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Abstract

Frequency and duration of follow-up for patients with breast cancer is
still under discussion. Current follow-up consists of annual mammography
for the first five years after treatment and does not depend on the personal
risk of developing a locoregional recurrence (LRR) or second primary tu-
mor. Aim of this study is to formulate a continuous-state POMDP, in
which at every epoch a decision is made whether or not to test, based on
the personal risk factors of the patient. We show that the optimal value
function of the POMDP is piece-wise linear and convex (PWLC). This
result provides an alternative expression of the optimal value function,
which leads to a solution algorithm for the POMDP. Under some con-
ditions the optimal value function can be obtained by a simple solution
algorithm. We present results for this case to illustrate how the model
can be applied in practice.



1 Introduction

After curative treatment for breast cancer, patients are followed clinically for
a period of time to detect locoregional recurrences (LRRs) in an early phase
[1]. A LRR is defined as the reappearance of breast cancer on the same site
as the primary tumor [2]. Because a LRR has a high risk of distant metas-
tases it is important that it is detected in an early stage [1]. Currently, in the
Netherlands, patients have regular follow-up for at least five years after their
treatment [3]. However only a minority of the LRRs discovered are detected at
a scheduled check-up, more often the patient detects it in between check-ups
[4]. Furthermore, due to an increasing incidence and survival rate, the number
of patients currently in the follow-up phase increases and becomes more of a
burden to health care.

Even though it is known that certain factors, such as tumor size, the patient’s
age and treatment of the primary tumor are highly correlated with the risk of
a LRR, there is no differentiation in the follow-up policy for different categories
of patients [5]. Since 2012 the national guideline of the Netherlands proposes
that the follow-up should be tailored to the individual situation of the patient
and that personal risk factors should be taken into account but it does not give
any specific recommendations on how to effectuate this.

These observations together give rise to the question whether it is possible
to improve the current follow-up policy, both from patient and health care per-
spective. Our aim is to develop a sequential decision process in which a decision
maker, the patient and/or a physician, chooses at every decision epoch whether
or not to have a check-up. We model this problem using a partially observable
Markov decision process (POMDP), which is a generalization of a Markov de-
cision process and allows us to model a sequential decision making process in
which the information about the true state of the system is incomplete. Because
the true health state of a patient, i.e. whether a patient is disease-free or not,
is only partially observable, a POMDP is ideally suited to this problem [6].

In previous research we modeled the problem described by a discrete-state
POMDP [7]. In this model a LRR is modeled as a two state Markov chain.
In the first state the LRR is in an early stage and the prognosis is fairly good.
In the second state the LRR is in an late stage and the prognosis is rather
bad. We found this model usable for the problem however we also found that
the outcome is quite sensitive to the transition probability between the early
and the late state. These findings encouraged us to model the problem by a
continuous-state POMDP in which the health-state of the patient is modeled
by a continuous model to improve accuracy.

Ayer et al. [8] have developed a POMDP model to a similar problem, a
mammography decision model for preventive screening for breast cancer. Ayvaci
et al. [9] give an analysis of the same problem as Ayer et al. but under budgetary
constraints, however they model it as a normal Markov decision process and thus
simplifying the problem considerably. Zhang et al. [10] made a comparison of
the patient and societal perspectives for a similar case, PSA screening policies,
via a POMDP approach. However, all of the models are based on an underlying
discrete-state Markov chain and therefore simplifying the health-state of the
patient considerably. To the best of our knowledge there is no literature available
that applies a continuous-state model to a medical decision making process.
Porta et al. [11] [12] developed a continuous-state model for robot planning and

1



proved some important analytical results. Duff [13] also provides some useful
results for continuous-state POMDPs. These results also lay the basis for the
solution method for the POMDP. This research provides very useful models and
results for our problem however necessary adjustments need to be made. In the
first place, POMDPs based on medical decision making slightly differ from the
standard framework of POMDPs [8]. Secondly, our model needs both a discrete
component as well as a continuous component. The patient is either healthy or
not, this is a discrete component. On the other hand, the growth of a tumor
is modeled by a continuous model. The interaction between the discrete and
continuous states leads to some complications that need to be addressed.

Our contribution to this research is threefold. Firstly, we provide a more
realistic model for the described problem. Instead of modeling the health state
of the patient by a finite set of states, we model it as a continuum of states.
Secondly, we proof some important results in order to derive a solution algorithm
for finding the optimal testing schedule. Thirdly we derive a simple solution
algorithm for the optimal policy under some restriction on the growth model of
the tumor.

The remainder of this report is organized as follows. In §2 we state some
preliminary information on standard POMDPs and present the continuous-state
POMDP model for our specific problem. in §3 we derive the optimality equa-
tions. We also provide an alternative representation of the optimality equations.
This result will be used to derive a solution method. Under some restrictions
on the dynamics of the POMDP, we then derive a simpler form of the optimal-
ity equations. In §4 we present the general algorithm for solving the POMDP
and an algorithm for a special case. In §5 we will present an illustration how
this model can be applied in practice. Finally we summarize the results and
conclude in §6.

2 Model

In this section we describe the model for the given problem. The problem de-
scribed is modeled by a Partially Observable Markov Decision Process (POMDP).
To incorporate some specific aspects of our problem we need to make some ad-
justments to the regular framework of POMDPs. For clarity we will first de-
scribe a standard POMDP and based on this we will present the model for our
problem.

2.1 Preliminaries: POMDPs

A POMDP is generalization of a Markov Decision process [14]. It models a
decision maker’s interaction with a stochastic system of which the current state
is not directly observable. The model is described by the following elements
• S, the system states.
• A, the set of actions.
• O, the set of observations.
• An observation model described by Ka(o|s), the probability that observa-

tion o was done given that the state was s and action a was taken.
• An underlying Markov Chain that models the transitions of the system’s

state. This is described by P (a,o)(s′|s) which is the probability that the next
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state is s′ given that the previous state was s and action a was taken and
observation o was done.
• A reward function r(s, a, o), which is the reward when the state is s and

action a was taken and observation o done.
Because the decision maker can not observe the system’s state directly, the

knowledge about the system is represented by the so-called belief state. The
belief state is a probability distribution over the state space based on the internal
dynamics of the system, the actions taken and the observations done. When
the current state is s and action a is taken and observation o is done, the new
belief, τ is computed with a Bayesian update [15]

τ [b, a, o](s′) =

∑
s
b(s)Ka(o|s)P (a,o)(s′|s)∑

s
b(s)Ka(o|s)

The combination of an action and an observation induces a immediate reward,
depending on the current state and an future reward, depending on the next
state. The value function describes the relation between the immediate reward,
future reward and the belief state

V at (b) =
∑
s

b(s)
∑
o

Ka(o|s)
[
r(s, a, o) + Vt+1(τ [b, a, o])(s)

]
A policy is a function that maps a belief to an action. An optimal policy
is one that maximizes the value function. This is described by the optimal
value function, which gives for each belief the maximum value that the decision
maker can obtain, V ∗t (b) = maxa{V at (b)}. The optimal policy can be defined as
π∗(b) = arg maxa V

∗
t (b).

At first it may seem that solving the optimal value function is intractable,
because it is defined on a continuous belief space. However it can be proven
that the optimal value function is piece-wise linear and convex (PWLC)[15][16].
Because the optimal value function is PWLC it can be written as

V ∗t (b) = max
k

{∑
s

b(s)αkt (s)

}
For a certain finite set {αk} of so-called α-vectors. These α-vectors can be
calculated in a recursive way. This provides a straightforward way to obtain the
optimal policy.

2.2 Model Formulation

In the problem described we want to model the growth of tumor as a con-
tinuous process also, because the patient can die during the process and the
process terminates whenever the patient goes into treatment, we need to mod-
ify the POMDP framework described in order to model our problem correctly.
The problem described is therefore modeled by a discrete-time continuous state
POMDP over a finite horizon, in which a decision maker aims to maximize the
total expected number of quality-adjusted life years (QALYs).

Twice a year, a decision is made whether a patient should have a mam-
mogram or should wait for another 6 months. The decision made is based on

3



the patient’s current risk of cancer, which, among others, depends on several
personal risk factors and prior test results. When the decision is made that
the patient should have a mammogram and the result is positive or if a self-
detection is made, it is followed by a biopsy. We assume that the biopsy after
a positive mammogram or self-detection is perfect. When this perfect test is
also positive (i.e. the patient has cancer) we assume that she starts treatment
immediately and leaves the decision process by moving to the treatment state,
otherwise the decision process proceeds to the next decision epoch. Also when
the mammogram is negative or the decision is to wait for another 6 months
and no self-detection is made, the decision process proceeds to the next decision
epoch where the same decision has to be made. For our notation we follow Ayer
et al.[8] and Otten et al. [7]. Throughout this report we refer to a person in our
model as ‘she’, because breast cancer is very rare for men, and as ‘the patient’,
irrespective of her true health state. The complete model and the notation used
is as follows:
• Decision epochs, t = 1 · · ·T , T = 10. We assume that decisions are made

twice every year and that the decision process starts 6 months after treatment of
the primary tumour finished, so t = 5 denotes 2.5 years after primary treatment
(see timeline below). Let σ denote the time between two succesive decision
epochs, σ = 0.5 year. The decision horizon is at t = 10 because the annual
check-ups are stopped after 5 years[3] (depending on the age of the patient the
check-ups after this are annual, biennial or stopped).
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• Core state space, S = {0, SLRR, SSP , 3, 4}, where SLRR = SSP = R+. The
core state space consists of three discrete states {0, 3, 4}, where 0 stands for no
(detectable) cancer, 3 for treatment of the patient and 4 stands for the death
of the patient. SLRR, SSP are two continuous states (or better: a continuum
of states) in the core state space and represents a measure, e.g. the size of the
tumor, for the state of a LRR and a SP, respectively. To see how these different
states are connected see figure 1.st is the true health state of the patient at
time t. We model a LRR and a SP as continuous variables to incorporate the
difference in expected remaining QALYs between earlier and later detection as
good as possible because early detection of a tumor yields a better prognosis[1].
Note that the decision maker can directly observe whether a patient is in the
state ‘Treatment’ or ‘Death’ but not whether a patient is in one of the other
states. We therefore call the states {0, SLRR, SSP } partially observable and
denote this subset of the core state space as SPO.
• Information space, Π(S), the space of all probability distributions over the

core state space S. A function π ∈ Π(S) is called an information state.
• Belief space, B(SPO), the space of all probability distributions over the

partially observable states, SPO. A function b ∈ B(SPO) is in fact the same
function as π ∈ Π(S), only defined on a subset of partially observable states.
This reduction of the information function makes sense because the probability
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0. No
cancer
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3. Treat-
ment

Partially Observable

Figure 1: State diagram of the underlying Markov process.

that the true state s = 3, 4 is either 0 or 1.
For clarity we define a belief vector b = [b(0) b(SLRR) b(SS)], which denotes
the belief that a patient is in state 0, 1 or 2 and belief functions bLRR(s), bSP (s)
which denote the belief that a patients true health state is s ∈ R+ given the
patient is in the continuous state LRR or SP respectively.
• Actions, At, the set of actions at time t. at ∈ At = {W,M}, where W

stands for wait and M for mammography. The action set is only defined for
s ∈ SPO since the process terminates whenever the patient dies or goes to the
treatment state.
• Observation space, Θa, the set of possible observations when action a is

selected. If at = M , the possible observations are a positive mammogram (M+)
or a negative mammogram (M−). If at = W , the patient can either make a
self-detection (SD+) or no self-detection (SD−). So we have ΘM = {M+,M−}
and ΘW = {SD+, SD−}. When the action corresponding with the observation
is clear from the context we will denote both SD−,M− with − and SD+,M+

with +.
• Observation probabilities. Ka

t (o|s) is the probability of making, at time t,
observation o when decision a was taken while in state s. These probabilities
are completely determined by the specificity of a mammogram - the fraction of
healthy patients having a negative mammogram - and the sensitivity of a mam-
mogram - the fraction of patients with cancer having a positive mammogram.
For example, KM

t (M−|s = ‘No cancer’) is the probability of having a negative
mammogram when the true health state of the patient is ‘No cancer’, this is
the specificity of a mammogram. We denote the specificity of mammography
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by spect(M) and of self-detection by spect(SD). Similarly, the sensitivity of
mammography is denoted by senst(s,M) and of self-detection senst(s, SD).
Note that, unlike specificity, the sensitivity of a test depends on the true health
state of the patient. From these observations we can obtain the observation
probabilities as follows:

KM
t (M−|s = 0) = spect(M)

KM
t (M+|s = 0) = 1− spect(M)

KW
t (SD−|s = 0) = spect(SD)

KW
t (SD+|s = 0) = 1− spect(SD)

KM
t (M+|s) = senst(s,M) s ∈ SPO

KM
t (M−|s) = 1− senst(s,M) s ∈ SPO

KW
t (SD+|s) = senst(s, SD) s ∈ SPO

KW
t (SD−|s) = 1− senst(s, SD) s ∈ SPO

• Core state transitions. P
(a,o)
t (·|s) is the distribution function of the tran-

sition at time t when the current state is s and action a was taken and observa-
tion o observed. Because the state space contains both discrete and continuous
states, these probability distributions can be discrete, continuous or a mixture of
both. However, since transitions within the partially observable state space are
only possible from the discrete state 0 to the cancer states and not vice versa,
it is only in this state that a mixture of a discrete and continuous probability
distribution occurs. In state 0 the transitions are as follows: With a certain
probability, say pCt , C = LRR,SP , the patient gets cancer and transitions to
the corresponding continuous state and with probability 1 − pLRRt − pSPt the
patient stays in state 0. When transitioning to the continuous state the actual
outcome is a continuous random variable. This is also the case for transitions
within the continuous states. So the growth of the tumor in state 0 is 0 with
probability 1−pLRRt −pSPt and X with probability pCt , where X is a continuous
random variable with probability density function fC(x|0). The growth in state
s ∈ SLRR, SSP is X, where X is a continuous random variable with probability
density function fC(x|s), C = LRR,SP .
• Updated belief space. τ [b, a, o] defines the belief (i.e. the probability

distribution over the partially observable states) at time t + 1 when the belief
about patient’s true health state at time t was b and action a was taken and
observation o was made. In particular, τ [b, a, o](s) = Pt+1(s|b, a, o) for s = 0
andτ [b, a, o](s) = ft+1(s|b, a, o) for s 6= 0. With slight abuse of notation (we
denote b(0)Ka

t (o|0) as
∫
S
b(s)Ka

t (o|s)ds for S = 0) we can denote the updated
belief state as:

τ [b, a, o](s′) =


∑

S∈SPO

∫
S
b(s)Ka

t (o|s)Pt(s
′|s)ds∑

S∈SPO

∫
S
b(s)Ka

t (o|s)ds if o = M−, SD−,

Pt(s
′|0) if , o = M+, SD+.

(1)

• Rewards. rt(s, a, o) is the expected number of QALYs between two decision
epochs when the true health state of the patient is s action a is taken and obser-
vation o was made. To factor in the probability that a patient dies between two
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decisions we use the half-cycle correction method [17]. The idea of this correction
method is that if the patient dies between two decision epochs it is assumed that
half of the cycle length σ is accrued to the expected number of QALYs. From
this QALYs are subtracted for the disutility of a mammogram and a biopsy,
when a patient should have one of these. Note that if the patient is in one of
the cancer states (s ∈ SLRR ∪ SSP ) and observes a positive mammogram or
makes a self-detection, then she is rewarded a lump-sum reward of Rt(s). This
is the life expectancy of the patient given that her true health state is s. So, no
QALYs are rewarded over the next decision epoch when a true positive mam-
mogram or self-detection is observed, i.e. rt(s,M,M+) = rt(s,W, SD

+) = 0.
The rewards in the treatment and death state are zero.

The expected reward between time t and t+ 1 when the true health state is
s and the action chosen is a is denoted by rt(s, a) =

∑
o∈Θa

Ka
t (o|s)rt(s, a, o).

Let rT (s) denote the total expected remaining QALYs at time T when the
patient’s true health state is s at time T .

Let pd(s) denote the probability that a patient dies between two decision
epochs when the true health state is s and disM , disB the disutility experienced
when undergoing a mammogram and a biopsy, respectively. The rewards for
t = 1, · · · , T − 1 are:

rt(s,W, SD
−) = pd(s) · 0.5σ + (1− pd(s)) · σ s ∈ SPO

rt(0,W, SD
+) = pd(s) · 0.5σ + (1− pd(s)) · σ − disB

rt(s,M,M−) = pd(s) · 0.5σ + (1− pd(s)) · σ − disM s ∈ SPO

rt(0,M,M+) = pd(s) · 0.5σ + (1− pd(s)) · σ − disM − disB
r(s, ·, ·) = 0 otherwise (2)

3 Optimality Equations

We want to derive optimality equations for the number of QALYs a patient can
obtain in order to determine the optimal policy of a patient. Let V ∗t (π) denote
this quantity when her information state is π ∈ Π(S) at time t. Likewise let
V ∗t (b) denote the same quantity when the patient’s belief state is b ∈ B(SPO).
Because the process terminates when in one of the treatment states or the death
state, V ∗t (π) can be expressed as:

V ∗t (π) =


Rt(3) π(3) = 1,
Rt(4) π(4) = 1,
V ∗t (b) ∃s ∈ SPO s.t. π(s) > 0
0 otherwise .

(3)

Let V at (b) denote the maximum total expected QALYs a patient can obtain
when at time t in belief state b and action a is chosen. Then V ∗t (b) can be
written as:

V ∗t (b) = max
a
{V at (b)} t = 1 · · ·T − 1, with
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V at (b) = b(0)Ka
t (−|0)

[
rt(0, a,−) + (1− pLRRt − pSPt )V ∗t+1(τ [b, a,−])

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)V ∗t+1(τ [b, a,−])ds

]

+
∑

C∈{LRR,SP}

(∫
SC

bC(s)Ka
t (−|s)

[
rt(s, a,−)

+

∫
SC

fCt (s′|s)V ∗t+1(τ [b, a,−])ds′

]
ds

)

+ b(0)Ka
t (+|0)

[
rt(0, a,+) + (1− pLRRt − pSPt )V ∗t+1(τ [b, a,+])

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)V ∗t+1(τ [b, a,+])ds

]

+
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (+|s)Rt(s)ds

V aT (b) = b(0)rT (0) +
∑

C∈{LRR,SP}

∫
SC

bC(s)rT (s)ds (4)

The optimality equations can be somewhat simplified by moving the parts
that do not depend on s outside the integral and by noting that

∫
S
ft(x

′|x)dx′ =
1.

V ∗t (b) = max
a

{
b(0)Ka

t (−|0)

[
rt(0, a,−) + V ∗t+1(τ [b, a,−])

]
+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)

[
rt(s, a,−) + V ∗t+1(τ [b, a,−])

]
ds

+ b(0)Ka
t (+|0)

[
rt(0, a,+) + V ∗t+1(τ [b, a,+])

]
+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (+|s)Rt(s)ds

}
t = 1 · · ·T − 1

V ∗T (b) =b(0)rT (0) +
∑

C∈{LRR,SP}

∫
SC

bC(s)rT (s)ds (5)

The optimal value function at time t = T can be interpreted as the weighted
average of the immediate reward given a certain belief about the patient’s true
health state. At time t = 1 . . . T − 1 it is the probability that a patient is
in a state, times the probability that a certain observation occurs, times the
immediate and future rewards associated with this line of events.
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3.1 Alternative Representation of the Optimality Equa-
tions

The key idea of value iteration, which is one of the most widely used methods
for solving any type of Markov decision process, is relating the optimal value
function V ∗ at time t to V ∗ at time t + 1 [18]. As derived in the previous
section the optimal value function of this particular problem is defined on the
continuous space B(SPO). So for solving the optimal value function at time
t one would need the optimal value function at time t + 1 on a continuous
space and therefore a infinite dimensional vector would be needed to store these
value functions. Fortunately it can be proven that for a POMDP the optimal
value function is piecewise linear and convex (PWLC) and can therefore be
represented as the maximum over a finite number of finite-dimensional vectors.
This result is stated in the following theorem.

Theorem 3.1 The optimal value function V ∗t (b) is piece-wise linear and con-
vex, and can thus be written as

V ∗t (b) = max
k

b(0)αk,t0 (0) +
∑

C∈{LRR,SP}

∫
SC

bC(s)αk,tC (s)ds

 , (6)

for some set of functions αk,tC (s), C ∈ {0, LRR, SP}, k = 1, 2, · · · . The term
α-function is used to refer to such a function.

The theorem can be proven by induction. The proof goes in a similar way
as the proof in the discrete case as proven by Smallwood et al.[15] and as the
proof in the continuous case as proven by Porta et al. [19].

The optimality equations can now be written in terms of the α-functions.

Proposition 3.1 The following representation of the optimality equations is
equivalent to the optimality equations given in (4).
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V ∗t (b) = max
a

{
b(0)Ka

t (−|0)

[
rt(0, a,−) + (1− pLRRt − pSPt )α

i(b,a,−),t+1
0 (0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)α
i(b,a,−),t+1
C (s)ds

]

+
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)

[
rt(s, a,−)

+

∫
SC

fCt (s′|s)αi(b,a,−),t+1
C (s′)ds′

]
ds

+ b(0)Ka
t (+|0)

[
rt(0, a,+) + max

k

(
(1− pLRRt − pSPt )αkt+1(0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)αk,t+1
C (s)ds

)]

+
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (+|s)Rt(s)ds

}
(7)

Where

i(b, a, o) = arg max
k

{
b(0)Ka

t (−|0)(1− pLRRt − pSPt )αk,t+1
0 (0)

+
∑

C∈{LRR,SP}

∫
SC

[
b(0)Ka

t (−|0)fCt (s′|0)

+

∫
SC

bC(s)Ka
t (−|s)fCt (s′|s)ds

]
αk,t+1
C (s′)ds′

}
(8)

Proof. First we derive an equivalent representation of V ∗t+1(τ [b, a, o]) in terms
of the α-functions. Substituting the expression for τ [b, a, o] from (1) into (6)
gives:

V ∗t+1(τ [b, a, o]) =



maxk

{
b(0)Ka

t (−|0)(1−pLRR
t −pSP

t )

b(0)Ka
t (−|0)+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)dsα

k,t+1
0 (0)

+
∑

C∈{LRR,SP}

∫
SC

b(0)Ka
t (−|0)fC

t (s′|0)+
∫

SC

bC(s)Ka
t (−|s)fC

t (s′|s)ds

b(0)Ka
t (−|0)+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)ds αk,t+1

C (s′)ds′
}

if o = −

maxk

{
(1− pLRRt − pSPt )αk,t+1

0 (0) +
∑

C∈{LRR,SP}
pCt
∫
SC

fCt (s|0)αk,tC (s)ds

}
if o = +

(9)

Because the parts in the denominators do not depend on s′ and k they can
be moved outside the integral and the maximum. Also, changing the order of
integration and substituting i(b, a, o) from (8), we obtain the following:
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V ∗t+1(τ [b, a, o]) =



1
b(0)Ka

t (−|0)+
∑

C∈{LRR,SP}

∫
SC

b(S)Ka
t (−|s)ds

×maxk

{
b(0)Ka

t (−|0)(1− pLRRt − pSPt )αk,t+1
0 (0)

+
∑

C∈{LRR,SP}

∫
SC

[
b(0)Ka

t (−|0)fCt (s′|0)

+
∫
SC bC(s)Ka

t (−|s)fCt (s′|s)ds
]
αk,t+1
C (s′)ds′

}
if o = −

maxk

{
(1− pLRRt − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}
pCt
∫
SC

fCt (s|0)αk,tC (s)ds

}
if o = +

(10)

V ∗t+1(τ [b, a, o]) =



b(0)Ka
t (−|0)(1−pLRR

t −pSP
t )α

i(b,a,o),t+1
0 (0)

b(0)Ka
t (−|0)+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)ds

+
b(0)Ka

t (−|0)
∑

C∈{LRR,SP}
pCt

∫
SC

fC
t (s′|0)α

i(b,a,o),t+1
C (s′)ds′

b(0)Ka
t (−|0)+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)ds

+

∑
C∈{LRR,SP}

pCt
∫

SC

bC(s)Ka
t (−|s)

∫
SC fC

t (s′|0)α
i(b,a,o),t+1
C (s′)ds′ds

b(0)Ka
t (−|0)+

∑
C∈{LRR,SP}

∫
SC

b(S)Ka
t (−|s)ds if o = −

maxk

{
(1− pLRRt − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}
pCt
∫
SC

fCt (s|0)αk,tC (s)ds

}
if o = +

(11)

Rewriting the expression for the optimal value function (5) gives:
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V ∗t (b) = max
a

{
b(0)Ka

t (−|0)

[
rt(0, a,−) + V ∗t+1(τ [b, a,−])

]
+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)

[
rt(s, a,−) + V ∗t+1(τ [b, a,−])

]
ds

+ b(0)Ka
t (+|0)

[
rt(0, a,+) + V ∗t+1(τ [b, a,+])

]
+

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (+|s)Rt(s)ds

}

= max
a

{
b(0)Ka

t (−|0)rt(0, a,−) +
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)rt(s, a,−)ds

+

[
b(0)Ka

t (−|0) +
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)ds

]
V ∗t+1(τ [b, a,−])

+ b(0)Ka
t (+|0)rt(0, a,+) +

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (+|s)Rt(s)ds

+ b(0)Ka
t (+|0)V ∗t+1(τ [b, a,+])

}
(12)

Finally, by substituting the expression derived for V ∗t+1(τ [b, a, o]) (11) into the
rewritten expression for V ∗t (b) (12) we have:
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V ∗t (b) = max
a

{
b(0)Ka

t (−|0)rt(0, a,−) +
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)rt(s, a,−)ds

+

[
b(0)Ka

t (−|0) +
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)ds

]
(13)

×

[
b(0)Ka

t (−|0)(1− pLRRt − pSPt )α
i(b,a,o),t+1
0 (0)

b(0)Ka
t (−|0) +

∑
C∈{LRR,SP}

∫
SC bC(s)Ka

t (−|s)ds

+
b(0)Ka

t (−|0)
∑
C∈{LRR,SP} p

C
t

∫
SC f

C
t (s′|0)α

i(b,a,o),t+1
C (s′)ds′

b(0)Ka
t (−|0) +

∑
C∈{LRR,SP}

∫
SC bC(s)Ka

t (−|s)ds

+

∑
C∈{LRR,SP}

∫
SC bC(s)Ka

t (−|s)
∫
SC f

C
t (s′|s)αi(b,a,o),t+1

C (s′)ds′ds

b(0)Ka
t (−|0) +

∑
C∈{LRR,SP}

∫
SC bC(s)Ka

t (−|s)ds

]

+ b(0)Ka
t (+|0)rt(0, a,+) +

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (+|s)Rt(s)ds

+ b(0)Ka
t (+|0) max

k

{
(1− pLRRt − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)αk,tC (s)ds

}}

= max
a

{
b(0)Ka

t (−|0)rt(0, a,−) +
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)rt(s, a,−)ds

+

[
b(0)Ka

t (−|0)(1− pLRRt − pSPt )α
i(b,a,o),t+1
0 (0)

+ b(0)Ka
t (−|0)

∑
C∈{LRR,SP}

pCt

∫
SC

fCt (s′|0)α
i(b,a,o),t+1
C (s′)ds′

+
∑

C∈{LRR,SP}

∫
SC

bC(s)Ka
t (−|s)

∫
SC

fCt (s′|s)αi(b,a,o),t+1
C (s′)ds′ds

]

+ b(0)Ka
t (+|0)rt(0, a,+) +

∑
C∈{LRR,SP}

∫
SC

bC(s)Ka
t (+|s)Rt(s)ds

+ b(0)Ka
t (+|0) max

k

{
(1− pLRRt − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)αk,tC (s)ds

}}
(14)

By rearranging the terms and by factorization of the last expression we obtain
the desired result. �

By combining theorem 3.1 and proposition 3.1 an explicit expression of the
α-functions can be derived. The algorithm that will be used utilizes this repre-
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sentation for solving the POMDP.

Corollary 3.1 Let α
l∗(b)
t denote the optimizing α-function for belief state b.

Then the α-functions can be expressed as:

α
l∗(b),t
0 (0) = Ka

t (−|0)

[
rt(0, a,−) + (1− pLRRt − pSPt )α

i(b,a,−),t+1
0 (0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s′|0)α
i(b,a,−),t+1
C (s′)ds′

]

+Ka
t (+|0)

[
rt(0, a,+) + max

k

{
(1− pLRRt − pSPt )αk,t+1

0 (0)∑
C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)αk,tC (s)ds

}]

α
l∗(b),t
C (s) = Ka

t (−|s)
[
rt(s, a,−) +

∫
SC

fCt (s′|s)αi(b,a,−),t+1
C (s′)ds′

]
+Ka

t (+|s)Rt(s) (15)

Where

l∗(b) = arg max
k

b(0)αk0(0) +
∑

C∈{LRR,SP}

∫
SC

b(s)αkC(s)ds

 (16)

α
l∗(b)
t can be interpreted as the maximum expected number of QALYs a patient

can attain when she follows the optimal policy.

3.2 Special Case: Exponentially Distributed Transitions

As can be seen in the results of the previous section, the expressions for the
α-functions are rather complicated. In general, we have no guarantee that
we can calculate the optimal value function explicitly without using numerical
approximation methods. However under some reasonable conditions on the
transitions, observations and rewards we can prove that the α-functions, and
thereby the optimal value function, can be obtained explicitly. This result is
presented in the following proposition and corollary.

Proposition 3.2 If the transitions are exponentially distributed and the re-
wards and observation probabilities are described by exponential functions, then

αi,tC (s) =

5∑
k=1

βk,tC e−γ
k,t
C s C ∈ {LRR,SP} (17)

For all i and t = 0 . . . T − 1 and certain parameters β and γ.

Proof. If the transitions are exponentially distributed and the rewards and
observation probabilities are described by exponential functions, then they can
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be written as:

fCt (x|s) = λe−λ
1(x−s) x > s

Ka
t (+|s) = 1− κte−κ

1
ts

Ka
t (−|s) = 1−Ka

t (+|s)

= κte
−κ1

ts

Rt(s) = ρte
−ρ1ts

pdt (s) = 1− pdt e−ν
1s

Substituting the expression for pdt (s) into the expression for the rewards (2)
gives

r(s, a, o) = pdt (s)0.5σ + (1− pdt (s))σ − µao
= ν̃te

−ν1
t s − µ̃ao

For t = T we have

αiT (s) = RT (s)

= ρte
−ρ1ts

Which is clearly of the desired form. Now suppose that αi,t+1
C (s) =

∑5
k=1 β

k,t+1
C e−γ

k,t+1
C s

for C ∈ {LRR,SP} and a certain t+ 1, then we have by corollary 3.1

αi,tC (s) = Ka
t (−|s)

[
rt(s, a,−) +

∫
SC

fCt (s′|s)αi,t+1
C (s′)ds′

]
+Ka

t (+|s)Rt(s)

= κte
−κ1

ts

[
νe−ν

1s − µao +

∫ ∞
0

λe−λ
1(x−s)

5∑
k=1

βk,t+1
C e−γ

k,t+1
C xdx

]
+
(

1− κte−κ
1
ts
)
ρte
−ρ1ts

= κtνe
−(κ1

t+ν1)s − µaoκte−κ
1
ts + ρte

−ρ1ts − κtρte−(κ1
t+ρ1t )s

+ κte
−κ1

ts

[ ∫ ∞
0

λe−λ
1(x−s)

5∑
k=1

βk,t+1
C e−γ

k,t+1
C xdx

]
= κtνe

−(κ1
t+ν1)s − µaoκte−κ

1
ts + ρte

−ρ1ts − κtρte−(κ1
t+ρ1t )s

+ κtλe
−(κ1

t−λ
1)s

[ 5∑
k=1

βk,t+1
C

∫ ∞
0

e−(λ1+γk,t+1
C )xdx

]
= κtνe

−(κ1
t+ν1)s − µaoκte−κ

1
ts + ρte

−ρ1ts − κtρte−(κ1
t+ρ1t )s

+

[ 5∑
k=1

βk,t+1
C

λ1 + γk,t+1
C

]
κtλe

−(κ1
t−λ

1)s

Which is also of the desired form. So by induction we conclude that the propo-
sition holds. �
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Remark. The proposition only holds if the parameters for the transition prob-
ability density functions (λ) are constants, so they do not depend on s or depend
on s trough an exponential relation. Also note that instead of proving the propo-
sition for the optimal α-function αl

∗(b),t we prove it for an arbitrary α-function.
The reason for this is that this simplifies the proof somewhat and that when
we solve the problem we first generate all α-functions before determining the
optimal one (see section(4)). So for solving the problem we do not need an
explicit expression for the α-function αl

∗(b),t.

With this closed form for the α-functions over the continuous states we can
easily derive an expression for the values of the α-functions in the discrete state
S = {0}.

Corollary 3.2 If the transitions are exponentially distributed and the rewards
and observation probabilities are described by exponential functions, then

αi,t0 (0) = βk,t0 αi,t+1
0 (0) + γk,t0 (18)

(19)

For all i and t = 0 . . . T − 1 and certain parameters β and γ.

Proof . By corollary 3.1 α
l∗(b),t
0 (0) is given by

α
l∗(b),t
0 (0) = Ka

t (−|0)

[
rt(0, a,−) + (1− pLRRt − pSPt )α

i(b,a,−),t+1
0 (0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s′|0)α
i(b,a,−),t+1
C (s′)ds′

]

+Ka
t (+|0)

[
rt(0, a,+) + max

k

{
(1− pLRRt − pSPt )αk,t+1

0 (0)∑
C∈{LRR,SP}

pCt

∫
SC

fCt (s|0)αk,tC (s)ds

}]

Again, since we do not need an explicit expression for the optimal α-function

α
l∗(b),t
0 (0) but instead for an arbitrary α-function we can leave out the maximum
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over k and the index i(b, a, o). This gives a simpler expression for αi,t0 (0)

αi,t0 (0) =
∑
o

Ka
t (o|0)

[
rt(0, a, o) + (1− pLRRt − pSPt )αi,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s′|0)αi,t+1
C (s′)ds′

]

= (1− pLRRt − pSPt )αi,t+1
0 (0) +

∑
C∈{LRR,SP}

pCt

∫
SC

fCt (s′|0)αi,t+1
C (s′)ds′

∑
o

Ka
t (o|0)rt(0, a, o)

= (1− pLRRt − pSPt )αi,t+1
0 (0) +

∑
C∈{LRR,SP}

pCt

∞∫
0

λe−λ
1x

5∑
k=1

βk,t+1
C e−γ

k,t+1
C xdx

+ νt − κtµa− − (1− κt)µa+

= (1− pLRRt − pSPt )αi,t+1
0 (0) +

∑
C∈{LRR,SP}

pCt λ

5∑
k=1

βk,t+1
C

∞∫
0

e−(λ1+γk,t+1
C )xdx

+ νt − κtµa− − (1− κt)µa+

= (1− pLRRt − pSPt )αi,t+1
0 (0) +

∑
C∈{LRR,SP}

pCt λ

5∑
k=1

βk,t+1
C

λ1 + γk,t+1
C

+ νt − κtµa− − (1− κt)µa+
= βk,t0 αi,t+1

0 (0) + γk,t0 �

Where the second equation follows from the fact that Ka
t (+|s) +Ka

t (−|s) = 1.

4 Algorithm

The general algorithm we use is based on the fact that the optimal value function
V ∗ is PWLC. The idea was first described by Smallwood and Sondik [15] and
later Monahan[20] and Lovejoy [21] somewhat simplified the algorithm. All these
ideas where developed for discrete-state POMDPs. Because we modeled our
problem as a continuous-state POMDP some modifications are needed, however
the main principles of the work cited remain valid for our case. The basic
outline of the algorithm is that first all possible α-functions are generated using
equation(15) then non-optimal α-functions are deleted and finally the optimal
value function is constructed using the remaining α-functions and the expression
of V ∗t (b) in theorem 3.1, see the pseudo-code below.

Algorithm. α-functions algorithm

1. Initialize. α1,T
C (s) = rT (s), for all C ∈ {0, LRR, SP} s ∈ SC , AT =

{α1
C} and t = T − 1

2. Generate. Generate At = {α1,t
C , α2,t

C · · · }C∈{0,LRR,SP} (using (20)) and
mark all α-functions.
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3. Eagle’s reduction.

(a) Select a marked α-function αi,tC . If none exists go to step 4. Other-
wise,

(b) Unmark the selected α-function and if there exists an αj,tC such that

αi,tC (s) ≤ αi,tC (s) for all s ∈ SC delete the selected α-function. Go to
step 3(a)

4. Time update. If t > 1, then t = t− 1 and go to step 2, otherwise stop.

Generating the α-functions. Let At+1 = {α1,t+1
C , α2,t+1

C , · · · }C={0,LRR,SP}
denote the set of α-functions at time t + 1. Now instead of determining the
optimal α-function αl

∗(b)t by equation (15) we generate the α-function for every

combination of an action and an αi,t+1
C , let this be denoted by α

(a,i),t
C . So we

have

At =
{
α

(W,i),t
C , α

(M,i),t
C

}i=1···||At+1||

C∈{0,LRR,SP}

with

α
(a,i),t
0 (0) =

∑
o

Ka
t (o|0)

[
rt(0, a, o) + (1− pLRRt − pSPt )αi,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫
SC

fCt (s′|0)αi,t+1
C (s′)ds′

]

α
(a,i),t
C (s) = Ka

t (−|s)
[
rt(s, a,−) +

∫
SC

fCt (s′|s)αi,t+1
C (s′)ds′

]
+Ka

t (+|s)Rt(s) C ∈ {LRR,SP}
(20)

When all the α-functions are generated for every decision epoch and the
(completely) dominated ones are deleted the optimal value function follows di-
rectly from the representation in theorem 3.1, namely:

V ∗t (b) = max
k

b(0)αk,t0 (0) +
∑

C∈{LRR,SP}

∫
SC

bC(s)αk,tC (s)ds


and because every α-function has an action associated with it (20), the optimal
action is easy to determine.

4.1 Exponential Transitions

In theorem 3.2 we have shown that in the special case that the transitions are
exponentially distributed and the rewards and observation probabilities are de-
scribed by exponential functions, then the α-functions can be obtained without
explicitly calculating the integrals in the expression for the α-functions (20).In-
stead, the α-functions then are described by the parameters β and γ and can
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be written as

α
(a,i),t
0 (0) = βt0(a, i)αi,t+1

0 (0) + γt0(a, i)

α
(a,i),t
C (s) =

5∑
k=1

βk,tC (a, i)e−γ
k,t
C (a,i)s C ∈ {LRR,SP}

For clarity we restate the expressions for the transition probability density func-
tions and the expressions for the rewards, observation probabilities and proba-
bility of death, for which we now explicitly mention where they depend on:

fCt (x|s) = λCe−λ
C,1(x−s) x > s

Ka
t (+|s) = 1− κCt e−κ

C,1
t s

Ka
t (−|s) = 1−Ka

t (+|s)

= κCt e
−κC,1

t s

Rt(s) = ρCt e
−ρC,1

t s

pdt (s) = 1− pC,dt e−ν
C,1s

r(s, a, o) = νCt e
−νC,1

t s − µC,ao

In the proofs of proposition 3.1 and corollary 3.1 we have derived explicit forms
for the various parameters that describe the α-functions in the different states
and at each decision epoch. In the pseudo-code below an algorithm is described
to obtain the parameters sequentially in the special case.

Algorithm. α-functions algorithm in the exponential case.

1. Initialize. α1,T
C (s) = rT (s) = ρT e

−ρ1T s,

define βT0 (1) = ρ0
T , γT0 (1) = ρ0,1

T , β1,T
C (1) = ρCT , γ1,T

C (1) = ρC,1T , for
C ∈ {LRR,SP}
AT = {α1}, i = 1 and t = T − 1.

2. Generate.
for j = 1 to ||At+1||

for a=W,M

βt0(a, i) = (1− pLRRt − pSPt )

γt0(a, i) =
∑

C∈{LRR,SP}

pCt λ
C

5∑
k=1

βk,t+1
C

λC,1 + γk,t+1
C

+ νCt − κCt µ
C,a
− − (1− κCt )µC,a+
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βk,tC (a, i) =



κCt ν k=1
−µC,ao κCt k=2
ρCt k=3
−κCt ρCt k=4[∑5

k=1
βk,t+1
C

λC,1+γk,t+1
C

]
κCt k=5

γk,tC (a, i) =



κC,1t + νC,1 k=1

κC,1t k=2

ρC,1t k=3

κC,1t + ρC,1t k=4

κC,1t − λC,1 k=5

end

end

3. Time update. If t > 1, then t = t− 1 and go to step 2, otherwise stop.

5 Results

As an illustration how the model can be applied in practice, we will present
results for a stratification of the patients based on their age. We will also limit
ourselves to the case in which the transitions within the continuous states (i.e.
the growth model for the tumors) are exponentially distributed and where the
observation probabilities, probability of death and the rewards are described by
exponential relations (see section 3.2). However for each stratification of the
patients and for any growth model, as long as the parameters are available, the
model can be applied. In this section we will first describe the parameters that
are needed for the model and then the results.

Parameter Source
Probability of death CBS [22]
State transitions in SPO NCR [23], Witteveen et al. 2015[5]
Disutility of a mammogram Mandelblatt et al. 1992 [24]
Disutility of a biopsy Velanovich 1995 [25]
Specificity and sensitivity of mammography Kolb et al. 2002 [26]
Specificity and sensitivity of self-detection ibid.
Survival rates NCR [23]
Life expectancy CBS [22]

Table 1: Sources of model parameters.

20



5.1 Parameters

In this section we present the input parameters and their sources. Table 1
provides a list with the sources of the model parameters. For each set of patient
characteristics the parameters will differ.

The probability that a healthy patient dies between two decision epochs
depends on the age of the patient and is obtained from Statistics Netherlands
(Centraal Bureau voor de Statistiek) [22]. Whenever the age of patients in a
certain group differs we will use the probability of death for the average age,
e.g. when the age in a group is between 40 and 50 we use the probability of
death of a 45 year old woman.

The state transition probabilities between the discrete and the continuous
states, i.e. the probability that a patient gets a second primary tumor or a
locoregional recurrence between two decision epochs, are obtained from the
Netherlands Cancer Registry (NCR) [23][5]. The estimates for the transitions
within the continuous states (i.e. the grow rates of a second primary tumor
and of a locoregional recurrence) are also obtained from the NCR [23]. The
estimations of the disutility of a mammogram vary between 0.5 and 1.5 days
[24], so we use an estimate of one day. The disutility of a biopsy is estimated
between two and four weeks [25], in our model we take the average of three weeks.
We assume that these disutilities are the same for all ages. The specificity and
sensitivity of both mammography and self-detection are obtained from Kolb et
al. [26].

The lump-sum rewards and the end rewards are based on the life expectancy
of a healthy patient. The expected remaining life years of an average patient at
the start of the follow-up and at the end are used to construct a linear function
of the life expectancy of a healthy patient at time t = 1 · · ·T . The expected
remaining life years for patients in the different cancer states, i.e. the lump-
sum and the end rewards, are modeled to be exponentially decreasing with the
growth of the tumor. These exponential relations are based on the 10-year
survival rates for the different groups, which are also obtained from the NCR
[23].

For several of the input parameters the precise values are not available. The
core state transitions, for instance, are based on the current policy of annual
mammography. The probabilities will therefore be slightly shifted in time e.g.
if in reality a patient is most likely to get a LRR after 14 months it will not
be detected for at least 10 months when the next mammogram is taken, so the
transition probabilities will suggest a later time at which the patient is most
likely to get a LRR. Also it is very hard to give a precise estimation of the
growth model for both a LRR and a SP.

5.2 Results

Since the optimal policy will vary for different categories of patients, we will
present the results for four basic categories. These categories serve as an illus-
tration and since age is known to be of great influence on the risk of a LRR
we choose this factor as an illustration. The reader should bear in mind that
the model can be applied to much more specified categories of patients. The
patients in the first category are upto 50 years old, in the second category 50-59
years old, in the third category 60-69 years old and in the fourth category 70
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years old and above.
Since the probability of getting cancer is small (≈ 0.01) and the specificity

of both mammography and self-detection is high (≈ 0.99), the majority ( ap-
proximately 85%) of patients will never have a positive mammogram or a self-
detection. We therefore present the optimal policy for a patient that never has a
positive mammogram or a self-detection. The optimal policies for these patients,
for each of the four categories, are given in figure 2. The bar charts represent
the probability of cancer in every interval. This probability is divided in the
probability of a LRR (in blue) and of a SP (in red). Above the probabilities the
optimal action at each decision epoch is given.

Age <50 Age 50-59

Age 60-69 Age ≥ 70

Figure 2: Probability of a LRR (blue) and a SP (red) and the optimal policy for
different age categories. W means it is optimal to wait, M means it is optimal
to make a mammogram.

As one can see it is optimal to intensify the screening when the probability
of a LRR peaks and just after that. Also that as the age of the patient increases,
the optimal number of mammograms decreases. This is because the probability
of a recurrence is lower for older patients and the remaining life expectancy is
lower, so their is less to gain by early detection.
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6 Conclusions & Discussion

Currently breast cancer patients in the Netherlands have annual check-ups after
treatment. Even though it is known that many factors, such as age, character-
istics of the primary tumor and of treatment are of great influence on the risk
of a LRR, the follow-up is the same for all patients. Individual mammogra-
phy follow-up decisions based on personal risk characteristics are proposed by
the national guideline of the Netherlands but without results in practice. In
earlier research this sort of problems are modeled by discrete-state POMDPs
[8] [7]. Because of limitations, discussed earlier, we model the problem as a
continuous-state POMDP. For this POMDP we derive an expression for the
optimal value function. for this optimal value function we proof an alterna-
tive representation described by so called α-functions. From this alternative
description an iterative scheme can be deduced in order to obtain the optimal
value function for every belief state and at every decision epoch. In general, the
solution algorithm for the optimal value function can only be calculated with
numerical methods. However, we proof that under some restrictions on the
dynamics of the underlying Markov chain we can calculate the optimal value
function without approximating. The restriction that we make on the dynamics
of the underlying Markov chain are that we assume that the transition prob-
abilities are exponentially distributed and that the rewards are described by
an exponential relationship. Similar results may be derived for various specific
transition probability distributions, depending on the context of the problem.

As an illustration of how this model may be used in practice we calculate the
optimal policy for groups of patients. Because the age of the patients is known
to be of large influence on the risk of a recurrence we make a stratification of
the patients based on their age. The outcome suggests that it is optimal to test
the patient more often just after the peak of risk of a recurrence and to reduce
the number of tests when the age increases. For the oldest group op patients it
seems optimal to not test at all.

Compared with the discrete model [7] there are some differences and some
similarities. As with the discrete model the results suggest that it is optimal to
reduce the number of mammograms as the age of the patient increases. Both
models also suggest that the testing should be intensified just after the peak in
the probability of a recurrence. The optimal number of mammograms differs,
especially for the eldest group of patients.

In our study we choose to have a constant fixed time between two decision
epochs. It would of course be more preferable to have the possibility of testing
at time in the follow-up phase. However, from literature it is known that there
are no exact solution methods for continuous-time POMDPs. The solution
methods for continuous-time POMDPs all use discretization and therefore the
POMDP reduces to the model we present in this study. Because we model over
a finite time horizon the time between two decision epochs can be reduced to
any sensible length without making the solution algorithm intractable.

A possible further refinement of this model would be to investigate variable
time steps. This would exploit the benefits of a continuous time model without
getting an intractable model.

The biggest limitation of our study is that the estimates for some of the
model parameters are quite inexact and that the outcomes are rather sensitive
for these parameters, this is in particular the case for the growth model of
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the LRR and SP tumors. Therefore, without further study to obtain better
estimates, the model cannot be used to give recommendations for exact testing
policies.
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M. Piccart, B. D. Smith, V. C. G. Tjan-Heijnen, C. J. H. van de Velde,
K. J. V. Zee, J. B. Vermorken, G. Viale, A. C. Voogd, I. L. Wapnir, J. R.
White, and M. L. Smidt, “Maastricht delphi consensus on event definitions
for classification of recurrence in breast cancer research,” Journal of the
National Cancer Institute, vol. 106, no. 12, pp. 1–7, 2014, http://dx.doi.
org//10.1093/jnci/dju288.

[3] IKNL, “Richtlijnen oncologische zorg,” 2017, [accessed 7-March-2017].
[Online]. Available: http://www.oncoline.nl/

[4] S. M. E. Geurts, F. de Vegt, S. Siesling, K. Flobbe, K. K. H. Aben, M. van
der Heiden-van der Loo, A. L. M. Verbeek, J. A. A. M. van Dijck, and
V. C. G. Tjan-Heijnen, “Pattern of followup care and early relapse detection
in breast cancer patients,” Breast Cancer Res Treat, vol. 136, pp. 859–868,
2012, http://dx.doi.org/10.1007/s10549-012-2297-9.

[5] A. Witteveen, I. M. H. Vliegen, G. S. Sonke, J. M. Klaase, M. J. IJzer-
man, and S. Siesling, “Personalisation of breast cancer follow-up: a time-
dependent prognostic nomogram for the estimation of annual risk of locore-
gional recurrence in early breast cancer patients,” Breast Cancer Research
and Treatment, vol. 152, pp. 627–636, 2015, http://dx.doi.org/10.1007/
s10549-015-3490-4.

[6] L. N. Steimle and B. T. Denton, Markov Decision Processes for
Screening and Treatment of Chronic Diseases. Springer International
Publishing, 2017, pp. 189–222. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-47766-4 6

[7] J. W. M. Otten, A. Witteveen, I. M. H. Vliegen, S. Siesling, J. B. Timmer,
and M. J. IJzerman, Stratified Breast Cancer Follow-Up Using a Partially
Observable MDP. Springer International Publishing, 2017, pp. 223–244.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-47766-4 7

[8] T. Ayer, O. Alagoz, and N. K. Stout, “A pomdp approach to personalize
mammography screening decisions,” Operations Research, vol. 60, no. 5,
pp. 1019–1034, 2012, http://dx.doi.org/10.1287/opre.1110.1019.

[9] M. U. S. Ayvaci, O. Alagoz, and E. S. Burnside, “The effect of budgetary
restrictions on breast cancer diagnostic decisions,” MSOM, vol. 14, no. 4,
pp. 600–617, 2012, http://dx.doi.org/10.1287/msom.1110.0371.

25

http://dx.doi.org/10.1007/s10549-008-0023-4
http://dx.doi.org/10.1007/s10549-008-0023-4
http://dx.doi.org//10.1093/jnci/dju288
http://dx.doi.org//10.1093/jnci/dju288
http://www.oncoline.nl/
http://dx.doi.org/10.1007/s10549-012- 2297-9
http://dx.doi.org/10.1007/s10549-015-3490-4
http://dx.doi.org/10.1007/s10549-015-3490-4
http://dx.doi.org/10.1007/978-3-319-47766-4_6
http://dx.doi.org/10.1007/978-3-319-47766-4_6
http://dx.doi.org/10.1007/978-3-319-47766-4_7
http://dx.doi.org/10.1287/opre.1110.1019
http://dx.doi.org/10.1287/msom.1110.0371


[10] J. Zhang, B. T. Denton, H. Balasubramanian, N. D. Shah, and B. A. Inman,
“Optimization of psa screening policies: a comparison of the patient and
societal perspectives,” Medical Decision Making, vol. 32, no. 1, pp. 337–349,
2012, http://dx.doi.org/10.1177/0272989X11416513.

[11] J. M. Porta, M. T. J. Spaan, and N. Vlassis, “Robot planning in partially
observable continuous domains,” in Robotics: Science and Systems. MIT
Press, 2005, pp. 217–224.

[12] J. M. Porta, N. Vlassis, M. T. Spaan, and P. Poupart, “Point-based value
iteration for continuous pomdps,” J. Mach. Learn. Res., vol. 7, pp. 2329–
2367, Dec. 2006.

[13] M. Duff, “Optimal learning: Computational procedures for bayes-adaptive
markov decision processes,” Ph.D. dissertation, University of Massas-
sachusetts, 2002.
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