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Abstract: In this thesis a spatio-temporal point process will be proposed
for modelling firemen demanding emergency calls in the region Twente in
the Netherlands. The modelling technique will be described for the level 1a
classifications of firemen demanding emergency calls “fire”, “service”, “acci-
dent”, “alert” and “environmental”. Making accurate expectations for these
kinds of emergency calls in the future is very important for emergency ser-
vices, since it can improve the prevention behaviour and the scheduling of
the fire departments and therefore the quality of help. Improvement of the
prevention behaviour is made possible because the model describes the influ-
ences of the involved covariates on each class of emergency calls. Scheduling
could be improved since the number of emergency calls with the correspond-
ing locations and classes can be predicted for future days. In this way it can
be predicted for every fire department how many and which kinds of emer-
gency calls they will have to treat the next days. Nowadays these predictions
are often made by the industry practice model of partitioning the region of
interest in polygons and base the expected number of emergency calls on cor-
responding information of the past by taking averages. But spatio-temporal
point process models have proven to be the more accurate and robust model,
since scientific research highly improved the theory for spatial point pattern
analysis the last few decades. Spatial point process modelling has also be sim-
plified by the many tools for analysing spatial point patterns available in the
spatstat package in R, available from CRAN (2006). This thesis provides
extensions to some of these tools, because a spatio-temporal point process
will be developed for the emergency calls rather than a purely spatial point
process. This spatio-temporal point process actually involves an ensemble of
spatio-temporal point processes for the emergency calls of each level 1a class
and each of these models thus have to be modelled separately. These individ-
ual spatio-temporal point processes will then be modelled as inhomogeneous
Poisson processes for which the intensity function is dependent on spatial and
temporal covariates. After modelling, the precise influences of each covariate
involved on each kind of emergency calls will be known.

Key words: spatio-temporal point process, spatial point pattern, time series, inhomogeneous
Poisson process, maximum pseudolikelihood estimator
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1 Introduction

Nowadays, emergency services base their logistics and prevention behaviour strongly on their
expectations for the emergency calls in the future. Making these expectations as accurate as
possible has been (and still is) a hot topic in scientific research. Because the better the pre-
dictions of emergency calls are, the better emergency services can anticipate their logistics and
prevention behaviour on it.

Every emergency call has a time t ∈ R+ and a location x ∈ R2 of occurrence. Mostly the
description of emergency calls are completed with a classification ci, i ∈ N, of the emergency call,
for example a description of the emergency call or the priority for serving the emergency call.
Emergency services desire to know all the exact times, locations and the potential classifications
of the future emergency calls, so they can serve aid on the right time, at the right location and
with the right means. Creating a model which predicts these variables exactly for every future
emergency call is of course a utopian aim. So each model will in some way involve stochastics
and each model will have a horizon for significant prediction.

But how should such a model be built? To give the reader some feeling for these kinds of
models, an intuitive and rather simple model is explained first. For this model, the spatial
region of interest is partitioned in a set of polygons, and the expected number of emergency
calls for each polygon on time t is based on its past information. This is commonly done by
taking (weighted) averages of the number of emergency calls in the previous weeks or years for
each polygon. This model is the current industry practice (Zhou et al., 2015) and it is not
said that applying only these simple statistics provide erroneous expectations. Nonetheless sci-
entific research has developed much more accurate and sophisticated models the last few decades.

The general model for analysing events with a location and time of occurrence is a spatio-
temporal point process (model). Such a model is capable of making more accurate predictions
in a higher resolution of space and time, since it may take into account detailed distance in-
formation in space and time. Modelling a spatio-temporal point process is in general quite
complicated, since the causes may also be spatio-temporal next to purely spatial and purely
temporal. Often, though, the spatio-temporal causes are not (significantly) present, since the
spatial behaviour and temporal behaviour of the events of interest are quite independent. In
that case separability may be assumed for the model, in which case the spatial behaviour and
the temporal behaviour may be examined individually. Analysing the spatial behaviour involves
spatial point pattern analysis and analysing the temporal behaviour involves time series analysis.

In this thesis, a spatio-temporal point process model will be built for firemen demand, where
the region Twente in the Netherlands is the region of interest. This model is based on the
data from 1 January 2004 till 31 December 2015. A spatio-temporal point process model seems
tailor-made for the problem in this thesis, because emergency calls of each classification all have
a specific location and time of occurrence. As a consequence, a spatio-temporal point process
can be made for each different class2. For each spatio-temporal point process, separability will
be assumed. Although there are also no indications of significant spatio-temporal causes for
each class, separability is mainly assumed for simplification, since the spatial and temporal be-
haviour of the firemen demanding emergency calls can as a consequence be examined individually.

2The observant reader may note that there could be some dependence between different classes, which makes
modelling these classes separately an erroneous choice. If this is the case, a multivariate spatio-temporal point
process model is the better option, since they also model the dependencies between different classes.
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The aim of this thesis is not only to build a spatio-temporal point process for predicting the
future emergency calls of each class3, but also to get a thorough understanding of the causes of
the emergency calls of that class. The former purpose serves for improving the logistics of the
fire departments in Twente in both space and time, by anticipating on the predictions of the
model. The latter purpose serves for optimizing the prevention behaviour by noting the precise
causes of emergency calls of different classes. Both purposes are merged in a spatio-temporal
point process, because the predictions of this kind of model are based on the information about
the causes of the events.

As a consequence, the emergency calls will be classified by their description rather than by
their priority of being served, because the causes of the emergency calls are more dependent
on the description of the emergency call than on the priority. The fire departments in Twente
classify the description of an emergency call in one of the five following classes: “fire”, “service”,
“accident”, “alert” and “environmental”. Although there are more kinds of classification, this
kind of classification, called the level 1a classification system, is the most general and therefore
the recommended one. Each of these classes could also be further classified, but these subclasses
will not be involved in the modelling described in this thesis.

It will turn out that the dependence of emergency calls on covariates is the most significant
cause in Twente, rather than the dependence of emergency calls on other emergency calls. The
former cause is called trend and the latter cause is called stochastic interaction. As a consequence,
the models for each class purposed in this thesis will only involve trend as cause. The emergency
calls may depend on spatial or temporal covariates4, for example the population density or a
binary variable indicating whether or not the day of interest is 31 December.

Analysing the influences of spatial and temporal covariates on the occurrences of the emer-
gency calls will then be done by comparing the values of these covariates with the number of
emergency calls in the region Twente in the time period from 1 January 2004 till 31 December
2015. The relations representing these influences can then be implemented in the model. This
will only be done for the covariates that happen to have the most influence, though, for making
the model not too complex. After the trends are discovered, a spatio-temporal point process can
be built with (extensions of) the spatstat package in R, which is made available by CRAN (2006).

In which way could optimization with such a model then be achieved? This could be done
by adapting the logistics of the fire departments in Twente according to the model of interest,
for example by optimizing the scheduling. Although most fire departments in Twente rely on
volunteers, optimization could still try to reduce operational costs or to save time. This could
implicitely lead to improving the quality of the help. Optimization based on the model could
also check whether an extra fire department would be beneficial and where it should be placed.
All these kinds of optimization could be done by dynamic programming. This thesis will not
involve optimization of logistics according to the model, though.

Next to optimization in logistics, the prevention behaviour can be adapted with the model made,
as mentioned earlier. From this model, the fire departments could see influential covariates which
cause many emergency calls (of a specific class) in Twente. After finding these hazards, they
can try to reduce their influence by reducing or removing the hazards or alerting people for them.

3The model of interest is actually an ensemble of spatio-temporal point process models for each class.
4As a consequence of separability, spatio-temporal covariates are not allowed
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The spatio-temporal point processes proposed in this thesis are inhomogeneous Poisson pro-
cesses, since the occurrences of emergency calls are assumed to depend on covariates, but not to
depend on each other. The important challenge for the modelling is to find the intensity function
λ(x, t),x ∈ R2, t ∈ R+, of the inhomogeneous Poisson process for each class of emergency calls.
The intensity function is actually the tool for translating the spatial and temporal information
of the data to the model. Next to that it has the intuitive property of representing a measure
for the expected number of emergency calls for an infinitesimal region around x and t.

The spatial and temporal information for this intensity function can completely be extracted
from the spatial covariate analysis and the temporal covariate analysis, respectively, since the
model is assumed to depend only on trend5. For the spatial covariate analysis, Twente will be
subdivided into a grid of 6291 squares of 500 meter. For the temporal covariate analysis, each
year involved will be subdivided in 365 days6 and so the period of 1 January 2004 till 31 De-
cember 2015 will be subdivided into a grid of 4380 days. The extracted information about the
influences of the significant covariates will then be translated to the intensity function with help
of the spatstat package in R.

In the following section, the important theory for this thesis will first be summarized, involving
spatial point pattern analysis, spatial point process modelling and the extension of the spatial
point process to a spatio-temporal one. In section 3, the emergency call data of Twente will be
cleaned and analysed. According to this analysis, the spatio-temporal point process model for
each class of emergency calls will be chosen. The section concludes by analysing the erroneous
data to discover possible trends in the occurrences of such data.

In section 4 the spatial and temporal covariates for this thesis will be selected and will be
examined by the spatial and temporal covariate analysis, respectively. In section 5, the method
for modelling the discovered covariate information in the intensity function will be explained and
the spatio-temporal point process will be built for each class of emergency calls. The complete
model, which is the ensemble of the spatio-temporal point processes for each class of emergency
calls, will then be validated by comparing them to the available data of emergency calls from 1
January 2016 till 7 December 2016. Section 6 concludes.

The emergency call data is provided by the head fire department in Twente. The cleaning
and analysis of it will partially be done by Microsoft Excel and partially by the open source
program QGIS. The remainder of the analysis and the fitting of the involved models of it will be
done by R.

5Even if the model also depends on stochastic interaction, the intensity function for the inhomogeneous Poisson
process cannot model the information about these dependencies, since the inhomogeneous Poisson process is only
capable of modelling trend.

6As will be explained later, leap years are transformed to regular years to make an adequate analysis possible.
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2 Literature review

In this section, the reader is given a brief introduction to the theory of spatio-temporal point
processes, so he or she will be able to understand the discussions in the remainder of this thesis.
The literature review is mostly based on Diggle (1983).

To start with the theory, the two fundamental definitions about spatio-temporal point pro-
cesses will be given. These definitions will be loosened versions of the formal ones, since these
quantitative definitions do the job for this thesis and therefore simplify the discussion in the
remainder of this thesis. These definitions are based on Diggle (1983) and Turner (2009). For
the formal definitions, the reader is referred to Van Lieshout (2000), Møller and Waagepetersen
(2003) and Daley and Vere-Jones (2007).

Definition 2.1 Let A ⊂ Rm,m ∈ N. An m-dimensional spatial point pattern S is a data
set {x1,x2, ...,xn},xi ∈ A, 1 ≤ i ≤ n, in the form of a set of points, distributed within a region
of interest A. An event xi, 1 ≤ i ≤ n, is an element of S. �

Definition 2.2 Let XT be a random variable, which takes values in the form of a spatial
point pattern out of all possible spatial point patterns for a region of interest A ⊂ Rm,m ∈ N.
A spatio-temporal point process is a process which generates values for the random variable XT

for a time period of interest T ⊂ R+. �

In most cases, and also in this thesis, m = 2, so the region of interest is a bounded subset7

of the plane R2. For the general theory (m ≥ 2), one should read Diggle (1983).

If space and time (covariates) exert influences on the value of the random variable XT of definition
2.2 independently of each other, the spatio-temporal model becomes separable. As mentioned,
analysing the spatial and temporal behaviour of the spatio-temporal problem can then be done
separately. A spatio-temporal point process is then made by first modelling a spatial point pro-
cess for the spatial part of the problem, implementing the spatial behaviour analysed. Thereafter
this model is extended into time by a time series, which describes the evolution of the spatial
point process in time. In this way the separability assumption simplifies the modelling.

For many models, and also for the model proposed in this thesis, separability seems a reasonable
assumption. Therefore, the theory about the spatial part and the temporal part of modelling
will be examined individually. First, some theory about spatial point pattern analysis will be
explained. Then it will be explained how to use the results of this analysis for spatial point pro-
cess modelling. The section concludes by explaining how to extrapolate the spatial point process
in time to a spatio-temporal point process. The time series analysis which gives the information
needed for this extrapolation is analogous to the spatial point pattern analysis in this thesis.
Therefore extensive theory about time series analysis will not be explained.

2.1 Spatial point pattern analysis

Before any theory about spatial or spatio-temporal point process modelling will be discussed, two
very important restrictions have to be made. These restrictions involve that all the spatial point
processes (and so spatio-temporal point processes) in this thesis are assumed to be stationary
and isotropic, unless stated otherwise. According to Diggle (1983), the definitions are as follows:

7A region of interest involves a bounded subset, since it will never have an infinite area in practice.
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Definition 2.3 Let A ⊂ R2 the region of interest. A process is stationary if all probability
statements about the process in any subregion B ⊆ A are invariant under arbitrary translation
of B in A. �

Definition 2.4 Let A ⊂ R2 the region of interest. A process is isotropic if all probability
statements about the process in any subregion B ⊆ A are invariant under arbitrary rotation of
B in A. �

How these assumptions simplify the problem will be explained later. For now it is important
to think about the fundamental idea of spatio-temporal point processes. Every model should
predict values for the random variable XT defined as in definition 2.2. But special attention
should be paid to the fact that the random variable XT will not be described by its probability
density function, as commonly is the case with random variables, since the probability den-
sity function in the context of the random variable XT is hard to understand and thus hard to
work with. A more intuitive description is given by the intensity function λ(x, t),x ∈ R2, t ∈ R+.

The reason why the intensity function λ(x, t) is so intuitive is that λ(x, t) dxdt describes ap-
proximately the probability of an event in the subregion dx of the region of interest and in the
time interval dt. This can also be extended to greater subregions and time intervals. Let B ⊆ A
be a subregion of the region of interest A ⊂ R2 and U ⊆ T a subperiod of the time period
of interest T ⊂ R+ for a spatio-temporal point process. Then the expected value E[·] of (the
random variable representing) the number of events N(B ×U) in subregion B and subperiod U
is given by:

E
[
N(B × U)

]
=

∫
U

∫
B

λ(x, t) dx dt, x ∈ R2, t ∈ R+ (1)

This result follows from the definition of the intensity function. Before giving a definition, it must
be remarked that there does not exist a general kind of intensity function, since different kinds
of intensity functions are needed for the different ways a spatial point pattern can be analysed.

In this thesis, only the first-order and second-order properties of the involved spatial point
patterns are taken into account, described by the first-order intensity function and second-order
intensity function, respectively. In general, and also in this thesis, the first-order and second-
order properties give sufficient information about the random variable XT and so higher-order
properties do not have to be described. For a probability density function as descriptor of XT ,
the first-order and second-order properties are described by the first moment and second mo-
ment of the probability density function, respectively. So the first-order intensity function and
the second-order intensity function are the analogous versions of the first moment and second
moment of the probability density function.

One last remark should be made before the first-order intensity function and the second-order
intensity function are defined. Since the focus in this part of the thesis lies on modelling spa-
tial point processes, the temporal aspect will be disregarded for the moment and so the period
T ⊂ R+ for which values for XT are generated will be fixed for now. Therefore, the values for
temporal variable t in the intensity functions are fixed for now and the intensity functions will
therefore only be denoted by the spatial variable x, until the discussion of extending the spatial
point process to a spatio-temporal one. Now this is mentioned, the first-order intensity function
and the second-order intensity function will be defined, according to Diggle (1983).
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Definition 2.5 Let E[·] be the expected value of a random variable, bx(s) be an open disc
with centre x ∈ R2 and radius s, N(bx(s)) be the number of events of the spatial point pattern
of interest in this disc and | · | be the operator giving the area of a polygon. Then

λ(x) = lim
s→0

E[N(bx(s))]

|bx(s)|
, x ∈ R2 (2)

is called the first-order intensity function and

λ2(x,y) = lim
s1,s2→0

E[N(bx(s1))N(by(s2))]

|bx(s1)||by(s2)|
, x,y ∈ R2 (3)

is called the second-order intensity function. �

And now the benefits of the stationarity and isotropy assumptions can be shown. For a sta-
tionary and isotropic process:

λ2(x,y) = λ2(r), r ∈ R+ (4)

where r ∈ R+ is the distance between x and y. Without the stationarity and isotropy assump-
tions, the second-order intensity function would have been much more complicated.

Now one can clearly see from the definitions that intensity functions give measures for the
intensities of occurrences of events. But to let the intensity function represent this measure for
a spatial point pattern of interest, the spatial information of this spatial point pattern has to
be translated to an intensity function. So it is important to know how spatial information is
classified. There are roughly speaking three classifications, according to Diggle (1983):

• A spatial point pattern with no obvious structure is called completely spatially random,
often abbreviated as CSR;

• A spatial point pattern with a structure in which points tend to cluster together at some
places is called aggregated ;

• A spatial point pattern with a structure in which points tend to be evenly distributed is
called regular.

Examples of CSR, aggregated and regular spatial point patterns are given in figure 1.

But how discover which classification fits a spatial point pattern S over the region of interest A?
As a first step in answering this question, the following hypothesis test will be executed:

H0: S is CSR distributed over A.

H1: S is not CSR distributed over A.
(5)

The reason why hypothesis test (5) is executed first, is that modelling will be greatly simplified
(although it will also make less sense) if H0 is accepted, since events then tend to occur at each
place in A with the same probability. As later will be explained, the (homogeneous) Poisson
process model fits S if H0 is accepted and this process can be modelled very easily. But if H0

is rejected, things start to get interesting. In that case, the spatial point pattern is aggregated
or regularly distributed and modelling makes more sense, but is also more difficult. So actually
rejecting H0 can be seen as a threshold condition for spatially modelling the data.
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Figure 1: CSR spatial point pattern (left), aggregated spatial point pattern (middle), regular
spatial point pattern (right), which respectively represent the datasets japanesepines, redwood
and cells from the spatstat package in R, available from CRAN (2006).

To execute hypothesis test (5), it is important to know how spatial point patterns are anal-
ysed in general. The two ways to analyse spatial point patterns are analysis by quadrat counts
and analysis by distance measures. In quadrat count analysis the region of interest A is parti-
tioned into a number of quadrats and the number of events of the spatial point pattern of interest
S is counted in each quadrat. By applying specific statistics, the information of all quadrats can
be compared with each other and the spatial point pattern can be classified as CSR, aggregated
or regular.

Because the old-fashioned quadrat count analysis is not very accurate and sensitive to errors, the
most preferred analysis is the distance measure analysis. This kind of analysis is based on the
continuous distance measure r ∈ R, r ≥ 0, between events of the spatial point pattern of interest
S, as defined in equation (4). An empirical distribution functions f̂(r) then describes the spatial

information of S and thereafter f̂(r) will be compared with the theoretical probability density

function f(r) for a CSR spatial point pattern. If f̂(r0) is significantly different from f(r0) for
some predetermined value r0 for r and for some significance level α, the hypothesis test (5) is
decided in favour of H1 and otherwise in favour of H0.

How could it be decided whether f̂(r0) is significantly different from f(r0)? This can be done by

analysing f̂(r) for r = r0 against the upper and lower critical envelopes U(r) and L(r), respec-
tively. According to Diggle (1983), these are defined as follows.

Definition 2.6 Let S be the spatial point pattern of interest in region A ⊂ R2, S̃1, S̃2, . . . , S̃n
be n newly sampled CSR spatial point patterns in A and f̂i(r) be the empirical distribution
function representing the distance measure of interest for S̃i, 1 ≤ i ≤ n. Then the upper critical
(simulation) envelope U(r) and the lower critical (simulation) envelope L(r) for S are defined as

U(r) = max
i=1,2,...,n

f̂i(r) (6)

L(r) = min
i=1,2,...,n

f̂i(r) (7)

respectively. �
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The critical envelopes U(r) and L(r) actually set boundaries for the region in which a spa-
tial point pattern is still CSR8. So the critical envelopes actually form the boundaries between
accepting and rejecting H0: If f̂(r0) lies between the critical envelopes, so L(r0) ≤ f̂(r0) ≤ U(r0),
H0 is accepted. Otherwise H1 is accepted. The significance level α of hypothesis test (5) is de-
pendent on the number of simulations for the critical envelope n. For instance, n = 39 implies
α = 0.05 (Turner, 2009). If H0 is rejected, the plot of f̂(r) against U(r) and L(r) also reveals

whether S is aggregated or regular. Depending on whether f̂(r0) > U(r0) or f̂(r0) < L(r0), S
is aggregated or regular. Which distribution of S requires which condition is dependent on the
distance measure analysis used.

One may now ask how different distance measure analyses are possible. The idea is that each
distance measure analysis method describes the spatial information of S from a different point
of view. Still each distance measure analysis method depends on the distance measure r, but
the methods differ in the context in which they implement this distance measure. This also
means that the theoretical probability density function differs per method and therefore also the
estimator for it, which is the empirical distribution function.

The most popular distance measure analyses are executed by estimating and analysing Rip-
ley’s reduced second moment function K(r), the nearest neighbour distance distribution function
G(r), the empty space function F (r) or the summary function J(r). Before the analysis meth-
ods corresponding to these theoretical probability density functions are discussed, an accurate
estimator λ̂ of the intensity λ is needed, since the analysis methods require such an estimator.

For defining this estimator, let S be the spatial point pattern of interest and A the region
of interest. Partition A in m polygons Bi, 1 ≤ i ≤ m, of the same area |B|, so |B1| = |B2| =
. . . = |Bm| = |B|. Further let Ni be the random variable, representing the number of events in
polygon Bi, and let ni be the realisations of this random variable for S. Then an estimator for
λ is given by:

λ̂(m) =

∑m
i=1 ni
m|B|

(8)

The strength of this estimator is that it is unbiased for a CSR distribution of S in A. As will
be explained more thoroughly later in this section, a CSR distribution for S means that Ni is
Poisson distributed with mean λ|B| for every i, 1 ≤ i ≤ m. Because the mean is λ|B| for all

them polygons in the partition for a CSR distribution of S, it can easily be derived that E
[
λ̂
]

= λ.

The estimator of equation (8) is also valid for m = 1, so it reduces to λ̂ = |S||A|−1 in this
case9. With this estimator, the distance measure analysis methods can be explained. For the
discussion of these methods, let again S be the spatial point pattern of interest and A be the
region of interest. Further, let xi ∈ S and xj ∈ S, j 6= i, be two arbitrary different events of
S with e(xi,xj) the edge correction weights10 for these events, d(xi,xj) the distance between
these events and I(d(xi,xj) ≤ r) an indicator function which equals 1 if the distance between xi
and xj is smaller than or equal to r and 0 otherwise. Some distance measure analyses may also
be based on the distance between an event xi and a set R ⊆ S \ xi, denoted by d(xi, R). The
operators E[·] and P[·] give the expected value and the probability of the argument, respectively.

8Note that U(r) and L(r) are in practice not equal to the theoretical probability density function f(r).
9Be aware that the operator | · | on S represents the cardinality of S, since S is a set, and that this operator

on A represents the area of A, since A is a polygon.
10Edge correction weights temper the biasing influences of events in the neighbourhood of the border in A.

For a more thoroughly discussion about these weights, see Diggle (1983).
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Ripley’s reduced second moment function
Ripley’s reduced second moment function (or Ripley’s K-function) K(r) is defined as:

K(r) = λ−1E
[
number of further events within distance r of an arbitrary event

]
So this function describes S by the number of events contained in the circular neighbourhood of
radius r for each of the |S| events in S. The empirical distribution function K̂(r) can then be
expressed as:

K̂(r) = λ̂−1|S|−1
∑
i 6=j

e(xi,xj)I(d(xi,xj) ≤ r), r ≥ 0 (9)

where the estimator λ̂ = |S||A|−1 can thus be applied, if λ is unknown. Further, the theoretical
probability density function under CSR assumption becomes:

K(r) = πr2, r ≥ 0. (10)

Deviations K(r) > πr2 and K(r) < πr2 indicate aggregation and regularity, respectively.

Nearest neighbour distance distribution function
The nearest neighbour distance distribution function G(r) is defined as:

G(r) = P
[
distance from an arbitrary event of S to the nearest other event of S is at most r

]
So this function describes S by the distances r between the events of the nearest neighbouring
event pairs. Let xj ∈ S \ xi denote the nearest neighbour of event xi ∈ S. The empirical

distribution function Ĝ(r) can then be expressed as:

Ĝ(r) = |S|−1
∑
i 6=j

e(xi,xj)I(d(xi, S \ xi) ≤ r), r ≥ 0 (11)

and the theoretical probability density function under CSR assumption becomes:

G(r) = 1− e−λπr
2

, r ≥ 0. (12)

where the intensity function λ can again be estimated by equation 8, if it is unknown. Devi-
ations G(r) > 1−e−λπr2 and G(r) < 1−e−λπr2 indicate aggregation and regularity, respectively.

Empty space function
The empty space function F (r) is defined as:

F (r) = P
[
distance from an arbitrary point in A to the nearest event of S is at most r

]
This function seems similar to the G(r) function. The difference, though, is that this time only
one event in the pair is part of S. The other one is an event of a newly sampled CSR spatial
point pattern S̃ and such an event is called a point, denoted as x̃i ∈ S̃. Let xi ∈ S denote the
nearest neighbour of the point x̃i ∈ S̃. The empirical distribution function F̂ (r) can then be
expressed as:

F̂ (r) = |S̃|−1
∑
S̃

e(x̃i,xi)I(d(x̃i,xi) ≤ r), r ≥ 0 (13)

and the theoretical probability density function under CSR assumption becomes:

F (r) = 1− e−λπr
2

, r ≥ 0. (14)
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where the intensity function λ can again be estimated by equation 8, if it is unknown. Devi-
ations F (r) < 1−e−λπr2 and F (r) > 1−e−λπr2 indicate aggregation and regularity, respectively.

Summary function
The summary function J(r) is defined as:

J(r) =
1−G(r)

1− F (r)
, r ≥ 0. (15)

So this function is based on the combination of nearest neighbour distance analysis and empty
space analysis for describing S. The benefit of Ĵ(r) in comparison with Ĝ(r) and F̂ (r) is that it
can be computed explicitly for a wide range of spatial point patterns. The empirical distribution
function Ĵ(r) simply becomes:

Ĵ(r) =
1− Ĝ(r)

1− F̂ (r)
, r ≥ 0. (16)

and the theoretical probability density function under CSR assumption becomes:

J(r) = 1, r ≥ 0. (17)

Deviations J(r) < 1 and J(r) > 1 indicate aggregation and regularity, respectively.

For a more thorough discussion about these distance measure analysis methods, for example
how these theoretical probability density functions are found, see for instance Diggle (1983) for
the case of K(r), G(r), F (r) and Van Lieshout and Baddeley (1996) for J(r).

So now a spatial point pattern can be classified in a CSR, an aggregated or a regular spatial
point pattern. But still little is said about what causes a spatial point pattern to be distributed
as one of these classes. One may remember from section 1 that there are two different causes
for a distribution of a spatial point pattern. The distribution of the events may be caused by
the influences of covariates, called trend, or by the influences of other events, called (stochastic)
interaction. By investigating these causes in more detail, further classification of the spatial
point pattern is possible and therefore a more accurate description of the spatial information
of the spatial point pattern. In this thesis, only the cause of an aggregated distribution will
be examined more thoroughly, since the problem appears to involve an aggregated spatial point
pattern (see section 3).

First, the concepts of trend and interaction will first be illustrated in the context of the ag-
gregated spatial point pattern for redwood seedlings from figure 1b, to give the reader a better
understanding of these concepts. Suppose the cause of this aggregation is a tendency for the
redwood seedlings to grow close to their parents. In this case, the locations of seedlings of the
same parent are mutually stochastically dependent on each other, since they all aggregate around
this parent, and the cause of the aggregation is stochastic interaction. Another cause of the ag-
gregation may be that some places in the region of interest for this spatial point pattern are more
fertile than other places. And since the variation of soil fertility over the region of interest may
be introduced as a covariate for the model, the aggregation is now caused by trend. Of course,
a combination of the two causes may also be possible.

But how to determine whether trend or interaction is the cause of an aggregated distribution for
spatial point pattern S in region A and time period T? Bartlett (1964) mentions this can only
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be concluded from n multiple independent and identically distributed realisations S1, S2, . . . , Sn
of the random variable XT from definition 2.2, where XT represents the (aggregated) spatial
point pattern of interest S in the fixed time period T ⊂ R+. There are now two different kinds
of aggregation possible: the aggregation of the events are around the same points for all the
n realisations S1, S2, . . . , Sn in A or are around different points for different realisations. The
former kind is caused by trend and the latter kind by stochastic interaction, as one may reason
intuitively. Aggregation caused by trend is often called inhomogeneity or heterogeneity.

In theory, n realisations S1, S2, . . . , Sn of S are not possible, though, since S is the unique
spatial point pattern for period T in region A. To solve this problem, time invariance is often
assumed for the distribution of S and period T is partitioned in n subperiods Ui, 1 ≤ i ≤ n of the
same length. Then a set of n multiple independent and identically distributed realisations for
XT can be represented by SU1 , SU2 , . . . , SUn , where SUi , 1 ≤ i ≤ n represents the spatial point
pattern consisting of the events of S occurred in subperiod Ti. Nonetheless, time invariance is
a strong and therefore an often erroneous assumption, causing the conclusions to be interpreted
with much caution.

Analysing the cause of aggregation by comparing the clustering points of each spatial point
pattern SUi , 1 ≤ i ≤ n is a very global and informal analysis. A more formal analysis depends
on extensions to the distance measure analyses earlier described. These analysis methods will
be explained in section 3.

2.2 Spatial point process modelling

Now some different classifications and their causes for spatial point patterns are known, a start
can be made to model each classification and cause in an appropriate way. As earlier mentioned,
this thesis focuses on spatial point process models for aggregation. The focus will be even further
specified to aggregation caused merely by trend, so inhomogeneity. This because (aggregation
caused by) stochastic interaction requires that each event of S must be considered in relation to
every other event in S, what makes such models horribly complicated and intractable from an
analytical point of view. The verification of this choice, so the assumption that there is (approx-
imately) no stochastic interaction between the events, will later in this thesis be discussed.

One may further question why a complete spatial point process model is required, when the
intensity function describes all the spatial information? Well, such a model is the stochastic
mechanism for translating this spatial information (packed in the intensity function) into simu-
lations of new spatial point patterns, which therefore have the same distribution11 as S. Such a
spatial point process model is the actual aim and although the intensity function is a great part
of it, it is not the whole model.

There are different spatial point process models, made for different kinds of spatial informa-
tion and each implementing the intensity function in a different way. The search in this thesis
concerns finding a spatial point process model for inhomogeneity. For finding such a model, a
start will be made by first modelling a CSR spatial point pattern. This will be done by the
most fundamental spatial point process model, the (homogeneous) Poisson spatial point process,
because many applicable spatial point process models are based on this model.

11The simulations will never be distributed exactly the same. Part of this arises from the stochastics of the
models, so in some way a lack of knowledge. The other part may arise from a wrong or incomplete model used
for the modelling.
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Definition 2.7 Let A ⊂ R2 be the region of interest and N(A) be the number of events in
A. Then a point process is (homogeneous) Poisson if it satisfies the following conditions:

1. For some λ > 0, N(A) is Poisson distributed with mean λ|A|.

2. Given N(A) = s, the s events in A form an independent random sample from the uniform
distribution on A.

In this process, the intensity function is implemented in the parameter λ. �

As one can see, λ does not depend on even a single variable. This is what should be expected
for a CSR distributed spatial point pattern, because in such a pattern there is no tendency for
events to occur at specific places. This intensity function λ can be estimated by the estimator
λ̂(m) defined as in equation (8), for each m ∈ N.

Another powerful property of the homogeneous Poisson point process is the following result:

Theorem 2.1 Let S ∈ R2 be a CSR spatial point pattern, B1 and B2 be two arbitrary subre-
gions of the region of interest A ⊂ R2 and N(B1) and N(B2) be the number of events in B1 and
B2, respectively. If B1 ∩B2 = ∅, N(B1) and N(B2) are independent.

Proof. Define B = B1 ∪ B2, p = |B1||B|−1 and q = 1 − p = |B2||B|−1. By the conditions,
S can be modeled as a Poisson point process in both regions B1 and B2. Using the second
property of a Poisson point process (Definition 1.6) gives:

P
[
N(B1) = x,N(B2) = y

∣∣ N(B) = x+ y
]

=

(
x+ y

x

)
pxqy, x ≥ 0, y ≥ 0

and the first property gives the unconditional joint probability distribution of N(B1) and N(B2):

P
[
N(B1) = x,N(B2) = y

]
=

(
x+ y

x

)
pxqy

[
e−λ|B|

(λ|B|)x+y

(x+ y)!

]
, x ≥ 0, y ≥ 0

=
(x+ y)!

x! y!

|B1|x

|B|x
|B2|y

|B|y
e−λ(|B1|+|B2|)λ

x+y|B|x+y

(x+ y)!
, x ≥ 0, y ≥ 0

=

[
e−λ|B1| (λ|B1|)x

x!

][
e−λ|B2| (λ|B2|)y

y!

]
, x ≥ 0, y ≥ 0

= P
[
N(B1) = x

]
P
[
N(B2) = y

]
, x ≥ 0, y ≥ 0 �

Theorem 2.1 is the cornerstone of Poisson point processes. It mentions that the events of S
are mutually stochastic independent if modelled as a Poisson process. This is the reason why
Poisson processes (or extensions to it) are mostly used to model spatial point patterns which
(are assumed to) have no stochastic interaction between their events.

Theorem 2.1 also simplifies the second-order intensity function of equation (4) even further
to (Diggle, 1983):

λ2(r) = λ2, r ∈ R+. (18)

Although such a second-order intensity function is not unique for the homogeneous Poisson pro-
cess (Baddeley and Silverman, 1984), the Poisson process is a very intuitive and fundamental
stochastic mechanism with this characteristic. But this simplicity of the homogeneous Poisson
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process has a price, because it could only well be fitted to a CSR spatial point pattern. So now
an extension to the homogeneous Poisson process model will be described, which also is capable
of modelling inhomogeneity. This extension is called the inhomogeneous Poisson point process.

Definition 2.8 Let A ⊂ R2 be the region of interest and N(A) be the number of events in
A. Then a point process is inhomogeneous Poisson if it satisfies the following conditions:

1. For some function λ(x) > 0,∀x ∈ A, N(A) is Poisson distributed with mean
∫
A
λ(x)dx.

2. Given N(A) = s, the s events in A form an independent random sample from the distri-
bution on A with a probability density function proportional to λ(x).

In this process, the intensity function is implemented in the parameter λ(x). �

Because the intensity function now is variable in x, this model is able to represent differences
between locations in the region of interest A. Note that every spatial point pattern generated
by the inhomogeneous Poisson point process is expected to have the highest number of events
around the same places, so this stochastic mechanism models inhomogeneity, but not aggrega-
tion in general. The trend causing the inhomogeneity is described by a number of p covariates
Ci(x), 1 ≤ i ≤ p, in the model, which are represented in the model by the intensity function12:

λ(x) = λ(C1(x), C2(x), . . . , Cp(x)) (19)

How should this intensity function λ(x) then be determined? There is no easy estimator for
this process, in contrast to the estimator for the intensity function of the homogeneous Poisson
process. Estimating λ(x) is complicated because it depends on covariates C1, C2, . . . , Cp, whose
influences also have to be expressed. So the intensity function should describe how different
quantities of different covariates influence the occurrence of an event.

A start for estimating the intensity function can be made by determining the global relation
λ̂θ(C1(x), C2(x), . . . , Cp(x)) between the occurrence of an event and each of the p covariates
i, 1 ≤ i ≤ p, for example by analysing these relations in the past. The coefficients θ of this
relation, called the influence coefficients, should then be found in a way as to fit the intensity
function, what thus means that the following equation should hold:

E
[
N(B)

]
=

∫
B

λ̂θ(C1(x), C2(x), . . . , Cp(x)) dx (20)

for any subregion B ⊆ A of the region of interest A ⊂ R2. In this way, the function λ̂θ(x) =

λ̂θ(C1(x), C2(x), . . . , Cp(x)) becomes an estimator for the actual intensity function λ(x) of equa-
tion (19). The relations can be found by regression analysis and the influence coefficients by
estimating the maximum pseudolikelihood. The regression analysis will be discussed in section
4 and the maximum pseudolikelihood estimating technique will be discussed in section 5.

The inhomogeneous Poisson point process is also capable of modelling a CSR spatial point
pattern, because the inhomogeneous Poisson point process simplifies to the homogeneous one
when λ(x) is constant. This is no surprise, because the inhomogeneous Poisson process is an
extension to the homogeneous one.

12Note that even when the intensity function only depends on the location x in A, this can also be seen as a
covariate Ci(x), 1 ≤ i ≤ p, so there will always be at least one covariate involved in the model.
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The models discussed are part of the class of spatial point process models called Poisson process
models, which are well-fitted for independently occurring events. To conclude the discussion
about spatial point processes, some extensions and other modelling techniques based on inter-
action are explained. An extension to the inhomogenenous Poisson process which makes it also
capable of modelling stochastic interaction between events, is the Cox process. This extension
is based on making a random variable Λ(x) for the intensity function. In this way, different
simulations of the spatial point pattern of interest have different points in the region of interest
around which the events aggregate. But modelling only based on stochastic interaction is also
possible, for example by pairwise interaction processes like the Strauss process and the Geyer
model. The former is based on modelling regularity and the latter is the extension for also mod-
elling aggregation based only on interaction.

The spatial point processes discussed did not take into account eventual dependencies between
events of distinguishable classes. If events of different classes depend (significantly) on each other,
these dependencies can be implemented in a multivariate spatial point process. This process con-
sists of the univariate spatial point processes for each class and the dependencies between them.

Except for the Cox process, all models previously discussed are part of the so called Gibbs
point processes (also known as Markov point processes). But spatial point pattern modelling
can also be done by mixture models, such as Bayesian semiparametric mixture models like the
Dirichlet process with beta or normal densities or the finite Gaussian mixture model with a fixed
number of components. These models serve as nonparametric models for spatial point patterns.
In other words, these models need no thorough information about the classifications and causes
of the spatial point patterns involved, since they are not made to model these information. For a
more detailed description of Gibbs point process models, the reader is referred to Van Lieshout
(2000), Møller and Waagepetersen (2003) and Turner (2009) and for a more detailed description
about mixture models, the reader is referred to Zhou et al. (2015).

2.3 Spatio-temporal point process modelling

Spatio-temporal point process modelling involves modelling the spatial and temporal behaviour
of one or several classes of events. Because the spatio-temporal point processes discussed in this
thesis are univariate, only one class of events is modelled for each spatio-temporal point process.
The information about spatial and temporal behaviour of this class of events is translated to a
function, well-known as the intensity function λ(x, t),x ∈ R2, t ∈ R+.

Now a spatial point process model can be made, it can be extrapolated in the time to make
it a spatio-temporal point process model. A spatial point process is just a spatio-temporal point
process for a fixed time period T ⊂ R+, as can clearly be seen from definition 2.2. To extrapo-
late a spatial point process in time, the temporal behaviour of the stochastic variable XT from
definition 2.2 has to be analysed. The intensity of the occurrences of events may for example
depend on the time of the day, the season of the year or on the weather. The intensity function
of the spatial point process has to be completed with this temporal information. The temporal
information can be filtered by time series analysis. For analysing time series, it is useful to first
know the exact definition of a time series, though.

Definition 2.9 Let T ⊂ R+. A time series R is a data set {t1, t2, ..., tn}, ti ∈ T, 1 ≤ i ≤ n, in
the form of a set of points, distributed within a time period of interest T . An event ti, 1 ≤ i ≤ n
is an element of R. �
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Note that this definition is merely definition 2.1 with m = 1 and some slightly adapted no-
tation, because the dimension is now time instead of space13. So a time series is mathematically
a one-dimensional spatial point pattern in time and therefore the analysis of time series is just the
one-dimensional version of the two-dimensional spatial point pattern analysis discussed earlier.

In time series analysis, events can also be CSR, aggregated or regular distributed and these
distributions can also be caused by trend or stochastic interaction. So the one-dimensional ver-
sions of the spatial point pattern analyses discussed could be used to examine the behaviour of
events in time. In this thesis, though, a more quantitative analysis method will be used, as ex-
plained in section 3. Also for the temporal part of the modelling, it will turn out that modelling
trend as the only cause for the distributions involved will be a reasonable assumption.

Because time series analysis is the one-dimensional version of spatial point pattern analysis,
time series modelling is also the one-dimensional version of spatial point process modelling. Par-
tition the time period of interest T ⊂ R+ in subperiods Ui, 1 ≤ i ≤ m of the same length and let
Ni represent the number of events in subperiod Ui. Further let R be the time series of interest for
period T . For a CSR distributed time series R, Ni is Poisson distributed with intensity function
λ, which now represents the expected number of events occurring per time unit. In the same
way, for an inhomogeneous distributed time series R, Ni is inhomogeneous Poisson distributed
with intensity function λ(t). The dependence of the intensity function on t makes the intensity
function able to model different rates of occurrences of events in time. In this way, accumulations
of events in time can be modelled for the inhomogeneous distribution.

For an inhomogeneous Poisson process, adding q temporal covariates Ci, 1 ≤ i ≤ q, to this
function and estimating this function can be done in a similar, one-dimensional way for esti-
mating the intensity function for a two-dimensional spatial point process. So note that all the
previous discussion about two-dimensional spatial point patterns can be used for time series, if
it is reduced to one dimension. This makes time series analysis a lot easier to execute.

So the three-dimensional spatio-temporal problem is reduced to a two-dimensional spatial prob-
lem, involving spatial point patterns, and a one-dimensional temporal problem, involving time
series. Note that this is only made possible, because the spatio-temporal point process is as-
sumed to be separable. For a nonseparable spatio-temporal point process, the spatio-temporal
point patterns may not be analysed by a separate two-dimensional spatial point pattern analysis
and a time series analysis. This because the distributions of the spatial point patterns are then
different for different times. In that case the spatial point pattern analysis extends to m = 3,
where two dimensions represent space and one dimension represents time. As a consequence, the
model should also be an extension of the spatial point process to m = 3.

Also for time series models, the (temporal) information is packed in an intensity function
λ(t), t ∈ R+, analogous to λ(x),x ∈ R2, for spatial point processes. A general spatio-temporal
point process has the spatio-temporal information of interest packed in the intensity function
λ(x, t),x ∈ R2, t ∈ R+, but the assumed separability reduces this expression to:

λ(x, t) = λσ(x)λτ (t), x ∈ R2, t ∈ R+ (21)

and the behaviour of λσ(x) and λτ (t) can thus be analysed by two-dimensional spatial point
pattern analysis and time series analysis, respectively.

13Purely mathematically, new notation is not needed, but practically it makes sense and it avoids confusion.
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How are covariates then modelled? If there are p spatial covariates Cσ,i, 1 ≤ i ≤ p, and q
temporal covariates Cτ,i, 1 ≤ i ≤ q, of interest, the separate intensity functions λσ(x) and λτ (t)
are respectively able to represent the p spatial covariates and q temporal covariates:

λσ(x) = λσ(Cσ,1(x), Cσ,2(x), . . . , Cσ,n(x)) (22)

λτ (t) = λτ (Cτ,1(t), Cτ,2(t), . . . , Cτ,m(t)) (23)

Note that because of the separability assumption, spatio-temporal covariates Ci(x, t), 1 ≤ i ≤ n,
cannot be modelled anymore. Also remember that the spatial and temporal covariates can only
be modelled for models based on trend, such as the inhomogeneous Poisson process. For this
thesis, an inhomogeneous distribution of the events will be accepted and the influences of covari-
ates will appear to have a significant effect on this distribution and therefore the spatio-temporal
version of the inhomogeneous Poisson process will be chosen as the model to represent the spatio-
temporal point process. The spatio-temporal inhomogeneous Poisson process is defined as follows:

Definition 2.10 Let A ⊂ R2 be the region of interest, T ⊂ R+ be the time period of inter-
est and N(A×T ) be the number of events in the space-time region A×T . Then a point process
is spatio-temporal inhomogeneous Poisson if it satisfies the following conditions:

1. For some function λ(x, t) > 0,∀(x, t) ∈ A× T , N(A× T ) is Poisson distributed with mean∫
T

∫
A
λ(x, t) dx dt.

2. Given N(A× T ) = s, the s events in A× T form an independent random sample from the
distribution on A× T with a probability density function proportional to λ(x, t).

In this process, the intensity function is implemented in the parameter λ(x, t). �

Of course, λ(x, t) = λσ(x)λτ (t) is the intensity function for the spatio-temporal inhomogeneous
Poisson processes to be modelled in this thesis. Note that property 1 is exactly the property of
equation (1) and property 2 is exactly the independence property for the spatio-temporal point
process to be modelled. So it can clearly be seen from definition 2.10 that a spatio-temporal
inhomogeneous Poisson process is suitable as a spatio-temporal point process.

It is important to remark that the intensity functions λσ(x) and λτ (t) of the spatio-temporal
point process are in general not the same intensity functions as λ(x) for the analogous (purely)
spatial point process and λ(t) for the analogous (purely temporal) time series model, respectively.

Theorem 2.2 Let λσ(x) and λτ (t) be the intensity functions for the spatial and the tempo-
ral part of a separable spatio-temporal point process and let λ(x) and λ(t) be the intensity
functions of the spatial point process and the time series model corresponding to the spatio-
temporal point process. Further, let B ⊆ A be a subregion of the region of interest A ⊂ R2,
U ⊆ T a subperiod of the time period of interest T ⊂ R+ for the spatio-temporal point process
and let N(·) be the operator which gives the expected number of events in a spatio-temporal
region. Then λσ(x) 6= λ(x) and λτ (t) 6= λ(t) in general.

Proof. A proof by contradiction. The expected number of events in B according to the spa-
tial point process is:

E
[
N(B)

]
=

∫
B

λ(x) dx
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According to the spatio-temporal point process, the expected number of events in B becomes:

E
[
N(B)

]
= E

[
N(B × T )

]
=

∫
T

∫
B

λ(x, t) dx dt

=

∫
T

∫
B

λσ(x)λτ (t) dx dt

=

∫
B

[
λσ(x)

∫
T

λτ (t) dt

]
dx

where E
[
N(B)

]
= E

[
N(B × T )

]
according to Møller and Ghorbani (2012). As a consequence,

the following relation holds for every subregion B ⊆ A:

λ(x) = λσ(x)

∫
T

λτ (t) dt (24)

But this relation is not true in general, since the integral
∫
T
λτ (t) dt depends on the subperiod

U chosen and therefore does not equal 1 in general. So a contradiction occurs. In an analogous
way, this contradiction can be found for E

[
N(U)

]
. �

Why is separability then such a helpful assumption? The answer is that the relations between
the occurrences of events and the spatial and temporal covariates stay the same. The only aspect
that changes in estimating the intensity function λ(x, t) are the influence coefficients θσ and θτ for
the spatial and temporal covariates, respectively. These coefficients have to be adapted in such
a way that equation (1) stays valid and the contradiction above does not occur for the intensity
function λ(x, t). The influence coefficients θσ and θτ can be found by a spatio-temporal exten-
sion to the maximum pseudolikelihood estimating technique used for estimating the influence
coefficients θ for a spatial point process. This extension will be described in section 5.
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3 Exploratory data analysis

In this section, the data set of emergency calls for firemen demand in Twente will be analysed.
This data set is kindly provided by the head fire department in Twente and involves data from
period Tt, which is the period from 1 January 2004 till 7 December 2016. The model in this thesis,
though, will be based on (the data from) period Tm, which is the period from 1 January 2004 till
31 December 2015. The data from Tv = Tt\Tm, so from 1 January 2016 till 7 December 2016, will
only be used to validate the model. The region of interest for the model will of course be Twente.

The data consist of all emergency calls with their unique ID number and their information
about the time, location and classification of each occurred emergency call. These times, loca-
tions and classifications are described by many different aspects, which are sometimes redundant
for the analysis executed in this thesis. Next to that, some aspects should even be completed to
make the analysis in this thesis possible. So the data set will first be filtered and completed at
some points to make it amenable for analysis.

After that, the data set will be analysed. In this way, the behaviour for the occurrences of
emergency calls will be classified, to choose a model which is capable of accurately representing
this classification. Separability will be assumed, what means that analysing the spatio-temporal
behaviour can be divided in analysing the spatial behaviour and analysing the temporal be-
haviour. Analysing the spatial behaviour will be done by spatial point pattern analysis and
analysing the temporal behaviour will be done by time series analysis.

Since a spatio-temporal point process will be made per level 1a class, the spatial and tem-
poral information should be analysed for each different class. The methods for the analyses will
only be shown for the emergency calls of class “fire”, though, since showing the same analysis
methods five times is quite meaningless and tedious. So after showing the methods once for the
emergency calls with “fire”, the results of the other four classes will only be shortly mentioned.
The reason why “fire” is chosen as the leading class for the explanation is that this class happens
to be the most interesting one, since most emergency calls of this class have high priority and
this class is (presumed to be) very dependent on the influences of covariates.

To conclude the section, the discarded data will be inspected. This discarded data involves
erroneous data and data deleted to simplify the modelling. By examining these data, possible
trends for them may be discovered.

3.1 Filtering and completion of the emergency call data

As mentioned, the data set of emergency calls for firemen demand in Twente will first be manip-
ulated to make it amenable for analysis. Both filtering and completion is needed for the data.
The data can be divided in three kinds of data: the temporal data, the spatial data and the clas-
sification data which respectively describe the time, location and classification of the occurred
emergency calls. These three kinds of data will be examined individually. All the filtering and
completion described can be done by Microsoft Excel and QGIS.

The temporal data is expressed by many columns in the data set, each describing the tem-
poral information from a different angle (quartile, quartile number, month and year combined).
All this information is reduced to the point of time and the date, where the point of time is
described in hour, minute and second and the date is described in day, month and year.
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But these representations of time and date are not useful for the temporal analysis later in
this thesis, since this analysis requires an accurate measure for comparing the same times of
different years with each other. For example, 13 June 2005 at 10:00 AM and 13 June 2015 at
10:00 AM need the same time description with respect to their relative years. Such a description
is made by representing the temporal information in the day di, 1 ≤ di ≤ 365 and the second
si, 1 ≤ si ≤ 31.536 · 106 of the year i, 2004 ≤ i ≤ 2016 with respect to the beginning of that year
(1 January, 0:00 AM).

Leap years though are quite problematic in the descriptions of di and si, because leap years
are one day longer than the other “regular” years and therefore cause a biased comparison with
regular years. Comparing data of 2012 with data of 2013 for example, 29 February 2012 at 6:30
AM would be compared with 1 March 2013 at 6:30 AM and 31 December 2012 3:00 PM does
not even have a day and a time in 2013 to be compared with. To evade the problems with leap
years, the description for leap years is adapted as if the leap year was a regular year (so February
29 is omitted in every leap year involved). For these adapted leap years and of course also for
the regular years, the information of di and si are calculated and added to the data set.

For this thesis, though, the exact point of time is not used for analysis, since the period Tm
will later in this thesis be discretized in days. The information of si, 1 ≤ si ≤ 31.536 · 106

is added to the data, though, for possible future extensions to the model in this thesis. The
information which will be used is the date of the occurred emergency call, so the year of in-
terest i, 2004 ≤ i ≤ 2016, the day of that year di, 1 ≤ di ≤ 365 and the month of that year
mi, 1 ≤ mi ≤ 12. Next to that, the day dm, 1 ≤ dm ≤ 4380 of the period Tm is also needed as
measure for the discretization of this period in days, later in this thesis. The information of dm
and mi can easily be derived from the already determined information of the year i and the day
di of each emergency call. So the temporal information in the adapted data set consists of i, di,
mi, dm and (the in this thesis not used) si.

The spatial data of the occurred emergency calls is represented by their longitude and latitude
coordinates (xlon, xlat) and by their X and Y coordinates (xX , xY ). Longitude and latitude rep-
resent the data in the spatial reference system of EPSG:4326, which is commonly known by the
name WGS84. X and Y represent the data in a special spatial reference system of EPSG:28992,
which is a spatial reference system only used in the Netherlands and is known by the name RD
New. Note that the longitude is related to X and the latitude to Y . Spatial information is also
given in the form of the ID number of the neighbourhood of the emergency call, but this measure
is of no use for this thesis and this ID number can always be derived from the spatial coordinates.

To choose the spatial reference system to work with, RD New and WGS84 will first be com-
pared with each other. The main difference is that RD New is a projected coordinate system
and WGS84 is a geographic coordinate system. This means that RD New models the earth as
a plane, so in R2, while WGS84 respects the curvature of the earth and models it in R3. Coor-
dinates expressed in RD New are therefore expressed in two-dimensional Cartesian coordinates
x = (xX , xY ), where xX and xY are in meters14. Coordinates in WGS84 are expressed in polar
coordinates x = (rearth, xlon, xlat), where rearth is the radius of the earth with respect to its
center, xlon is the azimuthal angle and xlat is the polar angle. But since the radius of the earth
is often assumed constant, the coordinates are commonly, and also in this thesis, expressed as
x = (xlon, xlat).

14These distances are with respect to an origin 120 kilometers south of Paris. With this origin, each location
in the Netherlands can be expressed with a positive value for xX and xY .
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The reason why no measure for the emergency calls is taken into account that describe their
height, for example the radius of the earth for the WGS84 coordinates, is that Twente is very
flat and therefore may be regarded as a plain (and of course since the data set does not possess
descriptions of such a measure for the emergency calls). If an analogous model would be made for
a very mountainous region, like Austria, the coordinate describing the height of each emergency
call would be of interest and should be taken into account, since the arrival times of the firemen
then also depend on whether they have to drive up a mountain or not.

Although both WGS84 and RD New describe the locations of emergency calls in the plain,
RD New is the useful spatial reference system for this thesis, since it is a projected coordinate
system rather than a geographic coordinate system like WGS84. Therefore, RD New gives the
precise length in meters the firemen should drive, in contrast to WGS84 which gives the angles in
the longitudinal and latitudinal directions they cover. For this reason, and because of the better
familiarity of the fire departments with RD New in stead of with WGS84, the spatial reference
system of RD New is chosen for the model in this thesis15.

Nonetheless, both the RD New coordinates x = (xX , xY ) as the WGS84 coordinates x =
(xlon, xlat) will be added to the data set. The WGS84 coordinates are added for the same
reason as why si was added, namely to make future extensions to the model possible. Some
emergency call data only have their spatial information in RD New or in WGS84, though. For
these data, completion is needed. Conversion from RD New to WGS84 and vice versa is made
possible by a publicly available Microsoft Excel file, which is built by Rinus Luijmes and based
on an algorithm from dr. ir. E.J.O. Schrama.

The classification data is described in the level 1a, level 2a and level 3a classes of the gen-
eral classification system of the Netherlands, the level 1, level 2 and level 3 classes of another,
less often used informal classification system, the priority for treating the emergency call and the
description of the fire if the emergency call of interest is a fire. Because the classification system
involving the level 1a, level 2a and level 3a classes is (slightly) more general than the classification
system involving the level 1, level 2 and level 3 classes, the former system is preferred to classify
the emergency calls by the fire departments in Twente.

In this thesis, the modelling will be based on the level 1a classes c1a of the emergency calls,
on request of the policy and strategics team of the head fire department in Twente. As men-
tioned in section 1, level 1a involves five descriptions for the firemen demanding emergency calls,
represented by the set C1a = {fire, service, accident, alert, environmental}. So the classification
information in the adapted data set consists of c1a ∈ C1a.

Also the level 2a and level 3a classifications c2a, c3a are added to this data set, because they
provide useful information specifying the information of c1a, for example specifying the objects
of interest as “building” or “car” for emergency calls of the class “fire”. But c2a and c3a will
because of simplification not be taken into account in the modelling in this thesis. They are
again only added to the data set for possible future extensions to the model made in this thesis.

The reason why the classification of events is done by description (in level 1a, 2a and 3a) rather
than by priority is that classification by description is more useful to express the causes in covari-

15As a consequence, all the spatial point patterns and the spatial information in this thesis are in RD New,
unless stated otherwise.
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ates and thus to help optimizing the prevention behaviour, as mentioned in section 1. Next to
that, the data representing the priority of emergency calls is sometimes missing. Also no atten-
tion will be paid to the classification of the fire. Although this is actually a subclass of the level
1a class “fire”, the subclassifications in level 2a and level 3a are more descriptive. Nonetheless,
the priority and the classification of the fire are also added to the data set for possible future
extensions to the model.

A number of emergency calls, though, does not possess temporal, spatial or classification infor-
mation. These emergency calls are deleted from the data set. It is also possible that emergency
calls have data entry errors or that the emergency calls occurred outside of Twente16. All such
emergency calls are deleted from the data, because the modelling in this thesis will be based on
reliable data in the region of interest Twente. This filtering is done by QGIS.

A remark has to be made, since some of the emergency calls just beyond the borders of Twente
are also taken into account in the modelling. This is caused by a discretization of Twente in
squares of 500 meter, since the squares of this discretization form the actual region of interest
in this thesis. The reason for this will be explained in more detail in section 4. For now, it
is important to know that this region is the actual region of interest, unless stated otherwise.
Nevertheless, the region of interest will still be denoted by Twente for the moment, to keep the
discussions about the analyses intuitive.

In period Tm, 66.707 · 103 firemen demanding emergency calls are received by the fire depart-
ments in Twente and 447 of these emergency calls contained such erroneous data. So the fraction
deleted data is approximately 0.67 percent, which is already very small. Nonetheless, these data
errors will be examined more in detail, to discover whether erroneous data have a certain trend of
occurrence and therefore to discover whether they will influence the predictions of the model at
specific times in the future or at specific places. Therefore, the erroneous data of the period Tm
will be analysed. Next to the erroneous data, the discarded data of 29 February for the involved
leap years in Tm will also be analysed on possible trends. The analyses for these discarded data
will be done later in this section, after the analysis methods for spatial and temporal analysis
are explained for the (correct and important) emergency call data.

3.2 Spatial exploratory data analysis

Now the useful data is filtered, it can be analysed. For modelling the spatial part of the spatio-
temporal point process, this spatial point process should be chosen in such a way that it represents
the spatial point pattern of interest well. But what is the spatial point pattern of interest? For
the spatial point process representing a specific class c1a, the spatial point pattern of interest
is the spatial point pattern representing all the emergency calls of this class in Twente for the
period on which the model is based, so period Tm. Let Sm denote this spatial point pattern for
the class c1a = fire, then figure 2 shows the spatial point pattern of interest Sm

17.

Analysing the distribution of Sm gives precisely the spatial information for the spatio-temporal
point process of interest. A first and quantitative examination of figure 2 indicates already that
the distribution of the emergency calls seems aggregated. This will now be formally analysed,
following the discussion of section 2.

16For a very serious emergency call, firemen of different districts could be summoned. This causes the firemen
of Twente to go sometimes to an emergency call outside of Twente.

17The spatial point pattern plots are made in QGIS and the data of the borders of the municipalities in Twente
is provided by the following source: BRK bestuurlijke grenzen and CBS buurten.
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Figure 2: Spatial point pattern for the class c1a = fire in the region Twente and in period Tm.

Figure 3: Distance analyses with the estimated functions K̂(r) (figure a, left above), Ĝ(r) (figure
b, right above), F̂ (r) (figure c, left below) and Ĵ(r) (figure d, right below) applied on the data
of Sm, plotted against the corresponding theoretical functions and critical envelopes. The plots
are provided by the package spatstat in R.
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To start with the formal analysis, hypothesis test (5) will be executed, to analyse whether the
distribution of the events in Sm is CSR or not. Hypothesis test (5) can be examined by the
distance analysis functions K(r), G(r), F (r) and J(r) described in section 2. The significance
level α is set to 0.05. The plots of the empirical distribution functions K̂(r), Ĝ(r), F̂ (r) and
Ĵ(r) of Sm against the corresponding theoretical functions and the critical envelopes are shown
in figures 3a, 3b, 3c and 3d, respectively.

Aggregation can quantitatively be seen from these plots (and so CSR can be quantitatively
rejected), but how should these plots be examined precisely? Executing hypothesis test (5) for-
mally would mean that a fixed value r0 should be chosen for r before executing the hypothesis
test and that for this value it should be determined whether the empirical distribution function
lies inside or outside the critical envelopes. If it lies inside the critical envelopes, H0 is accepted
and otherwise it is rejected. But nothing is till now said about how to choose the value for r0.

To understand how to choose r0, it is first important to understand how values for r should
be interpreted. Remember that r represents the distance measure for events. For the fixed value
ri for r, it examines how many events there are in the neighbourhood with this distance ri as
radius for the K(r) function and it examines how many neighbouring events have a distance of
at most this distance ri between them for the G(r), F (r) and J(r) function. One can thus see
that ri determines an upper bound for which the interaction between points is examined. It is
for this reason that ri will be called the interaction distance.

Which value does this interaction distance ri have? In theory, all events in the region of in-
terest A may be influences by an earlier occurred event and so the interaction distance would
be the largest distance between two events in A. But in practice, the interaction distance ri is
chosen to be smaller, since the events of the specific problem do not have such a large interaction
distance (or at least they are assumed to not having such a large value for ri). To illustrate this
idea, an emergency call of the class c1a = fire may cause another emergency call a few 100 meters
further, but probably not many kilometers further.

But how to conclude the value ri for the interaction distance mathematically? In general, there
is no strict mathematical method to conclude this value. But this thesis proposes a method
which may give a small indication for it (at least a better indication than choosing the value on
the basis of intuition). For this method, the probability distribution is needed for the random
variable D, which represents the distance to a newly occurred event with respect to a conditional
(earlier occurred) event. The probability distribution for D is not known, but it is assumed to
be normal distributed with mean µD = 0 and variance σ2

D. As can be seen, the future event
then has the highest probability of occurring on the same location as the conditional event and
it has a low probability of occurring far away from is, but still that probability is nonzero. So
choosing a normal distribution for D covers all the constraints18.

How should the value for standard deviation σD be found? One may remember that the values
in the range [−σD, σD] cover 68% of the sample space for a normal distribution. So σD should
be chosen in such a way that 68% of the emergency calls caused by a conditional emergency call
lie within a radius σD around this conditional emergency call. Of course, expert judgement and

18Note that the distance D = d may be negative in for the normal distribution. This then implies a distance
D = |d| for the future event. Although a one-tailed normal distribution would be mathematically cleaner, this
two-tailed distribution is easier to work with.
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intuition again have to help to conclude such a value for the average emergency call19, since it is
not known which emergency calls are caused by which emergency calls. But there is a method
to argue a chosen value for σD. A Gaussian mixture model can be made for the spatial point
pattern of interest, representing a nonparametric intensity function. Such a model can be made,
since values for µD and σD are now determined for each emergency call. This Gaussian mixture
model then represents a nonparametric intensity function intensity, which should resemble the
spatial point pattern of interest. If this is (globally) the case, the value of σD is chosen well.

Now the distribution for D is concluded, the interaction distance ri can be concluded from
it. The interaction distance is now defined as the range [−ri, ri] which covers a faction 1− β of
all the events caused by the conditional event. So if β is chosen to equal 0.05, [−ri, ri] should
cover 95% of the sample space for the distribution for D of each emergency call. But according
to the properties of σD, the range [−2σD, 2σD] also covers 95% of these sample spaces. For
this thesis, β = 0.05 and so ri = 2σD. In analogous ways, the interaction distances ri can be
concluded from the values for σD for different values for β.

One may question why this method is better than determining the value for ri based on ex-
pert judgement and intuition directly, since ri is now derived from σD which was determined
based on expert judgement and intuition. The reason is that the value for σD could be (roughly)
validated by comparing the corresponding Gaussian mixture model to the spatial point pattern
of interest. In this way, the value for ri is expected to be more accurate.

For the emergency calls of the class c1a = fire, it was mentioned that the probability of a fire
causing another fire many kilometers away from it is expected to be small, but the probability
of a fire causing another fire a few 100 meters further is expected to be high. Reasoning in this
way, σD is chosen to equal 1000 meter. For this value, a Gaussian mixture model is made, which
represents a nonparametric intensity function. This intensity function is shown in figure 4 and
it can be seen that it resembles Sm nicely, so σD = 1000 seems very reasonable. In a similar
way it can be shown that σD = 1500 implies an intensity function where only the hot spots at
the (ostensibly) less attractive clustering points are quite faded away and that σD = 500 implies
an intensity function where the normal distributions representing D for each occurred event get
already quite peaked around these events. So for c1a = fire, σD = 1000 is chosen as standard
deviation for D and therefore ri = 2000, since β = 0.05.

There is one point of attention for the concept of interaction distances, since involving an in-
teraction distance ri does immediately imply that Sm has stochastic interaction as cause of the
distribution. The interaction distance ri is purely the radius for the neighbourhood in which each
event should be examined. Distance analyses may then accept or reject stochastic interaction
as cause of the distribution. If stochastic interaction is accepted as cause, it would indeed be
sensible to choose ri also as interaction distance in the intensity function.

Now the interaction distance ri = 2000 is determined, the plots in distance analysis meth-
ods can be interpreted. The idea is that not only the value r0 = ri is tested for r, but the whole
range [0, ri] will be tested20. In the plots for the analysis methods involving G(r), F (r) and J(r),
the whole range [0, 2000] is not given, though, since R does not calculate the functions for values

19Not every (conditional) emergency call may cause the same number of future emergency calls, so the concluded
number is an average.

20Of course, not infinitely many values can be tested, but by this it is meant that the plots are analysed in
this range.
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Figure 4: Gaussian mixture model with σD = 1000 for the events of Sm. The plot is provided
by the package spatstat in R.

higher than 700, approximately. This is probably caused by the large amount of emergency call
data, although Ripley’s K-function is able to deal with this amount. For the range in which the
G(r), F (r) and J(r) functions can be examined, they will be interpreted for the hypothesis test
of interest. But for the remainder of the values, so approximately [700, 2000], the conclusions for
the hypothesis test only rely on the distance analysis method involving Ripley’s K-function.

Examining then the plots of figure 3 in this way formally indicates that a CSR distribution
is rejected for all plots and that the K(r), F (r) and J(r) functions clearly indicate aggregation.
The function G(r) also indicates aggregation for r < 350, but after that it indicates regularity.
This is exactly the reason why several distance analysis methods were used for the hypothesis
test, since each of them focuses on a different aspect of Sm. But basing on all plots together,
the distribution seems clearly aggregated. Note that this aggregation is this clear, because of the
large amount of data. This also causes the critical envelopes to barely differ from the theoretical
function, since a large amount of data reduces the variance.

It is desirable, though, to specify this aggregation even further, that means to check whether
inhomogeneity is present. But before examining inhomogeneity, it is important to remember the
idea of examining inhomogeneity discussed in section 2. The observant reader may remember
from section 2 that testing inhomogeneity for the distribution of S is based on n multiple inde-
pendent and identically distributed realizations S1, S2, . . . , Sn of S. But since n such realizations
were not possible for the same time period of interest T and the same region of interest A, the
realizations were based on the spatial point patterns SU1

, SU2
, . . . , SUn corresponding to the dif-

ferent subperiods Ui ⊂ T, 1 ≤ i ≤ n, where U1, U2, . . . , Un form a partition for T in subperiods of
the same length. This method was made possible by the assumption of time invariance. In this
way, testing inhomogeneity became actually testing significant difference between spatial point
patterns of different subperiods Ui.

In this thesis n = 12, since Tm will be partitioned in the twelve years Um,i ⊂ Tm, 1 ≤ i ≤ 12
involved, where Um,i represents the year 2003 + i. These subperiods Um,i are therefore mutually
exclusive and collectively exhaustive. Further, Sm,i, 1 ≤ i ≤ 12, represents the spatial point
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pattern for all the emergency calls of the class c1a = fire occurred in period Um,i. In this way
Sm,1, Sm,2, . . . , Sm,12 represent the twelve realisations of Sm.

Figure 5: Emergency calls of class c1a = fire for 2004 (figure a, first row left), 2005 (figure b,
first row centre), 2006 (figure c, first row right), 2007 (figure d, second row left), 2008 (figure e,
second row centre), 2009 (figure f, second row right), 2010 (figure g, third row left), 2011 (figure
h, third row centre), 2012 (figure i, third row right), 2013 (figure j, fourth row left), 2014 (figure
k, fourth row centre) and 2015 (figure l, fourth row right).
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The spatial point patterns Sm,1, Sm,2, . . . , Sm,12 are shown in figure 5. By inspecting each of
these spatial point patterns, one can see that the spatial point patterns of each year seem to
be aggregated distributed, what also can be tested in the same way as the testing aggregation
for Sm. This aggregation even happens to be around the same points in Twente for the spatial
point patterns of each year. As a consequence, the distributions for Sm,i, 1 ≤ i ≤ n, do not seem
to change as years pass by. The time invariance assumption required seems also reasonable for
Sm,1, Sm,2, . . . , Sm,12, apart from the fact that the number of emergency calls of class c1a = fire
decreases when the years pass by. So by this quantitative analysis of Sm,1, Sm,2, . . . , Sm,12, an
inhomogeneous distribution seems present.

But inhomogeneity will also be tested in a formal way by the following hypothesis test:

H0: S is inhomogeneous distributed over A.

H1: S is not inhomogeneous distributed over A.
(25)

The earlier discussed distance analysis functions K(r), G(r), F (r) and J(r) cannot be used any-
more for testing hypothesis test (25), since these functions are actually only built for testing
the hypotheses of (5) against each other. In other words, they are only suited for determining
whether a homogeneous Poisson process could be fitted to a spatial point pattern of interest,
which requires a CSR distribution to be accepted for it. Therefore the (ordinary) K(r), G(r),
F (r) and J(r) are called homogeneous or stationary.

The homogeneous distance analysis functions can be extended to execute hypothesis test (25)
and thus to determine if an inhomogeneous Poisson process could be fitted to the spatial point
pattern of interest. Such distance analysis functions are called inhomogeneous. The inhomo-
geneous K(r), G(r), F (r) and J(r) functions are commonly denoted by Kinhom(r), Ginhom(r),
Finhom(r) and Jinhom(r), respectively. In this thesis, only the inhomogeneous K-function is used
for executing hypothesis test (25), since the inhomogeneous versions of G(r), F (r) and J(r) gave
again no (clear) output and since the earlier executed hypothesis test (25) also mainly relied on
Ripley’s K-function. For a general discussion of the derivation and the working of the inhomo-
geneous K-function, the reader is referred to Gabriel and Diggle (2009).

The inhomogeneous K-function is implemented as Kinhom in the spatstat package in R. The
plot of the empirical distribution function K̂inhom(r) for Sm against the corresponding theoreti-
cal function Kinhom(r) and the critical envelopes U(r) and L(r) is shown in figure 6. This plot
should be interpreted as follows. If the empirical distribution function lies between the critical
envelopes, so L(r) ≤ K̂inhom(r) ≤ U(r), H0 of hypothesis test (25) is accepted and an inhomoge-
neous Poisson process could be (directly) fitted to the data of Sm. Otherwise H1 is accepted and
an inhomogeneous Poisson process seems not suited for the data. If this is the case, deviations
K̂inhom(r) > U(r) again indicate aggregation and K̂inhom(r) < L(r) again regularity. Further,
n = 39 implies again α = 0.05.

Knowing this, figure 6 can be examined, again for the range [0,2000] as interval of interest. But
it can be seen that inhomogeneity is clearly rejected. Still, this does not mean that an inhomo-
geneous Poisson process is a wrong model for the data, it only means that it is a wrong model
for the data implemented with only the locations of the earlier occurred events implemented as
covariates. One may remember that events are caused by influences of covariates or influences of
earlier occurred events. Although an inhomogeneous Poisson process cannot model the stochastic
interaction (as a consequence of theorem 2.1), it can model several more covariates Ci, 1 ≤ i ≤ p,
and this will thus be tried first.
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Figure 6: Distance analysis for testing inhomogeneity with the estimated function K̂inhom(r)
applied on the data of Sm, plotted against the corresponding theoretical functions and critical
envelopes. The plot is provided by the package spatstat in R.

If p important covariates are then modelled, (simulated spatial point patterns of) the inho-
mogeneous Poisson process with these covariates Ci, 1 ≤ i ≤ p, could be validated by the in-
homogeneous K-function by examining the empirical density function K̂inhom(r) for this model
to the corresponding theoretical distribution function Kinhom(r) and the critical envelopes. If
K̂inhom(r) lies between the critical envelopes, the inhomogeneous Poisson process model with
the covariates Ci, 1 ≤ i ≤ p, is suited for the spatial point pattern of interest. If K̂inhom(r) lies
outside of the envelope, interaction should (also) be modelled, by for example the Strauss process.

So although inhomogeneity is rejected for now for the class c1a = fire, still an inhomogeneous
Poisson process will first be fitted to Sm. But how about the other classes? For analysing them,
the interaction distance ri for each of these classes has again to be determined. But there is
no clear clue for these interaction distances, so they are set on the same interaction distance as
the one earlier used for the class c1a = fire, so ri = 2000. This interaction distance can again
be checked by comparing the nonparametric intensity function with the spatial point pattern of
interest for each class. Also this analysis indicates that ri = 2000 seems very reasonable.

The same spatial exploratory data analysis will then be executed again for the classes c1a =
service, c1a = accident, c1a = alert and c1a = environmental. For each class a CSR distribution
is rejected and an aggregated one is indicated for hypothesis test (5). Again, mostly is relied on
Ripley’s K-function, since the G(r), F (r) and J(r) functions are also in these cases not defined
for r (approximately) greater than 700. After that, inhomogeneity is analysed for these classes.
Since the Ginhom(r), Finhom(r) and Jinhom(r) functions do not work for analysing inhomogeneity,
this analysis again relies fully on the inhomogeneous K-function. For each of these classes, the
empirical distribution functions lie above the upper critical envelope for the whole range [0, 2000]
and so inhomogeneity is rejected. Despite this conclusion, an inhomogeneous Poisson process
will also be fitted to these classes, for the same reasons as for the class c1a = fire.
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Note that for the data of each level 1a class, inhomogeneity is rejected at least for the range
[0,5500]. So even if ri = 2000 may not be the correct interaction distance, rejecting inhomogene-
ity still seems reasonable, since deviations till ri = 5500 may be possible. And because ri = 5500
is a very large interaction distance which seems not plausible, the conclusion drawn seems strong.

So for each level 1a class c1a ∈ C1a, inhomogeneity is clearly rejected, although an inhomo-
geneous Poisson process for modelling (the spatial parts of) the spatio-temporal point processes
for all these classes is not rejected yet. This proposed model will be examined further in this
thesis. Further, the main results of the executed spatial exploratory data analyses for testing
CSR and inhomogeneity are shown in the appendices A, B, C and D for the classes c1a = service,
c1a = accident, c1a = alert and c1a = environmental, respectively.

3.3 Temporal exploratory data analysis

For modelling the temporal part of the spatio-temporal point process, the evaluation of the spa-
tial point processes in time should be examined. Again the region of interest is Twente and the
time period of interest is Tm. The change in the distribution of the occurred emergency calls per
year will be examined. This analysis will be done by a quadrat count analysis method, which
will be called the temporal test.

But why is a quadrat count analysis method used, while the distance analysis methods are
more accurate? This is done, since such a quantitative analysis for the temporal behaviour does
the job and therefore simplifies the analysis. Since the spatial exploratory data analysis con-
cluded an inhomogeneous Poisson process, a (spatio-temporal) inhomogeneous Poisson process
will be proposed for the whole problem rather than a hybrid process with different kinds of
models for the spatial and temporal part. The temporal test has therefore only to examine how
the temporal part of the data behaves and so how it should be implemented. This test will be
explained simultaneously with analysing the temporal behaviour of the occurrences of emergency
calls. The significance level α is again set to 0.05.

Before the temporal exploratory data analysis will be explained and executed, the time series
of interest Rm for the class c1a = fire will first be described. This time series will be expressed
in the number of occurred emergency calls of this class in each subperiod Ui ⊂ Um, 1 ≤ i ≤ n,
where these subperiods are defined in the same way as for the spatial exploratory data analysis,
so Ui represents year 2003 + i. This time series Rm is given in figure 7.

Figure 7: Time series for the amount of emergency calls of the class c1a = fire per year Ui ⊂ Tm.
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A slight decrease in the number of emergency calls of the class c1a = fire per year can already
be seen from figure 7. In terms of aggregation, the emergency calls seem more aggregated for
the early years of time period Tm. To test whether this aggregation is strong enough to reject
coincidence (so to reject a CSR distribution), the temporal test will be executed. This test then
indicates the years with a significantly different number of occurred emergency calls and so the
years in which the emergency calls are aggregated.

If such aggregation is concluded from the temporal test for some years, the inhomogeneous Pois-
son process seems suited for the emergency calls of interest. Although regularity and stochastic
interaction between events cannot be concluded by the temporal test, this is also not needed,
since an inhomogeneous Poisson process is the model aimed for in this analysis. And as one may
remember, the inhomogeneous Poisson process is not suited for modelling regularity or stochastic
interaction.

For the temporal test, the temporal information of the emergency calls of class c1a = fire will
thus be described in the year y, 2004 ≤ y ≤ 2015 of occurrence. But to indicate the distribution
of each year y, each emergency call will also be described in the day d, 1 ≤ d ≤ 365, of occurrence
in that year. To give an indication of expressing the distributions per year by the days, a part
of these distributions is given in table 1. By the same reasoning, the distribution for a day d can
be indicated by the occurred emergency calls on that day for the years y, 2004 ≤ y ≤ 2015.

Let the 365 × 12 matrix ΩT count the number of emergency calls of interest for year y and
day d, where the twelve columns i, 1 ≤ i ≤ 12, represent the twelve years y(i) = i + 2003 of
interest and the 365 rows j, 1 ≤ j ≤ 365, the 365 days d(j) = j of interest. The matrix ΩT will
as a consequence be analogous to table 1, only without the row and column of the table which
give respectively the indices j and i for the days and years. Further let the set of indices of the
years and days be given by Y = {1, 2, . . . , 12} and D = {1, 2, . . . , 365}, respectively, where the
elements i ∈ Y thus represent the year i+ 2003 and the elements j ∈ D the day j.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1 69 42 37 48 47 94 38 39 37 28 70 29
2 11 4 9 7 10 11 6 5 1 8 6 6
3 7 4 6 2 5 3 5 7 5 7 2 5
4 4 5 8 3 2 6 3 2 4 5 2 2
5 2 4 2 5 3 9 1 2 2 3 3 5
...

...
...

...
...

...
...

...
...

...
...

...
...

364 9 12 13 16 14 4 7 12 6 7 7 5
365 83 64 134 103 103 58 81 76 130 105 43 86

Table 1: Distribution of the emergency call data of class c1a = fire per year y, 2004 ≤ y ≤ 2015
and per day d, 1 ≤ d ≤ 365.

The temporal test then compares two time periods with each other: the time period τk,1 in which
the emergency calls of interest may have a significant tendency to occur and the reference period
τk,2 for which no such tendency is assumed. Let k = 1 if distributions of years are compared
to each other and let k = 2 if distributions of days are compared to each other. So for k = 1,
τk,1 ⊂ Y and τk,2 ⊆ Y \ τk,1 and for k = 2, τk,1 ⊂ D and τk,2 ⊆ D \ τk,1.

31



The distributions of the emergency calls of interest for the periods τk,1 and τk,2, k = 1, 2, can be
filtered out of the matrix ΩT . Let Vi be the 365-tuple21 representing all elements of column i of
matrix ΩT and Wj be the 12-tuple representing all elements of row j of matrix ΩT . Define

ω1,l =
⋃
i∈τ1,l

Vi, l = 1, 2 (26)

ω2,l =
⋃
j∈τ2,l

Wj , l = 1, 2 (27)

where the union operator ∪ is defined as transforming the elements of all involved tuples to
one new tuple ωk,l where k, l ∈ {1, 2}. This new tuple then represents the distribution of the
emergency calls of interest in period τk,l, so for k = 1 the distribution in the context of years
and for k = 2 the distribution in the context of days. With these tuples ωk,l, the temporal
(hypothesis) test can be formulated as:

H0: The elements of ωk,1 have the same distribution as the elements of ωk,2.

H1: The elements of ωk,1 have a different distribution than the elements of ωk,2.
(28)

where k = 1, 2. Testing these hypotheses against each other can be done by the Student’s t-test.
Let X̄ be the sample mean of the elements of ωk,1, s be the sample standard deviance of the
elements of ωk,1, n be the number of elements of ωk,1 (so the amount of data in period τk,1) and
µ be the sample mean of the elements of ωk,2, which serves as reference mean. Then Student’s
t-statistic

t =
X̄ − µ
s/
√
n

(29)

gives a measure how much the distribution of ωk,1 differs from the distribution of ωk,2. Student’s
t-statistic has a t-distribution with n− 1 degrees of freedom. If the value of t lies outside of the
(1− α)-confidence interval, H0 of hypothesis test (28) is rejected, otherwise it is accepted.

One may remark that for executing Student’s t-test, a normal distribution is assumed for the
occurrences of the data in the tuples ωk,1 and ωk,2, k = 1, 2. Although this assumption is quite
reasonable for ordinary days and years, since for them no great differences in the mean or the
standard deviation of the normal distribution are expected, this assumption is made mainly for
simplicity. There are indeed non-parametric tests, like the Mann-Whitney U test, which are also
suited for executing hypothesis test (28), but these are a bit more cumbersome.

The temporal test will be done for testing the distribution of each year against that of all
the other years, so τ1,1 = {y}, 2004 ≤ y ≤ 2015 and τ1,2 = {2004, 2005, . . . , 2015} \ {y}. The
results are shown in table 2. One can see already from this table that it possesses the behaviour
of the time series Rm, since the values of the t-statistics also seem to decrease globally. Also the
largest number of emergency calls in a year is 2006, since the t-statistic has the highest value for
this year. This again agrees with Rm. In a similar way, 2014 can be indicated as the year with
the smallest number of emergency calls.

Now table 2 will be formally analysed. Since |τ1,1| = n = 365 for each year y, each t-statistic
has a t-distribution with 364 degrees of freedom. Therefore the corresponding 95%-confidence
interval for each value of y becomes [−1.975, 1.975]. It can then be concluded that 2006 has a

21Tuples are chosen to represent the data rather than sets, since non-disjoint elements should be taken into
account every time they occur.
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y 2004 2005 2006 2007 2008 2009
t 1.149 1.259 2.690 1.494 0.009 0.900

y 2010 2011 2012 2013 2014 2015
t 0.612 -1.165 -0.230 -1.035 -4.627 -3.277

Table 2: The values of the Student’s t-statistics for the temporal tests for class c1a = fire, which
compares each year with the other years.

significant higher amount of occurred emergency calls of class c1a = fire and for 2014 and 2015,
this amount is significantly lower. This amount for all the other years of time period Tm is not
significantly different from their assumed means µ for α = 0.05.

So there are indeed aggregations of events and there seems indeed a decreasing trend of oc-
curring emergency calls of class c1a = fire. Based on this, an inhomogeneous Poisson process will
also be fitted for the temporal part of the problem, so for the class c1a = fire, a spatio-temporal
inhomogeneous Poisson process will be modelled. Although nothing is concluded about stochastic
interaction between the emergency calls in time, it is assumed to be absent. If the spatio-temporal
inhomogeneous Poisson process happens to have predictions, the model may be extended by also
introducing interaction as cause of the distributions.

Again, the same exploratory data analysis can be executed to analyse the temporal behaviour
of the emergency calls of the other level 1a classes. For each of these classes c1a = service,
c1a = accident, c1a = alert and c1a = environmental, the time series of interest can also be exam-
ined by the temporal test. The years which appear to have a significantly different distribution
are shown in table 3, where t < µ means that the value for the t-statistic for those years is signif-
icantly smaller than the assumed mean µ and t > µ means that this value is significantly larger
than the mean µ. The complete results of the executed temporal exploratory data analyses are
shown in the appendices A, B, C and D for the classes c1a = service, c1a = accident, c1a = alert
and c1a = environmental, respectively.

t < µ t > µ
c1a = service 2004 till 2006 2010, 2012, 2014
c1a = accident 2014, 2015 2004
c1a = alert 2004, 2013, 2014, 2015 2006 till 2011
c1a = environmental 2004, 2008, 2009, 2011, 2012, 2014

Table 3: The years which significantly differ for the temporal tests for the level 1a classes
c1a = service, c1a = accident, c1a = alert and c1a = environmental. The years which do not
significantly differ are just the remaining years in period Tm.

As a consequence, the conclusion made for the emergency calls of class c1a = fire can be made
for emergency calls of the other level 1a classes too. This because for these classes there are
also years with a significant different amount of emergency calls and because for these classes
independence between the occurrences of emergency calls in time may also be assumed based on
the independence concluded for them in the spatial exploratory data analysis. So for emergency
calls of each level 1a class c1a ∈ C1a, where C1a = {fire, service, accident, alert, environmental},
the spatio-temporal point process can be modelled as a (spatio-temporal) inhomogeneous Poisson
process.
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3.4 Analysis of discarded emergency call data

As mentioned, the data set contained some erroneous data, which was deleted from the data
set when this set was filtered and completed. Although only 0.67 percent of the data set was
erroneous, it is still important to check whether there is a significant tendency for the erroneous
data to occur at specific locations or at specific times. This can quite easily be verified by the
same techniques as the spatial and temporal exploratory data analyses, as will soon become clear.
The region of interest is again Twente and the period of interest is again Tm, as explained earlier.

Before analysing the erroneous data, these data first have to be inspected. To start with this,
the erroneous data are classified in four kinds of errors:

1. Data with no, an incorrect or an invalid location of occurrence, called spatial errors.

2. Data with no or an incorrect time of occurrence, called temporal errors.

3. Data with no or an incorrect classification, called classification errors.

4. Data with both a spatial and a temporal error, called spatio-temporal errors.

So, in the context of the period of interest Tm and the region of interest Twente for the model,
data with spatial errors or spatio-temporal errors have no (correct) spatial information, in con-
trast to temporal errors and classification errors. In the same way, data with temporal errors or
spatio-temporal errors have no (correct) temporal information, in contrast to spatial errors and
classification errors.

Remark that for all kinds of temporal errors, it is assumed that the corresponding emergency
call has occurred in period Tt, so the period from 1 January 2004 till 7 December 2016. This is
also plausible, since the offered data set of emergency calls consisted only of data of the period
Tt. But the temporal information of these emergency calls should be estimated even more accu-
rately, since the erroneous data analysis focuses on the period Tm instead of Tt. A quantitative
estimation for this can be made by inspecting the ID numbers of the emergency calls containing
temporal or spatio-temporal errors, since the ID number is higher for a later occurred emergency
call.

Using such a quantitative estimation, the distribution per year of temporal errors and spa-
tial and temporal errors can be determined quantitatively. Such an estimation seems even quite
accurate for a discretization in years, since the ID numbers can be classified accurately per year.
Applying this estimation on the erroneous data gives the distributions of every type of error per
year of period Tt, shown in table 4. With these distributions, the data of period Tv (the period
from 1 January 2016 till 7 December 2016) can easily be filtered by removing the column of year
2016.

So table 4 gives the global behaviour of the erroneous data per year. This behaviour will now be
analysed in more detail. But how should such an analysis be done? Note that spatial errors can
only be investigated in time, temporal errors can only be investigated in space and investigating
spatio-temporal errors can neither be done in time nor space. As a consequence, two kinds of
analysis will be done: analysis for a tuple ετ , which contains the correct temporal information of
erroneous data without temporal errors and analysis for a tuple εσ, which contains the correct
spatial information of erroneous data without spatial errors. The tuple ετ will be analysed in
the period Tm. The tuple εσ will be analysed in Twente, because all the locations of the corre-
sponding data happen to be in Twente.
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Year(s) 2004 2005 2006 2007 2008 2009 2010
Spatial error 99 98 28 15 20 14 27
Temporal error 4 1 0 0 0 0 0
Classification error 0 0 0 0 0 1 8
Spatial and temporal error 1 4 0 0 0 0 0
Total 104 103 28 15 20 15 35

Year(s) 2011 2012 2013 2014 2015 2016 All
Spatial error 29 19 33 18 27 28 455
Temporal error 0 0 1 0 0 0 6
Classification error 0 0 0 0 0 2 11
Spatial and temporal error 0 0 0 0 0 0 5
Total 29 19 34 18 27 30 477

Table 4: The amount of deleted data for each type of error. “All” refers to 2004 till 2016.

The tuple ετ will not only consist of the spatial errors of the period Tm, but also of the classifi-
cation errors of that period. In the same way, the tuple εσ will also consist of both the temporal
errors and classification errors that occurred in Twente. By the definition of the tuples ετ and
εσ, the classification errors can also be covered by these tuples. The classification errors are
analysed in both their spatial and temporal aspects, since these kind of errors still have (the
correct) spatial and temporal information about the occurred emergency call.

A further remark for the tuple εσ is that the temporal and classification errors involved are
only from the period Tm, which can be filtered with help from table 4. Although the estima-
tion technique described earlier for filtering the temporal errors is quantitative, there seems in
general a small probability that many temporal errors have occurred in 2016, since there are
only six temporal errors for Tt (of which five already occurred in 2004 and 2005 according to the
quantitative estimation technique).

So the spatial, temporal and classification errors can be analysed by analysing the tuples εσ
and ετ . But how about the spatio-temporal errors? The only analysis that can be done for these
errors is simply counting the number of these errors. The number of occurred spatio-temporal
errors is five in the period Tm, where the quantitative filtering technique based on ID numbers
is used to classify these errors per year, as in table 4. A more detailed analysis for these errors
is not possible, because they cannot be analysed in neither time nor space.

The temporal and classification errors involved in the tuple εσ manifest themselves as a spa-
tial point pattern in Twente. Therefore, these errors can easily be analysed by the same spatial
point pattern analysis techniques as used in the spatial exploratory data analysis. Hypothesis
test (5) is the only test that should be executed in this case, since the errors should be CSR
distributed if they have no tendency to occur in specific subregions of Twente. This can again
be analysed by the distance analysis functions K(r), G(r), F (r) and J(r) for a range [0;2000]
for r. Again, α = 0.05.

The plots of the estimated empirical distribution functions K̂(r), Ĝ(r), F̂ (r) and Ĵ(r) for the
data of εσ against the corresponding theoretical functions and the critical envelopes are shown
in figures 8a, 8b, 8c and 8d, respectively. It can be seen that accepting a CSR distribution would
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be the best conclusion, since the functions stay between the critical envelopes for most values in
the range [0, 2000] for r. Although the K̂(r) function does not stay between the envelopes for
higher values, this does not affect the conclusion of CSR, since the interaction distance is 2000
meters.

It can also be seen that the small amount of data involved causes tentative critical envelopes and
therefore to interpret the results with much caution. But this only strengthens the assumption
that there is less probability of occurrences of spatial errors in the future and if they then happen,
there seems to be no tendency for a specific subregion of Twente by the acceptation of the CSR
distribution.

Figure 8: Distance analyses with the estimated functions K̂(r) (figure a, left above), Ĝ(r) (figure
b, right above), F̂ (r) (figure c, left below) and Ĵ(r) (figure d, right below) applied on the erroneous
data of εσ, plotted against the corresponding theoretical functions and critical envelopes. The
plots are provided by the package spatstat in R.

The spatial and classification errors involved in the tuple ετ manifest themselves as a time series
in Tm, which indicates the amount of these errors per year Ti ⊂ Tm, 1 ≤ i ≤ 12. Analysing this
time series could again be done by the temporal test. But this time, the distribution per year
will not be expressed per day d, 1 ≤ d ≤ 365, but per month m, 1 ≤ m ≤ 12, since the tuple ετ is
too small to give an accurate distribution of each year per day and vice versa. The distribution
of these errors per month m, 1 ≤ m ≤ 12, and per year y, 2004 ≤ y ≤ 2015, is given in table 5.
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2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1 7 12 0 4 0 1 1 3 3 2 1 1
2 12 8 3 1 1 2 1 1 0 3 1 2
3 10 13 2 1 0 2 3 3 2 3 2 0
4 13 13 0 2 4 1 2 4 0 3 0 1
5 19 6 4 0 0 2 3 4 0 1 1 2
6 11 9 2 2 3 1 2 1 1 3 2 3
7 6 12 3 2 2 2 2 3 1 2 4 5
8 1 3 4 1 2 0 6 3 3 4 2 1
9 5 6 2 2 2 1 4 2 2 4 1 6
10 5 8 3 0 3 1 1 1 2 4 1 4
11 6 5 5 0 1 1 5 1 3 2 0 0
12 4 3 0 0 2 1 5 3 2 2 3 2

Table 5: Distribution of the erroneous data of ετ per year y, 2004 ≤ y ≤ 2015, and per month
m, 1 ≤ m ≤ 12.

The temporal test will be done for testing the distribution of each year against that of all the
other years, so τ1,1 = {y}, 2004 ≤ y ≤ 2015 and τ1,2 = {2004, 2005, . . . , 2015} \ {y}. The results
are shown in table 6. Since |τ1,1| = n = 12 for each year y, each t-statistic has a t-distribution
with 11 degrees of freedom, so the corresponding 95%-confidence interval for each value of y
becomes [−2.201, 2.201]. It can then be concluded that the erroneous data occurred in 2004 and
2005, what already could be expected from the tables 4 and 5. It can also be concluded from
table 6 that significantly less erroneous data occurred in the years 2007, 2008, 2009, 2012 and
2014. For the remainder of the years in period Tm, the null hypothesis of hypothesis test 28 is
accepted.

y 2004 2005 2006 2007 2008 2009
t 4.011 5.265 -1.572 -5.527 -3.949 -10.808

y 2010 2011 2012 2013 2014 2015
t -0.243 -1.983 -4.687 -1.087 -4.944 -1.537

Table 6: The values of the Student’s t-statistics for the temporal tests for the erroneous data of
ετ , which compares each year with the other years.

Next to the temporal tests for testing tendencies for erroneous data to occur in specific years,
these tendencies will also be examined for specific months. This is made possible, since the
distribution per month is also available. For these distributions per month, the rows of table
5 (and so ΩT ) will be examined instead of the columns. In this test, τ2,1 = {m}, 1 ≤ m ≤ 12
and τ2,2 = {1, 2, . . . , 12} \ {m}. As a consequence, |τ2,1| = n = 12 for each year m and so again
the 95%-confidence interval for each value of y becomes [−2.201, 2.201], since each t-statistic
has again a t-distribution with 11 degrees of freedom. The results of these temporal tests are
shown in table 7 and it can be concluded that all the temporal tests accept the null hypothesis
of hypothesis test (28). In other words, for no month a significant different amount of erroneous
data has occurred for α = 0.05.

So the temporal tests for the erroneous data of ετ conclude that there is a tendency for the
number of occurring erroneous data to be significantly lower in the years 2007, 2008, 2009, 2012
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m 1 2 3 4 5 6
t -0.121 -0.119 0.371 0.454 0.341 0.358

m 7 8 9 10 11 12
t 0.806 -1.188 0.115 -0.464 -1.015 -1.980

Table 7: The values of the Student’s t-statistics for the temporal tests for the erroneous data of
ετ , which compares each month with the other months.

and 2014, which can be explained by an improving system for saving emergency call data. Still
this system has its flaws, because the erroneous data in 2015 for example was again higher than
in 2014.

The temporal tests also concluded that the number of occurring erroneous data is significantly
higher in 2004 and 2005 than for the other years in period Tm. This could be explained by an
bad working system for saving data of emergency calls in 2004 and 2005. Firemen in those days
namely did not always require specific coordinates for the place of the emergency call, because
they knew the neighbourhood well and were sufficiently informed with a quantitative description
of the location. Nowadays, the specific coordinates are directly sent to the navigation systems of
the fire trucks. Nonetheless, in the future there is also expected a tendency for erroneous data
to be significantly lower, by improved systems like the navigation systems for example.

The temporal tests examining the distributions of each month did conclude that there was no
such tendency present. In the same way, the spatial point pattern analysis concluded no ten-
dency for erroneous data to occur in specific subregions in Twente. For both cases, it is therefore
assumed that this tendency will also stay absent in the future. All the mentioned conclusions
are again drawn for a significance level of α = 0.05.

Although the erroneous data is now analysed on tendencies in their occurrences, the analysis
of discarded emergency call data is not finished. One may remember that the emergency call
data of the “leap days” 29 February 2004, 29 February 2008, 29 February 2012 and 29 February
2016 was also discarded, to transform the leap years 2004, 2008, 2012 and 2016 into regular years
for the analyses and modelling. This discarded data will also be examined, although only for
the emergency call data occurred in period Tm. Since only three days are involved in Tm, there
is only a small amount of observations and the analyses for these data are expected to be very
tentative. So the results should be interpreted with much caution.

First, the spatial analysis will be done for the data of the leap days. Although the data set
is small, an aggregated distribution can clearly be concluded for α = 0.05 from the plots of the
estimated empirical distribution functions K̂(r), Ĝ(r), F̂ (r) and Ĵ(r) for this data against the
corresponding theoretical functions and the critical envelopes. Again, the interaction distance is
assumed to be 2000 meters. A plot of the spatial point pattern representing these data agrees
with the conclusion that the distribution is aggregated.

Now the temporal analysis will be done for the data of the leap years. On the leap days in
2004, 2008 and 2012, respectively 11, 10 and 11 emergency calls occurred. For these observa-
tions, a temporal test can be executed which compares them to the occurrences of emergency
calls on the days in the regular years. So this temporal test compares the distributions of days
against each other, where τ2,1 consists of the data of the leap days in period Tm and τ2,2 consists
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of the data of the other days in period Tm. As a consequence, |τ2,1| = n = 3 and so again the
95%-confidence interval becomes [−4.303, 4.303], since each t-statistic has a t-distribution with
2 degrees of freedom.

For this temporal test, the t-statistic has the value -13.362 and therefore the alternative hy-
pothesis of hypothesis test (28) is accepted. In other words, there seem to occur significant
different emergency calls on the leap days for α = 0.05. Since the value of the t-statistic is neg-
ative, there occur significant less emergency calls. The value for this t-statistic is quite extreme,
though, what is caused by the fact that τ2,1 consists of three elements with approximately the
same values. In this way, the sample variance is low and the value for this t-statistic extreme.
So exact conclusions cannot be made, but it indeed seems that leap days possess less emergency
calls and so that they require a different model than the other days. But to build such a model,
more data is required about the number of emergency calls on leap days.

39



4 Covariate analysis

Since for the emergency calls of all level 1a classes c1a an inhomogeneous Poisson process is mod-
elled, their distributions are assumed to be caused by trend rather than by stochastic interaction.
In this section this trend will be examined. As one may remember, trend is actually the influence
of covariates Ci, 1 ≤ i ≤ n. A set of covariates should therefore be chosen as the covariates of
interest for the spatio-temporal point process of a specific class. The covariate analysis then gives
the precise relation between the involved covariates and the occurrences of emergency calls.

The covariates of interest will first be selected and made amenable for the covariate analy-
sis. Since a spatio-temporal point process is made for each class c1a, both spatial covariates and
temporal covariates will be involved in the covariate analysis. The spatial and temporal covari-
ates will respectively be compared to the spatial and temporal information about the emergency
calls. Spatio-temporal covariates are not involved, since separability was assumed for each model.

After the covariate data are made amenable for analysis, the covariate analysis can be exe-
cuted. This analysis consists of two parts: the correlation analysis and the regression analysis.
The correlation analysis examines the influences of the spatial and temporal covariates on the
emergency calls in a global way. After that, the spatial and temporal covariates with the most
influence on the emergency calls of interest will be examined further in the regression analysis on
their precise relation with the emergency calls of interest. These relations will be implemented
in modelling the spatio-temporal point process for each class in section 5.

4.1 Filtering and manipulation of the covariate data

To relate occurrences of emergency calls to covariates, covariate data have first to be obtained.
There is no specific guideline to choose useful covariates, it is merely a matter of expert judge-
ment. For this reason, aspects which the involved covariates should describe for this thesis are
first chosen globally, in consultation with the policy and strategics team of the head fire depart-
ment in Twente. Examples of these aspects involve the presence of buildings at a place or the
weather of the day. According to these aspects, covariate data sets involving specific covariates
for that aspect are selected. Many such covariate data (sets) for the Netherlands are available
for public use. The data sets used for this thesis and their sources are:

1. The data of the locations of all the buildings, source: BAG, het Kadaster.

2. The data of the locations of national highways and freeways, source: NWB, Rijkswaterstaat.

3. The data of the locations of railways and railwaystations, source: BRT, het Kadaster.

4. The data of the number of residents, addresses and corresponding information per square
of 500 meter, source: Centraal Bureau voor de Statistiek.

5. The data of the borders of the towns in Twente, source: BRT, het Kadaster.

6. The data of the locations of rivers and lakes, source: Imergis, made available by J.W. van
Aalst.

7. The data of the locations of canals, source: Rijkswaterstaat.

8. The data of (many aspects of) the weather measured by the weather station “Twenthe” in
the region Twente per day, source: Koninklijk Nederlands Meteorologisch Instituut.
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These data sets are for the entire Netherlands and are quite recent, since the years of appearances
of the versions vary between 2014 and 2016. One may also see that all these covariate data sets
seem to have a certain relationship with the occurrences of emergency calls.

These covariate data sets thus involve many specific covariates for the aspect they represent.
For example, the data of the locations of all the buildings is specified for many different types
of buildings. Since not every single covariate of these sets is important for the analyses in this
thesis, the covariates which are important for this thesis, which means the ones which will in-
deed be analysed, first have to be filtered from the covariate data sets. Again, this is done in
consultation with the policy and strategics team of the head fire department in Twente. The
precise covariates which will be analysed are given in table 8, where the spatial covariates are
indicated with a subscript σ and the temporal covariates with a subscript τ . The number of the
data set from which each specific covariate is extracted is indicated in the square brackets after
the description of the specific covariate.

Some covariates need some further explanation. For Cσ,10, Cσ,11 and Cσ,12, the difference be-
tween a highway and a freeway has to be made clear for example. Highway are in this thesis
assumed to be the roads in the Netherlands which have several lanes for each direction and where
a velocity of more than 60 kilometers per hour is necessary for entering these roads. Freeways are
in this thesis assumed to be the roads in the Netherlands which have only one lane for each direc-
tion and where a velocity of more than 50 kilometers per hour is necessary for entering these ways.

A remark has also to be made about the covariate information involving the number of buildings
with a residential function (so Cσ,22), since it is available from both data sets 1 and 4. The reason
why data set 4 is used as the source, is that data set 4 gives the information for this covariate
per year in the period 2004 till 2014, in contradiction to data set 1, which has measured it only
in 2014. Therefore, the information of data set 4 seems more accurate for this covariate.

Another remark has to be made about the covariates of table 8 for the covariates Cτ,3 and
Cτ,6. If the daily precipitation amount was less than 0.05 millimeter or the sunshine duration
is less than 0.05 hour, the value of the involved covariate has -1 as value in data set 9. For
this thesis, this value is adapted to 0, since it is then assumed for this thesis that Cτ,3 = 0 if
Cτ,3 < 0.5 and that Cτ,6 = 0 if Cτ,6 < 0.5. This can be done by Microsoft Excel.

Next to that, a remark should be made about the covariates Cτ,7 and Cτ,8. It may seem very
curious why these covariates are involved. But the temporal tests executed in section 3 for the
temporal exploratory data analysis per year are also executed per day. It can then be seen that
seen over all level 1a classes of emergency calls, 31 December and 1 January are often rejected
in the temporal test, since the number of emergency calls are significantly higher then. This
can be explained, since these are the days around new year’s eve and therefore a lot of problems
involving fireworks occur. The policy and strategics team of the head fire department in Twente
agree with this hypothesis.

The seasons of the year are further taken into account as a general measure for the weather
by Cτ,9, Cτ,10, Cτ,11 and Cτ,12, since each season has its characteristic weather. The dates at
which each season begins and ends are based on those for meteorological seasons. Next to that,
time in general is also represented by the covariate Cτ,13, which involves the day dm of period
Tm. This data was completed in section 3. Since the analysis in section 3 indicated for example
for c1a = fire a decreasing trend in time, a general measure for time is introduced as a covariate.
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Cσ,1 The total number of buildings [1]
Cσ,2 The number of buildings with an assembly function [1]
Cσ,3 The number of buildings with a healthcare function [1]
Cσ,4 The number of buildings with an industrial or agricultural function [1]
Cσ,5 The number of buildings with an office function [1]
Cσ,6 The number of buildings with an hotel function [1]
Cσ,7 The number of buildings with an educational function [1]
Cσ,8 The number of buildings with a sports function [1]
Cσ,9 The number of buildings with a retail function [1]
Cσ,10 The length in meters of highways and freeways present [2]
Cσ,11 The length in meters of highways present [2]
Cσ,12 The length in meters of freeways present [2]
Cσ,13 The length in meters of railway present [3]
Cσ,14 The number of residents [4]
Cσ,15 The number of residents with an age in the range of 0 till 14 [4]
Cσ,16 The number of residents with an age in the range of 15 till 24 [4]
Cσ,17 The number of residents with an age in the range of 25 till 44 [4]
Cσ,18 The number of residents with an age in the range of 45 till 64 [4]
Cσ,19 The number of residents with an age of 65 or higher [4]
Cσ,20 The number of male residents [4]
Cσ,21 The number of female residents [4]
Cσ,22 The number of buildings with a residential function [4]
Cσ,23 The density of addresses in the neighbourhood [4]
Cσ,24 The urbanity of the neighbourhood [4]
Cσ,25 Boolean variable indicating the presence of a town [5]
Cσ,26 Boolean variable indicating the presence of a pond or canal [6,7]
Cσ,27 Boolean variable indicating the presence of a pond [6]
Cσ,28 Boolean variable indicating the presence of a canal [7]
Cτ,1 Daily mean windspeed (in 0.1 meter per second) [8]
Cτ,2 Daily mean temperature (in 0.1 degrees Celsius) [8]
Cτ,3 Daily precipitation amount (in 0.1 millimeter) [8]
Cτ,4 Daily mean sea level pressure (in 0.1 hectopascal) [8]
Cτ,5 Daily mean relative atmospheric humidity (in percents) [8]
Cτ,6 Sunshine duration calculated from global radiation (in 0.1 hour) [8]
Cτ,7 Boolean variable indicating whether or not the day is 1 January
Cτ,8 Boolean variable indicating whether or not the day is 31 December
Cτ,9 Boolean variable indicating whether or not it is spring (1 March till 31 May)
Cτ,10 Boolean variable indicating whether or not it is summer (1 June till 31 August)
Cτ,11 Boolean variable indicating whether or not it is autumn (1 September till 31 November)
Cτ,12 Boolean variable indicating whether or not it is winter (1 December till 28 February)
Cτ,13 The day dm of period Tm, 1 ≤ dm ≤ 4380

Table 8: The spatial covariates Cσ,k, 1 ≤ k ≤ 28 and the temporal covariates Cτ,j , 1 ≤ l ≤ 13
involved in the covariate analysis. The number in the square brackets indicates the source
covariate data set of that covariate.
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A last remark will be made about covariate Cσ,24, since the urbanity of the neighbourhood
will be expressed by factors, varying from 1 till 5. These factors should be interpreted as mea-
sures for the urbanity, where 1 represents the highest urbanity and 5 the lowest.

The reason that no more covariates are involved than the covariates of table 8 is that all the
previous mentioned covariates seem to describe the main aspects of Twente and of the period Tm
already. Although it may affect the quality of the model that many covariates are not taken into
account, this is the cost for keeping the model (quite) tractable. Note therefore the importance
of expert judgement in selecting the right covariates, since this can make the difference between a
good and a bad model. If some covariate data happen to be very important later in the analysis
but are not implemented in the model, the analysis and modelling can be done again involving
these covariates too.

After the ostensibly important covariates are selected in this way, they have to be made amenable
for analysis. First, the covariate data should be filtered as to represent only the data for Twente
in the period Tm. Then the covariate data should be counted in a grid for space and time to
prepare it for analysis. The same should be done for the emergency call data. The reason for
this is that emergency calls and covariates can only be compared with each other when there is
a similar measure for both of them. Therefore, a discretized grid for the region of interest and
the time period of interest will first be defined. The region of interest is again Twente, which
will be denoted by A. The time period of interest is again Tm, so the period from 1 January
2004 till 31 December 2015, since the influences of the covariates only have to be examined for
the time period on which the model is based.

Since the CBS data is restricted to squares of 500 meter in which it is available and the re-
mainder of the spatial data is described more accurately, it is straightforward to use a grid
consisting of 6291 squares of 500 meter as discretization for the spatial region of interest A. In
this way a grid is made where the least possible information is lost. To formally define this grid,
let Pσ = {Pσ,1, Pσ,2, . . . , Pσ,6291} be the partition of region A, so with Pσ,1∪Pσ,2∪· · ·∪Pσ,6291 = A
and Pσ,1∩Pσ,2∩ · · ·∩Pσ,6291 = ∅. All these subregions Pσ,i, 1 ≤ i ≤ 6291, represent thus squares
of 500 meter, so |Pσ,1| = |Pσ,2| = |Pσ,6291| = 2.5 ·105 squared meter. Then Pσ denotes the spatial
grid for A consisting of squares of 500 meter.

For time, all the covariate data is known per day and the emergency call data (in the finest
measure) per second, so arguing in the same way as for the spatial discretization, a grid consist-
ing of 4380 days would be the most straightforward time discretization for the time period of
interest Tm. Also defining this grid formally, let Pτ = {Pτ,1, Pτ,2, . . . , Pτ,4380} be the partition
of the period T , so with Pτ,1 ∪ Pτ,2 ∪ · · · ∪ Pτ,4380 = T and Pτ,1 ∩ Pτ,2 ∩ · · · ∩ Pτ,4380 = ∅. All
these subregions Pτ,j , 1 ≤ j ≤ 4380, represent days, so |Pτ,1| = |Pτ,2| = |Pτ,6291| = 1 day. Then
Pτ denotes the temporal grid for Tm consisting of time intervals of days.

It is important to identify each grid cell of Pσ and Pτ . For Pσ, each square will be identi-
fied by i, 1 ≤ i ≤ 6291, in the sequence going from the smallest value of X to the largest value
of X for each value of Y , where X and Y are the coordinates of RD New. This will be done
in the sequence going from the smallest value of Y to the largest one. For Pτ , each day will be
identified by j, 1 ≤ j ≤ 4380, in a chronological way, so that j = 1 represents 1 January 2004,
j = 2 represents 2 January 2004 and so on till j = 4380, which represents 31 December 2015.
Remember that all years in period Tm are assumed regular, so 29 February for 2004, 2008 and
2012 are not taken into account.
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So now the space-time region A × Tm is discretized in Pσ × Pτ , so in 6291 × 4380 grid cells.
By the partition Pσ, the spatial part of the emergency call data and the spatial covariates can
be compared. In this way the spatial part of the covariate analysis for the spatio-temporal point
process of each class is made possible. Analogously by the partition Pτ , the temporal part of
the emergency call data and the temporal covariates can be compared. In this way the temporal
part of the covariate analysis for the spatio-temporal point processes of each class is made possi-
ble. Note again the simplifying property of separability, since it makes the spatial and temporal
analysis able in the grids Pσ and Pτ , respectively. If separability was not assumed, both analyses
should have been done simultaneously in the Pσ × Pτ grid, what would have been much more
complicated.

To make these covariate analysis possible, the covariates first have to be filtered for the space-
time region A × Tm. The temporal covariate data will be filtered for the time period Tm. This
can be done by Microsoft Excel. Filtering the spatial covariate data will be done so that the data
is available in the whole grid Pσ, rather than in the region A alone. The region covered by the
grid Pσ, which will be denoted by Ã, differs slightly from the region A, since Ã also takes into
account small regions outside of Twente because of the discretization of Twente by Pσ in squares
of 500 meter. The temporal discretization Pτ did not have this problem, since a discretization
in days fitted exactly for the time period Tm.

The reason why the region Ã is assumed the region of interest rather than just the region A
is that the analysis for the borders of Twente would be improved if the region Ã is used as region
of interest. This because the squares of 500 meter of Pσ lying on the borders of A otherwise
contain the information only for a fraction of these squares, which is the fraction lying within the
borders of A. By taking into account all the spatial covariate data and also all the emergency call
data for these border squares, the spatial part of the covariate analysis will become more accurate.

One may remark, though, that the emergency call data outside the region A are not involved
in the emergency call data set and so it would make no difference whether A or Ã is chosen as
the region of interest. But the observant reader may remember that the original emergency call
data set also involved data outside of Twente, since the firemen of Twente also offer their help in
other regions sometimes. They only help in regions far away from Twente in case of very serious
emergency calls and these emergency calls were of no interest for the models in this thesis. But
in regions just across the border of Twente, firemen may also offer help. This because help may
not depend on the firemen of the specific region, but on the firemen who can arrive first at the
location of the emergency call. Therefore there is indeed emergency call data available near the
border of Twente which can be taken into account.

But attention should be paid to the fact that there may still be emergency calls occurred in
Ã which are not involved in the data set. This because firemen of other districts may also help
in Twente if they can arrive earlier at the location of the emergency call than firemen of the
region Twente. The data of these emergency calls are not available, though, since these data
are involved in the data sets of the fire departments of other regions. In this way, the spatial
part of the covariate analysis for the squares of the spatial grid Pσ around the border still will
not be perfectly accurate, although all the emergency calls for the fire departments of the region
Twente in Ã are taken into account. Nonetheless, the fraction emergency calls for which help
is offered by fire departments of other regions is assumed small, based on the experience of the
policy and strategics team of the head fire department in Twente.
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Based on the previous discussion, the spatial covariate data will thus be filtered for the re-
gion Ã. This can be done by QGIS. The filtering of the emergency calls for the region Ã is
already done in section 3, since the methods in section 3 already anticipated on the previous
discussion and thus used Ã as the actual region of interest. This explains why some emergency
call data laid across the borders of Twente, for example some emergency calls in figure 2. So the
models made in this thesis are actually for the region Ã instead of for A.

Although the useful emergency call data and covariate data now is available for the region Ã, it
can still not be analysed. To compare these two kinds of data with each other, a general measure
is needed. This measure will be the amount of these data in each grid cell. The spatial covariate
data will be counted in the Pσ grid and the temporal covariate data will be counted in the Pτ grid.
The emergency call data will of course be counted in both these grids. The counting is not needed
for the spatial covariates of covariate data set 4, since this information is already available in the
measure of the spatial grid Pσ. In the same way, the temporal covariates of covariate data set 8
are already available in the measure of the temporal grid Pτ and thus neither have to be counted.

Counting the spatial covariate data (that still have to be counted) and the emergency call data
in the spatial grid Pσ can be done by the count points in polygon function in QGIS. This
algorithm does not count events which have their locations on the boundaries of the squares of
Pσ. Therefore these events will first be translated. Events with a location on the lower boundary
of a square of Pσ will be translated a meter to the north, so it is located in the internal region
of this square. In a similar way, events with a location on the left boundary of a square of Pσ
will be translated a meter to the east, again so it is located in the internal region of this square.
In this way no event will be located on the boundary anymore.

After this, the counting algorithm can be run. By the way the events are translated, all events
are counted22. Moreover, they are even counted only once, in contradiction to some counting
algorithms counting an event twice if it is located at the border of these two grid cells. Note that
the squares of the grid Pσ do not involve the information for their upper and right boundary, as
a consequence of this counting method. So if information about an arbitrary square of the grid
Pσ is gives, it involves information about the internal region and the lower and left boundaries
of this square.

The counting for the emergency calls in the spatial grid Pσ will further be done per year of
the period Tm instead of only for the whole period Tm. This since some covariate information is
specified for several years in Tm and therefore the comparision between the occurrence of emer-
gency calls and these covariates can be examined more accurate. If the covariate information is
not known for some years in Tm, the unknown years will be based on the year chronologically
closest to it. For the covariate analyses, though, the distribution for the whole period Tm is
needed. But this distibution can then easily be made from the distributions for each year, by
appending these distributions in a chronological way. In this way the information of covariates
which are specified per year can accurately be used in the covariate analysis.

Counting the temporal covariate data (that still have to be counted) and the emergency call
data in the temporal grid Pτ can be done more easily, since the grid Pτ represents a discrete

22Note that it might have been possible that some events had their locations on the right or upper edge of
the whole partition Pσ . In that case the translation would make them disappear from the region Ã and so they
would not be counted. But this was not the case for any event.

45



measure (days) and so has no borders. As a consequence, the data involved is also not able to lie
on a border and no adapted counting methods are needed. Next to that, the data of the occur-
rences of emergency calls is already available in the measure of the day of the year, which was
completed to the emergency call data set in section 3. So the counting process for the temporal
grid Pτ is very straightforward. It can be done by the COUNTIF function in Microsoft Excel.

Now the counted information will be summarized. For the spatial part of the covariate analysis,
all the spatial covariate data and emergency calls counted in the spatial grid Pσ will be summa-
rized in a table, which will be called the spatial counting table, abbreviated as SCT. The rows in
the SCT represent each specific square i, 1 ≤ i ≤ 6291, of Pσ. The columns of the SCT represent
the level 1a class of interest and the year y, 2004 ≤ y ≤ 2015, of interest in case of emergency
calls and the covariate of interest and eventual specified year y, 2004 ≤ y ≤ 2015, for it in case
of covariate information.

A same table will be made for the temporal covariate analysis, where all the temporal covariate
data and emergency calls counted in Pτ will be summarized. This table will be called the temporal
counting table, abbreviated as TCT. In the TCT, the rows represent each day j, 1 ≤ j ≤ 4380,
of Pτ . The columns of the TCT represent the level 1a class of interestof interest in case of
emergency calls and the covariate of interest in case of covariate information.

4.2 Correlation analysis

Now all the data for the spatial part of the covariate analysis is summarized in the SCT and all
the data for the temporal part of the covariate analysis is summarized in the TCT, a start can
be made with the covariate analysis. As mentioned, this analysis will be done in two steps. The
first step is the correlation analysis, which will now be explained.

The correlation analysis examines the influences of the covariates on the emergency calls of
each class c1a in a global way. The reason why this is done globally, is that this analysis is
meant to make a coarse estimation of this influence. According to these estimations, the co-
variates with a relative high influence can be distinguished from the other covariates. Since not
every covariate of table 8 will be modelled, only the covariates with such a high influence will
be filtered from the covariate data set. In this way, the probably most important covariates for
each class of emergency calls will be modelled in the corresponding spatio-temporal point process.

The correlation analysis will be executed separately for spatial covariates and temporal covari-
ates. This since spatial covariates have to be related to the spatial information of the emergency
calls of interest and the temporal covariates to the temporal information of those emergency
calls. For the spatial part of the correlation analysis, the SCT will therefore be used and for the
temporal part of the correlation analysis, the TCT will be used.

Both analysis methods are based on the same correlation coefficient for relating the covari-
ates to the emergency calls, though, which is Pearson’s correlation coefficient. Let Φ and Ψ be
two random variables, Var(·) be the operator calculating the variance of the involved random
variable and Cov(·) be the operator calculating the covariance between the two involved random
variables. Then Pearson’s correlation coefficient ρΦ,Ψ is defined as follows:

ρΦ,Ψ =
Cov(Φ,Ψ)√

Var(Φ)
√

Var(Ψ)
(30)
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For the spatial part of the correlation analysis, the correlation coefficient ρ(Cσ,k, c1a) is desired
between the spatial covariate of interest Cσ,k, 1 ≤ k ≤ 28, and the emergency calls of the class
of interest c1a ∈ C1a. But the correlation coefficient of equation (30) cannot be (immediately)
calculated, though, since the covariance between the involved variables and the variances of each
of them are not known. The covariance and variance will therefore be replaced by the sample co-
variance and the sample variance, respectively. These will be calculated from the data of the SCT.

Let Ĉσ,k,i represent the counted data for covariate Cσ,k in square i, 1 ≤ i ≤ 6291, of Pσ and let
ĉ1a,i represent the counted data for the emergency calls of class c1a in square i, 1 ≤ i ≤ 6291, of
Pσ. Implementing the sample covariance and the sample variances in equation (30), the estimated
correlation coefficient ρ̂(Cσ,k, c1a) between the spatial covariate of interest Cσ,k, 1 ≤ k ≤ 28, and
the emergency calls of the class of interest c1a ∈ C1a becomes:

ρ̂(Cσ,k, c1a) =

∑6291
i=1 (Ĉσ,k,i − Ê[Cσ,k])(ĉ1a,i − Ê[c1a])√∑6291

i=1 (Ĉσ,k,i − Ê[Cσ,k])2

√∑6291
i=1 (ĉ1a,i − Ê[c1a])2

(31)

where Ê[Cσ,k] is the sample mean of covariate Cσ,k, so

Ê[Cσ,k] =
1

6291

6291∑
i=1

Ĉσ,k,i (32)

and Ê[c1a] is the sample mean of the emergency calls of class c1a, so

Ê[c1a] =
1

6291

6291∑
i=1

ĉ1a,i (33)

For the temporal part of the correlation analysis, the correlation coefficient ρ(Cτ,l, c1a) is desired
between each temporal covariate of interest Cτ,l, 1 ≤ l ≤ 13, and the emergency calls of each
class c1a ∈ C1a. The same problem arises for calculating the covariance and variances of equation
(30). Therefore, the same method for solving this problem can be applied in this case. So let
Ĉτ,l,j represent the counted data for covariate Cτ,l in day j, 1 ≤ j ≤ 4380, of Pτ and let ĉ1a,j

represent the counted data for the emergency calls of class c1a in day j, 1 ≤ j ≤ 4380 of Pτ ,.
Then the estimated correlation coefficient ρ̂(Cτ,l, c1a) between the temporal covariate of interest
Cτ,l, 1 ≤ l ≤ 13, and the emergency calls of the class of interest c1a ∈ C1a becomes:

ρ̂(Cτ,l, c1a) =

∑4380
j=1 (Ĉτ,l,j − Ê[Cτ,l])(ĉ1a,j − Ê[c1a])√∑4380

j=1 (Ĉτ,l,j − Ê[Cτ,l])2

√∑4380
j=1 (ĉ1a,j − Ê[c1a])2

(34)

where Ê[Cτ,l] is the sample mean of covariate Cτ,l, so

Ê[Cτ,j ] =
1

4380

4380∑
j=1

Ĉτ,l,j (35)

and Ê[c1a] the sample mean of the emergency calls of class c1a, so

Ê[c1a] =
1

4380

4380∑
j=1

ĉ1a,j (36)
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“fire” “service” “accident” “alert” “environmental”
Cσ,1 0.674 0.571 0.147 0.400 0.419
Cσ,2 0.459 0.556 0.124 0.398 0.326
Cσ,3 0.178 0.168 0.057 0.310 0.146
Cσ,4 0.370 0.287 0.117 0.197 0.221
Cσ,5 0.326 0.408 0.132 0.373 0.213
Cσ,6 -0.002 0.012 -0.005 0.011 0.009
Cσ,7 0.385 0.293 0.086 0.231 0.226
Cσ,8 0.267 0.203 0.071 0.126 0.171
Cσ,9 0.431 0.527 0.104 0.408 0.289
Cσ,10 -0.010 -0.014 0.116 -0.006 0.001
Cσ,11 0.027 0.002 0.138 -0.002 -0.007
Cσ,12 -0.025 -0.016 0.060 -0.006 0.005
Cσ,13 0.175 0.159 0.063 0.106 0.115
Cσ,14 0.634 0.489 0.127 0.319 0.389
Cσ,15 0.547 0.376 0.104 0.217 0.330
Cσ,16 0.629 0.499 0.122 0.315 0.366
Cσ,17 0.641 0.499 0.128 0.315 0.376
Cσ,18 0.586 0.438 0.120 0.273 0.376
Cσ,19 0.571 0.503 0.127 0.409 0.379
Cσ,20 0.632 0.489 0.128 0.313 0.388
Cσ,21 0.631 0.491 0.128 0.331 0.390
Cσ,22 0.664 0.535 0.134 0.350 0.407
Cσ,23 0.639 0.538 0.174 0.391 0.393
Cσ,24 -0.085 -0.072 0.007 -0.052 -0.032
Cσ,25 0.369 0.288 0.146 0.224 0.252
Cσ,26 0.019 0.024 0.047 0.007 0.001
Cσ,27 0.002 -0.005 0.005 -0.016 -0.006
Cσ,28 0.024 0.037 0.059 0.024 0.007
Cτ,1 0.000 0.009 0.017 -0.035 0.116
Cτ,2 -0.045 0.078 -0.044 0.044 0.028
Cτ,3 -0.048 0.106 0.058 0.057 0.290
Cτ,4 0.061 -0.045 -0.012 0.027 -0.095
Cτ,5 -0.065 -0.051 0.014 0.072 0.013
Cτ,6 0.040 0.042 0.000 -0.026 -0.029
Cτ,7 0.398 0.022 -0.008 0.084 -0.002
Cτ,8 0.763 0.070 0.010 0.079 0.005
Cτ,9 0.018 -0.017 0.022 -0.075 -0.025
Cτ,10 -0.047 0.064 -0.038 0.002 0.027
Cτ,11 -0.076 -0.014 -0.007 0.089 -0.011
Cτ,12 0.106 -0.033 0.024 -0.015 0.009
Cτ,13 -0.073 0.092 -0.066 0.013 -0.002

Table 9: Correlation coefficients between each covariate Cσ,i, 1 ≤ i ≤ 28, Cτ,l, 1 ≤ l ≤ 13, and
each level 1a class of emergency calls c1a ∈ C1a.
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The resulting correlation coefficients for both the spatial part and the temporal part of the cor-
relation analysis are shown in table 9. Now these correlation coefficients are calculated, the most
influent covariates for each level 1a class of emergency calls can be filtered. The six most impor-
tant covariates for each class will be filtered from tabel 9. The results of this filtering is shown
in table 10, where 1 marks the covariate with the highest value for the correlation coefficient
between this covariate and the class of emergency calls of interest, 2 marks the covariate with
the second highest value for this correlation coefficient, and so on. The covariates of table 10
will then be further analysed by regression analysis.

“fire” “service” “accident” “alert” “environmental”
1 Cτ,8 Cσ,1 Cσ,23 Cσ,19 Cσ,1
2 Cσ,1 Cσ,2 Cσ,1 Cσ,9 Cσ,22

3 Cσ,22 Cσ,23 Cσ,25 Cσ,1 Cσ,23

4 Cσ,17 Cσ,22 Cσ,11 Cσ,2 Cσ,21

5 Cσ,23 Cσ,9 Cσ,22 Cσ,23 Cσ,14

6 Cσ,14 Cσ,19 Cσ,5 Cσ,5 Cσ,20

Table 10: The 6 most influent covariates per level 1a class of emergency calls c1a ∈ C1a.

It can be seen that the spatial covariates seem much more influent than the temporal ones in
general. This may be since the focus is more laid on spatial covariates than on temporal co-
variates, since 28 spatial covariates are involved and 12 temporal covariates. As a consequence,
a spatial point process model for the classes c1a = service, c1a = accident, c1a = alert and
c1a = environmental then seems sufficient and time invariance per day seems assumed. This
seems intuitively wrong, but also temporal tests for the distributions of the days for each class of
emergency calls mentioned prove that there are days with a significantly different distributions
(although not so strongly different). So this means that other covariates are needed to describe
the temporal part of the emergency calls of the earlier mentioned classes. This will not be done
anymore in this thesis, though.

Next to that, many spatial covariates in table 10 are again (strongly) correlated with each
other. For example, ρ(Cσ,14, Cσ,20) = 0.843, which is also very logical, since the number of
male residents depends (intuitively) on the total number of residents. This will be no problem,
though, since the spatio-temporal point process modelling for a specific level 1a class is a kind of
multivariate regression and therefore it keeps an eye on the covariances between covariates and
it then filters the covariates that clearify the occurrences of the emergency calls of interest the
best. So it will say whether Cσ,14 or Cσ,20 is a better descriptor of the emergency calls of the
class “environmental”, for example. This is the main reason why six covariates for each class are
filtered, since many of these six may be strongly correlated with each other and therefore the
number of significant covariates may be reduced a lot in the modelling.

4.3 Regression analysis

To conclude the covariate analysis, regression analysis will be done. This analysis will relate each
selected covariate in table 10 to the emergency calls of the corresponding level 1a class. These
relations will be needed for the spatial point process modelling, involving the classes c1a ∈ C̃1a,
C̃1a = {service, accident, alert, environmental}, and for the spatio-temporal point process mod-
elling, involving the class c1a = fire. Regression analysis also has to be done separately for the
spatial covariates and the temporal covariates, for the same reasons as for the correlation analysis.
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Let Cc1a,σ,k, 1 ≤ k ≤ p, represent the selected spatial covariates of table 10 for the emergency
calls of the class c1a. So for c1a = fire, p = 5 and for the other classes, p = 6. The spatial part of
the regression analysis then tries to find the global relation g(c1a, Cc1a,σ,1, Cc1a,σ,2, . . . , Cc1a,σ,p)
between the occurrences of emergency calls of this class c1a and each spatial covariate Cc1a,σ,k.
For this relation, it is assumed that each covariate influences the emergency calls of interest inde-
pendently from each other, so cross terms of different covariates will not appear in the function
representing the relation g(c1a, Cc1a,σ,1, Cc1a,σ,2, . . . , Cc1a,σ,p).

The exact relation g(c1a, Cc1a,σ,1, Cc1a,σ,2, . . . , Cc1a,σ,p) is unknown and therefore will be esti-
mated. This relation will be estimated by determining the global relations gk(c1a, Cc1a,σ,k) be-
tween the occurrences of emergency calls of the class c1a and each individual spatial covariate
Cc1a,σ,k. This is made possible by the assumption that each covariate exerts influences inde-
pendently from each other. In this way finding a (p + 1)-dimensional function representing the
relation g(c1a, Cc1a,σ,1, Cc1a,σ,2, . . . , Cc1a,σ,p) is reduced to finding p two-dimensional functions
representing the relations gk(c1a, Cc1a,σ,k).

The estimates ĝk(c1a, Cc1a,σ,k) of these relations gk(c1a, Cc1a,σ,k) will be based on the data

Ĉc1a,σ,k,i and ĉ1a,i from the SCT, where Ĉc1a,σ,k,i represents the counted data for covariate
Cc1a,σ,k in square i, 1 ≤ i ≤ 6291, of Pσ and ĉ1a,i represents again the counted data for the
emergency calls of class c1a in square i, 1 ≤ i ≤ 6291, of Pσ. Each estimate ĝk(c1a, Cc1a,σ,k) can

then be found by examining which kind of function fits the best to the data Ĉc1a,σ,k,i and ĉ1a,i.
Comparing the quality of these fits for different kinds of functions can be done by univariate
regression. The less error the function of interest has with respect to the data, the better this
kind of function represents the relation.

Recall that the estimates ĝk(c1a, Cc1a,σ,k) found in this way only represent the global relations,
since the found coefficients for the fitted functions are not the (influence) coefficients for the
model. The reason for this is that the univariate regression assigns all emergency calls of the
class of interest to the covariate of interest in the regression, while some of these emergency calls
may have no relation with the covariate of interest, since different emergency calls may be caused
by different covariates.

A multivariate regression with the found global functions for each covariate involved would
indeed solve this problem and give the true coefficients. Remark that in this way, the func-
tion ĝ(c1a, Cc1a,σ,1, Cc1a,σ,2, . . . , Cc1a,σ,p) is an estimator for the intensity function for each square
i, 1 ≤ i ≤ 6291, of Pσ. Spatial point process modelling then uses the global relation of this esti-
mate for determining the influence coefficients of the intensity function for each location x ∈ A,
where A is the region of interest, in stead of for each square i of Pσ. This will be done in section 5.

Since there are infinitely many kinds of functions, some kinds of functions have to be chosen
that will be examined. This can be done by analysing the plots of Ĉc1a,σ,k,i against ĉ1a,i and by
restricting the function from getting too complex. In this way, the following three families are
selected to analyse the relations for the regression analysis in this thesis:

1. Y = ζ4X
4 + ζ3X

3 + ζ2X
2 + ζ1X + ζ0, ζl ∈ R, 0 ≤ l ≤ 4

2. Y = η0
X , η0 ∈ R

3. Y = X(θ0+θ1X+θ2X
2)e(θ3+θ4X+θ5X

2), θl ∈ R, 0 ≤ l ≤ 5
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where Y = c1a and X = Cc1a,σ,k in this thesis. Remark that a lot of functions are covered with
these three families of functions, since coefficients ζ0, ζ1, . . . , ζ4, η0, θ0, θ1, . . . , θ5 may be zero. For
example, if the real relation would be y = x3 + 1, family 1 will appear to have the best fitting
regression for the data, where ζ3 = ζ0 = 1 and ζ4 = ζ2 = ζ1 = 0.

The above families are only allowed to fit continuous relations and such a relation is the case for
almost any selected spatial covariate from table 10. The only spatial covariate from this table for
which the relation is discrete is Cσ,25, which is a Boolean variable equaling 1 if a town is present
in a specific square i, 1 ≤ i ≤ 6291, of Pσ and equaling 0 if a town is not present in that square.
The function

4. Y = κ0 + κ1X, κl ∈ R, l ∈ {0, 1}

can be used to fit such a Boolean variable X ∈ {0, 1}, where κ0 represents the fitted value for
X = 0 and κ0 + κ1 represents the fitted value for X = 1. In the case of examining the influence
of Cσ,25, Y = c1a and X = Cσ,25.

A last remark about the fitted functions is that they should be nonnegative, since a negative
number of emergency calls cannot occur. If a function has negative values, though, it often has
a bad fit for the regression as a consequence. If although this fit still happens to have the best
fit, it could be adapted to be nonnegative by changing all negative values to the value 0. In this
way, the fit will even become better. Further, all involved covariates have nonnegative values, so
the function will live in the first quadrant.

Now the spatial part of the regression analysis will be executed for each Ĉc1a,σ,k, 1 ≤ k ≤ p,
by R. By examining the regression plots, residual plots and the summary of the regression anal-
ysis in R, one can see how well each kind of function fits the data. For example, the regression
analysis plot for data of Cσ,14 against the emergency calls of c1a = fire is given in figure 10, in
which it can be seen that family 3 seems to be the best fitting relation between the data of Cσ,14

and the emergency calls of c1a = fire. Further, it must be noted that family 1 fits very badly,
since the fitting for it does not even converge in R. The residual plots for each of the involved
families agrees with this. The residual plot for familiy 3 is shown in figure 10.

Even for every continuous spatial covariate of any class c1a, spatial regression analysis indicates
family 3 as the best fitting family. This could have been expected in some way, since this family
has the most coefficients and so the most degrees of freedom for fitting to the data. Nonetheless,
all three families have been tested, since there could have been a change that a polynomial of
degree 3 or 4 or a power function would have been the better fit. The discrete spatial covariate
Cσ,25 is further fitted by family 4, which also results in a good fit.

A same approach can be taken for the temporal part of regression analysis. As earlier men-
tioned, Cτ,8 was the only temporal covariate in table 10 and the corresponding emergency calls

were of the class c1a = fire. Let Ĉτ,8,j represent the counted data for covariate Cτ,8 on day
j, 1 ≤ j ≤ 4380, of Pτ and let ĉfire,j represent the counted data for the emergency calls of class
c1a = fire in day j, 1 ≤ j ≤ 4380, of Pτ . Since Cτ,8 is a Boolean variable, family 4 will again be
used for fitting, as was also the case for Cσ,25. Also in this case, the residual plots and summary
of the regression indicate that the fit is good. The fitting and analysing is again done by R.
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Figure 9: The data of Cσ,14 plotted against the emergency calls of c1a = fire for the described
regression analysis involving the functions of family 1 (the red graph), 2 (the green graph) and
3 (the blue graph).

Figure 10: The residual plot of the described regression analysis of the data of Cσ,14 against the
emergency calls of c1a = fire for family 3.
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5 Spatio-temporal point process fitting

So the emergency calls of the class c1a = fire will be modelled as a spatio-temporal inhomoge-
neous Poisson process and the emergency calls of the remaining level 1a classes will be modelled
as a (purely) spatial inhomogeneous Poisson process. Further, in the modelling of each process
(a maximum of) six covariates and their corresponding relations found in section 4 will be taken
into account. The data of the occurred emergency calls of each class will be related to this
corresponding covariate information by the intensity function, as described in section 2. These
intensity functions are the main ingredient for the inhomogeneous Poisson processes to be made.

But how should this intensity function now be estimated from the analyses earlier executed?
In section 2 it was only mentioned that the relations between the occurrences of emergency calls
of interest and each involved covariate can be examined globally by regression analysis and that
the influence coefficients corresponding to these relations can be found by the method of max-
imum pseudolikelihood estimation. The reason why this estimation technique is used in stead
of for example maximum likelihood estimation will be explained in this section. If these influ-
ence coefficients are then estimated, they can be implemented in the intensity function for each
class together with the (global) relations found in the regression analysis. In this way, the in-
tensity functions for the spatial point processes and spatio-temporal point processes can be made.

In this section, the described method will be explained more thoroughly and will be executed.
First, the maximum pseudolikelihood estimate for a spatial point process and for a spatio-
temporal point process will be examined. Then it will be explained how the former estimate is
implemented in the functions of the spatstat package in R for the modelling of spatial point
processes. Since R has no immediate function for modelling spatio-temporal point processes, it
will also be explained how the maximum pseudolikelihood estimate for a spatio-temporal point
process can be implemented for this extension. This implementation is already done in R by
prof. dr. M.N.M. van Lieshout and Adina Iftimi and their algorithm will be used in this thesis
for the spatio-temporal point process modelling. The section then concludes by validating the
modelled spatial or spatio-temporal point processes for each class of emergency calls. In this
way, the quality of the models can be checked and so whether or not they have to be extended
further (by for example also modelling stochastic interaction).

A last remark has to be made, since the methods in this section are only applicable to (a
time series of) spatial point patterns where there are no two events with the same (x, t) coordi-
nates, since spatial point patterns are in a formal way a set and not a tuple, as can be seen from
definition 2.1. This means that the techniques made for analysing them are actually not meant
for analysing also the duplicated events. The analyses for the spatial point patterns in section 3
is actually still fine, since the distance analysis methods only look at nonzero distances.

The reason why duplicated events were not removed in the filtering executed in section 3 is
that for the covariate analyses, each of the several duplicated events (so with the same (x, t)
coordinates) contains information about the occurrences of the emergency calls. But for the
modelling, these duplicated events have to be removed, since building a whole new theory for
spatial point patterns with duplicated events is “a Herculean task”, according to Turner (2009).
Duplicated events could be taken into account by slightly translating them with a similar method
as for translating the events on the boundaries of the spatial grid Pσ in section 4, but even this
is quite complicated to do. So this thesis involves models where duplicated events are removed.
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5.1 Estimation of the intensity function

The emergency calls of the classes c1a ∈ C̃1a, C̃1a = {service, accident, alert, environmental}
will be modelled as a purely spatial inhomogeneous Poisson process, so the one formulated in
definition 2.8. This because the six most influential covariates for these classes happen to be all
spatial. The intensity function for these classes is as a consequence the one from equation (19).
Since the global relations gk(c1a, Cc1a,σ,k) between the emergency calls of each of the involved

classes c1a ∈ C̃1a and the six most influential covariates for these classes Cc1a,σ,k, 1 ≤ k ≤ 6 were
concluded from the regression analysis in section 4, equation (19) can be specified further as:

λθσ (x) =

6∏
k=1

gk(c1a, Cc1a,σ,k) (37)

Now let h(x) be defined as:

hk(x) = x(θk,0(x)+θk,1Ck(x)+θk,2(C2
k(x)2))e(θk,3+θk,4Ck(x)+θk,5(Ck(x)2)) (38)

Then the intensity function for the classes c1a = service, c1a = alert and c1a = environmental
can be formulated as:

λθσ (x) =

6∏
k=1

hk(x) (39)

and the intensity function for the class c1a = accident as:

λθσ (x) =

(
2∏
k=1

hk(x)

)
(θ3,0 + θ3,1Cσ,25)

(
6∏
k=4

hk(x)

)
(40)

In equations (38), (39) and (40), Ck(x), 1 ≤ k ≤ 6, represents the kth most important covariate
for the class c1a ∈ C̃1a of interest and θσ = (θ1,0, θ1,1, . . . , θ6,5) is the vector representing all the
influence coefficients, which are related to the six spatial covariates involved.

Now it will be explained how the influence coefficients of θσ in the intensity functions of equation
(39) and (40) will be discovered for each level 1a class c1a ∈ C̃1a. As mentioned, this will be
done by the maximum pseudolikelihood estimating technique. The discussion will be based on
Baddeley and Turner (2000). To maximise the pseudolikelihood, the pseudolikelihood first has
to be determined. For the (purely) spatial inhomogeneous Poisson process, the pseudolikelihood
PL is defined as follows (Baddeley and Turner, 2000):

PL(θσ) =

|S|∏
i=1

λθσ (xi)e
−

∫
A
λθσ (u) du (41)

where S is the spatial point pattern consisting of the emergency calls for the level 1a class of
interest c1a ∈ C̃1a and A is the region of interest. The idea now is to find the values θ̂σ of
θσ corresponding to the maximum of PL(θσ). These estimates θ̂σ are the values to complete
the estimated intensity functions for the spatial inhomogeneous Poisson processes of interest.
Estimating θ̂σ is done by maximising the logarithm of the pseudolikelihood rather than just
the pseudolikelihood, since taking the logarithm of the right-hand side of equation (41) has
a much simpler expression23. The logarithm of the pseudolikelihood, abbreviated as the “log

23The reason that maximising the logarithm of the pseudolikelihood has the same answer as maximising the
pseudolikelihood directly is that the logarithm is an increasing function.
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pseudolikelihood”, for each spatial inhomogeneous Poisson process becomes:

log
[
PL(θσ)

]
=

|S|∑
i=1

log
[
λθσ (xi)

]
−
∫
A

λθσ (u) du (42)

The difficulty in maximizing the (log) pseudolikelihood is that the integral
∫
A
λθσ (u) du is quite

difficult to calculate. To approximate this integral, region A will be partitioned in p polygons
Bk ⊂ A, 1 ≤ k ≤ p. Further, some new concepts are needed. Let Q = {u1, u2, . . . , um}, ui ∈ A be
a set of random points distributed over the polygons B1, B2, . . . , Bp of the partition, respectively.
Then these points ui ∈ A, 1 ≤ i ≤ m are called the quadrature points. Each quadrature point ui
also has an associated weight wi ≥ 0 and these weights are called the quadrature weights. With
these concepts, the integral of interest will be approximated by the Berman-Turner method
(Berman and Turner, 1992) as follows:∫

A

λθσ (u)du ≈
m∑
i=1

λθσ (ui)wi (43)

The Berman-Turner method then chooses the quadrature points ui ∈ Q to include all the (loca-
tions of the) emergency calls of interest xj ∈ S and some other “dummy” points in the region of
the grid. Let D denote the set of dummy points, so Q = S ∪D, and let zi be a Boolean variable
equaling 1 if ui ∈ S and 0 if ui ∈ D and yi = zi/wi. Then equation (42) reduces further to:

log
[
PL(θ)

]
≈

m∑
i=1

(
zi log[λθσ (ui)]− wiλθσ (ui)

)
(44)

=

m∑
i=1

wi
(
yi log[λθσ (ui)]− λθσ (ui)

)
(45)

Now one can see the benefits of the Berman-Turner device, since equation (45) has the same
form as the log likelihood of multiple independent Poisson random variables with weights wi,
means λθσ (ui) and responses yi. Therefore the log pseudolikelihood for an inhomogeneous Pois-
son process representing a spatial point process can be maximised by the standard software for
fitting generalized linear models.

The previous discussion involved finding an estimation θ̂σ for the influence coefficients θσ for
spatial point processes representing emergency calls of the classes c1a ∈ C̃1a. These spatial point
processes were modelled as an ordinary spatial inhomogeneous Poisson processes. The emergency
calls of the class c1a = fire cannot be modelled in such a way, since it has to be modelled as
a spatio-temporal point process. This was a consequence of the fact that the six most influent
covariates for c1a = fire not did only involve spatial covariates, but also a temporal one. This
spatio-temporal point process will be modelled as a spatio-temporal inhomogeneous Poisson pro-
cess with intensity function λ(x, t).

First, the intensity function λθ(x, t) for this process will be described, where θ = (θτ , θσ) is
the vector representing the influence coefficients θτ and θσ for the temporal and spatial co-
variates, respectively. Remember that separability was assumed, so λθ(x, t) = λσ,θσ (x)λτ,θτ (t).
The global relations between the emergency calls of class c1a = fire and the spatial covariates,
which are concluded from the regression analysis in section 4, can be used to express the global
behaviour of λσ,θσ (x):

λσ,θσ (x) =

6∏
k=2

hk(x) (46)
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and in the same way the global behaviour of λτ,θτ (t) can be expressed based on the global relation
between the emergency calls of class c1a = fire and the only temporal covariate Cτ,8:

λτ,θτ (x) = (θ1,0 + θ1,1Cτ,8) (47)

In equation (46), Ck(x) is the kth most important covariate of the level class c1a = fire where
2 ≤ k ≤ 6 and C1(x) = Cτ,8, since the temporal covariate Cτ,8 in equation (47) is the most
important covariate. Further, θ = (θ1,0, θ1,1, θ2,0 . . . , θ6,5) is the vector representing all the influ-
ence coefficients, where θτ = (θ1,0, θ1,1) and θσ = (θ2,0, θ2,1, . . . , θ6,5).

The vector θ = (θτ , θσ) consisting of the influence coefficients of the intensity function λθ(x, t)
will be estimated by an extension to the method for estimating the purely spatial intensity func-
tion λ(x). It will also involve the maximum pseudolikelihood method for estimating θ. First the
pseudolikelihood for a spatio-temporal inhomogeneous Poisson process will be defined:

PL(θσ) =

|S|∏
i=1

λθσ (xi, ti)e
−

∫
T

∫
A
λθσ (u,v) du dv (48)

where S is the spatial point pattern consisting of emergency calls for the level 1a class c1a =
fire, T is the time period of interest and A is the region of interest. Again the log likelihood
will be maximised instead of the ordinary likelihood. The log likelihood for a spatio-temporal
inhomogeneous Poisson process becomes:

log
[
PL(θ)

]
=

|S|∑
i=1

log
[
λθ(xi, ti)

]
−
∫
T

∫
A

λθσ (u, v) du dv (49)

Again the integral from equation (49) will be approximated by a partition, this time for the space-
time region A×T . The spatial region A will again be partitioned in p polygons Bk ⊆ A, 1 ≤ k ≤ p
and the time period T will be partitioned in q subperiods Ul ⊆ T, 1 ≤ l ≤ q. Now define the
m quadrature points by the set Q = {(u1, v1), (u2, v2), . . . , (um, vm)}, (ui, vi) ∈ (A × T ), where
ui ∈ A is the spatial part of these quadrature points and vi ∈ T is the temporal part. The weight
wi ≥ 0 is associated with the quadrature point (ui, vi). The integral of interest is then again
approximated by the Berman-Turner method:∫

T

∫
A

λθσ (u, v) du dv ≈
m∑
i=1

λθ(ui, vi)wi (50)

Let S now denote the data set consisting of the space-time coordinates (x, t) of all the occurred
events (so actually a spatio-temporal point pattern) and let D again denote the set of dummy
points. According to the Berman-Turner method, Q = S ∪ D again and zi is defined as the
Boolean variable equaling 1 if (ui, vi) ∈ S and 0 if (ui, vi) ∈ D. Again defining yi = zi/wi,
equation (49) reduces to:

log
[
PL(θ)

]
≈

m∑
i=1

(
zi log[λθ((ui, vi))]− wiλθ(ui, vi)

)
(51)

=

m∑
i=1

wi
(
yi log[λθ(ui, vi)]− λθ(ui, vi)

)
(52)

and again equation (52) can be approximated by software for fitting generalized linear models,
since it is also similar to the log likelihood of multiple independent Poisson variables Yi with
weights wi, means λθσ (ui) and responses yi.

56



5.2 Model fitting and validation

Now the method for estimating the influence coefficients by maximising (log) pseudolikelihoods
is explained, it will be executed for each level 1a class of emergency calls. First, the spatial point
process for the classes c1a ∈ C̃1a will be fitted and after that the spatio-temporal point process
for the class c1a = fire will be fitted. After the models are fitted, their quality will be checked
by diagnostic plots24 and by comparing the model for each class to the industry model for the
emergency calls of the respective class. The idea of the current industry model was already
explained in section 1, based on the discussion in Zhou et al. (2015).

For modelling the spatial point processes corresponding to the classes c1a ∈ C̃1a, A is again
partitioned in the spatial grid Pσ (as defined in section 4) for the Berman-Turner method. In
the center of each square of 500 meter involved in Pσ a dummy point is placed. The count-
ing weights concept of Baddeley and Turner (2000) is further used to define the weights wi,
which are therefore defined as wi = 2.5 · 105/ni, where 2.5 · 105 represents the area of a square of
Pσ in squared meter and ni represents the number of quadrature points in square i, 1 ≤ i ≤ 6291.

As a next step, each quadrature point ui should be completed with the corresponding values
of the covariates of interest. This covariate information is needed for each quadrature point
ui ∈ Qc1a , where Qc1a is the set containing all quadrature points for the level 1a class of in-
terest, since fitting the spatial point process actually involves a kind of multivariate regression
between the location x ∈ R2 (with realizations ui) as dependent variable and the covariates
Cc1a,σ,k, 1 ≤ k ≤ 6, as explanatory variables. Even more specific, this regression is done for both
the X and Y coordinates, and these coordinates of quadrature points ui will be denoted by ui,X ,
ui,Y , respectively. So a table involving the values of ui,X , ui,Y and Cc1a,σ,k, 1 ≤ k ≤ 6, for all
quadrature points ui, 1 ≤ i ≤ |Q|, is needed for fitting a spatial point process for the classes
c1a ∈ C̃1a. This table will be denoted by TQP and is partially given for the class c1a = service
in table 11. The covariate information can be filtered for each quadrature point by QGIS.

i type ui ui,X ui,Y Cσ,1 Cσ,2 Cσ,23 Cσ,22 Cσ,9 Cσ,19

1 data 242923 487246 900 5 1434 648 185 198
2 data 241799 486175 956 13 2046 658 194 396
3 data 240858 485049 886 2 1593 719 91 272
4 data 258574 470923 1196 3 3401 1075 23 434
5 data 243595 487947 436 3 1004 411 14 97
...

...
...

...
...

...
...

...
...

...
6366 dummy 241750 501750 0 0 150 193 0 70
6367 dummy 241250 501250 0 0 88 0 0 0
6368 dummy 241750 501250 2 0 141 10 2 3
6369 dummy 242250 501750 2 0 157 180 0 75
6370 dummy 242250 501250 18 0 150 20 1 10
...

...
...

...
...

...
...

...
...

...

Table 11: A part of the table containing the information about the quadrature points (TQP) for
the class c1a = service, which consists of 6365 data points and 6291 dummy points.

24The diagnostic plots are only used for validation of the purely spatial point processes, so for the classes
c1a ∈ C̃1a, since spatstat does not have the tools yet to make diagnose plots for spatio-temporal point processes.
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A remark should be made for making the TQP needed for fitting the corresponding spatial point
process. It may be possible that covariates are involved for which the values are known for several
years in Tm. But for which year should these values be involved in the TQP? In this thesis, the
average is taken over the values of all years in Tm. Even when these values are not known for
a specific year, the values of the year chronologically closest to it are assigned to that specific
year. In this way, the whole period Tm is represented well, which is required since the model is
based on this period. This averaging method is for example applied to Cσ,23 of table 11.

Now it is explained how the TQP can be made, it will be used to fit a spatial (inhomoge-
neous Poisson) point process to the emergency calls of each level 1a class c1a ∈ C̃1a. For fitting
the spatial point processes, the ppm function of the spatstat package in R will be used, which
estimates the influence coefficients θσ corresponding to the (global) intensity functions for each

level 1a class found in section 4. These estimated influence coefficients θ̂σ are found for the fitted
Poisson processes by the maximum pseudolikelihood estimating technique for spatial (inhomo-
geneous Poisson) point processes earlier described, so by finding the values for wi and yi for
each quadrature point ui ∈ Qc1a and fitting the generalized linear model with weights wi, means
log(λθσ (ui)) and responses yi and of course Poisson distributed errors.

Before using the ppm function, the required arguments for this function will be explained. The
first argument involves a data frame of the two columns of TQP which respectively contain the
values for ui,X and ui,Y . The second argument involves the global relations between the events
of the spatial point pattern of interest and the covariates of interest in a log linear form. The
third argument involves the kind of interaction between the events of the spatial point pattern
of interest. A data frame containing the covariate information of the TQP is finally involved as
the covariates argument.

Since the required data for the model fitting by the ppm function is contained in the TQP, this
table is first imported a data frame in R (by the command data.frame). Let uX and uY represent
the columns of the TQP involving the values for ui,X and ui,Y , respectively, and let C1, C2, . . . , C6
represent the columns of the TQP involving the values for Cc1a,σ,1, Cc1a,σ,2, . . . , Cc1a,σ,6, respec-
tively. For the classes c1a = service, c1a = alert and c1a = environmental, the influence coeffi-
cients θσ can then be fitted as follows:

ppm(cbind(uX,uY), ~ (log(C1+1e-14)*polynom(C1,2) + log(C2+1e-14)*polynom(C2,2) +

log(C3+1e-14)*polynom(C3,2) + log(C4+1e-14)*polynom(C4,2) +

log(C5+1e-14)*polynom(C5,2) + log(C6+1e-14)*polynom(C6,2)),

Poisson(), covariates=cbind(C1,C2,C3,C4,C5,C6))

where the first argument is the data frame cbind(uX,uY), the second argument is the log linear
form of equation (39), the third argument is the command Poisson(), which indicates that there
is no stochastic interaction (assumed) between the emergency calls of the level 1a class c1a ∈ C̃1a

of interest and the covariates argument is the data frame cbind(C1,C2,C3,C4,C5,C6)). For
the class c1a = accident, an eye must be kept on the Boolean covariate Cσ,25 involved. To im-
plement this covariate in R, the command factor() must be used. The influence coefficients θσ
for equation (40) can then be fitted as follows:

ppm(cbind(uX,uY), ~ (log(C1+1e-14)*polynom(C1,2) + log(C2+1e-14)*polynom(C2,2) +

factor(C3) + log(C4+1e-14)*polynom(C4,2) + log(C5+1e-14)*polynom(C5,2) +

log(C6+1e-14)*polynom(C6,2)), Poisson(), covariates=cbind(C1,C2,C3,C4,C5,C6))
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In this way, the influence coefficients θσ can be estimated for all classes c1a ∈ C̃1a. But how
could the quality of the fitted influence coefficients θ̂σ, and so of the fitted spatial point process,
be checked? This could be done in the context of the inhomogeneous Poisson process by again
examining the empirical distribution function K̂inhom(r), as explained in section 2, but there are
even more adequate verification tools implemented in R. These tools involve the diagnose.ppm

function, analogous to a residual plot for ordinary regression analysis, and the qqplot.ppm func-
tion, analogous to a Q-Q plot of the residuals in a linear model (Baddeley and Turner, 2006). In
this thesis, only the diagnose.ppm function will be used to examine the quality of the fits.

It can be concluded that only the fits for the classes c1a = environmental and c1a = accident are
reasonable, but that the fits for the classes c1a = service and c1a = alert are bad. It can also be
concluded that the fit for the class c1a = service does not differ significantly for implementing
the five most important covariates or the six most important ones. To reduce the complexity of
the fit, only the five most important covariates Cσ,k, 1 ≤ k ≤ 5 are therefore taken into account
for the corresponding model. For the same reason, only the four most important covariates
Cσ,k, 1 ≤ k ≤ 4 are taken into account for the model of the class c1a = environmental. The
reason that some covariates may not exert a great influence anymore is that it may have a high
correlation with the already modelled covariates and so, for the reasons explained in section 4,
this covariate may not have a significant influence anymore. This can be clearly seen for the
class c1a = environmental, where Cσ,5 and Cσ,6 have a high correlation with Cσ,4.

Let p denote the number of most important covariates modelled for a specific level 1a class, then
for c1a = service, p = 5, for c1a = environmental, p = 4 and for c1a = alert and c1a = accident,
p = 6. The fitted influence coefficients θ̂σ corresponding to these classes c1a = service, c1a = alert,
c1a = environmental and c1a = accident are given in the tables 12, 13, 14 and 15, respectively,
and the corresponding diagnostic plots are given in figure 11.

Cσ,1 Cσ,2 Cσ,23 Cσ,22 Cσ,9
θk,0 -14.02717
θk,1 0.02548 0.00495 0.00072 0.00801 0.00390
θk,2 0.08491 -0.05457 0.02006 -0.06203 0.00199
θk,3 0.00013 -0.00856 0.00001 -0.00015 -0.00006
θk,4 -0.01642 0.04944 -0.00307 0.01330 0.00018
θk,5 -0.00001 0.00149 0.00000 0.00002 0.00001

Table 12: The influence coefficients θ̂σ for c1a = service, fitted by the ppm function in R.

Cσ,19 Cσ,9 Cσ,1 Cσ,2 Cσ,23 Cσ,5
θk,0 -14.49913
θk,1 -0.00608 0.00134 0.05336 0.02037 0.01296 0.02077
θk,2 -0.08477 -0.05795 0.10299 -0.27645 0.03224 0.10277
θk,3 -0.00040 -0.00050 0.00018 -0.02343 0.00002 0.00452
θk,4 0.02076 0.01649 -0.02032 0.16863 -0.00517 -0.04200
θk,5 0.00005 0.00007 -0.00002 0.00401 0.00000 -0.00076

Table 13: The influence coefficients θ̂σ for c1a = alert, fitted by the ppm function in R.
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Cσ,1 Cσ,22 Cσ,23 Cσ,21

θk,0 -13.98994
θk,1 0.03744 0.01035 -0.01191 -0.00112
θk,2 0.04710 -0.03365 0.01947 0.01800
θk,3 0.00005 -0.00012 0.00001 0.00008
θk,4 -0.00847 0.00845 -0.00303 -0.00501
θk,5 -0.00001 0.00001 0.00000 -0.00001

Table 14: The influence coefficients θ̂σ for c1a = environmental, fitted by the ppm function in R.

Cσ,23 Cσ,1 Cσ,25 Cσ,11 Cσ,22 Cσ,5
θk,0 -13.30804
θk,1 0.00273 0.01430 0.36379 0.03113 0.01006 0.00307
θk,2 0.01016 0.03424 -0.00256 -0.03645 0.28036
θk,3 0.00001 0.00005 -0.00001 -0.00007 0.01611
θk,4 -0.00171 -0.00655 0.00071 0.00732 -0.14048
θk,5 0.00000 -0.00001 0.00000 0.00001 -0.00268

Table 15: The influence coefficients θ̂σ for c1a = accident, fitted by the ppm function in R.

Figure 11: Diagnostic plots for the fitted influence coefficients θ̂σ for c1a = service (figure a, left
above), c1a = alert (figure b, right above), c1a = environmental (left below) and c1a = accident
(right below). These plots are made by the diagnose.ppm function.
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Some remarks have to be made for these tables. For each of these tables, there is only one value
of θk,0 involved, since the output of the ppm function gives not the values of θ1,0, θ2,0, . . . , θp,0
individually, but it multiplicates these values and gives this single value as output. This value is
listed as θ1,0 in each table. Next to that, there values 0.00000 may occur in the tables, which not
directly implies that the corresponding coefficient has a value of zero, but it does have a value
smaller than 0.000005. Further for the tables, the covariates in the upper row are ordered from
the most important one (left) to less important ones (right). Concluding the discussion of the
tables, empty cells indicate that the influence coefficient of interest is not defined.

Also some remarks have to be made for the diagnostic plots in figure 11, since it was not explained
how to interpret these plots precisely. The subplot in the upper left part of the plot further gives
an indication of the fitted intensity function (in blue) and a simulated point pattern according to
it (in black). The subplot in the lower right part gives the residuals in the plain, which should be
zero for a perfectly fitting model. If the residuals are high, though, the fitted model represents
the data badly and another kind of model should be chosen to represent the data. This test is
although quite quantitative and a more qualitative test can be executed by examining the lower
left subplot and the upper right subplot.

The subplots in the lower left part and the upper right part further give the residuals of the
lower right subplot for the X and Y coordinates, respectively. These two subplots can be inter-
preted in an analogous way as the plots for the distance analysis methods described in section
2 and therefore examining these subplots give a more qualitative test whether the fitted kind
of model is the right one or not. In the mentioned subplots, the empirical distribution function
(which is thus based on the fitted model) is denoted by the solid graph and the critical envelopes
(which are thus based on simulations of the theoretical model that was fitted to the data, so in
this case, an inhomogeneous Poisson process) are denoted by the dashed graphs. If the empirical
distribution function lies outside of the critical envelopes, the fitted model is rejected as the right
model, and otherwise it is accepted.

By examining the diagnose plots in figure 11, it can indeed be seen what was earlier mentioned,
namely that an inhomogeneous Poisson process is surely not the right model for the classes
c1a = service and c1a = alert and that this model is reasonable for the classes c1a = environmental
and c1a = accident, but not very suitable. Despite, the models will be compared to the emergency
call data of the corresponding classes occurred in period Tv (so the period from 1 January 2016
till 7 December 2016) later in this section, to make sure that it does not give accurate predictions.

Now the spatial point processes are fitted, the spatio-temporal point process for the class
c1a = fire will be fitted. The TQP must slightly be extended in this case, since it should
also possess a column which describes the day of each quadrature point ui ∈ Qfire. For Qfire,
1300 dummy points are generated rather than 6291, to reduce the complexity of the model fitting.

To generate these 1300 dummy points, 100 points are evenly distributed over the region Aext,
which is defined as the region in the square in the range [218000,271000] in the X direction and
in the range [459000,502000] in the Y direction (a square which completely includes the region
Ã). The reason why the points were not generated in Ã itself is that the algorithm (by prof. dr.
M.N.M. van Lieshout and Adina Iftimi) used requires a square as spatial region for generating
the dummy points. For each of these 100 points, 13 points are generated in time period Tm in
an regular way, so on days 168, 505, 842, and so on till day 4212. The corresponding grid in
Aext × T with the dummy points as centres will be denoted by P(10,10,13).
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After this, the values of the six most important covariates can be assigned to each quadra-
ture point ui ∈ Qfire. Assigning the values for the spatial covariates is then based on the X and
Y coordinates of the quadrature points ui, denoted by ui,X and ui,Y , respectively. In an analo-
gous way, assigning the values for the temporal covariates is based on the t coordinates (so on the
day d of interest) of the quadrature points ui, denoted by ui,t. The values for the spatial covari-
ates can again be assigned by QGIS and the values for the temporal covariates by Microsoft Excel.

Now, all the information is collected to build the extended TQP, denoted by ETQP. The
ETQP involves three columns which describe the values of ui,X , ui,Y and ui,t for each value
of i, 1 ≤ i ≤ Qfire. The ETQP also involves six columns describing the six most influent covari-
ates Cτ,1, Cσ,k, 2 ≤ k ≤ 6 for the class c1a = fire concluded from section 4. With this ETQP for
the emergency calls of class c1a = fire, a spatio-temporal point process can be made for this class.

To fit the spatio-temporal point process, the ETQP is imported in R as a data frame. Let
uX, uY and ut represent the columns of of the TQP involving the values of ui,X , ui,Y and ui,t,
respectively, and let C1, C2, . . . , C6 represent the columns of the ETQP involving the values for
Cτ,1, Cσ,2, . . . , Cσ,6, respectively. For fitting the spatio-temporal inhomogeneous Poisson process,
the ppm function from the spatstat package cannot be used now anymore, since this function
is only designed for modelling spatial point patterns to the data. So a new algorithm should
be made, implementing the method for maximising the pseudolikelihood for a spatio-temporal
inhomogeneous Poisson process25.

As mentioned in the discussion about the maximum pseudolikelihood estimating technique for
spatio-temporal inhomogeneous Poisson processes, a generalized linear model can be used to
(approximately) maximise the expression in equation (52) (and so the log likelihood), since this
expression was similar to the log likelihood of multiple independent Poisson variables Yi with
weights wi, means λθσ (ui) and responses yi. So first wi and yi will be calculated from the data
in the ETQP. The weights can be calculated by wi = 7.68 · 1011/ni, where 7.68 · 1011 represents
the area of a cell of the earlier mentioned grid P(10,10,13) in the unit squared meter times days
and ni represents the number of quadrature points in cell i of this grid, where 1 ≤ i ≤ 1300. The
values for yi can then be calculated by yi = zi/wi, where zi is a Boolean variable equaling 1 if
ui is a data point (event) and 0 if ui is a dummy point.

After calculating the values for wi and yi, they are also added to the ETQP in the columns
w and yy, respectively. With this completion, the ETQP can be used to estimate the values
for the influence coefficients θ = (θσ, θτ ) corresponding to the (global) intensity function for the
spatio-temporal point process for c1a = fire found in section 4. In other words, it can be used to
fit an spatio-temporal inhomogeneous Poisson process to the data of class c1a = fire. For complet-
ing the ETQP in R with the dummy points and the values for wi and yi, the pseudolikelihood

function of the mentioned script made by prof. dr. M.N.M. van Lieshout and Adina Iftimi is used.

Now, the estimates θ̂ = (θ̂σ, θ̂τ ) for the influence coefficients θ = (θσ, θτ ) can be find by the
glm function in R, which fits a generalized linear model, of course in this case with (quasi)poisson
errors:

25Remark that this new algorithm is not the spatio-temporal version of the whole ppm function, but only of the
part of the ppm function that fits Poisson spatial point processes, since the earlier discussion about the maximum
pseudolikelihood estimating technique was only valid for Poisson point processes.
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glm(formula = yy ~ (factor(C1) + log(C2+1e-14)*polynom(C2,2) +

log(C3+1e-14)*polynom(C3,2) + log(C4+1e-14)*polynom(C4,2) +

log(C5+1e-14)*polynom(C5,2) + log(C6+1e-14)*polynom(C6,2)),

family = "quasipoisson", weights = w, data = Q, start = c(0,0,0,0,0,0))

Since R was not able to calculate the influence coefficients θ for the (global) intensity func-
tion implemented in the above function, so for the product of the equations (46) and (47), the
fitted (global) intensity function is simplified to the following one:

λθ = eθ0+θ1C1(x)+θ2C2(x)+θ3C3(x)+θ4C4(x)+θ5C5(x)+θ6C6(x) (53)

which can be fitted as follows:

glm(formula = yy ~ (factor(C1)+C2+C3+C4+C5), family = "quasipoisson",

weights = w, data = Q, start = c(0,0,0,0,0,0))

The reason why the relation of equation (53) can be fitted, but the relation consisting of equations
(46) and (47) cannot, is probably the complexity of the algorithm and the huge amount of data
involved. It would be needed to reduce the complexity of the algorithm or, if the complexity of
the algorithm is not too high, to use a more powerful computer, to find the influence coefficients
θ for the (global) intensity function consisting of the product of the equations (46) and (47). For
the simplified fit involving the relation of equation (53), the influence coefficients are given in
table 16.

intercept Cτ,8 Cσ,1 Cσ,22 Cσ,17 Cσ,23 Cσ,14

θk -21.39236 -0.05956 -0.00125 0.00015 -0.00062 0.00120 0.00092

Table 16: The influence coefficients θ for the class c1a = fire, fitted by the glm function in R.

The quality of this fit cannot be tested by the diagnose.ppm function, though, since this function
is also only suited for (purely) spatial point processes. Instead, the quality of the newly made
spatio-temporal point process will be tested by making predictions according to this model and
compare these to the (real) emergency call data of the class c1a = fire occurred in period Tv (the
verification period, involving 1 January 2016 till 7 December 2016). This kind of verification will,
as earlier announced, also be done for the models representing the other level 1a classes, c1a ∈ C̃1a.

Before simulating the point process models earlier made can be done, the intensity function
of each model has to be evaluated in every 500 meter square of the spatial grid Pσ for Twente.
For this evaluation, the value for each covariate in 2016 is assumed the same as the corresponding
value in 2015. Of course, each value for the intensity function is then multiplied by the area
of each square, so 25000 squared meters, as a corollary of equation (1). Further, to produce a
model for the period Tv, consisting of 341 days, the values are also multiplied by 341

4380 , since the
intensity function is made for 4380 days.

After this, all values for each level 1a class c1a ∈ C1a are summarized in a 101 × 85 matrix
Ic1a , which represents the region Aext discretized in 500 meter squares, where each square corre-
sponds to a cell in Ic1a . If a cell is inside the region Aext, but outside the region Ã, the value for
the intensity function is zero. Determining and summarizing the values for the intensity function
is done by QGIS and Microsoft Excel.
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After this is done, the matrix Ic1a for each level 1a class c1a ∈ C1a is imported as an image
in R (by the command im). Simulating a spatial point process for each level 1a class c1a ∈ C1a in
period Tv can then be done by applying the rpoispp function to the corresponding (image of)
matrix Ic1a .

So now it is explained how spatial point patterns can be simulated for the verification anal-
ysis according the found intensity functions. But next to predicting the number of emergency
calls for the period Tv according to the made point processes, this number will also be predicted
according to the current industry practice model, mentioned in section 1 and based on the discus-
sion in Zhou et al. (2015). This is in this thesis done by taking the average number of occurred
events in each year 2004, 2005, . . . , 2015 in Tm for each level 1a class, although there are of
course many other ways possible for applying this model.

Let nv be the real number of occurred emergency calls of the level 1a class of interest c1a ∈ C1a

in period Tv, ñv(k) be the predicted number of emergency calls for period Tv according to model
k, k = 1, 2, Ev(k) be the error corresponding to ñv(k) and further let model 1 represent the fitted
inhomogeneous Poisson processes and let model 2 represent the current industry practice with
the average taken over all the years in period Tm. Then the results of the model verification
analysis are shown in table 17.

nv ñv model 1 Ev model 1 ñv model 2 Ev model 2
fire 1187 490 -697 1424 +237
service 802 483 -319 688 -114
accident 146 161 +15 191 +45
alert 1878 279 -1599 2639 +761
environmental 452 401 -51 577 +125

Table 17: The predictions of the fitted inhomogeneous Poisson processes and the current industry
practice for period Tv for each level 1a class c1a ∈ C1a.

It can thus be seen that the inhomogeneous Poisson process models representing the level 1a
classes c1a = fire, c1a = service and c1a = alert give bad predictions, and although the cur-
rent industry practice model applied to the earlier mentioned classes gives better predictions,
these predictions are still bad. The result that the inhomogeneous Poisson process models for
c1a = service and c1a = alert fit bad agrees with the corresponding diagnosis plots earlier made.
It can thus be concluded that another model should be fitted to the data, which is able to rep-
resent these classes more accurately.

The inhomogeneous Poisson process models for c1a = accident and c1a = environmental fit quite
well, though. This was also earlier concluded from the corresponding diagnosis plots. These mod-
els fit even better than the current industry practice model applied to these level 1a classes. Still
some improvements have to be made for the model representing the class c1a = environmental,
since the prediction has a deviation of 50 emergency calls from the occurred number of events of
this class in period Tv.
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6 Conclusion and discussion

In this thesis, a spatio-temporal point process was only fitted to the class c1a = fire, since for
the other classes c1a ∈ C̃1a, C̃1a = {service, accident, alert, environmental}, temporal influences
seemed not present and thus a (purely) spatial point process was modelled. For all these point
processes, an inhomogeneous Poisson process was proposed as model, since trend seemed the only
kind of cause for the spatial point patterns of interest and an inhomogeneous Poisson process is
the easiest kind of model to fit data involving trend as cause. Fitting the inhomogeneous Poisson
processes for the classes c1a ∈ C̃1a and c1a = fire was respectively done by the ppm function (from
the spatstat package) and the glm function in R

As a consequence of choosing inhomogeneous Poisson processes as the models of interest, reg-
ularity could not be modelled anymore. This was not that problematic, since the exploratory
data analyses in section 3 clearly indicated an aggregated distribution for the emergency calls of
each level 1a class in the region Ã (defined as in section 4) and in the time period Tm (defined
as in section 3). It was more problematic that an inhomogeneous Poisson process has not the
ability to model eventual stochastic interaction between the events of the involved spatial point
patterns. But the reward for this shortcoming was that the inhomogeneous Poisson process is
tractable and quite easily understandable.

In section 3, it was already indicated that the data for neither class fitted an inhomogeneous
Poisson process directly. Therefore covariates were introduced. The inhomogeneous Poisson pro-
cesses for the classes c1a = accident and c1a = environmental fit quite well with the respectively
six and four most important covariates, which were found in the covariate analysis in section 4.
But the inhomogeneous Poisson processes with the most important covariates involved for the
classes c1a = fire, c1a = service and c1a = alert did not predict the future emergency calls well.
These conclusions were made based on the diagnosis plots for the classes c1a ∈ C̃1a and on the
verification analysis for all level 1a classes.

The bad fitting spatio-temporal point process model for the class c1a = fire is very likely to
be caused by the implementation of the wrong (global) intensity function in the fitting process,
which involved the intensity function of equation (53). The reason for fitting this intensity func-
tion instead of the intensity function concluded from the regression analysis in section 4 (so the
product of equations (46) and (47)), is that the initial concluded intensity function could not be
fitted by R. This is probably caused by the large amount of data for this intensity function in
combination with the complexity of this intensity function. Therefore the algorithms in R may
have problems in calculating the maximum pseudolikelihood estimate for this fit and therefore
the influence coefficients may not be estimated well. So a more efficient algorithm would be
desired to model the intensity function initially concluded from the regression analysis.

Further, the bad fitting model for the classes c1a = service and c1a = alert (and the model
for the class c1a = fire may also cope with this problem) is probably caused by the restriction
to only modelling trend and so not taking into account eventual stochastic interaction between
the emergency calls of these classes. So extending the current model to a Cox process seems a
good proposition for a following research, since in that way both trend and stochastic interaction
can be modelled. The reason why a Strauss model seems not the best option is that trend also
seems to have significant influence, as one could see in section 4. Of course, modelling inter-
action may also be an improvement to the models representing the classes c1a = accident and
c1a = environmental.
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It may also be the case that the bad fits for the classes c1a = service and c1a = alert are
caused by the fact that the models were univariate, or in other words that the models did not
take into account eventual dependencies between them and other classes. It may be the case that
a place with less emergency calls of the level 1a class service also has less emergency calls of the
level 1a class alert, for example. Of course, this extension may also be a good one for the classes
c1a = fire, c1a = accident and c1a = environmental. So extending the model to a mulitvariate
spatio-temporal point process involving all the level 1a classes would also be a good proposition
for a following research.

Further, the bad fits for the classes c1a = service and c1a = alert may be caused by an er-
roneous implementation of the temporal behaviour (and again the quality of the fitted models
for the classes c1a = fire, c1a = accident and c1a = environmental may also suffer from this
aspect). It may be expected from an initial inspection of the corresponding time series that the
behaviour of the occurrences of emergency calls differs per year and the models made in this
thesis did not take these differences into account thoroughly. So it would be a good extension to
the models made to take a closer look at the behaviour of the occurrences of emergency calls in
time, which can be done by modelling the temporal aspect by a Fourier series. It may also be a
good extension to choose the period on which the model is based, so Tm, to represent a shorter
period, so for example 2010 till 2015. In this way, the models are based on more recent data.

Nonetheless, this thesis did take into account the temporal behaviour by the temporal covariates,
but these seemed to have little influence in general, since only the model representing the class
c1a = fire involved a temporal covariate. This is also a bit curious, since in practice time appears
to have influence. It would also be a good extension to this research to take a closer look on
these temporal covariates and maybe the covariate analysis in general, since there may be some
methods involved in it which cause the results to be erroneous.

There will be one other extension proposed to the ensemble of models made, since the fire
departments in Twente also desire to know the precise causes of level 2a and level 3a emergency
calls. And although not all the level 1a classes are well modelled in this thesis, it is not a bad
idea to first try the modelling for the level 2a and level 3a emergency calls, since they involve
less data, which reduces the complexity of the modelling and causes the algorithms to diverge
not as quickly as for the emergency calls of the level 1a classes.

Concluding, this thesis did only find quite reasonable models for the classes c1a = accident
and c1a = environmental. It did although explain the basic theory of making a spatio-temporal
point process, it made the emergency call data amenable for analysis, it analysed the (global)
spatial and temporal properties of the emergency call data, it examined the erroneous data and
the discarded data for the “leap days” (as defined in section 3), it introduced a reasonable amount
of covariates which could be examined for their influences on the emergency calls of each involved
level 1a class, it examined the relations between these covariates and the emergency call data for
each level 1a class, it modelled the spatial and spatio-temporal inhomogeneous Poisson processes
which were proposed for the classes c1a ∈ C̃1a and c1a = fire, respectively, and finally it analysed
the quality of these models. And although the fits did not appear to be that good for the most
level 1a classes, this thesis gave much information for a follow-up research of these data and gives
a good introduction to the modelling of spatio-temporal point processes.
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A Results exploratory data analysis for c1a = service

Figure 12: Spatial point pattern for the class c1a = service in the period Tm.

Figure 13: Homogeneous distance analyses with the estimated functions K̂(r) (figure a, left
above), Ĝ(r) (figure b, right above), F̂ (r) (figure c, left below) and Ĵ(r) (figure d, right below)
applied on the data of the class c1a = service, plotted against the corresponding theoretical
functions and critical envelopes. The plots are provided by the package spatstat in R. The
Ĝ(r), F̂ (r) and Ĵ(r) functions are defined till r = 1000, approximately.
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Figure 14: Inhomogeneous distance analysis for the estimated function K̂inhom(r) applied on
the data of the class c1a = service, plotted against the corresponding theoretical functions and
critical envelopes. The plot is provided by the package spatstat in R.

Figure 15: Time series for the amount of emergency calls of the class c1a = service per year
Ui ⊂ Tm.

y 2004 2005 2006 2007 2008 2009
t -2.120 -4.100 -2.920 -1.039 -1.518 -1.135

y 2010 2011 2012 2013 2014 2015
t 2.643 0.971 3.817 2.026 3.919 -0.666

Table 18: The values of the Student’s t-statistics for the temporal tests for class c1a = service,
which compares each year with the other years. The corresponding 95%-confidence interval for
each value of y is [−1.975, 1.975].
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B Results exploratory data analysis for c1a = accident

Figure 16: Spatial point pattern for the class c1a = accident in the period Tm.

Figure 17: Homogeneous distance analyses with the estimated functions K̂(r) (figure a, left
above), Ĝ(r) (figure b, right above), F̂ (r) (figure c, left below) and Ĵ(r) (figure d, right below)
applied on the data of the class c1a = accident, plotted against the corresponding theoretical
functions and critical envelopes. The plots are provided by the package spatstat in R. The Ĝ(r),
F̂ (r) and Ĵ(r) functions are defined till r = 1900, approximately.
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Figure 18: Inhomogeneous distance analysis for the estimated function K̂inhom(r) applied on
the data of the class c1a = accident, plotted against the corresponding theoretical functions and
critical envelopes. The plot is provided by the package spatstat in R.

Figure 19: Time series for the amount of emergency calls of the class c1a = accident per year
Ui ⊂ Tm.

y 2004 2005 2006 2007 2008 2009
t 2.694 0.578 -0.738 1.279 -0.072 1.068

y 2010 2011 2012 2013 2014 2015
t 1.354 0.631 -0.474 -1.146 -2.331 -4.683

Table 19: The values of the Student’s t-statistics for the temporal tests for class c1a = accident,
which compares each year with the other years. The corresponding 95%-confidence interval for
each value of y is [−1.975, 1.975].
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C Results exploratory data analysis for c1a = alert

Figure 20: Spatial point pattern for the class c1a = alert in the period Tm.

Figure 21: Homogeneous distance analyses with the estimated functions K̂(r) (figure a, left
above), Ĝ(r) (figure b, right above), F̂ (r) (figure c, left below) and Ĵ(r) (figure d, right below)
applied on the data of the class c1a = alert, plotted against the corresponding theoretical func-
tions and critical envelopes. The plots are provided by the package spatstat in R. The Ĝ(r),
F̂ (r) and Ĵ(r) functions are defined till r = 500, approximately.
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Figure 22: Inhomogeneous distance analysis for the estimated function K̂inhom(r) applied on the
data of the class c1a = alert, plotted against the corresponding theoretical functions and critical
envelopes. The plot is provided by the package spatstat in R.

Figure 23: Time series for the amount of emergency calls of the class c1a = alert per year
Ui ⊂ Tm.

y 2004 2005 2006 2007 2008 2009
t -64.371 2.005 8.327 11.040 8.154 7.536

y 2010 2011 2012 2013 2014 2015
t 7.328 7.545 -0.776 -7.470 -8.892 -9.126

Table 20: The values of the Student’s t-statistics for the temporal tests for class c1a = alert,
which compares each year with the other years. The corresponding 95%-confidence interval for
each value of y is [−1.975, 1.975].
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D Results exploratory data analysis for c1a = environmental

Figure 24: Spatial point pattern for the class c1a = environmental in the period Tm.

Figure 25: Homogeneous distance analyses with the estimated functions K̂(r) (figure a, left
above), Ĝ(r) (figure b, right above), F̂ (r) (figure c, left below) and Ĵ(r) (figure d, right below)
applied on the data of the class c1a = environmental, plotted against the corresponding theoret-
ical functions and critical envelopes. The plots are provided by the package spatstat in R. The
Ĝ(r), F̂ (r) and Ĵ(r) functions are defined till r = 1100, approximately.
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Figure 26: Inhomogeneous distance analysis for the estimated function K̂inhom(r) applied on the
data of the class c1a = environmental, plotted against the corresponding theoretical functions
and critical envelopes. The plot is provided by the package spatstat in R.

Figure 27: Time series for the amount of emergency calls of the class c1a = environmental per
year Ui ⊂ Tm.

y 2004 2005 2006 2007 2008 2009
t -11.762 0.366 -0.537 1.135 -2.406 -7.946

y 2010 2011 2012 2013 2014 2015
t 1.0155 -5.515 -5.356 0.306 -3.363 0.705

Table 21: The values of the Student’s t-statistics for the temporal tests for class c1a =
environmental, which compares each year with the other years. The corresponding 95%-
confidence interval for each value of y is [−1.975, 1.975].

76


