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Abstract

The electricity supply system in the Netherlands has already been operational
for more than a century. Its architecture has stayed mostly the same throughout
several of the last decades. Meanwhile, the context in which the system operates
has changed dramatically. Today, systems oftentimes are designed with user-
centered approaches to satisfy the user’s needs as much as possible. A societal
system, like the electricity supply system, should in turn be designed with a
society-centred approach to satisfy society’s needs as much as possible. This
master graduation thesis deals with this topic.

This thesis contributes the following: (1) an analysis of whether the current
electricity supply system satisfies the needs of society as much as possible;
(2) requirement specifications of a societal energy supply system; and (3) a
feasibility analysis of a societal energy supply system from a high-level engineering
perspective using the architecture synthesis process (Tekinerdoğan, 2000).

We conclude that an architecture for a future societal energy supply system
can be synthesised, but additional research activities are needed to deal with the
remaining unresolved technical problems.
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“ I can’t do this, Sam.

I know. It’s all wrong. By rights we shouldn’t even be here. But we
are. It’s like in the great stories, Mr. Frodo. The ones that really
mattered. Full of darkness and danger, they were. And sometimes
you didn’t want to know the end. Because how could the end be
happy? How could the world go back to the way it was when so
much bad had happened? But in the end, it’s only a passing thing,
this shadow. Even darkness must pass. A new day will come.
And when the sun shines it will shine out the clearer. Those were
the stories that stayed with you. That meant something, even if
you were too small to understand why. But I think, Mr. Frodo, I do
understand. I know now. Folk in those stories had lots of chances
of turning back, only they didn’t. They kept going. Because they
were holding on to something.

What are we holding onto, Sam?

That there’s some good in this world, Mr. Frodo... and it’s worth
fighting for.

”
Samwise Gamgee and Frodo Baggings, The Lord of the Rings





Preface

Dear reader,

About eleven months ago, I’ve started the work in front of you, in order to finish
my master studies in computer science at the University of Twente. It is with great
pride that I can finally present to you my master thesis.

The speech by Samwise Gamgee, is somewhat analogous to this work. At that
moment in the story, Frodo and Sam had been struggling to reach their objective
of destroying the ring for some time already and they still had a long road ahead of
them. They felt lost because they encountered problem after problem. It shows that
even though there were challenges, at least they had each other. This project has
been with some challenges for me as well. But at least I had a lot of people around
me to help me stay motivated and to keep on fighting. The road was long, but I
didn’t turn back and so it was, full of lessons, adventure and experience. Through
it, I’ve bonded with my supervisors, found new colleagues and made new friends.

Another comparison can be made with the topic of the thesis. For, I’ve also
encountered a shadow along the way. One as dark and dangerous as those in
Mordor. Global warming is a very serious problem that needs to be dealt with,
rather now than later. One day it will be one of the great stories. The ones that
really mattered. I can only hope that my work, in some small way, may help the
people of our planet to overcome this global issue. If we want to protect our planet
for generations to come, then we have no other choice than to form a fellowship of
the environment.

I sincerely hope that you will enjoy reading my thesis and that you, like me,
think it’s something worth fighting for.

Nico Korthout Utrecht, 21 April 2017
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Chapter 1

Introduction

The electricity supply system in the Netherlands has already been operational
for more than a century (Hermsen, 2011). This system has matured during the
late 19th and 20th century and has seen many changes to its design, but its
architecture has stayed mostly the same throughout several of the last decades.
Meanwhile, the context in which the system operates has changed dramatically.

Society is beginning to view the environment as an important political topic
(TNS NIPO, 2016). More and more civilians want to do their part in solving the
issues surrounding global warming, but investments for sustainable energy are
costly and are often difficult for the average person. Companies, organizations
and institutions have joined together to form the energy agreement in 2013 as a
guideline to a sustainable society and economy (NRC, 2013); and the government
has agreed to reduce CO2 emissions by signing the Paris agreement (NRC,
2016). In order for the Netherlands to meet the emission levels set in the Paris
agreement, all its coal plants must be shut down (NOS, 2016a), while in contrast
three newly build coal plants have recently begun their operation (Greenpeace,
2015). In addition, the political landscape is divided when it comes to solutions for
the environmental issues and some political parties appear to actively work against
potential solutions (Mommers, 2017). Something seems amiss with the electricity
provisioning in the Netherlands.

Today, systems oftentimes are designed with user-centered approaches to
satisfy the user’s needs as much as possible. A societal system, like the electricity
supply system, should in turn be designed with a society-centered approach to
satisfy society’s needs as much as possible.

We argue that political and commercial needs have had a greater impact on the
electricity supply system than civil and environmental needs; and that a revision
of the requirement specification should satisfy the needs of society as a whole as
much as possible, because this system provides a societal function. This thesis
provides the first work towards a future societal electricity supply system.

1



2 CHAPTER 1. INTRODUCTION

1.1 Research goal

The electricity supply system has been around for many years. It has matured
(i.e. evolved) throughout those years. At the same time, the context in which it
operates has changed as well. For example, many technical advancements have
taken place, political perspectives of the people have changed and similarly the
awareness of our environment has changed. In the same way, the electricity
supply system must have changed together with that context, as described in
section 1.2.2.

Today, systems oftentimes are designed with user-centered approaches to
satisfy the user’s needs as much as possible. A societal system, like the electricity
supply system, should in turn be designed with a society-centered approach to
satisfy society’s needs as much as possible.

The main research goal is to perform a feasibility analysis for an electricity
supply system, which is specifically designed to fit the needs of society as much
as possible. This main research goal may be stated as a research question:

Is it possible to design an electricity supply system, that satisfies the
needs of society as much as possible?

This research question can be divided into several sub-questions:

1. Does the current electricity supply system satisfy the needs of society as
much as possible?

2. What are the requirements for a societal electricity supply system?

3. Can we solve the engineering problems involved with a societal electricity
supply system?

1.2 Research approach

A structured approach towards finding the answers to the research questions is
needed, in order to do attain the research goal in a reliable manner. Figure 1.1
shows the research approach taken in this thesis.

The first research question is answered through a Background research. This
background research consists of (1) a Problem analysis, in which problems of the
current electricity supply system are exposed; and (2) a Societal needs analysis,
in which an initial perspective towards answering the second research question is
provided.
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Figure 1.1: Research approach

The problem analysis is performed by (1) a System architecture analysis,
resulting in an model of the current electricity supply system’s architecture that
can be used to reason about the system; as well as (2) a Driving forces analysis
that provides insights into how the current system has changed over time into its
present form.

The model of the current electricity supply system is arrived at from a common-
ality analysis (Coplien, Hoffman, & Weiss, 1998) of the available domain knowl-
edge. A commonality analysis is generally applied as a first step in domain require-
ments engineering or in product-line engineering. However, this system already
exists and domain knowledge about it is readily available. Therefore, we can apply
a commonality analysis on this domain knowledge to derive the architecture of the
current electricity supply system which can be used to reason about it.

Insights into the driving forces that drove the changes of the electricity supply
system to its current state, are acquired through an historical analysis of the
system. This is performed using published literature, domain knowledge and our
own perspectives of political and commercial driving forces.

The societal needs analysis is performed using the ISO/IEC 25010:2011
standard model for in-use system qualities that can be used to describe system
qualities from the user’s perspective during operation. This analysis is performed
from the 6 different societal view points or user groups, i.e. civilians depending
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on electricity, civilians providing electricity, businesses depending on electricity,
businesses providing electricity, the state and the environment.

The second research question is answered through a Requirements analysis.
This requirements analysis is the first step in the Architecture synthesis process
(Tekinerdoğan, 2000). The requirements analysis approach is inspired by the
work of Thayer, Bailin, and Dorfman (1997), but only addresses the main topics.
The requirements have been arrived at from iterated discussions, meetings and
document exchanges with the client. Term definitions provide a basis to form
textual requirement specifications. A rationale discusses our reasoning.

The third research question is answered through a Feasibility analysis using
the Architecture synthesis process (Tekinerdoğan, 2000). In this process, only
the Technical problem analysis and the Solution domain analysis are applied for
the purpose of a feasibility analysis. The Alternative design space analysis and
the Architecture specification have been left-out of this thesis, but may be applied
in the future to expand the research from a feasibility analysis to an architecture
design research.

The architecture synthesis process is explained in more detail in the following
subsections. First, the architecture synthesis process is further elaborated in
section 1.2.1. Second, applying the architecture synthesis process to a feasibility
study is further expanded upon in section 1.2.4. Third, the influence of a changing
context on a system’s requirement specification is described in section 1.2.2.

1.2.1 The architecture synthesis model

Engineering consists of many different branches. Each has its own ways to tackle
the challenges specific to that field, but all have to solve problems of some form. In
an attempt to improve the maturity of software engineering, Tekinerdoğan (2000)
derived the concept of Synthesis from a broad analysis of philosophy and the tradi-
tional engineering disciplines (i.e. chemical engineering, civil engineering, electri-
cal engineering and mechanical engineering) and applied this as a problem-solving
perspective to software architecture design. A software architecture encompasses
the overall structure of a software system. It provides semantic meaning to its com-
ponents, making it easier to discuss and reason about the software system. This
report proposes the application of Tekinerdoğan’s architecture synthesis model
(figure 1.2) as a guideline to design a novel architecture for the electricity supply
system of the Netherlands. We apply it using the Synthesis-based software archi-
tecture design approach.

In his thesis, Tekinerdoğan describes the architecture synthesis model thor-
oughly, but to recapitulate, it is constructed from concepts (represented by rounded
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Figure 1.2: The architecture synthesis model (Tekinerdoğan, 2000)

rectangles) and functions (represented by arrows) and consists of two parts: a So-
lution Definition part, in which solution abstractions are identified and defined; and
a Solution Control part, in which the solution abstractions can be quantified, mea-
sured, optimized and refined. In order to find a suitable architecture, a divide and
conquer technique is applied to a requirement specification. Each requirement
can be formulated as one or several technical problems. Solution abstractions to
each of the technical problems can be extracted from the available solution domain
knowledge. New technical problems may arise from a solutions abstraction, be-
cause it may not be trivial to apply the solution. Finally, a selection of compatible
solutions can be synthesized into an architecture.

The Synthesis-based software architecture design approach is an implementa-
tion of the process of the architecture synthesis model. It consists of the following
steps:

Requirements analysis. Understanding the client or stakeholder perspective
of the software system.

Technical problem analysis. Mapping the requirements to technical problem,
such that a problem solving process can be applied.

Solution domain analysis. Providing a solution domain model that can be
utilized to extract the architecture design solution.

Alternative design space analysis. Depicting the set of possible design
solutions.

Architecture specification. Extracting the architecture design.
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1.2.2 A model to support changing requirements

Tekinerdoğan has based his architecture synthesis model (figure 1.2) on a
controlled problem solving process, represented in the Controlled Problem Solving
in Context model, or the CPC model for short (figure 1.3). The CPC model was,
like the architecture synthesis model, also proposed by Tekinerdoğan and was
based on studies of problem solving in the cognitive sciences.

Figure 1.3: The controlled problem solving in context model (CPC model; Tekiner-
doğan, 2000)

The CPC model places the problem solving process in a particular context.
This context is “[...] expressed as the environment in which engineering takes
place including a broad set of external constraints that influence the final solution
and the approach to the solution. [...] the context may be very wide and include
different aspects like the engineer’s experience and profession, culture, history, and
environment.” (Tekinerdoğan, 2000, page 16).

The problem to be solved is conceived by a need, which in turn is created by
the context. Changes to the context can thus create a different need and in turn a
different problem description.

Tekinerdoğan’s architecture synthesis model (figure 1.2) describes a way
in which we might find an architecture that solves problems for a given set of
requirements, but the CPC model (figure 1.3) shows that the needs (that conceive
requirements) may change over time. In addition, it is widely accepted that system
requirements change continuously over time (Jarke & Pohl, 1994). Therefore, we
introduce the following model (figure 1.4) for the influence of a changing context on
a system’s requirement specification.
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Figure 1.4: A model for requirements changes as a result of a changing context

In this model, we represent the state of the world (i.e. societal state, economic
state, technological state, political state, public environmental awareness state,
etc.) as the Context. This context creates particular Needs, which motivates the
construction of a System. In addition, the needs influence the Requirement Spec-
ification of this system. In other words, when the context changes significantly, the
needs change as well; different needs will motivate the construction of a system
with different requirements.

1.2.3 The needs of a societal system

We argue that the requirement specification of the electricity supply system is
influenced by needs from several different perspectives.

Society consists of political parties, commerce and civilians. In addition, the
environment in which we live can be seen as part of our society as well. We can
thus classify these needs as political, commercial, civil and environmental. For
instance, the construction of a coal plant is an investment on which the owner
wishes to see a return. The owner thus has a commercial perspective of the
system and as such has specific needs for the system.

In addition, it means that the owner stands to benefit from reducing the
influence of other parties on the requirement specification. Such parties will want
to dictate what the system looks like by having more influence on the requirement
specification than others. Civil and environmental needs may be less influential
than political and commercial needs.

We argue that societal systems, like the electricity supply system, would better
meet the needs of society when it would be designed to satisfy the needs of
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society as much as possible. We understand that this may clash with specific
interests of commercial parties and governments, but we hope to find a solution
that better suits the whole of society and thus we may have to change the status
quo.

1.2.4 Applying the architecture synthesis model to a feasibility
study

The application of the architecture synthesis model (figure 1.2) can also provide
a way to check the feasibility of an engineering project. Using the techniques
described by Tekinerdoğan (2000), an instantiation of his architecture synthesis
model should be found for the project under investigation. An instantiation of the
architecture synthesis model can be described as a tree structure of technical
problems and solution abstractions in which each technical problem is solved by
at least one solution abstraction. If an instantiation can be found, an architecture
can be synthesized through this approach. If it can then also be developed within
the project’s constraints, the project is feasible.

But, if no instantiation can be found, the project is likely not feasible. This
can manifest itself in: the inability of specifying requirements for the project; the
inability to translate the requirements specification to technical problems; the
inability of finding suitable solution abstractions in the solution domain knowledge
for a technical problem; or the inability to compose the architecture from the
available solutions due to constraints on the solution combinations. It is highly
recommended to investigate further options when encountering any of these
problems. Otherwise, the project does simply not seem to be feasible.

1.3 Thesis structure

This thesis has the following structure. It describes our motivations, the research
goals and the research approach in chapter 1. In addition, this chapter describes
how a problem-solving framework can be applied to a feasibility analysis. It
analyses the current system, how it was shaped and society’s future needs
for it in chapter 2. It specifies requirements for a future societal energy supply
system in chapter 3. It studies the feasibility of a novel architecture for a future
societal energy supply system through the application of synthesis-based software
architecture design in chapter 4. It discussions limitations of the work in chapter 5.
It lists the open questions that may be answered by future research in chapter 6.
Finally, it presents our conclusions in chapter 7.



Chapter 2

Analysis of the current electricity
supply system

In this chapter, we discuss the current situation of the electricity supply system in
the Netherlands; the driving forces that steered this system to its current form; and
the future perspectives of societal needs that should drive the construction of the
electricity supply system of the future as discussed in section 1.2

2.1 System architecture analysis

An analysis of the current system’s architecture should provide insights into the
choices made by the system’s creators.

2.1.1 Commonality analysis of the current system

The Dutch law for production, transport and provisioning of electricity (Elek-
triciteitswet, 1998) provides restrictions on the national system by exacting rules
on what is and what is not allowed for the Dutch electricity infrastructure and the
institutes involved in its operation. It states that all the power lines that are destined
for the transportation of electricity at a voltage level of 110 kV and up that oper-
ated as such and all trans-border power lines with alternating current together form
the national high voltage network, which is operated and maintained by a single
Transport Service Operator (TSO). Its goal is to manage the transport of electricity
within the boundaries of the Netherlands. The distribution of electricity to the end
users is performed by the regional high, mid and low voltage networks, which are
operated and maintained by their respective Distribution Service Operators (DSO).
In the Netherlands the DSOs are each provided with their own regions in which to
operate.

9



10 CHAPTER 2. ANALYSIS OF THE CURRENT ELECTRICITY SUPPLY SYSTEM

When discussing electricity at different voltage levels, the following definition
is used by the Dutch law: below and up to 1 kV is low voltage, higher than 1 kV
is high voltage (Elektriciteitswet, 1998). In the literature on electricity networks,
we also find other distinctions:  1 kV is low voltage; > 1 kV and < 35 kV is mid
voltage; � 35 kV and < 220 kV is high voltage; and � 220 kV is extra high voltage
(Netbeheer Nederland, 2014). From a commonality analysis perspective, electricity
networks are the commonality and the different voltage levels are the variability.

These electricity networks are connected to each other and exchange electric-
ity. In order to do so, the voltages need to be transformed to match the voltage
level of the other network. This transformation is one of the functions of a sub-
station. Other substation functions can be switching networks on and off (e.g. for
maintenance); distribution to smaller networks or industrial consumers; or conver-
sion between direct and alternating current. Substations can facilitate one or sev-
eral of these functions to the system (Hoogspanningsnet, n.d.-c).

Electricity has to be provided to the networks, in order for consumers to use
it. This task is performed by generators. In more technical terms, a generator
creates and maintains the electric potential difference on the network. This electric
potential difference allows a current to run through a closed circuit. Generators
come in different types and sizes. Examples are rooftop solar panel systems
producing in the kW range, solar panel and wind turbine parks producing in the
MW range and coal plants or nuclear plants producing in the hundreds of MW to
GW range.

Consumers can close a circuit by plugging in an electric device or turning on an
already plugged-in electric device. Here an electric device can be anything from
a low-powered light all the way to very high-powered industrial machinery. We
can make a distinction between domestic and industrial consumers, because an
industrial consumer may consume many orders more than a domestic user at any
given moment. Generally, domestic users receive their connection via a separate
distribution hub that acts as a small substation by distributing the electricity to its
respective domestic users.

Electricity production and consumption has to be in balance within its networks.
The frequency of the alternating current changes with each change in supply
and demand (Mainsfrequency, n.d.). An out of bounds frequency may cause
problems or even critical damage to electric devices and infrastructure. The TSO
and DSO’s measure and control the frequency of the alternating current in the
network. Control is enacted through dynamically adjusting the input of energy
to the generators, which affects frequency due to a simple energy balancing
law (i.e. input energy = output energy + change in rotation speed, where the
rotation speed defines the frequency of the current). Dealing with large changes
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in supply and demand is possible through import and export with foreign networks.
Moreover, although electricity is difficult to store, storage facilities do exist and can
also provide a balancing between supply and demand. An example of electricity
storage is the Saurdal Hydroelectric Power Station, one of the largest hydroelectric
power generators in Norway as well as an water-pumped electricity storage facility
(Rosvold, 2012).

Electricity is produced and consumed in different places, we can say that
electricity flows from a point in the network to another. This is called load flow.
Typically this flow is bidirectional in the transmission network and unidirectional
in the distribution network. This means that electricity can flow freely in the (extra)
high voltage networks of the transmission network, supplying electricity to a region
that has low supply and high demand. In addition, this means that the load flows
from the substations via the distribution hubs to the domestic consumers, but
not the other way. However, some domestic consumers provide electricity back
to the network through private generators, like solar panels and wind turbines.
Thus, some load flows back to the distribution hubs after which it can flow to other
domestic consumers. Load flow from the distribution hub to the substation and
back to the transmission network can cause problems for DSO’s.

The Dutch national electricity network ’s alternating current is synchronized
with the electricity networks of several other countries. Together, these are
called a wide-area synchronous grid. The Dutch electricity network is part of the
Synchronous grid of Continental Europe (ENTSO-E, 2014).

2.1.2 A model of the current system architecture

From the commonality analysis we are able to derive a model of the current
architecture of the Dutch electricity supply system.

In order to model an electricity supply system, we need to be able to show the
flow of electric power, from producers to consumers. This is called Load Flow and
can be either unidirectional or bidirectional. It flows from a source to a target and
can thus be modelled as an association between the other modelled concepts.
Figure 2.1 presents a simple inheritance model for the directionality of this load
flow.

Figure 2.2 presents a model of the electricity supply system in its current form.
In order to explain this model in more detail, it is split up into several smaller figures
(see figures 2.3 to 2.7).

A Wide Area Synchronous Grid (figure 2.3) consists of at least one National
Electricity Provisioning Network. National electricity provisioning networks provide
electricity in their respective country. The Dutch electricity supply system is thus
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Figure 2.1: An association representing load flow

an instance of the national electricity provisioning network concept. It is part of
the Synchronous grid of Continental Europe, which is an instance of the wide
area synchronous grid concept. National electricity provisioning networks can
exchange energy (i.e. from the perspective of the electricity supply system this
energy is in the form of electricity) between each other. In reality, we find that the
Dutch electricity provisioning network is connected to the Belgian and German
electricity provisioning networks through alternating current and to the British and
Norwegian electricity provisioning networks through direct current. In each of these
connections we find a bidirectional load flow.

A national electricity network consists of two main network concepts: the
Transmission Network, which is used to transmit electricity over longer distances
(e.g. between cities or inter-provincially); and the Distribution Networks, which
are used to distribute the electricity regionally. At a more technical level, these
networks consist of smaller electricity networks operating at different voltage levels.
The transmission network consists of High Voltage Networks and Extra High
Voltage Networks and the distribution networks consists of Low Voltage Networks,
Mid Voltage Networks and High Voltage Networks.

Figure 2.4 presents a refinement of the extra high voltage network concept.
Its structure is the same as the high voltage network concept (figure 2.5) and the
mid voltage network concept (figure 2.6), but uses the Extra High Voltage prefix
to indicate that these concepts are able to deal with extra high voltages. In the
extra high voltage network Extra High Voltage Generators provide energy to Extra
High Voltage Substations. Extra High Voltage Industrial Consumers can use this
energy. The energy can also be stored in (or taken out of) Extra High Voltage
Energy Storage facilities. The extra high voltage substation can exchange energy
with other substations.

Figure 2.5 presents a refinement of the high voltage network concept. Its
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Figure 2.3: A model of the current electricity supply system - networks overview

structure is the same as the extra high voltage network concept (figure 2.4) and
the mid voltage network concept (figure 2.6), but uses the High Voltage prefix to
indicate that these concepts are able to deal with high voltages. In the high voltage
network High Voltage Generators provide energy to High Voltage Substations.
High Voltage Industrial Consumers can use this energy. The energy can also be
stored in (or taken out of) High Voltage Energy Storage facilities. The high voltage
substation can exchange energy with other substations.

Figure 2.6 presents a refinement of the mid voltage network concept. Its
structure is the same as the extra high voltage network concept (figure 2.4) and
the high voltage network concept (figure 2.5), but uses the Mid Voltage prefix to
indicate that these concepts are able to deal with mid voltages. In the mid voltage
network Mid Voltage Generators provide energy to Mid Voltage Substations.

Figure 2.4: A model of the current electricity supply system - extra high voltage
network refined
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Figure 2.5: A model of the current electricity supply system - high voltage network
refined

Mid Voltage Industrial Consumers can use this energy. The energy can also be
stored in (or taken out of) Mid Voltage Energy Storage facilities. The mid voltage
substation can exchange energy with other substations.

Electricity distribution works a bit different in the low voltage networks com-
pared to the other electricity networks. Figure 2.7 presents a refinement of the low
voltage network concept. Again the other electricity networks (figures 2.4 to 2.6)
are connected via the substations, but the distribution to the Domestic Customers
happens via Distribution Hubs. Distribution hubs can also distribute energy to the
distribution hubs of subregions. Domestic consumers can produce their own en-
ergy through Private Generators. Excesses can be distributed to other domestic

Figure 2.6: A model of the current electricity supply system - mid voltage network
refined
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consumers through the distribution hub, but distribution hubs are unable to provide
energy back to substations.

Figure 2.7: A model of the current electricity supply system - low voltage network
refined

The model presented in figure 2.2 (and figures 2.3 to 2.7) exhibits a few
clear characteristics. For instance, the structure is very hierarchical, due to the
aggregate relations. This forms a model that is solid, but not flexible. Its parts are
difficult to be reused in other parts of the system. One of the obvious technical
reasons for this is that system parts that work on lower voltages can’t simply
work on higher voltages. Control systems in a substation for mid voltages would
overheat and shutdown at high voltage levels, which may even result in critical
damage and a power outage.

Moreover, energy can flow freely in the transmission network, but also for
most part of the distribution network. Only in the low voltage network do we see
a clear tree-structured top-down distribution. This may lead to problems when
private generators provide too much energy back to their region. Control systems
in distribution hubs are most of the time not yet able to deal with such load flows.
Equipment may start to fail due to overcapacities. The transformers in private
generators may shut down automatically when this happens as a safety measure.
This problem has recently been occurring in Groningen (NOS, 2016b).
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2.2 Driving forces analysis

The electricity supply system in the Netherlands was not designed and build in one
day. Many different people and parties have played a role in its construction. We
argue that political and commercial driving forces have helped shape the system to
its current form.

There are many literary examples that discuss political and commercial driving
forces on the shaping of the electricity supply system in the Netherlands. For
instance, van den Noort (1984) presents thorough research into the motivations of
the municipality of Rotterdam for its role in the electricity provisioning for Rotterdam
and its surroundings; and van Empelen (n.d.) discusses political motivations for the
completion of the national electricity supply system before and during the Second
World War. In addition, we could simply look at the current political agenda and
find plans and ideas for changes to the electricity supply system.

Although these examples show some involvement of political and commercial
driving forces on the shaping of the electricity supply system, we discuss the driv-
ing forces involved with each of the significant changes to the system throughout
history. In order to do so, we first describe a perspective of political and commer-
cial driving forces.

2.2.1 A perspective of political and commercial driving forces

A state that can govern itself without any interference from outside is considered
a sovereign state. A state’s main objective is keeping this sovereignty intact. The
Kingdom of the Netherlands (more commonly known as simply the Netherlands) as
a rechtsstaat, protects its sovereignty using the rule of law. Likewise, the rule of law
can be exercised within the state due to its sovereignty.

As Biersteker and Weber argue, “The modern state system is not based on
some timeless principle of sovereignty, but on the production of a normative con-
ception that links authority, territory, population (society, nation), and recognition
in a unique way and in a particular place (the state).” (Biersteker & Weber, 1996,
page 3), they define sovereignty as a composition of authority, territory, population
and recognition.

Based on this, a state’s internal sovereignty can be described as the state’s au-
thority over the population within its territory and a state’s external sovereignty can
be described as the recognition by other states of the state’s internal sovereignty. A
state’s sovereignty can thus only be maintained through the protection of the inter-
nal and external sovereignty.

A state’s internal authority of its population within its territory can be maintained
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either forcefully (e.g. through military or police force) or the authority can be
accepted by the population. In the latter, the population must allow the sovereign
its authority, either through divine right (i.e. divine right of kings) or through
popular sovereignty. The population may demonstrate peacefully to show their
dissatisfaction with the authority, but can also demonstrate violently or even
overthrow its sovereign. Another option for them would be to find another state that
does satisfy their needs and emigrate. Based on this, we can see that a state is
able to adjust how it maintains its internal authority. Internal authority is either there
or not, but its existence consists of several parameters that together provide the
internal authority.

A state’s external recognition of its authority within its territory can be main-
tained through military and economic power. Military may be required to protect
the territory from other states. Economic power may be used as another means to
achieve the same result.

Additionally, states are dependent on natural resources (i.e. biotic resources
like fossil fuels and food sources, but also abiotic resources like air, fresh water,
minerals and metals) for their population and economy. States may be lacking
specific natural resources, necessitating their import and thus requiring a bigger
economic power.

Economic power is directly related to a state’s ability to produce valuable
assets. Capitalism pushes commercial enterprises to compete, leading to the
effective and efficient production of valuable assets. Governments, lacking this
driving force, are not very successful in maintaining the production of increasingly
diverse and valuable assets. To help sustain a state’s economic power it is
thus necessary for governments to support enterprises in their production of
valuable assets through favorable rules and regulations. In addition, we see that
through the desire for increasingly diverse and valuable assets, knowledge has
become an important valuable asset in producing other valuable assets as well.
This naturally stimulates individualization (valuable experts with knowledge);
diversification (exploring other markets, business opportunities); distribution
(increasing the customer base), globalization (growth), and suitable proactive
dynamic organizations to support these. The importance of valuable assets and
the lack in producing specific valuable assets increases the need for a larger
economic power by the need for importing these assets like natural resources.

It so happens that these new economic powers (enterprises) crosscut
sovereign states. Enterprises have the possibility to move to other states and take
away their economic power from the state. Since sovereign states need economic
power, they have to fulfil the needs of these enterprises in some way.

The driving forces of enterprises are based on capitalism, the objective to



2.2. DRIVING FORCES ANALYSIS 19

accumulate capital. Capital accumulation can happen through increasing the
company’s profit, growing the company and return on investments. For each of
these concepts there are again many subvalues correlating, but for now these
describe the main driving forces of commercial enterprises.

2.2.2 Driving forces analysis of system changes

The perspective given in section 2.2.1 provides a generally accepted description
of political and commercial driving forces, we additionally provide examples of
how these driving forces affected the electricity supply system in the Netherlands
throughout history, providing evidence that indeed the current system is based
on political and commercial needs instead of societal needs. An overview of the
history of the electricity supply system in the Netherlands is provided in appendix
A.

Electricity first became publicly available in the Netherlands on 19 April 1886
through the completion and startup of the ‘N.V. Electrische verlichting Kinderdijk’,
providing DC (Direct Current) to 350 connections (i.e. light bulbs; appendix A,
row 1). Before this, some industries had already invested in privately operated
generators for factory machinery, but electricity and electric light, through the
designs of Thomas Edison, provided a business opportunity for other businesses
as well. Businesses that started in this field had to challenge the established
steam-power industry (i.e. machinery operation industry) and oil lamp industry (i.e.
lighting industry), leading to innovation through diversification and distribution in a
competitive market, as well as individualization by gaining knowledge. Growth of
these systems took over the lighting market for houses, cities (e.g. city streets) and
industries, as well as machinery operation.

In the end of the 1890’s and the early 1900’s, many municipalities took over
the electricity systems created by the first electricity companies, either by hostile
takeover or by making regulations that favor government-owned companies over
commercial companies (van Empelen, n.d.). These takeovers show a political
interest in electricity provisioning. We can argue that, due to economic power being
such an important factor in a state’s struggle to maintain sovereignty, governments
have to act like companies in order to effectively and efficiently produce valuable
assets. Here this took the form of small government-owned companies. In addition,
the first longer range connections are constructed in this time (appendix A, row 2).
This was possible because of the invention (knowledge) of the transformer, but at
the time this required the use of alternating current, while so far most connections
used direct current (van den Noort, 1984). Investments to construct power lines
with alternating current were not much higher than direct current, because systems
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could still be replaced with relative ease and without high financial repercussions.
Around 1910, the first high voltage lines are constructed, connecting cities to

deal with an increase in the electricity demand of the population (appendix A, row
3). This can be seen as the state increasing its power over the system by growing
the value of the system, but it also satisfies the population’s increasing demand. In
addition, this stimulated the economy by providing electricity access to more and
more business. Similar things can be said about the rise of even higher voltage
power lines in the 1920’s (appendix A, row 4).

As the system grows towards a nationally connected network in the years up to
the 1940’s, more and more electricity state-owned companies arise (van Empelen,
n.d.). Competing amongst each other they grow, and the system they support
grows with them. We explained earlier that governments seem not to be very good
at efficiently managing the production of valuable assets. A great example of how
governments can use capitalism to its advantage.

Due to the threat of war in the late 1930’s, a nationally connected network is
proposed, but some municipalities did not want to hand over their generators,
halting these plans. After the German nazi’s invade the Netherlands on the 10th
of May 1940, they also take over government rule and as such the driving forces
on the electricity system changes. van Empelen (n.d.) describes thoroughly
the political motivations of nazi Germany, from economic power to population
satisfaction, for making changes to the Dutch electricity system. They completed
the nationally connected network (appendix A, row 5) and made international
connections to the German high voltage network (appendix A, row 6), which
provided stability and efficiency improvements, due to size and the reduced need
for overcapacity, respectively.

After the war, we see three big changes to the system: standardization of high
voltage levels (appendix A, row 7), higher voltage levels than before (appendix A,
row 8) and ring structures (appendix A, row 9). Such changes seem likely due to
the destruction left by the war, but van Empelen shows that only small parts of the
infrastructure were destroyed. Another explanation could be that as the economic
power grew after the war, so did the infrastructure. The events in appendix A row
10 up to row 13 can be explained in a similar manner. Economic growth is seen to
be correlating with electricity usage, and thus demands supportive changes to the
infrastructure.

The construction of the NorNed and the BritNed cables (appendix A, row
14) can be explained economically. For instance, the NorNed cable provides
cheap electricity from the Norwegian hydro generators during the day and at
night the electricity produced in the Netherlands can be stored in the Norwegian
water reservoirs. A similar economic construction is used for the BritNed cable.
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Electricity has become a valuable asset that can be traded. In addition, these
expansions provide more stability to each of the involved networks. Both the
NorNed and BritNed cables are HVDC cables. Normally HVAC cables are used
over long distances, but specific requirements (e.g. overseas connection) and
technical issues (e.g. the skin effect) favored HVDC cables over HVAC cables
(Hoogspanningsnet, n.d.-b).

Having discussed the driving forces involved with each of the significant
changes to the system throughout history, we’ve now shown that political and
commercial driving forces have played a significant role in the shaping of the
system to its current form.

2.3 Societal needs analysis

An analysis of future perspectives should provide insights to what may be required
of the future system. We’ve said that society’s needs should be the main focus
of the system’s creators when making choices, but we have yet to explain why.
This section first explains our reasoning for a society-centred system using future
expectations through observed trends, and an analysis of society’s needs for the
system.

2.3.1 From political and commercial driving forces to societal
needs

We cannot foresee the future, but we can make meaningful guesses and assump-
tions. In order to say something meaningful about the future, we may take a look at
trends. For instance, in contemporary society the importance of the individual user
is increasing. In politics, democracy has evolved to a more direct democratic influ-
ence of the civilians through referenda (Wet raadgevend referendum, 2015) and
the Belastingdienst (i.e. the Dutch Tax and Customs Administration) uses the slo-
gan “Leuker kunnen we het niet maken, wel makkelijker” (translates to: “We can’t
make it any more fun, but we can make it easier”), which shows the government’s
willingness to help the individual civilian and shows they care about how they are
viewed by their population. This is of course highly related to how political parties
gain power, because this happens through popular vote by the population, but this
trend of more direct influence is interesting.

In business, we also find this trend. For instance, the age-old business mantra
‘customer is king’ holds now more than ever. Companies like Google, Apple
and Facebook now provide users with free-to-use software and earn profits
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by collecting personal data about those users. Personal data on the individual
has become the next valuable asset. A company’s image (from a customer’s
perspective) has also become an even more important factor, with new companies
like Tesla and SpaceX claiming to help society achieve new heights in technology
and aiding in the battle against global warming, but at the same time rapidly
accumulating capital. This also clearly shows the commercial influence on societal
systems.

Another field where we find this trend of individual importance, is in technology.
User-centered design is an increasingly popular subject for designing new systems
and needs analysis tries to bridge the gap between ‘what is’ (i.e. the present) and
‘what should be’ (i.e. the future) for user-centred systems (Witkin & Altschuld,
1995). Technology can be seen as a driving force of this trend. Technological
advances, like internet and smartphones, have provided control to civilians
over many things in their life. This has happened throughout the third industrial
revolution (e.g. electronics, IT and computers) and is happening even faster during
the present-day fourth industrial revolution (e.g. cyber-physical systems).

These trends have one thing in common. Individuals (i.e. civilians or cus-
tomers) and their needs are becoming more important. This is also the case for in-
dividuals and their needs in system development. In this report, we have focussed
on electricity provisioning for the Netherlands, a system trying to meet the societal
need for the supply of electricity. de Haan et al. describe such systems using the
term societal systems, where “[...] societal systems are systems meant to meet
societal needs, such as energy supply, transport, health care, food and water ser-
vicing [...]” (de Haan et al., 2014, page 122).

Societal systems are not the result of civilian needs alone. Society is build-up
of civilians, businesses, the state and the environment in which each of these live,
work and operate, respectively. They all have their own set of needs that motivate
the construction of similar systems, but with different requirements. In order to
benefit society the most, we propose that a future system should adhere to the
needs of these different groups, together composing the societal needs for the
system. The system should not be a user-centred system, but a society-centred
system.

A society-centred system implies that the commercial driving forces we’ve
discussed previously should not be allowed to influence system changes, as these
may clash with reaching the societal needs. We assume that this does not hold for
political influences, because we can argue that politics is meant to be a reflection
of our society through our democracy.
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2.3.2 Societal needs analysis of the Dutch electricity supply
system

When we look at the needs of the societal groups described in the previous
section for the electricity system, we can distinguish two forms: usage and
supplying. A business may be supplying electricity by maintaining the infrastructure
or by producing electricity, but another business may depend on electricity
to produce their product or to provide their service. Civilians also depend on
electricity, but nowadays more and more civilians have started producing their own
electricity. Returning this electricity back to the grid has made these consumers
into prosumers, consuming and producing electricity simultaneously. In this sense,
we distinguish six different societal views for the electricity supply system: the
state that helps to provide electricity, the environment, businesses constructing
and operating the system; businesses depending on electricity; civilians producing
electricity and civilians depending on electricity.

Their needs can be expressed in different ways. In order to describe needs,
we apply the quality in use model presented in ISO/IEC 25010:2011. Quality in
use encompasses a system’s quality from the user’s perspective during operation.
In this case, there are different kinds of users, namely the societal views, each
with their own needs for the system. We have chosen this model over the product
quality model (of the same publication), because on top of the target software (i.e.
system) of the product quality model, it also incorporates its users and the usage
environment1. Furthermore, we chose this standard due to its broad application
in the software engineering field. Moreover, we feel that this approach sufficiently
suits this application.

ISO/IEC 25010’s in use quality model uses quality categories and subcate-
gories in which to define quality attributes. The quality categories are defined by
the ISO as follows:

• effectiveness: “accuracy and completeness with which users achieve
specified goals.”;

• efficiency: “resources expended in relation to the accuracy and completeness
with which users achieve goals.”;

• satisfaction: “degree to which user needs are satisfied when a product or
system is used in a specified context of use.”;

– usefulness: “[...] degree to which a user is satisfied with their perceived
achievement of pragmatic goals, including the results of use and the

1See figure 5 of ISO/IEC 25022:2016
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consequences of use.”;

– trust: “[...] the degree to which a user or other stakeholder has confi-
dence that a product or system will behave as intended.”;

– pleasure: “[...] degree to which a user obtains pleasure from fulfilling
their personal needs.”;

– comfort: “[...] degree to which the user is satisfied with physical com-
fort.”.

• freedom from risk: “[...] degree to which a product or system mitigates the
potential risk to economic status, human life, health, or the environment.”;

– financial risk mitigation: “degree to which a product or system mitigates
the risk to [...] economic objectives related to financial status, efficient
operation, commercial property, reputation or other resources that could
be at risk.”;

– health and safety risk mitigation: “degree to which a product or system
mitigates the risk to [...] health and safety objectives that could be at
risk.”;

– environmental risk mitigation: “degree to which a product or system
mitigates the risk to [...] environmental objectives that could be at risk.”.

• context coverage: “[...] degree to which a product or system can be used with
effectiveness, efficiency, freedom from risk and satisfaction in both specified
contexts of use and in contexts beyond those initially explicitly identified.”;

– context completeness: “[...] degree to which a product or system can be
used effectively, efficiently, free from risk and with satisfaction in all the
specified contexts of use.”;

– flexibility: “[...] degree to which a product or system can be used with
effectively, efficiently, free from risk and with satisfaction in contexts
beyond those initially specified in the requirements.”.

The needs of the state (table 2.1) are based on a state’s desire to maintain its
sovereignty. It can do this through economic power, military power and popula-
tion satisfaction, as described earlier. Stable and plentiful electricity provisioning of
the state is important to support the economic power, military power and the pop-
ulation satisfaction for obvious reasons. The effectiveness of an electricity supply
system can thus be measured as the degree to which the state’s sovereignty can
be maintained through the electricity supply system. The combination of the levels
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of economic power, military power and population satisfaction may not drop be-
low the point where the sovereignty of the state cannot be maintained. More con-
cretely, this means that electricity needs to be continuously provided to all busi-
nesses (economic power), all national defense organizations (military power) and
all civilians (population satisfaction), or in other words the availability and stability
of electricity provisioning are important to the state. In addition, national defense
may also mean that other states cannot take control over the national electricity
supply system.

Efficiency is the degree to which resources are expended to reach a certain
degree of effectiveness. Examples of resources at a state’s disposal are: natural
resources, valuable assets, capital, and manpower. For a state’s needs of the
electricity supply system, this means that the efficiency is the degree to which
resources are expended to maintain the state’s sovereignty through electricity
provisioning. So, using less resources would mean a higher efficiency. An
increased efficiency is beneficial to the state, because the state can expend
the remaining resources for other important aspects of sovereignty (military,
infrastructure, education, healthcare, etc.).

The satisfaction of the state can only be described from a political perspective.
Political parties can bring emotion-based opinions to political questions due to the
factor of population satisfaction. The usefulness, trust, pleasure and comfort all
stem from the population’s point of view, which we cover in the needs of civilians
providing electricity (table 5) and the needs of civilians depending on electricity
(table 6) perspectives. A high degree of the satisfaction in those perspectives will
result in high satisfaction of the state.

Freedom from financial risk is dependent on the stability and availability of the
electricity supply system, because failure to provide electricity to a businesses or
to civilians may have a financial impact due to the inability to produce assets or the
inability to consume already produced assets, respectively. Prolonged failure to
provide electricity increases this financial impact. The state thus has the need for a
high degree of stability and availability of electricity.

For businesses developing and operating the electricity supply system (table
2.2), the system is effective when it helps them to accumulate capital. This may
mean increasing profit (e.g. by decreasing costs, increasing pricing or reaching
more customers), but may also mean enterprise growth or returns on investments.
Especially returns on investment play a big role for these businesses, as most of
their investments are long term (30+ years).

The efficiency of this system can then be measured as the speed of capital ac-
cumulation (i.e. the time in which a particular number of capital can be accumu-
lated), or the ease with which this capital can be accumulated.
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Category Sub-category Need
Effectiveness Degree to which the state’s sovereignty

must be maintained (i.e. degrees of
economic power, military power and
population satisfaction) through
electricity provisioning

Efficiency Degree to which resources are
expended to maintain the state’s
sovereignty through electricity
provisioning

Satisfaction Usefulness Depending on table 2.5 and 2.6
Trust Depending on table 2.5 and 2.6
Pleasure Depending on table 2.5 and 2.6
Comfort Depending on table 2.5 and 2.6

Freedom from risk Financial risk
mitigation

Need for high degree of stability and
availability. Failure to supply electricity
may impact economic power

Health and safety
risk mitigation

N.A.

Environmental
risk mitigation

N.A.

Context coverage Context
completeness

N.A.

Flexibility N.A.

Table 2.1: The needs of the state

A business’ satisfaction of the system lies in their perception of the system’s
ability to accumulate capital. So its effectiveness and efficiency provide a basis
for a business’ satisfaction. Usefulness for a company is mostly based on capital
accumulation. As customers are becoming more important to companies, as dis-
cussed previously, we see that business satisfaction due to a system’s usefulness
also starts to include customer satisfaction. Customer satisfaction is further dis-
cussed in tables 2.5 and 2.6. Moreover, businesses have to trust governments to
provide regulations that do not work against an effective and efficient capital accu-
mulation. Employees at these businesses may experience pleasure in their work
through stable income and fulfilling a role in a societal system.

Governments have set-up rules and regulations regarding the construction and
operation of the electricity supply system. Such regulations may place financial
repercussions on construction or operation outside of predefined boundaries.
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Financial risk mitigation thus comes in the form of following regulations closely.
A similar construction holds for health and safety regulations and environmental
regulations.

Category Sub-category Need
Effectiveness Degree to which construction and

operation of the system helps capital
accumulation

Efficiency Degree of speed to which electricity
production helps accumulate capital

Satisfaction Usefulness System construction and operation
provides opportunities for capital
accumulation

Trust System construction and operation
requires trust in the government to
provide regulations that allows effective
and efficient capital accumulation

Pleasure Capital accumulation provides stable
income for employees; Employees may
feel pride in fulfilling role in societal
system

Comfort N.A.
Freedom from risk Financial risk

mitigation
System construction or operation
outside of regulatory boundaries may
lead to financial repercussions; Long
term investments require a return

Health and safety
risk mitigation

System construction and operation
happens under strict health and safety
regulations

Environmental
risk mitigation

System construction and operation
happens under strict environmental
regulations

Context coverage Context
completeness

N.A.

Flexibility N.A.

Table 2.2: The needs of businesses developing and operating the system

Businesses depending on electricity (table 2.3) as a means of energy to pro-
duce their product or to provide their products have different needs for the elec-
tricity supply system than businesses constructing or operating this system. The
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effectiveness of the system for these companies is influenced by the degree to
which their electricity demand can be met. This means availability and stability of
the electricity provisioning. The degree to which this costs money to these busi-
nesses is their view of the efficiency of the system, where lower costs correspond
to a higher efficiency.

In such a perspective the electricity supply system is useful to these compa-
nies, because the production of their products or the provisioning of their services
allows them to accumulate capital. Higher costs for electricity lowers their profit
and as such slows their capital accumulation. To be able to use this system they
have to trust it. In this case, trust is only possible when the company can trust its
government to safeguard its business needs through useful regulations on the sys-
tem or through technical assurance of the correct workings of the system. Failure
to receive electricity may lead to financial problems for the company. As a form of
risk mitigation they may invest in separate technology allowing to them to be less
depend of the system.

Civilians are depend on electricity (table 2.4) in most of their daily activities
and at different levels of human needs. Looking at Maslow’s hierarchy of needs
(Maslow, 1943), civilians are at a physiological level reliant on food and water.
The production of food requires energy to run the farms, factories and labs (e.g.
food engineering), which happens mostly through electricity. The production of
water (i.e. producing clean drinking water) also requires electricity to operate a
city’s water cleaning facility. The distribution of both require electricity as well.
Civilians also need electricity for safety and security. Police, but also alarm
systems and street lighting depend on electricity. Belongingness and love needs
of civilians require electricity, nowadays, due to social interactions happening
more and more over the internet and through electronic devices like smartphones
and computers. A similar reasoning holds for esteem needs, where internet
applications like LinkedIn, Facebook and Twitter are used to show off achievements
and accomplishments. Perhaps self-actualization not yet depends on electricity, but
people tend to seek help online to become a better employee, colleague, friend,
lover or simply a better human being.

The degree to which this demand is met can be measured as the effectiveness
of the electricity supply system towards civilians. So once again, availability and
stability of electricity is important. The costs related to this effectiveness is the
efficiency, where a lower cost equals a higher efficiency. As described above,
electricity is useful for all civilians at all levels of their social needs, but in order to
use it they will have to trust their government to uphold regulations to safeguard
these needs.

Civilians like to be in control of their own lives, so it is important for them to be
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Category Sub-category Need
Effectiveness Degree to which electricity demands

are met
Efficiency Degree to which costs are made to

meet electricity demands
Satisfaction Usefulness Electricity is necessary to perform

tasks with which capital is accumulated
Trust Places trust in government to define

and uphold regulations on businesses
involved with providing electricity to
safeguard business needs

Pleasure N.A.
Comfort N.A.

Freedom from risk Financial risk
mitigation

Failure to receive electricity may
impact capital accumulation.
Investments in third-party emergency
electricity supply technologies may be
necessary

Health and safety
risk mitigation

N.A.

Environmental
risk mitigation

N.A.

Context coverage Context
completeness

N.A.

Flexibility N.A.

Table 2.3: The needs of businesses depending on electricity

able to make choices. For instance, the options of how their electricity is produced
(e.g. cheaply, environment-friendly, by themselves). At the same time, civilians
don’t like to think too much about electricity. Choosing their form of production
is something they do once and don’t want to be have redo every day, week or
month. But, the lack of electricity has a very high unpleasant effect on civilians, as
it clashes with their human needs.

Civilians trust their governments to safeguard their needs, but sometimes risks
need to be mitigated. Civilians can take matters into their own hands by producing
their own electricity, although some current techniques do not necessarily allow
decoupling from the grid. Civilians should be allowed ways to put matters into their
own hands, for sake of risk mitigation but also the feeling of satisfaction.

To reduce the electricity costs or as an extra source of income, some civilians
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Category Sub-category Need
Effectiveness Degree to which electricity demands

are met
Efficiency Degree to which costs are made to

meet electricity demands
Satisfaction Usefulness Electricity is needed at any level of

social needs of the individual civilian
Trust Civilians place their trust in the

government to define and uphold
regulations on businesses involved
with providing electricity to safeguard
civilian needs

Pleasure Civilians should be allowed to make
some choices

Comfort See usefulness
Freedom from risk Risk mitigation Civilians should be allowed to put

matters into their own hands, for
instance by decoupling from the grid

Financial risk
mitigation

N.A.

Health and safety
risk mitigation

Failure to receive electricity may
impact civilian health and safety

Environmental
risk mitigation

N.A.

Context coverage Context
completeness

N.A.

Flexibility N.A.

Table 2.4: The needs of civilians depending on electricity

have started producing electricity (table 2.5). Civilians producing their own
electricity have similar needs of the electricity supply system as businesses
producing electricity, because civilians profit from producing electricity in a
similar way. Differences between this group and businesses can be found in
the size and duration of investments. For instance, civilians have to buy solar
panels and transformers to start producing electricity. Such an investment may
be large for an individual, but is dwarfed when compared to the investments of
businesses producing electricity. For the civilian producing electricity however,
it is still necessary to mitigate financial, health and safety risks involved with the
production of electricity. In addition, civilians will have to trust governments to
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provide regulations that allow to make a profit from producing electricity. Civilians
may feel pride in producing electricity by fulfilling a role in a societal system.

Category Sub-category Need
Effectiveness Degree to which producing electricity

provides profit
Efficiency Degree of speed to which electricity

production provides profit
Satisfaction Usefulness Reduction of electricity costs; Extra

source of income
Trust Civilians place trust in the government

to provide regulations allowing effective
and efficient electricity production

Pleasure Civilians may feel pride in fulfilling a
role in a societal system

Comfort N.A.
Freedom from risk Financial risk

mitigation
Electricity price may form a risk on the
initial investment of third-party
hardware

Health and safety
risk mitigation

Health and safety regulations should
protect the civilian when producing
electricity using third-party hardware

Environmental
risk mitigation

N.A.

Context coverage Context
completeness

N.A.

Flexibility N.A.

Table 2.5: The needs of civilians producing electricity

The environment as a societal viewpoint is a lot different from the other societal
views. For one, the environment does not benefit in any way from the system.
There may however, be electronic devices helping the environment in some way,
but these are either operated by civilians, businesses or nonprofit organizations
(whose objectives reflect those of the civilian population), but those needs are
already discussed. Instead, the effectiveness of the electricity supply system
as measured from this viewpoint is the degree to which the environment is left
unharmed while meeting the electricity demand. Its efficiency is then measured
as the time spend or the speed with which it is being harmed, where less harming
equals a higher efficiency. The system may not be useful to the environment, but
it may be very unuseful when a threshold of harming the environment is reached
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where damage has become irreversible. This implies a trust relation between the
environment and humans, where our civilization should try not to harm it.

Category Sub-category Need
Effectiveness Degree to which the environment is left

unharmed while meeting the electricity
demand

Efficiency Degree of resources spend with which
the environment is left unharmed while
meeting the electricity demand

Satisfaction Usefulness Harming the environment too much
might lead to irreversible damage

Trust Trusts humans to not harm it
Pleasure N.A.
Comfort N.A.

Freedom from risk Financial risk
mitigation

N.A.

Health and safety
risk mitigation

N.A.

Environmental
risk mitigation

N.A.

Context coverage Context
completeness

N.A.

Flexibility N.A.

Table 2.6: The needs of the environment

The above has provided a perspective to the societal needs of an electricity
supply system. To summarize, as a society we need:

• the state to maintain its sovereignty;

• the electricity demand of the businesses to be met;

• the electricity demand of civilians to be met;

• the cost of electricity provisioning to be minimal;

• the environment to be left unharmed.
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2.4 Necessity of a novel electricity supply system

Our world is changing around us, but a fundamental system in our society on
which everyone depends, has been left mostly the same for the last several
decades. The electricity supply system of the Netherlands is due for a redesign
to benefit everyone.

In this analysis we’ve looked at the individual needs of the groups that make-
up society. The needs of the businesses trying to profit from the system may clash
with reaching the societal needs. Commercial driving forces are currently shaping
parts of the system.

In order to create a society-centred electricity supply system, these commercial
driving forces should not be allowed to influence the shaping of the system.
However, tasks performed by these businesses should still be performed. This will
be a concern for the design of the future societal electricity supply system.

2.5 Post-scarcity electricity supply system

Generally, systems with some form of monetisation on its service are build on the
scarcity of that service. If a service, good or product is scarce, and people have a
need for it, it can be capitalised (Weber, 1978).

Removing the influence of commercial driving forces from a system can be
achieved by removing its monetary value, or in other words by removing the
scarcity. An economy in which all the needs of society are provided abundantly is
called a post-scarcity economy (Sadler, 2010).

A societal electricity supply system should work to help us achieve such a post-
scarcity economy by removing the scarcity of the service it provides, i.e. electricity.
We should aim to provide electricity abundantly in the design of the future societal
electricity supply system.
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Chapter 3

Specification of a societal energy
supply system

So far, we’ve determined that a new energy supply system1 must be designed to
accommodate all of society. We’ve argued that this means that commercial driving
forces must be blocked from having an influence on the system, because these
driving forces may clash with the societal needs of the system.

Nevertheless, a societal energy supply system needs to do more than just
keep-out these influences. For one, its main task should be to supply energy to
its users. This chapter provides a short list of the most important requirements that
should be satisfied by a societal energy supply system. Let us start with a short
description of the main task of an energy supply system.

Society consists of several entities (e.g. citizens, factories, cities, etc.) that all
rely on energy to power their devices (e.g. machinery, systems, facilities, consumer
electronics, lighting, heating, etc.), in order to benefit from the services provided
by those devices. This energy needs to be provided to them, because the energy
is often not available at the desired location and not in the desired form. However,
energy is already abundantly available on planet earth, e.g. through solar power,
wind power, geothermal heat, and other renewable energy sources (De Vries,
Van Vuuren, & Hoogwijk, 2007; Hoogwijk & Graus, 2008; Lu, McElroy, & Kiviluoma,
2009). In order to harness this available energy, it needs to be captured at places
of abundance, transported to the desired places of usage and transformed to a
usable form. This is the main task of an energy supply system.

1Note that previously, only the electricity supply system was discussed. This research project
has had a change in the understanding of its objective. From this moment forward, we expand our
notion of an electricity supply system to the more general notion of an energy supply system. An
electricity supply system is of course an instance of an energy supply system, in which the form of
the energy supplied is in an electrical form. The specification of this societal energy supply system
can be applied as a societal electricity supply system as well.

35
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3.1 Terms

In order to define specifications for the future energy system, several term
definitions are provided. Emphasized terms refer to their respective specific
definition.

Abundance. “An [...] oversufficient quantity or supply.” (abundance, n.d., def.
1).

Driving force. “The main factor that causes something to happen.” (driving
force, n.d., def. 1)

Effectiveness. “Accuracy and completeness with which a specified goal is
achieved.” (ISO/IEC CD 25010.3)

Energy. “The capacity or power to do work, such as the capacity to move an
object (of a given mass) by the application of force. Energy can exist in a variety
of forms, such as electrical, mechanical, chemical, thermal, or nuclear, and can be
transformed from one form to another. It is measured by the amount of work done,
usually in joules or watts.” (energy, n.d., def. 8)

Energy demand. The amount of energy needed at a specific moment.
Influence. “An effect of one person or thing on another.” (influence, n.d., def.

1).
Minimize. “To reduce to the smallest possible amount or degree.” (minimize,

n.d., def. 1).
Operate. “To work, perform, or function, as a machine does.” (operate, n.d.,

def. 1).
Optimal. “Most favourable or desirable; best.” (optimum, n.d., def. 3).
Providing. “To make available; furnish; [or] to supply or equip.” (providing, n.d.,

def. 1 & 2).
Society. “A highly structured system of human organization for large-scale

community living that normally furnishes protection, continuity, security, and a
national identity for its members.” (society, n.d., def. 4).

Sustainability. “Environmental Science. the quality of not being harmful to
the environment or depleting natural resources, and thereby supporting long-term
ecological balance.” (sustainability, n.d., def. 2).

The system. The system under design. The future energy system that
provides energy abundantly in a usable form for society.

The total cost. “The price paid to acquire, produce, accomplish, or maintain
anything.” (cost, n.d., def. 1). Here meant as the total price paid to accomplish the
ultimate goal of the system.

Transparency. “Any change in a computing system, such as a new feature
or new component, is transparent if the system after change adheres to previous
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external interface as much as possible while changing its internal behaviour. The
purpose is to shield from change all systems (or human users) on the other end of
the interface. Confusingly, the term refers to overall invisibility of the component,
it does not refer to visibility of component’s internals (as in white box or open
system).” (transparency, n.d., para. 1).

Usable form. Form of energy (e.g. electricity) in which it is generally used by
the user.

User. “Any person, organisation, process, device, program, protocol, or system
which uses a service provided by others.” (user, n.d., def. 2). Here meant as a
person using the service (i.e. providing energy) provided by the system.

3.2 Requirements

The following is our description of the societal energy supply system’s require-
ments. It uses a top-down approach to requirements specification. We start with
the goal statement of the system and derive the main requirements from the sys-
tem’s goal. The rational for each requirement is presented as well. We present the
following requirement specification for a societal energy supply system.

3.2.1 Ultimate objective

Systems are designed to reach an ultimate objective or goal. For example, some
systems inform their users on a specific or current situation. Other systems may
help their users in travelling, scheduling, trading, storing, or one of the many other
imaginable goals. Often such a goal does not imply the system can be disposed of
as soon as the goal is reached. On the contrary, often the system must continue to
provide its service in order for the goal to be continuously reached. Similarly, the
system under design has an ultimate goal that continues indefinitely.

The system’s ultimate objective is to provide energy in a usable form abun-
dantly for society.

3.2.2 Main requirements

In order for the system to reach this ultimate goal, it can be divided into several
main requirements that must be met. These main requirements will help the
system reach its ultimate goal.

1. Energy must be provided to the users such that society ’s energy demand is
effectively met;
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2. The total cost must be minimized ;

3. The system must operate sustainably ;

4. The system must be optimally transparent to its users;

5. The system may not be influenced by commercial driving forces.

3.2.3 Rationale

The main requirements help the system reach its ultimate goal. The following
describes its rationale.

Energy must be provided to the users such that society’s energy demand is
effectively met.

This is the main task of the system. In order to reach the ultimate goal of energy
abundance, the energy provided must be oversufficient for the energy demand.
In other words, the energy demand must at the very least be met. However,
abundance implies a form of overproduction. We consider effectively meeting
the energy demand as sufficient, but the ultimate goal is to provide energy
oversufficient. It does not have to reach this ultimate goal from the start, but it
should aim to reach this goal at some point and maintain this goal.

The total cost must be minimized.

If the ultimate goal is to be reached, there is an implication of society adopting the
system. Adoption of a system in our capitalist society will only happen when the
system provides some necessary service and does this economically to society
and its members. In this sense, the system’s total costs should at least be smaller
than the total costs of any competing energy supply system. Optimal minimization
of the total costs will allow the system to be the most economical by definition,
which in turn allows adoption of the system by society.

The system must operate sustainably.

If the ultimate goal is to be reached continuously and indefinitely, the system must
operate sustainably. Sustainability is an important factor to operate endlessly,
because an unsustainable operation (e.g. consuming finite resources faster than
they are replenished; or producing waste faster than it can be disposed of) will
eventually create a limit to that system’s operation. Therefore, the system must
operate sustainably.
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The system must be optimally transparent to its users.

If the ultimate goal is to be reached, there is an implication of society adopting the
system. Adoption of a system in any society will only happen when the system
is easier to use than its competing systems. Usability in the case of energy can
be considered to mean that the user does not want to have to think about using it
or how to use it. It should mean that the user simply wants to use some device’s
functionality for its benefit, but does not specifically want to be bothered with the
any concepts surrounding energy or how any of this works. Such aspects should
be concealed from the user. Concealment in systems and interfaces is called
transparency. In this sense, the system must be optimally transparent to its users.

The system may not be influenced by commercial driving forces.

As discussed in sections 2.3.1 and 2.4, a societal system should work to meet
the needs of society, not just the needs of commercial businesses trying to make
a profit. Such commercial needs may clash with societal needs. It is thus of vital
importance that these commercial needs are not allowed to influence the system.
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Chapter 4

Synthesis of a future energy supply
system

The future energy supply system must be constructed to solve the energy supply
problem. The requirements for this future energy supply system have been
specified in chapter 3. In order to solve the energy supply problem several
technical problems must be solved. These are described by the requirements of
the future energy supply system. The energy supply problem is a composition of
the following technical problems:

1. Energy abundance problem. Users desire energy. The main task of the
system is to provide this energy. The users should thus always receive at
least enough energy. In other words, starvation of the users must be avoided
at all times. The goal is to eventually provide oversufficient energy;

2. Cost minimization problem. The users will only adopt the system if the
costs of usage are lower than the costs of usage of other energy supply
systems. The total costs must be minimized;

3. Sustainable operation problem. The system must operate to solve the
energy supply problem continuously and indefinitely. This means that users
must be able to use the system without interruption, but as the system
operates in and interacts with the physical world as its environment, this
sustainable operation also describes a form of ecological sustainability;

4. System transparency problem. Users should not have to be experts in
all kinds of technologies in order to use the system. The system must be
transparent to its users. Default behaviour of the system must be that energy
is produced, consumed and transported in a transparent manner;

5. Commercial influence problem. Commercial influences must be kept out of
the energy supply system to allow it to fully carry out its societal function.

41
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Solving these technical problems of the energy system is difficult, but solutions
may be found through the process of synthesis as described in section 1.2.
Solution domains need to be identified for sub-problems such that solution
abstractions may be found. The rest of this chapter describes technical problems,
sub-problems, solution domains and solution abstractions from the perspective of
synthesis. For readability, an overview of the synthesis (figure 4.1) is provided first,
followed by more detailed descriptions of each solution domain in their respective
sections. It is possible to write several books about each of the identified solution
domains. We’ve tried to provide an overview of the problems and solutions of
each solution domain regarding the future energy supply system described by the
specifications of chapter 3.

For each solution domain, the respective section: (1) defines the terms used
in the domain; (2) explains the invariants constraining such systems; (3) specifies
the objectives of the domain; (4) translates the main requirements concerning
the system under design to domain-specific requirements; (5) describes and
discusses the engineering problems that must be solved to fulfil the domain-
specific requirements; (6) describes and discusses potential solutions for the
posed engineering problems; and (7) describes the open questions that are still
to be resolved or researched.

Figure 4.1: Synthesis diagram of a societal energy supply system
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4.1 Synthesis overview

Figure 4.1 presents an overview of the synthesis that is performed. At the top of
the diagram, the top-level technical problems are displayed as rounded rectangles.
Each of these technical problems can be solved by solution abstractions of
specific solution domains, which are displayed as grey rectangles. Other technical
problems may arise in a solution domain.

The key solution to the energy abundance problem is located in the solution
domain of producer-consumer systems. In this domain, producers and consumers
are identified. Producers supply some good to consumers that in turn use that
good. This is related to this technical problem because enough energy must be
provided to users (i.e. consumers). In order to provide energy, it needs to be
retrieved from somewhere outside of the system, which we can see as the act of
production1.

Within this domain, problems concerning the fluctuations in tempo or speed
of the production and consumption are discussed as the fluctuation regulation
problem. It is necessary because users must at least receive sufficient energy.
Several approaches may be applied to solve this problem, but information about
the state of the production-consumption fluctuation is needed in order to make
meaningful decisions. Since the producers and consumers are geographically
distributed, information needs to be gathered from several locations to gain these
meaningful insights. This poses the problem of geographic distribution, which can
be solved using knowledge from the distributed computing solution domain. This
in turn, poses the problems of networked systems, which can be solved using
knowledge from the computer networking solution domain.

When the producers are connected to consumers via a network with buffering
capabilities it allows new perspectives on the fluctuation regulation problem. In
such a network, the producers can supply energy to the network. The network
can then in turn provide this energy to the consumers that desire it. Buffers
may be connected to this network to help deal with fluctuations in supply and
demand. In this model, the network is thus composed of producers, consumers
and buffers. The network can be represented as an unrestricted graph where
the producers, consumers and buffers can be hierarchically nested. This means
that no assumptions about the size of the network have to be made, because
the producers and consumers can be connected in many different ways. This
hierarchical nesting also occurs naturally in the geographic distribution of the
system. For example, in the form of the country, provinces, cities, districts, areas,

1Note that energy cannot be produced, nor consumed due to the law of conservation of energy,
but it can be brought into a system or taken out of a system.
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streets, houses and devices.

Within this network, users must receive at least sufficient energy. In average
case, producers must thus produce at least sufficient energy. We assume there
is a network with buffering capability, so on average the network should have
at least sufficient production, at least sufficient buffering capacity and at least
sufficient transportation capacity. In other words, users may not exceed the
system’s capacity in their consumption. Eventually, overproduction is assumed
advantageous as it transitions the system from sufficient energy to an abundance
of energy. Section 4.2 discusses the problems and solutions of producer-consumer
systems. The problems and solutions of distributed systems are discussed in
section 4.4. The problems and solutions of networked systems are discussed in
section 4.5.

The first level of synthesis is to consider a producer-consumer system that is
modelled as a graph network consisting of producers, consumers and buffers; a
set of constraints and a set of usage patterns to solve the problem. For example,
regulation may be applied to production and consumption; buffers may be applied
and buffering size may be regulated; producers and buffers may be scaled, etc.
Regulation of parameters in a system implies the application of the control systems
solution domain. In the control systems domain, systems are not designed to be
perfect, but instead system parameters are directed (i.e. controlled) towards some
goal or objective.

There are many kinds of control systems and control systems can be applied
at any level. However, since the highly complex nested graph structure is naturally
hierarchically organized, control systems may be needed at each of these levels. In
this sense, producers, consumers and buffers can be grouped together to allow
reasoning and control at different levels of abstraction (e.g. grouped together
producers, consumers and buffers in a district or in a city can be considered
different levels of control). Similarly, control must also be enacted on individual
producers, consumers and buffers. Because of this, control structures may be
applied at the very fine-grained level (i.e. electric devices, for example controlling
smart washing machines and the charging of electric car batteries),but also at the
very abstract or high level (e.g. controlling the flow of energy within large areas).

Depending on the need, these different levels of control require hierarchical
control systems, meaning that sub-level control systems must provide the needs of
higher level control systems. The system is highly dynamic and not all parameters
may be known initially, which can be solved using intelligent self-learning control
systems (e.g. using neural network control, fuzzy control, Bayesian control, genetic
control, etc.). Additionally, at the lower levels of abstraction, cyber-physical systems
may be needed to deal with the software-machine interoperability, because there
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will be machinery involved. Lastly, the second technical problem discusses the
minimization of costs. Minimization problems can be solved by optimization
algorithm solutions. However, the context of the system may change over time, so
control may be needed here as well. Optimal control systems solutions are needed
to deal with this problem. Section 4.3 discusses the problems and the solutions of
control systems and its specific forms in more detail.

Producer-consumer systems, control systems, distributed systems and
networking already solve the first and second technical problems. However, the
system must also solve the sustainable operation problem. This means that the
system must operate both indefinitely continuous and ecologically sustainable, at
the same time. Solutions to the indefinite continuous operation can be found in the
dependable systems solution domain. We assume that ecological sustainability
can be solved through policies and regulations (e.g. by not allowing fossil fuel
energy production as producers in the system). It may be difficult to detect
connected energy producing devices as polluting or not. Such a classification
could be provided through standardizations of equipment information. This would
allow the system to only connect zero-emission energy producing devices. Only
allowing approved components to the system is discussed in the accounting
solution domain (section 4.8).

Dependable systems is composed of the quality attributes availability, reliability,
safety, confidentiality, integrity and maintainability. Problems of the dependable
systems for the energy supply system are security and dealing with system failure.
Security problems mainly arise from the use of a network. In computer networks
it is often impossible to avoid attacks and difficult to mitigate threats. However,
solutions from the domain of dependable systems may be applied to solve these
issues. In addition, solutions from the network security solution domain may be
required. Section 4.6 discusses the problems and solutions of the dependable
systems solution domain.

Dependable systems together with hierarchical control systems bring-up
another technical problem. The system structure may not be scalable, but have to
be due to the geographic distribution of its users. The solution domain systems-of-
systems addresses this problem by allowing systems to be composed of smaller
component systems. These component systems can operate independently
from the rest of the system, but can also connect to a larger system in which
emergent behaviour arises. The problems and solutions of systems-of-systems
are discussed in section 4.7.

Next, the system transparency problem must be dealt with. System trans-
parency must be applied, because users should not have to be experts in many
of the things the system does. This requires both automation for the parts the sys-
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tem can do and solutions from the human-computer interaction solution domain for
the parts where the users still have to interact with the system. Automation is dis-
cussed in this thesis as the computer science and software technology perspective
that has been taken towards this system.

However, when decisions have to be made, the problem of automation be-
comes more complex. This can be solved using solutions from the artificial intel-
ligence solution domain. Generally, the decisions that have to be made intelligently
by the system, are located in the control systems solution domain. The application
of artificial intelligence is thus discussed from the perspective of intelligent control
in section 4.3.

The system described so far is able to provide energy to users. It can deal
with the problems relating to production and consumption fluctuations and with
the geographic distribution of the users. It can provide this service with minimal
costs and can do so sustainably, meaning both ecologically sustainable as well as
indefinitely continuous. Furthermore, the system is automated to allow the users to
receive the service without expert knowledge of the system’s workings as well as
provides those services through well designed interfaces with high usability and a
good user experience. However, in this system commercial driving forces may still
influence the system.

Accounting is necessary to register the components of the system. This allows
the system to decide when to expand and which new components to use for
this. The system can use this bookkeeping of components to rejects commercial
components from joining the operation. The distributed nature of the system
brings new challenges to accounting, like replication and consensus. Section 4.8
discusses the problems and solutions of the accounting solution domain.

4.2 Producer-consumer systems

This section discusses producer-consumer systems. We assume producer-
consumer systems to contain components that can be classified as producers or
consumers.

4.2.1 Terms

In order to discuss producer-consumer systems, several domain-specific term
definitions are provided.

Buffer. A buffer represents any kind of device, machine, person, system, thing
or piece of code that temporarily keeps or stores some goods, either physical or
virtual, in the period of time between its creation and usage. For example, a part
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of the computer temporarily storing data during its transfer between two computers
that process it at different speeds can be considered a buffer of data; and a battery
can be considered a buffer of electrical energy.

Consumer. A consumer represents any kind of device, machine, person,
system, thing or piece of code that absorbs, destroys, devours, exhausts, expends,
spends or otherwise uses up some goods, either physical or virtual. For example,
a person eating a bread can considered a consumer of bread; and a smartphone
device using up electrical energy to operate can be considered a consumer of
electrical energy2.

Demand. The property demand represents the total number of goods, either
physical or virtual, desired to be used up by all devices, machines, persons,
systems, things or pieces of code within a producer-consumer system at a specific
moment.

Overproduction. The property overproduction represents that more goods,
either physical or virtual, are being created than there are goods being used up at
a specific moment.

Producer. A producer represents any kind of device, machine, person, system,
thing or piece of code that creates, makes, provides or otherwise brings into
existence some goods, either physical or virtual, with the intent that it be used. For
example, a baker can be considered a producer of bread; the sun as a producer of
heat and electromagnetic radiation can be considered a producer of solar energy;
and a solar panel can be considered a producer of electrical energy3.

Supply. The property supply represents the total number of goods, either
physical or virtual, provided by all devices, machines, persons, systems, things
or pieces of code available to be used up in a producer-consumer system at a
specific moment. This property’s value increases by production and decreases by
consumption.

4.2.2 Invariants

Producer-consumer systems operate under specific constraints. These constraints
can be considered invariants of such systems. In order to discuss producer-
consumer systems, the significant invariants concerning them are provided.

2Note that energy cannot be consumed due to the law of conservation of energy, but electrical
energy can be transformed into other forms of energy (e.g. mechanical energy) and thus be
consumed in the sense that the electrical energy no longer exists after being used up.

3Note that energy cannot be produced due to the law of conservation of energy, but forms of
energy can be transformed into other forms of energy which we consider production of energy
in the sense that the resulting form of energy can now be used up our the sense of the term
consumption.
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Availability. Consumers can only use up goods when there is an available
supply (i.e. only when supply > 0).

Buffer limit. The amount of goods stored in a buffer at any moment is finite.
Demand fluctuation. Over time the value of property demand will vary,

according to the current desire for the goods of the consumers. For example, in the
case of the energy system, throughout the day individual consumers may desire
different amounts of energy.

Production fluctuation. Over time the speed at which the producers provide
energy may vary. For example, in the case of the energy system, throughout the
day different amounts of energy may be provided by individual solar panels as the
power of the solar rays changes throughout the day.

Production limit. The amount of goods provided by a producer at any moment
is finite.

Starvation. When demand cannot be met by supply, the consumers will not be
able to receive goods when trying to get goods.

Synchronization in space. Handover of a good can only be done at the same
place.

Synchronization in time. Handover of a good can only be done at the same
time.

4.2.3 Objectives

Producer-consumer systems operate to reach particular objectives. These
objectives may help to fulfil the system’s main requirements.

Effectiveness. The effectiveness of a producer-consumer system can be
measured as the degree to which it is able to provide goods to the consumers
according to their desire. A fully effective producer-consumer system thus makes
sure that the demand is met by the supply (i.e. supply � demand).

In the case of the system under design, we can measure the effectiveness
as the degree to which it is able to provide energy to the energy consumers
according to their energy demand. The system’s energy demand (EDemand) must
be measured as well as the energy actually supplied (ESupply). We expect the
system to be fully effective, which means that the system must make sure that the
energy demand is met by the energy supply (i.e. ESupply � EDemand).

Efficiency. The efficiency of a producer-consumer system can be measured as
the degree to which resources are expended in relation to its effectiveness.

In the case of the system under design, we can measure the efficiency as
the degree to which resources are expended in relation to meeting the energy
demand. Efficiency can be divided into two categories: (1) energy efficiency,
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measured as the energy produced divided by the total energy consumed; and
(2) cost efficiency, measured as the total cost in relation to meeting the energy
demand. In a producer-consumer system that produces its energy from renewable
energy sources, cost efficiency does not take into account the energy efficiency.
This implies that the energy efficiency may be relatively low for this system, as long
as it is fully effective and cost efficient.

4.2.4 Domain-specific requirements

In order to fulfil the main requirements (section 3.2.2) using this domain, they are
translated to domain-specific requirements.

1. The system must keep the energy supply greater than or equal to energy
demand;

2. The system must minimize costs related to meeting the energy demand.

4.2.5 Engineering problems

In order to fulfil the domain-specific requirements of the system as a producer-
consumer system, several engineering problems must be solved.

Fluctuation. Energy demand must be met by energy supply. However,
challenges arise because energy demand and energy production may both
fluctuate. The consumer will fluctuate in its desire for goods (i.e. the demand will
fluctuate) and the producer may fluctuate in its production of goods. The system
must be designed to deal with these fluctuations to meet the demand.

Synchronization. The energy producer and the energy consumer need to be
able to ‘hand over’ energy. Therefore, they need to be in the same place or be
in someway connected to each other; and have to make the transfer at the same
time. The same holds when an energy buffer is added in between. This may be a
problem, because the producer and the consumer may have a different tempo.

Complexity. The system will consist of many producers and many consumers.
This introduces a problem of complexity.

4.2.6 Solutions

The following solutions are proposed for the engineering problems of producer-
consumer systems.

Fluctuations. In a producer-consumer system where the production and
demand may fluctuate, several general approaches may be taken: (1) production
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and consumption may be controlled to balance the fluctuation, keeping both at
the same level; (2) buffering may be applied to smooth the fluctuations; and (3)
horizontal scaling may be applied to provide a form of overproduction.

Balanced fluctuations is an approach taken by the current electricity provision-
ing system. This may also be called direct production-consumption (figure 4.2).
Consumer C has a demand of energy. Producer P provides this energy to con-
sumer C. This implies that C has to consume as fast as P is producing. However,
both P and C have their own processes for production and consumption, which are
fluctuating. Balancing these fluctuations can in this situation be achieved in several
ways: (a) production may be regulated; and (b) consumption may be regulated.

Figure 4.2: Direct production-consumption

Regulation of production can be applied by reducing the production of P
according to the demand of C. In the current electricity provisioning system
this also saves costs, because less fossil fuels have to used, which is optimally
efficient. However, in a system that only uses renewable energy sources, this does
not affect the cost efficiency. On the contrary, by definition this balancing will never
allow energy to be provided abundantly, because it will only provide enough and
never extremely plentiful or oversufficient.

Regulation of consumption can be applied by reducing the consumption of C
according to the production of P. However, this comes at the cost of satisfaction
of C, because the demand is not met immediately. This approach is applied by
several smart consumer devices in the current electricity provisioning system. For
example, smart washing machines may delay their operation until after peak times.

Instead of balancing the fluctuations, buffering may be applied to smooth the
fluctuations (figure 4.3). Buffer B is added in between producer P and consumer C,
and has a finite storage capacity. Both processes can stay the same, but energy
is temporarily stored in a buffer after production and before it is consumed. This
can help deal with the fluctuations of production and demand. However, B may
be empty during demand of C causing starvation in C; or B may overflow during
production of P, because buffers have a finite capacity. A solution must be found
for both if this approach is to be taken. Buffer overflows may be solved by reducing
production of P or providing some kind of disposal device, hole or sink to waste
the excess. Furthermore, the starvation problem is actually the same as meeting
the demand, so this should be solved using one of the solutions provided in this
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section.

Figure 4.3: Buffered production-consumption

Another way to apply buffering to smooth the fluctuations is by adding a buffer,
but not placing it in between the producer and the consumer (figure 4.4). In this
situation, producer P may still provide all the demanded energy to consumer C, but
any overproduced energy can be provided to the buffer simultaneously. Similarly,
when C is demanding more than P produces, B may provide energy to C. Again,
B may be empty during demand of C causing starvation in C; or B may overflow
during production of P, because buffers have a finite capacity. A solution must be
found for both if this approach is to be taken.

Figure 4.4: Separate buffering for production-consumption

Overproduction is another way to meet demand during fluctuations. As long as
production fluctuates well above the demand, the problem has been already been
solved. Production cannot be increased, because it is reliant on an environment
function (e.g. solar and wind power). However, horizontal scaling (i.e. simply
adding more producers) may be applied to achieve the same (figure 4.5). A similar
approach by horizontally scaling the buffers may be used to increase the buffer
size of the system. Horizontal scaling cannot be applied in real-time, nor in near
real-time, especially in the case of energy producers and energy buffers the act of
adding a device is one that takes time. A new producer or buffer has to be acquired
and installed.

Complexity. Several solutions exists to deal with the complexity: (1) by
connecting each energy consumer to only one energy producer (and if needed to
only one energy buffer); or (2) by decomposition.
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Figure 4.5: Overproduction through horizontal scaling of producers

Connecting each energy consumer to only one energy producer (and if needed
to only one energy buffer) will help reduce the complexity. However, it will also
reduce the reliability of the system, because the producer (or the buffer) may stop
functioning. In systems with many components, failure is likely to occur, and should
be designed for.

In any other situation, several energy consumers will be connected to several
energy producers (and, if needed, to several energy buffers) like a network,
resulting in an increased complexity for the producer-consumer problem (i.e.
meeting the energy demand). This may be dealt with, by decomposing the system
into smaller subsystems for which the producer-consumer problem is less difficult
to solve. The subsystems may then of course also be decomposed into even
smaller subsystems. And so forth. Luckily, this decomposition occurs naturally
in the energy system, due to natural decomposition of the geographic location of
the producers and consumers. For example, we may use the decomposition of:
country, provinces, cities, districts, areas, streets, houses and devices. However,
connecting these geographically distributed parts like a network may bring its own
challenges.

It may be best to decompose the system into smaller subsystems, that can
determine for themselves which of the fluctuation strategies to apply in order for
the system as a whole to provide energy abundantly. In such a system, each
subsystem can manage its own supply and demand while informing its parent
system that it has too less or abundant energy. This may work by each subsystem
providing a range for control to its parent system, after which the parent system
can evaluate the best option, which means there needs to be a form of control of
the subsystems.

Synchronization. The transfer of energy from the producer to the consumer
has to happen at the same place and at the same time. The production and
consumption processes may have different speeds, so this may be problematic.
This problem is called synchronization in time. The problem seems partially tackled
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by the solutions for the fluctuation problem, but it is not yet solved. In each of the
solutions proposed in that section, there is still a moment of ‘handover’ or transfer
of energy between two entities (i.e. producer, consumer and buffer). Timing this
correctly is difficult, because a shared clock may be missing. In a centralized
systems, the solution is trivial. In a decentralized system, one of several solutions
may be applied: MARS (Kopetz et al., 1989); CASD protocols (Cristian, 1989);
Reference broadcast infrastructure synchronization (Cena, Scanzio, Valenzano,
& Zunino, 2015); or GPS may be used to synchronize time. However, there are
many more options to choose from as the topic has been researched for some time
already. (Lamport, 1978)

In computing, producer-consumer systems are characterized by the application
of the bounded-buffer problem. First posed by Dijkstra (1972), the bounded-buffer
problem arises due to producers of data and consumers of data, sharing a finite
data buffer, where each of the producer(s) and the consumer(s) are separate
processes that sleep (i.e. wait) and wakeup (i.e. continue) accordingly, to make
sure the producers do not put data in an already full buffer and the consumers
do not take data from an already empty buffer. In other words, these processes
need a form of synchronization. Systems with synchronization have to watch out
for concurrency problems of multiple processes, like a deadlock. Solutions may
be provided using inter-process communication like semaphores (Dijkstra, 1968),
mutexes (Courtois, Heymans, & Parnas, 1971) and monitors (Hansen, 1973;
Hoare, 1974).

4.2.7 Open questions

After providing solutions to the engineering problems of producer-consumer
systems, several questions are left unanswered.

Geographic distribution. The natural geographic distribution of the producers
and consumers in the system poses the problem of synchronization in space.
The domain of distributed computing may be applied to deal with this problem
(section 4.4).

Fluctuation regulation. In order to regulate the fluctuations using the solutions
mentioned above, some form of control is needed. This can be achieved by
designing an imperfect system that corrects its errors to reach some improved (or
goal) state. This can be done using the domain of control systems (section 4.3).

Large-scale complexity. The large-scale of the system increases the difficulty
of solving the fluctuations problem. Decomposing the system vertically hierarchi-
cally as well as decomposing the system horizontally peer-to-peer can help de-
crease this complexity. This may be solved through hierarchical control systems,
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which is described in section 4.3.

4.3 Control systems

Systems provide some kind of functionality to their users. This functionality is
described in a requirement specification. The mapping from requirements to
system design is often difficult. Sometimes it is possible to design systems to be
perfect from the start, i.e. they are able to provide some function in the optimal way
from the beginning and are able to maintain that ability indefinitely. In other cases,
this may be highly difficult, highly costly or not possible at all. Control systems
are used when it is easier to correct errors in an imperfect system than to design
a perfect system. For example, a boiler correcting its water temperature can be
considered a control system.

“Control systems have been successfully applied in almost all areas of engi-
neering and extensive literature exists in this field.” (Akşit, 2004, page 87). There
are two general kinds of control systems: open loop control systems and closed
loop control systems. Open loop control systems control the system on an external
condition independent of the system’s condition. For example, a boiler correcting
its water temperature using a timer to determine when to apply heat can be consid-
ered an open loop control system. Closed loop control systems (also called feed-
back control systems) control the system using the system’s condition and some
desired condition. For example, a boiler correcting its water temperature using a
measurement of its water temperature and a desired water temperature value to
determine when to apply heat can be considered a closed loop control system.

This chapter discusses closed loop control systems from the perspective of the
energy system as a software system.

4.3.1 Terms

In order to discuss control systems, several domain-specific term definitions are
provided.

Actuator. An actuator represents a component, device, machine, person,
system, thing or piece of code that can influence its environment.

Comparator. A comparator represents a component, device, machine, person,
system, thing or piece of code that can compare two models describing conditions
of the system in order to evaluate whether there is a difference between the
two. Here meant as a comparator for the model of the controlled system and its
reference model.
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Compensator. A compensator represents a component, device, machine,
person, system, thing or piece of code that can choose an appropriate correction
for a difference between two models of conditions. Here meant as a compensator
for a difference between the model of the controlled system and its reference
model.

Controlled system. A controlled system represents the system that is being
influenced.

Feedback loop. A feedback loop represents a connection between the
sensor and the model of the controlled system that allows the sensory data to be
interpreted and applied to the model of the controlled system. A feedback loop
keeps the model of the controlled system up-to-date with the input from the sensor.

Model of the controlled system. A model of the controlled system represents
the set of properties of the system that reflect its actual state and can be used to
reason about its perfect or imperfect condition.

Property of the controlled system. A property of the controlled system repre-
sents some characteristic, quality or trait of the system that is being controlled. A
value can represent the current state of the controlled system with respect to the
particular property.

Reference model. A reference model represents the set of properties of the
system that reflect its perfect condition and can be used in comparison to another
condition.

Sensor. A sensor represents a component, device, machine, person, system,
thing or piece of code that informs a system of its environment. Here meant as a
sensor that informs the control system of its controlled system.

4.3.2 Invariants

Control systems operate under specific constraints. These constraints can be
considered invariants of such systems. In order to discuss control systems, the
significant invariants concerning them are provided.

Controllability. A system can only be a control system if it has the controllabil-
ity property, i.e. “A system is controllable if it is possible to cause its state vector to
move from any initial value, to any value, in a finite time.” (Akşit, 2004, page 87)

Observability. A system can only be a control system if it has the observability
property, i.e. “A system is observable if it is possible to reconstruct the state-vector
completely from measurements made.” (Akşit, 2004, page 87)

Observer effect. When a property of the controlled system is measured (i.e.
observed), the observation of the controlled system impacts the systems. This
may or may not have influence on the measured property itself and thus impact
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the observability of the system.
Stability. A system is considered stable if the properties of the controlled

system can be controlled within the specified amount of time.

4.3.3 Objectives

Control systems operate to achieve one particular objective. This objective may
help to fulfil the system’s main requirements.

Imperfection. As described in the introduction of this chapter, a control system
can be applied to correct errors in an imperfect system, in order to avoid having to
design a perfect system.

The domain of producer-consumer systems (section 4.2) has described that
demand and supply will fluctuate for energy supply systems. Correcting the errors
(fluctuations) of such an imperfect system is the objective of a control system. The
properties of the controlled system that are not controllable can be considered:
demand and number of consumers. The property of the controlled system that
must be controlled can be considered: supply. In order to control the supply, the
following properties of the controlled system can be controlled: production rate,
consumption rate, buffering, number of producers and number of buffers.

Correcting errors in the energy supply system may be necessary in different
ways at each of the different subsystem decomposition levels (i.e. country,
provinces, cities, districts, areas, streets, houses and devices), as described
earlier. For this, we described that each subsystem’s supply and demand may be
managed by a parent system. This is supposed to decrease the complexity of the
fluctuation regulation problem.

4.3.4 Domain-specific requirements

In order to fulfil the main requirements (section 3.2.2) using this domain, they are
translated to domain-specific requirements.

1. The system must effectively control the production rate, in order to keep the
energy supply greater than or equal to the energy demand;

2. The system must effectively control the consumption rate, in order to keep the
energy supply greater than or equal to the energy demand;

3. The system must effectively control buffering, in order to keep the energy
supply greater than or equal to the energy demand;
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4. The system must effectively control the number of producers, in order to keep
the energy supply greater than or equal to the energy demand;

5. The system must effectively control the number of buffers, in order to keep
the energy supply greater than or equal to the energy demand.

4.3.5 Engineering problems

In order to fulfil the domain-specific requirements of the system as a control
system, several engineering problems must be solved.

Problems of defining. Akşit (2004) describes multiple problems of defining
control systems.

• difficulty of obtaining the actual parameters of controlled systems;

• semantic gap between the sensed data and the model of the controlled
system;

• difficulty of defining the model of the controlled system;

• difficulty of defining an ideal reference model;

• difficulty of defining an automated comparator;

• difficulty of defining an automated compensator;

• difficulty of applying the desired control actions;

• difficulty of defining an optimal control architecture;

• difficulty of determining an adaptation and/or optimization strategy;

• lack of means to compute the quality factors of control.

All of these non-trivial problems have to be dealt with in some way.

4.3.6 Solutions

The following solutions are proposed for the engineering problems of control
systems.

Feedback controller. Generally, a feedback control system consist of the
Controlled system plus a controller, where the controller consists of the following
components: Sensor, Feedback loop, Model of the controlled system, Reference
model, Comparator, Compensator and Actuator ; as shown in figure 4.6. The
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controlled system’s properties are observed by a sensor. The feedback loop
updates the model of the controlled system according to input of the sensor. The
comparator calculates the Error, i.e. the delta or difference between the reference
model and the model of the controlled system. The compensator uses the error
to choose the appropriate correction that can be performed by the actuator, thus
having an effect on the properties of the controlled system.

Figure 4.6: A feedback controller (Akşit, 2004)

Architectures. figure 4.6 shows a simple structure of a single feedback control
loop. However, several architectures exist for control systems. A simple controller
can control a single property of the controlled system, but we may also imagine
controllers that control multiple properties of a controlled system. Similarly, multiple
controllers may concurrently control properties of a single controlled system.
This would then happen via multiple feedback control loops. Here, the controlled
properties may each be controlled by a single controller or multiple controllers may
control a single property. Control problems are often tackled using a combination
of multiple controllers.

Whenever these controllers are acting as autonomous agents and are dis-
tributed throughout the system, the control system can be considered a decen-
tralised control system or distributed control system. These agents may cooper-
ate to achieve their objectives. Controllers may operate autonomously, but it is also
possible that the behaviour of controllers is controlled. For instance, the reference
model with which the comparator determines the error may be controlled. An ex-
ample of this is the thermostat in a living room that controls the room temperature,
where the desired temperature (i.e. reference model) can be changed. However,
other parts of the controller may also be controlled. Controllers may be used for
this control of other controllers. Higher-order controllers have control over lower-
order controllers in a hierarchical control system. Controllers may sometimes need
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to adapt to a controlled system where the parameters may vary or are unknown
during design. Control systems with such adaptiveness are considered adaptive
control systems.

Artificial intelligence can be applied to control systems via intelligent agents as
intelligent control (Linkens & Nyongesa, 1996). Several approaches of artificial
intelligence like Bayesian probability, fuzzy logic, genetic algorithms, machine
learning and neural networks. Possible control strategies using these approaches
are: Bayesian control (Hinderer, Rieder, & Stieglitz, 2016), fuzzy control (Etik,
Allahverdi, Sert, & Saritas, 2009; Liu, Wang, Golnaraghi, & Kubica, 2010), genetic
control (Nassif, Kajl, & Sabourin, 2005), expert system control (Etik et al., 2009)
and neural network control (Ge, Hang, Lee, & Zhang, 2013; Zhang, Ge, & Hang,
2000).

Furthermore, there exist optimal control architectures, in which a strategy
to minimize a mathematically predefined and measured performance index is
implemented (Akşit, 2004). This can be applied when an optimal property value
is known or can be calculated.

4.3.7 Open questions

After providing solutions to the engineering problems of control systems, several
questions are left unanswered.

Application. The solutions presented above only give an introductory overview
of possible solutions that are available in the field of control systems. Further
research to the application of these solutions to the energy supply system is
required. The problems of defining control systems must be dealt with during
the application of these solutions. The solutions to these problems of the energy
supply system are non-trivial and require further research attention.

Decision theory. Shortly highlighted in the solutions is the domain of intelligent
control systems in which artificial intelligence is applied to control systems. The
field of artificial intelligence is very large and lots of research is currently happening
in this field.

Physical. The solutions provided in the control systems section only discuss
the ability to change properties of the system. In reality, this will mean to have an
effect on the physical world. This report only focusses on the software part of the
system, but the interaction between the cyber (i.e. software) and the physical world
must be researched as well. The field of cyber-physical systems has been the
subject of active study for many years, but has recently had a boost in popularity,
due to the Internet of Things (Whitmore, Agarwal, & Da Xu, 2015). The application
of cyber-physical systems to energy supply systems has been documented well
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(Khaitan, McCalley, & Liu, 2015).

4.4 Distributed systems

This section discusses distributed systems. Distributed systems is a widely
accepted grouping term for systems consisting of a geographically distributed
collection of autonomous components that work together to form a system
with emergent properties. In the literature, we may find several descriptions
of such systems. In their brief introduction to distributed systems, van Steen
and Tanenbaum (2016, page 968) state: “A distributed system is a collection of
autonomous elements that appear to its users as a single coherent system.”. Such
systems can generally be described as having the following three characteristics:

Component concurrency. The components are computers operating indepen-
dently of each other, but are doing so at the same time.

Independent component failures. Each of the components may fail at any
time for reasons that may be unknown (e.g. hardware failure, connection failure,
etc.). This brings uncertainty which must be designed for. The system must be
able to deal with these failures.

Lack of a global clock. The computing of each of the components is asyn-
chronous to the computing of other components. This implies that a single com-
puter is not classified as a distributed system.

4.4.1 Terms

In order to discuss distributed systems, several domain-specific term definitions are
provided.

Availability. “For a distributed system to be continuously available, every
request received by a non-failing node in the system must result in a response.”
(Gilbert & Lynch, 2002, page 3)

Consistency. “There must exist a total order on all operations such that each
operation looks as if it were completed at a single instant. This is equivalent
to requiring requests of the distributed shared memory to act as if they were
executing on a single node, responding to operations one at a time.” (Gilbert &
Lynch, 2002, page 3)

Network. “[...] a system of interconnected computer systems, terminals, and
other equipment allowing information to be exchanged.” (network, n.d., def. 6)

Partition tolerance. “[...] the network will be allowed to lose arbitrarily many
messages sent from one node to another. When a network is partitioned, all
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messages sent from nodes in one component of the partition to nodes in another
component are lost.” (Gilbert & Lynch, 2002, page 3)

4.4.2 Invariants

Distributed systems operate under specific constraints. These constraints can be
considered invariants of such systems. In order to discuss distributed systems, the
significant invariants concerning them are provided.

CAP Theorem. The impossibility for a distributed system to provide all 3 of the
guarantees consistency, availability and partition tolerance, at the same time. Only
2 out of 3 guarantees can be provided at the same time. (Gilbert & Lynch, 2002).

4.4.3 Objectives

A system may be distributed for several reasons and distributed systems may
have goals of their own. The following are considered goals of distributed systems
(Tanenbaum & van Steen, 2007). These objectives may help to fulfil the system’s
main requirements.

Making resources accessible. It may be useful to apply distributed systems
techniques to make remote resources more easily accessible to the users.

Distribution transparency. It is a goal of distributed systems to hide the
fact that its processes and resources are physically distributed across multiple
computers. A distributed system that seems like it is a single system can be called
transparent.

Openness. The syntax and semantics of services that are offered by a
distributed system must be described by standard rules. Interfaces and their
behaviour must be specific precisely by protocols. Flexibility through composability
in the form of easily configuring the system out of different components and being
able to replace these is also mentioned under this objective by Tanenbaum and
van Steen.

Scalability. There are at least three dimensions on which a system’s scala-
bility can be measured: size, i.e. scalable in the number of users or resources;
geographically, i.e. scalable in the distance between users and resources; and
administratively, i.e. scalable in the number of independent administrative organi-
zations (Neuman, 1994). Such problems may be solved with distributed systems
techniques like replication, sharding, etc. The geographic distribution that is a fun-
damental part of the energy supply system finds the applicability of distributed sys-
tems in this objective.

Reliability. On top of the other goals of distributed systems, distributed
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systems may also be applied to achieve reliability through data replication. When
one or several computers with data on it crash, still other computers may have a
copy of the data, effectively providing a form of fault tolerance.

4.4.4 Domain-specific requirements

In order to fulfil the main requirements (section 3.2.2) using this domain, they are
translated to domain-specific requirements.

1. The system must be geographically scalable over a wide-area (i.e. to cover
territory of the Netherlands);

2. The system must be scalable in size to provide energy to all users in the
Netherlands;

3. The system’s distribution must be transparent;

4. The system must be able to interoperate with many different heterogeneous
energy producing devices.

4.4.5 Engineering problems

In order to fulfil the domain-specific requirements of the system as a distributed
system, several engineering problems must be solved.

General pitfalls. Although not really an engineering problem. Deutsch (n.d.)
formulated general mistakes in the form of false assumptions (i.e. fallacies) that
developers may make when creating distributed systems. These fallacies of
distributed computing are formulated as:

1. The network is reliable.

2. The network is secure.

3. The network is homogeneous.

4. The topology does not change.

5. Latency is zero.

6. Bandwidth is infinite.

7. Transport cost is zero.

8. There is one administrator.
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Scaling techniques. Scaling seems easy enough. Simply replicate the data
by replication of databases, servers, files or caches. However, problems may arise
from scaling. Having multiple copies may lead to inconsistencies between these
copies when changing data. This may be solved by updating all the copies in a
transaction, but transactions require synchronization through a global clock which
is not available in distributed systems. In addition, in the failure prone environment
of distributed systems, it is difficult to maintain the ACID property of transactions.

Transparency. Distributed systems have to hide that everything is distributed.
This allows the system to be experienced as a single system by the user. However,
this means many different parts of the distribution must be hidden.

Openness. In order to interoperate well with many different devices. The
system must conform to well-defined interfaces and support different policies
specified by those devices.

4.4.6 Solutions

The following solutions are proposed for the engineering problems of distributed
systems.

Fallacies of distributed computing. Arguably the best solution to these
mistakes, is to avoid making the system distributed. However, that is not possible
in the case of the energy supply system due to the geographical distribution of its
components. The only other solutions is to keep these fallacies in mind in order to
design and implement the system carefully without making these mistakes. Rotem-
Gal-Oz (2006) provides a good starting point to avoiding these mistakes.

Synchronizing replications. The CAP theorem shows that it may be very
difficult to have strong consistency, i.e. synchronous replication. However, instead
of strong consistency, a system may also aim for weak consistency (i.e. best effort)
or eventual consistency (i.e. asynchronous replication, that eventually will result
in consistent data). As long as we tolerate inconsistencies temporarily, eventual
consistency may provide a good solution. Many different technologies have been
developed that deal with eventual consistency.

For storage, we may look at technologies like HDFS (Shvachko, Kuang, Radia,
& Chansler, 2010), MongoDB (MongoDB Inc., 2009) or Apache Cassandra
(Apache Software Foundation, 2008). For computing, we may look at technologies
like Apache Hadoop (Apache Software Foundation, 2011a), Apache Spark
(Apache Software Foundation, 2014) or Apache Storm (Backtype, 2011). For
messaging, the technology Apache Kafka (Apache Software Foundation, 2011b)
may provide a solution. For consensus, the technology Apache Zookeeper
(Apache Software Foundation, 2010) might be used or one might even look at
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the application of Blockchain, the technology underpinning the cryptocurrency
Bitcoin (BTC) (Nakamoto, 2008). Blockchain is a technology for consensus in a
probabilistic state machine (Saito & Yamada, 2016). Of course, there may be many
more technologies each with there own benefits and limitations.

Availability patterns. In order to achieve high availability, we may look at
availability patterns. Generally, there are two patterns used to achieve high
availability: fail-over; and replication.

Distribution transparency. Transparency of the distribution is a very broad
problem. Several different parts of the distribution have to be hidden. Raymond
(2013, page 11) describes the different transparencies:

• “access transparency — hides the differences in data representation and
procedure calling mechanism to enable interworking between heterogeneous
computer systems”;

• “location transparency — masks the use of physical addresses, including the
distinction between local versus remote”;

• “relocation transparency — hides the relocation of an object and its interfaces
from other objects and interfaces bound to it”;

• “migration transparency — masks the relocation of an object from that object
and the objects with which it interacts”;

• “persistence transparency — masks the deactivation and reactivation of an
object”;

• “failure transparency — masks the failure and possible recovery of objects, to
enhance fault tolerance”;

• “replication transparency — maintains consistency of a group of replica
objects with a common interface”;

• “transaction transparency — hides the coordination required to satisfy the
transactional properties of operations”.

Support different policies. It may be best to only provide different policies
through mechanisms. For illustration, we can look at secure communication
over SSL/TLS (Dierks, 2008). In this protocol, the encryption algorithm(s) used
to encrypt and decrypt the messages are decided upon by the communicating
entities themselves. A special ’hand-shake’ part of the communication, that sets-
up the secure connection, allows to communicate which encryption algorithm is
going to be used. This way of allowing different policies through a mechanism thus
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allows a wide-range of interoperability between devices, where some devices may
not know the currently most used algorithms. This example can be applied to the
energy supply system interface and protocol design.

4.4.7 Open questions

After providing solutions to the engineering problems of producer-consumer
systems, several questions are left unanswered.

Networked system. A system can only be distributed when its components
are connected as a network. This means that networking capability is needed. The
domain of computer networking may solve this and its sub-problems (section 4.5).

Transaction failure. Although the technologies mentioned for replication
synchronization may solve some of the problems surrounding transactions,
transactions failures also have to be dealt with. System failures in a more general
sense are discussed in the domain of dependable systems using fault prevention,
fault-tolerance, fault removal and fault forecasting techniques (section 4.6).

4.5 Computer networking

This section discusses computer networking. A computer network is a group
of computers that are connected like a graph structure in which the connected
computers can exchange information.

4.5.1 Terms

In order to discuss networking, several domain-specific term definitions are
provided.

Connection. A connection represents a bond or link between two devices,
machines, persons, systems, things or pieces of code, within the network that
can be used to transfer messages between each other. A direct connection
explicitly represents a direct bond or direct link between the two devices, machines,
persons, systems, things or pieces of code.

Destination. A destination represents a property of a message referencing the
device, machine, person, system, thing or piece of code that it wants to go to.

Node. A node represents a device, machine, person, system, thing or piece
of code that is connected in the network to other devices, machines, persons,
systems, things or pieces of code.

Packet. A packet represents the smallest unit of a message transferred from
one device, machine, person, system, thing or piece of code to another.
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Protocol. A protocol represents a set of rules that state how communication is
conducted.

Source. A source represents a property of a message referencing the device,
machine, person, system, thing or piece of code that it originates from.

Topology. A topology represents the structure in which the devices, machines,
persons, systems, things or pieces of code are bonded or linked within the
network. For example, in a bus topology all the nodes are connected to a shared
link; and in a ring topology each node is connected to two other nodes such that
the structure has the shape of a ring.

4.5.2 Invariants

Networks operate under specific constraints. These constraints can be considered
invariants of such systems. In order to discuss networks, the significant invariants
concerning them are provided.

End-to-end delay. It takes time for a packet to be transferred from a source to
a destination.

Pairing. A direct connection can only exist between two nodes, except in a bus
topology.

4.5.3 Objectives

The objective of a networked system depends on the reason why networking is
applied. Networks can be applied when a system:

• is naturally geographically distributed;

• has a natural or artificial decomposition separating expertise (or specialism)
into different nodes;

• requires cooperation or interaction between its components;

• requires reliability through the application of redundancy;

• requires security, through the application of concern separation into different
nodes allowing security breaches of one node/concern while maintaining
security in the other nodes/concerns;

• requires performance, through the application of horizontal scaling;

• requires a way to deal with conflicting information, through the application of
competitive computations fighting for consensus.
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Some of these objectives are sometimes covered better by the distributed systems
domain, but they are mentioned here for completeness. The objectives above may
help to fulfil the system’s main requirements.

The system is naturally geographically distributed, because the producers
and consumers are naturally distributed throughout the country. This was already
covered in the distributed systems section (section 4.4).

The system has a natural decomposition separating expertise into different
nodes, because from the energy domain we already understand the separated
concepts of energy producers, energy transporters and energy consumers. In
addition, when the usable form of energy is set to electrical energy, then the
field of electrical engineering naturally decomposes those concepts into many
more concepts through the application of different pieces of equipment for the
production, transport and consumption of electrical energy.

The system requires interaction between its components for the provisioning
of energy, but also for the further communication necessary for the computation
operations of the system.

Reliability, security, performance and dealing with conflicting information may all
be topics of interest for the system, although they have yet to arise from the main
requirements and the applied domain of producer-consumer systems.

4.5.4 Domain-specific requirements

In order to fulfil the main requirements (section 3.2.2) using networking, they are
translated to domain-specific requirements.

1. system nodes must be effectively able to connect to the network;

2. system nodes must be effectively able to disconnect from the network;

3. system nodes must be effectively able to interact through the network.

4. the total cost of building and maintaining the network must be minimized;

5. the network must operate sustainably;

6. the network must be optimally transparent to its users.

4.5.5 Engineering problems

In order to fulfil the domain-specific requirements of the system using networking,
several engineering problems must be solved.
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Costs. A system requires a lot of hardware and software to allow the function-
ing of a network. All nodes of the network have to run software that allows the
communication using the same protocols. Development costs of the necessary
hardware and software may be very high.

Complexity. A network’s complexity is related to its size, topology and hetero-
geneity. It can be the number of nodes and different paths that exist between each
pair of nodes in the network. In which case the choice of topology may help reduce
the complexity of the network. Complexity can also stem from the heterogeneity of
connections, nodes and protocols, in which case compatibility (both procedural and
semantic) can become an important factor.

Procedural interoperability. Interaction and cooperation both require proce-
dural as well as semantic interoperability. Procedural interoperability describes the
ability of communication using a common syntax (i.e. grammar and vocabulary),
as well as having the same procedures in place (e.g. for beginning and ending a
conversation). Making sure that nodes in the system are procedurally interoperable
may be difficult.

Synchronization in time. Nodes need to be take time to go through the
steps of their protocol in the right moments of time. They will have to wait for
one another. In other words, the nodes have to be synchronized in time. This
can be described to be covered by technical interoperability (i.e. the ability of
understanding signals).

Semantic interoperability. Interaction and cooperation both require procedural
as well as semantic interoperability. Semantic interoperability describes the ability
of understanding whatever is communicated between two entities. Making sure
that nodes in the system are semantically interoperable may be difficult.

4.5.6 Solutions

The following solutions are proposed for the engineering problems of networks.
The internet. The costs involved with constructing (or buying) the necessary

networking hardware, designing and implementing the necessary protocols and
maintaining such a computer network are incredibly high and will increase with
the size of the network. The easiest solution to this is to simply make use of the
infrastructure that is already available: the internet.

The internet is already widely used by many services. For example, the World
Wide Web, electronic mail, VoIP, streaming media, multi-player online gaming
and many more, including lots of business and banking applications. The internet
already provides all the general computer networking needs a system might have.
The hardware and software are already in place. Scalability is provided through
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a layered system of protocols called the Internet protocol suite. In addition, the
network is highly robust (Cohen, Erez, ben Avraham, & Havlin, 2000). However,
it is also vulnerable to intentional attacks (Cohen, Erez, ben Avraham, & Havlin,
2001). On top of that, the internet comes with its own problems. For example,
security is an issue for the internet and special care must be taken to safeguard
the proper working of the system and the privacy of its users.

A custom network. Instead of using the already available internet infrastruc-
ture, we may also create our own custom network. One of the advantages of this
approach is that it can be completely isolated from the internet. This may be help-
ful in safeguarding the system from malicious hackers. However, the biggest dis-
advantage is most likely the costs involved with implementing such a network. Our
advice is thus to focus on using the internet and dealing with the security issues
as engineering problems. For completeness, we also describe some solutions that
tackle the issues of creating a custom network.

First of all, a custom network must be able to have its nodes communicate
with each other. Technical interoperability provides the basis for procedural and
semantic interoperability through an understanding of sending data signals. This
also requires synchronization in time. Several timing solutions exist that may
help with synchronization in time. For instance, a node can be event-driven (i.e.
the node starts operating after an event has happened) or clock-driven (i.e. the
node starts operating at a defined moment in time). Producer-consumer systems
already discusses several clock-driven solutions (section 4.2.6).

Procedural and semantic interoperability have been mentioned before as engi-
neering problems of computer networking. Solutions for procedural interoperability
are predefined protocols (e.g. the OSI model or the TCP/IP model). In addition, it
is necessary here to support different policies (as described in section 4.4.6) which
may also require versioning of these policies. Furthermore, a common information
exchange reference model (again with versioning) is necessary to help deal with
the semantic interoperability.

Dealing with the complexity and time delays of a network is related to its
topology, its size and its heterogeneity. Of these, only the topology can really
be chosen by the architect. Many different topologies exist, each with their own
benefits and drawbacks.

Lastly, in an isolated network, security must still be protected. Hackers may
find ways to connect to the network and disrupt the functional correctness of the
system or gather private user and usage information.
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4.5.7 Open questions

After providing solutions to the engineering problems of networking, several
questions are left unanswered.

Security. In networking one of the major topics of research and interest is the
topic of network security. Data travelling over networks can be intercepted, read
and altered if the network has not been designed against attacks and contains
vulnerabilities. Security and network security in particular should be further
researched in order for these solutions to be applied. This topic is discussed
further in the dependable systems domain (section 4.6).

Topology In the case of a custom network, a choice of topology has not been
made, yet. Which topology or which combination of topologies would work best
for this system is left open for now. This allows the designers to choose what is
best for their own specified networked system. Perhaps the system could even
decide to grow its system in such a way that helps use the best topology for its
current state. The distributed systems domain (section 4.4) should be mindful of
the possibility of a changing topology due to the fallacies of distributed systems.

4.6 Dependable systems

Systems that value the quality attributes availability, reliability, safety, confidentiality,
integrity and maintainability are considered dependable systems (Laprie, 1995).
Systems that are dependable may continue indefinite operation, even during the
occurrence of errors. Dependable systems should provide their services at any
time, indefinitely, safely, correctly and should be easy to repair.

4.6.1 Terms

In order to discuss dependable systems, several domain-specific term definitions
are provided.

Attributes. Attributes represents qualities of the system that determine its
dependability. Such qualities can be assessed using qualitative and quantitative
measures. These qualities are: availability; reliability; safety; confidentiality;
integrity; and maintainability. Other qualities have been attributed to dependable
systems as well, but are combinations of the ones mentioned here. However,
secondary attributes may be needed to describe dependability fully. For example,
accountability, authenticity and non-repudiability are examples of secondary
attributes of security, which in turn is a combination of availability, confidentiality
and integrity. (Laprie, 1995)
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Dependability. Dependability represents “[...] the ability to deliver services that
can justifiably be trusted.” (Kumar, Khan, & Khan, 2015, page 314)

Environment. Environment represents “[...] other entities, i.e. other systems,
including hardware, software and the physical world with its natural phenomena”
(Avizienis, Laprie, Randell, & Landwehr, 2004, page 12), with which the system
interacts.

Means. Means represent the approaches that can be utilised to attain depend-
ability. These can be classified as: fault prevention; fault tolerance; fault removal;
and fault forecasting. (Laprie, 1995)

Service. Service represents the behaviour of the system as perceived by the
users. (Avizienis et al., 2004)

Threats. Threats represents the things that may cause the system to decrease
its dependability. There are three main threats: faults; errors; and failures. Faults
are defects of the systems, which may or may not lead to a failure. Errors are
invalid system states, which may or may not lead to a failure. Failures are the
difference in actual behaviour and the system’s specification. (Laprie, 1995)

4.6.2 Invariants

Dependable systems operate under specific constraints. However, the domain
of dependable systems is so broad that we were not able to specify these as
invariants. Our invariants would not constrain the whole domain, but only subsets
of the domain. Instead, these constraints are now described in the respective
topics of dependable systems.

4.6.3 Objectives

Dependable systems operate to reach particular objectives. These objectives may
help to fulfil the system’s main requirements. We use the attributes of dependable
systems as qualities that can be attained, where attaining these attributes is the
goal of dependable systems. The definitions are cited from Avizienis, Laprie,
Randell, et al. (2001, page 6).

Availability. “Readiness for correct service.”
Reliability. “Continuity of correct service.”
Safety. “Absence of catastrophic consequences on the user(s) and the

environment.”
Confidentiality. “Absence of unauthorized disclosure of information.”
Integrity. “Absence of improper system state alterations.”
Maintainability. “Ability to undergo repairs and modifications.”
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4.6.4 Domain-specific requirements

In order to fulfil the main requirements (section 3.2.2) using dependable systems,
they are translated to domain-specific requirements.

1. The system must be effectively available, i.e. services must be readily
available for usage, as much as possible.

2. The system must be effectively reliable, i.e. services must be continuously
provided, as much as possible.

3. The system must be effectively safe, i.e. users and the environment should
be protected from system-related catastrophic consequences, as much as
possible.

4. The system must be effectively confidential, i.e. privacy-sensitive user
information must be protected from unauthorized disclosure, as much as
possible.

5. The system must be effectively integer, i.e. the system must block users from
performing unauthorized system state alterations, as much as possible.

6. The system must be effectively and efficiently maintainable, i.e. the system
must be designed such that the system can easily undergo repairs and
modifications.

4.6.5 Engineering problems

All of the objectives of dependable systems are related to faults in some way.
Dealing with these faults requires a combination of the before mentioned means.
These techniques are defined by Avizienis et al. (2001, page 7) as:

• Fault prevention. “How to prevent the occurrence or introduction of faults.”

• Fault tolerance. “How to deliver correct service in the presence of faults.”

• Fault removal. “How to reduce the number or severity of faults.”

• Fault forecasting. “How to estimate the present number, the future inci-
dence, and the likely consequences of faults.”
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4.6.6 Solutions

The following solutions are proposed for the engineering problems of dependable
systems.

Fault prevention techniques. The first form of dealing with faults is by simply
preventing them. This means that the design, and eventually the implemented
system, should be free of faults as much as possible. This can be achieved
through the application of general engineering techniques as well as through the
application of more specific ones. (Avizienis et al., 2004)

General engineering by itself is already concerned with the design and
development of functional systems. Many general engineering techniques, like
process methodologies, requirement specification techniques, architecture
design, modelling techniques, implementation tools, etc. help us design and
development systems that function the way they are supposed to. Generally, we
can assume that these techniques help produce better systems than than when
not applying any techniques, and as such help to prevent faults in the design and
implementation of the system.

When concerned specifically with the fault prevention techniques for the design
and implementation of software, we can still find many possible solutions that
may be applied. Please note, that software engineering is still a young profession
and not all of the engineering techniques have been proven to work scientifically.
However, we know a lot about the applications of structured programming (Dahl,
Dijkstra, & Hoare, 1972), typeful programming (Cardelli, 1991), information
hiding and abstraction (Kiczales, 1991), modularisation (Parnas, 1972) and new
paradigms like aspect-oriented programming (Kiczales et al., 1997), as well
as how these relate to prevention of faults. Naturally, there may be many more
approaches. Section 4.7.6 discusses collaborative software engineering tools,
platforms and standards that may help prevent faults in decentralised engineering
environments.

Other approaches mentioned by Avizienis et al. (2001, page 7) are: “[...]
rigorous design rules for hardware. Shielding, radiation hardening, etc., intend
to prevent operational physical faults, while training, rigorous procedures for
maintenance, ‘foolproof’ packages, intend to prevent interaction faults. Firewalls
and similar defenses intend to prevent malicious faults.”.

Fault tolerance techniques. Fault tolerance is a combination of fault accep-
tance and failure avoidance. It accepts that faults are present and that errors will
occur, but it will avoid failures that consequently happen from these errors. This
is generally achieved through error detection and error recovery. A complete
overview of the fault tolerance techniques is provided in figure 4.7.

Error detection requires the detection of the error and signalling to the system
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of said error. Two forms of error detection techniques exist: concurrent error
detection; and pre-emptive error detection. Concurrent error detection is performed
during system operation, while pre-emptive error detection temporarily suspends
system operation to check for latent errors.

Errors maybe left undetected, which may or may not lead to a failure. This is
called a latent error, or in more general terms a false positive. It may also happen
that an error is detected, while in reality it could not lead to a failure (i.e. it was not
a fault after all). This is called a false negative.

Error recovery is the act of changing the system state from containing errors to
a system state without those errors. Additionally, error recovery may help such that
a fault cannot introduce new errors again. Recovery is made-up of two parts: error
handling and fault handling.

Error handling is the part that changes the system state to remove the detected
errors. There are three approaches to this:

• Rollback can be used to change the system state back to a saved state
before the error was detected. Generally, this saved state is a checkpoint
where there were no detected errors.

• Compensation uses redundancy to remove the error.

• Rollforward makes the new state the state without detected errors.

Fault handling is the second part of error recovery. It is the part that makes sure
that a fault that caused the detected error, cannot introduce new errors again. Fault
handling takes the following four steps:

1. Fault diagnosis is the localisation of the fault that caused the detected error.

2. Fault isolation is the exclusion of the component that contains the fault from
the system.

3. System reconfiguration puts a new component in place of the excluded
component.

4. System reinitialisation actually changes the system to the new configuration.

Fault removal techniques. Fault removal is the act of removing faults (i.e.
defects) from the system. This can be done during development and during
operation of the system.

There are three steps to fault removal during development of the system:
verification, in which particular system properties (i.e. verification conditions)
are checked; diagnoses, in which the fault is identified and which only happens
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Figure 4.7: Fault tolerance techniques (Avizienis et al., 2004)

when the verification conditions are not met; and correction, in which the fault is
removed. These three steps must be repeated after the correction to make sure
that the removal of the fault did not cause other faults.

Several approaches can be taken to verification: static analysis, theorem
proving, model checking, symbolic execution and testing.

Fault forecasting techniques. Fault forecasting can be used to predict likely
faults, so they can be prevented. This is achieved through a system behaviour
evaluation considering fault occurrence.

Fault forecasting is either performed through qualitative evaluation by identi-
fying, classifying, ranking the component failures and environmental conditions
under which the system would fail; or through quantitative evaluation by measur-
ing and evaluating the extent to which the dependability attributes are satisfied, in
terms of probabilities.

Possible methods for qualitative evaluations are failure mode and effect
analysis. Possible methods for quantitative evaluations are Markov chains and
stochastic Petri nets. In addition, reliability block diagrams and fault-trees can be
used for both forms of evaluations.
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4.6.7 Open questions

After providing solutions to the engineering problems of dependable systems,
several questions are left unanswered.

Precision. False positives and false negatives may be reduced by a more
precise fault model (used for fault detection). However, such models do not scale
well. Reducing the model’s precision may lead to false negatives (i.e. latent errors).
Similarly, the model may also contain mistakes. Fault models with mistakes in them
may lead to false positives and false negatives. Increasing the model’s precision
may lead to more mistakes in the fault model.

Measurements. The field of measurement theory may be required to deal with
the detection of faults.

Security. The domain of dependable systems touches on the topic of security
as a secondary attribute consisting of a combination of availability, confidentiality
and integrity. This means that the solutions described in this section are applicable
to security, where faults are security vulnerabilities, errors are security breaches
and failures are consequences of security breaches. However, security has very
specific problems and solutions that require further detailing, especially in the case
of a networked system.

4.7 Systems-of-systems

Traditionally, in systems engineering, a system provides its functionality as a single
entity, machine or product. The field of distributed systems has greatly changed
our perspective of what constitutes as a system. Today, we understand that large-
scale geographically distributed systems can also operate to provide a function like
a single system. Some contemporary systems are composed of multiple integrated
systems, each operating to provide their own function, but also operating together
providing new emergent behaviour. These systems are studied in the relatively
new domain of systems-of-systems (SoSs) and their design and implementation
is actively researched and applied in the domain of system-of-systems engineering
(SoSE).

4.7.1 Terms

In order to discuss system-of-systems, several domain-specific term definitions are
provided.

Component system. A component system represents a part of the system
that exist as a system in its own right. The system-of-systems is composed of
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component systems.
Emergent behaviour. Emergent behaviour represents a form of behaviour

exhibited by a system due the collaboration of its component systems, where the
component systems do not exhibit this behaviour by themselves.

Independence. Independence represents the ability of a component system
to fully functionally operate without the existence of other component systems
or the system-of-systems. In other words, the component system can operate
independently from the system-of-systems.

4.7.2 Invariants

Systems-of-systems is a widely accepted grouping term for systems consisting of
parts that are systems in their own right. However, the term system-of-systems has
been the topic of discussion in the literature. According to Maier (1996, page 268),
a system can be called a system-of-systems, or rather a collaborative system,
when both:

1. “Its components fulfilled valid purposes in their own right and continued to
operate to fulfill those purposes if disassembled from the overall system,
and;”

2. “The components systems are managed (at least in part) for their own
purposes rather than the purposes of the whole.”

According to Tekinerdogan (2016, page 21), “The concept of system and system-
of-systems is generally applicable to different categories of systems including:”

• “Technological Systems: include man-made engineered artifacts or con-
structs; including physical hardware, software and information.”;

• “Social Systems: include elements, either abstract human types or social
constructs, or concrete individuals or social groups.”;

• “Natural Systems: include elements, objects or concepts which exist outside
of any practical human control.”.

4.7.3 Objectives

System-of-systems engineering can be applied to achieve a particular objective.
This objective may help to fulfil the system’s main requirements.

“Systems-of-systems should be distinguished from large but monolithic systems
by the independence of their components, their evolutionary nature, emergent
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behaviors, and a geographic extent that limits the interaction of their components
to information exchange.” (Maier, 1996, Summary, page 1)

From this, we may assume that systems-of-systems have the following
objectives:

Component independence. Component systems have the ability to provide
their own function independently from the larger system. They do not need
the larger system to operate. However, the larger system is dependent on the
component systems to provide its function.

Emergent behaviour. Each component system provides its own function.
Through collaboration of the component systems, together all of the component
systems provide an emergent behaviour that can be experienced as the service of
a coherent system.

Evolvability. Systems-of-systems maintain a high level of evolvability. Accord-
ing to Rowe, Leaney, and Lowe (1994, page 4), evolvability is “[...] simply a sys-
tem’s ability to accept change.”. It is composed of generality, adaptability, scalabil-
ity and extensibility.

4.7.4 Domain-specific requirements

In order to fulfil the main requirements (section 3.2.2) using system-of-systems,
they are translated to domain-specific requirements.

1. The system must be coherently composed of smaller independent compo-
nent systems.

2. The component systems must be able to collaborate with heterogeneous
consuming devices.

4.7.5 Engineering problems

In order to fulfil the domain-specific requirements of the system using systems-of-
systems, several engineering problems must be solved.

Collaboration. In order for the component systems to be able to collaborate,
they have to be able to communicate with each other. Similar to the communication
problems of computer networking (section 4.5.5), these component systems must
have procedural interoperability (i.e. the ability of communication using a common
syntax) and semantic interoperability (i.e. the ability of understanding whatever
is communicated between two entities). Additionally, it may be necessary for the
component systems to have pragmatic interoperability (i.e. the ability to know what
procedures and methods are available on each system). For systems-of-systems
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it is often described that most of the engineering effort should be directed at the
interfaces, for these allow the communication and thus the collaboration of the
component systems.

Decentralised engineering. Engineering of a system-of-systems is different
from the engineering of a traditional single system. A system-of-systems’ compo-
nents are likely to be designed, developed, operated, maintained and evolved in a
decentralised manner. Special techniques are required for each of these decen-
tralised engineering tasks.

Operational independence of components. Component systems must be
able to operate independently. They must aim to be self-reliant. In addition, this
requires an engineering effort to design component systems to be able to deal with
failure of other component systems.

Managerial independence of components. Component systems not only
can operate independently, but actually do operate independently. This distinction
emphasizes the difference between the ability of operating independently and
actually operating autonomously 4.

4.7.6 Solutions

The following solutions are proposed for the engineering problems of systems-of-
systems.

Collaborative software engineering. The open source communities have
been developing software in a decentralised manner for many years. Their
efforts have helped improve how software can be developed as a collaboration
between people without organisational assumptions. Git, a decentralized version
control system, has provided a way for decentralised software development.
New collaboration platforms, e.g. GitHub, Bitbucket and GitLab, and special so-
called branching workflows, provide further communication tools and standards
necessary for large-scale decentralised software development. Other platforms,
e.g. Trello and JIRA, provide the communication tools necessary for decentralised
project management. This is just a small drop in the vast ocean of collaborative
software engineering tools, platforms and standards. There are tools for automated
code analysis, testing and reporting (i.e. continuous integration) and tools for
automated deployment of releasable code (i.e. continuous deployment). It must
be clear that many solutions exist to deal with the problems of decentralised
engineering.

Interfaces, protocols and standards. Design principles for systems-of-
systems are focussed in interfaces and policies (i.e. protocols and standards).

4autonomous is a synonym for independence, but is here meant as automated independence
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Maier (1996, page 283) writes: “A collaborative system is defined by its interfaces.
The interfaces, whether thought of as the actual physical interconnections or as
higher level service abstractions, are the primary points at which the designer
can exert control. [...] The collaborative system designer will not have coercive
control over the systems configuration and evolution. This makes choosing the
points at which to influence the design more important. In communication-centric
systems, this means that design leverage will frequently be found in relatively
abstract components (like data standards and network protocols).”. It is clear from
his description that the solutions for collaboration are solved by careful attention to
the design of interfaces, protocols and standards.

Stable intermediate forms. According to Rechtin (1991, page 91), “Complex
systems will develop and evolve within an overall architecture much more rapidly
if there are stable intermediate forms than if there are not.”. This means that a
complex systems, like a system-of-systems, should be designed in such a way
that it allows component systems to be fully operational without the existence
of the complete system-of-systems. This allows that the creation of the system-
of-systems is done in small steps, each time adding a new component system
that can operate on its own and provide its own function. Then slowly, as more
component systems are connected, the system-of-systems can start to fulfil its
purpose. This can be solved by careful attention to the existence and stability
of component systems (Maier, 1996). This also deals with the evolvability of a
system-of-systems.

4.7.7 Open questions

After providing solutions to the engineering problems of systems-of-systems, a
question is left unanswered.

Application. The solutions presented above only give an introductory overview
of how the system must be engineered. Further research to the application of
these solutions to the energy supply system is required. Interfaces, protocols and
standards must be designed for the communication and collaboration purposes on
which the system will be constructed.

Socio-technical perspective. This thesis already provides a societal perspec-
tive towards the needs of the system. However, Tekinerdogan (2016, page 28) dis-
cusses the importance of further research of a socio-technical perspective: “In SoS
[systems-of-systems], people are not just users of the system but will be an ac-
tive part who design, develop, use, test and maintain the system. Hence, it will be
hard to understand the aspects of an SoS without full consideration of the human
behavior in the system. When designing current systems, the focus tends to be
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on technology, and the functional and quality concerns of the technical system. A
socio-technical perspective that takes into account both the technical and the hu-
man aspects is largely missing. Hereby, not only the behavior of individuals but
also the collective behavior of groups of users and developers will need to be ana-
lyzed to get an insight in how the SoS is used, viewed, accepted, and maintained.”

4.8 Accounting

The fifth main requirement (section 3.2.2) of the system is keeping-out commercial
driving forces. Businesses and governments should not be allowed to meddle with
the system for their financial gains, because that is not in the benefit of the public
from the point of view that society needs energy.

This may be achieved via laws, policies, rules and regulations. However,
the system has no control over these. Instead, governments have control over
legislation. Therefore, such policies may not be able to fully keep-out commercial
driving forces, after all. It is therefore necessary that we take on this problem from
an engineering perspective.

We will use the domain of accounting to workout the details regarding this
problem.

4.8.1 Terms

In order to discuss accounting, several domain-specific term definitions are
provided.

Accounting. Keeping track of information. Also known as bookkeeping.
Ledger. An account book in which transactions are recorded.

4.8.2 Invariants

We were unable to define invariants for accounting.

4.8.3 Objectives

Accounting is done to achieve a particular objective. This objective may help to
fulfil the system’s main requirements.

Bookkeeping. Accounting is performed to keep track of transactions and to be
able to mutually agree on what was recorded.

For the energy supply system, accounting is needed to keep track of which
components are part of the system. This arises partially from the horizontal scaling
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of producers and buffers in section 4.2, but also from the distributed nature of the
system. It must be able to scale together with the number of connected users,
producers, buffers and with the geographic size of the system.

When components can simply be added to the system by anyone, then
businesses and governments are allowed to make the decisions about which
components to add, when to add them and where to add them, instead of letting
the needs of the system, which reflect the needs of society, determine these.
Therefore, the system must be the one to make these decisions. We’ve reflected
that in section 4.2 in the part about horizontally scaling producers and buffers, as
well.

In order for the system to be able to make these decisions, the system must
make sure that other decisions are simply not allowed. In this case, that results
in not allowing any components to be added to the system that have not been
approved by the system. This requires accounting.

4.8.4 Domain-specific requirements

In order to fulfil the main requirements (section 3.2.2) using accounting, they are
translated to domain-specific requirements.

1. The system must account new components as part of the system.

2. Only the system may account new components as part of the system.

4.8.5 Engineering problems

In order to fulfil the domain-specific requirements of the system using accounting,
several engineering problems must be solved.

Accounting. New components need to be accounted. What information needs
to be kept track of and how can the system keep track of this information?

Distribution. The system is distributed geographically as described in sec-
tion 4.4. This brings the problems of distributed systems to accounting. Most im-
portantly, how should the system synchronise the accounted data over all of the
components?

Authentication. Due to the distributed nature of the system, it is unclear
whether a component can be trusted in its claim to being part of the system. How
can the system make sure that a component can be trusted in its claim to being
part of the system?

Authorisation. Commercial driving forces should be kept out. In order to do
that, only the system is allowed to add new components. This will be accounted,
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but how can the system make sure that only components of the system can
account new components?

4.8.6 Solutions

The following solutions are proposed for the engineering problems of accounting.
Ledger. The system must keep track of all of the components that are a part

of the system. In order to distinguish between components, each component must
get a unique identifier. How it receives this identifier is not yet important, but that it
has one is important.

The identifier of each component that is part of the system can be stored
as a list of identifiers (i.e. a list of identifiers of components of the system). In
accounting, such a list is called a ledger. Ledgers are used to keep track of
accounted information. A ledger keeps track of transactions. The addition of a
component to the system can be considered a transaction.

If a new component connects to the system it must announce its presence in
order to take part. This announcement must contain the components identifier,
such that the system can verify that is part of the system. For this verification it
simply needs to check whether the identifier is accounted for in the ledger. If so,
the component is apparently part of the system and can join operation. If not, the
system can simply ignore the component.

Distributed ledger. Due to the distributed nature of the system, there is no
single component of the system that all other components can trust to keep track
of the ledger with the information about the components of the system. If such a
centralised ledger would be used, then the control over the ledger falls into the
hands of the person, people, group, organisation, business or government that
controls the computer on which this ledger is stored. Therefore, it must be clear
that this information must be distributed to the components throughout the system.

Each component may manage its own copy of the ledger. A component that
announces its presence can easily be verified using this copy of the ledger.
Changes to ledger can be made by the component that owns that copy of the
ledger. In other words, the component can update its own ledger copy. To update
the ledger, the component needs to be sure that the system has added a new
component to it. This can happen in two ways. Either, the component itself has
made the decision that a new component must be added to the system or some
other component has made this decision.

When a component makes a decision to add a new component, it needs to
update its own ledger and inform the other components of the update. When it
informs the other components, it needs to send along its own identifier to show
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that it is part of the system already. Other components can then verify this, before
adding the new component to their own ledger. In addition, components must be
able to ask other components for a current version of the ledger.

In order to reach eventual consistency, a component that decides to add a
new component must inform all other components. However a single component
will likely not be connected to all other components directly. Thus, the message
must be propagated to all directly known components and from there this must be
repeated until all of the components are informed. (Tschorsch & Scheuermann,
2015).

Public key cryptography. So far, each copy of the distributed ledger is
managed by a single component. Components may state that they are part of the
system, by sending along their identifier. However, every component may grab a
copy of the ledger and simply use one of the identifiers from it to fake being part of
the system. Somehow, a component must be able to verify the identity stated by
the other component.

To do this, public key encryption (i.e. asymmetric cryptography) may be applied
to form a digital signature. A digital signature provides non-repudiation (i.e.
identification of the sender) and integrity (i.e. the message has not been altered
in transit). This is achieved by a public and private key pair. Public-private key pairs
are a mathematical scheme with a relation between the keys that can be used for
encryption purposes.

A public-private key pair can be generated using a key generation algorithm.
The public key is the identifier discussed previously. The private key is only known
by the sender and is used together with the message to form a signature for the
message. Forming this signature is performed using a signing algorithm. The
public key can be used together with the message and the signature to verify
the authenticity of the message. Many different digital signature algorithms are
available for this purpose. For example, RSA-based signature schemes such as
RSA-PSS and the Elliptic Curve Digital Signature Algorithm (ECDSA). (Johnson,
Menezes, & Vanstone, 2001; Jonsson & Kaliski, 2003)

Blockchain. The distributed ledger is updated individually and concurrently
for each of the components. Although eventual consistency can be guaranteed,
consensus over the current state of the ledger may still pose difficulties. Ledger
verification may be necessary for new components to trust the copy of the ledger
they received from another component.

In order to verify a ledger for correctness, event ordering can be applied.
Updating the ledger with a new component adds a new ledger state that references
the previous ledger state. For any ledger state, the currently known components
are defined. In addition, the component that added that particular component
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to the ledger must also be noted. Now it is possible for any component to verify
whether a particular ledger state is valid. Valid, in this case, means that each
component can only be added to a ledger state by a component that exists in
the previous ledger state. Using this a component can thus be sure that only
components of the system have added other components to this ledger.

Using ledger states in this way, effectively turns the distributed system into a
distributed finite state machine. Such a system is generally called a blockchain
(Tschorsch & Scheuermann, 2015).

Due to the distributed nature of blockchains, multiple blocks may be created
before all the nodes have received notice. This leads to chain branching, because
both created blocks will refer to the same previously accepted block. When a
chain branches, there exist multiple states in the distributed finite state machine,
at the same time. For a node, it thus unclear whether its version of the state is
also the accepted state of the system as a whole. If we allow one branch as the
accepted state of the system, we can continue to reason about the authorisation
of components. If branching occurs, a choice must be made. Only one of the
branches should be allowed to continue.

This can be achieved by simply making a choice of which branch to accept as
the current state. One approach could be to choose the longest chain or the first to
arrive when both chains are of equal length. Choosing the longest chain will allow
the chain with the most information to be the accepted state. Another approach
would be to always use the branch with the latest time stamp. However, a problem
with all of these approaches it that it disregards the state information in the other
branches.

Another approach is to try to merge the branches. Let’s imagine a node that
receives two different blocks of two branched chains. These blocks were both
created by components that were added to the chain many blocks ago. Even
though, these blocks were created around the same time, no problem arises from
simply using both. Their information (i.e. the newly added components) can simply
both be accepted as the truth. When that node decides to create a new block, this
block may refer to both previous blocks. However, this requires additional work in
authorising components, validating blocks and creating blocks.

Lastly, a hard-coded root block is necessary to make sure that the system
always keeps control of its own growth. If a completely new chain would be
accepted, there is no way to make sure that all of the components were added by
the system itself.
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4.8.7 Open questions

After providing solutions to the engineering problems of accounting, a question is
left unanswered.

New technologies. Distributed ledgers and blockchains are still new technolo-
gies. It is often unclear whether a blockchain is necessary or that a more general
distributed ledger already provides enough functionality. In addition, they are the
topic of new research, which must be considered in the application of these tech-
nologies.



Chapter 5

Discussions

The synthesis process has shown there is a multitude of solution techniques
that may be synthesised into a system architecture that satisfies the specified
requirements of the future societal energy supply system. However, it is important
to discuss potential shortcomings in our approach and its outcomes.

This chapter discusses and evaluates the assumptions of the requirements
specification from the perspective of the system’s ultimate objective in section 5.1
and discusses: (1) the applicability of synthesis to a feasibility analysis; (2)
the feasibility of the applying the solution techniques; and (3) the possibility of
emergent problems that may arise from putting together the selected solution
techniques in section 5.2. As our research is multi-disciplinary in nature, the
discussion draws on some established theories in a variety of disciplines.

5.1 Evaluation of the objective

We’ve considered: The system’s ultimate goal is to provide energy in a usable
form abundantly for society. However, whether this ultimate goal is the optimum
for providing energy to society’s members is debatable. Let us breakdown the goal,
in order to discuss it.

It’s difficult to debate the first parts of the goal. Providing energy in a usable
form is at the basics of energy supplying. Not providing energy would not make for
a functional energy supply system. Furthermore, providing energy in a non-usable
form does make for a functional energy supply system, but it is not effective when
the users are unable to effectively and efficiently use that energy. So it is clear that
energy must be provided in a usable form.

The second part of the goal is debatable. Providing anything abundantly implies
a form of overproduction. When cost minimization is important and production
uses up resources, overproduction is never the optimum. Nevertheless, in the
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case of this system, we’ve chosen for production using renewable resources only.
Overproduction in such a system does not affect the cost. Cost in such a system
is only based on the other factors, like operational costs, maintenance costs, etc.
Considering cost minimization, overproduction should not be a problem.

However, abundance and overproduction may involve other problems. Con-
sumption of energy does not dispose of the used energy. The first law of thermo-
dynamics tells us that energy is always conserved. In other words, it cannot be
consumed in the sense that it is disposed of. The second law of thermodynamics
tells us that entropy always increases in an isolated system. This can be read as:
the energy may be converted (i.e. used) to drive some device or perform mechan-
ical work, but it will never be optimally efficient. Generally, some of that energy will
be transformed into a waste product. Typically this is in the form of heat. (Cengel &
Boles, 2002)

If overproduced energy is wasted, for example as heat, then that process
cannot be reversed unless external work is performed. An abundance of energy
may, by definition of overproduction, involve an increase in heat in our planet’s
atmosphere. We may need to build systems to actively get rid of this heat, for
instance by disposing it into outer-space, to fulfil the sustainability requirement
of the system. Further research to the effects of overproduction on the global
temperature is needed. In addition, from the results of such a study other research
activities may be necessary to design such heat disposal systems.

Furthermore, it is uncertain what effects an abundance of energy may have on
society. It is likely that the transport of people and goods will both become cheaper.
It seems clear from consumer theory that consumer behaviour increases with
the decrease of costs. Many consumer goods require energy in their production,
so a decrease in costs and an increase in consumer behaviour may result from
an abundance of energy. This may in turn have consequences to an increase of
industry and advancements in technology. Population may increase as healthcare
improves through technological advancements. Overpopulation may become a
problem.

In addition, other natural resources may become scarcer. For example, as
population increases, the demand for land increases as well, while the supply for
land is mostly invariable. Energy may no longer be a reason to fight wars, but wars
may be continued (or started) over other such scarce resources. Research has
already provided some insights into some of these impacts (Meadows, Meadows,
Randers, & Behrens III, 1972; Meyer & Nørgaard, 2010; Van Vuuren & Faber,
2009).

Further research to the effects of an abundance of energy on our society
is necessary before such an energy supply system should be applied without
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human control. Moreover, a reduction in overall energy consumption may also be
necessary to further limit environmental impact.

5.2 Evaluation of synthesis applicability

Synthesis is a great framework for engineers to solve problems, because it
allows us to deal with concerns by splitting them up both horizontally as technical
problems and vertically as abstractions of solution techniques. There is a sense
of abstraction in this approach, because each solution technique may solve a
technical problem, but can from another perspective also be the root of new
technical problems.

Richard Feynman, sometimes referred to as The Great Explainer, was a
renowned American theoretical physicist and Nobel Prize winner. He was able
to explain highly complex ideas in easily understandable ways. His methods for
explaining include, among others, a sense of abstraction with a focus on the level
of detail given a particular context. He could explain something to a person at the
level of detail the other person was comfortable with. This means that in order to
explain something, often is has to be simplified or abstracted to mean something
to the other person. Of course there’s more to explaining than this, but it seems
a good metaphor for the concept of abstraction that is applied in the synthesis
process. A solution to a problem can be simple and solve the problem, yet it may
pose new questions to the engineer.

When synthesis is applied to a problem, it is often a quite idealistic way of
looking at the problem. A simple solution may already be enough to solve the
problem. For example, in order to end all wars, the solution is simple: just stop
fighting. However, that solution may not be as simple to apply, because there are
reasons that people are fighting.

Previously, we’ve argued that a feasibility analysis can be performed using the
synthesis process by simply checking whether a path can be found connecting
problems and solutions. However, from the war example it must be clear that syn-
thesis does not have to provide a clear answer to the feasibility of the construction
of a system by just solving high level problems. The selected solution techniques
may solve the technical problems at that level of abstraction, but may pose new
problems that may not be trivial to solve. A proper synthesis process should thus
work all the way down to trivial solution techniques that solve the technical prob-
lems. The same holds for a perfect feasibility analysis.

However, a feasibility analysis does not have to solve the complete problem. It
should indicate whether it is clear or not that a problem can be solved. This implies
an accuracy or a probability. For the purpose of this thesis, we’ve performed a
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synthesis process that solves the main problems of a societal energy supply
system, to the extend where we can understand the major pitfalls and challenges
that still need to be overcome in order to actually construct it. This provides a
feasibility analysis to the extend where we can be quite certain that it must be
possible to synthesise a solution architecture.

This also means that a lot of those challenges are not trivial to solve and
some may in fact be considered among the NP-hard problems as described in
Van Leeuwen (1991). Further research activities are required to fully understand
the feasibility of implementing each of the solution techniques.

Furthermore, when adequate solution techniques are synthesised, emergent
cases may show up. In other words, other problems may appear when solutions
are put together. There may be unforeseen emergent problems in the provided
solution domain analysis. This means we cannot claim that the provided solution
would resolve the energy problem completely. There may always be additional
problems that show up due to a combination of technology.



Chapter 6

Future work

As discussed, the following research activities still require further attention.

1. Justification of the requirement specification. This thesis only provides
a first work towards the requirements of a societal energy supply system.
Scientists, domain experts and visionaries may help to justify these require-
ments or to otherwise improve them. However, it must be clear that potential
commercial interests of contributors should be identified and their motivations
questioned.

2. Justification of the solution domain analyses. Well-defined experts in the
solution domain areas can provide their opinions on the provided solution
techniques and rationales to justify their validity.

3. More detailed solution domain analyses. Our discussion on the applicabil-
ity of synthesis (section 5.2) suggests that it is necessary to do more detailed
analyses. Additional solution domain analyses may be performed both hor-
izontally (i.e. other solution domains may be analysed) as well as vertically
(i.e. the provided solution domain analyses may be analysed in more detail).
Only then, we could achieve an optimal solution.

4. Alternative design space analysis. The performed feasibility analysis can
be perceived as very abstract, so it may look like there are no alternative
solutions, but actually there are many alternative solutions possible. In this
thesis, we have sometimes provided several different solution techniques
for a single technical problem. A thorough alternative design space analysis
should be performed to clearly depict the possible solution alternatives.

5. Architecture specification. This thesis has only performed a feasibility
analysis. It may be expanded by actually synthesising an architecture
specification, after an alternative design space analysis has been performed.
This requires additional work in all of the research activities above.
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Chapter 7

Conclusions

In this final chapter, the research question posed at the start of this thesis is
answered. This is followed by a short discussion of contributions provided by this
work.

This thesis set out to perform a feasibility analysis for an electricity supply
system, which is specifically designed to fit the needs of society as much as
possible. This is reflected by the research question:

Is it possible to design an electricity supply system, that satisfies the
needs of society as much as possible?

In order to answer this question, we have split it up into several sub-questions. Let
us answer these one by one. The first research sub-question is:

Does the current electricity supply system satisfy the needs of society
as much as possible?

Our analysis of the current electricity supply system has shown that political and
commercial driving forces have played a significant role in the shaping of the
system to its current form. Especially, these commercial driving forces seem to
clash with the needs of our society for this system. Our analysis of society’s needs
of the electricity supply system has made it clear that our current system does
not satisfy the needs of society as much as possible. The second research sub-
question is:

What are the requirements for a societal electricity supply system?

Our analysis of society’s needs of the electricity supply system has provided us
with our first insights into what the requirements of such a system should be. A
change in the understanding of the project’s objective has expanded the notion of
an electricity supply system to an energy supply system. The requirements have
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been arrived at from iterated discussions, meetings and document exchanges
with the client. Our rationale explains our reasoning of these requirements. To
summarise, the requirements of a societal energy supply system as defined by
section 3.2.2 are:

1. Energy must be provided to the users such that society ’s energy demand is
effectively met;

2. The total cost must be minimized ;

3. The system must operate sustainably ;

4. The system must be optimally transparent to its users;

5. The system may not be influenced by commercial driving forces.

From our solution domain analysis in chapter 4, additional domain-specific
requirements are added to these main requirements. The third research sub-
question is:

Can we solve the engineering problems involved with a societal
electricity supply system?

Similar to the second research sub-question, the notion of an electricity supply
system has changed to an energy supply system. Using the architecture synthesis
process a feasibility analysis on the requirements defined in section 3.2.2 has been
performed. In this process, only the technical problem analysis and the solution
domain analysis have been applied for the purpose of this feasibility analysis.

The solution domain analysis has been able to find solution abstractions to
each of the technical problems posed in the technical problem analysis. Solution
abstractions often posed new technical problems. We’ve been able to describe
solution abstractions to the technical problems at a high-level perspective.
Technical problems that have arisen from particular solution abstractions are not
always trivial to solve, but we’ve discussed current and future research activities
focussing on these problem domains. It is, at this moment, not yet possible to
claim that the system is feasible due to these non-trivial problems and potential
unforeseen emergent cases from the solution synthesis.

However, a feasibility analysis does not have to solve the complete problem.
It should indicate whether it is clear or not that a problem can be solved. For the
purpose of this thesis, we’ve performed a feasibility analysis to the extent where
we can understand the major pitfalls and challenges that still need to be overcome
in order to actually construct it. From this analysis, we are quite certain that it is
possible to synthesise a solution architecture.
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Akşit, M. (2004). The 7 c’s for creating living software: A research perspective for
quality-oriented software engineering. Turkish Journal of Electrical
Engineering & Computer Sciences, 12(2), 61–96.

Apache Software Foundation. (2008). Apache cassandra. Computer software.
Retrieved March 16, 2017, from https://cassandra.apache.org/

Apache Software Foundation. (2010). Apache zookeeper. Computer software.
Retrieved March 16, 2017, from https://zookeeper.apache.org/

Apache Software Foundation. (2011a). Apache hadoop. Computer software.
Retrieved March 16, 2017, from https://hadoop.apache.org/

Apache Software Foundation. (2011b). Apache kafka. Computer software.
Retrieved March 16, 2017, from https://kafka.apache.org/

Apache Software Foundation. (2014). Apache spark. Computer software.
Retrieved March 16, 2017, from https://spark.apache.org/

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and
taxonomy of dependable and secure computing. IEEE transactions on
dependable and secure computing, 1(1), 11–33.

Avizienis, A., Laprie, J.-C., Randell, B., et al. (2001). Fundamental concepts of
dependability. University of Newcastle upon Tyne, Computing Science.

Backtype. (2011). Apache hadoop. Computer software. Retrieved March 16, 2017,
from https://storm.apache.org/

Biersteker, T. J., & Weber, C. (1996). The social construction of state sovereignty.
Cambridge Studies in International Relations, 46(1), 1–21.

Cardelli, L. (1991). Typeful programming. Springer-Verlag.
Cena, G., Scanzio, S., Valenzano, A., & Zunino, C. (2015). Implementation and

evaluation of the reference broadcast infrastructure synchronization protocol.
IEEE Transactions on Industrial Informatics, 11(3), 801–811.

Cengel, Y. A., & Boles, M. A. (2002). Thermodynamics: an engineering approach.
Sea, 1000, 8862.

Cohen, R., Erez, K., ben Avraham, D., & Havlin, S. (2000, November). Resilience

95

http://www.dictionary.com/browse/abundance
https://cassandra.apache.org/
https://zookeeper.apache.org/
https://hadoop.apache.org/
https://kafka.apache.org/
https://spark.apache.org/
https://storm.apache.org/


96 REFERENCES

of the internet to random breakdowns. Phys. Rev. Lett., 85, 4626–4628. doi:
10.1103/PhysRevLett.85.4626

Cohen, R., Erez, K., ben Avraham, D., & Havlin, S. (2001, April). Breakdown of the
internet under intentional attack. Phys. Rev. Lett., 86, 3682–3685. doi:
10.1103/PhysRevLett.86.3682

Coplien, J., Hoffman, D., & Weiss, D. (1998). Commonality and variability in
software engineering. IEEE software, 15(6), 37–45.

cost. (n.d.). Dictionary.com Unabridged. Retrieved February 15, 2017, from
http://www.dictionary.com/browse/cost

Courtois, P.-J., Heymans, F., & Parnas, D. L. (1971). Concurrent control with
“readers” and “writers”. Communications of the ACM, 14(10), 667–668.

Cristian, F. (1989). Probabilistic clock synchronization. Distributed computing,
3(3), 146–158.

Dahl, O.-J., Dijkstra, E. W., & Hoare, C. A. R. (1972). Structured programming.
Academic Press Ltd.

de Haan, F. J., Ferguson, B. C., Adamowicz, R. C., Johnstone, P., Brown, R. R., &
Wong, T. H. (2014). The needs of society: A new understanding of
transitions, sustainability and liveability. Technological Forecasting and Social
Change, 85, 121–132.

Deutsch, P. (n.d.). The eight fallacies of distributed computing. Website. Retrieved
March 13, 2017, from
https://blogs.oracle.com/jag/resource/Fallacies.html

De Vries, B. J., Van Vuuren, D. P., & Hoogwijk, M. M. (2007). Renewable energy
sources: Their global potential for the first-half of the 21st century at a global
level: An integrated approach. Energy policy , 35(4), 2590–2610.

Dierks, T. (2008). The transport layer security (tls) protocol version 1.2.
Dijkstra, E. W. (1968). Cooperating sequential processes. In The origin of

concurrent programming (pp. 65–138). Springer.
Dijkstra, E. W. (1972). Information streams sharing a finite buffer. Information

Processing Letters, 1(5), 179–180.
driving force. (n.d.). Collins English Dictionary – Complete and Unabridged, 12th

Edition 2014. (1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014).
Retrieved February 15, 2017, from
http://www.thefreedictionary.com/driving+force

Elektriciteitswet. (1998, July 2). Law. Retrieved November 2, 2016, from
http://wetten.overheid.nl/BWBR0009755/2016-07-01

energy. (n.d.). The American Heritage R� Science Dictionary. Retrieved January
10, 2017, from http://www.dictionary.com/browse/energy

ENTSO-E. (2014, September). Entso-e at a glance (Tech. Rep.). European

http://www.dictionary.com/browse/cost
https://blogs.oracle.com/jag/resource/Fallacies.html
http://www.thefreedictionary.com/driving+force
http://wetten.overheid.nl/BWBR0009755/2016-07-01
http://www.dictionary.com/browse/energy


REFERENCES 97

Network of Transmission System Operators for Electricity. Retrieved
November 2, 2016, from https://www.entsoe.eu/Documents/Publications/
ENTSO-E%20general%20publications/140925_ENTSO-E_at_a_Glance.pdf

Etik, N., Allahverdi, N., Sert, I. U., & Saritas, I. (2009). Fuzzy expert system design
for operating room air-condition control systems. Expert Systems with
Applications, 36(6), 9753–9758.

Ge, S. S., Hang, C. C., Lee, T. H., & Zhang, T. (2013). Stable adaptive neural
network control (Vol. 13). Springer Science & Business Media.

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. Acm Sigact News,
33(2), 51–59.

Greenpeace. (2015, December 3). Factsheet kolenexit in nederland. Greenpeace
Nederland . Retrieved November 2, 2016, from
http://www.greenpeace.nl/Global/nederland/2015/
klimaat%20en%20energie/Factsheet%20kolenexit%20in%20Nederland.pdf

Hansen, P. B. (1973). Operating system principles. Prentice-Hall, Inc.
Hermsen, R. (2011, April 11). 130 jaar elektriciteit in nederland (kinderdijk 1886 -

2016). Stichting Willem Smit Historie Nijmegen. Retrieved November 2,
2016, from http://www.willemsmithistorie.nl/
historische-nieuwsflits/65-willemsmithistorie/uitgelicht/495-1e
-elektrische-centrale-kinderdijk-125-jaar-19-04-1886-19-04-2011

Hinderer, K., Rieder, U., & Stieglitz, M. (2016). Examples of bayesian control
models. In Dynamic optimization (pp. 411–434). Springer.

Hoare, C. A. R. (1974). Monitors: An operating system structuring concept. In The
origin of concurrent programming (pp. 272–294). Springer.

Hoogspanningsnet. (n.d.-a). Historische netkaarten. Website. Retrieved
November 2, 2016, from
http://www.hoogspanningsnet.com/netkaarten/historische-netkaarten

Hoogspanningsnet. (n.d.-b). Hvdc-zeekabels. Website. Retrieved November 2,
2016, from http://www.hoogspanningsnet.com/
over-hoogspanningsmasten/luchtlijnen-grondkabels/hvdc-zeekabels/

Hoogspanningsnet. (n.d.-c). Soorten hoogspanningsstations. Website. Retrieved
November 2, 2016, from
http://www.hoogspanningsnet.com/techniek/hoogspanningsstations/

Hoogwijk, M., & Graus, W. (2008). Global potential of renewable energy sources: a
literature assessment. Background report prepared by order of REN21.
Ecofys, PECSNL072975.

influence. (n.d.). Collins English Dictionary - Complete & Unabridged 10th Edition.
Retrieved February 15, 2017, from

https://www.entsoe.eu/Documents/Publications/ENTSO-E%20general%20publications/140925_ENTSO-E_at_a_Glance.pdf
https://www.entsoe.eu/Documents/Publications/ENTSO-E%20general%20publications/140925_ENTSO-E_at_a_Glance.pdf
http://www.greenpeace.nl/Global/nederland/2015/klimaat%20en%20energie/Factsheet%20kolenexit%20in%20Nederland.pdf
http://www.greenpeace.nl/Global/nederland/2015/klimaat%20en%20energie/Factsheet%20kolenexit%20in%20Nederland.pdf
http://www.willemsmithistorie.nl/historische-nieuwsflits/65-willemsmithistorie/uitgelicht/495-1e-elektrische-centrale-kinderdijk-125-jaar-19-04-1886-19-04-2011
http://www.willemsmithistorie.nl/historische-nieuwsflits/65-willemsmithistorie/uitgelicht/495-1e-elektrische-centrale-kinderdijk-125-jaar-19-04-1886-19-04-2011
http://www.willemsmithistorie.nl/historische-nieuwsflits/65-willemsmithistorie/uitgelicht/495-1e-elektrische-centrale-kinderdijk-125-jaar-19-04-1886-19-04-2011
http://www.hoogspanningsnet.com/netkaarten/historische-netkaarten
http://www.hoogspanningsnet.com/over-hoogspanningsmasten/luchtlijnen-grondkabels/hvdc-zeekabels/
http://www.hoogspanningsnet.com/over-hoogspanningsmasten/luchtlijnen-grondkabels/hvdc-zeekabels/
http://www.hoogspanningsnet.com/techniek/hoogspanningsstations/


98 REFERENCES

http://www.dictionary.com/browse/influence
ISO/IEC. (2009). Iso/iec cd 25010.3. systems and software engineering. systems

and software quality requirements and evaluation (square). system and
software quality models (Tech. Rep.).

ISO/IEC. (2011). Iso/iec 25010:2011. systems and software engineering. systems
and software quality requirements and evaluation (square). system and
software quality models (Tech. Rep.).

ISO/IEC. (2016). Iso/iec 25022:2016. systems and software engineering. systems
and software quality requirements and evaluation (square). measurement of
quality in use (Tech. Rep.).

Jarke, M., & Pohl, K. (1994). Requirements engineering in 2001:(virtually)
managing a changing reality. Software Engineering Journal , 9(6), 257–266.

Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital
signature algorithm (ecdsa). International journal of information security ,
1(1), 36–63.

Jonsson, J., & Kaliski, B. (2003). Public-key cryptography standards (pkcs)# 1:
Rsa cryptography specifications version 2.1.

Khaitan, S. K., McCalley, J. D., & Liu, C. C. (2015). Cyber physical systems
approach to smart electric power grid. Springer.

Kiczales, G. (1991). Towards a new model of abstraction in software engineering.
In Object orientation in operating systems, 1991. proceedings., 1991
international workshop on (pp. 127–128).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., &
Irwin, J. (1997). Aspect-oriented programming. In European conference on
object-oriented programming (pp. 220–242).

Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., &
Zainlinger, R. (1989). Distributed fault-tolerant real-time systems: The mars
approach. IEEE Micro, 9(1), 25–40.

Kumar, R., Khan, S. A., & Khan, R. A. (2015). Revisiting software security:
durability perspective. International Journal of Hybrid Information Technology
(SERSC), 8(2), 311–322.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7), 558–565.

Laprie, J.-C. (1995). Dependable computing: Concepts, limits, challenges. In
Special issue of the 25th international symposium on fault-tolerant computing
(pp. 42–54).

Linkens, D. A., & Nyongesa, H. O. (1996). Learning systems in intelligent control:
an appraisal of fuzzy, neural and genetic algorithm control applications. IEE
Proceedings-Control Theory and Applications, 143(4), 367–386.

http://www.dictionary.com/browse/influence


REFERENCES 99

Liu, J., Wang, W., Golnaraghi, F., & Kubica, E. (2010). A novel fuzzy framework for
nonlinear system control. Fuzzy Sets and Systems, 161(21), 2746–2759.

Lu, X., McElroy, M. B., & Kiviluoma, J. (2009). Global potential for wind-generated
electricity. Proceedings of the National Academy of Sciences, 106(27),
10933–10938.

Maier, M. W. (1996). Architecting principles for systems-of-systems. In Incose
international symposium (Vol. 6, pp. 565–573).

Mainsfrequency. (n.d.). Measurement of the mains frequency. Website. Retrieved
November 2, 2016, from http://www.mainsfrequency.com/

Maslow, A. H. (1943). A theory of human motivation. Psychological review , 50(4),
370.

Meadows, D. H., Meadows, D. H., Randers, J., & Behrens III, W. W. (1972). The
limits to growth: a report to the club of rome (1972). Universe Books, New
York.

Meyer, N. I., & Nørgaard, J. (2010). Policy means for sustainable energy
scenarios. Collection of Extended Abstracts, 133.

minimize. (n.d.). Dictionary.com Unabridged. Retrieved January 10, 2017, from
http://www.dictionary.com/browse/minimize

Mommers, J. (2017, March 13). Dit zijn de partijen die klimaatverandering serieus
tegengaan. Website. De Correspondent. Retrieved March 14, 2017, from
https://decorrespondent.nl/6353/dit-zijn-de-partijen-die
-klimaatverandering-serieus-tegengaan/700157777-a3614274

MongoDB Inc. (2009). Mongodb. Computer software. Retrieved March 16, 2017,
from https://www.mongodb.com/

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved
November 2, 2016, from https://bitcoin.org/bitcoin.pdf

Nassif, N., Kajl, S., & Sabourin, R. (2005). Optimization of hvac control system
strategy using two-objective genetic algorithm. HVAC&R Research, 11(3),
459–486.

Netbeheer Nederland. (2014, April 29). Betrouwbaarheid van elektriciteitsnetten in
nederland - resultaten 2013 (Tech. Rep.). Netbeheer Nederland, Tech. Rep.
RM-ME-13L10440006. Retrieved November 2, 2016, from
https://www.kivi.nl/uploads/media/57e7ed5724248/
169_0_nl_betrouwbaarheid_van_elektriciteitsnetten_in_nederland_
_resultaten_2013_definitief.pdf

network. (n.d.). Collins english dictionary - complete & unabridged 10th edition.
Retrieved March 16, 2017, from
http://www.dictionary.com/browse/network

Neuman, B. C. (1994). Scale in distributed systems. Readings in Distributed

http://www.mainsfrequency.com/
http://www.dictionary.com/browse/minimize
https://decorrespondent.nl/6353/dit-zijn-de-partijen-die-klimaatverandering-serieus-tegengaan/700157777-a3614274
https://decorrespondent.nl/6353/dit-zijn-de-partijen-die-klimaatverandering-serieus-tegengaan/700157777-a3614274
https://www.mongodb.com/
https://bitcoin.org/bitcoin.pdf
https://www.kivi.nl/uploads/media/57e7ed5724248/169_0_nl_betrouwbaarheid_van_elektriciteitsnetten_in_nederland__resultaten_2013_definitief.pdf
https://www.kivi.nl/uploads/media/57e7ed5724248/169_0_nl_betrouwbaarheid_van_elektriciteitsnetten_in_nederland__resultaten_2013_definitief.pdf
https://www.kivi.nl/uploads/media/57e7ed5724248/169_0_nl_betrouwbaarheid_van_elektriciteitsnetten_in_nederland__resultaten_2013_definitief.pdf
http://www.dictionary.com/browse/network


100 REFERENCES

Computing Systems., 1–28.
NOS. (2016a, September 2). Sluiting nieuwe kolencentrales onvermijdelijk.

Website. Retrieved March 14, 2017, from http://nos.nl/artikel/
2129512-sluiting-nieuwe-kolencentrales-onvermijdelijk.html

NOS. (2016b, July 18). Te veel zonnepanelen in groningen. Website. Retrieved
November 2, 2016, from http://nos.nl/artikel/
2118256-te-veel-zonnepanelen-in-groningen.html

NRC. (2013, August 27). Energieakkoord bereikt: in 2020 14 procent duurzame
energie. Website. Retrieved March 14, 2017, from
https://www.nrc.nl/nieuws/2013/08/27/energieakkoord-bereikt-in
-2020-16-procent-duurzame-energie-a1432096

NRC. (2016, April 22). 171 landen ondertekenen klimaatakkoord parijs. Website.
Retrieved March 14, 2017, from https://www.nrc.nl/nieuws/2016/04/22/
168-landen-ondertekenen-klimaatakkoord-parijs-a1407731

operate. (n.d.). Dictionary.com Unabridged. Retrieved January 10, 2017, from
http://www.dictionary.com/browse/operate

optimum. (n.d.). Dictionary.com Unabridged. Retrieved January 11, 2017, from
http://www.dictionary.com/browse/optimum

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12), 1053–1058.

providing. (n.d.). Dictionary.com Unabridged. Retrieved January 10, 2017, from
http://www.dictionary.com/browse/providing

Raymond, K. (2013). Reference model of open distributed processing (rm-odp):
Introduction. Open Distributed Processing: Experiences with distributed
environments, 1.

Rechtin, E. (1991). Systems architecting: Creating and building complex systems.
Prentice Hall.

Rosvold, K. A. (2012, November 8). Saurdal kraftverk. Website. Retrieved
November 2, 2016, from https://snl.no/Saurdal_kraftverk

Rotem-Gal-Oz, A. (2006). Fallacies of distributed computing explained. Website.
Retrieved March 16, 2017, from
https://www.cse.unsw.edu.au/~cs9243/16s1/papers/fallacies.pdf

Rowe, D., Leaney, J., & Lowe, D. (1994). Defining systems evolvability-a taxonomy
of change. Change, 94, 541–545.

Sadler, P. (2010). Sustainable growth in a post-scarcity world: consumption,
demand, and the poverty penalty. Gower Publishing, Ltd.

Saito, K., & Yamada, H. (2016). What’s so different about blockchain?—blockchain
is a probabilistic state machine. In Distributed computing systems workshops
(icdcsw), 2016 ieee 36th international conference on (pp. 168–175).

http://nos.nl/artikel/2129512-sluiting-nieuwe-kolencentrales-onvermijdelijk.html
http://nos.nl/artikel/2129512-sluiting-nieuwe-kolencentrales-onvermijdelijk.html
http://nos.nl/artikel/2118256-te-veel-zonnepanelen-in-groningen.html
http://nos.nl/artikel/2118256-te-veel-zonnepanelen-in-groningen.html
https://www.nrc.nl/nieuws/2013/08/27/energieakkoord-bereikt-in-2020-16-procent-duurzame-energie-a1432096
https://www.nrc.nl/nieuws/2013/08/27/energieakkoord-bereikt-in-2020-16-procent-duurzame-energie-a1432096
https://www.nrc.nl/nieuws/2016/04/22/168-landen-ondertekenen-klimaatakkoord-parijs-a1407731
https://www.nrc.nl/nieuws/2016/04/22/168-landen-ondertekenen-klimaatakkoord-parijs-a1407731
http://www.dictionary.com/browse/operate
http://www.dictionary.com/browse/optimum
http://www.dictionary.com/browse/providing
https://snl.no/Saurdal_kraftverk
https://www.cse.unsw.edu.au/~cs9243/16s1/papers/fallacies.pdf


REFERENCES 101

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The hadoop distributed
file system. In Mass storage systems and technologies (msst), 2010 ieee
26th symposium on (pp. 1–10).

society. (n.d.). Dictionary.com Unabridged. Retrieved January 10, 2017, from
http://www.dictionary.com/browse/society

sustainability. (n.d.). Dictionary.com Unabridged. Retrieved February 15, 2017,
from http://www.dictionary.com/browse/sustainability

Tanenbaum, A. S., & van Steen, M. (2007). Distributed systems: Principles and
paradigms, 2nd edition. Pearson.

Tekinerdogan, B. (2016). Engineering connected intelligence: a socio-technical
perspective (Tech. Rep.). Wageningen University & Research. (Inaugural
lecture)
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104 APPENDIX A. HISTORY OF THE DUTCH ELECTRICITY SUPPLY SYSTEM

# Timeframe Change Source
1 1886 First public system (regionally

centralized)
Hermsen, 2011

2 1890 and
later

Connecting cities and villages
over different mid voltage lines at
around 10 kV, providing electricity
to every household

Hoogspanningsnet, n.d.-a

3 Around
1910

First high voltage lines at 50 kV,
interconnecting cities to support
an increased demand

Hoogspanningsnet, n.d.-a

4 1920 First 100+ kV lines to support an
increased demand

Hoogspanningsnet, n.d.-a

5 Around
1940

First fully interconnected system
at national level

Hoogspanningsnet, n.d.-a

6 1940’s First connections to foreign
electricity systems (i.e. Germany,
Belgium)

Hoogspanningsnet, n.d.-a

7 1950’s Standardisation to 50, 100, 110,
150 kV lines

Hoogspanningsnet, n.d.-a

8 1950’s First 220 kV lines to support an
increased demand

Hoogspanningsnet, n.d.-a

9 1950’s First ring structures in the network
to increase fault-tolerance

Hoogspanningsnet, n.d.-a

10 1960’s Interconnected high voltage
system at 110 and 150 kV

Hoogspanningsnet, n.d.-a

11 1970’s Replacement of interconnected
system by extra high voltage lines
at 380 kV

Hoogspanningsnet, n.d.-a

12 1980’s Ring structures in the extra high
voltage network at 380 kV

Hoogspanningsnet, n.d.-a

13 1990’s Reduction of old 50, 110 and 150
kV lines

Hoogspanningsnet, n.d.-a

14 2000’s First HVDC lines (i.e. NorNed,
BritNed)

Hoogspanningsnet, n.d.-a

Table A.1: History of the Dutch electricity supply system
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