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Abstract

This thesis derives an expression of the step free energy for the hexagonal lattice
in the armchair and zigzag direction. This solid-on-solid model with nearest neighbor
interaction recaptures the exact result of Wannier in case the armchair edge is consid-
ered. The derivation of an exact expression for the edge free energy in the zigzag edge
was attempted, but we did not manage to find it. The angular dependence of the step
free energy is derived and with the use of the Wulff construction the equilibrium shape
at different temperatures is determined.
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1 Introduction

1 Introduction

Statistical mechanics is often used to describe the state of a system by the use of probability
theory. One statistical model invented by Lenz [1] was a theoretical description of ferromag-
netism. Ising, a student of Lenz, was able to solve the one dimensional Ising model in his
thesis in 1924 [2]. He showed that in the one dimensional model no phase transitions occur.
Because of this, he asserted that there are no phase transitions in two and three dimensions.

This discouraged Ising from pursuing to higher dimensions. However, Onsager solved the
two dimensional Ising model much later using the transfer-matrix method in 1944 [3]. On-
sager showed that Ising’s assertion was wrong for all higher dimensions. A two dimensional
lattice already identifies a phase transition at a certain temperature.

This was a very important discovery which completely changed the developments of sta-
tistical mechanics. Before Onsager’s result, it was not clear if the models in statistical
mechanics were able to handle phase transitions.

In this treatise on the step free energy, a different approach is used than Onsager to find the
same exact answer. The partition function is used to take into account all possible kinks in
the lattice. The partition function gives the free energy versus temperature.

The state of a surface at or near (local) equilibrium is quite different than a non-equilibrium
surface. This thesis is only on equilibrium surfaces.

This thesis is structured as follows: chapter two introduces edge free energies. A square
lattice is used to review the model and an equation of the free energy versus temperature
is presented. The square lattice is solved exactly and is used as an introduction to the
hexagonal lattice.

Next, in chapter three the hexagonal lattice analyzed. At the end of chapter three the
angular dependence of the free energy is derived. This is used to calculate the shape of the
crystal at different temperatures.
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2 Anisotropic Square Lattice

2 Anisotropic Square Lattice

The equilibrium shape of a two dimensional island is directly related to the magnitude
of the step free energy [4]. The step free energy is used as a fundamental quantity that
describes the thermal fluctuations of the steps and how they are arranged on the surface.
The step free energy is defined as the free energy to create a crystal step edge [5]. As it
will be shown, the step free energy will decrease with increasing temperature due to the
meandering entropy. The free energy is related by

F = U − TS, (1)

with F the free energy in joules, U the internal energy in joules, T the temperature in kelvin
and S the entropy in joules per kelvin. At a certain temperature Tc, F = 0, where steps
will be generated spontaneously1. If Tc is below the melting temperature, the formation of
domain boundary can be observed experimentally [6].

The kink creation energy is ε/2 or half the nearest-neigbor interaction energy. In the
anisotropic square lattice the interaction energy ε is different in the x and y direction. For
the isotropic lattice, εx = εy. In the square lattice, two different phase boundaries can be
formed, the [10] and the [11] direction (fig. 1). The goal is to find the phase boundary at
any angle.

2.1 [10] direction

To find the energy to form a phase boundary spontaneously, the partition function2 of
the system has to be found. In the partition function all the possible kink formations are
included. When looking at figure 1a, the boundary formation energy of one elementary
unit a in the [10] direction is εx/2 and in the [01] direction εy/2. The path with the lowest
energy is εx/2, however there are many more higher energy paths. These paths are called
kinks. The first kink has an energy of εx/2 + εy/2 and the second kink has an energy of
εx/2 + 2εy/2 and so on. Using Boltzmann statistics, the partition function becomes

Z[10] = exp

(
−εx
2kbT

){
1 + 2

∞∑
n=1

exp

(
−nεy
2kbT

)}
= exp

(
−εx
2kbT

)1 + exp
(
−εy
2kbT

)
1− exp

(
−εy
2kbT

)
 . (2)

Since kinks can be formed in the +y direction and the −y direction a factor 2 is included
in eq. (2). One elementary unit of a is considered.

1For more information, see appendix A
2For more information, see appendix B
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2 Anisotropic Square Lattice

(a) Step energy in the [10] direction. (b) Step energy in the [11] direction.

Figure 1: Step energy in the [10] and [11] direction. For a graphical representation how the
partition function is formed, see appendix D.1

2.2 [11] direction

A step in the [11] direction costs εx/2 or εy/2 as seen in figure 1b. The energy for the first
kink is εx/2 + εy/2 plus εx/2 or εy/2. The second kink has a total energy of 2 (εx/2 + εy/2)
plus εx/2 or εy/2. The total partitions sum can be written as

Z[11] =

∞∑
n=0

exp

(
−n(εx + εy)

2kbT

){
exp

(
−εx
2kbT

)
+ exp

(
−εy
2kbT

)}

=
exp

(
−εx
2kbT

)
+ exp

(
−εy
2kbT

)
1− exp

(
−(εx+εy)

2kbT

) .

(3)

Where one elementary unit of 1
2

√
2a is considered.

3



2 Anisotropic Square Lattice

2.3 Critical temperature

The critical temperature, also called thermal roughening temperature, Tc is found when the
free energy is zero. The relation between the partition sum and the free energy is

F = −kb T ln(Z). (4)

When the partition function Z equals one, the free energy F is zero. In both directions
(eqs. (2) and (3)) Onsager’s [3] order-disorder phase transition temperature of the 2D square
Ising model is recaptured.

sinh

(
εx

2kbTc

)
sinh

(
εy

2kbTc

)
= 1 (5)

2.4 Free energy for an arbitrary angle

To find the free energy at any angle, the boundary is divided into N-M [10] elements and M
[11] elements. This means there are N total steps of which N-M in the [10] direction since
the angle between the [10] and the [11] direction is 45◦. The total partition function is then
given by Ztot = (Z[10])

N−M (Z[11])
M and the angle by tanφ = (M/N).

F (T, φ) then becomes [7]

F (T, φ) = − 1

L
kbT

{
ln
(
Z[10]

)N−M
+ ln

(
Z[11]

)M}
(6)

Where N −M = N (1− tanφ) and M = N tanφ. The partition function Z[11] is taken over

two elementary units of 1
2

√
2a. The energy at T = 0 K in the Z[11] direction is ε/

√
2 per a

and the energy in the Z[10] direction is ε/2 per a. The total step edge length L is

L = (N −M)a+M
√

2a = Na
{

(1− tanφ) +
√

2 tanφ
}

(7)

Combining eqs. (2), (3), (6) and (7) gives

(8)

F (T, φ) = −kbT

 (1− tanφ)

(1− tanφ+
√

2)
ln

exp
(
−εx
2kbT

){
1 + exp

(
−εy
2kbT

)}
1− exp

(
−εy
2kbT

)


+
2 tanφ

(1− tanφ+
√

2)
ln

exp
(
−εx
2kbT

)
+ exp

(
−εy
2kbT

)
1− exp

(
−(εx+εy)

2kbT

)


As can be seen in fig. 2, the energy at T = 0 K corresponds with ε/
√

2 ≈ 0.71 at 45◦ and
ε/2 at 0◦.
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2 Anisotropic Square Lattice

Figure 2: F (T, φ) between φ = 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦ and 45◦. Tc is the order
- disorder phase transition temperature (thermal roughening temperature).
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3 Hexagonal Lattice

3 Hexagonal Lattice

In the previous chapter, the square lattice was discussed as an introduction to the hexagonal
lattice. There are two directions in the hexagonal lattice one can specify, the armchair
(fig. 3a) and the zigzag (fig. 3b). For both directions a partition function is found that is
used to determine the step free energy. The mean square length is determined to find the
average squared distance of a kinked boundary. Finally, the free energy at an arbitrary
angle is used to form the Wulff plot and determine the equilibrium shape of the crystal.

3.1 Isotropic armchair

The partition function in the [10] direction is (see fig. 3a) [8]

Zarm = 2
∞∑
n=1

exp

(
− nε

kbT

)
=

2 exp
(
−ε
kbT

)
1− exp

(
−ε
kbT

) (9)

The step edge free energy can be written as

Farm = −kbT ln

 2 exp
(
−ε
kbT

)
1− exp

(
−ε
kbT

)
 (10)

This result is plotted in figs. 4a and 4b.

3.2 Anisotropic armchair

The partition function in the armchair direction for a anisotropic hexagonal lattice is given
by

Zanarm = exp

(
−ε1
2kbT

){
exp

(
−ε2
2kbT

)
+ exp

(
−ε3
2kbT

)} ∞∑
n=0

exp

(
−n(ε2 + ε3)

2kbT

)

=
exp

(
−(ε1+ε2)

2kbT

)
+ exp

(
−(ε1+ε3)

2kbT

)
1− exp

(
−(ε2+ε3)

2kbT

) (11)

The routes to include are the same as for the isotropic case, but the interaction energy ε is
different for all three directions. When Zanarm = 1, the result is

exp

(
−(ε1 + ε2)

2kbTc

)
+ exp

(
−(ε1 + ε3)

2kbTc

)
+ exp

(
−(ε2 + ε3)

2kbTc

)
= 1 (12)

When ε1 = ε2 = ε3 = ε the result of Wannier [9] in 1945 is obtained

ε

kbTc
= ln(3). (13)
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3 Hexagonal Lattice

(a) The armchair direction in a hexagonal lat-
tice. The two shortest routes possible have
energy ε1/2+ ε2/2 and ε1/2+ ε3/2. However,
there is an infinite amount of routes.

(b) The zigzag direction in a hexagonal lat-
tice. Within the two lines, there are two
routes possible with energy ε/2 and the other
route costs ε.

Figure 3: Step edge energy of the armchair and zigzag direction. It is seen that there are
many routes possible to form an armchair step edge, but only two routes are possible to
form a zigzag step edge. For a graphical representation how the partition function is formed,
see appendix D.2

3.3 Isotropic zigzag

Until now, I have not found an exact solution for the zigzag direction in a hexagonal lattice.
The problem that arises in a

√
3a/2 unit is that there are only two different directions

possible (fig. 3b). More routes can be included, but parts of those routes are counted more
than once.

In one elementary unit of
√

3a/2, shown in fig. 3b, the partition function from A to the
next line gives

Zz = exp

(
−ε

2kbT

)
+ exp

(
−ε
kbT

)
. (14)

No routes are counted more than once in this partition function. The free energy of Zz is
plotted in fig. 4a. It can be seen that not all routes are included since it overshoots Tc at
F = 0. By including only those two routes in the partition function the approximation is
only valid for low temperatures. To increase the accuracy, more routes should be included.
This is true since both directions should end in Tc. As said before, this is only possible by
including paths that are used before. Therefore, the following path is used (see fig. 5b)
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3 Hexagonal Lattice

Zzig =

{
exp

(
−ε

2kbT

)
+ exp

(
−ε
kbT

)} ∞∑
n=0

exp

(
−4nε

2kbT

)
=

exp
(
−ε

2kbT

)
+ exp

(
−ε
kbT

)
1− exp

(
−2ε
kbT

) . (15)

(a) The free energy for only 2 paths, given in
fig. 3b. As seen the zigzag direction is far of
from point Tc.

(b) More routes (eq. (15)) are included which
results in a graph of the zigzag direction that
is slightly before Tc.

Figure 4: The free energy of the armchair and the zigzag direction over temperature. The
armchair is an exact solution, however the zigzag is not since it does not end at Tc.

The values at T = 0 K can be found for the armchair and the zigzag direction. For the
armchair direction, two bonds are broken every 3a. Therefore at T = 0 K the armchair
direction should start at ε/3. For the zigzag direction there is one bond broken every

√
3a.

Therefore the graph in fig. 4a should start at ε
2
√
3
≈ 0.288 ε.

3.4 Mean square kink length armchair

The meandering of a step can be represented by the mean square length. 〈n2〉 is sometimes
referred as the diffusivity of the domain wall. The mean square kink length is the expec-
tation value of the square kink length. 〈n〉 can be calculated as well, but this will average
out to zero since positive and negative kinks are substracted from each other.

The mean square kink length can be calculated for every value of n in the armchair direction
(see fig. 5a)
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3 Hexagonal Lattice

P0 = exp

(
−ε
kbT

)
P1 = exp

(
−ε
kbT

)
P−1 = exp

(
−2ε

kbT

)
P2 = exp

(
−2ε

kbT

)
P−2 = exp

(
−3ε

kbT

)
.

(16)

The mean square kink length can therefore be expressed as

〈n2〉 =
1

Zarm

∞∑
n=−∞

n2Pn =
1

Zarm

{ ∞∑
n=1

n2 exp

(
−(n+ 1)ε

kbT

)}
+

1

Zarm

{ ∞∑
n=1

n2 exp

(
− nε

kbT

)}
,

(17)

where Zarm is defined in eq. (9). The distance between every step n is
√

3a, thus 3a2 for
n2. This is per 3/2a, therefore 〈n2〉 is per 1/2a . This results in

〈n2〉arm = 2

1 + exp
(
−ε
kbT

)
1− exp

(
−ε
kbT

)
2

(18)

This result of 〈n2〉 in the armchair direction is shown in fig. 6.

3.5 Mean square kink length zigzag

The same procedure is applied for the zigzag direction. The routes to include are (see
fig. 5b)

P0 = exp

(
−ε

2kbT

)
P2 = exp

(
−2ε

2kbT

)
P−3 = exp

(
−5ε

2kbT

)
P5 = exp

(
−6ε

2kbT

)
P−6 = exp

(
−9ε

2kbT

)
P8 = exp

(
−10ε

2kbT

)
P−9 = exp

(
−13ε

2kbT

)
(19)

9



3 Hexagonal Lattice

(a) The armchair direction where n goes from −∞ to +∞.

(b) The zigzag direction in a hexagonal lattice where n goes from −∞ to +∞.

Figure 5: n is defined for the armchair and zigzag direction to be left. This is used to
calculate 〈n2〉.

This can be expressed as

〈n2〉 =
1

Zzig

{ ∞∑
n=0

(2 + 3n)2 exp

(
−(4n+ 2)ε

2kbT

)}
+

1

Zzig

{ ∞∑
n=0

(3n)2 exp

(
−(4n+ 1)ε

2kbT

)}

=
exp

(
−ε
kbT

) [
4 + 5 exp

(
−2ε
kbT

)
+ exp

(
−4ε
kbT

)
+ 9 exp

(
−3ε
2kbT

)
+ 9 exp

(
−7ε
2kbT

)]
[
exp

(
−ε

2kbT

)
+ exp

(
−ε
kbT

)] [
1− exp

(
−2ε
kbT

)]2
(20)

Where Zzig is defined in eq. (15). The distance between each n is exactly a. The distance
between each half unit cell is

√
3/2. The mean square length is therefore multiplied by

2/
√

3, giving 〈n2〉 per a2

〈n2〉zig =
2 exp

(
−ε
kbT

) [
4 + 5 exp

(
−2ε
kbT

)
+ exp

(
−4ε
kbT

)
+ 9 exp

(
−3ε
2kbT

)
+ 9 exp

(
−7ε
2kbT

)]
√

3
[
exp

(
−ε

2kbT

)
+ exp

(
−ε
kbT

)] [
1− exp

(
−2ε
kbT

)]2 (21)

Equations (18) and (21) are plotted in fig. 6. The mean square kink length of the zigzag
direction starts at 〈n2〉 = 0.
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3 Hexagonal Lattice

Figure 6: Mean square kink length of a hexagonal lattice versus temperature for the arm-
chair and zigzag direction per a2.
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3 Hexagonal Lattice

3.6 Free energy for an arbitrary angle

The free energy at any angle in a hexagonal lattice can be expressed using the two solutions
of the armchair and zigzag direction found in sections 3.1 and 3.3. The armchair direction
makes an angle of 30◦ with the zigzag direction, see fig. 7.

Figure 7: The free energy is divided into two different directions,
√

3(n −m) segments in
the zigzag direction and 2m segments in the armchair direction.

The partition function is written as a product of two different orientations. There are√
3(n−m) segments in the zigzag direction and 2m segments in the armchair direction.

Ztot = (Zzig)
√
3(n−m) (Zarm)2m =

{
(Zzig)

√
3−3 tanφ (Zarm)2

√
3 tanφ

}n
(22)

Where Ztot is the total partition function, tanφ = m
n
√
3

(φ ∈ [0◦, 30◦]). The total step edge

length is

L =
√

3 (n−m)
1

2

√
3a+ 6 m a = n a

[
3

2

(
1−
√

3 tanφ
)

+ 6
√

3 tanφ

]
(23)

The total step edge energy is

Ftot = −kbT ln (Ztot) = −
√

3(n−m)kbT ln (Zzig)− 2mkbT ln (Zarm) (24)

The step edge energy per unit length a is given by

F =
−kbT

[(√
3− 3 tanφ

)
ln (Zzig) + 2

√
3 tanφ ln (Zarm)

]
3
2

(
1−
√

3 tanφ
)

+ 6
√

3 tanφ
(25)

Where Zarm and Zzig are given by eqs. (9) and (15) respectively. After inserting these
equations, we find

12



3 Hexagonal Lattice

F (T, φ) = −kbT
(√

3− 3 tanφ
)
/2[

3
2

(
1−
√

3 tanφ
)

+ 6
√

3 tanφ
] ln

exp
(
−ε

2kbT

)
+ exp

(
−ε
kbT

)
1− exp

(
−2ε
kbT

)


−kbT
2
√

3 tanφ[
3
2

(
1−
√

3 tanφ
)

+ 6
√

3 tanφ
] ln

 2 exp
(
−ε
kbT

)
1− exp

(
−ε
kbT

)


(26)

Figure 8 is a plot of F (T, φ) versus temperature for different angles.

Figure 8: F (T, φ) for a hexagonal lattice where φ ranges from 0◦ to 30◦. Tc is the thermal
roughening temperature. F (T, 0◦) is the zigzag direction and F (T, 30◦) is the exact armchair
direction as seen in fig. 4b.
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3 Hexagonal Lattice

3.7 Wulff plot

The Wulff construction [10] is used to determine the equilibrium shape of the crystal. The
equilibrium shape must minimize the excess surface free energy3.

The Wulff construction is performed as follows: for each orientation φ, draw a line n̂ from
the origin to the surface of F (φ, T ). When the radial line intersects F (φ, T ), a perpendicular
line to n̂ is drawn. The interior of the envelope that results from all those perpendicular
lines is the minimizing shape for an isolated volume.

The free energy in section 3.6 is determined for φ ∈ [0◦, 30◦]. The free energy, F (T, φ) from
0◦ to 360◦ can be found by using fig. 9. F (T, φ) is fully governed by the zigzag direction
at 0◦ and transforms into the armchair direction at 30◦. At 60◦ the free energy is fully
governed by the zigzag direction again. This repeats itself 5 more times. The free energy is
therefore

F (T, φ) φ ∈ [0◦, 30◦]

F (T, 30◦ − φ) φ ∈ [30◦, 60◦]

and continues in this manner till 360◦.

(a) Edge boundary at 0◦. (b) Edge boundary at 30◦. (c) Edge boundary at 60◦.

Figure 9: Step edge boundary at 0◦, 30◦ and 60◦. This pattern keeps repeating itself.

3For more information, see appendix C
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3 Hexagonal Lattice

The Wulff plot is shown in fig. 10. At T = 0.01 Tc the equilibrium shape is a hexagon, while
it transforms into a circle around T = 0.4 Tc. From fig. 8 it can be seen that F (T, 0◦) and
F (T, 30◦) are coming together at T = 0.4 Tc. When the free energy in both directions is
the same at a certain temperature, the equilibrium shape is a circle. Since the free energy
should be zero at the same time for both directions (at Tc), the equilibrium shape of a
crystal will always become a circle at Tc.

However, the free energy of the step edge in zigzag direction is an approximation and
therefore will not end up exactly in Tc. The shape of the crystal at Tc, according to this
approximation, will not be a perfect circle.

(a) The Wulff plot at T = 0.01 Tc. The equilibrium shape of the crystal is a
hexagon shape.
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3 Hexagonal Lattice

(b) The Wulff plot at T = 0.1 Tc. The edges of the equilibrium shape
of the crystal are becoming rounder.

(c) The Wulff plot at T = 0.4 Tc. The equilibrium shape of the crystal
is an almost perfect circle.

Figure 10: Wulff plot at T = 0.01 Tc, T = 0.1 Tc and T = 0.4 Tc. The shape of the crystal
is represented by the interior and has transformed from a hexagon into a circle. The free
energy F (T, φ) is on the radial axes and is represented by the dark blue line.
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3 Hexagonal Lattice

3.8 Step edge stiffness

The relation between the mean square length and the stiffness β∗(T ) is given by

β∗(T ) =
a2

〈n2〉
(27)

The step edge stiffness is determined for low temperatures (T ≈ 0). Each direction has its
own stiffness. The mean square length per a2 of the armchair direction is given in eq. (18).
At low temperatures this reduces to

β∗(T )arm =
1

2
. (28)

For the zigzag direction the mean square length was calculated in eq. (21). In the limit of
T = 0 the mean square length becomes zero. Therefore the stiffness is

β∗(T )zig =∞. (29)
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4 Discussion and Recommendations

4 Discussion and Recommendations

Many attempts were taken to find the exact solution in the zigzag direction. The first
attempt was to include only the two most self-evident routes. This was a very low approx-
imation. It was only valid at very low temperatures. Therefore, a better route had to be
found. However, the first problem that arises is the determination of what route can be
included. In a

√
3/2 cell, as in fig. 3b, coming back to the starting point will increase the

chance of double counting. In the partition function that is used for the zigzag direction
some routes are counted twice. Figure 11 shows the double counting boundary edges in the√

3/2 unit cell with the zigzag partition function found in eq. (15).

Figure 11: The routes represented by a black bar are counted twice in a
√

3/2 unit cell.

In the history of the partition function, i.e. the previous
√

3/2 unit cell, some boundary
lines are included which are counted in the next partition function as well. The partition
function includes more energy than required to form these boundaries.

However, the free energy is less than 2.5% off from the exact value of Tc in the armchair di-
rection. Figure 4b shows that the zigzag direction is very close to Tc. Since both directions
should end in Tc when F = 0, the approximation is very accurate.

The mean square kink length was found for the armchair and zigzag kink direction. The
armchair has two routes of the same energy from the starting point. The kink length is
therefore larger than 0 at T = 0. However, the zigzag direction will not form any kink
boundary at T = 0, since all other paths than the 0 path have higher energies.

The Wulff construction is used to find the shape of the crystal at different temperatures. It
starts with a hexagonal structure and transforms quickly to a circle shape. In the hexagonal
lattice there are six zigzag directions and six armchair directions. At low temperatures the
meandering of the entropy term is not that large and therefore a hexagonal structure is also
expected. At higher temperatures, the entropy term becomes much more important.
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4 Discussion and Recommendations

4.1 Recommendations for further research

Future research in step edge energies should search for an exact solution in the hexagonal
lattice. However, using the method described in this thesis might not give the exact answer
in the zigzag direction. Other methods have to be incorporated as well.

The Ising model is solved for one and two dimensions, but not for three dimensions yet.
However, three dimensions brings many more challenges. For a one dimensional line, there
are 2 nearest neighbors, for a square lattice there are 4 nearest neighbors and in a cube
lattice there are 6 nearest neighbors. It becomes very hard to locate all directions of the
meandering entropy in three dimensions.

It is necessary to validate the results in this thesis by an experiment. Unfortunately, this
might be harder than it looks. A crystal is typically grown in a non-equilibrium environment
and therefore its shape is influenced by many factors [11]. It is however possible to find the
interaction energies ε [5, 12].
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5 Conclusion

5 Conclusion

This thesis started with an introduction to the Ising model using only nearest neighbor
interaction in a square lattice. The free energy is derived with full angular dependence.
The method used is different than Onsager did in his article [3], however it does show the
same exact result.

In chapter three the hexagonal lattice in analyzed. The partition function for both directions
was found. The armchair edge is an exact solution and the zigzag edge is an approximation.
The approximation is less than 2.5% off from Tc. The mean square length or diffusivity of
the domain wall is calculated. As temperature increases, the mean square length increases
and has a finite value at Tc.

The free energy is derived for any angle in the hexagonal lattice. This was done to find
the shape of the crystal in equilibrium using the Wulff construction. Around T ≈ 0 K
the shape of the material will form a hexagon in equilibrium. When the temperature is
increased towards T ≈ 0.4 Tc the crystal is almost a perfect circle. The free energy of the
zigzag and armchair edge do not reach the same temperature at F = 0. This is due to the
approximation used for the zigzag edge. However, the crystal should be a perfect circle at
T = Tc, since both directions should end at TC .
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A Phase transitions

A Phase transitions

When changing any of the macroscopic variables of a system, sometimes its properties
abruptly change. This might be a change from solid to liquid, but also solid to solid phase
transitions occur. When do these phase transitions occur?

Looking closely to water, many would say it has only three phases: solid, liquid and gas.
However, water has at least 15 experimentally confirmed solid phases [13]. Each of them
have different arrangements of the atoms in the crystal.

To determine the phase with the largest probability, one can look at the phase diagram
of the material. However, F = U − TS where at low temperatures the free energy is de-
termined by the internal energy. The solid phase will be most stable since each molecule
is hold tightly in its place. It is a very low entropy state because the molecule is at fixed
positions.

In the liquid phase, a water molecule is more freely and they are constantly forming and
breaking bonds and moving around. The molecules are not at fixed positions. Therefore,
the liquid phase has a higher energy state and a higher entropy state compared to the solid
phase.

The molecules in the gas phase are much more mobile than in the liquid phase. There are
almost no bonds between the molecules. Therefore, the energy and the entropy are much
higher in the gas phase.

At higher temperatures, the entropy term starts to increase. The entropy term becomes
much more important. Before a phase transitions occurs, the free energy between the two
phases becomes smaller. When those energies are exactly equal, the phases have equal
probabilities. However, latent heat must be put in the system before it is transformed into
that phase.

When a system has the system variables P and V , one can use the Gibbs free energy to
calculate a phase transition.

U1 + PV1 − TS1 = U2 + PV2 − TS2 (30)

And one can use it to derive Clausius-Clapeyron equation [14].
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B Partition function

B Partition function

The partition function is the most important tool in statistical mechanics. It provides
information about the state variables entropy, temperature, free energy and total energy
and more. The partition function in a discrete canonical ensemble is described as

Z =
∑
i

exp

(
− Ei
kbT

)
. (31)

It is a sum over all exponential microstate energies. But what statistical meaning does the
partition sum has? The probability that the system is in a certain microstate i is given by

Pi =
1

Z
exp

(
− Ei
kbT

)
. (32)

The negative sign in the exponential shows that a state with a lower energy has a higher
probability. There is a link from the microscopic system to the macroscopic system. This
is given by

U = 〈E〉 =
∑
i

EiPi =
1

Z

∑
i

Eie
−βEi = − 1

Z

∂

∂β

∑
i

e−βEi = −∂ lnZ

∂β
(33)

With β = 1/(kbT ). U is the internal energy of the system. The free energy can be found
from the partition function using F = −kbT ln(Z). Now it is fairly easy to show what the
entropy of the system is. The Helmholtz free energy is equal to

F = U − TS (34)

where U and F are known. All the other state variables can be found when the partition
function is known. Therefore in this thesis most of the work will be to find the partition
function. When the partition function is known, the system is defined.
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C Equilibrium crystal shape

C Equilibrium crystal shape

The thermodynamic free energy is the energy in a system that can be converted to do work.
The Helmholtz free energy F = U − TS is the energy that can be converted into work
at a constant temperature and volume (isothermal and isochoric). The Gibbs free energy
G = H − TS is the energy that can be converted into work at constant temperature and
pressure (isothermal and isobaric). H is the enthalpy, given by H = U + PV , with P the
pressure and V the volume [14]. Whether to use Helmholtz free energy or Gibbs free energy
depends on the system. In this thesis, constant temperature and volume criteria of the
system and therefore the Helmholtz free energy is used. Besides, the Helmholtz free energy
is directly related to the partition function and is therefore easier to work with.

The shape of a crystal in a well defined equilibrium requires it to avoid any contact with
the wall, surface or atmosphere [15]. Gibbs is generally credited for being the first to show
that a crystal will rearrange itself to the minimum integrand of the surface free energy over
the whole surface [16]. ∫

γ dA is minimum. (35)

With γ the free energy. Wulff [10] was the first who showed how the shape can be calcu-
lated from the surface free energy, nowadays known by the Wulff construction. However,
his proof was incorrect. Dinghas [17] gave a proof which was extended to any arbitrary
shape by Herring [18, 19].

The equilibrium used in this context is for a constant volume and temperature, and there-
fore the goal is to minimize the Helmholtz free energy. As presented in section 3.7, the
shape is the inner envelope of the surface of the planes perpendicular to the radii of the
surface free energy polar plot.

The equilibrium shape at zero temperature consists of a discrete set of facets separated by
sharp corners. At temperatures above 0 K, the edges start to become more round and the
surface starts to form a smooth surface [20]. This is clearly visible in fig. 10. However, this
is in the absence of gravity.
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D Graphical representation of the partition function

D Graphical representation of the partition function

D.1 Square lattice

The partition function found in the square lattice is represented graphically in fig. 12. By
showing all possible kink configurations the partition function can be found by including
all of those energies. Since each term with higher energy is less probable according to the
Boltzman distribution, the sum converges.

(a) First boundary with en-
ergy εx/2.

(b) First kink with energy
εx/2 + εy/2.

(c) Second kink with energy
εx/2 + εy.

(d) Third kink with energy
εx/2 + 3εy/2

(e) All kink configurations de-
scribed in the partition function.

Figure 12: All different kink configurations in the [10] direction of the square lattice.
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D Graphical representation of the partition function

The same can be done in the [11] direction.

(a) First boundary with energy (εx/2 or
εy/2).

(b) First kink with energy (εx/2 + εy/2)
+ (εx/2 or εy/2).

(c) Second kink with energy 2 (εx/2 +
εy/2) + (εx/2 or εy/2).

(d) All different kink configuration de-
scribed in the partition funcion.

Figure 13: All different kink configurations in the [11] direction of the square lattice.
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D Graphical representation of the partition function

D.2 Hexagonal lattice

(a) First kink with energy
E1 = ε.

(b) Second kink with energy
E2 = ε.

(c) Third kink with energy
E3 = 2ε.

(d) Fourth kink with energy
E4 = 2ε.

(e) All kink configurations de-
scribed in the partition function.

Figure 14: All different kink configurations in the armchair direction of the hexagonal
lattice.
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D Graphical representation of the partition function

(a) First kink with energy
E1 = ε/2.

(b) Second kink with energy
E2 = 2ε/2.

(c) Third kink with energy
E3 = 5ε/2.

(d) Fourth kink with energy
E4 = 6ε/2.

(e) All kink configurations de-
scribed in the partition function.

Figure 15: All different kink configurations in the zigzag direction of the hexagonal lattice.
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