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Summary

These days cyber-physical systems play an important part in life. Cyber-physical systems refer
to systems with a physical/mechanical part, controlled by a cyber platform. Due to the increas-
ing demand in functionality, their designs become more complex. In this thesis the focus is on
the cyber part of the cyber-physical systems.

As a result of the increasing complexity in the software algorithms of the cyber system, the
requirements for the computational platform increase. Embedded computers, mostly used
for the control of cyber physical systems, do not satisfy the resource requirements of these
complex algorithms. To deal with this, the complex algorithms are distributed among multiple
platforms, each designed for a specific purpose. Embedded computers take care of simple,
high-frequency, hard real-time loop control algorithms, while more advanced computers are
used for the execution of the more complex, low-frequency, supervisory control algorithms.

Tools exist to aid in the development of the algorithms. There is no single tool that meets the
requirements to develop all algorithms. Therefore, many tools are used. Via code-generation
toolboxes, the tools produce implementations for the various algorithms that can be deployed
on different platforms. Several deployment tools exist for this purpose.

The problem is that the current deployment tools do not offer a way to connect the algorithm
applications on the various platforms to communicate with each other. This causes develop-
ers to not use the tools, but come up with their own solutions. This does not always result in
optimal deployment situations.

A Communication Component is designed and implemented in this thesis to allow the complex
low frequency algorithms, to provide their data to the real-time control platforms. The Com-
munication Component consists of a server application on each device, that connects with the
server application of the Communication Component on other devices. For the algorithm it
offers an Application Pogramming Interface (API) to connect and communicate with the other
algorithms via the Communication Component.

A platform analysis and use case analysis are performed to draft requirements for the Commu-
nication Component. Based on these requirements a design is made and implemented.

Ethernet is used for the network communication. Using Inter Process Communication (IPC),
algorithms on different platforms are capable of connecting to the Communication Compo-
nent.

The use case, used for the requirement analysis, is used as a basis, for a demonstrator experi-
ment to verify the working of the Communication Component. The Gumstix Overo Fire is used
as the computing platform in the experiment. This computing platform is currently developed
as the standard embedded computing platform for setups within the Robotics and Mechatron-
ics (RaM) group. From the results of the experiment it can be concluded that the Commu-
nication Component is capable of connecting the various platforms and provide a means for
complex algorithms to send their data to the real-time control platform.

The Gumstix Overo Fire is not yet supported by the 20-sim 4C deployment tool. To ease the
deployment process, it is recommended that platform support for the Gumstix Overo Fire is
added to 20-sim 4C. Other software frameworks like OROCOS provide building blocks for de-
veloping complex sequence and supervisory control algorithms. Adding integration capability
of these frameworks with the Communication Component is also recommended as it can aid
in the development process.

Robotics and Mechatronics Jan Jaap Kempenaar
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Samenvatting

Cyber-fysische systemen spelen een belangrijke rol in het dagelijks leven. Cyber-fysisch sys-
teem refereert naar systemen die bestaan uit een fysieke component, welke bestuurd wordt
door een cyberplatform. Door hogere functionele eisen, wordt het ontwerp van deze systemen
steeds complexer. In deze thesis ligt de focus op het cyber deel van deze systemen.

Doordat de complexiteit van de software-algoritmes toeneemt, nemen ook de eisen voor het
computerplatform toe. Embedded computers, welke vaak gebruikt worden voor het besturen
van cyber-fysische systemen, kunnen niet langer voldoen aan deze eisen. Om dit probleem
op te lossen, worden de algoritmes verdeeld over verschillende computer platformen, elk met
hun specifieke taak. Embedded computers worden gebruikt voor simpele, hoogfrequente, hard
real-time regel-algoritmes, terwijl geavanceerde computers gebruikt worden voor het uitvoe-
ren van de complexe, laagfrequente, supervisory regel-algoritmes.

Om te helpen in de ontwikkeling van deze complexe algoritmes, bestaan er verschillende tools.
Er is echter niet een tool die voldoet, om al deze algoritmes te ontwerpen, dit heeft tot gevolg dat
per project meerdere tools gebruikt worden. Via codegeneratie worden implementaties voor de
algoritmes geproduceerd. Deze kunnen vervolgens op de verschillende computerplatformen
worden uitgerold. Er bestaan verschillende tools die voor dit doel gebruikt kunnen worden.

Het probleem van deze tools is dat zij niet een manier bieden om de algoritmes van de ver-
schillende tools op de computerplatformen met elkaar te verbinden. Het gevolg hiervan is dat
ontwikkelaars een eigen oplossing ontwikkelen. Dit leidt echter niet altijd tot een optimale
distributie van de algoritmes.

In deze thesis is een Communicatie Component ontworpen die het mogelijk maakt om laag-
frequente algoritmes via een netwerk te verbinden met hoogfrequente algoritmes op andere
platformen. De Communicatie Component bestaat uit een Communicatie Server die het net-
werk verkeer regelt en een Communicatie Interface die door de algoritmes gebruikt kan worden
om met de Communicatie Component te verbinden. Een platform en use-case analyse zijn uit-
gevoerd om eisen voor het component op te stellen.

Voor de netwerk communicatie is Ethernet gebruikt. Om applicaties te kunnen verbinden met
de Communicatie Component is gebruik gemaakt van interproces communicatie.

De use-case uit de analyse is gebruikt als basis voor een demonstratie, om de werking van de
Communicatie Component te verifiëren. Bij het experiment is de Gumstix Overo Fire als com-
puter platform gebruikt. Dit platform is gekozen, omdat deze wordt ontwikkeld als het stan-
daard computer platform voor de experimenteer opstellingen in het RaM laboratorium. Uit de
resultaten blijkt dat de Communicatie Component geschikt is voor het verbinden van algorit-
men op verschillende platformen via een netwerk.

De Gumstix Overo Fire wordt nog niet door de 20-sim 4C tool ondersteund. Het is aanbevolen
om ondersteuning voor dit platform te ontwikkelen, aangezien deze too bijdraagt bij het uit-
rolproces. Andere frameworks, zoals OROCOS, bieden bouwstenen voor het ontwikkelen van
complexe regel algoritmen. Integratie van deze frameworks in de Communicatie Component is
ook aanbevolen, aangezien deze frameworks kunnen bijdragen in het ontwikkelproces.

Jan Jaap Kempenaar University of Twente
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1 Introduction

1.1 Context

These days cyber-physical systems play an important part in life, people make use of such sys-
tems in daily situations without even noticing them. Cyber-physical systems refer to systems
with a physical/mechanical part, controlled by a cyber platform. Mostly, this cyber platform
is an embedded computing platform. Due to the increasing demand in functionality, cyber-
physical systems become more complex. This results in complex mechanical designs and com-
plex software algorithms to control the system. One can think of image processing algorithms
for position feedback, rather than using only angle or velocity values as used in the past. The
focus in this thesis is on the cyber part of the cyber-physical systems.

As a result of the increased complexity of the controlling algorithms, the requirements for the
computational platform used to control the physical system increase. Complex algorithms re-
quire more resources. Embedded computers are not sufficient to provide these resources and
do not fulfil the requirements. To deal with this, algorithms are distributed among multiple
platforms, each designed for a specific purpose. Embedded computers take care of hard real-
time loop control. These are mostly simple algorithms that require few resources, but run at
a high loop frequency. More advanced computers are used to execute complex algorithms.
Mostly these algorithms run at low loop frequencies. For example, image processing is limited
to the speed at which camera images are provided, for normal cameras this is 30 Hz.

To aid in the development of these complex algorithms, different tools and design approaches
exist. Each of these tools has their specific area of expertise. Because there is no tool that fulfils
all requirements for development, several tools are used in the design process. A model-driven
design approach is considered a best practice in the development of these algorithms. Via
code-generation toolboxes, the models of these algorithms can be implemented and deployed
on the computer platforms. Various deployment tools exist for this purpose. They map the I/O
of the hardware components to the algorithms.

The problem with the current tooling is that they result in several applications that run on
different platforms. These applications however, do not have a way to exchange data between
them. This causes developers to divert from using the available tooling and create their own
solutions to deploy these various applications on different platforms. As a result, not always
the ideal deployment is chosen.

1.2 Goals and Approach

The problem with the tooling and platform distribution, also applies at the Robotics and
Mechatronics (RaM) laboratory. Experimental setups get more complex and incorporate more
complex software algorithms. To solve the problem of connecting the different computing plat-
forms, a Communication Component is designed in this thesis. The focus for the Communica-
tion Component is to support the computing platforms and the tools used in the RaM labora-
tory.

The goals of this research assignment are:

• Design and implement a Communication Component that allows different platforms to
communicate data via a network.

• Provide a means for algorithms running on the different platforms to exchange data via
the Communication Component.

Robotics and Mechatronics Jan Jaap Kempenaar



2 Communication Component for Multiplatform Distribution of Control Algorithms

• Demonstrate the working of the Communication Component by means of a demonstra-
tor.

To achieve these goals, first a platform analysis is conducted. To analysis is used to identify the
platforms and tools currently used in the laboratory. Also the way of working with the tools and
the platforms is analysed. Based on a generic use case, requirements are drafted. These require-
ments form a basis for the design and implementation of the Communication Component. The
use case is then used as a demonstrator in order to verify the working of the Communication
Component.

1.3 Outline

First, background on the model-driven driven design approach and way of working, a generic
embedded control software structure and the LUNA framework is provided in Chapter 2. In
Chapter 3, the analysis of the different setups is discussed. A use case analysis is presented
in Chapter 4. Chapter 5, elaborates on the design and implementation of the Communication
Component. The Communication Component design is evaluated in Chapter 6. Last, Chapter
7 ends with conclusions and recommendations.

Jan Jaap Kempenaar University of Twente
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2 Background

2.1 Design Methodology

At the RaM group, embedded control software is developed using a model-driven design ap-
proach. The model-driven design approach is considered a best practice way of working and is
detailed in Bezemer (2013). It is shown in Figure 2.1. The thesis focuses on track (b) and (c) in
the approach.

Plant dynamics

Time Triggered &
Discrete Event software

Simulation time
Real-time

Plant dynamics
Control laws

(Loop control, CT)

(G)UI, Supervisory,

Sequence, Safety 

Real plant

Testing software

implementation
Plant model

(RT sim)

Final software

Software design Controller design Mechanics designElectronics design

I/O

I/O

stub

Plant and
I/O dynamics

Control software

architecture

a) b) c) d) e)

1

3a

2

3b

4

Cyber-Physical System

Figure 2.1: Model driven design approach.

The approach consists of four steps:

1. Software design. The structure of the software is designed in this step.

2. Algorithm design. Both control algorithms and complex algorithms, like image process-
ing, are designed in this step. Dividing algorithms in resource-intensive algorithms and
(hard) real-time algorithms is also part of this step.

3. Verification and implementation:

(a) Via simulation of models, the design can be verified. Inconsistencies and other is-
sues can be identified, without using an actual physical system.

(b) Software is deployed on the different computing platforms and tested with simula-
tion models of the physical system. This way, it can be verified that the software still
fulfils the requirements.

4. Realisation. In this step, the code is coupled with hardware drivers and connected to the
actual physical system.

During each step in the design approach, verification is done by means of testing and simula-
tion. This way inconsistencies and faults can be detected and solved in an early stage. Models
are used in each step for the simulation. Using models rather than the actual physical system
also reduces the chance to damage the system in the design process. Models also serve a sec-
ond purpose. They provide a means for developers of different disciplines to elaborate on the
the design.
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During development, it is important that hardware-specific implementations are kept out of
the models. This allows for better reusability of the models and also allows to go back a step in
the design process, should this be required.

2.2 Embedded Control Software Structure

For the development of Embedded Control Software a layered software pattern, inspired by
Bennett S. (1988), is used within the RaM group, see Figure 2.2 (Bezemer, 2013).
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Figure 2.2: Layered embedded control software architecture

• The Loop Control is responsible for the control of the hardware. The Loop Control im-
plementation is hard real-time, missing deadlines in this layer of the software can cause
catastrophic results. For example the system can cause damage to itself or its surround-
ings.

• The Sequence Control is responsible for controlling the Loop Controllers. The Loop Con-
trollers perform simple tasks and have no knowledge of other parts of the system. The
Sequence Controller does have this overview and provides the setpoints for the various
Loop Controllers. Based on the application, the Sequence Control is either hard or soft
real-time.

• The Supervisory Control & Interaction layer contains complex algorithms. For example
path planning algorithms are in this layer, calculating paths for the robotic device which
are then passed on to and executed by the Sequence Controllers. But also image pro-
cessing algorithms that are used for position feedback and planning belong to this layer.
Algorithms in this layer do not cause harm when deadlines are missed, therefore algo-
rithms in this layer are considered soft or non real-time.

• The User Interface is non or soft real-time. When the application is not able to present
new updates in the user interface in time, it does not cause catastrophic events. It is
however desirable to have some responsive behaviour in this layer of the software.

• The Measurement & Actuation is responsible for interfacing with the hardware. Software
drivers to control the hardware, or to read values from sensors of the system are part of
this software layer. Also signal filtering and scaling is part of this layer. Disturbances in
the input signal can have a negative effect on system stability. Scaling is used to convert
the input signals to values that can be understood by the control algorithms.

• The Safety Layer surrounds all the layers. It verifies that incoming sensor signals or outgo-
ing control signals are within the limits set for a particular system. It also checks whether
algorithms in the other control layers do not perform unintended behaviour. For exam-
ple a state machine that tries to continue to a state that is not allowed.

Jan Jaap Kempenaar University of Twente



CHAPTER 2. BACKGROUND 5

2.3 LUNA Framework

The LUNA Universal Networking Architecture (LUNA) framework is developed within the RaM
group (Wilterdink, 2011). It is designed as a CSP-capable hard real-time framework that can be
used in code generation for graphical CSP models. The architecture of the LUNA framework is
shown in Figure 2.3.

The design of the framework is component based. Depending on the capabilities of the deploy-
ment platform and the requirements of the application, different components can be enabled
or disabled. The CSP capabilities of the framework are decoupled from the other components
of the framework and added as a single component. Therefore, CSP can be disabled. This al-
lows the framework to be used in non-CSP based applications as well.

others
(timers, timing,

sockets, ...)
Threading

Mutexes,
Semaphores

CSP

OS abstraction

Utilities
(debuging, data
containers, ...)

State Machine

Core
Components

Execution Engine
Components others

Networking
(TCP/IP, ...)

User
Threading

High-level
Components others

Hardware
Interfacing

Device
Drivers

Architecture
abstraction

1

2

3

Figure 2.3: LUNA framework architecture overview.

A requirement in the development of the framework is platform independency. To achieve this
an abstraction layer is incorporated into the design of the framework. This abstraction layer
has been split into an Operating System (OS) and Architecture abstraction layer (see Figure 2.3).
Applications can utilise this feature to improve portability between different platforms.
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3 Platform Analysis

3.1 Introduction

Using a model-driven design approach is considered a best practice way of working in design-
ing embedded control software for a mechatronic system (Bezemer, 2013). Keeping models
abstract by not including implementation specific code and using replacement tokens, model
quality is improved and more suitable for reuse. Broenink et al. (2010) illustrate this with the
example in which 20-sim models are used for controller design, and gCSP models for software
design.

In order to keep focus only on controller design, Controllab Products offers a tool-chain in
which focus is on controller design and not on software design. The tool-chain consists of
20-sim for design and implementation, 20-sim 4C is used in deployment (Controllab, 2013).
20-sim (4C) is not the only model-based toolchain available, Simulink/Matlab is also a model
based design and analysis tool which is used in control engineering (Mathworks, 2013). For
deployment either a Personal Computer (PC) with the Windows OS can be used or a dedicated
target running xPC real-time kernel (Mathworks, 2013). The only objection against Simulink/-
Matlab is that it is restricted to vendor-specific tools and targets and do not have a strict sep-
aration between the development steps (Broenink et al., 2010). Table 3.1 gives an overview of
these two tool-chains and the way of working with these tool-chains.

Design Implementation Deployment Monitoring and
Control

20-sim 20-sim 20-sim 4C 20-sim 4C
Simulink Simulink Simulink (WRT1)/

Simulink (xPC2)
Simulink

Table 3.1: Tool-chain overview and their way of working.

In the setup analysis, the current way of working with the setups and the available tools is con-
sidered and compared to the described “ideal” way of working in Table 3.1. The setups chosen
for the analysis are used in currently active research projects. They also represent the different
fields of research in which the RaM group is active. The setups included are:

• Variable Stiffness Actuator (VSA) UTII

• Bipedal Walker

• Parallel bars setup

• Microrobotic setup

• Flexible needle setup

A more detailed explanation of the setups is given in Appendix A. The analysis is based on
conversations with the developers of and researchers working with the setups and consulting
the manuals in theses (Ketelaar, 2012; Geus, 2012).

1Windows Real-Time Target
2xPC real-time target

Robotics and Mechatronics Jan Jaap Kempenaar



8 Communication Component for Multiplatform Distribution of Control Algorithms

3.2 Setup Analysis

3.2.1 Way of Working

In the way of working with the various setups, different tools are used in the design, implemen-
tation and deployment steps. An overview of the way of working with the setups and how tools
are used in this way of working is given in Table 3.2, a more detailed analysis can be found in
Appendix A. There are several reasons why a certain tool or tool-chain is chosen for usage with
a setup. These reasons mostly include the familiarity of the developer with the tool, cost of the
tool/tool-chain or the speed at which it produces a proof of principle.

Setup Design Implementation Deployment
Monitoring/

Logging

Bipedal Walker 20-sim Simulink Simulink (WRT3) Simulink
VSA UTII 20-sim Simulink Simulink (WRT) Simulink
Parallel bars 20-sim 20-sim 20-sim 4C 20-sim 4C
Microrobotic setup Simulink Simulink Simulink (xPC4) Simulink
Flexible needle setup 20-sim/

Simulink
Custom

framework
Custom

framework
via Custom
framework

Table 3.2: Way of working for the experimental setups.

The Parallel bars setup and the Microrobotic setup both use a tool-chain provided by one ven-
dor. These are respectively the 20-sim/20-sim 4C tool-chain and the Matlab/Simulink with xPC
target tool-chain. For these setups, additional effort was put in setting up the setup with the
tool-chain. According to the developers, this initially took more time to create the setup, but
in the long term made it easier to quickly conduct experiments on the setup as the tool-chains
decrease the time to implement new designs. Also no effort has to be put in manual conversion
of models from one tool to the next tool.

The Bipedal Walker and the VSA UTII setups use multiple tools in their way of working. 20-
sim is used for the initial design and simulation of the controller, Simulink is then used for
deployment using the Windows Real-Time target. This is less convenient as two different tools
are used within the design and deployment process, it requires the developer to be proficient
in multiple tools. In addition, between design and deployment, a conversion step has to take
place in order to conduct an experiment. The conversion is mostly done manually, because
no conversion tools exist yet. The conversion process is therefore prone to errors. From an
economical point of view this is also less ideal as licences for multiple software tools need to be
acquired for all tools.

The Flexible needle setup, only uses design tools for the controller design. A custom framework
is developed for the deployment. The framework allows for reusable code in the deployment
application and minimises deployment time. It also controls functions for standard procedures
like the homing procedure. However including new controller designs is a manual process that
is prone to errors.

3.2.2 Hardware Components

In the setups both embedded computers and PCs are used for different purposes. Another
common hardware component in the setups is the Solo Whistle motor controller from ELMO
Motion Control (Elmo Motion Control, 2013). When the setups are compared to the generic
embedded control software structure from Bezemer (2013), detailed in Section 2.2, two differ-

3Windows Real-Time Target
4xPC real-time target
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ent mappings can be identified in the setups using tools for deployment, these are shown in
Figure 3.1.
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(a) Deployment architecture with embedded controller (µC) as hardware inter-
face.
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(b) Deployment architecture with embedded computer as deployment target.

Figure 3.1: Software to hardware deployment architectures identified in the research setups.

Both mappings in Figure 3.1 use the Solo Whistle to execute the hard real-time loop control.
When looking at higher-order control algorithms, such as the sequence and supervisory con-
trol, there are differences. Different platforms are used for the execution of these control loops.

Using Simulink Windows Real-Time Target as the deployment tool, results in the mapping
shown in Figure 3.1a. The Simulink models are run on a PC with a Windows OS. The OS on
the PC is not designed for performing real-time tasks, executing the sequence control and su-
pervisory control on this platform is therefore not recommended as it is not guaranteed that
deadlines are met, for example other applications can cause timing issues if they take too much
CPU time. If the PC is fast enough, it will work. The microcontroller, depicted with µC, is used
as an interface between the PC and the hardware. This is due to the limited I/O on the PC.

The Simulink xPC target deployment tool and the 20-sim 4C deployment tool use a dedicated
target to deploy their control algorithms, this is shown in Figure 3.1b. The sequence and su-
pervisory control loops run on a dedicated real-time platform. The PC with the monitoring
and control is separate from this real-time platform. The real-time platform makes sure that
adequate resources are available for the control loops in order to meet their deadlines.

The approach with the dedicated real-time platform can be considered the better of the two
mappings. It has a clear separation between the real-time and non real-time tasks and also
separates these per platform. Additionally the real-time control loops are executed on a dedi-
cated real-time platform while with Simulink Windows Real-Time Target, the real-time control
loops are run on a non real-time platform.
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10 Communication Component for Multiplatform Distribution of Control Algorithms

3.2.3 Observations

In the two medical setups, the Flexible Needle Setup and the Microbotic Setup, the algorithms
are not limited anymore to dynamic equations. Feedback is not only provided by sensors but
also by image processing algorithms. Because image processing is part of the control loop,
this creates new requirements for the development and deployment tools. Not all tools sup-
port toolboxes with these algorithms yet. Also for the Flexible Needle Setup, a pathplanner
algorithm is provided by a third party. Due to the platform requirements of this algorithm, de-
ployment of this pathplanner is limited. These new requirements lead to certain choices when
creating an experimental setup and can therefore also cause the choice of not using a tool for
deployment.

3.3 Conclusion

Several tools and tool-chains are available to aid in the design and deployment of controllers
for embedded systems. However the tools do not always provide the required functionality for
a specific setup. 20-sim for example does not include image processing toolboxes which are
required by the medical setups. This leads to the usage of multiple tools, or to not use tools at
all.

Not using tools in the design workflow is not recommended. Therefore, a way needs to be
provided such that these tools still can be used.
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4 Communication Component Analysis

4.1 Use Case

An observation from the analysis of previous chapter is that more than just dynamic equations
is part of the control loops, also algorithms like image processing are part of the control loops.
However these algorithms limit the use of the current tools as they do not have the toolboxes to
support these algorithms. In order to still add the algorithms within the control loops but not
limit the use of the tools, there should be an easy way to integrate these with the tools. Such
functionality can be provided by a Communication Component. A generic overview of this is
shown in Figure 4.1.

Control Algorithm
Platform

(Hard) Real-Time
Control Application

Resource Intensive
Algorithm Platform

(non/soft) Real-Time
Application

Setup

Communication
Component

Communication
ComponentNetwork

Figure 4.1: Abstract overview of a Communication Component within an experimental setup on multi-
ple platforms.

The setup of Figure 4.1 consists of three parts:

• The mechanical Setup.

• The Resource-Intensive Algorithm Platform.
On this platform resource-intensive algorithms, like image processing are executed.
These algorithms generally run at a much lower frequency than the control loops on the
Control Algorithm Platform. Also missing a deadline in these algorithms is not as strict
as on the Control Algorithm Platform, the algorithms are soft or non real-time.

• The Control Algorithm Platform.
The real-time control loops are executed on this platform. Mostly this platform is an
embedded device with less resources available as the Resource-Intensive Algorithm Plat-
form. Algorithms on this platform can for example be the controller models designed in
the 20-sim tool.

The two computing platforms are different platforms due to their hardware requirements.
Therefore in order to connect the platforms network communication is required. Depending
on the type of data that is exchanged between the devices, it may be required that the network
is real-time.

The Communication Component acts as the communication platform between the algorithms
on the two platforms. This allows the control application on the Control Algorithm Platform to
receive setpoints from algorithms on the Resource Intensive Algorithm Platform. The applica-
tions run on different platforms with different hardware and OSs, the Communication Compo-
nent must be compatible with these different platforms.
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12 Communication Component for Multiplatform Distribution of Control Algorithms

If the Control Algorithm Platform should have adequate resources to execute both the control
algorithms and the resource intensive algorithms, than the Communication Component can
connect them on the same device, this is shown in Figure 4.2. Here the setup only consists of
two parts: The mechanical Setup and the Control Algorithm Platform. Instead of a dedicated
platform for both, a single platform is present. The Communication Component still acts as a
data exchange component in order to combine the two algorithm applications.

Control Algorithm
Platform

(Hard) Real-Time
Control Application

(non/soft) Real-Time
Application

Setup

Communication
Component

Figure 4.2: Abstract overview of a Communication Component on a single platform.

Because in research the focus is on the development of the algorithms and not on the integra-
tion of the algorithms, the Communication Component should be easy to integrate.

4.2 Requirements

The use case of previous section illustrates how a Communication Component could be in-
cluded in a setup and shows some requirements for this component.

Two parts are considered for the Communication Component, these are shown in Figure 4.3:

• Communication Interface
This is the interface between the algorithm application and the Communication Compo-
nent. It defines how the application communicates with the component.

• Communication Server
The server regulates the data and ensures that data is send to the correct applications
that are connected to the component.

Communication
Component

(Hard) Real-Time
Control Application

Communication
Server

Communication
Interface

Figure 4.3: Overview of the two parts in the Communication Component.
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4.2.1 Functional Requirements

General Requirement

Requirement 1: The Communication Component must be platform independent.

The Communication Component is used on multiple platforms, this means that it should work
on those different platforms. In order to achieve this, the Communication Component should
be design to be platform independent.

Communication Interface Requirements

Requirement 2: The interface must support integration with the 20-sim 4C deployment tool.

The 20-sim 4C deployment tool allows the user to connect the various I/O ports of the model,
to the hardware outputs of the device. Connection the I/O ports of the model to the Communi-
cation component via a communication interface should follow a similar procedure. The user
is already familiar with this procedure and does not need to learn this. Additionally tooling
does not need to be modified if the interface can be included, similar as hardware I/O ports.

Requirement 3: The interface must support integration with custom code.

Some of the algorithms are provided or generated as plain source code. There should be an
Application Pogramming Interface (API) available that allows the application to connect with
the Communication Component.

Requirement 4: The interface should include a safety layer.

Whenever a connection is lost, or packets do not arrive at their destination, the communication
interface should still be able to provide data when the application requests it.

Requirement 5: The interface could support integration with the Simulink tool.

Simulink and Matlab provide additional toolboxes, such as image processing, which are not
part of 20-sim. Adding functionality from these tools could therefore be useful. Including these
tools can have a similar approach is the integration described for 20-sim in Requirement 2.

Communication Server Requirements

Requirement 6: The communication server must support multiple loop frequencies and real-
time layers.

In the use case of Section 4.1 multiple platforms perform their algorithms at different frequen-
cies and in different real-time layers, described in Section 2.2 (Bezemer, 2013). The communi-
cation server must be able to cope with these different loop frequencies and real-time layers.

Requirement 7: The communication server must be real-time capable.

The main control loops are mostly hard/soft real-time. In order to integrate components into
these loops, the communication also needs to be real-time capable.

Requirement 8: The communication server must support network communication.

The platforms in the use case of 4.1 are connected via a network. Therefore the communication
server should support network communication in order to achieve this.

Requirement 9: The communication server could support asynchronous communication.

Some events do not happen at a fixed interval, for example an emergency stop button only fires
once. The interface could support asynchronous communication to support such events.

Requirement 10: The communication server could support on target communication.
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14 Communication Component for Multiplatform Distribution of Control Algorithms

Sometimes the control platform has adequate resources to execute both resource intensive al-
gorithms and control algorithms. This would require that those algorithms can communicate
on the same platform. The communication server could also facilitate in communication be-
tween these algorithms or applications by providing communication on the same device.

4.2.2 Non-functional Requirements

General Requirements

Requirement 11: The communication component should be lightweight.

The processing time of the communication component should be as low as possible, such that
impact on the application is kept to a minimum.

Requirement 12: The communication component should be easy to deploy.

Integrating the communication interface, or setting up the communication server should not
take a lot of effort.
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5 Design and Implementation

Based on the requirements from the previous chapter, an implementation of the Communica-
tion Component is made. The Communication Component consists of three parts:

• Inter Process Communication (IPC).

• A Communication Server.

• Network Communication.

An overview of these parts is given in Figure 5.1.

Inter Process
Communication

Communication
Server

Control Algorithm
Platform

(Hard) Real-Time
Control Application

Inter Process
Communication

Communication
Server

Resource Intensive
Algorithm Platform 

(non/soft) Real-Time
Application

(Real-Time)
Ethernet

Setup

Figure 5.1: Abstract system overview, for the Communication Component.

Communication needs to be provided between the application processes and the Communi-
cation Server process, indicated by the dashed line in Figure 5.1. IPC provides in this commu-
nication. Network communication is used to connect the different platforms.

In order to regulate the transfer of the data between applications and devices a management
application is required. The communication server serves this purpose. It checks if data is
available and transfers it to the correct destination.

5.1 Network Communication

Requirement 8 states that the Communication Server must be capable of network communi-
cation. There are several options to create a network and connect devices to them. Ethernet is
chosen for implementation in the Communication Server. Ethernet is available on PCs and also
embedded computers often have Ethernet hardware. Therefore setting up an Ethernet network
does not require a lot of effort.

A downside of Ethernet is that it is not a real-time network protocol. To prevent multiple
senders writing data on the same line, a mechanism for collision detection is implemented.
This mechanism is called Carrier Sense Multiple Access with Collision Detection (CSMA/CD).
When a collision is detected, a random time-out value is chosen, after which the sender tries
again. This leads to indeterministic delays. Specially when network load is high, there is a large
chance that a collision between two sending nodes can occur.
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5.1.1 Real-Time Ethernet

Several protocols for usage on Ethernet exist. In industry there are several protocols used for
real-time network communication, an overview of these protocols is given in Table 5.1. A more
detailed explanation of the real-time Ethernet protocols is given in Appendix C.
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Ethernet POWERLINK +− ++ −− ++ −− + +−
RTnet ++ ++ −− ++ −− ++ +−
EtherCAT − −− −− ++ −− +− +
Real-Time Publisher Subscriber (RTPS)
protocol

++ ++ ++ − +− − −

UDP/IP ++ ++ ++ − +− − +
TCP/IP ++ ++ ++ −− +− − −−
Ethernet (Raw) ++ ++ ++ − +− − ++

Table 5.1: Comparison of Ethernet protocols. + is considered better.

In order to implement the protocols, documentation should be available. This is depicted in Ta-
ble 5.1 with Open Protocol. Some real-time protocols require subscription to the organisationto
obtain the documentation, like EtherCAT and POWERLINK. This limits the availability. POW-
ERLINK however, has more material available for non-members so it is scored higher. RTPS
and RTnet are both open protocols and documentation can be found online. UDP, TCP and
Ethernet are also available via the Internet for developers, also most OSs have implemented
these protocols so they are easy to use in applications.

The real-time protocols, POWERLINK, RTnet and EtherCAT, each require special drivers in or-
der to make the Ethernet stack of the operating system deterministic. In addition EtherCAT
also requires special hardware as processing of Ethernet frames is done on the hardware. This
gives additional requirements for both drivers and hardware, making it less easy to set up and
harder to port to multiple platforms. The upside of this is that these networks are real-time.

Real-time protocols require that all nodes that are connected on the same network, implement
the same protocol. If a node is connected that does not implement the protocol, the deter-
ministic behaviour is not guaranteed. Therefore the real-time protocols required a dedicated
network. The other protocols do allow to add multiple additional nodes, however more nodes
means that there is more traffic. The chance of collisions is higher when more nodes are con-
nected in the network, therefore the amount of nodes should be limited.

For the Communication Server, raw Ethernet is chosen for the implementation. There is no
additional overhead of protocols mapped onto the Ethernet protocol, like UDP or TCP. TCP
adds additional overhead because all data packets need an acknowledgement from the re-
ceiver. Most OSs offer a means to send raw Ethernet data packets on the network. Therefore it
is also easy to deploy on multiple platforms.
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In LUNA, the Socket component was restructured due to the implementation of the Commu-
nication Server. It now provides a generic ISocket interface for sending and receiving data via
the network. UDP/IP, TCP/IP and raw Ethernet are the available protocols in LUNA.

In order to deal with the collision problem of the Ethernet protocol, a direct connection is used.
Ethernet offers duplex communication, so on a direct connection no collision can occur due to
multiple senders.

5.1.2 Datapacket Protocol

In order to identify the data send via the Ethernet network, data packets need to be encoded in
a format which is understandable for sending and receiving applications. For this purpose the
Abstract Syntax Notation One (ASN.1) notation (Telecommunication Standardization Sector of
ITU, 2002a) and encoding (Telecommunication Standardization Sector of ITU, 2002b) is used
to define packet structures. The standard provides a plain text format to describe the data
structure with clear encoding rules.

There are interpreters available that can convert a document with data structures described in
ASN.1 format to C-code for encoding and decoding data structures. The ASN.1 compiler by Lev
Walkin (Lev Walkin, 2013) is an example of such a tool that is freely available and open source.
There are also closed source solutions available. These compilers have not been used because
they use dynamic memory allocation in order to encode or decode the data structures. Instead
encoding and decoding functions were developed, which do not use dynamic allocation so that
the behaviour is more deterministic.

5.2 Inter Process Communication

There are several ways to implement IPC into applications. The LUNA framework provides
IPC by means of rendezvous channels or Shared Memory Objects. The channels implement a
subset of the Message Queue API, while the Shared Memory Objects simply provide an interface
to communicate via a shared block of memory provided by the OS. Both Message Queues and
Shared Memory Objects can also be used standalone in order to implement IPC. An overview of
these three IPC methods is given in Table 5.2.
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Messaging Queues + − ++ +−
LUNA IPCRendezvousChannel − − ++ ++
Shared Memory Objects ++ ++ +− +−

Table 5.2: Requirements overview for IPC

5.2.1 Message Queues

Message Queues are buffers that hold messages. OSs offer these as a means to communicate
between processes on the same system. A standard API is provided by the POSIX standard
(The Open Group, 2013). OSs implementing this standard all use the same function interface
in order to send and receive data from the queues. This allows for easy porting of applications
as code does not need to be changed and the application only has to be recompiled for the
particular platform.
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In order to send data to other applications a Message Queue is registered with the operating
system, a process can then write information (messages) to the queue. The OS takes care of the
management of the queue.

There are two approaches to read information from the queue. The first approach is a call to a
read function that blocks until data is read from the queue or an error occurs. This approach
blocks thread until data is received, therefore care should be taken using this approach. The
other approach is based on interrupts. When the queue receives data, it sends an interrupt.
Applications can register to this interrupt and provide a callback function. This approach does
not block execution of the application but can preempt important tasks. Because preemption
can take place in important tasks, care should also be taken with this approach.

5.2.2 LUNA IPCRendezvousChannel

LUNA provides an IPC implementation by means of channels. For the implementation of these
channels, LUNA uses the Message Queues provided by the OS of the POSIX standard. This
means that the channels have the same limitations as the queues. For obtaining data from
a channel a read function is used, which blocks until data has been received. When program-
ming applications, this should be taken into account.

The advantage of using LUNA IPCRendezvousChannels over Message Queues, is that LUNA pro-
vides an abstraction layer to interact with the channels (Section 2.3). The abstraction layer in-
creases portability of the application because the application only needs to be recompiled with
a LUNA library for the specific platform.

5.2.3 Shared Memory Object

Shared Memory Objects are another means of providing communication between processes on
the same OS. In this case two or more processes each share the same memory object in the
OS. A POSIX API is defined to create Shared Memory Objects. In order to read or write data,
processes can simply read or write to and from the Shared Memory Object as if it is part of
their own application memory. However there is no read/write regulation at all, so multiple
processes can access the same part of the memory at the same time, resulting in undefined
behaviour.

In order to deal with this, mechanisms need to be implemented which regulate the usage of
the Shared Memory Object. For example semaphores/mutexes can be used to only allow one
process to access the memory object at the same time. This gives the developer a lot of freedom
in the use of the Shared Memory Object, but can cause significant issues and overhead when
done wrong.

The LUNA framework only provides an OS abstraction layer to create a Shared Memory Object
and to read and write data in the Shared Memory Object. It does not include mechanisms, like
mutexes, to protect that data from multiple readers or writers.

5.2.4 Shared Memory Object with Lock-Free Queue Implementation

A Shared Memory Object is used for the IPC with the Communication Component. The Shared
Memory Object allows for a lock-free data read and write implementation. This way, processes
and applications do not block when reading and writing data to other processes and applica-
tions.

In order to regulate the memory access, a lock-free queue algorithm (Michael and Scott, 1996)
is implemented in the Shared Memory Object. A lock-free queue implementation already exists
in the current version of the LUNA framework (Wilterdink, 2011), this implementation is used
as the basis for the lock-free queue in the Shared Memory Object.
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The current implementation of the lock-free queue however, does not suffice for implemen-
tation with a Shared Memory Object. It uses pointers to manage the location of the nodes in
memory. This is a problem because the base address of the Shared Memory Object is different
per application. The result of this is that a pointer’s address-value points to completely different
memory per application.

Another problem with the current implementation of the lock-free queue, is that the value for
each node is not stored within a queue node. Instead a pointer is set to the address where the
value is stored. The consequence of this is that the value can be stored in a memory location
that is outside the Shared Memory Object.

To solve these problems, the lock-free queue was extended with memory management based
on array indices and Queue Nodes that store the value within the Shared Memory Object. The
structure of the Shared Lock-Free Queue is shown in Figure 5.2.

Head Empty_Queue

Head Queue

Tail Empty_Queue

Tail Queue

Dummy Empty_Queue

Dummy Queue

Queue Node

Queue Node

Queue Node

...
Shared Memory Object

Application (A)

SharedLockFreeQueue

Application (B)

SharedLockFreeQueue
Queue Management

Queue Nodes

Figure 5.2: Memory structure of the Shared Lock-Free Queue.

The queue is only used to transfer basic datatypes, such as integers and floating points, to other
applications. The queue is also limited to one datatype per queue. This means that the size of
each node is fixed. The nodes can be mapped into the Shared Memory Object as an array of
Queue Nodes. Array indices are used for the location management of the Queue Nodes, instead
of pointers.

The Head and Tail management objects are also moved to the Shared Memory Object, so each
application can access these. When an application connects to a Shared Memory Object with
lock-free queue, pointers are set to the correct base address of the Queue Management and
Queue Nodes.

The implementation of the Shared Lock-Free Queue is added to the LUNA framework in the
Utility component as the SharedLockFreeQueue class.

5.3 Communication Server

5.3.1 Software Structure and Implementation

The software for the Communication Component is divided into three packages, as shown in
figure Figure 5.3:
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• Communication Package
Classes and functions for network communication

• API Package
Classes and functions for communication with the server via IPC from other software.

• CommunicationServer Package
Classes and functions to regulate and process data from the applications and the net-
work.

Figure 5.3: Package structure overview of the Communication Component software.

Requirement 1 states that the software of the Communication Component must be platform
independent. To achieve this the LUNA framework is used (Section 2.3). The dependency on
the LUNA framework is also shown in Figure 5.3.

In the source code, the Communication Component is referred to as the Communication Inter-
face due to naming convention at the time of writing the code.

Communication Package

In the Communication Package two interfaces are defined for the network communication. For
supervision of the network protocol a generic implementation is part of the Communication
Package in to form of the RaMSupervisor.

• NetworkSender Interface
Defines a generic interface to send data to a specified target.

• NetworkReceiver Interface
Defines a generic interface to receive data.

• RaMSupervisor
Generic implementation for regulation of data that is received or send in the RaM data
protocol format, described in Section 5.1.2.

An Ethernet implementation is made for the sender and receiver interface in the Communica-
tion Package. The generic supervisor implementation is extended with an Ethernet implemen-
tation. Encoding and decoding functions for the data packet protocol, defined in Section 5.1.2,
are grouped together in the RaMProtocol class. Implementing a different network communi-
cation protocol, only the Ethernet classes need to be replaced with the implementation of the

Jan Jaap Kempenaar University of Twente



CHAPTER 5. DESIGN AND IMPLEMENTATION 21

new communication protocol. For example, the Ethernet classes could be replaced with an
implementation to support serial communication.

Figure 5.4: Class diagram of the Communication package.

CommunicationServer Package

The CommunicationServer Package contains two classes which regulate incoming and outgo-
ing data. The RaMCommunicationServer class functions as a main class to configure, start and
stop the sending and receiving classes. Both the RaMProtocolReceiver and RaMProtocolSender
are implementation of the LUNA Runnable interface. This allows both to be executed as a sep-
arate thread. An overview of these three classes is given in Figure 5.4.

Figure 5.5: Class diagram of the Communication Server package.

The RaMProtocolReceiver class waits for data packets from the network. When it receives a
data packet, it processes it and writes the values to the appropriate queues so the applications
attached to the Communication Component can read the data. The flowchart for this process
is show in Figure 5.6.

The RaMProtocolSender class creates a thread for sending data, which checks whether data
is available from the applications that are connected to the Communication Component. For
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Figure 5.6: Flowchart of the receiving thread.

each data signal, a separate Shared Memory Object with a queue is created. Creating a single
shared queue for each signal makes it easier for applications to connect to the Communication
Component as each Shared Memory Object has a unique name. If data is available in a queue,
it will send it to the appropriate destination, this is shown in the flowchart of Figure 5.7. The
destination for each signal is defined in the Communication Component’s configuration.

A polling scheme is used in order to check if new data is available in the queues of the con-
nected applications. This way different applications can be connected at different frequencies.
This implementation is chosen as it fulfils Requirement 6. Downside of the polling approach is
that an additional delay is introduced due to the polling frequency. The effect of this delay is
illustrated in Figure 5.8. The worst-case delay of the signal is given by the polling period time
of the Communication Component, plus the network delay and the polling period time of the
receiving application.

Using the polling approach allows for asynchronous data communication next to the syn-
chronous communication. This fulfils Requirement 9.

When the applications connected to the Communication Component need to exchange data
on the same platform, the shared memory queues are used for the communication between
those application. The Communication Component then facilitates in the setup of the queues
(Requirement 10).

API Package

The API Package provides a class for applications to connect to the Communication Component
and exchange data. The class is shown in Figure 5.9. The class constructor provides a way to
connect to the Communication Component. Read and write function are included for data
exchange. The class buffers the last received value from the Communication Component. If the
queue is empty during a read call, the buffered value is returned. The current implementation
of the class does not provide an indication that a buffered or new value is used.

The SharedLockFreeQueue class that is used for the data exchange, provides an indication that
the queue is empty or not. This is used to determine if a buffered value should be used. The cur-
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Figure 5.7: Flowchart of the sending thread.

rent class can be extended with a read function that also includes the indication of the Shared-
LockFreeQueue, to indicate if a buffered value is used or not.

5.3.2 Server Configuration

The destination information for data provided by applications on a platform and the informa-
tion regarding data that is received by the platform is stored in the Communication Component.
Per platform the Communication Component stores a list of data signals that are send from the
platform or received by the platform.

In order to provide this information to the Communication Component a configuration file for-
mat is defined. In the startup procedure of the Communication Component this configuration
file is processed and the information is stored in the Communication Component on the plat-
form.

XML is chosen as the encoding format for the configuration file. Using an XML Schema (The
World Wide Web Consortium (W3C), 2005), a strict document structure can be specified which
is easy to read by the application. For the processing of the XML configuration document, the
RapidXML library is chosen. This is a fast and simple standalone open source library for parsing
XML documents.
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Figure 5.8: Delay introduced due to polling implementation.

Figure 5.9: Class diagram of the API package.

5.4 Conclusion

Three parts are considered in the development of the Communication Component: The IPC,
the Communication Server and Network Communication.

Several approaches have been considered for the implementation of IPC. However the down-
side of most of them, is that they rely on blocking read functions or interrupts. Therefore, a
Shared Memory Object is chosen. In order to regulate access to the memory between processes
a lock-free queue algorithm is implemented. This allows for applications to access the queue
without blocking their own operation. In order to increase robustness, data from the Commu-
nication Component is buffered. The buffered data is provided if no new data is available when
an application requests data.

Interfaces are defined for the Communication Server such that implementing new network pro-
tocols is easier, if these are required. Ethernet is used in the initial implementation of the Com-
munication Server. LUNA is used for the implementation of platform-specific functionality,
this allows for easier deployment across different platforms. XML is used to encode configura-
tion information for the Communication Component. The RapidXML library is used for reading
the configuration.

Several real-time network protocols are available and used in industry. However setting up
these protocols requires specific hardware components or specific drivers. RAW Ethernet is
chosen as the network protocol in the initial implementation of the Communication Compo-
nent. Reason for this is that setups mostly consist out of one or two devices. Should more de-
vices be connected in the network then a real-time Ethernet implementation should be chosen
for the platforms connected to the network.
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6 Results

In the previous chapter the design of the Communication Component is discussed. In this
chapter the performance of the Communication Component is measured. Two experiments
are described: A Single-Signal experiment to measure the latency of the signal in the Com-
munication Component and a Setup-Simulation experiment, measuring latency performance
based on the use case presented in Section 4.1.

6.1 The Experimental Setup

6.1.1 Hardware Components

The experimental setup consists of two Gumstix Overo Fires Computer on Module (COM)
(Gumstix, 2013) with different baseboards. A schematic overview of the setup is given in Fig-
ure 6.1. The baseboards are the TOBI baseboard and the RaMstix baseboard. The TOBI base-
board is a commercial development board, the RaMstix baseboard is a board developed within
the RaM group for usage as an embedded computer platform with the experimental setups. It
features I/O similar to that of the TOBI baseboard, but is expanded with additional hardware
components and I/O. Both Overo Fire COMs run a Linux OS with the Xenomai (Xenomai, 2013)
real-time kernel, details are in Table 6.1. For the experiments, it is not relevant which baseboard
is used for the computing platform.

Switch

Client

Communication
Component

Gumstix Overo Fire

Oscilloscope

Server

Communication
Component

Gumstix Overo Fire

Figure 6.1: Schematic overview measurement setup.

Platform 1 Platform 2

Computer on Module Overo Fire Overo Fire
Baseboard TOBI RaMstix

Linux version 3.2.21 3.2.21
Xenomai version 2.6.2.1 2.6.2.1

Table 6.1: Measurement system specification.

In order to connect the two boards, a switch is used rather than a direct connection. Due to the
limited functionality of the Ethernet hardware on the baseboards, it is not possible to connect
the two devices via a regular or cross cable. To measure the latency a general purpose I/O pin
is used and connected to a digital oscilloscope. The I/O pin is toggled at the Client-device. The
value of the I/O pin is then send from the Client to the Server application via the Communica-
tion Component. The Server sets the value of the I/O pin to the received value.
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6.1.2 Software

Flowcharts of the Client and Server application are shown in Figure 6.2. The Communication
Component is used to communicate between the Client and Server application.

Initialise Application

Start

Set I/O
to "0"

Write value to
Communication

Component

Wait
(Client freq.)cnt++

cnt > MAX
?

cnt = 0
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(a) Client software flowchart

Initialise Application

Start

Set I/O
to "1"

Read from
Communication

Component

Set I/O
to "0"

Value = 1
?

Wait
(Polling freq.)

yes

no

(b) Server software flowchart

Figure 6.2: Flow charts of the main measuring software.

The Client application toggles its I/O value and writes that value to the Communication Com-
ponent. The frequency at which the value is written to the Communication Component is de-
fined by the Client Frequency. To ease the readout on the digital oscilloscope, a delay mecha-
nism is included in the application. Each period, a counter is increased, when the value of the
counter is equal to one, the I/O pin is set to a “1”, otherwise the output is “0”. This is illustrated
in Figure 6.3. This way, the delay of a previous signal does not interfere with the measurement.
The value of the counter is send via the Communication Component to the Server application.

The Server application uses a polling scheme to read values from the Communication Compo-
nent. When the received counter value is equal to one, the output of the I/O is set to “1”.

1 2 3 ... MAX 1 2 3 ... MAX00

Counter

Figure 6.3: I/O signal delay graph.
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6.1.3 Obtaining the Results

A digital oscilloscope is used to obtain the minimum and maximum latency. The persistency
setting of the display of the scope is set to infinite, this allows to measure the jitter in the delay.
The scope is set to trigger on the rising edge of the Client I/O signal, this way the delay of the
Server signal can be read from the scope. The experiments are run for at least 10 seconds in
order to get a good measurement of the minimum and maximum latencies. A result of a latency
measurement is shown in Figure B.3.

6.2 Experiments and Expectations

6.2.1 Single-Signal Experiment

The Single-Signal experiment measures the latency when only one signal is send from the
Client to the Server. This indicates the latency when processing is minimal.

As illustrated by Figure 5.8 in the previous chapter, using a polling scheme in the Communica-
tion Component adds a delay in the signal. The Server application also uses a polling scheme
to obtain the data.

In the experiment, the expected worst-case latency is a combination of the polling frequen-
cies of the Communication Component and the Server application, plus the network latency.
In order to know the network latency an experiment is performed to measure this. The results
are in Appendix B. The delay from the initial measurement of Appendix B is considered. This
worst-case delay in the measurement is equal to 630µs. The polling frequencies of the Commu-
nication Component and the Server application is 1000 Hz, the period time of both applications
is 1000 µs. Adding this up leads to a worst-case latency of 2630 µs.

6.2.2 Setup-Simulation Experiment

In this experiment, a Resource Intensive Algorithm Platform and a Control Algorithm Platform
are considered. In some situations it might be beneficial to obtain data from the real-time
platform. For example, when mapping an environment with cameras, the position of the device
may be required by the algorithm. This information needs to be send to the Resource Intensive
Algorithm Platform. The results of the mapping algorithms then need to be send back to the
Control Algorithm Platform. An overview of this is given in Figure 6.4.

Control Algorithm
Platform

Measurement
Application (B)

Resource Intensive
Algorithm Platform

Measurement
Application (A)

Setup

Communication
Component

36

36
9

9

Figure 6.4: Schematic overview of Setup-Simulation experiment.

A mobile robot with four wheels and a manipulator has been considered for the upper bound
of the number of signals send between the Resource-Intensive Algorithm Platform and the Con-
trol Algorithm Platform. 36 signals are send from the Control Algorithm Platform, containing
double float values. The Resource-Intensive Algorithm Platform sends 9 double float signals.
Double float signals are chosen as these are 8-byte primitive values and result in larger data
packets than using 4-byte data types.
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Due to the increased amount of signals compared to the Single-Signal experiment, more pro-
cessing is required by the Communication Component. Due to the use of embedded platforms
in the test with limited resources, it is expected that the performance will get worse when trans-
ferring more signals.

6.3 Results

The measurements are performed with a digital oscilloscope with a dynamic sample frequency
based on the display settings. The worst-case fault introduced by the scope in the measure-
ments is 0.6%%. For the readout on the scope, the cursors of the scope are used. The worst-case
fault introduced by the readout of the cursors is 1%.

In the Setup-Simulation test, one measurement is performed with a larger fault. In this mea-
surement a fault of 4% is introduced. The measurement is indicated in the table (Table 6.4).

6.3.1 Single-Signal Experiment Results

The results of the Single-Signal experiment are shown in Table 6.2. The minimum and maxi-
mum latency are indicated, the last column contains the relative delay compared to the period
time of the sending frequency. The relative latency is calculated according to Equation 6.1.

Rel ati ve l atenc y = M ax. l atenc y

C l i ent f r eq. Per i od
×100% (6.1)

Client freq.
(µs) (Hz) Min. latency (µs) Max. latency (µs) Relative latency (%)

10,000 100 900 2000 20
5000 200 980 2100 42
3333 300 280 2140 64
2500 400 580 1800 72
2000 500 840 2120 106
1666 600 620 1880 113
1250 800 840 2020 162
1000 1000 400 1450 145

Table 6.2: Single-Signal measurement results. For the Client frequency, both the period time and the
frequency are given.

6.3.2 Setup-Simulation Experiment Results

The Setup-Simulation experiment was performed twice. In the first experiment the latency
from Measurement Application (A) to (B) is measured, this is shown in Table 6.3. In the second
experiment the latency from Measurement Application (B) to (A) is measured, these results are
shown in Table 6.4. In the measurements the data transfer frequency between the applications
is altered.

6.4 Analysis and Conclusions

6.4.1 Single-Signal Experiment

The expected result for the Single-Signal experiment is that the worst-case latency would be
at most 2630 µs. In the results of the experiment, the maximum latency that is measured is
2140 µs. This is within the range of the expected worst-case latency.

The Communication Component is designed for low frequency algorithms. The Communica-
tion Component performs well in the low frequency data transfer, as can be seen in the Relative

Jan Jaap Kempenaar University of Twente



CHAPTER 6. RESULTS 29

Transfer freq.
(µs) (Hz) Min. latency (µs) Max. latency (µs) Relative latency (%)

10,000 100 600 2000 20
5000 200 900 3180 64
3333 300 960 2190 66
2500 400 1120 2600 104
2000 500 1260 2660 133
1666 600 900 2400 144
1250 800 920 3360 269

Table 6.3: Setup-Simulation results. Latency from Measurement Application (A) to (B). For the Transfer
frequency, both the period time and the frequency are given.

Transfer freq.
(µs) (Hz) Min. latency (µs) Max. latency (µs) Relative latency (%)

10,000 100 1400 1700 17
5000 200 550 2900 58
3333 300 1100 2250 68
2500 400 1000 2900 116
2000 500 920 2100 105
1666 600 1100 2280 137
1250 800 950 5000 400

Table 6.4: Setup-Simulation results. Latency from Measurement Application (B) to (A). For the Transfer
frequency, both the period time and the frequency are given. The measurement of 800 Hz, was per-
formed with a 4% fault.

latency. The Communication Component is not designed to be used in high frequency control,
the Relative latency becomes worse at higher frequencies.

6.4.2 Setup-Simulation Experiment

The expectation for this experiment is that the additional processing required by the server
would increase the latency. However for low data transfer frequencies, this is not the case. The
Communication Component still performs well in the low frequency range. Also in the higher
data transfer frequencies, the Communication Component still performs well, however it is not
designed to be used with these frequencies, which is also indicated by the Relative latencies.

Should an application require more data to be send per period, an experiment measuring the
maximum bandwidth should be considered.
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7 Conclusions and Recommendations

7.1 Conclusions

The goals for this assignment are to design and implement a Communication Component to
connect different platforms via a network. Provide a method for applications on those plat-
forms to exchange data via the Communication Component. Finally, demonstrate the working
of the Communication Component by means of a demonstrator.

7.1.1 Requirement Evaluation

By means of a platform analysis and a use case analysis, requirements for the Communication
Component and requirements for an interface that enables applications to connect with the
Communication Component are drafted. The requirements for the Communication Compo-
nent are separated in two parts, the Communication Interface and the Communication Server.
For both the requirements are evaluated.

A general requirement for the Communication Component is that it must be platform indepen-
dent, as stated in Requirement 1. In order to achieve this, the Communication Component is
developed using the LUNA framework. The LUNA framework provides an OS abstraction layer.
Using the framework allows the Communication Component to be portable between platforms.

Communication Interface

• The Communication Interface provides an API in the form of a C++ class that allows to
connect and to read and write data to and from the server. (Requirement 3)

• The Gumstix Overo Fire platform will be the deployment platform for all future experi-
mental setups. However due to the fact that there is no Windows-based Compiler avail-
able for this platform, it is not yet possible to have it as a 20-sim 4C target. Therefore
integration with 20-sim could not yet be tested. (Requirement 2)

• Integration for Simulink is neglected due to restricted time. (Requirement 5)

Communication Server

All requirements for the Communication Server have been met:

• Using a polling scheme, algorithms running at different loop frequencies can be served
on the same platform. (Requirement 6)

• In order to make the application deterministic, all memory buffers are preallocated. For
the encoding of the data packets, fixed widths for encoding of data values is used so that
the encoding and decoding is deterministic. Also due to configuration, the amount of
signals send over the network is known and therefore a maximum processing time can
be determined. (Requirement 7)

• Using Ethernet, network communication is realised. (Requirement 8)

• The polling approach also allows for asynchronous data to be send by the server. (Re-
quirement 9)

• For on target communication, the Communication Component provides the same IPC
as it does between the Communication Server and the application. The Communication
Interface connects to the correct queue for the data exchange. (Requirement 10)
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Non-Functional Requirements

Tasks performed by the server have been kept to a minimum, on the sending side it polls for
data and sends it when it is available. On the receiving side, it only executes when a data packet
arrives at the server (Requirement 11). A configuration file format is defined for easy deploy-
ment. This makes it easy to define in- and outgoing data signals in the Communication Com-
ponent (Requirement 12).

7.1.2 Demonstrator Results

To test the Communication Component, two experiments are conducted as a demonstrator.
The results of these experiments show that the Communication Component has a stable latency
for the loop frequencies it is designed for.

7.2 Recommendations

Setting up a tool-chain with computing platform for an experimental setup takes a lot of time
and knowledge. In order to deal with this, within the RaM group a generic computing platform
is created in the form the RaMstix. However the RaMstix platform does not yet have support for
the current deployment tools, such as 20-sim 4C. 20-sim is used a lot within the group for the
design of control law. Therefore a 20-sim 4C target should be made for the RaMstix computing
platform to ease the deployment step in the way of working and encourage the usage of 20-sim
as a design tool for control within the group.

The Simulink/Matlab tool provides toolboxes for prototyping developing image processing al-
gorithms. However integration with the applications is not yet possible with Communication
Component. A interface should be made for Simulink/Matlab in order to integrate the func-
tionality of these tools with the Communication Component. This will benefit the development
process by making integration of image processing algorithms easier.

The OROCOS framework provides building blocks to create complex supervisory and sequence
controllers. It is already used in some of the setups that are not reviewed within this thesis.
Integrating these building blocks to the real-time loop control platforms would be beneficial
for development, however no integration exists yet. Integration with the OROCOS framework
should be provided, this could be by including a component in OROCOS that can connect to
the Communication Component or by extending the Communication Component to include
the network protocol used by OROCOS.
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A Domain Analysis

A.1 Introduction

The domain analysis will focus on two main aspects: the software tools used in the experiments
and the way of working in the experiments. Only a few setups are considered in this research as
it is not feasible to analyse all the setups. The setups are a representation of most of the fields
in which the groups do research and are currently used in active research projects. Educational
setups are left out of the analysis as these are not the focus of this thesis. The setups included
in the domain analysis are:

• Bipedal Walker

• Variable Stiffness Actuator (VSA) UT II

• Parallel bars

• Microrobotic setup

• Flexible needle setup

First the software tools and hardware components common in the experiments are introduced,
these are followed by the analysis of the different experimental setups. The analysis will con-
clude with observations and conclusions.

A.2 Software Tools and Hardware

A.2.1 Software Tools

There are a number of tools which are used in several projects. These tools are for the design
and deployment of the control law designs. These tools are Matlab/Simulink from Mathworks
(Mathworks, 2013), 20-sim and 20-sim 4C from Controllab Products (Controllab, 2013)

Simulink/Matlab for Controller Design

The Matlab/Simulink tool is used for controller design. Matlab is a tool for numerical computa-
tion and programming. Simulink extends Matlab with a block diagram environment which can
be used to create models of dynamic systems. In Matlab there are toolboxes available specifi-
cally for design and analysis of control systems.

Simulink for Deployment

Matlab/Simulink can also be used for deployment. The tools can be extended with code gener-
ation toolboxes. These toolboxes can be used to generate generic or target specific code from
models or functions in the tool. In order to create target specific code, blocks of the hardware
components have to be included within the models.

In addition to the code generation, the tools also provide rapid prototyping facilities. There are
two approaches to rapid prototyping provided by this tool. The first is a Personal Computer
(PC) in the loop solution, and the second a hardware in the loop solution.

In the PC in the loop solution, Simulink uses the Real-Time Windows Target feature. This fea-
ture launches a real-time engine which runs in Windows kernel mode. In this engine the device
drivers are loaded. In normal running mode, the model is run in Simulink and the outputs of
the model are connected to the device drivers in the real-time engine. In external mode, the
code generation toolboxes are used to generate an application which is also loaded into the
real-time engine. Simulink then only acts as a monitoring tool.
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When using the hardware in the loop solution, a dedicated target is used to control the setup.
The target runs the xPC real-time kernel which is developed by Mathworks. The code genera-
tion toolboxes are used to generate the control application for the target based on the models.
Simulink connects with the target via an Ethernet connection and acts as a monitoring plat-
form.

Both solutions also offer the capability to perform online modification of parameters. This
means that for parameter changes, the entire application does not have to be regenerated and
recompiled for the target.

20-sim for Controller Design

20-sim is a modelling and simulation tool. It is specially designed for the analysis and design of
dynamic systems. The tool comes with various toolboxes which aid in the the analysis and the
design of controllers.

20-sim 4C for Deployment

20-sim offers a deployment method by generating code from the submodels in the system. In
addition it can generate code that can be imported into the 20-sim 4C tool. The 20-sim 4C tool
is a rapid prototyping tool. Apart from importing 20-sim code, 20-sim 4C can also import code
from other tools if the code is compatible with the 20-sim 4C tool.

20-sim 4C offers an interface which allows to user to connect the ports of the submodel to
the various hardware components of the target. The available components of the target are
described in a target configuration file. The usage of configuration files allows 20-sim 4C to
work with generic targets.

For communication with the target Ethernet is used in combination with a daemon application
that runs on the target. Currently only the following operating systems are supported for the
target:

• Windows, Linux (non real-time)

• RTAI Linux (real-time)

• Xenomai Linux (real-time)

20-sim 4C offers features to monitor the experiment and perform online modification of pa-
rameters.

Conclusions

Both Mathworks and Controllab Products offer a rapid prototyping solution. Simulink offers
both a PC in the loop and a hardware in the loop solution and Controllab a hardware in the
loop solution.

The tool-chain of 20-sim is more generic. The models don’t contain implementation specific
parts, these are added in the deployment step. With Simulink, the hardware components have
to be added to the model before generating the code for the application for a specific target.
This means that in the 20-sim 4C tool there is a better distinction between the controller design
and the implementation in comparison to Simulink.

A.2.2 Hardware Components

Motor Control

The “Solo Whistle” is a commercial controller created by ELMO Motion Control (Elmo Motion
Control, 2013). It is an external board which has the capability to control a motor via current,
velocity or position control. It contains input on which encoders can be connected and also
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comes with power electronics to power the motor. To control the motor setpoints can be send
to the controller via a serial connection or a CAN bus.

Another controller solution is the FPGA in combination with an H-Bridge amplifier. The FPGA
contains a counter and a pulse width modulator. Depending on the choice of the developer the
controller can also be included in the FPGA or an external processor.

The “Solo Whistle” controller is used in the research projects, while the FPGA solution is used
in the educational setups. The reasons why the “Solo Whistle” is used in the research project is
because:

• The “Solo Whistle” is ready to use.
There is no need to develop the loop controller for the motor or to determine how to
implement it. Everything is part of the board.

• The “Solo Whistle” takes care of real-time constraints.
There is no need to verify that the controller functions accordingly, the package is already
tested by the manufacturer.

• The loop control law is not part of the research.
For the educational setups, the loop control logic is sometimes part of the project, to
make choices for controller placement in the design space exploration. For the research,
the low level controllers are not part of the research. The “Solo Whistle” takes care of the
low level loops, so the developer does not have to.

In one of the research projects, the “Solo Whistle’s” current control feature is used to control
the magnetic field of magnetic coils rather than control a motor.

A.3 Research Setups

A.3.1 Bipedal Walker and Variable Stiffness Actuator

The Bipedal walker setup and the VSA UT II setup can be considered as similar kind of setups
based on their software structure. The differences between the setups is their mechanical de-
sign and the goal of the setups.

(a) Bipedal Walker. (b) VSA UTII.

Figure A.1: The Bipedal Walker setup (a) (Geus, 2012) and the VSA UT II (b) (Groothuis, 2011).
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Bipedal Walker

Human walking is very energy efficient and robust. Humans are capable of changing the stiff-
ness of their joints during walking. In order to improve robotic walking, patterns of human
walking are mimicked in the design and control of robotic walkers (Geus, 2012). The bipedal
walker (Fig. A.1a) was created to do research on the effect of having variable stiffness in the
joints of the robotic walker.

The bipedal walker setup consists of a gait which is positioned on a treadmill, this way limited
space is required for the experiments. In order to limit the freedom of motion for the setup to
the sagittal plane, the bipedal walker is attached to a guidance.

Experimenting on the Bipedal Walker

The control law for the experiment was designed using the 20-sim tool. For the deployment an
NXP MBED (NXP, 2013) processor board was chosen to run the control law. The control law
was implemented by means of a C-application and was executed on the NXP MBED board. A
PC was used to monitor the experiment and to send commands to control the experiment.

To perform an experiment on the bipedal walker, there are a number of steps which have to be
done. These steps are:

1. Hoist the robot so it is free from the floor.

2. Initialise all components (Motor controllers/Connections/etc.).

3. Perform the homing procedure, so that all encoder counters are zero.

4. Start the experiment, the robot will go into its start position.

5. Lower the robot onto the treadmill.

6. The robot will start walking after a short period once it is placed on the treadmill.

Due to how the software was organised, the whole process described above had to be repeated
for each single experiment. This is very inconvenient if the developer wants to conduct multi-
ple experiments. In addition for every new controller, a new c-application has to be compiled
in order to implement the controller.

In order to deal with some of these problems, the software was restructured such that the con-
troller was no longer executed on the NXP MBED board. The board was now used as an in-
terface between the PC and the hardware. The control law was moved to the PC and run in
Simulink using the Real-Time Windows Target feature. In this new structure the hardware ini-
tialisation and the homing procedure only had to be executed once.

The NXP MBED solution was chosen at the time as it seemed like an adequate board. It is a
cheap processor board with a relatively powerful ARM microprocessor. Also all the necessary
I/O was available on the board. However the board is not capable enough to run for example a
real-time operating system, this limits the boards capabilities in the use with tool-chains.

Variable Stiffness Actuator UTII

Humans have the capability to vary the stiffness of their joints, this means they can adapt to
their surroundings. In robotics, actuators with stiff joints are mostly used, this is ideal for po-
sition control but not for interaction with the environment (Groothuis, 2011). It is therefore
desired to have actuators with variable stiffness when interacting with the environment. The
VSA UT II was developed to research a new rotational VSA design which actuates a lever. In
continued research, additional applications next to actuation of the VSA are explored.
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Experimenting on the VSA UTII

The control law for the VSA UT II is designed using the 20-sim tool. For the deployment an
Arduino Mega board Arduino (2013) is used on the setup. The processing power is limited when
executing more complex models, therefore the same software restructuring was done as with
the bipedal walker. The control law is exported and imported into Simulink model. Simulink
with the Real-Time Windows target is used to execute the control law for the experiment. The
Arduino is used as an interface between the hardware and the PC with Simulink.

The experiment itself does not take as many steps as bipedal walker as the setup is stationary.
An absolute encoder is used for the position feedback. The setup is put into a default position
from which the experiment can be started.

Setup Structure

The structure of both setups is similar and is shown in figure A.2. A PC is connected to a micro-
controller board via a serial connection. The microcontroller board contains general I/O which
is connected to the various sensors of the setup. For the control of the motors the “Solo Whis-
tle” is used. These controllers are connected to the microcontroller via a serial rs232 interface
or CAN bus.
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Figure A.2: Bipedal walker and VSA UT II setup architecture.

On both setups the control law is implemented in a Simulink model. The model is executed
as a Real-Time Windows target (Ketelaar, 2012). The microcontroller is used as an interface
between the hardware and sensors, and the PC with the Simulink model.

Conclusions and Recommendations

On both setups a microcontoller is used as an interface between the hardware and the PC.
Initially the microcontrollers were used to execute the control application. This is very incon-
venient because the developer has to write its own application for the microprocessor board.
For every different experiment a new application has to be created.

In addition the computation power of the microcontroller boards is limited. This means that
the sampling time of the controllers is limited by the computation power of the boards. This
also limits the execution of more complex control algorithms on the boards.

The recommended solution would have been to add an (embedded) computer with a real-
time Operating System (OS). A real-time OS already has software implementations for use in
real-time applications which makes development time of applications shorter. Also some of
the tool-chains can be integrated with an embedded computer, making the experimentation
process easier.
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Another issue in the way of working is how the tooling is used. 20-sim is used to design and test
the controller using models. The controller is then exported and imported into Simulink. For
the user this means he has to be familiar with two different tools. Simulink is used because it
can run the controller model in real-time with the microprocessor board using the Real-Time
Windows Target feature.

In addition with the previous recommendation, using an (embedded) computer with a real-
time OS would have given the possibility to use the 20-sim 4C tool. This would have removed
the need to use two different tools.

A.3.2 Parallel Bars

The parallel bars setup is used to research the effect of networks in distributed control systems.
Effects are for example varying time delays or message loss. Initially the parallel bars setup was
build to verify a proposed controller design by Franken (2011).

Figure A.3: Parallel bar setup. (Franken, 2011)

The setup (Fig. A.3) consists of two similar devices. Each device contains a motor which actu-
ates a lever. Attached to the lever is a force sensor for feedback.

Experimenting on the Parallel Bar

The controller is designed in 20-sim and simulated using a model of the plant. The control law
is deployed on an embedded system running a real-time Linux operating system. In order to
load the control model on the target 20-sim 4C is used. In 20-sim 4C there are a number of
steps which are needed in order to perform an experiment:

1. Select the component to use on the target, in this case the control block.

2. Connect the ports of the control law block to the corresponding hardware components,
like the encoder sensors or actuators.

3. Generate and compile the code for the target.

4. Select which parameters of the model to monitor.

5. Perform the experiment.

Setup Design

Figure A.4 shows the architecture of the parallel bar setup. The architecture is similar to that
of the Bipedal Walker and VSA UT II setups. In this setup however the microcontroller is an
embedded computer system which runs a real-time OS. The embedded system is connected
to a PC via an ethernet connection. The motors are controlled by the“Solo Whistle” which are
connected to the embedded system via CAN bus.
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Figure A.4: Parallel bar setup architecture.

The network of the setup is contained within the control model. The network behaviour is sim-
ulated, or a physical network is used with an echo server. The echo server returns the messages
it receives to the original server. This allows the control system to send its messages to itself via
a physical connection.

Conclusions

In the parallel bar setup the tool-chain provided by Controllab is used. The tool-chain consists
of 20-sim for the design and modelling of the system and 20-sim 4C for the deployment. This
way of working is a good practice. The developer is not required to do any programming or
other manual work. The controller design is exchanged between the two tools and no manual
actions are required in this step. The final application is created using code generation.

The network of which the effects are researched is not part of the 20-sim or 20-sim 4C tool. This
part is integrated using the feature to include custom code within the real-time application.

A.3.3 Microrobotic Setup

In the medical area, research is done into the field of minimally invasive surgery. One of these
projects is regarding the use of microrobotics. These microrobots can for example be used to
deliver drugs at specified locations in the human body. The microrobots can be controlled us-
ing magnets and are observed by means of a camera. Goal of the research project is to demon-
strate that microrobots and particles can be controlled in a 3D space with the use of magnetic
fields.

12

3

Figure A.5: Microrobotic setup. (Khalil et al., 2013)
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The setup consists of a test environment in which the microrobot or particle is placed. Around
this test environment magnets are placed for creation of the magnetic fields (Fig A.5 (3)). For
feedback on the position of the microrobot cameras are placed (Fig A.5 (2)). Autofocus of the
camera on the particle is achieved by moving the cameras towards or away from the environ-
ment by means of a motor (Fig A.5 (1)).

Experimenting on the Microrobotic Setup

The controller for the experiments is designed using the Matlab/Simulink tool. For the de-
ployment of the control application the xPC target platform from Mathworks is used. The
Matlab/Simulink tool-chain was chosen instead of the 20-sim/20-sim 4C tool-chain because
Matlab contains toolboxes for image processing, that were required for processing the camera
images. From the Simulink model, code is generated with the code generation toolboxes and
compiled for the xPC target.

The setup does not require a specific homing procedure. The position of the cameras is con-
trolled by the autofocus algorithm and is not dependant on an initial location of the camera.

Setup Design

The setup consists of two PCs: One PC is used to run the Simulink application, the second PC is
the target PC. This target PC was specifically configured to be used as a real-time target. On the
target runs the xPC real-time kernel by Mathworks (Mathworks, 2013). The two computers are
connected using an ethernet connection. The “Solo Whistle” motor controllers and the camera
are connected to the target PC, see figure A.6. The ELMO controllers are also used to control
the magnets in the setup, using the current control feature.

PC xPC

Solo

Whistle
Motors

Ethernet

S
e
tp

o
in

ts

E
n
c
o
d
e
r d

a
ta

CAN bus

Magnets

Camera

Figure A.6: Setup architecture of the micro robots setup.

Conclusions

The tool-chain provided by Mathworks with Simulink and xPC target is used in the micro-
robotic setup. In the tool-chain it is not necessary to do any manual programming work. The
application for the target is created using code generation. The tool provides monitoring capa-
bilities and online parameter modification.

A drawback of this tool-chain is that the hardware support limited to a restricted number of
vendors. Also deployment has to be built into the models, making models hardware specific.
However experimenting requires less effort. The tools provide capabilities to generate and
compile the code for the deployment target based on the model. The tools also provide moni-
toring and control capabilities.
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A.3.4 Flexible Needle Setup

Another medical research project is the flexible needle. This is also a research project in the
field of minimally invasive surgery. For certain types of surgery, needle injection is used to
perform the surgery. A flexible needle allows the surgeon to control the path of the needle. For
position feedback, ultrasound imaging is used. A path planning algorithm is provided for this
research project in the form of a C++ class from another university. The goal for the research is
to develop and improve the steering of a flexible needle into the tissue.

Figure A.7: Flexible needle setup. (Vrooijink et al., 2013)

The setup consists of a few key components (Fig A.7). A positioning device for positioning the
ultrasound equipment on the tissue simulator, ultrasound transducer for the visual feedback
and an insertion device. The positioning device and insertion device are controlled using mo-
tors.

Experimenting on the Flexible Needle Setup

The control law is designed in either Simulink, 20-sim or another tool based on the preference
of the developer. After the design the control law is included into a framework. The control
application is deployed on a PC.

The framework was developed internally for the setup. The framework is written in C++ and
contains classes for the device drivers of the system and some procedures, for example a hom-
ing procedure. The developer needs to manually compose the application with all the com-
ponents and manually include the control algorithms. For each experiment a new application
has to be created. After the developer has written the application, it is compiled and executed
on the PC.

Within the application there are two main loops. The first loop is a soft real-time control loop
in which the image feedback is used to control the motors. The images are provided by the
ultrasound equipment and are not guaranteed hard real-time, therefore this loop is not hard
but soft real-time. The second loop is for the path planner. Based on the current position and
obstacle placement, this algorithm calculates the path for the needle in the tissue simulator.

Setup Design

Figure A.8 shows the structure of the flexible needle setup. The PC is connected to the motor
controllers by means of a CAN bus. The ultrasound equipment is also attached to the PC. In
this setup there are no additional embedded computers or microcontrollers used.

The PC runs a Windows operating system. Windows is a best effort operating system and not
real-time. This means that there are not guarantees for the real-time constraints. This some-
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Figure A.8: Flexible needle setup architecture.

times lead to timing issues when additional software was activated on the PC. In order to cope
with this, all unnecessary software is turned off during experiments.

Conclusions and Recommendation

Windows is chosen as the deployment platform for this setup. The downside of Windows is that
it is a best effort OS, this means that there are no guarantees for real-time constraints. A better
solution would be to divide the various software components among a real-time platform and
Windows platform. This way the different real-time layers can be separated.

In the deployment step, the control application is manually composed with use of the devel-
oped framework. The framework allows for reusage of most of the code in the application.
However due to the fact that composition of the code is a manual process, mistakes can be
made. Using code generation from the development tools and applying those where possible
could reduce the process of manual code creation. This would reduce the chance for errors and
could also speedup the experimentation process.

A.3.5 Software Structure

Figure A.9 shows the generic structure of an Embedded Control System (ECS) as developed
within the Robotics and Mechatronics (RaM) group (Broenink et al., 2010). In this section the
tool-chains used in the setups are compared on how they map on this structure. In the compar-
ison, two different implementations can be identified. The setups which use Simulink with the
Real-Time Windows target have a different implementation than the setups which use 20-sim
4C or the xPC target.
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Figure A.9: Generic software structure of an embedded control system. (Broenink et al., 2010)

Simulink with Real-Time Windows Target

Figure A.10 shows the implementation of the generic software structure in the Real-Time Win-
dows Target. The hard real-time loop control is executed on the “Solo Whistle”. Between the
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loop control and the higher order control logic is an additional interface layer. It allows the
Simulink model to communicate with the hardware components connected to the microcon-
troller board. The higher order control loops are run on the PC on a best effort Windows OS.
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Figure A.10: Software structure with Simulink and Real-Time Windows target.

For this a real-time engine, Real-Time Windows Target, is run in Windows kernel mode. Due to
the OS being best effort, the control loops are not guaranteed real-time.

Simulink with xPC Target and 20-sim 4C

Figure A.11 shows the generic stucture implemented in the parallel bar and microrobotics
setup. The hard real-time loop control is executed on the “Solo Whistle" like the Real-Time
Windows implementation. For the higher order control loop a dedicated target is used, that
runs a real-time OS/kernel.
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Figure A.11: Software structure for setups with a target PC or embedded system.

The PC is used to monitor the application and is not real-time. The separation between the
different real-time and non real-time layers is clearer in this tool-chain. Real-time loops run on
targets which are designed to run those loops and the non real-time Windows OS is used only
for monitoring and online parameter modification.

Conclusions

The tool-chain with the Real-Time Windows target offers a best effort solution. Mostly dead-
lines are met if the computer is fast enough. The tool-chain provided by 20-sim/20-sim 4C and
Simulink/xPC target is preferred, since they have a better seperation of the hard/soft real-time
layers and the non real-time layers. Also the real-time loops are run on dedicated machines
with real-time OS.

A.4 Conclusion

Both Mathworks and Controllab products offer tool-chains which simplify the experimenting
process by removing the need to write custom code in order to implement control law algo-
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rithms. Two experimental setups within the RaM lab already successfully use these tool-chains
in order to conduct experiments. Some other setups use the Real-Time Windows Target tool-
chain in combination with a microprocessor board which acts as an interface. These latter se-
tups could benefit from applying a full tool-chain in which a dedicated real-time deployment
target is included to run the control law, rather than the limited microprocessor board which is
used now.

Another observation is the fact that the robotic setups are not just a dynamic system with sen-
sor feedback and a control loop. Specially in the medical setups image processing algorithms
with cameras are used within the feedback loops. Image processing is a computational inten-
sive task which sets now requirements for the hardware of the setups in terms of processing
power.
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B Ethernet Latency Measurement with Gumstix Overo
Fire

B.1 Introduction

For control loops it is important to know the latency of the control signals and the feedback
signals in the system as this affects the overall performance of the system. Ethernet networks
are now implemented more as communication interface in control systems. There are several
real-time protocols available which can be used in control systems, however these often require
specific hardware or drivers.

This measurement aims to measure the latency of standard ethernet on an embedded target.
For the transmission of data packets the UDP/IP protocol is used as the sending and receiving
protocol. The measurement should give more insight into the performance of Ethernet un-
der certain conditions and specifically under circumstances for the experimental setups in the
RaM laboratory. Most often these use private networks or direct connections, so the effect of
connecting the system to the Internet is neglected.

B.2 The Measurement Setup

B.2.1 The Hardware Components

Overo Fire Overo FireSwitch

Scope

PC

Figure B.1: Ethernet setup overview.

Figure B.1 shows a schematic overview of the measurement setup. The setup consists of two
embedded targets, in this case a Gumstix Overo Fire Computer on Module (Gumstix, 2013),
details of the embedded target are in table B.1. In the setup, one Overo Fire will act as the
client, the other will act as the server in the measurements.

Computer on Module Gumstix Overo Fire
Baseboard Tobi

OS Linux, kernel version 3.2.21

Table B.1: Embedded computer target details.

In order to measure the latency and not be dependant on the synchronisation of a network
clock, a scope is used to measure I/O signals on the embedded targets. When a packet is send
from the client an I/O pin is toggled, as soon as the packet is received on the server, an I/O pin
is set to the same value as indicated by the client packet. This results in a delayed signal on the
server. The scope is used to measure the delay between the two I/O signals.

Additionally a Personal Computer (PC) is included in the setup to act as an additional source of
network disturbance. In the test, two sample frequencies are tested for the I/O pin. 100 Hz and
1000 Hz.
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B.2.2 Communication Protocol

For the communication between the client and the server UDP/IP is used. This protocol sends
datapackets called datagram packets. The datagram packets are created so that they are a total
of 128 bytes in the first set of measurements. This size is chosen as a number of sensor values
could fit into these packets (Dolejs et al., 2004). The headers of Ethernet and UDP/IP ar in-
cluded in these 128 bytes, however the Preamble and “Start of frame delimiter” are excluded in
this set of bytes. This results in 42 bytes for the headrs and a payload of 86 bytes for the actual
data.

In the datagram packets from the client a sequence number and the value for the I/O pin are
included. The sequence number is used to check if packet loss occurs on the connection. The
I/O pin value is used for setting value of the I/O on the server. Should a packet be lost, than this
does not result in a 180 degree phase shift in the server signal.

The application producing additional load on the network also sends 128 bytes per packet,
similar to those of the client application. The load packets are send to a different port, than
the server uses to listen. This way the server does not need to filter the load packages from the
client packages.

B.2.3 The Measurement Software

For the communication via Ethernet, the UDP/IP protocol is used. Data packets send by the
UDP/IP are called datagram packets. Due to the nature of this protocol, datagram packets can
be lost. In order to detect this, a sequence number is added to the packet, in order to verify at
the server side if a packet is lost.

Initalise
client

Start

Toggle
I/O output

Create/Send
datapacket

Wait(freq)

Inc(seq)

(a) Client software
flowchart

Initalise
server

Start

Toggle
I/O output

Log
Packetloss

Check(seq)

recv(packet)

Missing Sequence:

(b) Server software flowchart

Figure B.2: Flow charts of the main measuring software.

Figure B.2a shows the flowchart of the client application. The I/O toggle action is performed
before creating and sending the datagram packet, this way the processing time of creating and
sending the datagram packet is also included in the latency. The client keeps a counter seq in
order to provide a sequence number for the datagram packets. The wait function makes sure
that the packets are send at the predefined sample frequency of the system.
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The server application flowchart is shown in figure B.2b. When a packet is received, the I/O
output will be set to the value indicated in the datagram packet. After this, the sequence num-
ber will be checked. If the sequence number is not the expected value but a higher value, the
amount of missed datagram packets is notified in the console.

In addition to the client and server application, there is also a load application. This application
sends a burst of # packets in a set frequency in order to create additional load on the network.

B.2.4 Obtaining the Results

A scope is used to obtain the minimum and maximum latency in each test. In order to retrieve
this data, the scope’s display settings are set to infinite persistency. When a measurement is
started, it is run for several seconds. Figure B.3 shows one of the measurements, the cursors are
used to obtain the exact value for the minimum and maximum latencies.

Figure B.3: Example of a result produced by the scope. The yellow signal is the signal produced by the
client application, the green signal is the signal produced by the server. The scope is triggered on the
rising edge of the client signal.

B.3 Measurements and Expectations

In this section, each of the experiments is explained, along with the expected result of the mea-
surement. In Dolejs et al. (2004) simulations have been performed with an Ethernet network,
along with a measurement experiment in which the Real-Time Publisher Subscriber (RTPS)
protocol is tested. The values within the expectations are based on the findings of this paper.

The simulation states that network traffic below the 30,000 packets/s will result in low laten-
cies in the order of 100 µs. This however does not include the processing time of the devices.
When the network load is increased to 40,000 packets/s or above, higher latencies up to a few
milliseconds are measured in the simulations.

In the real-world test in which the RTPS protocol is measured, the minimum latency is 0.7 ms
and the maximum latency is 1.34 ms with a mean of 0.84 ms. Because a protocol on top of
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UDP/IP is tested, the expectation is that the latency in the measurements will be less than the
results of Dolejs et al. (2004).

B.3.1 Initial Measurement

In the initial measurement the client will send one packet with the I/O information to the
server. This test is used to measure the latency, when no additional load is put on the network.

Taking into account that there needs to be some processing time, the expectation is that the
latency will be higher than the 100 µs as presented in the simulation of Dolejs et al. (2004),
however a protocol is not implemented so the latency should be less than the 0.7 ms.

B.3.2 High Traffic from the Client

In this measurement, the effect of high traffic from the client is measured. In order to make
sure that the server is not affected by the high amount of traffic, the load packets will be send
to the PC.

The expectation for this measurement is similar than that of the previous measurement. Be-
cause only one node in the network is sending data, collisions should not have an effect on
the network latency. However the latency is expected to be higher than that of the initial test,
sending more packets from the client means the client has to perform more tasks, this could
slow down the performance, as all the packages have to be created.

B.3.3 High Traffic to the Server from the Client

This measurement will be similar to the previous measurement, however the load packets are
now also send to the server.

Because only one node is sending, the expectation is that there will be no significant delay as
collisions will not occur. The delay will be as with the previous measurement due to the amount
of processing performed by the client, and in this case the processing of the incoming packets
on the server.

B.3.4 High Traffic to the Server from a Second Source

This measurement will test the effect of a second source sending high amounts of data to the
server and how this effects performance. In this test the client will only send the I/O control
packet to the server, while the PC will send load packets to the server.

Because collisions can occur, the expectation is that on high traffic load, the latency of the
network will increase in comparison to the other test. Based on the simulations presented in
Dolejs et al. (2004), when the load will be below 30,000 packets/s, the latency will be about the
same as in the initial test, but at higher load the latency will increase tremendously.

B.3.5 High Traffic to the Client from the Network

In this measurement high amounts of traffic will be send to the sending client node in the
network from the PC node. The server will only receive data.

Expected is that the network latency will not be to different from the initial measurement. Eth-
ernet has duplex communication, therefore there should not be a lot of collisions occurring.
The latency could however be increased due to the fact that the client needs to process all in-
coming packets.
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B.3.6 A Setup Simulation

In this test a setup of the laboratory will be used as a reference for the amount of sensor signals
and the amount of control signals which could go over the network. The setup chosen, is the
youBot setup.

The youBot setup consists of nine motors, each motor has sensors for: position, velocity, cur-
rent and temperature. In addition each motor can receive one control signal to control the
motor. This results in a total of 36 sensor signals and 9 control signals.

Three scenarios will be measured:

Worst Case Scenario

Each signal is send as an individual packet with the same 128 byte size. The control signal witht
I D = 0 will be used as the I/O control signal. The client will act as the “controller” sending 9
packets in the predefined frequency to the server. The server acts as the youBot target, it will
send the 36 packets in the same frequency as the client to the client.

The expectation is that the performance will be normal for low network load. Increasing the
frequency will increase the load, this should result in higher latencies.

Optimised Measurement 1: Fitting Data into Small Fixed Size Packets

In this test the signals are optimised, the packets size is kept at 128 bytes.. Each signal is con-
sidered to be of the double type, this an 8 byte data type. In order to identify each value send
in a package, a header consisting of 2 bytes is added to the value, the first byte is a “tag” byte
and the second a “size” byte. For each signal this means that it takes 10 bytes. Excluding the
headers of Ethernet and UDP, the effective payload size for a 128 byte packet is 86 bytes.

This means that 8 values can be carried in each packet, resulting in two packets send from the
controller and 36/8 = 5 packets send from the plant. This results in lower traffic, it is expected
that in these test the latency is decreased.

Optimised Measurement 2: Using Dynamic Packet Size

Ethernet allows for frames up to 1500 bytes, including all headers, this means that the payload
is not limited to 86 bytes for the UDP/IP protocol. As with the previous test, each value is
considered as a double , which is 8 bytes. Also the two identification bytes are included. The
header of each frame is 42 bytes. For the controller this means that we have a packet of 42+90 =
132 bytes and for the plant this means that in each cycle we send a packet of 42+360 = 402 bytes.

This results in lower traffic. It is expected that in this test the latency is decreased in comparison
with the previous test.

B.4 Measurement Results

The results of the measurements explained in section B.3 are presented here. In the measure-
ments one Overo Fire executes the server application and will be referred to as the server in the
results, the other Overo Fire executes the client application and will be referred to as the client.
The PC will be referred to as the PC.

For the measurements both the maximum latency and the minimum latency are noted. Due
to the fact that a scope is used to measure the latency, it is not possible to tell on a per packet
basis what the latency is, therefore the mean of the latency is not regarded.

Because a non real-time Linux Operating System (OS) is used, the jitter of the 1000Hz loop in
the client application was quite large, this made it difficult to perform the measurement. In
order to do provide measurement results, the frequency for the I/O pin toggling was decreased.
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Every 8 cycles the I/O pin was toggled, while the datagram packets were still send at the 1000Hz
interval.

B.4.1 Initial Measurement Results

Table B.2 shows the results of the initial measurement. During one of the tests at 1000 Hz, a
single spike during the test took 1960 µs. However this only occurred during one measurement
and could not be reproduced.

Client frequency(Hz) Min latency(µs) Max latency(µs) Load (packets/s)
100 267 370 100

1000 250 630 1000

Table B.2: The client sends 1 I/O control packet to the server in the given frequency.

B.4.2 High Traffic from the Client Results

Table B.3 shows the result of measurement. A note with the last measurement, packets display-
ing a high latency in the maximum range of 1990 µs was only a few per measurement and most
packets stayed within a latency of 660 µs.
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Table B.3: The client device sends 1 I/O control packet to the device server in the given frequency. On
the client device the load application sends a burst of # packets in the given frequency to the PC.

B.4.3 Measurement High Data Traffic from Client to Server Results

Table B.4 shows the result of the measurement. In the tests where 100,000 packets/s were send
to the server resulted in the server device displaying overloaded behaviour. The console via the
serial interface was not responding, until the client was forced to stop sending packets.

Probably the amount of traffic causes the interrupt from the ethernet interface to stall all other
processes on the system.

B.4.4 High Traffic to the Server from a Second Source Results

Table B.5 shows the results of the measurements.

When sending 100 packets at 100 Hz from the PC to the three different scenarios occurred de-
pending on the start time of the application on the PC, resulting in different latencies. These
three scenarios are shown in the table.

When sending 150 packets at 100 Hz, packet loss was registered on the server. Further increas-
ing the amount of packets send by the load application resulted in a large packet loss. The I/O
signal from the client device could not be identified at all at the server device.
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1000 100 100 250 6600 10100
1000 1000 100 – – 100100

Table B.4: The client device sends 1 I/O control packet to the device server in the given frequency. On
the client device the load application sends a burst of # packets in the given frequency to the server
device.
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100 100 10 262 400 1100

100 100 100 260 388 10100
100 100 100 890 1640 10100
100 100 100 4000 4700 10100

100 100 150 5800 7500 15100
100 100 250+ – – 25100

Table B.5: The client device sends 1 I/O control packet to the server. The PC sends a burst of # packets
in the given frequency to the server device.

B.4.5 High Traffic to the Client from the Network Results

Table B.6 shows the result of the measurement. The last measurement presented a problem
observing the actual latency, due to the jitter in both the client application loop and the latency
due to the collision it was not possible to read any latency on the scope.

B.4.6 Setup Simulation Results

Table B.7 shows the result of the worst case measurement. For the 1000 Hz frequency, the
jitter of the loop application was to high in order to measure the network latency. Also when in
the 1000 Hz the target application was started first, initially the control application registered
missed packets, however at a certain point in time (after a few seconds) this behaviour settled
down in no packet loss. However is the start order of the applications was reversed, the control
application was started first, the target application registered packet loss. However in this case
the target application did not settle to a no-packetloss state.

Table B.8 shows the measurement results of optimised measurement 1. At 1000 Hz, again the
jitter of the main loop caused for unmeasurable scope results.

B.5 Result Analysis

In this section the results of the measurements are compared to the results which were ex-
pected.
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100 100 100 100 100 270 614 20100
100 1000 100 100 10 258 466 101100
100 1000 100 100 100 268 472 110100

1000 100 100 100 10 250 830 12000
1000 100 100 100 100 250 530 21000
1000 1000 100 100 10 250 980 102000
1000 1000 100 100 100 – – 111000

Table B.6: One client sends 1 packet to the server in the given frequency. On the client a load application
sends a burst of # packets in the given frequency to the PC. The PC runs a similar load application,
sending a burst of # packets in the given frequency.
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100 36 9 270 1260 4500
1000 36 9 – – 45000

Table B.7: Setup simulation measurement: Worst case. 36 sensor signals are send as individual 128 byte
packets to the controller, 9 control signals are send as 128 byte packets to the target.

B.5.1 Initial Measurement

The expectation is that the latency would be higher than 100 µs and lower than 700 µs, is also
the result of the measurement. The latency measured is between 250 and 630 µs.

With these latencies sample frequencies up to 500 Hz would be feasible. Considering a 1000
Hz sample frequency, with the maximum latency in mind, it would take two sample periods in
order for the controller to respond to a measured signal.

B.5.2 High Traffic from the Client

The results that are expected are the same as with the previous measurement. Looking at the
results, the measured latency is similar and stays within the 265 to 744 µs range.

The result in which both the load application and the client application

For the application, a non real-time Linux kernel is used, this means that both the server and
client application did not get high priority and resource so they could meet their deadlines.

B.5.3 High Traffic to the Server from the Client

The expectation for this measurement is that they would be the same as the previous measure-
ment. However this is not the case. The latency is quite higher than is the case in the previous
measurement. When sending around 10,000 packets/s to the server the delay is measurable,
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100 5 2 234 378 700
1000 5 2 – – 7000

Table B.8: Setup simulation measurement: Small packet optimisation. 36 sensor signals are send as
8 byte double values with two byte identification headers in five 128 byte packets to the controller, 9
control signals are send as 8 byte double values with two byte identification headers in two 128 byte
packets to the target.
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100 402 132 240 324 200
1000 402 132 234 1000+ 2000

Table B.9: Setup simulation measurement: Dynamic packet optimisation. 36 sensor signals are send
as 8 byte double values with two byte identification headers in one 402 byte packet to the controller, 9
control signals are send as 8 byte double values with two byte identifycation headers in one 128 byte
packet to the target.

they delay is most likely caused because of the interrupts of the Ethernet card, interrupting the
server application.

When sending a high amount of traffic, 100,000 packets/s the server did not update the I/O
pin, showing an always high or low signal, depending on it’s last state. In addition the screen
session to the device also turned non responsive. This would suggest that the processing of the
UDP datagram packets stall the server application.

B.5.4 High Traffic to the Server from a Second Source

In low network load, the latency is about the same as with the initial test. However on higher
traffic load, the collisions within the network affect the performance. The latency is dependent
on the distribution time in which the packets are send.

In the result three different scenarios occur. The highest delay most likely is the cause of the
client and the PC sending their packets at the same time, this results in a high chance for colli-
sions, causing high delays.

When the delays are low, this is most likely the case when the client and the PC send their data
at different times in the in their 10 ms loop times.
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B.5.5 High Traffic to the Client from the Network

The expectation for this measurement is that the latency is not affected much by the traffic
send to the client. This is also the result of the measurement, the latencies that are measured
are comparable to those of the initial test.

The latency of 980 µs is most likely due to the fact that the applications processing play a more
important role in the delay.

B.5.6 A Setup Simulation

Three scenarios were measured. A worst case measurement and two optimised measurements.
In all the measurements, the 1000 Hz sample frequency either should latencies which made it
impossible to measure the latency with the scope in the described way. The last measurement
showed measurable results for the minimum latency but not for the maximum latency.

Worst Case Scenario

In this measurement the minimum latency is as expected, however the maximum is quite high
compared to the initial latency measurement. The cause could be either in the processing time,
for sending the packets, or it could be caused due to the amount of time it takes to send the
packets on the network.

Optimised Measurement 1: Fitting Data into Small Fixed Size Packets

The optimised measurement, decreases the load on the network. Also the amount of packets
send is less, so the processing time for that decreases. The result is that we obtain latencies
which are about equal that that of the initial measurement.

Optimised Measurement 2: Using Dynamic Packet Size

The second optimised version also decreases the network traffic, but now by increasing the
packet size. This results in a slight improvement of the maximum latency in the 100 Hz test and
also showed improvement in the measurement of the 1000 Hz signal.

The result is most likely due to two things:

1. Only one packet has to be created and filled with data, this saves processing time of cre-
ating individual packets.

2. Because only one packet has to be send, the additional overhead of ethernet headers and
additional bytes, like the ethernet preamble, don’t have to be send over the network.

B.6 Conclusions

B.6.1 Latency and Sample Frequency

In the initial test we see that we have at least a latency of 250 µs up to 630 µs. This means that
we already have constraints on the maximum sample frequency we can achieve when network
communication is included within the control loop.

In the initial measurement, without taking into account additional time which is needed to
calculate the control value, the controller can respond to a measured signal in about 1.26 mil-
liseconds. For low frequency control loops, 500 Hz and lower, this should not cause an issue.
When using faster loops, for example 1000 Hz, the delay in the control signal could become a
problem.

When applying duplex communication, results from B.4.6, we see that this impacts the perfor-
mance when the amount of packets send is high. Therefore the amount of traffic which can be
send at a high sample frequency is limited.
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B.6.2 Applications

Ethernet could be used in order to connect devices, for which slow sample frequencies for the
data are required. In all the measurements, the latency varied from 250 µs up to a few millisec-
onds. For frequencies of 100 Hz and slower this is a feasible transport possibility.

However for faster sample frequencies measures need to be taken, or different communication
platforms should be used, that do offer the fast transmission of data.

B.7 Recommendations

B.7.1 Software and Hardware Limitations

In the measurements the used platform is Linux, this is a non real-time OS. The processing
time, considered in the latency could be improved by using a real-time operating system. How-
ever using a real-time operating system is not a guarantee that the performance is improved,
this should be measured in order to validate this.

B.7.2 Transmission protocol

Another aspect which could improve the latency is the protocol used. Now the UPD/IP pro-
tocol is used, this means that on the processing size, two additional network layers have to be
processed: UDP and IP. Using raw Ethernet packets could also result in an improvement in the
latency between the two devices.

B.7.3 Topology

Another aspect which could improve the latency is the network topology. In the measurement a
switch is used in order to connect the two devices. However using a direct connection, between
the two devices could speed up the the performance of the network as the packets don’t need
to pass through the switch device.

However how large the effect of the switch is should be measured first by creating a setup with
a direct connection.
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C Real-time Ethernet Protocols

C.1 Introduction

Ethernet is one of the most common forms of network communication. It is very easy to setup
and very cheap hardware is available for the technology. Due to the implementation of Ether-
net, it is not a real-time transmission protocol. This is due to the Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) mechanism, which makes sure that on the same line two
nodes are not sending at the same time. This mechanism causes for non deterministic latencies
on the network.

There are several projects running which try to address the this issue of non deterministic de-
lays and use Ethernet as a real-time network. The website Laboratory of Process Data Pro-
cessing of Reutlingen University (2013) gives an overview of solutions used in the automation
industry. The list contains both commercial projects and open (source) projects. This appendix
highlights a few of the open protocols available in the list. Briefly the protocol is explained in
how they address the delay issues with Ethernet and what is required in order to use the proto-
cols.

The following protocols are highlighted:

• EtherCAT

• Real-Time Publisher Subscriber protocol

• Ethernet POWERLINK

• RTnet

C.2 Ethercat

C.2.1 About EtherCAT

The EtherCAT protocol is maintained by the EtherCAT Technology Group (ETG). The technolo-
gy/protocol is an open protocol, however there is the requirement that you are a member of the
ETG. The protocol is based on the CANOpen protocol and functions as a bus protocol (Ethercat
Technology Group (ETG), 2012).

C.2.2 Technology Overview

The EtherCAT protocol uses a bus principle in order to send data to the various nodes in the
network. A master node in the network commences a transmission cycle by sending an Ether-
CAT packet on the network to the first node in the cycle of that packet. Each node processes the
packet “on the fly” and then passes it on to the next node in the cycle. The last node sends the
packet back to the master. Due to the duplex nature of Ethernet, this means that for the packet
there are no connections as the packet only travels one way in the network.

Each slave node in the network does the processing on the packet in the Ethernet hardware.
Data exchange between the Ethernet hardware and processing unit of the slave is done via a
shared memory. This means that the processing unit is is solely responsible for processing the
Ethernet packet and that the processing unit is not required to spend resources on this. Due
to this, the delay in the network is only caused by the hardware delay due to transmitting the
packet through the network and the processing of the packet in the Ethernet hardware.

The EtherCAT protocol itself is mapped directly onto the Ethernet protocol. This means that
no additional processing is required for higher protocol layers and that there is more space for
data in the packet, as Ethernet frames have a limited size.
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C.2.3 Requirements

Due to the fact that processing of the Ethernet packets is done in the Ethernet hardware, spe-
cial Ethernet hardware is required for this and conventional Ethernet hardware cannot be used.
In addition, to prevent collisions only nodes supporting the EtherCAT protocol should be in-
cluded in the network, this means that a dedicated network is required for EtherCAT.

C.3 Real-Time Ethernet

C.3.1 About RTnet

Real-Time Ethernet (RTnet) is developed and maintained by the Institute of Systems Engineer-
ing, Real-Time Systems Group. It is now an open source project, that also has contributors from
all over the world. The protocol is an open protocol and implementations are available for the
linux platform. The protocol uses time slicing of the network time in order to deal with the
unpredictable delays in Ethernet.

C.3.2 Technology Overview

The protocol uses time slices in order to regulate network traffic. Each time slice begins with
a synchronisation frame from the master. These are followed by synchronisation frames from
backup masters, should the main master node fail. Each slave node then has a fixed amount of
time to send their data on the network, this time is defined in a schedule.

In order to implement the protocol the Ethernet stack of the Operating System (OS) is replaced
by the RTnet stack. The stack takes care of the protocol implementation, in addition it also
replaces the default OS stack with a deterministic network stack. Here, indeterministic memory
allocations are replaced with preallocated buffers.

C.3.3 Requirements

RTnet is a software implementation, it replaces the network stack of the operating system with
the RTnet stack. In addition it uses time slices in order regulate Ethernet traffic. The network
needs to be a private network containing only nodes which implement the RTnet protocol.

C.4 Ethernet POWERLINK

C.4.1 About Ethernet POWERLINK

Ethernet POWERLINK is a real-time Ethernet protocol maintained by the Ethernet POWER-
LINK Standardisation Group (EPSG). It is an open protocol. Ethernet POWERLINK implements
time slice principles in order to prevent collisions, which have an undefined delay within Eth-
ernet.

C.4.2 Technology Overview

Ethernet POWERLINK replaces the current Ethernet stack to implement the protocol. The net-
work time is divided into slices. Each time slice starts with a Start of Cycle synchronisation
frame. After this, the master polls each slave node. The slave node then gets a fixed amount
of time to send its data on the network. Each time slice ends with a limited time to send non
real-time communication.

Giving slave nodes fixed time slots to send their data, makes sure that collisions do not happen
within the network. The collisions cause unpredictable behaviour in the delay on the network.

C.4.3 Requirements

The devices in the network require special drivers in order to implement the time slice prin-
ciple, special hardware is not required as the protocol is implemented in software. In order to
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have the network real-time, only nodes implementing Ethernet POWERLINK should be con-
nected to the network, thus it requires a private network.

C.5 Real-Time Publisher Subscriber Protocol

C.5.1 About Real-Time Publisher Subscriber Protocol

The Real-Time Publisher Subscriber (RTPS) protocol is maintained by the Object Model Group
(OMG). The specification is open and can be obtained from the OMG website. The RTPS proto-
col is a platform specific implementation of the Data-Distribution Service (DDS) specification.

C.5.2 Technology Overview

The protocol is based on the publisher-subscriber principle. Data producers publish data,
sources that require the data can subscribe to the producing source. The protocol introduces
mechanics to send and receive data between nodes and includes Quality of Service (QoS) ser-
vices for information about the network.

The protocol is not a real-time protocol, in order to minimise latency, network traffic should be
kept low. Therefore a dedicated network should be used that is separated from busy networks,
like the Internet.

C.5.3 Requirements

The protocol does not require specific hardware. The various services described in the spec-
ification should be implemented in a server, or daemon which responsible for the network
communication. Although there are no requirements for the network, a low traffic dedicated
network is preferred.

C.6 Conclusion

Several real-time Ethernet protocols, used in industry have been highlighted in this appendix.
They all use different approaches to deal with the indeterministic delay behaviour of Ethernet,
so it is applicable for real-time communication.
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