely simpli�ed time dependent models, which is a nice proof of concept, but it is questionable if

it is useful in practice. The only paper that included a TD-SP algorithm, other than the slow TD-

Dijkstra, still had a relatively small map (LA), compared to the larger maps typically used in practice,

e.g.,BeNeLux (>6 million edges), Western Europe (>42 million edges), and USA (>57 million edges)[16].

It is a step in the right direction, but we search for an algorithm that is fast and applicable to larger

scale maps.

Chapter 1. Introduction 5

1.2.2 Travel time data

Gendreau et al. [17] propose a classi�cation method to assess the quality and evolution of the travel time

data (Table 1.1). Information evolution describes if the data changes over time. If the data is static, the

travel times originates from historical Travel Time Functions (TTFs). If the data is dynamic, the travel

times come from a live feed connected to the current tra�c situation. The information quality is whether

or not the travel time is deterministic, or if it is based on travel time probability distribution functions

that represent the road network's edges. ORTEC procures travel time information from a third party

company that is specialized in collecting and processing data to make travel time predictions. Those

travel time predictions are both historical and deterministic, leading to the travel time data that is static

and deterministic.

Information quality

Information evolution Deterministic input Stochastic input

Input known beforehand Static and deterministic Static and stochastic

Input changes over time Dynamic and deterministic Dynamic and stochastic

Table 1.1: Taxonomy of the the quality and evolution of travel time data [17].

Travel time information is available on an individual edge level and on a 15 minute timespan, given the

time of the day and day of the week. It is therefore possible to get the travel time of an individual edge at

4 ∗ 24 ∗ 7 = 672 di�erent moments of the week. The third party uses �oating car data (GPS data points)

to compute historical speed pro�les, which is the average speed on an edge at a given time. Although

in practice every edge has a unique speed pro�le, the third party aggregated the data to only 15,000

di�erent speed pro�les. Each edge in the graph is linked to one of these speed pro�les, meaning multiple

edges share the same speed pro�le. The speed pro�les predict the travel time at a certain moment in

time on any of the graph's edges. Although it is just a prediction, we consider these pro�les as the �real�

speeds in the road network.

ORTEC converts these speed pro�les to TTFs, by dividing the edge distances by the speeds in the speed

pro�le. A TTF consists of continuous piecewise linear functions, that are formed when connecting the

travel time values. Figure 1.2 shows an example of a speed pro�le and the converted TTF. The TTFs all

ful�ll the First In First Out (FIFO) property, which means that no driver arrives earlier if they would

depart later. This means none of the linear functions within a TTF, can have a slope smaller than -1.

This property is important, as the problem of �nding a time dependent shortest path in a FIFO network

is polynomial solvable, while the problem gets NP-hard in non-FIFO networks [18].

Chapter 1. Introduction 6

(a) Speed pro�le (b) Travel time pro�le

Figure 1.2: (a) Possible speed pro�le over a day of a single edge e in graph G. ORTEC acquires the
speed pro�les from a third party. (b) The travel time pro�les results from the speed pro�le.

1.2.3 Current approach

So far we described two OR problems, the VRP and the SPP. The software program ORD is able to solve

these two problems, giving customers the ability to plan their distribution processes e�ciently. ORD

uses construction, destruction, and local search heuristics to automatically solve the VRP, and thereby

creating a near optimal set of routes. In essence, these heuristics generate an enormous amount of possible

plans, and at the end select the plan with the best set of routes. Transport planning at companies almost

always includes time constraints, e.g., time windows at locations and drivers legislation. Therefore, to

solve the VRP and make sure no constraints are violated, heuristics need (time-dependent) travel times

of shortest paths between all pairs of consecutive locations within the routes.

The ORD software is divided into multiple components. We focus on the components Vehicle Routing

Algorithm and Shortest Path Algorithm. We call these components COMTEC Vehicle Routing System

(CVRS) and the Travel Time Calculator (TTC) respectively. The latter contains more functionality

than solely calculating (TD)-TTs, but in this research we solely focus on the TD-TTs. We describe the

CVRS and the TTC in Chapter 3.

The algorithm in the TTC returns an estimate of the TD-TT, using a tailor made method called the

representative approach. This estimate favours a fast response, as speed is an important factor within

solving the VRP. In theory, it is possible to get the exact TD-TT for each node pair in the graph using the

representative approach, but this increase of the accuracy in the method quickly results in the need for

an unusable amount of main memory. Currently, it is decided that the main memory usage of the TTC

cannot exceed the 1000 MB. A detailed description of the representative approach is given in Section 3.2.

Getting the TD-TT between two locations is possible using an exact approach, but it takes a signi�cant

amount of time to calculate it. The idea prevails that the current TD-SP algorithm does not return

accurate travel times, and therefore creating infeasible and sub-optimal transport plans.

1.3 Problem Description

Our problem is strongly related to the Time Dependent Shortest Path Problem (TD-SPP). Major

di�erence is that it has to be applicable for vehicle routing algorithms. This means the algorithm

Chapter 1. Introduction 7

for solving the TD-SPP needs to be fast, and the algorithm only has to return the TD-TT and not

necessarily the shortest path itself. For a more formal problem description of the TD-SPP, we refer the

reader back to �rst part of Section 1.2.1.

The representatives method proves to be a fast algorithm for TD-TT queries. The major drawback of

this approach is that it is only an estimation of the TD-TT based on the static and deterministic TTFs.

Estimating the TD-TT results in a di�erence between what the vehicle routing algorithm (CVRS) uses

and what is actually true based on the historical TTF. A signi�cant discrepancy in the travel time causes

the route planning to be unrealistic and/or non-optimal. When the estimated travel times are too short,

it causes drivers to be late and miss the agreed delivery times. When the estimated travel times are too

long, we create unnecessary slack within the schedule.

We do not know what the e�ects are of using the representatives method. Therefore, we do not know

if i) the travel times are indeed su�ciently inaccurate, and ii) what the e�ects are on the functioning

of CVRS. This means, that it is possible that the travel times are actually quite accurate and it has no

e�ect or only a small e�ect on the quality of the transport plans of CVRS. It is also possible that the

estimation of the TD-TTs is poor, but that it has no e�ect on the quality of the transport plans.

1.4 Research Goal

The research goal of this study is to develop an improved algorithm that calculates the travel time

between two points on a map, for any departure time. The algorithm has to be more accurate than the

current implementation, without increasing the computation times too much and preferably with less

memory use than the current method.

1.5 Research Scope

In this section, we specify some boundaries of our research. This research focusses on TD-TTs based on

static and deterministic TTFs. Realized travel times are outside the scope of this research, we are not

interested in improving the provided TTFs. This data is provided by a third-party company and we see

it as the ground truth. It is their responsibility to provide as reliable data as possible. Also, dynamic

travel times are outside the scope, meaning we solely focus on TTFs that are based on historical data.

We are already able to extract the exact TD-TTs from the TTFs, using time-dependent Dijkstra's (see

Section 2.1). This comes at the cost of large computation times, something that is not favourable for

customers, but it is good enough for research.

We focus on �nding a fast method for extracting the TD-TTs when CVRS requests them. That means

that we are searching for a fast TD-SP algorithm, which is as accurate as possible. Although routing is

closely related to our research, we do not focus on changing the current behaviour of CVRS. Di�erent

approaches and strategies of the vehicle routing algorithm are outside the scope of this research. The

TTC functions as required for individual customers, but we want to develop an algorithm that functions

customer independent. This means that we cannot use any information and/or data that is speci�c to a

single customer, to con�gure our algorithm and improve the accuracy.

Chapter 1. Introduction 8

1.6 Research Approach

To come to an appropriate answer for the problem and to reach the goal of this research, we formulate

a number of research questions. We present our research questions, each with a small introduction to

motivate its importance. Finally, we give an overview of our research approach.

First, we want to research what is currently known in literature about our research problem.

1. What is currently known in the literature about the use of TD-TTs in vehicle routing problems?

(a) What kind of shortest path algorithms can be used to calculate TD-TTs from a weighted

graph where the non-negative edge weights are time-varying?

(b) What kind of algorithms are closely related to the TTC?

Second, the TTC has never been evaluated thoroughly. Before developing a new algorithm, we want

to assess the accuracy of the TTC. We want to know if it is even necessary to develop a new one. In

addition, this helps us to get a better understanding in which situations the TTC performs better than

in others.

2. How accurate are the calculated TD-TTs from the TTC?

(a) What is the di�erence between the exact TD-TT and the TD-TT calculated by the TTC?

(b) How does the number of representatives a�ect the accuracy of the TTC?

(c) How does the location of the origin and destination of a path a�ect the accuracy of the TTC?

Third, we design an alternative algorithm that quickly calculates the TD-TTs to be used in the VRP. It

is important that it �ts the current ORD framework as well.

3. What algorithm is suitable to calculate the TD-TT of the shortest path quickly within a weighted

graph where the non-negative edge weights are time-varying?

Fourth, we want to know the accuracy and the performance of the developed algorithm. We evaluate

our algorithm by comparing it to the TTC, both on the relative travel time gap as computational speed.

We use the same datasets and evaluation criteria as used in research question 2.

4. What is the accuracy and performance of the developed algorithm?

1.7 Research Outline

The remainder of this thesis is organized as follows. In Chapter 2, we review the related work on both

shortest path algorithms as vehicle routing algorithms that use time-dependent travel times. We use

this literature review as basis for the development of the new algorithm. In Chapter 3, we describe

the implementation of the TTC, to give an insight on the functioning of the software. We research the

accuracy of the current algorithm in Chapter 4, by running a total of �ve experiments. The outcomes

of these experiments also function as input for the development of the new algorithm. In Chapter 5, we

present our developed algorithm, the Congestion Hierarchies-algorithm (CH-algorithm). Chapter 6 shows

the results of the experiments that were carried out to measure the performance of the CH-algorithm.

Finally, Chapter 7 describes our conclusions, discussions, and an outlook for further research.

Chapter 2

Literature Review

This chapter describes the current state of literature related to our research. The following sections

describe the path �nding algorithms that are currently known within the literature. We compare these

techniques using three variables, namely: speed-up, preprocessing time, and space overhead [6]. Speed-up

is the factor to which the query time of a path �nd algorithm is faster than Dijkstra's algorithm. The

preprocessing time is the time needed to pre-process the representation of the graph used by the speci�c

technique. Space overhead is the memory usage needed to store the representation of the graph. Often,

techniques can be tuned among these variables, resulting in a trade-o� between the three.

Section 2.1 describes the basic techniques for path �nding within a graph. In Section 2.2, we look at

the path �nding techniques that use hierarchies to speed-up the query time. In Section 2.3, we discuss

labelling algorithms that store information on nodes, for the retrieval of shortest paths or to successfully

prune edges during the path search. Finally, in Section 2.4 we focus on path �nding techniques that

include time dependencies within the graph.

2.1 Basic shortest path algorithms

In this section, we discuss several path �nding algorithms. The core of every algorithm is the in 1959

developed Dijkstra's algorithm, which guarantees to �nd the shortest path in any graph. First we discuss

Dijkstra's algorithm, and subsequently algorithms that add speed-up techniques, or add information to

the graph to speed up the process as well.

Dijkstra: Already in 1956, Dijkstra developed an algorithm to determine the optimal path between two

locations in a network [19]. The optimal path is the path with the least resistance between two vertices

in a graph, which can be measured in, e.g., distance or time. Because the algorithm is relatively fast

while giving optimal solutions, the algorithm is still used nowadays in many di�erent type of routing

problems.

The algorithm keeps a priority queue Q of all nodes in the graph, ordered by the total distance from

starting point s. All node-to-node distances are initialized to in�nity, except the distance from node s to

node s, which is set to 0 and added to queue Q. During every iteration, the algorithm picks node u from

the top of queue Q (node with least distance), and starts assessing all outgoing edges to all neighbour

9

Chapter 2. Literature Review 10

nodes. For each edge, it determines the distance from node s, via node u, to the node v at the other end

of the edge. If the distance s to u, plus the length of the edge, is shorter than the current value of node

v, it updates the value of node v. Afterwards, the updated node is added to the priority queue Q. All

visited nodes, until the target node t is reached, are referred to as the search space of the Dijkstra query

of node s to node t. Dijkstra is applicable for all kind of graphs, as long as the edges have non-negative

values. Also, no pre-processing is necessary, making it easy to update the graph. However, in gigantic

graphs the computational time of Dijkstra for �nding the shortest path between start s and target t

becomes too high to be used conveniently.

Bi-directional Dijkstra: The search space used by Dijkstra can be reduced using bi-directional Dijkstra

[20]. Instead of starting only at start-node s, the bi-directional search also does a backward Dijkstra

search from target-node t. A backward search is similar to the normal Dijkstra search, but instead of

looking at all outgoing edges, the algorithm considers all incoming edges. In an undirected graph, the

forward and backward search are identical, due to the characteristics of the graph. For road networks,

bi-directional Dijkstra reduces the search space roughly to half the size of the unidirectional approach,

making the algorithm twice as fast. Bi-directional Dijkstra has the same advantages and disadvantages

as the regular Dijkstra. However, time-dependent path �nding is not possible, as during the backward

search it is known yet what the time of arrival is going to be.

A* Search: Hart et al. [21] propose a goal-directed version of Dijkstra's Algorithm. The idea of A*

Search is to traverse the edges that are in the general direction of the target-node as early as possible.

Instead of picking the node u out of priority queue Q based on solely the distance from start node s to

that node u, it adds the estimated distance from node u to target node t to that value. This way, the

nodes that are closer to the target, are picked �rst. The estimating distance function can have di�erent

implementations. A possible implementation would be to calculate the euclidean distance based on the

coordinates of the nodes. In practice, A* performs poorly compared to current modern techniques [22].

Geometric Containers: Schulz et al. [23] propose another goal-directed version of Dijkstra's Algorithm,

calledGeometric Containers (GC). The algorithm pre-computes an edge label L(e) that contains information

on the target nodes that have edge(u,v) on their shortest path, given node u as the start node of that

shortest path. During a query, all edges that do not have target node t in L(e), can be safely pruned.

Because it takes up too much memory space to save all nodes in every edge containers , the container

contains geometric information on all nodes that have edge e on their shortest path. The geometric

information can be angular, like at Schulz et al. [23], but can also be shaped like ellipses or a convex hulls

[24]. A large disadvantage is that for every node u in graph G, a one-to-many Dijkstra search has to be

completed during the pre-processing phase. This algorithm is commonly used within public transport

networks, and not on road networks.

Arc Flags: The last goal-directed path �nding algorithm we discuss, is Arc Flags (AF) [25, 26]. During

a pre-processing phase, the algorithm subdivides the graph into K di�erent cells. The areas are roughly

balanced in the number of nodes it contains, and have a small number of boundary edges. Each edge

contains a vector Ci of length K bits, in which bit i corresponds to cell i. If the edge belongs to a shortest

path to cell i, ith bit in Ci is set to 1. During the search, the algorithm prunes the edges that do not

contain the cell in which target node t belongs. The big advantage is that it is a relatively easy query

algorithm to implement. In addition, it has often optimal queries, meaning it only visited those edges

that are on the shortest path of the query [27].

Chapter 2. Literature Review 11

2.2 Hierarchical shortest path algorithms

This section focusses on path �nding techniques where the algorithm modi�es the graph in a preprocessing

stage, to ensure faster queries. They are often called hierarchical techniques, as it transforms the original

�at graph into a multi layered graph to exploit the inherent hierarchy of road networks [22]. The time-

dependent variant of the contraction hierarchies method is currently being researched at ORTEC to

replace the highway node routing method.

Highway Hierarchies: Sanders and Schultes [28] were the �rst to develop an algorithm that uses

the hierarchical characteristics of the road network. Highway Hierarchies (HH) provides fast solutions,

without losing the optimality Dijkstra has. This has to do with the typical characteristics of a road

network, which bounds the need to have an algorithm that is applicable for all kinds of graphs. Highway

Hierarchies starts with a preprocessing phase where the graph is modi�ed to a graph with di�erent

hierarchical layers. These represent the same hierarchies we know in our road network, e.g., local access

roads are lower in the hierarchy than highways. Note that the algorithm automatically �nds the most

important roads within the network, so the levels do not necessarily have to match the structure of the

road designer. This pre-processing phase can take up several hours, but has to be calculated only once.

The hierarchical graph allows for queries of trips of about 1 ms, which is considered very fast. The

drawback of HH is that the travel time data is static, because no changes can be made to the graph

without running the preprocessing phase again. Therefore, a typical HH-graph consists of only the free-

�ow travel times and all congestion is neglected. Also, even minor changes of the road network, result

in completely reprocessing the HH-graph.

Highway Node Routing: Schultes and Sanders [29] developed a successor algorithm of HH, called

(Dynamic) Highway-Node Routing (HNR). HNR solves the problem of having to recalculate the complete

graph, even if only one edge changes. HNR allows for fast updates of minor changes in the hierarchical

graph, with a speed of 2 � 40 ms (on the Western European map). Afterwards, this allows for fast

queries of about 1 ms on average. A road network does not change that often, as it takes some time to

construct new roads or upgrade them. Still, the graph contains only static travel times. Updating the

graph after each query is not an option, as this results in updating all arcs within the graph. The query

speed seems promising, but these speeds are only reached when just a few arcs are updated. Still, HNR

is a predecessor of contraction hierarchies, that is in its core much simpler to implement.

Contraction Hierarchies: Geisberger et al. [16] developed the Contraction Hierarchies (CH) algorithm,

which is a successor of HH and HNR. It is based on the idea of placing the more important nodes (the

ones often on a shortest path) higher up the contraction graph than less important nodes. CH starts

with a pre-processing phase, in which the nodes are one by one contracted from the original graph, in

order of least important to most important. During the contraction of one node u from the graph, for

each incoming and outgoing node pair, CH checks if path < v, u, w > is the shortest path from node v to

node w. If so, this shortest path is added as a short-cut in the remaining graph. Afterwards, a query for

a (s, t) node pair is done with a forward upward Dijkstra search from node s, and a backward upward

Dijkstra search from node t. One of the nodes where the two searches meet, is the node on which the

shortest path is located. It is faster and simpler that it predecessors, HNR and HH.

Chapter 2. Literature Review 12

2.3 Labelling shortest path algorithms

This section discusses the most recent developments in path �nding techniques, called labelling methods.

This technique precomputes label L(v) for each node v, which contains information on the shortest paths

within the graph. Using these labels results in successfully pruning edges that are not on a shortest path,

or directly retrieving the distance of shortest path, without looking at the input graph.

Hub Labelling Algorithms: The Hub Labelling (HL) method pre-computes a label to every node

n ∈ V [30, 31]. These labels contain information on the shortest path to a set of nodes, so that the labels

of both nodes L(s) and L(t), share at least one node. This way, a shortest path can be found for each

node pair (u, v), just by assessing the labels of both nodes. For directed graphs, two di�erent label sets

for each node are computed; one for all outgoing edges, and one for all incoming edges.

Transit Node Routing: Bast et al. [32] based the development of the Transit Node Routing (TNR)

algorithm on a few key observations. First, they observed for long distance travel, a particular start

location has a few important tra�c junctions, for which all paths will use one of those access nodes.

Second, each access node is relevant for several nodes in its proximity. The union of access points T of

all nodes in the graph V is small and is called the transit node set. The algorithm has a preprocessing

phase, where the algorithm identi�es the transit node set T ⊆ V �rst. Second, the complete distance

table between all access nodes in the transit node sets is calculated. Finally, for each node in graph V ,

its access nodes are determined. A query is a simple search of the smallest distance to each access node

of both the start and target node and the distance between two access nodes. TNR seems to be a good

starting point for our time-dependent path �nding algorithm. However, as far as we know, it has never

been tested on graphs with time-dependent edge weights.

Pruned Highway Labelling: Akiba et al. [33] developed the Pruned Highway Labelling (PHL) algorithm,

which can be seen as a hybrid between a labelling algorithm and transit node routing. First, the algorithm

preprocesses the graph into several di�erent shortest paths. For each node s in graph V a label is created,

so any shortest s − t path can be expressed as < s − u − w − t >, where < u − w > is a subpath of a

path P that belongs to the labels s and t [22]. PHL is one of the fastest algorithms for querying shortest

path. However, it has only been evaluated on undirected graphs.

2.4 Time dependent shortest path algorithms

Within this section we focus on time dependent path �nding techniques. These techniques consider the

variation in travel cost during a day.

Time dependent Dijkstra: Finding the shortest path with Dijkstra's algorithm over a time-dependent

graph, is just as e�cient as �nding the shortest path over a graph with free �ow travel times [34]. However,

it is necessary that the FIFO property holds on the graph, meaning that no driver can arrive earlier at

its destination by departing later. Then, the only di�erence is that the travel time has to be determined

using the current arrival time of the top node in the priority queue. The same disadvantage holds as

normal Dijkstra, that it is really slow for rather large graphs like road networks. Also, bidirectional

queries are not possible, because backward searches from the target nodes cannot be done as the arrival

time is not yet known.

Chapter 2. Literature Review 13

Time-Dependent Contraction Hierarchies: Contraction hierarchies already proved to be extremely

e�cient for graphs with static travel times. Time-dependent Contraction Hierarchies (TD-CH) is a

variant that includes time-dependent edge weights in the road network. It is the �rst hierarchical

path �nding technique for time-dependent paths that allow for bidirectional queries. Time-dependent

contraction hierarchies is extremely useful even with larger graphs, and outperforms other TD-PF

algorithms in the case of considerable time-dependence on the edges (map: Germany, weekdays). Unfortunately,

the current implementation requires still too much memory during the preprocessing phase to be realistic

to be implemented yet.

Customizable Route Planning: Delling and Wagner [27] developed Customizable Route Planning

(CRP) with the idea to make an e�cient real-world routing engine. It should incorporate turn restrictions,

avoidance of U-turns, avoid left turns, avoid/prefer highways, and using di�erent modes of transportation

like biking and walking. This using as little memory as possible. Still, the algorithm should allow for fast

graph updates and one-to-one queries. CRP has two preprocessing phases. First, a metric-independent

phase only considers the topology of the graph, which is the data that changes very infrequently like

edge distance, number of lanes, etc.. The second phase, metric customization, transforms the metric-

independent data into a single metric. This single metric can change quite often, therefore the second

phase takes a few seconds to complete. The preprocessing phase results in multilevel nested partitions.

Within these partitions, or cells, shortcuts are inserted between the boundary nodes, so queries can skip

the nodes within the cells in which the start or target node are not presented. The algorithm is able to

get fast queries, but not as fast as the fastest existing methods currently known. However, the queries of

CRP are robust and suitable for all above de�ned real-world requirements. Time dependent queries are

possible due to real-time tra�c updates of the graph. This feature is useful for real-time planning, but

the updating phase takes to long to be useful during optimization, making it irrelevant for our purpose.

2.5 Conclusion

We gave an overview of the possible techniques available to solve a travel time query. The basic path

�nding techniques are not fast enough to handle large amounts of time-dependent travel time queries.

However, these simple techniques are often used as a part of more sophisticated algorithms, like the

ones we presented in Sections 2.2, 2.3, and 2.4. Table 2.1 presents the memory space usage per node,

preprocessing time, and speed-up compared to Dijkstra of the discussed algorithms. The memory space

and speed-up indicators are adjusted to be experiment setup independent, by using relative values.

Memory space is measured in byte per node, in which the node is a node on the map. The speed-up

is measured by comparing the algorithm's running time with the running time of Dijkstra's algorithm

using the same setup, making the speed of the computer irrelevant. Keep in mind that the preprocessing

time is the absolute value, so di�erences occur due to the use of a di�erent setup. We were not able to

�nd all values for the discussed algorithms, these values are therefore absent in Table 2.1.

Table 2.1 shows that the basic techniques do not perform well enough to be used in route optimization.

During optimization TT queries should only cost a few microseconds, while a typical Dijkstra search on

a European map takes a few seconds to be completed. The hierarchical path �nding algorithms do have

the performance we want, but miss the essential part of being time-dependent. Keep in mind that HNR is

currently used for static travel times, with a locally developed algorithm to estimate the time dependent

part. Within the labelling path �nding techniques, HL and TNR both seem promising because of the

Chapter 2. Literature Review 14

method memory space preprocessing speedup source

[b/node] [min] [comp. to Dijkstra]

Dijk. 24 0 1 (1)

BDD 24 0 2 (1)

A* - - - -

GC - - - -

AF 36 20 6.2 ∗ 103 (1)

HH 72 13 10 ∗ 103 (2)

HNR 26 15 7.1 ∗ 103 (2)

CH - 5 23 ∗ 103 (1)

HL 1121 37 4.6 ∗ 106 (1)

TNR 149 20 2.0 ∗ 106 (1)

PHL 828 50 2.5 ∗ 106 (3)

TDD 24 24 1 (1)

TD-CH 523 285 1.8 ∗ 103 (2)

CRP 54 60 1.5 ∗ 103 (1)

Table 2.1: Overview of the path �nding algorithms. For all algorithms, the Western European map
from PTV AG was used. For A* and geometric containers no data was available. Source (1): Bast

et al. [22]. Source (2): Batz [6]. Source (3): Akiba et al. [33].

fast query times. However, as to our knowledge, they have never been implemented on a time-dependent

graph. In our opinion, both algorithms are a good starting point for research, but we keep in mind

that memory space is going to be the main issue. PHL has as major drawback that it has only been

tested on undirected graphs so far, making it unsuitable for our map. CRP would be the only possible

candidate within the time-dependent path �nding algorithms, but its design has been optimized to make

fast updates possible, at the cost of slower queries. Within our research, we do not have the need to

update the graph that often, but we are interested in fast time dependent queries. Therefore, CRP does

not have our interest.

Chapter 3

Current Methods

In this chapter we discuss the current Vehicle Routing Problem (VRP) and Time Dependent Shortest

Path Problem (TD-SPP) solving methods of ORTEC. In Section 3.1 we give a brief overview of the

working of the COMTEC Vehicle Routing System (CVRS). In Section 3.2 we describe in more detail the

function of the shortest path algorithm and travel time calculation within the Travel Time Calculator

(TTC).

3.1 Vehicle Routing Algorithm (CVRS)

This part is con�dential.

3.2 Time Dependent Shortest Path Algorithm (TTC)

This part is con�dential.

15

Chapter 4

Benchmarking

This chapter describes the experiments we use to (i) research the e�ects of time dependent travel times

on vehicle routes and to (ii) provide a benchmark of the TTC, to later compare with our algorithm. In

Section 4.1 we describe the data we use in our experiments. Section 4.2 describes the evaluation criteria

used in the experiments. In Section 4.3, we describe the di�erent experiments we conduct. Section 4.4

describes the results of the experiments. Finally in Section 4.6, we draw our conclusions based on the

results.

4.1 Data

This section discusses the three di�erent types of data we need to carry out our experiments. The �rst

subsection describes the map data, containing the graph and travel time pro�les of the road network.

In the second subsection we describe the test sets containing the origin and destination pairs to test

the TTC and our algorithm. The last subsection describes the representatives that the TTC uses to

approximate the time dependent travel times.

4.1.1 Map

The map consist of the complete road network of the BeNeLux, including the main roads of the regions of

Northern France and West Germany. Figure 4.1a shows this map, including the congestion information

of a Tuesday. The complete graph consist of 3,114,941 nodes and 6,636,596 edges. Each edge is connected

to seven speed pro�les, which correspond to the seven days in a week. In total 15,754 di�erent speed

pro�les exist, meaning many edges share the same speed pro�le. To calculate the time dependent travel

time, the speed at the time of departure over the edge is retrieved from the speed pro�le of that edge,

and divided by the length of that edge. Within the road network, 3,727,986 edges have at least one day

with a variating speed pro�le. This means 2,908,610 edges have no congestion, or no congestion was

measured. 2,242,591 edges have congestion every day of the week. Figure 4.1b shows the percentages

of the edges that have no, partly, or full congestion information. It shows that the majority of the road

types have congestion data available. Figure 4.3 in Section 4.1.2 shows the zoomed road networks of

four congested areas, where clearly congestion is visibly on the main road around the city. This means

16

Chapter 4. Benchmarking 17

that the provided map consist mainly of edges with non-constant speed pro�les, making time dependent

queries useful.

(a) Road network

0% 20% 40% 60% 80% 100%

Motorway

A-road

A-road (city)

B-road

B-road (city)

Regional road

Regional road (city)

Local road

Local road (city)

Other road

Other road (city)

Pedestrians

Ferry

Occurence

No congestion

Partly congestion

Every day congestion

(b) Distribution of speed pro�les

Figure 4.1: (a) Overview of the congestion of the BeNeLux map on a Tuesday. The colors go from
light green which mean no congestion via yellow, orange, red, purple, and black to the heavy congested
areas. It shows that the BeNeLux part has a dense road network, while the parts in France and
Germany only consist of the main roads. (b) The percentages of the edges that have no congestion,
partly congestion, or have non-constant speed pro�les for all 7 days. The percentages are categorized

into the di�erent road types of the graph.

4.1.2 Test sets

To e�ectively get a benchmark of the current algorithm (TTC) and to test the functioning of our

algorithm, we de�ne three di�erent test groups. In total, the three test groups have 15 test sets of 2500

randomly selected Origin-Destinations pairs. We assume that a set of 2500 shortest paths is su�cient

to draw conclusions based on the average values we calculate. We base all our test sets on a graph with

edges containing truck speeds, as the majority of the customers of ORD use trucks as well. This means

that all travel times are truck travel times.

Test group 1: Path lengths

We randomly generate seven test sets in test group 1, each consisting of 2500 di�erent Origin-Destination

(O-D) pairs. All O-D pairs in a single set have the same shortest free �ow path length. As we explain

later in this thesis, we use these test sets to study the relationship between the distance of a path and

the accuracy of the TTC.

We select the O-D pairs in the test sets in the following way. First, we randomly select a node on the

map which acts as the origin of the O-D pair. Second, we run the Dijkstra algorithm on the graph with

free �ow travel times, with the selected node as the initial start node. The Dijkstra algorithm continues

until it exceeds the predetermined length of the test set. The �rst node after the predetermined length

is reached, will be the destination node of the O-D pair. We repeat this procedure 2500 times for each

test set. In the end, all seven test sets consist of di�erent origin-destination pairs. The predetermined

path lengths are 10 min, 20 min, 30 min, 60 min, 120 min, 180 min, 240 min. We select at maximum a

predetermined path length of four hours, because of the size of the map prevent us from having longer

trips. We name the test sets after the path lengths of the shortest path between the origin and destination

Chapter 4. Benchmarking 18

of the node pair. Hence, the test set that consists of shortest paths with a length of 10 minutes, is called

�10-minute path length�.

Test group 2: Vicinity of representatives

In test group 2, we randomly generate four test sets, each consisting of 2500 di�erent Origin-Destination

(O-D) pairs. All nodes in the test set, both origin and destination, have the same length from their

representative. We use these test sets to study the relationship between the vicinity of the representatives

and the accuracy of the TTC.

We use 220 representatives that are evenly distributed over the graph in a grid structure. We refer the

reader to the next section for more information on the representatives. The test sets are created as follows.

First, we randomly select two representatives out of the set of 220. Second, we run the Dijkstra algorithm

twice, both have either one of the representatives as initial node. The Dijkstra algorithm continues until

the distance between the source node and a target node exceeds the predetermined length of the test

set. The two resulting target nodes of both runs, will be either the origin or destination node of the O-D

pair. Afterwards, this process is repeated. In this way, all nodes of all O-D pairs within one test set have

the same length towards the nearest representative. We name the test sets after the vicinity of the O-D

to the representative. Hence, the test set that consist of O-D pairs that are at �ve minute distance from

their representatives, is called �5-minute vicinity length �.

The result of the Dijkstra algorithm with a representative as initial node, will always result in the same

selected node after the test set length. The limited amount of representatives compared to the number

of O-D pairs in the test set causes the O-D pairs to be limited to 220 di�erent nodes. To overcome this

problem of always selecting the same node from the Dijkstra queue for each representative, we randomize

the lengths by a half percent. In that way, the Dijkstra algorithm quits after slightly di�erent lengths,

resulting in selecting a di�erent node from the queue. The randomization is low enough, to not cause

major variation in the test sets due to di�erent lengths from the representatives. The vicinity lengths of

test sets are 5 min, 10 min, 15 min, 20 min.

Test group 3: Congested areas

In test group 3, we randomly generate 4 test sets, each consisting of 2500 di�erent O-D pairs. All O-D

pairs in a single set, have origin and destinations within a certain prede�ned area that are congested.

We expect that shorter trips within a congested area creates the largest inaccuracy. We conduct a

preliminary experiment to indicate which parts of the BeNeLux map have a high level of congestion.

Figure 4.2 depicts the top 5% of O-D couples with the highest level of delay, given the �Path length 10

min.� test set.

Chapter 4. Benchmarking 19

Figure 4.2: Displays the shortest paths of the 5% O-D couples within test set �Path length 10 min.�
with the highest level of delay. We observe major concentrations of paths around the major cities in

The Netherlands, Belgium, Luxembourg, and the Rhine-Ruhr region.

We observe major concentrations of paths around the major cities in The Netherlands, Belgium, Luxembourg,

and the Rhine-Ruhr region. Luxembourg only show a few paths, and the Rhine-Ruhr region is the part of

the map with a more sparse network. We make a selection of the cities in Belgium and The Netherlands,

and we pick Amsterdam, Antwerp, Brussels, and Rotterdam to be the areas we select the test sets from.

We use these test sets to study the e�ect on the accuracy of the TTC of having trips in a congested

area. We name the test sets after the area they represent. Figure 4.3 shows the congestion on the road

networks of the four areas.

(a) Amsterdam (b) Antwerp

(c) Brussels (d) Rotterdam

Figure 4.3: Overview of the congestion of the di�erent urbanized areas. The colors go from light green
which mean no congestion via yellow, orange, red, purple, and black to the heavy congested areas. Note

that it depends on the time of the day if congestion is an issue.

Chapter 4. Benchmarking 20

We select the O-D-pairs in the test sets by randomly selecting two nodes within the chosen areas. This

results in O-D pairs that di�er in the length of their shortest path, and the vicinity to their representative.

All O-D pairs within one test set have in common that their origin and destination nodes are within a

certain area.

Overview:

Table 4.1 shows an overview of all 15 test sets. Every test set consist of 2500 O-D pairs and are selected

within the area of (49.316,2.581) and (53.473,7.483). Test group 3 consist of O-D pairs selected in even

smaller areas, these areas are presented in column four of Table 4.1.

Testgroup 1: Testgroup 2: Testgroup 3:

Path length Vicinity length Congested area

10 min. 5 min. Amsterdam (52.18,4.74)(52.58,5.24)

20 min. 10 min. Antwerp (51.05,4.13)(51.45,4.63)

30 min. 15 min. Brussels (50.60,4.10)(51.00,4.60)

60 min. 20 min. Rotterdam (51.75,4.15)(52.15,4.65)

120 min.

180 min.

240 min.

Table 4.1: Overview of the 3 test groups and 15 test sets. All test set consist of 2500 O-D pairs. Test
group 1 and 2 consist of nodes selected within the area of (49.316,2.581) and (53.473,7.483). Test group

3 has di�erent areas, the fourth column presents the coordinates of these areas.

4.1.3 Representatives

We use both representative (grid and address) strategies for our benchmarking experiments. The grid

strategy is normally used for demo purposes only, while the address strategy is implemented at clients.

However, we �nd it useful to use the grid strategy for our experiments as it provides an independent set

of representatives that is not related to a particular set of addresses. Besides, it is unknown how the

grid strategy performs, so it provides useful insights. The grid strategy selects representatives within the

area of (49.316,2.581) and (53.473,7.483). These make roughly the outside border of the BeNeLux. This

means that the edges outside of the BeNeLux are mainly mapped to the representatives at the border.

The selected representatives are evenly distributed over the map, creating a grid-like structure.

In total, we select four sets of representatives using the grid strategy, this being, 57 (10 by 10), 220 (20 by

20), 519 (30 by 30), and 889 (40 by 40). The number of representatives is lower than the multiplication

of the number of grids, which is caused by areas in the map where no roads are present. This mainly

happens at the Dutch and Belgium part of the North sea that is within the selected area of the BeNeLux.

We select two sets with 5, 10, 15, 20, and 30 representatives using the address strategy. The addresses

for both sets come from the selected O-D pairs of the Antwerp and Brussels test sets.

Chapter 4. Benchmarking 21

4.2 Evaluation criteria

In this section, we de�ne the criteria we use to evaluate the accuracy of the travel time algorithm.

First, we de�ne the notations that helps us explain the criteria. Please note, that we continue using the

notations of Section 1.2.1.

Consider a node pair u, as a pair consisting of an origin node o and destination node d, where both nodes

o, d ∈ V . Let U be the set of one or multiple node pairs u. Path pod is a path between o and d, where

path < o→ ...→ d > consists of nodes that are within graph G = (V,E). When o, d = u, then pod = pu.

Pod is the set of all path pod between o and d and PU is the set of all paths of all od pairs in set U .

Path qod is the shortest path between o and d, where all edges e ∈ E of graph G have a constant travel

time te. We de�ne this constant travel time as the free �ow travel time t0e of edge e. We de�ne Qod as

the set of shortest paths qod, which in this case means qod = Qod as there is only one shortest path. QU

is the set of all shortest paths of all od pairs in set U .

Path rodτ is the shortest path between o and d at departure time τ , where all edges e ∈ E of graph G

have a Travel Time Function (TTF) te(τ). te(τ) is the cost of traveling edge e when starting at time τ .

Rodτ is the set of all paths Rodτ between o and d at departure time τ . RUτ is the set of all paths of all

od pairs in set U at departure time τ .

Next, we de�ne three di�erent variants of the travel time between two nodes o and d. First, we de�ne

T 0(pod) as the free �ow travel time over path pod. Second, we de�ne T (qod, τ) as the time dependent

travel time over shortest path qod at departure time τ . Note that qod is the shortest path over edges with

t0e, while the travel time is calculated with the te(τ) of the shortest path edges. Last, we de�ne T (rodτ , τ)

as the time dependent travel time over shortest path rod at departure time τ .

We decide to use three evaluation criteria to evaluate the performance of the TTC. The criteria are the

level of delay, the travel time gap, and shortest path share with shortest path of representatives. We

discuss them in the following paragraphs. To clarify the criteria, we use an example graph, we present

in Figure 4.4. This graph consist of six nodes and eight edges. Node o represents the origin and node d

represents the destination. Node ro and rd represent the two representatives in the graph. Each edge in

the graph has a constant travel time and a time dependent travel time, represented by {t0e, i → te(τ)}.

We retrieve the te(τ) from the matrix tτ,i, by looking at the i value of the edge and departure time τ at

which the edge is traversed.

Level of delay:

The level of delay is the di�erence in percentage between the time dependent travel time and the free

�ow travel time. It is an indicator of congestion, as a higher delay indicates more congestion. Consider

T (qodτ) as the time dependent travel time and T 0(qod) as the free �ow travel time. We de�ne the level

of delay between the nodes o and d at departure time τ as LoDod(τ). Therefore, the equation is:

LoDod(τ) =
T (qod, τ)− T 0(qod, 0)

T 0(qod, 0)
(4.1)

Chapter 4. Benchmarking 22

B
ro

A

o

C D

d

E F
rd

{4,2}

{6,2}

{2,0}

{3,1}

{2,0}

{4,1}
{1,0}

{5,2}

(a) Graph

tτ,i =

2 3 4

2 3 4

3 7 5

3 7 5

2 6 5

2 6 5

1 5 4

1 5 4

(b) Travel time functions

Figure 4.4: (a) A graph consisting of 6 nodes and 8 edges. Each edge consist of {t0e, i→ te(τ)}. The
�rst value is the free �ow travel time, the second value refers to column in the matrix of (b). Thus,

multiple edges share the same travel time function.

To calculate the average level of delay over a set of node pairs U , we use the following equation:

LoDU (τ) =

∑
od∈U

(
T (qod, τ)− T 0(qod)

)
∑
od∈U

(
T 0(qod)

) (4.2)

To clarify, we provide an example using Figure 4.4. We calculate the level of delay between node A

(origin o) and node D (destination d) at departure time 0. The shortest path qod is < A → B → D >,

which has a T 0(qod) of 4+3 = 7. The T (qod, 0) uses the same shortest path, but uses the time dependent

travel times of the edges. Therefore, T (qod, 0) = 4 + 6 = 10. The level of delay is therefore 10−7
7 = 0.429.

Travel time gap:

The travel time gap is the di�erence between the time dependent travel time and the travel time calculated

by the TTC [14]. A smaller gap means a smaller di�erence between the calculated travel time and the

actual travel time and thus yields higher accuracy. There are two di�erent ways to calculate the travel

time, using two di�erent ways to compute the shortest path between o and d. Therefore, we have two

di�erent travel time gap criteria as well. We de�ne the travel time gap between o and d over the free

�ow shortest path at departure time τ as:

TTGffod (τ) = |TTC(od, τ)− T (qod, τ)

T (qod, τ)
| (4.3)

Therefore, we have two di�erent travel time gap criteria as well. We de�ne the travel time gap between

o and d over the time dependent shortest path at departure time τ as:

TTGtdod(τ) = |TTC(od, τ)− T (rod, τ)

T (rod, τ)
| (4.4)

Chapter 4. Benchmarking 23

To calculate the average travel time gaps over a set of node pairs U , we use the following equations:

TTGffU (τ) =

∑
od∈U

(
|TTC(od, τ)− T (qod, τ)|

)
∑
od∈U

(
T (qod, τ)

) (4.5)

TTGtdU (τ) =

∑
od∈U

(
|TTC(od, τ)− T (rod, τ)|

)
∑
od∈U

(
T (rod, τ)

) (4.6)

To clarify, we provide an example using Figure 4.4. We calculate the TTGff between node A and node

D at departure time 0. The shortest path qod is < A→ B → D >, which has a T 0(qod, 0) of 4 + 3 = 7.

The TTC(A,B, 0) returns a value of 8. Therefore, TTGffod (0) is | 8−77 | = 0.142.

We calculate the TTGtd using the same node pair and departure time. The shortest path rod is < A→
B → C → D >, which has a T (qod, 0) of 4 + 6 = 10. Because the TTC is a black box, let us in this

example assume the TTC(A,B, 0) returns a value of 8. Therefore, TTGtdod(0) is | 8−1010 | = 0.2.

Calculating the TTGtdod(τ) is a computational di�cult task and this takes a tremendous amount of time.

This makes extensive testing impossible, as it simply takes too much time. We argue that it is accurate

enough to base our �nal results and conclusions solely on the TTGffod (τ) instead of the TTGtdod(τ). We

conduct a preliminary experiment to research the loss in accuracy using the TTGffod (τ) instead of the

TTGtdod(τ). For this experiment, we use test group 1 that is reduced from 2500 O-D pairs to 250 O-D

pairs, as using 2500 would takes too much time to compute. We use two representing weekdays (Tuesday

and Thursday) and two representing moments during morning and afternoon rush hour (8:00 and 17:00).

The preliminary experiment shows that the implications are relatively small, and stay well beneath 2.5%.

Figure 4.5 shows the average absolute di�erence between the time dependent travel time over the free

�ow shortest path and the time dependent travel time over the time dependent shortest path.

8:00 17:00
0%

1%

2%

3%

4%

5%

Departure time (hh:mm)

|T
T
G
f
f
o
d

(τ
)
−
T
T
G
td o
d
(τ

)|

10 min.
20 min.
30 min.
60 min.
120 min.
180 min.
240 min.

Figure 4.5: Percentage di�erence of the absolute di�erence between the TTGff
od (τ) and TTG

td
od(τ) of

250 O-D pairs per test set. The O-D's in the test sets di�er in free �ow path length between the origin
and destination.

Shortest path share with shortest path of representatives:

This evaluation criterium indicates the percentage of shared shortest path between node o and d, and

their representatives ro and rd. We calculate this by summing the edge lengths that are in both shortest

Chapter 4. Benchmarking 24

paths, and dividing it by the total length of all unique edges present in both shortest paths. We de�ne

the Path Sharings Percentage (PSP) as:

PSPod =

∑
e∈qod∩e∈qrord

(
t0e

)
T 0(qod, 0) + T 0(qrord , 0)−

∑
e∈qod∩e∈qrord

(
t0e

) ∗ 100% (4.7)

To clarify, we provide an example using Figure 4.4. The shortest free �ow path between o and d is

< A → B → D >. The shortest free �ow path between ro and rd is < B → D → F >. The total free

�ow travel time between A and B equals 4 + 3 = 7, while the total free �ow travel time between ro and

rd is 3 + 1 = 4. Edge BD is present in both shortest free �ow paths, with a length of 3. Therefore, the

shared percentage is 3
7+4−3 = 0.429.

4.3 Setup of the experiments

In the following subsections, we describe the experiments in more detail.

4.3.1 Experiment 1: The e�ect of the path length on the time dependent

travel time over di�erent departure times during the day

Introduction: In the �rst experiment, we study the e�ect of di�erent path lengths on the variability

of the time-dependent travel time. We expect that an increase in path length leads to less variation of

the travel time over the departure times, as well as a decrease in the travel time gap. We use the �Path

lengths� test set for this experiment.

Calculation: We calculate for each O-D pair and each 15-minute interval, the time dependent travel

time over the free �ow shortest path. We compare the time dependent travel time with the free �ow travel

time to see the absolute di�erence (Travel Time) and the relevant di�erence (Level of Delay). We use

this to research whether the paths follow a congestion pattern with a clear morning and afternoon peak.

Afterwards, we retrieve the travel times calculated via the TTC. The di�erence between those travel

times and the time dependent travel times is the so-called travel time gap. We expect that an increase of

congestion leads to an increase of the travel time gap. This means, the travel time gap increases during

the morning and afternoon rush hour. We take the average over two workdays (Tuesday and Thursday)

and two weekend days (Saturday and Sunday) to see the e�ects of congestion over the week as well.

Chapter 4. Benchmarking 25

Experiment 1.1

Test sets Path lengths: 10 min, 20 min, 30 min, 60 min, 120 min, 180 min, 240

min

Representatives 20 by 20, grid strategy

f Map BeNeLux

Criteria Level of Delay, Travel Time Gap

Table 4.2: Overview of experiment 1.1

4.3.2 Experiment 2: The e�ect of the vicinity of the representative on the

time dependent travel time over di�erent departure times during the

day

Introduction: In the second experiment, we study the e�ect of the vicinity of a representative on the

travel time gap. We expect that paths that have their start and target nodes closer to their corresponding

representatives have a lower travel time gap.

Calculation: We calculate for each O-D pair and each 15-minute interval, the time dependent travel

time over the free �ow shortest path. We compare the time dependent travel time with the free �ow travel

time to see the absolute di�erence. The time dependent travel times should follow a congestion pattern

with a clear morning and afternoon peak. The time dependent travel times of all four vicinity test sets

should be equal, as they are randomly selected. Afterwards, we retrieve the travel times calculated via

the TTC. The di�erences between those travel times and the time dependent travel times is the so-called

travel time gap. We take the average over two workdays (Tuesday and Thursday) and two weekend days

(Saturday and Sunday) to see the e�ects of congestion over the week as well.

Experiment 2.1

Test sets Vicinity length: 5 min, 10 min, 15 min, 20min

Representatives 20 by 20, grid strategy

Map BeNeLux

Criteria Travel Time Gap

Table 4.3: Overview of experiment 2.1

4.3.3 Experiment 3: The e�ect of congestion on the time dependent travel

time over di�erent departure times during the day

Introduction: In the third experiment, we study the e�ect of congestion on the travel time gap. We

expect that when congestion occurs on a path, that path has a higher travel time gap. Urbanized areas

are generally more congested than rural areas, therefore we limit ourselves to known areas that are

urbanized, and select our O-D pairs within these areas.

Chapter 4. Benchmarking 26

Calculation: We calculate for each O-D pair and each 15-minute interval, the time dependent travel

time over the free �ow shortest path. We compare the time dependent travel time with the free �ow

travel time to see the level of delay. We expect the level of delay over a day to have a clear morning and

afternoon rush hour peak, which is a typical congestion pattern. Afterwards, we retrieve the travel times

calculated via the TTC to calculate the travel time gap. We expect the travel time gap to be higher at

the congested places and moments. We take the average over two workdays (Tuesday and Thursday)

and two weekend days (Saturday and Sunday) to see the e�ects of congestion over the week as well.

Experiment 3.1

Test sets Amsterdam, Antwerp, Brussels, and Rotterdam.

Representatives 20 by 20, grid strategy

Map BeNeLux (The areas of the test sets are a sub portion

of the map)

Criteria Level of Delay, Travel Time Gap

Table 4.4: Overview of experiment 3.1

4.3.4 Experiment 4: The e�ect of the number of representatives on the time

dependent travel time over di�erent departure times during the day

Introduction: In the fourth experiment, we study the e�ect of the number of the used representatives.

We expect that a higher number of representatives results in a lower travel time gap.

Calculation: To study the e�ect of the number of representatives on the travel time gap, we take the

test sets with the highest levels of delay because these are better for comparison. Therefore, we use

the �Brussels area� and �10-minute path length� test set. We vary the number of representatives to

research the e�ects. The four sets of representatives are all selected using the grid strategy and consist

of 57 (10x10), 220 (20x20), 519 (30x30), and 889 (40x40) representatives. We refer the reader back to

Section 4.1.3 for a more detailed explanation of the sets of representatives. We calculate for each O-D

pair and each 15-minute interval, the travel time gap. We only accumulate two workdays (Tuesday and

Thursday), because we are not interested in the e�ects of the di�erent levels of congestion over the week.

Experiment 4.1

Test sets Brussels area, Path lengths: 10 min

Representatives 10 by 10, 20 by 20, 30 by 30, and 40 by 40 grid

strategy

Map BeNeLux (The areas of the test sets are a sub portion

of the map)

Criteria Travel time gap

Table 4.5: Overview of experiment 4.1

Chapter 4. Benchmarking 27

Calculation: In the second part of the experiment, we use the address strategy to compute representatives.

We take two congested smaller areas as a relatively small number of representatives will have a higher

impact on the travel time gap. We use the �Antwerp Area� and the �Brussels area� test set. We vary the

number of representatives to research the e�ects of the address strategy of selecting representatives. We

refer the reader back to Section 4.1.3 for a more detailed explanation of the sets of representatives. We

calculate for each O-D pair and each 15-minute interval, the travel time gap. We only accumulate two

workdays (Tuesday and Thursday), because we are not interested in the e�ects of the di�erent levels of

congestion over the week.

Experiment 4.2

Test sets Antwerp area, Brussels area

Representatives 5, 10, 20, 50, 100, 250 address strategy

Map BeNeLux (The areas of the test sets are a sub portion

of the map)

Criteria Travel time gap

Table 4.6: Overview of experiment 4.2

4.3.5 Experiment 5: The e�ect of the percentage of the shortest path shared

on the travel time gap

Introduction: In the �fth experiment, we study the e�ect between the free �ow travel time gap and

Path Sharings Percentage (PSP). We refer the reader back to Section 4.2 for the explanation of both

criteria. Our expectation are that a higher PSP results in a lower travel time gap, as the shortest path

of the O-D is better represented.

Calculation: To study the e�ect of the percentage of the shortest path shared on the travel time gap,

we take two test sets with smaller path lengths and two with longer path lengths. Longer paths have

a higher probability of sharing a high percentage of the shortest path, because as the path reaches the

highway network, it is more likely they use the same path from there. The shorter paths have lower

shared percentages, as the time to reach the shortest path of the representative is on average a larger

part of the total length of the path between two nodes. Also, the probability of having a complete

di�erent shortest path than between the representatives is higher. We use the 20 by 20 representative

set and we only accumulate two workdays (Tuesday and Thursday), because we are not interested in

the e�ects of the di�erent levels of congestion over the week. We take the highest travel time gap found

within these two days to compare to the shared percentage of the shortest path.

Chapter 4. Benchmarking 28

Experiment 5.1

Test sets Antwerp area, Brussels area, Vicinity length: 5 min,

Path lengths: 120 min

Representatives 20 by 20 grid strategy

Map BeNeLux (The areas of the test sets are a sub portion

of the map)

Criteria Shortest path share with shortest path of

representatives, Travel time gap

Table 4.7: Overview of experiment 5.1

4.4 Results

In this section we present the results of our experiments. We present the results in the same order as we

described the �ve experiments in Section 4.3.

4.4.1 Experiment 1: The e�ect of the path length on the time dependent

travel time over di�erent departure times during the day

In the �rst experiment we researched the e�ect of the length of the path on the time dependent travel

time. In Figure 4.6 we present the average time dependent travel time over the 2500 O-D pairs in each of

the seven di�erent test sets of path lengths, for both two weekdays and two weekend days. The weekday

data (Figure 4.6a) depicts the morning and afternoon rush hour as a peak in the average travel time at

around 7:00 and 15:00. These peaks are earlier than we expected, but this is due to the graph showing

the departures of the paths. For example, if a trip of 4 hours departs at 15:00, the majority of the travel

would be inside the afternoon rush hour, that is generally between 15:30 and 18:30. The weekend day

data (Figure 4.6b) presents an increase of travel time during the day, but there is an absence of the rush

hour peaks.

Chapter 4. Benchmarking 29

10
12
14
16
18 10 min.

21
23
25
27
29 20 min.

31
33
35
37
39 30 min.

62
64
66
68
70

T
ra
v
el
ti
m
e
(m

in
)

60 min.

123
125
127
129
131 120 min.

185
187
189
191
193
195 180 min.

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

246
248
250
252
254
256

Departure time (hh:mm)

240 min.

(a)

10
11
12
13
14 10 min.

21
22
23
24
25 20 min.

31
32
33
34
35 30 min.

62
63
64
65
66

T
ra
v
el
ti
m
e
(m

in
)

60 min.

123
124
125
126
127 120 min.

185
186
187
188 180 min.

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

246
247
248
249
250

Departure time (hh:mm)

240 min.

(b)

Figure 4.6: Average time dependent travel time of a truck, over paths with the same free �ow travel
time. (a) Is the average of a Tuesday and a Thursday. (b) Is the average of a Saturday and Sunday.

Figure 4.7 depicts the same test sets as in Figure 4.6, but as the percentage di�ers between the time

dependent and free �ow travel time. We observe the following;

First, we observe that the average travel time of random paths increases when congestion is applied. On

average, we observe an increase of travel time between 6% and 12% due to congestion during the rush

hour peaks. Second, both graphs in Figure 4.7 show the same patterns as the graphs in Figure 4.6. The

weekday data show clearly the morning and afternoon rush hour peak, while during the weekend days

we see only the e�ect of more tra�c during daytime. Third, we see that as the path length decreases,

the delay percentage decreases as well. This means that the congestion has relatively less in�uence on

the travel time of longer paths, than that of shorter paths. Last, we observe a delay percentage during

the night, while no tra�c is expected and free �ow condition should apply.

Chapter 4. Benchmarking 30

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0%

2%

4%

6%

8%

10%

12%

14%

Time of Departure (hh:mm)

A
ve
ra
g
e
L
ev
el
o
f
D
el
ay

(%
)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0%

2%

4%

6%

8%

10%

12%

14%

Time of Departure (hh:mm)
A
ve
ra
g
e
L
ev
el
o
f
D
el
ay

(%
)

10 min.
20 min.
30 min.
60 min.
120 min.
180 min.
240 min.

(b)

Figure 4.7: This �gure shows the same average time dependent travel time as in Figure 4.6, but in
percentage of the free �ow travel time of each path. (a) Is the average of a Tuesday and a Thursday.

(b) Is the average of a Saturday and Sunday.

Figure 4.8 presents the average free �ow travel time gap between the time dependent travel time and the

travel time calculated by the TTC. We observe that the travel time gap data shows the same pattern

as the level of delay data. Another observation is that the travel time gap is on average two percent

point lower than the level of delay. We conclude that the TTC using the 20 by 20 grid strategy results

in 25% to 60% more accurate results. This is the relatively decrease between the average level of delay

and average free �ow travel time gap. Still, the time dependent travel times of the TTC have on average

an error between the 2% and 9%. Note that up to 0.5% of the error is due to the rounding errors of

the congestion factors. Because these numbers are on a scale between 0 to 255, with an average of 100,

accuracy is lost.

Chapter 4. Benchmarking 31

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0%

2%

4%

6%

8%

10%

12%

14%

Time of Departure (hh:mm)

A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0%

2%

4%

6%

8%

10%

12%

14%

Time of Departure (hh:mm)
A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

10 min.
20 min.
30 min.
60 min.
120 min.
180 min.
240 min.

(b)

Figure 4.8: This �gure depicts the travel time gap of the �Path length� test set. (a) Is the average of
a Tuesday and a Thursday. (b) Is the average of a Saturday and Sunday.

In Figure 4.9, we present the level of delay and the free travel time gap of the top 10 percent paths

with the highest level of delay in each of the seven �Path length� test sets. In other words, these graphs

present the 250 O-D couples with the highest level of delays of each test set. We observe an average

level of delay that is roughly twice as high for the test sets with the longer paths, while we observe an

average level of delay that is roughly three or four times higher for the test sets with the shorter paths.

The travel time gaps for the test sets with longer paths only increase by 25%, while the test sets with

shorter paths increase with a factor two or three. This means the spread among the test sets with shorter

paths is higher than the test sets with longer paths. The 10 percent most inaccurate time dependent

travel times calculated with the TTC are still relatively accurate. On average, a trip of four hours would

deviate around 5 minutes of the �real� travel time.

Chapter 4. Benchmarking 32

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Time of Departure (hh:mm)

A
ve
ra
g
e
L
ev
el
o
f
D
el
ay

(%
)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Time of Departure (hh:mm)
A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

10 min.
20 min.
30 min.
60 min.
120 min.
180 min.
240 min.

(b)

Figure 4.9: This �gure depicts the level of delay (a) and the free �ow travel time gap (b) of the 10
percent paths with the highest congestion within each of the seven �Path length� test sets. Both �gures

are the average of a Tuesday and a Thursday.

To conclude, we see travel time patterns as we expected them to be. We observe a clear morning and

afternoon travel time peak, which also results in a higher travel time gap during these periods. For

shorter paths, on average the percentage di�erence between time dependent and free �ow travel time

does not exceed 12%. During longer trips, the impact of having time dependent travel times for trucks

is lower, namely, 8%. However, these are average values. Looking at solely the 10 % of trips with the

highest level of delay, we observe that these levels of delay are much higher than taking the average. This

means, that depending on where a trip originates and destines, there exist a di�erence in the impact of

the congestion information.

We observe a travel time gap during the night period, something which is considered not in line with

expectations as there typically does not exist any congestion during night. However, this makes sense

as the FF-TT of an edge is based on the road type, while the TD-TT is based on the historical travel

time functions. Therefore, it is possible that during the night the TD-TT is lower than the FF-TT,

meaning that the measured travel time on an edge is higher than the assigned travel time to the edge's

road type. This results in a congestion factor between two representative areas other than the value 100

. However, a lower TD-TT than FF-TT during the night is not consistent over all roads. This makes it

possible to have the following situation between two representative areas: namely, shortest paths with

no di�erence between the FF-TT and the TD-TT and shortest paths with a large di�erence between the

FF-TT and the TD-TT. However, the FF-TT of each shortest path is divided by the same congestion

factor, resulting in a travel time gap. This observation leads to the conclusion that the default travel

times are sometimes overestimated compared to the values of the map provider.

Chapter 4. Benchmarking 33

4.4.2 Experiment 2: The e�ect of the vicinity of the representative on the

time dependent travel time over di�erent departure times during the

day

In Experiment 2, we researched the e�ects of the vicinity of representatives to the origin and destination

of a shortest path. Figure 4.10a displays the average time dependent travel time of the four test sets in

test group 2. We expected that all four sets would have the same average travel time. The �rst three sets

are indeed quite similar, with travel times ranging 208 and 214 during the night periods. The fourth set

has a slightly higher average travel time, that we can explain by the use of the BeNeLux map. The map

also covers a large part of Northern France and West Germany, but the representatives are only chosen

within the BeNeLux area. When the vicinity increases, representatives in the center are not feasible

anymore because after traversing 20 minutes from one representative, a di�erent representative area is

reached. The only feasible representatives are the ones on the South and East side of the BeNeLux,

creating a set of paths that are not random. Sets with even higher vicinity distances gave even higher

average travel times and were therefore omitted from this experiment.

Figure 4.10b displays the average free �ow travel time gap of the four test sets. The average travel time

gaps show the same pattern as the previous experiments, meaning there is an increase during the day.

However, the average travel time gaps are low compared to the previous experiments, as it does not

exceed the 2%. We do observe an increase in the average travel time gap, in the test sets with a larger

vicinity. Thus as the vicinity increases of an O-D pair, the travel time gap increases as well. This pattern

also includes the �20 min� vicinity set, although it is questionable if it should be included.

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

200

210

220

230

240

250

Time of Departure (hh:mm)

A
ve
ra
g
e
T
ra
v
el
T
im
e
(m

in
)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0%

1%

2%

3%

4%

5%
·10−2

Time of Departure (hh:mm)

A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

5 min.
10 min.
15 min.
20 min.

(b)

Figure 4.10: (a) Depicts the level of delay of the four �vicinity length� test sets. (b) Depicts the travel
time gap of the four �vicinity length� test sets. Both graphs are the accumulated results of a Tuesday

and Thursday.

Chapter 4. Benchmarking 34

4.4.3 Experiment 3: The e�ect of congestion on the time dependent travel

time over di�erent departure times during the day

In the third experiment, we researched the e�ect of the level of congestion on the time dependent travel

time. To do this, we selected four areas we assume to be highly congested, namely: Amsterdam, Antwerp,

Brussels, and Rotterdam. In Section 4.3, we describe how the nodes in these four test sets are selected.

Figure 4.11 presents the delay percentage between the time dependent and free �ow travel time. In

Figure 4.11a, we observe that Antwerp and Brussels are indeed congested areas with delays of 30%

and 40% during weekday rush hour. Amsterdam and Rotterdam are less a�ected by congestion with

delay percentages between 15% and 20% during the morning and afternoon weekday rush hour. Figure

4.11b presents the same delay patterns as Figure 4.6b, showing only an increase in congestion during the

daytime as a whole. The values of these test sets are higher than the �path length� test sets. Again, the

Belgium cities show a higher delay percentage than the Dutch cities.

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Time of Departure (hh:mm)

A
ve
ra
g
e
L
ev
el
o
f
D
el
ay

(%
)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Time of Departure (hh:mm)

A
ve
ra
g
e
L
ev
el
o
f
D
el
ay

(%
)

Amsterdam
Antwerp
Brussels

Rotterdam

(b)

Figure 4.11: This �gure shows the delay percentage over di�erent departure times. This is the
di�erence between the time dependent and free �ow travel time. The plots are based on 2500 random
paths within the areas. (a) Is the average of a Tuesday and a Thursday. (b) Is the average of a Saturday

and Sunday.

Figure 4.12 depicts the travel time gap between the time dependent travel times and the TTC travel

times. It shows the percentage di�erence between the travel time used by the vehicle routing algorithm

and the time dependent travel time. The test set with random trips in Brussels caused the highest travel

time gap of over 25% during daytime. This means the predicted travel times have on average an error

of over 25%. During the weekend days, the errors are on average lower, with Brussels having the highest

error of the four test sets.

Chapter 4. Benchmarking 35

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Time of Departure (hh:mm)

A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

5%

10%

15%

20%

25%

Time of Departure (hh:mm)
A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

Amsterdam
Antwerp
Brussels

Rotterdam

(b)

Figure 4.12: This �gure shows the travel time gap over di�erent departure times. The travel time
gap is the percentage di�erence between the travel time used by the vehicle routing algorithm and the
time dependent travel time. The plots are based on 2500 random paths within the areas. (a) Is the

average of a Tuesday and a Thursday. (b) Is the average of a Saturday and Sunday.

To conclude, we observe that areas with higher congestion have indeed higher travel time gaps. Not all

areas we thought to be congested, were as congested as we thought. The two Dutch areas only showed

a bit more congestion as compared to the test set with path lengths.

4.4.4 Experiment 4: The e�ect of the number of representatives on the time

dependent travel time over di�erent departure times during the day

In the fourth experiment, we researched the e�ect of the number representatives on the time dependent

travel time. We use both the grid and address strategy to compute the locations of the representatives.

Figure 4.13 depicts the travel time gap for the �Brussels� and �10-minute path length� test set. Among

the four plot lines in Figure 4.13a, we see a clear declining pattern. This means an increase of the number

of representatives does indeed lead to a better approximation of the time dependent travel times using

the TTC. In Figure 4.14b this pattern is absence. The increase of representatives does not result into a

decrease of accuracy. All four test cases resulted in approximately the same results.

Chapter 4. Benchmarking 36

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

5%

10%

15%

20%

25%

30%

35%

40%

Time of Departure (hh:mm)

A
ve
ra
g
e
tr
av
el
ti
m
e
g
a
p
(%

)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

5%

10%

15%

20%

Time of Departure (hh:mm)
A
ve
ra
g
e
tr
av
el
ti
m
e
g
a
p
(%

)

10x10 repr.
20x20 repr.
30x30 repr.
40x40 repr.

(b)

Figure 4.13: This �gure shows the travel time gap over di�erent departure times, using di�erent
sized sets of representatives. We generated the representative sets using the grid strategy. Both graphs
are based on the average of a Tuesday and a Thursday. (a) Average of 2500 random paths within the
Brussels area. (b) Average of 2500 random paths within the BeNeLux area, all with a free �ow length

of 10 minutes.

Figure 4.14 depicts the results of travel time gaps using the address strategy for di�erent number of

representatives. We see the same decreasing pattern as in Figure 4.13a in both Figures 4.14a and 4.14b.

Especially the increase of representatives from �ve to �fteen made large improvements. Using twenty or

thirty representatives within a single area resulted in a relatively small decrease of the travel time gap.

Using �ve representatives in the Brussels areas, leads to the similar results compared to the 40x40 grid

representatives of Figure 4.13a. Keep in mind that the �ve representatives used in these experiments

were dedicated to the Brussels areas alone.

Chapter 4. Benchmarking 37

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

Time of Departure (hh:mm)

A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

(a)

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

Time of Departure (hh:mm)
A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

5 repr.
10 repr.
20 repr.
50 repr.
100 repr.
250 repr.

(b)

Figure 4.14: This �gure shows the travel time gap over di�erent departure times, using di�erent
amounts of representatives. We generated the representative sets using the address strategy. Both
graphs are based on the average of a Tuesday and a Thursday. (a) Average of 2500 random paths

within the Antwerp area. (b)Average of 2500 random paths within the Brussels area.

To conclude, we see travel time gap patterns as we expected them to be. We observe an overall decline

when using more representatives, with as only exception the �10-minute path length� test set. Because

shorter paths tend to stay within one representative area, an increase of the number of representatives

does not change that fact. Furthermore we observe the travel time gap pattern increases during day time

congestion, the same as we saw with the previous experiments.

4.4.5 Experiment 5: The e�ect of the percentage of the shortest path shared

on the travel time gap

In the �fth experiment, we researched the e�ect between the travel time gap and the percentage of

the shortest path between two nodes that is shared with the shortest path of the corresponding two

representatives. Figure 4.15 shows the results of the experiment based on the Antwerp and Brussels

test set. These graphs are based on 2008 and 1387 paths respectively, as the remaining paths of the

2500 paths of both test sets are within one representative area. These paths have therefore no shortest

path to be compared with. Both graphs present a widely distributed declining pattern, something that

is con�rmed byt the two exponential declining trend lines of the results. However, the coe�cient of

determination of the Brussels test set has such a low value, it is only save to say there is a declining

pattern. The coe�cient of determination of the Antwerp test set is even lower, so we conclude no pattern

is visible.

Chapter 4. Benchmarking 38

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

120%

y = 16.566e−0.021∗x

R2 = 0.2011

SP shared with SP of representatives (%)

T
ra
ve
l
T
im
e
G
a
p
(%

)

(a)

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

120%

y = 28.994e−0.034∗x

R2 = 0.3395

SP shared with SP of representatives (%)

T
ra
ve
l
T
im
e
G
ap

(%
)

(b)

Figure 4.15: Display of the the travel time gaps against the shared percentage of the shortest path
between nodes and the shortest path between the corresponding representatives. (a) Result of 2008
random paths within the Antwerp area. (b) Average of 1387 random paths within the Brussels area.

The remaining paths were omitted as they were within one representative area.

Figure 4.16 shows the results of the same experiment, but based on the �2-hour path length� and �5-

minute vicinity length� test set. We observe a similar widely distributed declining pattern in both graphs.

Looking at the coe�cients of determination of both the trend lines, we conclude that a higher percentage

of a shared shortest path of a node pair and a representative pair results in a lower travel time gap.

Because both test sets have on average longer paths than the Antwerp and Brussels test sets, a higher

concentration of data points is visible near the 80% sharings percentage. Still, we observe a reasonable

amount of data points located on the y-axis, meaning paths exist with no overlap with their corresponding

representative paths. Furthermore, we observe data points with a small sharings percentage and a small

travel time gap, which is in contradiction to our expectations. However, we did not correct for the level

of delay found on the path, so the low travel time gap can also be explained by a lack of congestion.

Chapter 4. Benchmarking 39

0% 20% 40% 60% 80% 100%
0%

5%

10%

15%

20%

y = 5.7185e−0.021∗x

R2 = 0.4804

SP shared with SP of representatives (%)

T
ra
ve
l
T
im
e
G
a
p
(%

)

(a)

0% 20% 40% 60% 80% 100%
0%

5%

10%

15%

20%

y = 5.8871e−0.014∗x

R2 = 0.2401

SP shared with SP of representatives (%)

T
ra
ve
l
T
im
e
G
ap

(%
)

(b)

Figure 4.16: Display of the the travel time gaps against the shared percentage of the shortest path
between nodes and the shortest path between the corresponding representatives. (a) Result of the 2500
random paths of the �5-minute vicinity length� test set. (b) Result of the 2500 random paths of the

�120-minute path length� test set.

To conclude, we observe a declining pattern of the travel time gap when the representatives represent

a large percentage of the shortest path of two nodes within two di�erent representative areas. In the

test sets of Antwerp and Brussels, this pattern is less visible than within the test sets with longer paths.

Besides the average declining pattern, we observe that the overall distribution of the travel time gap over

the y-axis decreases as the sharing percentage increases. This makes sense, as a higher sharing percentage

means that the congestion factors represent a larger part of the shortest path of the OD-pair, resulting

in a lower travel time gap. We observe a larger distribution on the left side of the graphs, as a lower

sharing percentage results in higher travel time gaps. However, we also observe low travel time gaps with

lower sharing percentages. This has two causes. First, if no congestion is present, no travel time gap can

be measured. Second, the algorithm gets lucky and the congestion factors matches the congestion of the

OD-pair. However, the second cause is less likely than the �rst one.

4.5 Zoom in

In the previous, section we researched the averages of di�erent test sets. In this section, we take a closer

look at the results, with the goal to distillate the situations which cause the high inaccuracies. In this

way, we can design our algorithm to avoid these situations.

Figure 4.17 displays the shortest paths of the 5% of O-D couples within the test sets �Antwerp� and

�Brussels� with the highest free �ow travel time gap. In Figure 4.17a, we observe that the city center has

a lot of the origins and/or destinations of these congested paths, meaning the TTC does a poor job at

predicting the time dependent travel time in that area. When we look at Figure 4.17b, we see the paths

with the highest free �ow travel time gap are in the North-Western part of Brussels, while no paths cross

the city center of Brussels. Both �gures have in common that the origin and destination nodes tend

to remain at distance from the representatives in the area. Because these nodes are near the border of

Chapter 4. Benchmarking 40

the representative areas, this causes the travel time gap to be higher, as the congestion factors of their

representatives are based on a di�erent trip than the O-D couple.

(a) (b)

Figure 4.17: Overview of the 5% of O-D couples within test set �Antwerp� (a) and �Brussels� (b) The
gray lines depicts these shortest paths, the black dots are all representatives within the displayed area.

Figure 4.18 displays the shortest paths of the 5% of O-D couples within test set �Path length 60 min.�

(4.18a) and �Path length 240 min.� (4.18b) with the highest free �ow travel time gap. Figure 4.18a shows

clusters of paths around the Randstad, Flemish Diamond, and the Rhine-Ruhr metropolitan regions. As

these are the most crowded and congested areas, it is explainable that we observe the O-D couples with

the highest free �ow travel time gaps in these areas. Figure 4.18b shows a more evenly distributed paths

over the BeNeLux map, compared to the Figure 4.18a. Only the North-Eastern and South-Western part

of the map seem to be empty. This observation is consistent with the observation of the previous section

that the average travel time gap is low for this test set, and the travel time dispersion is low compared

to the other test sets. There are no clear areas where longer paths have on average a higher travel time

gap, which corresponds with our conclusion that for longer trips the level of delay is lower and therefore

has less e�ect.

(a) (b)

Figure 4.18: Overview of the 5% of O-D couples within test set �Path length 60 min.� (a) and �Path
length 240 min.� (b) The gray lines depicts these shortest paths, the black dots are all representatives

within the displayed area.

In Figure 4.19, we take a closer look at single O-D pair, with a path sharings percentage of zero and a free

�ow travel time gap of only 0.68%. This means, that although the representatives shortest path does not

represent any part of the shortest path between the O-D, it still results in an accurate time dependent

Chapter 4. Benchmarking 41

travel time prediction. Figure 4.19a shows the shortest path of the two representatives, and Figure 4.19b

shows the shortest path of the O-D. The congestion factors of the two representatives have a factor of

100 during the night, and a factor of 99 during the day. This means that between the representatives no

congestion is present, and therefore the travel time gap is also around zero.

(a) (b)

Figure 4.19: Overview of the shortest path between two nodes (a) and the shortest path between
the two corresponding representatives (b), in the area South of Assen. The black lines depicts these

shortest paths, the black dots are all representatives within the displayed area.

We take a closer look at some of the paths with a zero percent overlap of the �5-minute vicinity length�

test set, as we expected that paths that originate and destinate close to a representative, would always

share a large part of the shortest path. However, Figure 4.20b depicts that it is possible to have zero

overlap even if the origin and destination are close to their corresponding representatives. Figure 4.20a

shows that the shortest path between the two representatives runs via the left side of the map, using

highways for the largest part. The shortest paths between the two closely located nodes runs via the

central part of the map, using mainly regional roads. This results in a zero overlap between both paths.

(a) (b)

Figure 4.20: Overview of the shortest path between two nodes (a) and the shortest path between
the two corresponding representatives (b), in the area West of Antwerp. The black line depicts these

shortest paths, the black dots are all representatives within the displayed area.

Chapter 4. Benchmarking 42

4.6 Conclusion

In this chapter, we researched the accuracy of the TTC. We designed �ve di�erent experiments to

identify the situations in which the TTC results are inaccurate and when improvements are necessary.

To conclude, the TTC performs poorly on relatively short paths, in congested areas and/or where the

locations of the representatives are far away from the main roads of the road networks. Shorter paths

showed a higher deviation between the travel times of the TTC and the time dependent travel times.

This is a result of shorter paths being less represented by the representatives, as the shorter paths

are more likely to have a completely di�erent shortest path between two representative areas than the

representatives themselves. See Figure 4.20 for an example of a di�erent shortest path between two

nodes than the shortest path between the two representatives. Congestion makes the need for correct

approximations increasingly important, as poor approximations lead to large travel time deviations.

These deviations are absent if the congestion is absent as well, therefore we need to focus mainly on the

congested areas when designing our algorithm.

We assumed that at night the tra�c intensity is so low that free �ow conditions exist. However, we

observed a travel time gap during the night, meaning there exists congestion during this period. The

cause of this congestion is that the algorithm calculates the FF-TT using a default speed that is assigned

to each of the road types. Each edge in the road network is linked to one of these road types. The default

speed on especially city roads in urban areas is an overestimation of the actual measured speed on those

types of roads during free �ow conditions (at night). Because this overestimation is not consistent over

all edges equally, the measured congestion is not equal between each OD pair. This results in a deviation

between the travel times of the TTC and the time dependent travel times, hence, a travel time gap.

Chapter 5

Congestion Hierarchy Algorithm

In this chapter, we present our solution method. The literature review from Chapter 2, the current

method from Chapter 3, and the �ndings from Chapter 4 form the basis of this method. In Section 5.1,

we clarify the general solution of the Congestion Hierarchy Algorithm (CH-algorithm). In Section 5.2,

we discuss possible graph partitioning algorithms. In Section 5.3, we explain our travel time algorithm

explicitly. We present the results and conclusions of these results in the next chapter.

5.1 General solution approach

The results of the benchmark experiments show us that the current algorithm performs well on average,

especially in cases where the requested travel times are for relatively long paths (>2hr). However, the

algorithm performs poorly in congested areas, for relative shorter paths (<1hr). This is caused by the

fact that the di�erence between the free �ow travel time and the time dependent travel time is higher,

and the relative short distance between source and target node makes that the representatives are less

likely to represent the actual delay between the two areas. Re�ning the grid leads to better results (i.e.,

increasing the number of representatives), but at the cost of more memory use. We dismiss the idea

of just increasing the number of representatives, because one of the requirements of the algorithm is to

work under the same conditions as the TTC. The memory usage is high because every representative

couple has its own set of congestion factors. The good performance for longer paths, and the poor

performance for the shorter paths, gives us the idea to create a new algorithm that looks similar to the

current algorithm for longer paths, but is di�erent for shorter paths.

We want to accomplish good TD-TT estimations for shorter and longer paths by generating more

representatives in a smaller grid formation, but without the increase of main memory usage. Therefore,

we argue that it is unnecessary to store all congestion factors between all representatives. If we do not

have to store all congestion factors, we are able to re�ne the grid without the increase of main memory.

We observed that the TTG of a longer path was lower, because it is more likely to share a large part of the

shortest path of its representatives. For example, let's take �ve random origin nodes around Amsterdam

and �ve random destination nodes around Luxembourg City. The twenty-�ve resulting trips going from

Amsterdam to Luxembourg share around 95% of the same trip. It is therefore less necessary to store

multiple representatives around Amsterdam all having congestion factors to multiple representatives

43

Chapter 5. Congestion Hierarchy Algorithm 44

around Luxembourg City, while one for Amsterdam and one for Luxembourg City is su�ciently accurate

at this distance.

In essence, we only store congestion factors between a representative and its surrounding representatives.

In this way, a lot of memory can be saved and can be used to increase the number of representatives.

However, only storing congestion factors of neighbouring representatives causes problems for two nodes

that are not near each other. Therefore, we introduce layers of representatives, instead of just one single

layer. Each layer divides the map into a number of areas, where each lower layer consist of areas that are

subdivisions of the areas of the layer above it. The number of areas in a layer increases as the layer is

lower in the hierarchy. Therefore, the lowest level consist of the most areas, and consequently these areas

are the smallest. A small area ensures that all nodes in the area are relatively close to the representative

in the center. Each node in the graph has a representative area in each of the layers.

A small representative area has the advantage that a single node has a representative in a small area

for close distances, and representatives that are in areas that increase in size for paths that also increase

in distances. The loss of accuracy for the longer distances is smaller than the increase of accuracy on

shorter distances. To retrieve the delay between two nodes, we search from the bottom to the top layer,

for the layer in which both nodes have a representative area that are adjacent to each other.

Until now we implied that each area should contain a representative. However, it is unnecessary to assign

a representative to each of the representative areas, as certain areas are sparse and lack congestion. These

areas will have similar congestion factors, which are likely to be constant patterns that show no congestion.

Because these factors are so similar, it is unnecessary to calculate and store these congestion factors for

each of the representative areas. If we omit these congestion factors, the nodes in those areas are still

represented, but only by a representative at a higher level. The memory saved, can be used to increase

the resolution around the dense areas, to further increase the accuracy.

In our new algorithm, we identify three parameters that adjust the performance of the algorithm. First,

we can adjust the number of layers of representative areas. If we increase the number of layers, we increase

the �neness of the grid of the lowest level, which increases the accuracy of the algorithm. This comes at

the cost of more computation time during the preprocessing step and more memory usage of the algorithm

itself. Second, we can adjust the number of neighbours around a representative. Increasing the coverage

around a representative means that nodes that are not directly adjacent, still share congestion factors,

which otherwise would share congestion factors at a higher level. Because lower level representatives are

closer to their surrounding nodes, it increases the accuracy of the algorithm. Third, we can adjust the

threshold to accept an area to get a representative. The lower the threshold, the easier an area gets a

representative. This bene�ts the accuracy, but also increases the preprocessing time and the memory

usage of the algorithm.

5.2 Partitioning graphs

In this section, we look into the di�erent ways to partition a graph. We explain four di�erent algorithms.

These algorithms are, grid, quadTree, kd-tree, and Kernighan�Lin [37].

Chapter 5. Congestion Hierarchy Algorithm 45

5.2.1 Grid

The most simple way to partition a 2D graph is using a grid based structure. Each cell within a grid

functions as one region of the graph. Cells can be rectangular or square shaped, and the number of

columns and rows do not necessary have to be equal. The TTC uses this approach as one of two

representative strategies.

5.2.2 Quadtree

A quadtree is a type of data structure, commonly used in data processing. The data structure consists of

a tree, in which each node in the tree consists of exactly four child nodes, hence the name �quad�. Finkel

and Bentley [38] were the �rst to call this type of data structure a quadtree. The regions are typically

square or rectangular in shape, even though other shaper are also possible. This is similar as to the grid

partition, however, there is an equal number of rows and columns, as the division of a cell is always done

by dividing into four smaller cells. There exist multiple forms of quadtrees, but they all share some basic

characteristics. First, the goal of the algorithm is to split an area into adaptable cells. Second, each cell

has a threshold capacity, when this capacity is exceeded, the cell is divided into four smaller cells. Third,

the underlying tree structure follows the structure of the spatial decomposition. In essence, a quadtree

adapts to the number of data points in its structure. However, when every node in the quadtree (except

the leaf nodes) have four child nodes, we call this a tree-pyramid.

(a) (b) (c) (d)

Figure 5.1: The four di�erent partition algorithms. Grid (a), quad-tree (b), kd-tree (c), and
Kernighan�Lin (d).

5.2.3 Kd-Trees

Another type of data structure similar to the quadtree, is the so called kd-tree. It is an algorithm for

organizing points within a k-dimensional space, hence the name kd-tree. It was developed by one the

same authors of the quadtree (Bentley [39]). The quadtree algorithm divides the graph into areas based

on the geographical properties, but it does not take into account the distribution of nodes over the

di�erent areas. The kd-algorithm starts dividing the graph into areas, by splitting them in half, such

that both areas have an equal number of nodes. This way, the nodes are more equally divided over the

areas, but the areas themselves can di�er tremendously in size and shape. In the 2D-variant interesting

for our research, this results in a number of di�erent size rectangular areas.

Chapter 5. Congestion Hierarchy Algorithm 46

5.2.4 METIS algorithm

Already in 1970, Kernighan and Lin [40] developed theKernighan-Lin(KL)-algorithm that �nds partitions

in graphs, with the goal to have the partitions such that the sum of the edge weights connecting

the partitions is minimized. The main advantages is that the algorithm does not need any geometric

information of the graph, information on the connected edges and their weights is su�cient. The main

disadvantages are that this algorithm was not designed to create multiple layers, the running time

is relatively long, it requires an undirected graph as input. We can overcome the �rst disadvantage

with some small adjustments to the algorithm. However, the computational time of the algorithm is

O(n2 log n), where n is the number of edges in the graph, and computational time is per division of

a partition. This means that the computation time gets too large for larger road networks with edge

numbers surplussing several million and several hierarchical levels. A way to avoid this, is to use the

METIS implementation [41]. This algorithm �rst coarsens the graph, by clustering nodes into partitions,

e�ectively reducing the number of nodes and edges of the graph. On the resulting coarsened graph, it

runs the KL-algorithm to partition the graph. However, it still uses the KL-algorithm, which has an

undirected graph as input.

5.2.5 Conclusion

Of the four algorithms presented, our main interest is on the quadtree algorithm. The TTC uses the

classical grid algorithm, which performs in speci�c situations quite reasonable. As it is such a basic

algorithm, we do not see any ways to enhance it to further improve the results. The kd-algorithm creates

nicely distributed areas, but the major drawback are the irregular shapes. Because of these irregular and

rectangular shapes, it is di�cult to generate congestion factors that represent the complete area. The

METIS algorithm has a high computational time for larger graphs, and uses the KL-algorithm, which

relies on an undirected graph. The major advantages of the quadtree algorithm are its ability to scale

based on the density of the graph, the resulting square areas, and its simplicity.

5.3 Our travel time algorithm: Congestion Hierarchy Algorithm

(CH-algorithm)

In this section, we present the structure of our Congestion Hierarchy Algorithm (CH-algorithm). First, we

describe the preprocessing step of the CH-algorithm. The preprocessing step creates the data structures

that are necessary for fast computations. Preprocessing is done once and is only redone when the

map data is altered. Second, we describe the three data structures we use to store the calculated CH

information. Third, we describe the process of calculating the time dependent travel times using the

CH-algorithm.

Chapter 5. Congestion Hierarchy Algorithm 47

5.3.1 Preprocessing

In this section, we describe the four preprocessing steps of the CH-algorithm. We distinguish four main

preprocessing steps, which are, subdividing the map into representative areas, selecting the representatives,

generating the congestion factors, and mapping the nodes to each area.

5.3.1.1 Subdividing the map

As mentioned in Section 5.1, we divide the map into smaller areas. This is similar as with the TTC, but

we introduce a hierarchy among these areas. Due to the decision to not exceed a main memory usage of

1000 MiB, the current approach only allows for 1000 representative areas, so roughly a rectangular grid

of 32 ∗ 32 representatives. We decide to use rectangular areas, that are roughly squares. This has the

advantage that a grid is fast to compute. Still, it ensures that the graph is nicely distributed over the

di�erent areas and it has such a shape, that the centroid of the square makes a good representative.

The CH-algorithm starts at the highest level, which is a 1-by-1 grid and the top layer of the hierarchy.

We start numbering from zero up, so this layer has number zero. We do this so we can easily �nd the

number of rows and columns of the level, by calculating 2layer. Afterwards, the CH-algorithm divides

the map into a 2-by-2 grid, resulting in four equal areas. The algorithm takes the outer coordinates of

the map as the outer coordinates of the grid, or these coordinates are given as input to the algorithm.

If the latter is the case, not all nodes of the map are within the area of the grid and therefore it is not

possible for these nodes to calculate the time dependent travel times. For clarity reasons, we assume for

now the grid includes the complete road network. Each of the four areas is divided into four more areas,

resulting in a 4-by-4 grid of 16 areas. This process continues until a prede�ned number of layers has been

reached. This number is one of the three parameters we can adjust in this algorithm. In the end, each

node of the road network is within a representative area at each of the layers. It is likely that a part of

the areas have no nodes assigned to them, because they are in areas with no roads, like seas or lakes. To

illustrate, we have a graph (road network) as in Figure 5.2a, and Figure 5.2b depicts the result when we

omit the edges and is also the top layer of the hierarchy. Figures 5.2b to 5.2e show the �rst three layers

of our hierarchal approach. Figure 5.2b is the top layer after which we divide the graph into four equal

parts. Each of these four equal parts are further subdivided into four equal parts, resulting into Figure

5.2d. Applying the same subdivision to Figure 5.2d, results in Figure 5.2e.

(a) (b) (c) (d) (e)

Figure 5.2: This �gure depicts the �rst step of the CH-algorithm. We ignore the edges of the graph
(a), and are only interested in the nodes (b). We geometrically divided the graph into four equal
rectangular areas, which acts as the second layer of the CH (c). Each of the areas is subdivided even

further (d,e), until the algorithm reaches a prede�ned number of layers.

Chapter 5. Congestion Hierarchy Algorithm 48

5.3.1.2 Selecting representatives

After subdividing the map into multiple layers and multiple representative areas, we select the representatives

for these areas. A representative will be a single node within the representative area, which is the node

we base our congestion factors on. Because we introduced multiple layers, where the lowest layers have a

high number of representative areas, we do not assign a representative to every single area. As noted in

the previous section, multiple representative areas do not even contain nodes due to the sparseness of the

graph. Therefore, we do not assign a representative to these areas. Also, we argue that it is unnecessary

to have a representative in an area with only a few number of nodes and with no congestion. We do not

assign a representative to an area when the number of nodes in that area is less than α ∗ ρ̄, where α ≥ 0

and ρ̄ is the average area density in number of nodes. We choose to use a linear expression for reasons

of simplicity, but any type of relationship is possible. The value of α is one of the three parameters we

can adjust.

Let's assume the situation in Figure 5.3a, where we have a graph with a total of 160 nodes divided

over 2 layers (2x2 and 4x4) and where α = 0.6. The second layer has four representative areas, so the

average number of nodes in an area is ρ = 160/4 = 40. With an α of 0.6, an area needs to have at least

24 nodes to get a representative. Therefore, only area 0, 1, and 3 get a representative, which is also

visible in Figure 5.3b. For the second layer the average number of nodes is ρ = 160/16 = 10, so an area

should contain at least 10 ∗ 0.6 = 6 nodes to get a representative. Figure 5.3b depicts which of the 16

representative areas contains a representative and which one does not.

(a) (b) (c)

Figure 5.3: The three sub �gures depict the process of determining which area gets a representative.
Figure 5.3a shows the distribution of nodes over the areas. With an α = 0.6, the minimum number of
nodes in area has to be 24 in the �rst layer (b), and 6 in the second layer (c). A check mark (X) shows
the areas which get a representative, and a cross (X) shows the areas which do not get a representative.

After we determined which of the representative areas are suitable for an actual representative, we have

to determine which of the nodes within an area should be the representative. We argue that selecting

the most centered node within the area is a simple but e�ective way to do this, as this node is on average

the closest to all other nodes in the area. We determine which node is the most centered by selecting

the node with the smallest euclidean distance towards the center of the representative area.

5.3.1.3 Generating congestion factors

The next step is to generate the congestion factors between the selected representatives of the previous

step. We use these congestion factors to be able to quickly compute the time dependent travel time. A

Chapter 5. Congestion Hierarchy Algorithm 49

congestion factor is the time dependent travel time divided by the free �ow travel, over the same free

shortest path between an origin node o and a destination node d in the graph. The level of delay di�ers

over the day, making the congestion factors also time dependent. Therefore, each congestion factor also

depends on the departure time τ . Hence, the formula for a congestion factor is:

CFod(τ) =
T(qod,τ)

T 0
qod

Note that the calculation of the congestion factors is identical to the current algorithm, which we already

described in Section 3.2. The CH-algorithm di�ers from the current algorithm, by not calculating

congestion factors between each couple of representatives. The CH-algorithm only calculates the congestion

factors to the neighbouring representative areas. The number of neighbours that are in the vicinity of

a representative, is one of the three parameters we can adjust in this algorithm. Given the example in

Figure 5.4, representative F5 (�g. 5.4a) has a vicinity of two neighbours (�g. 5.4b). However, in this

example, only 9 of the 19 neighbours actually had a representative (�g. 5.4c), and so only 9 arrays of

congestion factors are calculated and stored. Note that for each representative area with a representative,

the internal congestion factors are calculated, in the same way as the current algorithm.

(a) (b) (c)

Figure 5.4: This �gure shows the process of selecting the neighbouring areas around a representative
area. In this example we are looking for the neighbours of area F5 (a), where we want to include the
neighbouring areas that are within reach of 2 areas. (b) shows the covered area around area F5. Next,
we remove the areas that do not have a representative as calculated in the previous section, which

results in the �nal 9 representatives areas as shown in (c).

5.3.1.4 Mapping the nodes to each area

The last preprocessing step is mapping each node to each representative area. Until now, each node is

mapped to a representative area based on its geographic location. However, mapping the nodes based on

solely their geographic location, may lead to situations that a node could have been better represented by

a di�erent area as the concerning representative is much closer via the edges. Figure 5.5 shows such an

example, where a canal divides a graph into two areas that are di�erent than the current representative

areas. It is therefore more logical to have the nodes on the right in the lower area, join the upper

representative area.

Chapter 5. Congestion Hierarchy Algorithm 50

(a) (b)

Figure 5.5: This �gure shows an example with two (partial) representative areas. In Figure (a), we
see a road network divided by a canal, it therefore makes more sense to group the nodes as shown in

Figure (b).

To map each node to the right representative area, we create a Voronoi diagram around each representative,

using the free �ow travel times of the edges as the distance function. We generate these Voronoi diagrams

by running Dijkstra's algorithm from each of the representative nodes. However, we do not run the

algorithm iteratively, but we start Dijkstra's algorithm at each node simultaneously. Therefore, instead

of a single source, we enter all representatives of a single layer as the sources into Dijkstra's algorithm.

When the algorithm �nds a node that already has been visited, it knows that it reached the border of

another Voronoi diagram. Additionally, we mark all nodes that are currently not part of a representative

area in that layer as visited, omitting them from possibly being included in any of the Voronoi diagrams.

The algorithm ends when the Dijkstra queue is empty, and we retrieve which nodes belong to which

representative nodes. We repeat this process for each of the layers.

5.3.2 Data overview

After the fourth pre-processing step, the CH-algorithm stores the preprocessed data into an e�cient data

format. In this section, we give an overview of the used data structures. In total, we use three di�erent

data structures to store the information. The �rst structure is a mapping from each node in the graph

to their representative areas. The second structure is a mapping from the representative areas to the

congestion factors. The third data structure contains the actual congestion factors. The reason to add

the second data structure, is that many of the congestion factors are identical. Because the congestion

factors consist of 96 bytes per day, we greatly reduce the memory usage by storing them only once, and

have multiple representative areas with the same congestion factors share them.

5.3.2.1 Mapping nodes to representative areas

The �rst data structure contains the mapping between each node in the graph and its respective

representative areas. During the �rst preprocessing step the algorithm already maps the nodes to a

representative area, but this mapping is based on the geographical location of the node. This leads

to strange situations at the borders of a representative area, as nodes may be closer to the centre of

a neighbouring area over the road. Therefore, during the last step, the CH-algorithm re-evaluates the

representative areas of each node, by calculating the closest representative over the graph using the free

�ow travel time.

Chapter 5. Congestion Hierarchy Algorithm 51

Node ID: Area IDs:

: :
1.986.215 [1,6,25,97]
1.986.216 [1,6,25,97]
1.986.217 [1,6,25,97]
1.986.218 [1,6,25,97]
1.986.219 [1,6,25,98]
1.986.220 [1,6,25,99]
1.986.221 [1,6,25,99]
1.986.222 [1,6,26,100]
1.986.223 [1,6,26,100]
1.986.224 [1,6,26,101]
1.986.225 [1,6,26,101]

: :

Figure 5.6: A small
sub selection of a possible
mapping between the
nodes and their respective

representative areas.

The result is a list of all nodes with their corresponding

representative area IDs (short: area IDs), as shown in Figure

5.6. The number of area IDs for each node corresponds with the

number of layers in the congestion hierarchies, as each node has

an area ID in each layer of the congestion hierarchies. So let us

look at the example in Figure 5.6: we see that node 1.986.217

is within representative area 1 in the �rst layer, area 6 in the

second layer, area 25 in the third layer, and area 97 at the lowest

layer. This does not mean that the areas where the nodes are

present actually have a representative, the next data structure

stores this information.

If we would use the initial node mapping based on the

geographical locations of the nodes, we are able to reduce it to

a single area ID. Performing simple bitshift operations on the

area ID, we are then able to retrieve the other layers as well. We

choose to use the free �ow mapping strategy as described above,

as it make more sense to group nodes based on their distance to

their representative than on their geographic location.

5.3.2.2 Mapping representative areas to congestion factors

The second data structure contains the mapping between each representative area ID and its surrounding

areas with congestion factors. We choose to divide this data structure into two di�erent �gures (5.7a

and 5.7a) for clarity reasons. Because we start numbering the representative areas from zero up to each

of the layers, this leads to con�icts between areas with the same ID, but which are in di�erent layers.

Therefore, we also sort the area IDs on their layer level to resolve this con�ict. Figure 5.7a shows how

the area IDs (column 2) are sorted on layer (column 1) and which areas are the neighbouring areas of

the area ID (column 3). Column 3 only contains the area IDs of the areas that are both in the vicinity

of the area and also contain a representative node.

The TTC stores all seven day congestion factor arrays as a single array at once. During preliminary

research we observed that the congestion day patterns are quite similar. Therefore, it makes sense to split

the single week array into seven arrays of one day. This increases the likelihood of two congestion factor

arrays to be similar, as there are seven times more arrays, and the array itself is seven times as short.

To even further increase the likelihood of two arrays of congestion factors to be the same, we normalize

all arrays to have the lowest value in the array to be zero, and store the o�set of this normalization to

later retrieve the real congestion factors. Each area ID in column three of Figure 5.7a actually contains

a data structure with the mapping to the congestion factors. Figure 5.7b shows this data structure, and

in this example it is the mapping to the congestion factors of area ID 1 to area ID 3 in the �rst layer.

For each neighbouring area and each day of the week, the CH-algorithm stores an index number to the

list of congestion factors and an o�set number. The index number corresponds with the index to the

congestion factor in the data structure in Section 5.3.2.3. The o�set value is the value to which the stored

congestion factors in the data structure have to be incremented.

Chapter 5. Congestion Hierarchy Algorithm 52

Layer: Area ID: Neighbouring areas:

1 (2x2) 0 [1,2,3]
1 [0,2,3]

: : :
2 (4x4) 0 [1,2,3]

: : :
6 [1,3,4,5,7,13]
7 [4,5,6,13,16,18,24]

: : :
3 (8x8) 0 [0,1,2]

: : :
25 [19,22,24,26,27,28]
26 [13,15,24,25,27,37,48,49]

: : :

(a) (b)

Figure 5.7: This �gure presents the mapping between the representative areas and the congestion
factor data structure. (a) stores for each Area ID (column 2) which areas are within the vicinity of
the area and contain a representative (column 3). Because multiple areas in di�erent layers share the
same area ID, the area IDs are sorted on layer (column 1). (b) presents the mapping structure that is
behind each of the area IDs in column 3 of (a). The indices point to the indexes of the data structure

of Section 5.3.2.3.

5.3.2.3 Storing the congestion factors

Index of CFs: Congestion factors:

: :
45 [4,4,4,4 ... 3,2,2,2 ... 4,4,4]
46 [7,6,6,6 ... 2,1,1,2 ... 8,8,8]
47 [8,8,7,7 ... 1,1,1,2 ... 8,8,8]
48 [9,9,9,8 ... 4,4,5,5 ... 9,9,9]
49 [4,4,4,4 ... 3,2,2,2 ... 4,4,4]
50 [8,8,7,7 ... 3,3,3,3 ... 7,7,7]
51 [4,3,3,3 ... 2,2,2,2 ... 4,4,4]
52 [5,5,4,4 ... 3,2,2,2 ... 5,4,4]
53 [8,8,8,9 ... 6,6,6,6 ... 8,9,8]
: :

Figure 5.8: This �gure presents the
data structure of a small sub selection of

a possible set of congestion factors.

The last data structure consists of the actual congestion

factors. In the previous section we described how the

representatives areas are connected to the congestion

factors in this data structure. By accessing the row

index, the CH-algorithm is able to retrieve the array

of congestion factors. These factors still need to be

incremented with the o�set number, which is stored in

the previous data structure as well. The resulting array

consists of the congestion factors of a single day. In

our case this is an array of 96 bytes, where each byte

represents a 15 minute interval. Using interpolation, the

CH-algorithm calculates the exact congestion factor for

each moment in the 24-hour period of that day. Figure

5.8 presents a small sub selection of a possible set of

congestion factors.

5.3.3 Calculating the TD-TT using the CH-algorithm

In this section, we give an example how the CH-algorithm retrieves a time dependent travel time using

the precalculated congestion factors. Say, the CH-algorithm needs to calculate the time dependent travel

time from node 1.986.221 to node 1.986.222 at a Monday at 00:48. The free �ow travel time is already

known, and is in this case 60 minutes. First, the algorithm checks at the lowest level if area ID 99 and 100

have representatives and are neighbours (see Figure 5.6). We know that they are neighbours at the lowest

level (area ID 99 and 100), but in this example we assume both areas do not have a representative on

this level (Figure 5.7a does not show this level). Therefore, the algorithm moves up one layer and checks

Chapter 5. Congestion Hierarchy Algorithm 53

the same for area ID 25 and 26. These two areas are neighbours as well, and both have a representative

as well (see Figure 5.7a). Therefore, it is possible to retrieve the congestion factors.

Let us assume that the index and o�set values of area ID 25 to area ID 26 are the same as area 1 to area

3, we use the same information as shown in Figure 5.7b. The Monday congestion factors are stored in

row 48 of the congestion factor data structure. The congestion factors consist of 96 bytes of information,

but only 12 bytes are shown in Figure 5.7. Because the departure time is at 00:48, we need the third and

fourth congestion factor within the congestion factor array. In this example this is 9 and 8, and with

the increasing of these factors by the o�set, we get 98 and 97. Using interpolation, the �nal congestion

factor at 00:48 is 98 + 00:48−00:45
00:15 ∗ (97 − 98) = 97.8. If in this example, the free �ow travel time would

be 60 minutes, the time dependent (estimated) travel time would be 60/97.8 ∗ 100 = 61.35 minutes.

Chapter 6

Experiments & Results

This chapter describes the experiments to test our algorithm and evaluate its results. In Chapter 4,

we already described the benchmark experiments to test the current algorithm. In this chapter we

use the same datasets and performance indicators, but we conduct di�erent experiments. We describe

the data and the evaluation criteria in respectively Section 6.1 an Section 6.2. Section 6.3 describes

the experiments to test our solution method. In Section 6.4 we analyse and discuss the results of the

experiments.

6.1 Data

In this section, we discuss the three di�erent types of data we need to conduct the experiments. These

three data types are similar to the types we discussed in Section 4.1. First, we have the map data for

which we use the same BeNeLux map as during the benchmarking experiments. We refer the reader

back to Section 4.1.1 for a detailed description of the map data. Second, we use test data that contain

a large number of di�erent random origin and destination pairs that we use to test the TTC and the

CH-algorithm. From the three test groups described in Section 4.1.2, we use test group 1 (path lengths)

and test group 3 (congested areas) in this chapter as well. Test group 2 contains O-D pairs with di�erent

lengths towards their representatives. The representatives of this test group are in a 20x20 grid formation.

Because the CH-algorithm uses a di�erent set of representatives, each of the four test sets in the test group

does not hold the property anymore that all origin and destination nodes are located at the same distance

from their representative. Therefore, this test group becomes useless in the following experiments.

Last, we use the congestion data that is created during the preprocessing stage of the CH-algorithm. We

refer the reader back to Section 5.3.1 for the full explanation of this preprocessing stage. In that section,

we explained that we have three parameters we can adjust during the preprocessing stage. These three

parameters are the threshold to accept an area to get a representative (α), the number of neighbours

around a representative (inclusion width), and the number of layers of representative areas. We split

the latter parameter in two di�erent parameters, namely the ��rst layer� and the �number of layers�.

Preliminary results show that several longer paths tend to only share congestion factors at the 2x2 and

the 4x4 layers. However, these layers produce inaccurate results as the representatives represent a too

large area to be accurate. Therefore, we decide to add a parameter known as the ��rst layer�, which is

54

Chapter 6. Experiments & Results 55

the �rst layer in the congestion hierarchies where the congestion factors for each representative to all

other representatives are calculated. Essentially, in this layer we compute the congestion factors as in

the current algorithm. In this way, we force the algorithm to always �nd the congestion factors in this

��rst layer�. The preliminary results also show that calculating all congestion factors in the 16x16 layer,

did not signi�cantly improve the accuracy compared to doing the same for the 8x8 layer. As calculating

all congestion factors in 8x8 layer uses less memory that in the 16x16 layer, we chose the 8x8 layer as

the ��rst layer�. The �number of layers� is the number of times we split an area into four equal areas. If

we have 9 layers, the bottom layer consist of 29 = 512 => 512 ∗ 512 = 262.144 areas.

Table 6.1 shows three di�erent datasets with preprocessed congestion data of the CH-algorithm. The four

columns of the table show the values of the parameters used to compute that congestion dataset. The

�rst two columns contain the parameters that are �xed, and cannot be altered. Preliminary experiments

show that it is enough to �xate the ��rst layer� value to 8x8, and to only di�erentiate among the value of

α. The 4x4 layer and 16x16 layer were respectively not accurate enough or equally accurate compared to

the 8x8 layer. The last two columns contain the parameters, for which di�erent values can be simulated.

Although more layers and a larger inclusion is available, it is possible to restrict these numbers during

the experiments. Therefore, the values in these columns can be considered as the maximum values of

the dataset.

α First layer Number of layers Inclusion width

Set 1 0.5 3 (8x8) 9 (512x512) 5

Set 2 1 3 (8x8) 9 (512x512) 5

Set 3 2 3 (8x8) 9 (512x512) 5

Set 4 1 3 (8x8) 8 (256x256) 9

Table 6.1: Overview of the parameter values of the three congestion datasets we use for the
experiments.

6.2 Evaluation criteria

In this section, we describe the performance indicators to evaluate the CH-algorithm. In Section 4.2,

we already described three di�erent indicators to evaluate the Travel Time Calculator (TTC), of those

three indicators we only use the free �ow Travel Time Gap (�-TTG) during the following experiments.

Due to the large number of di�erent parameter settings and datasets, we are going to adjust the �-TTG

indicator slightly to make it easier to present our results. Instead of presenting the �-TTG value for each

departure time over the day, we take the maximum �-TTG of that day. It is easier to present this single

value together with di�erent values in a graph. Hence, instead of:

TTGffod (τ) =
∣∣∣TTC(od, τ)− T (qod, τ)

T (qod, τ)

∣∣∣ (6.1)

We use:

TTGff = max
τ
{ 1

OD

∑
od∈OD

TTGffod (τ)} (6.2)

Chapter 6. Experiments & Results 56

where OD stands for all od-pairs within a test set. We refer the reader back to Section 4.2 for a full

explanation on the �-TTG formula.

6.3 Setup of experiments

In this section, we describe the experiments to test the accuracy of the CH-algorithm. We also provide

the memory usage, preprocessing time, and query time of the algorithm. Unfortunately, both the

preprocessing and querying run in an experimental environment, making it di�cult to compare these

results with the TTC.

We use test group 1 and 3 to test the CH-algorithm, making use of three sets of preprocessed congestion

data. We calculate for each O-D pair of the two test groups and each 15-minute interval, the time

dependent travel time using the TTC and the CH-algorithm. We take the average over two workdays

(Tuesday and Thursday), as during these days the most congestion is present. We need the time

dependent travel times of both algorithms to compute the free �ow travel time gap. Analysis of the

travel time patterns was already conducted in Chapter 4, and therefore it is not included in this chapter.

We set-up two experiments: �rst a sensitivity analysis of the �rst three datasets and second an analysis of

the accuracy of dataset 4. The previous section explains that there are four parameters that in�uence the

accuracy of the algorithm. The �rst parameter ��rst layer� is �xed, while the other three are adjustable.

These adjustable parameters are the �number of layers�, the �inclusion width�, and the α-factor. Table 6.2

shows the possible values of these parameters. We alter the parameters of the three congestion datasets

to research which parameter set shows the best result, i.e., best accuracy compared to usage of resources.

In total, we have 3 ∗ 3 ∗ 3 = 27 di�erent sets of parameters.

Parameter Values

Number of layers 7 (128x128), 8 (256x256), 9 (512x512)

Inclusion width 1, 3, 5

Alpha 0.5, 1, 2

Table 6.2: Overview of the values of the parameters that are used for the sensitivity analysis.

The outcomes of the �rst experiment were used to construct the fourth dataset. The fourth dataset

has less number of layers, but the inclusion width is greatly increased. For this dataset we compute the

average �-TTGs for a typical weekday (Tuesday and Thursday) on test group 1 and 3.

6.4 Results

In this section, we present our results of running the CH-algorithm. First, we show the performance

of the CH-algorithm in terms of preprocessing time, query time, and memory usage. Second, we show

a sensitivity analysis of the �rst three datasets under di�erent parameter settings. In this way, we

research how di�erent parameter settings a�ect the performance of the CH-algorithm performs. Third,

Chapter 6. Experiments & Results 57

we present the results of dataset 4, where we use the insights of the sensitive analysis to adequately adapt

the preprocessing step, to generate a dataset that results in higher accurate time dependent travel time.

Table 6.3 shows the values of the preprocessing time, memory usage, and query time of the di�erent

datasets. We observe several things. First, we observe high preprocessing times for all four of the

dataset, as well as large di�erences among these computational times. The decreasing preprocessing

time in dataset 1 to dataset 3 makes sense, as the increasing value for α among these sets lead to less

congestion factors that have to be computed. Dataset 4 has an even lower preprocessing time, as the

lowest level in this dataset is 8 (256x256), while the other three sets continue to 9 (512x512). Second,

we observe a declining pattern in overall memory usage in dataset 1 to dataset 3, which has the same

explanation as for the preprocessing times. For dataset 4, the memory usage is higher, as the parameter

�inclusion width� is set to a higher value. Finally, we observe similar average query times among the

dataset, which are between 0.02 and 0.03 ms. The parameter setting of the dataset does not in�uence

the query time of the algorithm.

Preprocessing Query Memory usage

time time Mapping nodes Mapping areas Factors

Set 1 29.9h 0.03ms 106mb 199mb 1387mb

Set 2 13.5h 0.02ms 106mb 104mb 731mb

Set 3 9.8h 0.02ms 106mb 38mb 331mb

Set 4 4.5h 0.03ms 95mb 97mb 809mb

Table 6.3: Overview of the preprocessing time, query time, and memory usage of the di�erent
preprocessed datasets.

Figure 6.1 contains the sensitivity data of the �rst experiment for the �Areas� test group and Figure 6.2

contains the sensitivity data of the �Lengths� test group. To di�erentiate between the di�erent values

of the parameters �number of layers�, �inclusion width�, and the value of �α�, we present the values as

follows. The �gures depict the average maximum free �ow Travel Time Gap of a single set of parameters

and one test set as a single data point. The three sub�gures each have a di�erent value for the parameter

α. Over the x-axis we separate the four test sets of each of the test group, where each test set is further

subdivided into three di�erent inclusion widths. To depict the di�erent values for the di�erent �number

of layers�, we use di�erent icons as shown in the legend of Figures 6.1 and 6.2.

Chapter 6. Experiments & Results 58

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

5%

10%

15%

20%

AmsterdamAntwerp Brussels The Hague

T
ra
ve
l
T
im
e
G
a
p
(%

)

(a) α = 0.5

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

5%

10%

15%

20%

AmsterdamAntwerp Brussels The Hague

(b) α = 1

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

5%

10%

15%

20%

AmsterdamAntwerp Brussels The Hague

128x128

256x256

512x512

(c) α = 2

Figure 6.1: These �gures depict the average maximum free �ow Travel Time Gap of each run on each
testset within the �Areas� testgroup. The x-axis di�erentiate the four di�erent testsets (Amsterdam,
Antwerp, Brussels, The Hague) together with the three di�erent inclusion widths. Per tick on the
x-axis, the �gure shows the results of the tree di�erent number of layers (128x128, 256x256, 512x512),

which are visible in the legend as well.

In Figure 6.1 we observe that an increase of the inclusion width, an increase of the number of layers,

and a decrease of α value all result in an increase of the accuracy. We also observe the same pattern

among the di�erent test sets as during the benchmarking experiments, meaning that the Brussels test

set also has the highest TTG using the CH-algorithm. The increase of the accuracy for di�erent alpha

values is di�cult to observe, we mainly see di�erences between α = 1 and α = 2, for the Antwerp and

Brussels test set. We explain this rather small increase of accuracy as the congested areas of this test

group are within areas with a large number of nodes. Therefore, the chance of assigning a representative

to an area in these regions is large. This results in almost no di�erence between α = 0.5 and α = 1

graph. The increase of accuracy for di�erent �number of layers� values is better observable. Especially

for increasing values of the inclusion width, the accuracy increases when a dataset is used with more

layers. This makes sense as less �number of layers� results in larger representative areas. Therefore, the

chance of a destination node being in the same area or in the direct connected area at the lowest level

is relatively low. Whereas, if the inclusion width is larger, this chance is higher and the CH-algorithm

actually bene�ts from smaller representative areas. Lastly, we observe a clear increase of the accuracy

when the inclusion width is increased. Especially in the Brussels area, we observe an increase from 18%

at an inclusion width of 1, to 10-11% with an inclusion width of 5.

Chapter 6. Experiments & Results 59

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

0%

2.5%

5%

7.5%

10%

10 min 30 min 2 hours 4 hours

T
ra
ve
l
T
im
e
G
a
p
(%

)

(a) α = 0.5

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

0%

2.5%

5%

7.5%

10%

10 min 30 min 2 hours 4 hours

(b) α = 1

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

1
w
id
t
h

3
w
id
t
h

5
w
id
t
h

0%

2.5%

5%

7.5%

10%

10 min 30 min 2 hours 4 hours

128x128

256x256

512x512

(c) α = 2

Figure 6.2: These �gures depict the average maximum free �ow Travel Time Gap of each run on four
of the seven test sets within the �length� test set. The x-axis di�erentiate the four di�erent testsets
(10 min, 30 min, 2 hours, 4 hours) together with the three di�erent inclusion widths. Per tick on the
x-axis, the �gure shows the results of the tree di�erent number of layers (128x128, 256x256, 512x512),

which are visible in the legend as well

In Figure 6.2 we see similar behaviour in the 10-minute test set, but the test sets of 30-minute and longer

show di�erent patterns. Because longer paths share congestion factors at a higher layer, there is no

di�erence between having a maximum depth of 7 (128x128), 8 (256x256), or 9 (512x512). The inclusion

width does in�uence the accuracy, but for the longest path of 4 hours this does not have an e�ect as the

origin and destination of a path most likely only share congestion factors at the highest level of 3 (8x8).

In contrast to the �areas� test set, this dataset is more sensitive to the value α. This has to do with the

fact that the origin and destinations are selected from the complete map, instead of just congested areas.

Chapter 6. Experiments & Results 60

2
:0
0

4
:0
0

6
:0
0

8
:0
0

1
0
:0
0

1
2
:0
0

1
4
:0
0

1
6
:0
0

1
8
:0
0

2
0
:0
0

2
2
:0
0

0%

2.5%

5%

7.5%

10%

12.5%

15%

Time of Departure (hh:mm)

A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

(a)

2
:0
0

4
:0
0

6
:0
0

8
:0
0

1
0
:0
0

1
2
:0
0

1
4
:0
0

1
6
:0
0

1
8
:0
0

2
0
:0
0

2
2
:0
0

0%

2.5%

5%

7.5%

10%

12.5%

15%

Time of Departure (hh:mm)
A
ve
ra
g
e
T
ra
v
el
T
im
e
G
a
p
(%

)

Amsterdam
Antwerp
Brussels

Rotterdam
10 min.
30 min.
120 min.
240 min.

(b)

Figure 6.3: This �gure depicts the travel time gap of the �Areas� (a) and �Path length� (b) test sets.
Both graphs present the average �-TTG of a Tuesday and a Thursday. The black lines represent the
values resulting from using the CH-algorithm with dataset 4, while the gray lines depict the results of

using a similar size congestion matrix and the TTC.

Figure 6.3 presents the �-TTG over di�erent departure times of a typical weekday (Tuesday and Thursday),

for the four test sets of the �Areas� test group and the four test sets of the �Lengths� test group. The

gray line depicts the average �-TTG of the TTC algorithm using a 42x42 grid matrix, while the black

line depicts the average �-TTG of the CH-algorithm using the parameters, α = 1, inclusion width = 9,

and �rst layer is 8 (256x256). The line consist of 96 measurements, which are the departure times at a

15-minute interval during a single day.

We observe large improvements on all the four test sets within the �Area� test group. The �-TTG in

the test sets Amsterdam, Antwerp, Brussels, and The Hague dropped on average 32%, 44%, 40%, and

35% respectively during the rush hour period of a weekday. In the four test sets within the �Lengths�

test group, we observe both large decreases as increases of the �-TTG. For the test sets of �10-min.� and

�30-min.�, the �-TTG dropped on average 39% and 27% respectively during the rush hour period of a

weekday. However, for the test sets of �2-hr.� and �4-hr.�, we observe an increase of respectively 60%

and 100%. These are large percentage increases, but the absolute di�erences between the �-TTGs are

relatively low. The travel time gap increases respectively from 1.7% to 2.7% and from 1.0% to 2.0%.

This means that the duration of a 4-hour trip (in free �ow) on average has an additional deviation of 2.5

minutes.

Chapter 6. Experiments & Results 61

T
T
C

C
H
A

T
T
C

C
H
A

T
T
C

C
H
A

T
T
C

C
H
A

T
T
C

C
H
A

T
T
C

C
H
A

T
T
C

C
H
A

T
T
C

C
H
A

0%

10%

20%

30%

40%

50%

60%

70%

80%

Amsterdam Antwerp Brussels The Hague 10 min 30 min. 2 hr. 4 hr.

T
ra
ve
l
T
im
e
G
a
p
(%

)
a
t
0
8
:0
0

Figure 6.4: This �gure depicts the variation in the average travel time gap. It is presented as a box
plot, using the �seven-�gure summary�[42]. The horizontal lines in each single box plot represent the
following (top to bottom): sample maximum, 90th percentile, 75th percentile, 50th percentile, 25th

percentile, 10th percentile, and sample minimum.

For every test set that is presented in Figure 6.3, Figure 6.4 presents the box plots of the variation of

the TTG. For each of the test set, we ran both the TTC and the CH-algorithm. The both box plots of

the variation are presented in Figure 6.4. We observe smaller interquartile ranges (IQR) for all �Areas�

test sets and for the �10-min.� and �30-min.� test sets. The reduced size of the IQR's corresponds to

the same downward trend in the average TTG. Again, the test sets of �2-hour� and �4-hour� show an

opposite pattern, meaning the IQR values have increased.

6.5 Conclusion

In this chapter, we assessed the performance of the CH-algorithm. We created four di�erent datasets,

which we generated during the preprocessing phase of the CH-algorithm. Three of the four datasets were

used to test 27 di�erent parameter sets, to analyze the performance of the di�erent parameters. The

observations of the results of the di�erent parameter sets, led to the fourth dataset. We used this fourth

dataset for our �nal analysis of the performance of the CH-algorithm.

First, we observed high preprocessing times for all four of the datasets. These high computational times

were a result of using the Dijkstra's algorithm, which is known to be easy to implement, but slow in

large scale road networks. Therefore, the measured times are not a representation of the actual speed

of the algorithm. A di�erent implementation using a faster algorithm like Highway Node Routing or

Contraction Hierarchies, would have led to di�erent results. We consider the query times of the algorithm,

being between 0.02 and 0.03 ms as extremely fast. This is a result of a compact data structure and fast

Chapter 6. Experiments & Results 62

table and list look ups. The memory usage is large, but the fourth dataset is equal in size as the grid

dataset of the TTC we compare it to.

Second, we observed a large improvement in accuracy using eight layers over seven layers for shorter

paths, while this increase is not visible using nine layers over eight layers. In the �area� test group we

observe similar outcomes. Using α = 1 instead of α = 2, leads to an increase of the accuracy of an

additional 1% point. Between α = 0.5 and α = 1, this increase is only ±0.3% point. In the �area� test

group we observe improvements for the Antwerp and Brussels test set, but for the Amsterdam and The

Hague test set the value of α has no e�ect. For all shortest path test sets (all areas and 10 min.) we see

an improvement of the accuracy using larger inclusion widths.

Finally, we used the fourth dataset to test the performance of the CH-algorithm. We observe on average

an increase of accuracy of 34% in congested urban areas during a weekday, and on average an increase of

accuracy of 28% for trips with a length of at most 30 minutes. These values are weekday averages, during

rush hour these values increase to 38% and 33% respectively. However, longer trips have on average a

decrease of accuracy of 85%. This decrease is something we expected and accepted beforehand, as it

heavily bene�ts the accuracy for shorter trips. The decrease of accuracy looks much larger than the

increase we manage to make, but this decrease has less e�ect as the travel time gap for longer trips still

is lower than for shorter trips. While the travel time gap increases respectively from 1.7% to 2.7% and

from 1.0% to 2.0% for 2 hour and 4 hour trips, the travel time gap decreases from 5.5% to 3.4% and

from 4.8% to 3.5% for 10 minute and 30 minute trips. Therefore, the CH-algorithm causes a 4-hour trip

(in free �ow conditions) on average to have an additional deviation of 2.5 minutes. We conclude that the

CH-algorithm outperforms the TTC both in congested areas and in the case of shorter trips.

Chapter 7

Conclusions and Recommendations

In Chapter 1, we stated four research questions to which the answers contribute to our research goal.

The chapters that followed answered these research questions. Chapter 2 discussed the literature related

to shortest path algorithms that focus on computing fast (time dependent) travel times. In Chapter 3

and 4, we described the current algorithm and analyzed its performance. In Chapter 5, we designed the

CH-algorithm and in Chapter 6 we assessed its performance. In this chapter, we discuss the conclusions

(7.1) of this research and provide a discussion (7.2), and �nish with our recommendations for further

research (7.3).

7.1 Conclusions

We developed a travel time algorithm that calculates the time dependent travel time between an origin

node o and a destination node d in a directed graph with time varying weights at departure time τ ,

fast enough so it can be used in VRP solving algorithms. The CH-algorithm is able to work customer

independent, meaning we do not use any customer speci�c data or information for con�guration purposes.

In this section, we discuss the conclusions of this research based on our �ndings.

First, we determined the accuracy of the TTC. The TTC performs as desired for longer trips (>2h)

and in areas with a low level of congestion. However, it performs poorly on relatively short paths, in

congested areas and/or where the locations of the representatives are distanced from the main roads of

the road networks. We use these �ndings to design our new algorithm, by using the characteristics of

the current algorithm for the retrieval of travel times for longer paths and designing a di�erent approach

for shorter paths.

Second, we developed the Congestion Hierarchies Algorithm (CH-algorithm) that calculates the travel

time between two points on a map, for any departure time at any day. The results of the test ran on the

CH-algorithm shows that the CH-algorithm is generally more accurate than the TTC. The results show

that the CH-algorithm is on average 34% more accurate in congested areas, compared to the TTC. It

also shows, that the CH-algorithm is on average 28% more accurate for trips with a length of at most

30 minutes, compared to the TTC. However, for trips longer than 30 minutes, the CH-algorithm is on

average 85% less accurate for trip longer than 30 minutes, compared to the TTC. These three observations

63

Chapter 7. Conclusion and Recommendations 64

makes sense, as we decided beforehand that some accuracy would be sacri�ced for longer trips for the

bene�t of the shorter trips, and this is a design decision of the algorithm. We measured the performance

of the algorithm based on the preprocessing time, query time, and memory usage. The preprocessing

time of our algorithm was with 4,5 hr relatively large, but the cause was the use of Dijkstra's algorithm

instead of a faster SPP-algorithm. If a di�erent algorithm was used, the preprocessing time would have

been several times faster. The query time of the CH-algorithm is with 0.03 millisecond considered as

extremely fast, but was measured outside of the ORTEC software framework. Therefore it is not possible

to make a comparison with the TTC, but we think that as the query time is extremely fast, it will not

have a negative impact on the overall performance of ORD. The memory usage of the CH-algorithm is

1001 MB, which is similar to the memory usage of the TTC. All together, we state that the performance

of the CH-algorithm will neither outperform or worsen the performance of the TTC.

To conclude, the CH-algorithm improves the accuracy of TD-TT estimations and is fast enough to be

used in vehicle routing algorithms. Literature shows that improving the TD-TT accuracy is bene�cial for

the feasibility of the vehicle routing solution, although we were not able to proof this ourselves. Clients

using ORD bene�t from this new algorithm, as the constructed vehicle routing solutions are more reliable,

meaning the deliveries are on time more often. Especially clients with deliveries clustered together in a

relatively small area will bene�t from the CH-algorithm, for instance, inner city parcel deliveries.

7.2 Discussion

In the previous section, we provided the conclusions of our research. In this section, we critically assess

these conclusions, and put them in a broader context.

In this paragraph, we discuss the loss of accuracy in the data and in the CH-algorithm we developed.

First, we state that we are able to compute the exact time dependent travel times, but the exactness is

questionable. We use the time dependent travel times over the free �ow shortest path, instead of using

the time dependent shortest path. We found a maximum average deviation of at most 2% during rush

hour periods, and assumed this deviation was low enough to use the free �ow shortest path. Second,

we assumed that the provided data was the exact representation of the travel time. However, the travel

time data of the third party is also just an approximation of the actual travel times. The data looses

precision as it is rounded to whole numbers and data is only available for a single week and only on a

15-minute basis. Leaving aside the fact that the data describes historical patterns, and therefore neglects

actual tra�c conditions and real time distortions. Third, we measured a travel time gap during the night

period on all test sets we ran experiments on. A travel time gap indicates that congestion is present,

something that we would not expect during the night as presumably no tra�c will be present. The

explanation is that within the graph, certain edges have a higher FF-TT than the TD-TT during the

night. As the FF-TT is assigned to a road type, this e�ectively means that on certain edges this is

an overestimation of the actual travel time. However, these di�erences are not consistent for all edges,

meaning the calculated congestion factors will not fully represent the actual present travel time di�erence.

Finally, the congestion factors are stored as a byte, meaning they have a maximum of 256 di�erent values.

Of these 256 values, only a limited range is used, namely between 60 and 100. So even if both the origin

and the destination node are a representative, there is a rounding error within the time dependent travel

time, with a maximum of 0.5%. We recommend to research the potential of scaling the congestion factors

to the complete 256 spectrum of the byte.

Chapter 7. Conclusion and Recommendations 65

In this paragraph, we question the need of high accuracy of time dependent travel time calculation. We

know from literature that including time dependency improves the feasibility of the solution of the VRP.

However, we were not able to prove this observation in our research as well. We imagine that including

time dependent travel times improves the accuracy, but we question whether or not it also improves

the feasibility of the solution. This means that the time windows of the addresses are still met, even

though the arrivals at the addresses di�er due to inaccurate travel time predictions. Especially when the

time windows at the addresses are wide enough, and the non-absolute average travel time gap is around

zero, we wonder if an even higher accuracy has an impact on the feasibility of the VRP solutions. We

recommend to research the e�ect on VRP solutions using real customer data, to see what the e�ects on

the feasibility of the solutions are.

In this �nal paragraph, we put our solution method in perspective with possible other methods that

produce exact time dependent travel times. A solution method would be to recalculate the congestion

factors for a speci�c set of addresses, each time the algorithm calls for optimization. As an optimization

call can take up to several hours to complete, it does not matter if congestion factors have to be computed

at the beginning of the call, as long as it only takes a fraction of the total optimization call. This is a

solution when the number of addresses is limited (say <100), as computation time increases quadratically

with the number of addresses. Also, the addresses should be located around the same region, so the

mutual distances are limited as well. This approach is therefore limited to smaller customers with a

regional importance.

7.3 Further research

In this section, we present our recommendations for further research. The following ideas are the result of

the �ndings of the CH-algorithm, or ideas that we did not pursue due to time restrictions of this research.

First, we have some general remarks for further research, then we will follow the four preprocessing steps

of the algorithm to explain our recommendations.

General

The experiments of this research were conducted on the BeNeLux map, a map signi�cantly smaller than

the Western European or USA map, used in experiments on algorithms found in literature. We think the

experiments within this research should also be ran on a larger map to check if the outcomes are similar

to the results we found in this research. Also, we think more research should be performed in �nding

more e�cient ways of compressing the data, for instance, the congestion factors. We already pointed

out that the stored data did not use the full range within a byte. But also reducing the number of time

intervals could be a possibility, for instance, reducing the night period to a single point in time.

Partitioning

Currently, the CH-algorithm uses the quad-tree algorithm to partition the road network into smaller

areas. The quad-tree algorithm was extremely suitable due to its easy implementation and multilevel

characteristics. The resulting partition is based on square-like areas, that do not take into account the

characteristics of the road network itself. In Section 5.2, we dismissed the idea of using the METIS

algorithm, due to its computational time and the necessity to use undirected graphs. However, Delling

et al. [43] use the METIS algorithm (together with a similar algorithm called PUNCH) for partitioning

their road networks, which they use as input for their shortest path algorithm. This indicates that

Chapter 7. Conclusion and Recommendations 66

the METIS algorithm is applicable on large road networks, which makes us rethink the dismissal of

the algorithm. The METIS algorithm produces areas based on the graph characteristics, rather than

the geographical locations of the nodes. This makes us believe it creates better partitions than our

combination of square areas and the Dijkstra algorithm. We recommend further research in the use of

di�erent partitioning algorithms that include the characteristics and the so-called natural cuts of a road

network.

Selecting representatives

During the process of selecting the representatives, we perform two consecutive steps. First, we decide

which areas receive a representative node, based on the number of nodes within the area. Second, we

decide which node of that area is going to be the representative, which in our case is the node closest to

the centroid of the area.

We recommend to further research the e�ects of di�erent methods that decide to allocate a node to

an area. Currently, this is a linear relation between the average number of nodes in the area at a

certain level and the actual number of nodes within an area. We think it is possible to use a non-linear

relationship, in which some levels have a high probability to assign a representative to an area and lower

levels have a lower probability. In this way, we might be able to remove the necessity to have a layer

where all congestion factors are computed. An even better possibility is to allocate representatives based

on the congestion in the area. In that way, congested areas are preferred over well accessible areas. We

recommend to research proper ways to indicate the level of historical congestion of the edges and to use

this as an indicator to allocate representatives.

In the second step, we determine the most central node within an area. However, this does not necessary

has to be the best node to represent the area, as it could be a junction in the middle of a rural area. We

recommend to look for fast methods to determine the most important node of an area. An idea would

be to pick the node that is on most shortest paths between each of the border nodes of the area.

Generating congestion factors

The CH-algorithm currently generates the congestion factors based on a single representative within

the area. We do this because this a simple method to generate the congestion factors. However, it is

questionable if congestion factors based on a single node are a good representation of a complete area.

We recommend to research the possibility to remove the idea of the representative (node) completely,

and instead use some kind of average of the area. So, instead of a single node, we use an average of all

or a subset of nodes and/or edges of the graph.

Mapping the nodes

We have no recommendations for the last preprocessing step, as this was an addition to the CH-algorithm

to overcome a shortcoming of the quad-tree algorithm. If we use a di�erent partition algorithm that

includes the natural characteristics of a road network, this step becomes obsolete as the nodes in the

partitions are directly mapped to the right areas.

Bibliography

[1] George B Dantzig and John H Ramser. The truck dispatching problem. Management science, 6(1):

80�91, 1959.

[2] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications, volume 18.

Siam, 2014.

[3] Adrianus Leendert Kok, EW Hans, and JMJ Schutten. Vehicle routing under time-dependent travel

times: the impact of congestion avoidance. Computers & Operations Research, 39(5):910�918, 2012.

[4] Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi. A case for time-dependent shortest

path computation in spatial networks. In Proceedings of the 18th SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pages 474�477. ACM, 2010.

[5] Stephan Winter. Modeling costs of turns in route planning. GeoInformatica, 6(4):345�361, 2002.

[6] Gernot Veit Eberhard Batz. Time-Dependent Route Planning with Contraction Hierarchies. PhD

thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2014, 2014.

[7] Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle dispatching with time-dependent

travel times. European journal of operational research, 144(2):379�396, 2003.

[8] Christophe Lecluyse, Tom Van Woensel, and Herbert Peremans. Vehicle routing with stochastic

time-dependent travel times. 4OR, 7(4):363�377, 2009.

[9] Tom Van Woensel, Laoucine Kerbache, Herbert Peremans, and Nico Vandaele. Vehicle routing

with dynamic travel times: A queueing approach. European journal of operational research, 186(3):

990�1007, 2008.

[10] Said Dabia, Stefan Ropke, Tom Van Woensel, and Ton De Kok. Branch and price for the time-

dependent vehicle routing problem with time windows. Transportation Science, 47(3):380�396, 2013.

[11] Stefanie Kritzinger, Fabien Tricoire, Karl F Doerner, and Richard F Hartl. Variable neighborhood

search for the time-dependent vehicle routing problem with soft time windows. In Learning and

Intelligent Optimization, pages 61�75. Springer, 2011.

[12] Alberto V Donati, Roberto Montemanni, Norman Casagrande, Andrea E Rizzoli, and Luca M

Gambardella. Time dependent vehicle routing problem with a multi ant colony system. European

journal of operational research, 185(3):1174�1191, 2008.

[13] Hideki Hashimoto, Mutsunori Yagiura, and Toshihide Ibaraki. An iterated local search algorithm

for the time-dependent vehicle routing problem with time windows. Discrete Optimization, 5(2):

434�456, 2008.

67

Bibliography 68

[14] Yaguang Li, Dingxiong Deng, Ugur Demiryurek, Cyrus Shahabi, and Siva Ravada. Towards fast

and accurate solutions to vehicle routing in a large-scale and dynamic environment. In Advances in

Spatial and Temporal Databases, pages 119�136. Springer, 2015.

[15] Simona Mancini. Time dependent travel speed vehicle routing and scheduling on a real road network:

The case of torino. Transportation Research Procedia, 3:433�441, 2014.

[16] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction hierarchies:

Faster and simpler hierarchical routing in road networks. In Experimental Algorithms, pages 319�

333. Springer, 2008.

[17] Michel Gendreau, Gianpaolo Ghiani, and Emanuela Guerriero. Time-dependent routing problems:

A review. Computers & Operations Research, 64:189�197, 2015.

[18] Brian C Dean. Shortest paths in �fo time-dependent networks: Theory and algorithms. Rapport

technique, Massachusetts Institute of Technology, 2004.

[19] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1

(1):269�271, 1959.

[20] George B Dantzig. Linear programming and its extensions, 1963.

[21] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination

of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100�107,

1968.

[22] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter

Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation networks.

arXiv preprint arXiv:1504.05140, 2015.

[23] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra's algorithm on-line: an empirical case

study from public railroad transport. Journal of Experimental Algorithmics (JEA), 5:12, 2000.

[24] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. Geometric containers for e�cient

shortest-path computation. Journal of Experimental Algorithmics (JEA), 10:1�3, 2005.

[25] Ulrich Lauther. An extremely fast, exact algorithm for �nding shortest paths in static networks

with geographical background. Geoinformation und Mobilität-von der Forschung zur praktischen

Anwendung, 22:219�230, 2004.

[26] Ekkehard Köhler, Rolf H Möhring, and Heiko Schilling. Fast point-to-point shortest path

computations with arc-�ags. 9th Dimacs implementation challenge, 2006.

[27] Daniel Delling and Dorothea Wagner. Time-dependent route planning. In Robust and Online Large-

Scale Optimization, pages 207�230. Springer, 2009.

[28] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path queries. In

Algorithms�Esa 2005, pages 568�579. Springer, 2005.

[29] Dominik Schultes and Peter Sanders. Dynamic highway-node routing. In Experimental Algorithms,

pages 66�79. Springer, 2007.

Bibliography 69

[30] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs. In

Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 210�219.

Society for Industrial and Applied Mathematics, 2001.

[31] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries via

2-hop labels. SIAM Journal on Computing, 32(5):1338�1355, 2003.

[32] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast routing in road networks

with transit nodes. Science, 316(5824):566�566, 2007.

[33] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. Fast shortest-path distance

queries on road networks by pruned highway labeling. In ALENEX, pages 147�154. SIAM, 2014.

[34] Stuart E Dreyfus. An appraisal of some shortest-path algorithms. Operations research, 17(3):395�

412, 1969.

[35] Koen Demkes. Automated tuning of an algorithm for the vehicle routing problem. 2014.

[36] Tim van Dijk. Tuning the parameters of a loading algorithm. 2014.

[37] Rolf H Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm. Partitioning

graphs to speedup dijkstra's algorithm. Journal of Experimental Algorithmics (JEA), 11:2�8, 2007.

[38] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on composite

keys. Acta informatica, 4(1):1�9, 1974.

[39] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509�517, 1975.

[40] Brian W Kernighan and Shen Lin. An e�cient heuristic procedure for partitioning graphs. Bell

system technical journal, 49(2):291�307, 1970.

[41] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on scienti�c Computing, 20(1):359�392, 1998.

[42] Arthur Lyon Bowley. An elementary manual of statistics. PS King & son, Limited, 1915.

[43] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Customizable route

planning in road networks. Transportation Science, 2015.

[44] Irene Gargantini. An e�ective way to represent quadtrees. Communications of the ACM, 25(12):

905�910, 1982.

	Management Summary
	Acknowledgements
	Contents
	1 Introduction
	1.1 Terminology
	1.2 Context Analysis
	1.2.1 Related Work
	1.2.2 Travel time data
	1.2.3 Current approach

	1.3 Problem Description
	1.4 Research Goal
	1.5 Research Scope
	1.6 Research Approach
	1.7 Research Outline

	2 Literature Review
	2.1 Basic shortest path algorithms
	2.2 Hierarchical shortest path algorithms
	2.3 Labelling shortest path algorithms
	2.4 Time dependent shortest path algorithms
	2.5 Conclusion

	3 Current Methods
	3.1 Vehicle Routing Algorithm (CVRS)
	3.2 Time Dependent Shortest Path Algorithm (TTC)

	4 Benchmarking
	4.1 Data
	4.1.1 Map
	4.1.2 Test sets
	4.1.3 Representatives

	4.2 Evaluation criteria
	4.3 Setup of the experiments
	4.3.1 Experiment 1: The effect of the path length on the time dependent travel time over different departure times during the day
	4.3.2 Experiment 2: The effect of the vicinity of the representative on the time dependent travel time over different departure times during the day
	4.3.3 Experiment 3: The effect of congestion on the time dependent travel time over different departure times during the day
	4.3.4 Experiment 4: The effect of the number of representatives on the time dependent travel time over different departure times during the day
	4.3.5 Experiment 5: The effect of the percentage of the shortest path shared on the travel time gap

	4.4 Results
	4.4.1 Experiment 1: The effect of the path length on the time dependent travel time over different departure times during the day
	4.4.2 Experiment 2: The effect of the vicinity of the representative on the time dependent travel time over different departure times during the day
	4.4.3 Experiment 3: The effect of congestion on the time dependent travel time over different departure times during the day
	4.4.4 Experiment 4: The effect of the number of representatives on the time dependent travel time over different departure times during the day
	4.4.5 Experiment 5: The effect of the percentage of the shortest path shared on the travel time gap

	4.5 Zoom in
	4.6 Conclusion

	5 Congestion Hierarchy Algorithm
	5.1 General solution approach
	5.2 Partitioning graphs
	5.2.1 Grid
	5.2.2 Quadtree
	5.2.3 Kd-Trees
	5.2.4 METIS algorithm
	5.2.5 Conclusion

	5.3 Our travel time algorithm: Congestion Hierarchy Algorithm (CH-algorithm)
	5.3.1 Preprocessing
	5.3.2 Data overview
	5.3.3 Calculating the TD-TT using the CH-algorithm

	6 Experiments & Results
	6.1 Data
	6.2 Evaluation criteria
	6.3 Setup of experiments
	6.4 Results
	6.5 Conclusion

	7 Conclusions and Recommendations
	7.1 Conclusions
	7.2 Discussion
	7.3 Further research

	Bibliography

