
A comparison of FFT processor designs

Simon Dirlik
Computer Architecture for Embedded Systems
Department of EEMCS, University of Twente

P.O. Box 217, 7500AE Enschede, The Netherlands
s.dirlik@student.utwente.nl

December 2, 2013

Supervisors:
Dr. Ir. André Kokkeler
Ir. Bert Molenkamp
Dr. Ir. Sabih Gerez

Ir. André Gunst
Ing. Harm Jan Pepping

Abstract

ASTRON is the Netherlands Institute for Radio Astronomy. They operate, among others, LOFAR (Low
Frequency Array), which is a radio telescope using a concept based on a large array of omni-directional an-
tennas. The signals from these antennas go through various processing units, one of which is an FFT processor.

In the current LOFAR design, FPGAs are used for this, since the numbers are too small to afford custom
chips. For future astronomical applications, especially for the SKA telescope, a more specific chip solution is
desired. SKA will be much larger than LOFAR and use many more processing elements. As power consumption
is a major concern, the FPGAs are unsuitable and they need to be replaced with ASICs.

The energy consumption of the FPGAs is compared to the energy comsumption of the same FFT design
implemented on an ASIC. For the FPGA synthesis and power calculation, Quartus is used. The ASIC was
synthesized with Synopsys Design Compiler using 65nm technology. The energy usage is reduced from 0.84µJ
per FFT on the FPGA to 0.41µJ per FFT on the ASIC.

Four new ASIC designs are compared to the existing one, in search of a better solution. An approach that
uses the minimal amount of memory (SDF), and one that uses more memory for faster calculation (MDC)
are implemented for both radix-2 and radix-4 designs. Different complex multipliers and different methods of
storing the twiddle factors are also compared.

The fast calculating radix-2 design gives the best results. Combined with a complex multiplier that uses
Gauss’ complex multiplication algorithm and a twiddle factor component based on registers, the energy com-
sumption per FFT can be reduced to 0.33µJ.

Contents

1 Introduction 3
1.1 Radio astronomy . 3
1.2 ASTRON & LOFAR . 3
1.3 Fast Fourier Transform (FFT) . 4
1.4 Goals . 4

2 Description of the FFT 5
2.1 Decimation in time . 5

2.1.1 Butterflies . 5
2.2 Decimation in frequency . 6
2.3 Bit-reversed order . 7
2.4 Radix-4 . 8
2.5 Split-radix . 9
2.6 Radix-2n . 9

2.6.1 Radix-22 . 10
2.6.2 Radix-23 . 11

3 Architectures 12
3.1 Single-memory architectures . 12
3.2 Dual-memory architectures . 12
3.3 Pipelined architectures . 12
3.4 Array architectures . 14

4 FFT implementations presented in literature 15
4.1 ASIC Design of Low-power Reconfigurable FFT processor [1] 15
4.2 A Low-Power and Domain-Specific Reconfigurable FFT Fabric for System-on-Chip Applications

[2] . 16
4.3 ASIC implementation of a 512-point FFT/IFFT Processor for 2D CT Image Reconstruction

Algorithm [3] . 16
4.4 An Efficient FFT/IFFT Architecture for Wireless communication [4] 17
4.5 Design And Implementation of Low Power FFT/IFFT Processor For Wireless Communication [5] 18
4.6 Low-power digital ASIC for on-chip spectral analysis of low-frequency physiological signals [6] 18
4.7 Low Power Hardware Implementation of High Speed FFT Core [7] 19
4.8 ASIC Implementation of High Speed Processor for Calculating Discrete Fourier Transformation

using Circular Convolution Technique [8] . 19
4.9 Comparison . 20
4.10 Discussion of the results . 21

5 Description of the implemented designs 22
5.1 ASTRON’s implementation . 22

5.1.1 Avoiding overflow . 22
5.2 New Radix-2 DIF implementations . 23

5.2.1 Variant 1 (NEWv1) . 23
5.2.2 Variant 2 (NEWv2) . 24
5.2.3 Complex multipliers . 25
5.2.4 Twiddle factors . 25

5.3 Radix-4 DIF implementation . 26
5.3.1 Variant 1 (NEWR4v1) . 26
5.3.2 Variant 2 (NEWR4v2) . 27

5.4 Synthesized combinations of components . 28

6 FPGA versus ASIC using ASTRON’s design 29
6.1 Area . 29
6.2 Power and Energy . 29

1

7 Comparison of ASTRON design with new designs 31
7.1 Area . 31
7.2 Power and Energy . 31
7.3 Comparison using FOMs . 33

8 Discussion 34
8.1 FPGA versus ASIC . 34
8.2 Design . 34
8.3 Components . 35

9 Conclusion 36
9.1 Recommendations & Future Work . 36

List of abbreviations 37

References 39

2

1 Introduction

1.1 Radio astronomy

Radio astronomy is a subfield of astronomy that studies celestial objects by capturing the radio emission from
these objects. The field has attributed much to the astronomical knowledge since the first detection of radio
waves from an astronomical object in the 1930s. Most notably are the discovery of new classes of objects such
as pulsars, quasars and radio galaxies.

1.2 ASTRON & LOFAR

ASTRON is the Netherlands Institute for Radio Astronomy. They operate, among others, LOFAR (Low
Frequency Array), which is a radio telescope using a concept based on a large array of omni-directional
antennas. The signals from these antennas are combined using beamforming, to make this a very sensitive
telescope. LOFAR consists of about 7000 small antennas which are concentrated in 48 stations in total. 24 of
these stations are grouped in the core area of the LOFAR, which is about 2-3km2 and is located near Exloo in
the Netherlands. There are 14 remote stations also in the Netherlands and there are 8 international stations,
of which 5 are located in Germany, while France, Sweden and the UK each have 1 station. There are 2 more
stations in the Netherlands which are not operational yet.
There are 2 types of antennas; Low Band Antennas (LBA) which are capable of observing the range between
10 and 90 MHz, but are optimized for the 30-80MHz range. Furthermore, there are High Band Antennas
(HBA), which are capable of observing the range between 110MHz and 240MHz, but are optimized for the
120-240MHz range. The data from the antennas is digitized and processed at the station level before it is
transferred to the BlueGene/P supercomputer at the University of Groningen where signals from all stations
are combined and processed. Figure 1 shows the signal path.

Figure 1: LOFAR signal path. On the left-hand side the station processing, on the right-hand side the
processing at the supercomputer centre in Groningen. (this picture was taken from the ASTRON website)

The raw signals first pass the digital Receiver Units (RCU), where they go through some analogue filters to
suppress unwanted radio signals. The filtered signals are digitized using a 12-bit ADC at a sampling frequency
of either 160MHz (80MHz total bandwidth) or 200MHz (100MHz total bandwidth). The digital signal can go
to 2 different types of boards, the Transient Buffer Boards (TBB) and the Remote Station Processing (RSP)
boards. The TBB stores the last 1.3s of data in memory buffers. This data can be stored on a separate
memory, if an algorithm running on a local FPGA fires a trigger or if an explicit command is given to the
TBB. The saved data can then be analysed offline. The RSP splits the signal into 512 subbands using a
polyphase filter (PPF) which is followed by a 1024-point FFT. The most common processing step on the
separated signals is beamforming based on digital phase rotation. The beam-formed signals are then sent to
the BlueGene/P over the wide area network (WAN). The BlueGene/P supercomputer does all further (online)
processing, it can perform delay compensation, FFT, PPF etc. The results from the BlueGene/P and the
TBBs are stored on the post-processing cluster, where more (offline) processing can be done like averaging,
calibration, imaging etc.

3

1.3 Fast Fourier Transform (FFT)

The FFT is an algorithm introduced in 1965[9], which computes the Discrete Fourier Transform (DFT) in a
fast way. The DFT, which is an adaptation of the original Fourier Transform (FT)[10], operates on discrete
input signals, as opposed to the FT which is only defined for continuous input signals. The FT decomposes
an input signal into a (infinite) list of sinusöıds of which the original signal consists. So the output of the
FT, which are amplitudes of frequency components, can be used to process and manipulate the signal. One
example is to reduce noise in an image or audio stream by filtering out the noisy frequencies. Another example
is data compression; in some audio files for instance, inaudible frequencies are filtered out. But the applications
in digital signal processing are many; from solving differential equations to wireless communication.

1.4 Goals

Within LOFAR, the FFT is done on a field-programmable gate array (FPGA). The intention is to investigate
the implementation of the FFT on an application-specific integrated circuit (ASIC). An ASIC is an integrated
circuit designed to perform one specific task very efficiently in terms of speed and power. This is opposed
to a general purpose integrated circuit, which is designed to perform many tasks but does so much less ef-
ficiently. Though FPGAs are more flexible than ASICs, they are not as efficient. The next phased array,
the Square Kilometer Array (SKA)[11], will be much larger than LOFAR and use many more FFT processing
elements. As power consumption is a major concern, the FPGAs are unsuitable and they need to be replaced
with ASICs. Currently, the FPGAs perform 1024-point FFTs on 16-bit data. Their clock speeds are 200MHz
and with 1 FFT every 1584 clock cycles, they can perform more than 126k FFT’s/second. The goal of this
research is to find out what architectures and implementation techniques are most suitable for this specific case.

The first goal is to find out how much of a difference an ASIC will make compared to an FPGA. The
main focus of this comparison will be the power consumption. To find out, the current implementation will
be synthesized using Quartus for the Stratix IV FPGA it runs on now. Synopsys Design Compiler will be used
to synthesize the same design for an ASIC.

The second goal is to find out what implementation techniques and architectures are most power efficient. To
find out, four more implementations will be made based on different architectures. All designs will however
be pipelined architectures, since they are most suitable for high throughput applications (chapter 3). Within
these designs, different implementation techniques will be used to see how they affect power consumption.
These designs will be synthesized for an ASIC using Synopsys Design Compiler. They will then be compared
with each other and with ASTRON’s implementation on ASIC.

4

2 Description of the FFT

Equation 1 shows the Discrete Fourier Transform. In this equation x0...xN−1 are the input samples.

Xk =

N−1∑
n=0

xn · e−2πin k
N , k = 0, 1...N − 1 (1)

The number of operations using a direct calculation would be in the order O(N2). By using a divide-and-
conquer algorithm, the FFT requires O(Nlogr(N)) operations. The radix, r, stands for the number of parts
that the input signal will be divided into. The radix-2 algorithm is the simplest and most used form, it divides
the input signal into 2 parts. The FFT of the two parts can be calculated separately and can then be combined
to form the complete DFT. This dividing into smaller parts is done recursively, requiring the number of samples
of the input, N, to be a power of 2[10][12].

2.1 Decimation in time

The input signal can be divided into 2 interleaved parts (odd and even n), this is called decimation in time
(DIT). Equations 2a to 2d show the mathematical expressions behind dividing the input signal using the radix
2 DIT algorithm. The input x0...xN−1 will be divided into even and odd indices: n = 2m and n = 2m + 1.
W k
N is called the twiddle factor.

Xk =

N−1∑
n=0

xn ·W kn
N (2a)

=

N/2−1∑
m=0

x2m ·W k(2m)
N +

N/2−1∑
m=0

x2m+1 ·W k(2m+1)
N (2b)

=

N/2−1∑
m=0

x2m ·W km
N/2 +

N/2−1∑
m=0

x2m+1 ·W km
N/2W

k
N (2c)

=

N/2−1∑
m=0

x2m ·W km
N/2 +W k

N

N/2−1∑
m=0

x2m+1 ·W km
N/2 (2d)

W kn
N = e−2πi knN (2e)

Equation 2d shows that only N/2 length DFTs need to be computed. The DFT is periodic which is shown
in Equation 3a and the same calculation can be done for the half-length DFTs in equation 2d. The twiddle
factor is also periodic, equation 3c shows that the only difference is that the sign changes. This periodicity is
exploited by the algorithm to gain speed; it re-uses the computations for outputs of k = 0...(N/2)− 1, in the
computations for the outputs of k = N/2...N − 1.

N−1∑
n=0

xn · e−2πin k+NN =

N−1∑
n=0

xn · e−2πin k
N e−2πin =

N−1∑
n=0

xn · e−2πin k
N (3a)

e−2πin = 1 (3b)

e−2πi
k+N/2
N = e−2πi kN e−πi = −e−2πi kN (3c)

e−πi = −1 (3d)

2.1.1 Butterflies

The input is recursively divided into smaller DFTs. Size-2 DFTs are the smallest components of the FFT. The
equations for a size-2 DFT are shown in (4a) and (4b).

X0 = x0 + x1 ·W 0 (4a)

X1 = x0 + x1 ·W 1 (4b)

5

The data flow diagram of a size-2 DFT is presented in figure 2. This diagram is called a butterfly. Figure 2a
shows a straightforward way of interpreting the formulas. Using equations 3c-3d, this can be rewritten into
equations (5a) and (5b). Figure 2b shows the improved butterfly diagram.

X0 = x0 + x1 ·W 0 (5a)

X1 = x0 − x1 ·W 0 (5b)

(a) X0 = x0 + x1 ·W 0 and X1 = x0 + x1 ·W 1 (b) X0 = x0 + x1 ·W 0 and X1 = x0 − x1 ·W 0

Figure 2: Size-2 DFT butterfly

For larger FFT’s this can be recursively extended, as shown in figure 3 for an 8-point FFT. This figure shows
that the input values are not in order, this is explained in section 2.3. The figure also shows that there are 3
stages. Equation 6a shows that the number of stages depend on the size of the FFT, N , and the radix, r.
The number of groups, g, in a stage can be calculated using Equation 6b, where s is the stage number, and
the number of butterflies per group, b, can be calculated using equation 6c.

S = logr(N) = log2(8) = 3 (6a)

g = N/rs (6b)

b = rs−1 (6c)

Each stage has N/2 multiplications, N/2 sign inversions and N additions, so each stage can be done in
O(N) time. As explained before, there are logr(N) stages, making the order of the complete algorithm
O(Nlogr(N)).

2.2 Decimation in frequency

Another way to compute the DFT is to use the decimation in frequency (DIF) algorithm. This algorithm splits
the DFT formula into two summations, one over the first half (0...N/2 − 1) and one over the second half
(N/2...N − 1) of the inputs. The derivation is shown in equations 7a-7d and equations 8a-8b.

Xk =

N/2−1∑
n=0

xn ·W kn
N +

N−1∑
n=N/2

xn ·W kn
N (7a)

=

N/2−1∑
n=0

xn ·W kn
N +W

Nk/2
N

N/2−1∑
n=0

xn+N
2
·W kn

N (7b)

=

N/2−1∑
n=0

(
xn + (−1)k · xn+N

2

)
W kn
N (7c)

W
Nk/2
N = (−1)k (7d)

In equation 7c, the output, Xk, can now be split into interleaved parts, as opposed to DIT where the input
was split.

X2k =

N/2−1∑
n=0

(
xn + xn+N

2

)
W kn
N/2, k = 0, 1...

N

2
− 1 (8a)

6

Figure 3: Size-8 DIT FFT; the red dotted lines separate the stages, the blue dashed lines separate the groups.

X2k+1 =

N/2−1∑
n=0

(
xn − xn+N

2

)
Wn
NW

kn
N/2, k = 0, 1...

N

2
− 1 (8b)

The basic butterfly operation following from this, is shown in equations 9a-9b. Figure 4 shows that the data
flow diagram is very similar to a DIT butterfly. The main difference is that the twiddle factor multiplication
occurs at the end of the butterfly instead of at the beginning.

X0 = x0 + xN
2

(9a)

X1 = x0 − xN
2
·W 0

N (9b)

Figure 4: DIF butterfly

Figure 5 shows an 8-point DIF FFT. Equations 6a-6c still apply here, only the stage number, s, has to be
reversed. The DIF algorithm requires the same amount of operations as the DIT algorithm.

2.3 Bit-reversed order

Figure 3 shows that in a DIT FFT, the inputs need to be rearranged, figure 5 shows that in a DIF FFT, the
outputs need to be rearranged in the same order. Equation 10 shows that the correct order can be obtained

7

Figure 5: Size-8 DIF FFT; the red dotted lines separate the stages, the blue dashed lines separate the groups.

by reversing the bits in the binary representation of the index.

0→ (000) < bit-reversal > (000)→ 0

1→ (001) < bit-reversal > (100)→ 4

2→ (010) < bit-reversal > (010)→ 2

3→ (011) < bit-reversal > (110)→ 6

4→ (100) < bit-reversal > (001)→ 1

5→ (101) < bit-reversal > (101)→ 5

6→ (110) < bit-reversal > (011)→ 3

7→ (111) < bit-reversal > (111)→ 7

(10)

2.4 Radix-4

Using a higher radix to calculate the FFT has advantages and disadvantages. The radix-4 algorithm will be
used to show the differences between radix-2 and higher radix FFTs.
The radix-4 algorithms split the DFT in equation 1 into 4 parts analogously to the radix-2 algorithms. The
DIT algorithm is shown in equations 11a-11c.

Xk =

N−1∑
n=0

xn ·W kn
N (11a)

=

N/4−1∑
m=0

x4m ·W km
N/4+

N/4−1∑
m=0

x4m+1 ·W km
N/4W

k
N+

N/4−1∑
m=0

x4m+2 ·W km
N/4W

2k
N +

N/4−1∑
m=0

x4m+3 ·W km
N/4W

3k
N (11b)

=

N/4−1∑
m=0

x4m ·W km
N/4+W

k
N

N/4−1∑
m=0

x4m+1 ·W km
N/4+W

2k
N

N/4−1∑
m=0

x4m+2 ·W km
N/4+W

3k
N

N/4−1∑
m=0

x4m+3 ·W km
N/4 (11c)

Equations 12a-12d show the resulting equations for a butterfly and how they can be rewritten using equations
3b-3d. The butterfly itself is shown in figure 6.

X0 = x0 + x1 + x2 + x3 (12a)

8

X1 = x0 + x1 ·W 1 + x2 ·W 2 + x3 ·W 3 = x0 − x1 · jW 0 − x2 ·W 0 + x3 · jW 0 (12b)

X2 = x0 + x1 ·W 2 + x2 ·W 4 + x3 ·W 6 = x0 − x1 ·W 0 + x2 ·W 0 − x3 ·W 0 (12c)

X3 = x0 + x1 ·W 3 + x2 ·W 6 + x3 ·W 9 = x0 + x1 · jW 0 − x2 ·W 0 − x3 · jW 0 (12d)

Figure 6: Radix-4 DIT butterfly.

The radix-4 butterfly requires 3 complex multiplications and 12 complex additions. For a N-point FFT that
gives (3N/4)log4(N) = (3N/8)log2(N) multiplications and (3N)log4(N) = (3N/2)log2(N) additions. Com-
pared to a radix-2 FFT, this reduces the number of multiplications by 25% and increases the number of
additions with 50%. A disadvantage of the radix-4 algorithm is that it is only applicable for size 4n FFTs.

2.5 Split-radix

The split-radix algorithm uses both radix-2 and radix-4 parts to compute an FFT. Equation 8a shows that
the even part of the radix-2 DIF algorithm does not need any additional multiplications. The odd part does
require multiplication by Wn

N . This makes the radix-2 more suitable for the even part and radix-4 for the odd
part of the FFT. The FFT is therefore split into equations 13a-13c

X2k =

N/2−1∑
n=0

(
xn + xn+N

2

)
W kn
N/2 (13a)

X4k+1 =

N/4−1∑
n=0

[(
xn − xn+N

2

)
− j

(
xn+N

4
− xn+ 3N

4

)]
Wn
NW

kn
N/4 (13b)

X4k+3 =

N/4−1∑
n=0

[(
xn − xn+N

2

)
− j

(
xn+N

4
− xn+ 3N

4

)]
W 3n
N W kn

N/4 (13c)

This results in the L-shaped butterfly shown in figure 7, which can be recursively extended for larger N .
The number of complex multiplications is (N/3)log2N , which is less than radix-4. The number of complex
additions is (N)log2N , which is the same as radix-2. This means that the split-radix algorithm uses the lowest
number of operations. Another advantage over high-radix algorithms is that it is applicable to FFTs of size
2n. A disadvantage is that the structure is irregular, which makes it more difficult to implement[13][14].

2.6 Radix-2n

The radix-2n or cascade decomposition algorithms have the same number of complex multiplications as radix-4
(for radix-22), but it has the structure of a radix-2 FFT. The idea is to consider the first 2 steps of radix-2
decomposition together by applying a (n+1) dimensional map.

9

Figure 7: Split-radix DIF butterfly. One more radix-2 butterfly is needed for a 4-point FFT, but it was omitted
to show the L-shape.

2.6.1 Radix-22

Equations 14a-14b show the 3-dimensional mapping for n=2. The decomposition using the Common Factor
Algorithm [15][16], is shown in 15a-15b.

n =<
N

2
n1 +

N

4
n2 + n3 > N (14a)

k =< k1 + 2k2 + 4k3 > N (14b)

X(k1 + 2k2 + 4k3) =

N/4−1∑
n3=0

1∑
n2=0

1∑
n1=0

x(
N

2
n1 +

N

4
n2 + n3)W

(N2 n1+
N
4 n2+n3)(k1+2k2+4k3)

N (15a)

=

N/4−1∑
n3=0

1∑
n2=0

[
Bk1N/2(

N

4
n2 + n3)W

(N4 n2+n3)k1
N

]
W

(N4 n2+n3)(2k2+4k3)

N (15b)

Bk1N/2(
N

4
n2 + n3) = x(

N

4
n2 + n3) + (−1)k1x(N

4
n2 + n3 +

N

2
) (15c)

Equation 15c shows the structure of the butterfly. Computing the part between the square brackets in equation
15b before further decomposition, will result in an ordinary radix-2 DIF FFT. The idea of this algorithm is to
decompose the FFT further, including the twiddle factor, so it is cascaded into the next step of decomposition.
This exploits the easy values of the twiddle factor (1, -1, j, -j). Equations 16a-16b show the decompostion of

W
(N4 n2+n3)k1
N .

W
(N4 n2+n3)k1
N W

(N4 n2+n3)(2k2+4k3)

N =WNn2n3

N W
N
4 n2(k1+2k2)

N W
n3(k1+2k2)
N W 4n3k3

N (16a)

= (−j)n2(k1+2k2)W
n3(k1+2k2)
N W 4n3k3

N (16b)

After equation 16b is subsituted in equation 15b and index n2 is expanded, this results in a set of 4 FFTs of
length N/4. This is shown in equations 17a-17b.

X(k1 + 2k2 + 4k3) =

N/4−1∑
n3=0

[
H(k1, k2, n3)W

n3(k1+2k2)
N

]
Wn3k3
N/4 (17a)

H(k1, k2, n3) =

[
x(n3) + (−1)k1x(n3 +

N

2
)

]
+ (−j)(k1+2k2)

[
x(n3 +

N

4
) + (−1)k1x(n3 +

3N

4
)

]
(17b)

The parts between the square brackets correspond to the cascading of radix-2 butterfly stages[16][17]. This
is shown in 8. The radix-22 algorithm requires log4(N) stages with N non-trivial multiplications, giving it a
complexity of Nlog4(N) = N/2log2(N). This is the same as the radix-2 algorithm.

10

Figure 8: Radix-22 butterfly.

2.6.2 Radix-23

The equations for a radix-23 algorithm can be derived in a similar fashion, the results are shown in equations
18a-18d and in figure 9.

X(k1 + 2k2 + 4k3 + 8k4) =

N/8−1∑
n4=0

[
T (k1, k2, k3, n4)W

n4(k1+2k2+4k3)
N

]
Wn4k4
N/8 (18a)

T (k1, k2, k3, n4) = HN/4(k1, k2, n4) +W
N
8 (k1+2k2+4k3)

N HN/4(k1, k2, n4 +
N

8
) (18b)

HN/4(k1, k2, n4) = BN/2(k1, n4) + (−j)(k1+2k2)BN/2(k1, n4 +
N

4
) (18c)

BN/2(k1, n4) = x(n4) + (−1)k1x(n4 +
N

2
) (18d)

Figure 9: Radix-23 butterfly.

Equation 19 shows how the twiddle factor can be expanded to allow for a fixed-coefficient multiplier, which
is more efficient than a general purpose multiplier. This makes the complexity of this algorithm Nlog8(N) =
N/3log2(N), which is the same as the split radix algorithm.

W
N
8 (k1+2k2+4k3)

N = (−1)k3(−j)k2W
N
8 k1
N = (−1)k3(−j)k2

(√
2

2
(1− j)

)k1
(19)

11

3 Architectures

There are many ways to implement the FFT algorithm. But when implementing the FFT in hardware (e.g.
FPGA or ASIC), there are four main types of processing architectures[18]:

• Single-memory architectures

• Dual-memory architectures

• Pipelined architectures

• Array architectures

We will discuss these architectures shortly in this chapter[18].

3.1 Single-memory architectures

The single-memory approach is the simplest of the architectures. First the input values of an N-point FFT
are loaded into memory, so the system needs a memory bank of at least N words. Then the first stage is
calculated and its results stored back in memory, this can be done in-place. Those results are then used in the
next stage and so on.

Figure 10: Simple diagram of a Single-memory architecture

3.2 Dual-memory architectures

The dual-memory approach is similar to the previous approach. However in this architecture the results of the
first stage are stored in a second memory bank, which allows for reading, computing and writing to occur in
one cycle. In the second stage the input is taken from the second memory bank and the results are stored in
the first, this goes back and forth until all stages are completed.

Figure 11: Simple diagram of a Dual-memory architecture

3.3 Pipelined architectures

In a pipelined architecture there is not one (or two) big memory bank(s), but smaller pieces of memory located
between stages in the FFT. There are several ways of implementing the pipelined architecture, the three most
common ways are:

• Single-path delay feedback (SDF)

• Multi-path delay communicator (MDC)

• Single-path delay communicator (SDC)

12

In an MDC architecture, the input is broken into two (in case of radix-2) parallel data streams. The first half
of the inputs is delayed in a buffer until the two inputs of the first butterfly have arrived. Figures 3 and 5
in chapter 2 show that input xi is paired with xi+N/2. The system uses delay buffers and a communicator
to ensure that the correct pairs of input values arrive at the butterflies. The task of the communicator is to
re-order the values before the next butterfly.

Figure 12: Simple diagram of part of a MDC architecture

In an SDF architecture there is only one stream of values, part of which is fed back into the butterfly, with
the proper delay, to get the correct input values.

Figure 13: Simple diagram of part of a SDF architecture

Figure 5 in chapter 2 shows that for the first stage, input xi is paired with xi+N/2. For the second stage,
input xi is paired with xi+N/4 and so on. Figures 12 and 13 show that the input is delayed in a buffer until
the matching input arrives. This allows the pipelined architecture to start calculations before all inputs are
read.
The architectures turn out differently when using a different radix. But generally, it can be said that SDF offers
higher memory utilization than MDC and a higher radix offers higher multiplier utilization. Table 1 shows an
overview of hardware utilization for the most common architectures. It shows that the radix-2 implementation
using a MDC architecture (R2MDC) has a hardware utilization of 50%, however, this can be compensated
for when 2 FFTs are calculated simultaneously. In case of a R4MDC, the same can be done to calculate 4
FFTs simultaneously[16]. The third type of pipelined architecture, Single-path Delay Communicator (SDC),
uses a modified radix-4 algorithm as seen in [19]. It has higher hardware utilization than MDC and compared
to SDF, it uses more memory and fewer additions. This architecture is however rarely used, mainly because
the control logic is very complex.

Pipelined architectures generally have higher throughput than memory-based architectures because they have
multiple butterfly units working at the same time[6]. This does require more complex control logic[18].

#multiplications #additions memory size multiplier utilization

R2MDC 2log4(N − 1) 2log4N 3N/2− 2 50%
R4MDC 3log4(N − 1) 4log4N 5N/2− 4 25%
R2SDF 2log4(N − 1) 2log4N N − 1 50%
R4SDF log4(N − 1) 4log4N N − 1 75%
R4SDC log4(N − 1) 3log4N 2N − 2 75%
R22SDF log4(N − 1) 4log4N N − 1 75%

Table 1: Overview of pipelined architectures. [16][18][19]

13

3.4 Array architectures

An array architecture consists of independent processing elements with local buffers. These processing elements
are connected together in a network. To calculate the Fourier transform using an architecture like the one
in figure 14, the one-dimensional input data is mapped onto a two-dimensional array. It is assumed that the
length N is composite, N = N1 · N2, where N1 and N2 are integers. Then an N point transform can be
expressed as:

X(k1, k2) =

N1−1∑
n1

N2−1∑
n2

x(n1, n2)W
n2k2
N2

Wn2k1
N Wn1k1

N1
, k1 = 0, 1...N1 − 1, k2 = 0, 1...N2 − 1 (20)

In equation 20, N1 size-N2 DFTs are computed. These DFTs, shown in equation 21, are transforms of the
rows of the input. Each of these intermediate results are then multiplied by the twiddle factor Wn2k1

N and
used in a second set of DFTs over the columns of the matrix F (n1, k2)[20].

F (n1, k2) =

N2−1∑
n2

x(n1, n2)W
n2k2
N2

, n1 = 0, 1...N1 − 1, k2 = 0, 1...N2 − 1 (21)

The biggest advantage of this type of architecture is that it has the flexibility to perform calculations other
than the FFT. The final goal for ASTRON is to have a very efficient FFT. The ability to perform other types
of calculations at the cost of efficiency is therefore unwanted. Designs using this architecture have therefore
not been considered in this comparison.

Figure 14: Simple diagram of a array architecture

14

4 FFT implementations presented in literature

The most common architecture is a pipelined architecture with Single-path Delay Feedback (SDF). This
method is preferred by most because a pipelined architecture has higher throughput. The pipelined archi-
tectures require fewer clock cycles to finish an FFT calculation, so it can match the throughput of other
architectures at a lower frequency. The SDF is preferred because it has higher hardware utilization than MDC
and SDC. In the following designs, we will see pipelined and memory-based architectures.
The designs all use low radix butterflies, either 2 or 4, even though some are suitable for higher radices. The
most important reason for the use of low radices is the complexity of the implementation of higher radix
butterflies, as they require more non-trivial multiplications [21].
Two of the designs in this comparison are reconfigurable, meaning they can perform the FFT on variable length
inputs. All designs work with fixed point values. For comparison one floating point architecture is added.
Some of the architectures also allow for inverse DFT computation, which is defined and rewritten as in
equations 22a and 22b .

xn =
1

N

N−1∑
k=0

Xk · e2πin
k
N , n = 0, 1...N − 1 (22a)

=
1

N

(
N−1∑
k=0

X∗
k · e2πin

k
N

)∗

(22b)

Because of the way it is rewritten, the IFFT can use the same hardware with the addition of a component that
calculates the complex conjugate of the input at the beginning and a component that calculates the complex
conjugate and divides the result by N at the end.

4.1 ASIC Design of Low-power Reconfigurable FFT processor [1]

The aim of this work is to make a low power and high speed reconfigurable FFT processor. The design consists
of a radix-2 processing element (PE), two radix-4 PE’s and two radix-8 PE’s, which are put together in a
pipeline SDF architecture (figure 15).

Figure 15: Pipelined architecture and data access. ([1])

Each of the PEs contain hardware to perform one stage of the FFT (figure 16). The complex multiplier
produces 16-bit data from 12-bit input data, the compressing attenuator turns this into 14-bit data at the
end of each stage1. Reconfigurability is achieved by turning blocks on or off, the two radix-8 blocks are fixed
which gives a minimum of NS = 82 = 64 points, this follows from equation 6. Using the same equations for
the different radices, the design gets a maximum of 21 · 42 · 82 = 2048 points.

Figure 16: Architecture of the processing elements. ([1])

1This is confusing as apparently the PEs can get both 14-bit data from a previous PE, but also 12-bit data directly from the
input

15

Power reduction is achieved using several methods. The first method is to cut off the power to unused blocks.
The second method is providing memory with a voltage of 1.62V instead of traditional 1.98V2. The design
uses a complex multiplier based on the CORDIC algorithm to reduce hardware costs and the amount of delay
elements (compared to using ROM).
Although the authors claim to have made a low-power design, the results say something different. With
307.7mW, this is by far the biggest power consumer. With an average chip size of 2.1mm2 and a high clockrate
of 71.4MHz (for minimal power consumption), it is clear that to achieve reconfigurability the designers gave
power the lowest priority.

4.2 A Low-Power and Domain-Specific Reconfigurable FFT Fabric for System-on-
Chip Applications [2]

The goal of this paper is to get the optimal balance between low power and high flexibility. The system
can be reconfigured to perform 16 to 1024 point FFTs using only one butterfly block. Figure 17 shows the
memory-based design. Reconfigurability is achieved by masking bits in the Address Generation Block (AGB)
and in memory. The AGB 1 generates addresses to select the correct twiddle factors, which are stored in
the Coefficient Memory Cluster (CMC). AGB 2 generates addresses to select the correct input values for the
butterfly block. The figure also shows that there are two Data Memory Clusters (DMC), making this a dual-
memory based design. Section 3.2 explains that at each stage the data is read from one memory bank and
written to the other. The Data Switch and the Address switch select the correct Memory Cluster to read from
and write to.

Figure 17: Memory based architecture. ([2])

There are only 15 configuration bits at the input, all other configuration data is encoded in the addresses
generated by the AGBs. This is done so that the added flexibility has little effect on power consumption and
size.
The results of the synthesis are compared to the same design without the reconfigurability and it shows only
a slight increase in power (12-19%) and area(14%) compared to 1024 point FFT. However compared to the
other designs in this study, this design uses more power than average: 68.7mW and 81.8mW for the non-
reconfigurable and reconfigurable design respectively. The size is average in both cases: 2.51 & 2.86mm2 and
at 20MHz, this is one of the slowest processors especially considering it is memory-based.
The design was also compared to a Xilinx FFT Core generated by Xilinx Core Generator 6.1 and implemented
on Virtex-2. The results show 30% less power consumption for 1024-point FFT on this design. The power
savings are even higher when comparing smaller length FFT, up to 94% for 16-point. The Xilinx Core Generator
gives many options to generate different types of FFT cores, unfortunately the authors do not describe what
type of FFT core they used.

4.3 ASIC implementation of a 512-point FFT/IFFT Processor for 2D CT Image
Reconstruction Algorithm [3]

The goal of this paper is to make an FFT processor with optimum hardware utilization. To reduce power
consumption, the CORDIC algorithm is used to generate the twiddle factors.
The design has two RAMs, one reads and stores 512-point from the input, while the other serves as input for
the butterfly. These two RAMs, RAM I and RAM II in figure 18, are synchronized to complete their tasks at
the same time, after which they switch tasks. The input values have to be real numbers, the real parts of
the intermediate results are stored in-place. RAM III is used to store the imaginary parts of the intermediate
results. RAM IV and V are used to store the real and imaginary parts of the final result. The last step of this

2The authors of this paper claim 1.98V is traditional, there is however no reference to back up this claim.

16

Figure 18: Memory based architecture. ([3])

design is the computation of the magnitude, this is also done based on the CORDIC algorithm.
Although the frequency is very high 220MHz, the throughput is average: 167.56µs3. This is caused by the
CORDIC multiplier, which needs 16 clock cycles to perform one multiplication and the fact that it is a memory
based architecture which requires higher frequency than the pipelined architectures. The power consumption
and size of the chip are also average with 15mW and 3.16mm2 respectively, which shows that the designers
regarded each of the main characteristics (speed, power and area) as equally important.

4.4 An Efficient FFT/IFFT Architecture for Wireless communication [4]

In this paper the goal is to make a power-efficient architecture. This is done by using a reconfigurable complex
constant multiplier and bit-parallel multipliers (using Booth’s multiplication algorithm) to generate twiddle
factors. This should also decrease hardware cost compared to a large ROM. By using the symmetry of the
twiddle factors only a small ROM is needed containing 8 twiddle factors, other twiddle factors can be derived
quickly from these values.

Figure 19: Radix-2 64-point pipelined SDF architecture. ([4])

Figure 19 shows the complete pipelined SDF architecture. Each of the processing elements (PE) in this
architecture represents one stage in the FFT algorithm. PE3 is a simple radix-2 butterfly component without
twiddle factor multiplication, and it is used as the basis for PE1 and PE2. In some stages the twiddle factor
multiplications are more complex than in others and the different PEs are designed to fit the needs of each

stage. PE1 performs computations, where the twiddle factors are of the form −j or W
N/8
N , while PE2 only

multiplies by −1 or i. The reconfigurable complex constant multiplier is shown in figure 20. It can generate
all the other twiddle factors and is used to calculate those complex multiplications after the third stage. The
results show a power consumption of 9.73mW, which is the second lowest value in this comparison and a gate
count of 33590 which is the lowest in this comparison so it seems the designers achieved their goal, however
no results are given about speed or technology.

39 stages · 256 butterfly operations · 16 clockcycles = 36864 clockcycles @ 220MHz = 167.56µs

17

Figure 20: Reconfigurable complex constant Multiplier. ([4])

4.5 Design And Implementation of Low Power FFT/IFFT Processor For Wireless
Communication [5]

The goal of this design is a low power 64 point FFT processor. To reduce chip size, a ROM-less architecture
is used. This is achieved by using a reconfigurable complex multiplier using a modified Booth’s multiplier.
This algorithm was chosen because in [22] it was shown that it has a small truncation error compared to other
implementations of Booth’s algorithm. To increase speed it uses a radix-4 implementation.
This design is very similar to the previous one (section 4.4), differing only in radix. The papers show exactly
the same structure, which is surprising since [4] states that it uses one PE per stage. A radix-4 design of a
64-point FFT uses 3 stages, not 6. The authors claim low cost and low power but no information is given
about the synthesis results except that the design requires 33600 gates and runs at a frequency of 80MHz.
The similarity between this design and [4] would be very interesting, to show the effect of using a different
radix. Unfortunately, both designs do not give a lot of information about their synthesis results.

4.6 Low-power digital ASIC for on-chip spectral analysis of low-frequency physio-
logical signals [6]

This paper describes a design to be used in a body sensor network, which means that low power and small area
are required and speed is less important. The processor will be powered by battery and respond to physiological
signals which do not exceed 1KHz. The processor is clocked at 1MHz. The design uses a hybrid architecture
where most data is computed sequentially like in a memory-based architecture. But in the butterfly, the read,
compute, write operations in the butterfly are pipelined. This allows for some speed, without sacrificing power
consumption and area. The design uses a ROM to store twiddle factors.

Figure 21: Hybrid architecture: memory based but with a pipeline in the butterfly. ([6])

Figure 21 shows the architecture and the pipelined operations in the butterfly. The twiddle factors are multiplied
using a mathematical trick. Equations 23a and 23b show that the number of multiplications can be reduced

18

by 1 at the cost of 3 extra additions. In equation 23b, both the real and imaginary part contain the term
Yr(Wr −Wi), and it only needs to be calculated once. This is more efficient as multiplication uses more
computation resources than addition.

W · Y = (WrYr −WiYi) + i(WrYi +WiYr) (23a)

= [Wi(Yr − Yi) + Yr(Wr −Wi)] + i[Wr(Yr + Yi)− Yr(Wr −Wi)] (23b)

The results meet the requirements: low power: 0.69mW, small area: 0.92mm2, making this the smallest and
most power efficient design is this comparison. It is also the slowest design. The authors also implemented
this design on an FPGA, the results show that the FPGA implementation uses almost 6 times more power
than the ASIC implementation.

4.7 Low Power Hardware Implementation of High Speed FFT Core [7]

This design uses a parallel pipelined architecture to achieve high throughput and low power. To reduce area
the design uses Canonical Sign Digit (CSD) notation and a multiplier-less unit that does not store all the
twiddle factors in ROM. Only a few twiddle factors are stored and the rest can be derived using only shift and
add operations. To reduce power consumption the designers have taken into account that the inputs will be
real, so the butterflies in stage 1 are modified to ignore the imaginary input.

Figure 22: Parallel architecture. ([7])

Figure 22 shows the 2-parallel pipelined architecture. The input is split up in even and odd indexed values. It
is a radix-4 16-point processor, which means there are only 2 stages and 4 butterflies per stage. There are 2
butterfly units running simultaneously in each stage.
The results show that this design leads to a very small area: 0.395mm2 and very fast computation 28.8ns @
833.33MHz. With a power consumption of 30.3mW this design achieves great speed and size, at a relatively
small cost. A sidenote here is that this design probably does not scale well when it is adapted for i.e. 1024-point
FFTs.

4.8 ASIC Implementation of High Speed Processor for Calculating Discrete Fourier
Transformation using Circular Convolution Technique [8]

This design is aimed at making a high speed processor using circular convolution. This design is different
from the others because it is made for floating point numbers. The speed of the design is supposed to be
independent of the number of bits used and it uses CSD to improve the speed of multiplication and addition. It
also uses radix-4 butterflies to increase the speed some more. To reduce chip size, this design only stores a few
twiddle factors and it uses shift and add operations to calculate the others. Figure 23 shows the architecture.
First, convolving matrices are generated using Matrix Vector Rotation (MVR). At the same time, twiddle
factors are generated. The results of these components go into a multiply and accumulate (MAC) block. All
arithmetic in the MAC is done using CSD to reduce area.
The results show that this design can perform a 16 point FFT in 23.79µs, the size of the processor is 12mm2

and power consumption is 14.31mW. The design in section 4.7 is also a radix-4 16-point processor and is
about 850 times faster, 30 times smaller and it uses more than twice the power compared to this design. This
shows the result of the design choices made by [7], but also that floating point computations are terrible for
performance.

19

Figure 23: Floating point architecture using circular convolution. ([8])

4.9 Comparison

The designs use different length, precision and technology. To compensate for these differences, a number of
figures of merit (FOM) are used.

When an architecture is synthesized using smaller technology, the result is, obviously, also smaller. To compen-
sate for the differences in technology, the Normalized Area is calculated using equation 24. This equation,
presented in [18], normalizes the area to the smallest technology in the comparison, in this study the smallest
technology is 90nm.

Normalized Area =
Area

(Technology/90nm)2
(24)

To compare the power consumption, a FOM is introduced based on equation 25, from [23]. This equation
factors out the effects of using different data width and technology for synthesis. The result of this equation
represents the number of adjusted transforms per Joule.

Adjusted Transforms (FFTs/Joule) =
Throughput · Technology ·Data Width

Power · 10
(25)

In [23] only 1024-point FFTs are compared and as a result, this equation does not consider different length
FFTs. Since this study does compare different length FFTs, the FOM shown in equation 26 is introduced. It
uses equation 25 as a starting point, but the throughput is multiplied by N · logr(N). Without this alteration,
the FOM would favour the 16-point FFTs in this study disproportionately. Then the scaling is removed because
it produces more readable figures. This equation is used in table 3.

Adjusted Transforms (FFTs/Joule) =
Throughput · Technology ·Data Width ·N · logr(N)

Power
(26)

The last figure to be used, is the power consumption per butterfly (equation 27). In equation 26, the smaller
length FFTs are still somewhat favoured, the power consumption per butterfly can put this in perspective. It
is also an indication of how much more power the high speed cores use compared to the low speed cores.

Power Per Butterfly Operation (P/B) =
Power

Number of Butterflies
(27)

Table 2 shows an overview of the designs. Unfortunately some authors do not specify all the necessary
information leaving some blanks in the table. These are filled using common values or by making an educated
guess using architectural analysis. Table 3 shows the results of the FOMs.

20

N Tech(nm) Data Width Radix Max. Freq. (MHz) Power (mW) Area (mm2)
[1] 1024 180 12 2-4-4-8-84 86 307.75 2.1
[2] 1024 180 16 2 20 81.8 2.68
[3] 512 130 16 2 220 15 3.16
[4] 64 1806 16 2 807 9.73 0.48

[5] 64 180 166 4 80 4.97 0.48

[6] 256 180 40 2 1 0.69 0.092
[7] 16 180 64 4 833.33 30.3 0.395
[8] 16 90 16 2 - 14.32 12

Table 2: Summary of the designs

Duration (µs) Normalized Area (mm2) P/B (mW) FFT’s/second(·103) FFT’s/Joule
[1] 143 0,525 0.4007 6.99 207
[2] 512 0,715 0.0160 1.95 704
[3] 168 1,513 0.0065 5.95 3803
[4] 3.2 0,1 0.0507 313 35519
[5] 3.2 0,1 0.1021 313 35265
[6] 2063 0,023 0.0007 0.485 5180
[7] 0.029 0,099 3.7875 34722 211220
[8] 23.79 12 0.4475 42 270

Table 3: Comparison of FOMs

4.10 Discussion of the results

What we see in table 3 is that one design stands out when it comes to throughput; with about 35 million
FFTs per second, [7] is by far the fastest design and with about 211 thousand FFTs Joule, it is also the most
efficient. The goal of this design was to make a high speed FFT core and that goal was achieved keeping the
area small. But for a processor that only performs 16-point FFTs, it uses a lot of power. It has the highest
power consumption of the non-reconfigurable designs and uses far more power per butterfly operation than
the other designs. If this particular design was implemented for a 1024-point FFT, the power consumption of
the processor would be approximately 4 times as high. This design also shows that using a higher radix, 4 in
this case, can speed up the design without compromising the size of the chip.

When it comes to power consumption per butterfly operation and area, we see that [6] is the most effi-
cient design. This design too achieved its goal, which was low power and small area, but it still managed to
get a decent throughput using a hybrid architecture.

From table 2 it can also be concluded that reconfigurability comes at a high cost. In [1] the power con-
sumption is very high, the highest of all designs, and in [2] the processor is very slow, the second slowest of
all designs behind only [6]. These designs score the lowest FFTs per Joule together with [8], which performs
floating point calculations.
Design [8] is the only design in this comparison that performs floating point calculations. The effects of that
are visible most clearly in the size of the chip.

Designs [4] and [5] seem to find more of a balance in the tradeoff between power, area and speed. These
designs end up in the middle in each list, but score very well in the number of FFT’s per second. Design
[2] also does not show remarkable figures in most area’s, but has the second lowest power consumption per
butterfly operation.

4For 1024-point FFT this design uses only the 4-4-8-8 blocks
5Power at optimal frequency of 71.4MHz.
6This value was not presented in the paper, so a common value is used.
7This value was not presented in the paper, but guessed based on the similarities between [4] and [5].
8This value was not presented in the paper, but guessed based on the number of gates and the technology.

21

5 Description of the implemented designs

ASTRON currently has an FFT implementation on a Stratix IV FPGA. Four more implementations were
made for this research using different radices to see how this affects power consumption. The sizes of the
FFT implementations are flexible (using VHDL generics). In this chapter, only the 1024-point designs will be
discussed for simplicity. All implementations will use a pipelined architecture, since it is the most suitable for
high throughput applications. The details of these implementations will be explained in this chapter.

5.1 ASTRON’s implementation

This implementation uses the radix-2 pipelined SDF DIF algorihm. It was designed specifically for an FPGA.
The size of the FFT depends on the VHDL generic g_nof_points, for which a value of 1024 will be used.
The design consists of 10 stages (figure 24), each containing several components as shown in figure 25.

Figure 24: Schematic of the complete design.

The design can receive complex inputs. The real part of the input is put on the in_re signal, the imaginary
part of the input is put on the in_im signal. The input values are only valid when the in_val signal is high.
The clk and rst signals are the clock and reset signal, respectively.
At the output, the signals are similar: out_re and out_im are the real and imaginary parts of the output
value. These values are only valid when the out_val signal is high.
In section 2.3 it is explained that the output signals of the DIF algorithm arrive in bit-reversed order. ASTRON’s
implementation has an optional component that reorders the values, it is only used when the VHDL generic
g_use_reorder is set to true. The design will be synthesized without this component because it has a very
large impact on the result, making it more difficult to compare the actual algorithm. It triples the total size
of the design and requires a multitude of the power.
The main components of a stage are:

• rTwoBFStage, a butterfly component which performs the additions and subtractions of the butterfly.
This component also contains the feedback delay.

• rTwoWeights, a component which selects the twiddle factors from a large memory containing all twiddle
factors.

• rTwoWMul, a component which performs the multiplication. This component also performs truncation
and resizing.

• common counter, this component keeps a counter so that the correct twiddle factor can be selected
and the butterfly knows whether to delay the input or not.

Each stage can perform one butterfly operation at one time, so to perform the complete stage, 512 iterations
are required. Every FFT implementation requires delays between stages as explained in chapter 3. To achieve
a high clock speed in the FPGA, additional pipeline delays were added to this implementation.

5.1.1 Avoiding overflow

ASTRON’s design uses unconditional block floating point scaling [24] to prevent data overflow. A value can
potentially grow by two bits in one stage, therefore two guard bits are added for the input data to grow in. The

22

Figure 25: Schematic of a stage in the design.

data can, however, never grow by the maximum amount in two consecutive stages. Therefore this design with
10 stages uses 10 guard bits. After each stage the data is shifted to the right, unconditionally9, to replace the
guard bit. At the end of the calculation, the output is truncated and rounded to: inputlength+ log2(N) + 1
bits. ASTRON’s implementation uses 18 bits for the internal signals, because the block multiplier of the
Stratix IV has 18 bit inputs. At the output, the signals are truncated and rounded to 14 bit. This number
was chosen to get an acceptable signal to noise ratio (SNR). From input to output, the design has a loss in
SNR of about 2dB. The new designs are not bound by the 18 bit internal signals. Table 4 shows the effects
of using different widths for the internal signals in the new radix-2 designs. The SNR loss is around 2dB when
using 16 bit internal signals.

internal width SNR loss (dB)
14 6.83
15 4.28

15 (15bit output) 2.98
16 2.09
17 1.30
18 0.97

ASTRON 18 bit 1.81

Table 4: SNR tests using different widths for the internal. One test uses 15 bit outputs instead of 14 bit.

5.2 New Radix-2 DIF implementations

All radix-2 DIF implementations are similar. For this research, several variants of the implementation were
tested. These variants show the effects of different components for the complex multiplier and twiddle factors.
They also show the effects of different ways of buffering. The in- and outputs are identical to that ASTRON’s
design. Overflow prevention and truncation are also the same except for the widths of the internal signals,
these are 16 bits.

5.2.1 Variant 1 (NEWv1)

The first variant is very similar to that of ASTRON’s, it is also an SDF implementation. It was, however,
designed with the ASIC tooling in mind instead of the FPGA tooling, which should already make it a bit more
efficient.
It consists of 10 stages, each containing a butterfly component (BFC) and a twiddle factor component (TFC).
Figure 26a shows a schematic of the stages. In the real design the input and output values are represented by

9As opposed to conditional block floating point scaling, which is similar, but only shifts when the data grows.

23

two signals, a real and an imaginary part. This has been left out in the schematic to avoid clutter. The first
input values are led into a FIFO until the counter reaches a threshold and the FIFO is full (section 3.3 explains
the size of the FIFOs). The following input values, together with the output of the FIFO, go into the BFC
together. The TFC produces a twiddle factor depending on the counter, this twiddle factor also goes to the
BFC. The BFC calculates two output values at the same time. The first output value (out1 in the figures) of
the BFC goes directly to the output of the stage, the second output value (out2 in the figures) is stored in
the FIFO and led to the output after the BFC stops calculating new values.
Figure 26b shows a schematic of the BFC, the CM block is the complex multiplier. It does exactly what was
explained in section 2.1.1 and shown in figure 2b.

FIFO

TFC

c< N/2S

Counter
c=0..3N/2S BFC

c> N/2S-1

c

c

tf

in1 in2

1

0

1

0

out1

out2

(a) Schematic of a stage in the design.

CM

out1

out2

in1

in2

tf

(b) Butterfly component.

Figure 26

This variant uses the same buffer twice for one FFT; once at the input and once at the output. Figure 27
shows a schematic of the full design. The output of each stage goes directly to the input of the next stage.

Stage 1 Stage 2 Stage 10

...

Figure 27: Schematic of full FFT design.

5.2.2 Variant 2 (NEWv2)

Stage 1 Stage 2 Stage 10

...
FIFO

FIFO

Figure 28: Schematic of second version of FFT design.

In the second variant, shown in figure 28, an MDC architecture is used. This allows for more parallel calcula-
tions and therefore fewer clock cycles to perform one FFT calculation.

24

The stages have 2 inputs and outputs, the outputs of a stage are fed directly into the next stage. This means
an extra buffer is needed inside the stages. The first stage is different from the rest of the stages. It gets its
single input directly from the FFT input. Figures 29a-29b show the schematics. Stage one works the same as
a stage in NEWv1, except that the outputs of the butterfly are both directly connected to the output of the
stage. In the other stages, both inputs need to be delayed. The first input line follows the same flow as the
input in stage one. The first input values of the second input line are delayed in a seperate FIFO. When the
counter reaches its threshold and the FIFOs are full, the values of the second input line are put into the FIFO
of the first input line, which will then be outputting the values of the first input line into the BFC. When the
flow of the first input line completed, both FIFOs will direct their output to the BFC.
This implementation performs one FFT operation in fewer clock cycles, because of the extra buffering. AS-
TRON’s implementation, which requires 1584 clock cycles, can perform 200 · 106/1584 = 126k FFT’s/second
at 200MHz. Because more calculations can be done in parallel, one full FFT calculation only requires 1041
clock cycles. So to match the number of FFT’s/second of ASTRON’s implementation, this implementation
needs to run at a mere 126k · 1041 = 131MHz.

FIFO

TFC

c< N/2S

Counter
c=0..3N/2S

BFC
1

0

(a) Schematic of stage 1

FIFO

TFC

c< N/2S

Counter
c=0..3N/2S

BFC

1

0

FIFO1

0

c< N/2S

c

c

c

in1

in2

(b) Schematic of a stage in the design. The multiplex-
ers choose the inputs based on different thresholds of the
counter value.

Figure 29

5.2.3 Complex multipliers

The complex multiplication can be done in several ways. Three methods were tested for this research:

• Straightforward implementation: (A+Bi) · (C +Di) = (AC −BD) + i(AD +BC).

• Gauss’s complex multiplication: (A + Bi) · (C + Di) : k1 = C · (A + B), k2 = A · (D − C), k3 =
B · (C+D) : (k1−k3)+ i(k1+k2). This method requires fewer multiplications than the straightforward
method, but more additions. Since multiplication is more expensive than addition, this could improve
the design.

• Using a Synopsys Designware component. The ASIC synthesis tool comes with a component that, when
given 4 inputs, calculates: i1i2 + i3i4. This matches well with the equation for the straightforward
implementation.

5.2.4 Twiddle factors

Twiddle factors can be supplied in many ways. For this research, three ways were compared. The first way is a
memory component containing all twiddle factors. Each stage requires a different set of twiddle factors. The
first stage requires 512 twiddle factors, the second stage requires 512/2 = 256, the third 512/4 = 128 and so
on. This makes a total of 1023 twiddle factors (Equation 28) and 2046 words of memory (real and imaginary
parts). The memory component was synthesized using a constant array in VHDL, which results in registers and
mulitplexers. And it was also synthesized using compiled RAM from CMP10, which uses STMicroelectronics
technology.

10∑
s=1

512/2s−1 = 1023 (28)

10Circuit Multi-Projets : http://cmp.imag.fr

25

The second way, is to only store certain values in memory and deduce the rest using these values. The first
stage requires 512 evenly spaced values on the bottom half of the unit circle (figure 30). A closer look at the
unit circle shows that <(W k) = −<(W 512−k) and =(W k) = =(W 512−k), for k = 0..256. This means that
in stage one, only 257 words of memory are required (instead of 1024) and some extra logic that selects the
correct values at each index and multiplies by -1 if necessary.

−1 0 1

−1

 1

Figure 30: Bottom half of the unit circle.

The third way, is to calculate the values each time they are needed. Equation 2e shows the definition of
the twiddle factors, equation 29 shows how this can be rewritten using Euler’s formula. Synopsys supplies
components that calculate sines and cosines. The real and imaginary parts can therefore easily be retrieved
using these components.

e
−2iπk
N = cos(

−2πk
N

) + i · sin(−2πk
N

) (29)

5.3 Radix-4 DIF implementation

The two radix-4 designs described below were made in the same style as the radix-2 designs. This will show
whether a radix-2 or a radix-4 architecture is best suited for energy efficient FFT calculation. The overflow
handling was adapted for a radix-4 butterfly, because input can now grow 3 bits in one stage. The designs use
9 guard bits, however, for the internal signals we keep using 16 bits. This gives less loss in SNR than for the
radix-2 designs.

5.3.1 Variant 1 (NEWR4v1)

The NEWR4v1 implementation is an SDF architecture, implemented in the same style as the NEWv1 design.
However because it is radix-4, there are now 5 stages. Every stage has a radix-4 BFC (which is more
complex) and a TFC that can feed the butterfly correctly. A radix-4 butterfly performs three twiddle factor
multiplications, so the TFC must be able to supply three twiddle factors in one clock cycle. Figure 32 shows
a schematic of a radix-4 stage.
In a radix-4 butterfly the inputs are not just added or subtracted before the twiddle factor multiplication, they
are also multiplied by 1,−i,−1, i. These multiplications, however, can be reduced to sign changes and the
switching of real and imaginary parts. This is shown in equations 30a to 30d. Equations 31a-31a show the
resulting butterfly operations for the DIF algorithm.

1 · (a+ bi) = a+ bi (30a)

− i · (a+ bi) = b− ai (30b)

− 1 · (a+ bi) = −a− bi (30c)

i · (a+ bi) = −b+ ai (30d)

26

PE2

PE1

PE3

CM

CM

CM

out3

out4

out2

out1
in1

in2

in3

in4

tf1 tf2 tf3

Figure 31: Butterfly component. The PE’s correspond to equations 31b-31d.

FIFO

TFC

c< N/4S

Counter
c=0..7N/4S

BFC

c

in4

in1

1

0

1

0

out1

out4

FIFOc< 2N/4S

c
1

0

1

0

c > 4N/4S

FIFOc< 3N/4S

c
1

0

1

0

c > 5N/4S

c > 6N/4S

c

2 3

out3
out2

Figure 32: Schematic of a stage in the radix-4 design. The figure shows that the TFC has three outputs.

X0 = x0 + x1 + x2 + x3 (31a)

X1 = ([<(x0) + =(x1)−<(x2) + =(x3)] + i[=(x0)−<(x1)−=(x2) + <(x3)]) ·Wn
N (31b)

X2 = ([<(x0)−<(x1) + <(x2)−<(x3)] + i[=(x0)−=(x1) + =(x2)−=(x3)]) ·W 2n
N (31c)

X3 = ([<(x0)−=(x1)−<(x2) + =(x3)] + i[=(x0) + <(x1)−=(x2) + <(x3)]) ·W 3n
N (31d)

5.3.2 Variant 2 (NEWR4v2)

The NEWR4v2 implementation is an MDC architecture, implemented in the same style as the NEWv2 design.
This design requires more memory than any of the other designs, and uses this memory to calculate the FFT
in fewer clock cycles. It only takes 515 clock cycles to perform one FFT, which is about a third of the number
of clock cycles in ASTRON’s design.

27

FIFO

FIFO

FIFO

FIFO

TFC

d< N/4S

Counter
c=0..7N/4S

d=0..N

BFC
in4

in1

1

0

FIFOd< 2N/4S

1

0

FIFOd< 3N/4S

1

0

in3

in2

c

out4

out1
out2
out3

in4

in1

in3

in2

Figure 33: Schematic of a stage in the radix-4 design. The figure shows six FIFOs, which sum up to 15·(N/4S)
words of memory.

5.4 Synthesized combinations of components

There are 4 architectures, 3 complex multipliers and 3 twiddle factor components in the new designs. This
gives 36 combinations which were not all implemented. Table 5 gives an overview of the implemented and
synthesized combinations using NEWv2. NEWv1, R4NEWv1 and R4NEWv2 were only synthesized using the
straightforward complex multiplier and the component where all the twiddle factors (TF) are stored.

CM \TFC all TFs selection of TFs calculating TFs
Straightforward X X X

Gauss X
Designware component X

Table 5: Overview of implemented and synthesized combinations using NEWv2.

28

6 FPGA versus ASIC using ASTRON’s design

In this chapter, the FPGA and the ASIC results of ASTRON’s implementation are compared with each other.
The design was synthesized at 100MHz, the input signals are 8 bit wide and the output signals are 14 bits.
The FPGA at ASTRON runs at 200MHz, but the timing analyzer showed that the timing requirements were
not met. The clock frequency was lowered to make post-simulation possible.
Quartus was used for FPGA synthesis, the target device is the Stratix IV EP4SGX230KF40C3. This FPGA
uses 40nm technology. For ASIC synthesis, Synopsys Design Compiler was used. The design was synthesized
on 65nm technology.
The design uses a multiplier component11 which is specific to the Stratix IV and cannot be synthesized for
ASIC. Therefore the design was synthesized three times on ASIC; once using a similar component from the
Designware library12, and once without using a specific component but standard adders and multipliers. The
design was also synthesized without using the additional pipeline delays (section 5.1).

6.1 Area

The area of an ASIC and an FPGA can barely be compared, because Quartus does not show the sizes of
the components in squared millimeters, nor could this information be found in datasheets or elsewhere on the
internet. Nevertheless, the results are shown here. The FPGA comes in a 40mm x 40mm package. A large
part of the FPGA is however not used:

• Logic utilization : 2%

• Total block memory bits : 127,291 / 14,625,792 (<1%)

• DSP block 18-bit elements : 40 / 1,288 (3%)

• Total pins : 48/888 (5%)

The logic utilization reported by Quartus is an estimation of how full the device is. It covers everything except
the block components.
At the input, 19 pins are used for the 8 bits real and imaginary input values and for the clock, reset and in val
signals. At the output, 29 pins are used for the 16 bits real and imaginary output values and the out val signal.
This gives a total of 19 + 29 = 48 pins

The ASIC design is only 0.47mm2 with the additional delays and 0.45mm2 without them. The ASIC specific
multiplier is about the same size as the FPGA specific multiplier.

Design: power (mW) energy / FFT (µJ) area (mm2)
FPGA 53.14 0.84 -
ASIC (with designware component) 34.10 0.54 0.47
ASIC (without designware component) 26.40 0.42 0.47
ASIC (without additional delays) 26.50 0.41 0.45

Table 6: Summary of FPGA v. ASIC using ASTRON’s design.

6.2 Power and Energy

To compare the power requirements, the synthesized results were simulated with the same input values. These
simulations resulted in Value Change Dumps (VCD), with which the synthesis tools can make accurate power
estimations.
The FPGA tooling shows the power consumption of different parts of the FPGA. The ‘Total Thermal Power
Dissipation’ is 940.33 mW, this includes static parts of FPGA. The actual power consumption of the FFT on
the FPGA is 53.14mW. One FFT calculation is done after about 16µs, so the FPGA will have used 14.9µJ.
The FFT itself will have used 0.84µJ.

11the altmult add Megafunction : http://www.altera.com/literature/ug/ug lpm alt mfug.pdf
12DW02 prod sum : http://www.synopsys.com/dw/buildingblock.php

29

The ASIC power calculation is done before layout and floorplanning. Simulation results are more accurate after
layout and floorplanning. However, for this research the only core dynamic power consumption is compared,
which makes this approach sufficient.
The ASIC with the designware component requires 34.10mW on the same input data. That means 0.54µJ is
required for one FFT. The version without the designware component requires 26.40mW which means 0.42µJ
per FFT. The version without the delays requires 26.50mW, but takes only 1545 clock cycles to complete
(instead of 1584). This makes 0.41µJ per FFT. This is a decrease in energy of about 50% by just switching
to an ASIC from an FPGA.

To compare the area results in a more meaningful way and to factor out the static power inaccuracy, a
wrapper was made that initialized several FFT components. The outputs of one FFT would become the input
of the next. The idea was to fill the FPGA as much as possible. This approach failed, however, because of
out of memory errors in both the FPGA and the ASIC tooling.

30

7 Comparison of ASTRON design with new designs

In this chapter, the ASIC results of ASTRON’s implementation will be compared to the ASIC results of the
new implementations which were discussed in sections 5.2-5.3. All of the designs were synthesized at 100MHz
for consistency. In addition to that, the NEWv2 design was synthesized at 50MHz and the R4NEWv2 design
at 25MHz. The input signals are 8 bit wide and the output signals are 14 bits. Synopsys Design Compiler
was used to synthesize the designs, this was done on 65nm technology. All results are before layout and
floorplanning, which is sufficient because the dynamic behaviour is compared.

7.1 Area

The area of the ASTRON’s design is about 0.45mm2 as shown in chapter 6. The NEWv1 design was
synthesized with the straightforward multiplication and the TFC with all values stored. The area of this design
was 0.62mm2. The NEWv2 design was synthesized with many different components, but these components
did not have a large affect on the total area. Using different combinations, the area of the FFT is between 0.94
and 0.97mm2. The only significant change is seen when the compiled RAM component is used to store the
twiddle factors. During a test where this RAM component was used in (only) the first stage, the area grew to
1.03mm2. This is because the RAM component contains 512x16 bits and is of a fixed size. The register-based
TFC in the first stage is also programmed with 512x16 bits, but this number is reduced to 64*16 bits13 due
to the compiler optimizations.
Table 7 shows the area’s of the designs. For the NEWv2 design, the version with the straightforward CM
and all of the TFs is used as a reference. In the table, the design names show which part deviates from the
reference.
Two of the designs were also synthesized for 512-point FFTs. The ASTRON design (without delays) and the
NEWv2 design become about 0.27mm2 and 0.51mm2 respectively.

7.2 Power and Energy

The power usage of ASTRON’s FFT is a little over 26mW which results in a little over 0.4µJ per FFT. The
NEWv1 design consumes only 21.78mW, which means 0.34µJ per FFT. What was said about the area of the
NEWv2 design can also be said about the power consumption. The numbers stay between 32 and 33mW at
100MHz for all of the combinations of components. Table 7 shows the power usage and the energy needed
for one FFT calculation. This table also shows the number of clock cycles required to calculate one FFT. This
represents the number of clock cycles from when the first butterfly operation begins, until the last butterfly
operations finishes.

Design: area (mm2) Power (mW) Energy (µJ) clock cycles
ASTRON 0.45 26.50 0.41 1545
NEWv1 0.62 21.78 0.34 1553
NEWv2 0.97 32.54 0.34 1041
NEWv2 (compiled RAM) 1.03 32.78 0.34 1041
NEWv2 (small TFs) 0.97 32.94 0.34 1041
NEWv2 (calculated TFs) 0.97 32.75 0.34 1041
NEWv2 (Gauss CM) 0.96 32.05 0.33 1041
NEWv2 (designware CM) 0.97 32.87 0.34 1041
R4NEWv1 0.67 39.99 0.51 1287
R4NEWv2 1.30 80.73 0.42 515

Table 7: Results of the FFT designs. The components between the parentheses show where the designs deviate
from the standard, which is straightforward multiplication and a TFC with all values stored.

The synthesis tool can show the power usage per component. This can show where the differences come from.
Table 8 shows the results for some of the components. The numbers represent the usage of all of the instances
of the components in the design. Most of the components occur 9 times in the design (in every stage except
the last stage, which has no twiddle factor multiplication). The compiled TFC however, was only used in the
first stage. So the results of the compiled RAM-based and the register-based TFC in the first stage are shown
seperately.

13The exact number is hard to find in the synthesis tool. It is, however, possible to divide the area of the non-combinational
part of the component by the area of the non-combinational part of another component, of which the content is known.

31

Design: Power (mW) Energy (µJ)
all TFs (registers) 0.22 0.002
small TFs 0.24 0.003
calculated TFs 0.31 0.003
CM for small TFs14 2.73 0.030
straightforward CM 2.33 0.024
Gauss CM 1.91 0.020
designware CM 3.58 0.037

Stage 1
all TFs (registers) 0.04 0.000
all TFs (compiled) 0.59 0.006

Table 8: Power and energy comsumption of the components in the NEWv2 design

The FIFOs in the designs are Designware components which use RAM as memory. ASTRON’s design uses
register-based FIFOs. To find out how this affects the design, NEWv2 was also synthesized using register-based
FIFOs. Table 9 shows the power usage per stage for RAM- and register based FIFOs. The tools unfortunately
do not show the details of Designware components, so entire stages are used. The table shows that for
memories smaller than or equal to N/26 = 16 words, registers are more efficient. For larger memories, RAM
is more efficient.

Stage: register-based (mW) RAM-based (mW)
1 5.39 4.59
2 9.84 8.79
3 5.13 4.64
4 2.75 2.55
5 1.57 1.52
6 0.96 1.01
7 0.69 0.73
8 0.47 0.51
9 0.32 0.36

Table 9: Power and energy per stage in the NEWv2 design. Stage 10 does not use FIFOs.

32

Some of the designs were also synthesized at 50MHz and for 512-point FFTs and this gives some unexpected
results. Table 10 gives an overview of the 512-point designs.

Design: @ 100MHz :Power (mW) Energy (µJ) @ 50MHz : Power (mW) Energy (µJ)
ASTRON 30.55 0.47 - -
NEWv2 (Gauss CM) 34.36 0.36 17.26 0.36

Table 10: Power and energy comsumption of the 512-point designs

Table 11 gives an overview of the 1024-point designs that were synthesized at different clock speeds.

Design: Power (mW) Energy (µJ)
NEWv1 (50MHz) 21.43 0.67
NEWv2 (Gauss CM, 50MHz) 31.80 0.66
R4NEWv2 (25MHz) 20.59 0.42

Table 11: Power and energy comsumption of the 1024-point designs at lower frequencies

These numbers show that 512-point FFTs consume a bit more energy that 1024-point FFTs. And while a
lower clock frequency gives about the same energy consumption for 512-point FFT, for 1024-point FFT it
doubles.

7.3 Comparison using FOMs

Table 12 shows a comparison of the designs using the FOMs from chapter 4.

Duration (µs) P/B (mW) FFT’s/second(·103) FFT’s/Joule
ASTRON 15,45 0,005 65 1626

NEWv1 15,53 0,004 64 1968
NEWv2 (Gauss CM) 10,41 0,006 96 1995

R4NEWv1 12,87 0,008 78 647
R4NEWv2 5,15 0,016 194 800

Designs from chapter 4
[1] 143 0.4007 6.99 207
[2] 512 0.0160 1.95 704
[3] 168 0.0065 5.95 3803
[4] 3.2 0.0507 313 35519
[5] 3.2 0.1021 313 35265
[6] 2063 0.0007 0.485 5180
[7] 0.029 3.7875 34722 211220
[8] 23.79 0.4475 42 270

Table 12: Comparison of FOMs

14The CM component that is used in combination with the small TFs is based on the straightforward implementation, but has
some additional logic to multiply with the correct value.

33

8 Discussion

In this chapter, the results from chapters 6 and 7 are discussed

8.1 FPGA versus ASIC

Earlier comparisons between FPGAs and ASICs have shown large differences in their outcome. In [25], a large
number of designs are synthesized for FPGA and ASIC. Their results show that FPGAs use about 14 times
more power than ASICs on average. However, depending on the design, the results vary from 5 to 52 times
more power usage on an FPGA. A closer look at the results show, that when more Logic or RAM is used in
the designs, the ratio’s are generally smaller.

In [2], an FFT design is implemented for different lengths (16-64-256-1024-point FFTs). These designs
were all synthesized on an FPGA and ASIC. They show reductions in power comsumption from 94% to 33%.
So again we see; the larger their design the smaller the improvement in power consumption.

In [6], the 256-point FFT design was also synthesized on an FPGA and ASIC. This implementation requires
about 6 times more power on the FPGA than on the ASIC.

Table 6 shows that the switch from FPGA to ASIC gives a reduction in power usage of about 50% for
ASTRON’s design. This is more than the 33% in [2] but less than the smaller design in [6]. Considering that
the STRATIX IV FPGA uses 40nm technology and the ASIC uses 65nm technology, this is a very reasonable
result.

8.2 Design

For the ASIC comparison, four new designs were made. NEWv1 is most similar to ASTRON’s design and
requires less power. This is mainly because the internal signals are 16 bits instead of 18 bits. But also because
of the use of RAM-based FIFOs instead of register-based FIFOs. Table 9 shows that using RAM is more
efficient for the larger memories, but using registers is more efficient for memories of 16 words and less.

Table 7 shows that the radix-4 designs consume more power than the radix-2 designs. When the NEWv1
and R4NEWv1 designs are compared, we see that even though they use the same amount of memory and
about the same amount of arithmetic operations, R4NEWv1 uses far more power than the NEWv1. So much
more, that the shorter calculation time of one FFT is not enough to match the energy consumption per FFT.

The NEWv2 and R4NEWv2 designs use the same technique to process more data in parallel. Because
the radix-4 butterfly essentially already is a parallelism of the radix-2 butterfly, this effect is much larger in
R4NEWv2 than in NEWv2. Table 7 shows that this gives R4NEWv4 the shortest calculation time, at the cost
of a large area.

When we look at the differences between NEWv1 and NEWv2, we see that faster calculation can be ex-
changed for lower power consumption without it affecting the energy usage per FFT. However, when the
faster calculation is performed at a lower clock speed, the power does not drop as much as expected. In table
10, we see that the 512-point designs do show a drop of about 50% when the clock frequency is halved.

When we look at the differences between the two radix-4 designs, we see that the faster calculation in
R4NEWv2 makes the energy per FFT lower than in R4NEWv1. Table 11 shows that the R4NEWv2 also
consumes about 25% of the power at 25% of the speed. It is unclear why the 1024-point radix-2 designs
drop less than 1mW when the clock frequency is halved, when in other cases, the relation between power
consumption and clock frequency is much closer.

When comparing all of these designs, the NEWv2 design gives best combination of low energy per FFT
and fast calculation. The FOMs in table 12 also confirm this. When these FOMs are compared with the other
works in table 4, we see that designs [4], [5] and [7] perform better. However these designs are all made for
small sized FFTs, 64, 64 and 16 point respectively. The other 1024-point FFTs and even one of the smaller
sized FFTs15, are outperformed by the new designs.

15this design, [8], is made for 16-point, but uses floating point arithmetic.

34

8.3 Components

Tables 7 and 8 show that the choice in components is of less importance than the choice in architecture.
Although the differences between the components are small, they do exist. The tables show that the TFC
with all of the values is the best choice. The compiler performs optimizations and minimizes the number
of registers in these components. Because the small TFC has extra control logic, it ends up being larger
than the TFC with all the components. This small TFC approach might have worked better when only RAM
components were used to store the values in, because memory in a RAM component will not be optimized
out of the design.
The Designware components that were used for both the CM and the TFC turned out to be less effective than
the more straightforward implementations of these components. In case of the TFC, the optimizations by the
compiler make the Designware component in just one stage consume more power than all stages togethers
using one of the other methods.
For the complex multiplier Gauss’ trick works best. Reducing the number of multiplications does have its
effect on power consumption.

35

9 Conclusion

This research had two goals. The first goal was to find out how much the difference would be between the
implementation of the FFT on an FPGA and on an ASIC. The following conclusions can be made:

• Area is very difficult to compare, however, the ASIC design shows a large reduction in size compared to
FPGA.

• The difference in dynamic power consumption depends greatly on which design is used. The difference
seem larger for smaller designs.

• For ASTRON’s design, there is a 50% reduction in power consumption, while the ASIC technology is
one step behind.

The second goal was to find how the design could be improved to be more energy efficient. The following
conclusions can be made:

• A radix-2 design is more energy efficient than a radix-4 design. The NEWv1 design consumes 33% less
energy than R4NEWv1, NEWv2 requires about 20% less energy than R4NEWv2.

• By using parallelism the NEWv2 design can calculate FFTs quicker, without increasing the amount of
energy per FFT.

• Using Gauss’ complex multiplication trick reduces power consumption compared to standard complex
multiplication by about 18%.

• Storing the twiddle factors in registers is more efficient than storing them in RAM. This is partly because
of compiler optimizations.

• For memory smaller than or equal to 16 words, registers are more efficient than RAM. For larger memories,
registers will become more inefficient compared to ram.

• The improvements of twiddle factor and complex multiplier components are trivial compared to improve-
ments in the architecture.

• The design that requires the least amount of energy, is the NEWv2 design with the Gauss complex
multiplier and the straighforward twiddle factor component.

9.1 Recommendations & Future Work

The conclusions leave some unanswered questions, which could be addressed in a future research:

• NEWv1 is more energy efficient than R4NEWv1, even though they use about the same amount of
memory and about the same amount of arithmetic operations. R4NEWv1 also requires fewer clock
cycles, so why is NEWv1 more energy efficient?

• In section 3.3, it was mentioned that MDC designs can compute multiple FFTs at the same time. Can
NEWv2 and R4NEWv2 be made more energy efficient by applying this technique?

• For some of the designs, reducing the frequency by 50% also reduces the power consumption by about
50%, but not for all. Why?

• What would the effects of raising the frequency be?

• Would a split-radix, radix-22 or radix-23 architecture be any better?

36

List of abbreviations

AGB Address Generation Block

ASIC Application-Specific Integrated Circuit

BFC Butterfly Component

CM Complex Multiplier

CMC Coefficient Memory Cluster

CMP Circuit Multi-Projets

CORDIC Coordinate Rotation Digital Computer

CSD Canonical Sign Digit

DFT Discrete Fourier Transform

DIF Decimation In Frequency

DIT Decimation In Time

DMC Data Memory Clusters

FFT Fast Fourier Transform

FIFO First In, First Out

FOM Figure Of Merit

FPGA Field-Programmable Gate Array

FT Fourier Transform

HBA High Band Antennas

IFFT Inverse FFT

LBA Low Band Antennas

LOFAR Low Frequency Array

MAC Multiply And Accumulate

MDC Multi-path delay communicator

MVR Matrix Vector Rotation

NEWR4v1 New radix-4 SDF FFT design

NEWR4v2 New radix-4 MDC FFT design

NEWv1 New radix-2 SDF FFT design

NEWv2 New radix-2 MDC FFT design

PE Processing Element

R22SDF Radix-22 implementation using a SDF architecture

R2MDC Radix-2 implementation using a MDC architecture

R2SDF Radix-2 implementation using a SDF architecture

R4MDC Radix-4 implementation using a MDC architecture

R4SDC Radix-2 implementation using a SDC architecture

R4SDF Radix-4 implementation using a SDF architecture

37

RAM Random-access memory

RCU Receiver Unit

ROM Read-only memory

RSP Remote Station Processing

SDC Single-path delay communicator

SDF Single-path delay feedback

SKA Square Kilometer Array

SNR Signal-to-noise ratio

TBB Transient Buffer Boards

TF Twiddle Factor

TFC Twiddle Factor Component

VCD Value Change Dumps

38

References

[1] Guihua Liu and Quanyuan Feng. ASIC design of low-power reconfigurable FFT processor. In ASIC, 2007.
ASICON ’07. 7th International Conference on, pages 44 –47, Oct. 2007.

[2] Y. Zhao, A.T. Erdogan, and T. Arslan. A low-power and domain-specific reconfigurable FFT fabric for
system-on-chip applications. In Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th
IEEE International, page 4 pp., April 2005.

[3] I. Hatai, R. Biswas, and S. Banerjee. Asic implementation of a 512-point FFT/IFFT processor for 2d ct
image reconstruction algorithm. In Students’ Technology Symposium (TechSym), 2011 IEEE, pages 220
–225, Jan. 2011.

[4] M.N. Khan, M. Mohamed Ismail, and P.K. Jawahar. An efficient FFT/IFFT architecture for wireless
communication. In Communications and Signal Processing (ICCSP), 2012 International Conference on,
pages 66 –71, April 2012.

[5] A. Anbarasan and K. Shankar. Design and implementation of low power FFT/IFFT processor for wireless
communication. In Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 Interna-
tional Conference on, pages 152 –155, March 2012.

[6] Nie Zedong, Zhang Fengjuan, Li Jie, and Wang Lei. Low-power digital ASIC for on-chip spectral analysis
of low-frequency physiological signals. Journal of Semiconductors, 33(6):065004, 2012.

[7] Akshay Sridharan and A. Viji. Low power hardware implementation of high speed FFT core. In Advances
in Computer Engineering (ACE), 2010 International Conference on, pages 223 –227, June 2010.

[8] P. Saha, A. Banerjee, A. Dandapat, and P. Bhattacharyya. ASIC implementation of high speed processor
for calculating discrete fourier transformation using circular convolution technique. WSEAS Trans. Cir.
and Sys., 10(8):278–288, August 2011.

[9] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex fourier series. Math-
ematics of Computation, 19:297–301, 1965.

[10] J.G. Proakis and D.G. Manolakis. Digital signal processing: Principles, Algorithms, and Applications.
Pearson Prentice Hall, 2007.

[11] Square kilometer array. http://www.skatelescope.org. accessed 20 Februari 2013.

[12] Wikipedia, Cooley-Tukey FFT algorithm. http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_

algorithm. accessed 10 December 2012.

[13] P. Duhamel and H. Hollmann. ‘split radix’ fft algorithm. Electronics Letters, 20(1):14–16, 1984.

[14] Split-radix FFT algorithms. http://cnx.org/content/m12031/latest/. accessed 15 April 2013.

[15] C.S. Burrus. Index mappings for multidimensional formulation of the DFT and convolution. Acoustics,
Speech and Signal Processing, IEEE Transactions on, 25(3):239–242, 1977.

[16] Shousheng He and M. Torkelson. A new approach to pipeline FFT processor. In Parallel Processing
Symposium, 1996., Proceedings of IPPS ’96, The 10th International, pages 766–770, 1996.

[17] David Kampen van, Klaas L. Hofstra, Jordy Potman, and Sabih H. Gerez. Implementation of a combined
OFDM-demodulation and WCDMA-equalization module. In Proceedings of ProRISC 2006, 17th Annual
Workshop on Circuits, Systems and Signal Processing, pages 277–285, Veldhoven, The Netherlands,
2006.

[18] B.M. Baas. A low-power, high-performance, 1024-point FFT processor. Solid-State Circuits, IEEE Journal
of, 34(3):380 –387, Mar 1999.

[19] Shousheng He and M. Torkelson. Design and implementation of a 1024-point pipeline FFT processor. In
Custom Integrated Circuits Conference, 1998. Proceedings of the IEEE 1998, pages 131 –134, May 1998.

[20] C. Dick. Computing the discrete fourier transform on FPGA based systolic arrays. In Field-Programmable
Gate Arrays, 1996. FPGA ’96. Proceedings of the 1996 ACM Fourth International Symposium on, pages
129–135, 1996.

39

http://www.skatelescope.org
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://cnx.org/content/m12031/latest/

[21] Sergio Saponara, Massimo Rovini, Luca Fanucci, Athanasios Karachalios, George Lentaris, and Dionysios
Reisis. Design and comparison of FFT VLSI architectures for SoC telecom applications with different
flexibility, speed and complexity trade-offs. Circuits, Systems, and Signal Processing, 31:627–649, 2012.

[22] Min-An Song, Lan-Da Van, and Sy-Yen Kuo. Adaptive low-error fixed-width booth multipliers. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., E90-A(6):1180–1187, June 2007.

[23] B.M. Baas. An energy-efficient single-chip FFT processor. In VLSI Circuits, 1996. Digest of Technical
Papers., 1996 Symposium on, pages 164 –165, Jun 1996.

[24] E. Lai. Practical Digital Signal Processing. Elsevier Science, 2003.

[25] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs. In Proceedings of the
2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays, FPGA ’06, pages
21–30, New York, NY, USA, 2006. ACM.

40

	Introduction
	Radio astronomy
	ASTRON & LOFAR
	Fast Fourier Transform (FFT)
	Goals

	Description of the FFT
	Decimation in time
	Butterflies

	Decimation in frequency
	Bit-reversed order
	Radix-4
	Split-radix
	Radix-2n
	Radix-22
	Radix-23

	Architectures
	Single-memory architectures
	Dual-memory architectures
	Pipelined architectures
	Array architectures

	FFT implementations presented in literature
	ASIC Design of Low-power Reconfigurable FFT processor 4415563
	A Low-Power and Domain-Specific Reconfigurable FFT Fabric for System-on-Chip Applications 1420039
	ASIC implementation of a 512-point FFT/IFFT Processor for 2D CT Image Reconstruction Algorithm 5783849
	An Efficient FFT/IFFT Architecture for Wireless communication 6208396
	Design And Implementation of Low Power FFT/IFFT Processor For Wireless Communication 6208304
	Low-power digital ASIC for on-chip spectral analysis of low-frequency physiological signals 1674-4926-33-6-065004
	Low Power Hardware Implementation of High Speed FFT Core 5532842
	ASIC Implementation of High Speed Processor for Calculating Discrete Fourier Transformation using Circular Convolution Technique Saha:2011:AIH:2189899.2189902
	Comparison
	Discussion of the results

	Description of the implemented designs
	ASTRON's implementation
	Avoiding overflow

	New Radix-2 DIF implementations
	Variant 1 (NEWv1)
	Variant 2 (NEWv2)
	Complex multipliers
	Twiddle factors

	Radix-4 DIF implementation
	Variant 1 (NEWR4v1)
	Variant 2 (NEWR4v2)

	Synthesized combinations of components

	FPGA versus ASIC using ASTRON's design
	Area
	Power and Energy

	Comparison of ASTRON design with new designs
	Area
	Power and Energy
	Comparison using FOMs

	Discussion
	FPGA versus ASIC
	Design
	Components

	Conclusion
	Recommendations & Future Work

	List of abbreviations
	References

