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1 ABSTRACT

Recently a lot of research has been conducted to increase the understanding of the
brain dynamics, particularly regarding abnormal behavior. One of the most common neuro-
logical disorders is epilepsy and is therefore an important research topic. However, so far this
disorder has only been theoretically characterized as being associated with abnormal syn-
chronization between brain regions. Therefore Schmidt et al. (2014) tested a new method for
analyzing this synchronization. For this they used the Kuramoto model. This model is said
to be a good way of modeling the brain dynamics associated with epilepsy. Using this model
they found markers to distinguish between healthy subjects and epilepsy patients using rest-
EEGs. This research was conducted to confirm their findings. This study has indeed found a
reduction in the critical coupling strength required to synchronize the global network in the
low-alpha (6-9 Hz) band. However, their other findings could not be confirmed. Furthermore
in this research, thresholds were established for distinguishing between healthy subjects and
epilepsy patients. Together these findings demonstrate that this model could be used to pro-
vide significant additional information from rest-EEGs. This could ultimately lead to a better
tool for identifying people with epilepsy leading to improved diagnostics and therapeutics.
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2 INTRODUCTION

Recently a lot of research has been conducted to increase the understanding of the
brain dynamics, particularly regarding abnormal behavior. In those researches graph theory
is often used to explain phenomena like Parkinson and schizophrenia. Another neurological
disorder that has recently gained a lot of attention is epilepsy, a disorder characterized by
the tendency to have recurrent seizures. This disorder is one of the most common serious
primary brain diseases, with a worldwide prevalence approaching 1% (Benjamin et al., 2011)
[3]. So far this disorder has only been theoretically characterized as being associated with
abnormal synchronization between brain regions. The International League Against Epilepsy
(ILAE) defined an epileptic seizure as "a transient occurrence of signs and/or symptoms due
to abnormal excessive or synchronous neuronal activity in the brain" [12].

Furthermore empirical data led to the idea that the cortical, frontal lobe is involved
in absence seizures and primary generalized seizures. However, theoretical proof of this ab-
normal synchrony and which areas are involved could up to the point of the research con-
ducted by Schmidt et al. (2014) not be given [25]. As a basis they used the Kuramoto model
to model the brain and found markers in this model to distinguish between healthy subjects
and epilepsy patients. According to them, with analysis based on this model, one can gain
significant additional information from a routine clinical EEG (a rest-EEG), which eventually
will lead to improved diagnostics and therapeutics of people with epilepsy. This could be an
important breakthrough, since no epileptic seizures need to be induced to positively identify
a person as having epilepsy. This inducing is time-consuming and not particularly nice for
the patients. It also only leads to a positive diagnosis in a maximum of 60% of the cases, re-
sulting in diagnostic uncertainty for many people. This leads to extra costs due to additional
longer-term EEG monitoring, repeated hospital admissions, as well as unnecessary prescrip-
tion of anti-epileptic drugs [26].

This paper will try to reproduce the findings of Schmidt et al. (2014) to be able to con-
firm their conclusion using another dataset.
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3 THE KURAMOTO MODEL

As stated before the model used by Schmidt et al. is based on the Kuramoto model [25].
This is a standard model used to study synchronization phenomena. A reason for this is that
this model is exactly solvable despite considering large sets of non-linearly coupled entities
(Scholtes et al., 2009 [27]). For this purpose it is used as a purely phenomenological model,
which allows analytical studies of synchronization phenomena in large scale networks. Re-
cently, another model, the Wilson-Cowan model, was suggested to be a better model (Daf-
fertshofer et al., 2011 [9]). This model is said to be better since it does not have the limit of
weak coupling, which leads to neglecting the amplitude of the original model. However, the
Kuramoto model is shown to already display behavior similar to epileptic seizures, so for this
research a more detailed physiological model is not necessary [25].

The Kuramoto model describes the evolution of N identically coupled phase oscilla-
tors. Those N oscillators are coupled together uniformly with strength K through their phase
θ. The natural frequency of the i th oscillator is represented by ωi . Hereby is assumed that all
these frequencies are drawn from a normal distribution function with meanΩ and standard
deviation 1. This gives the following equation as defined by Kuramoto [14]:

θ̇i =ωi + K

N

N∑
j=1

sin(θ j −θi ) (3.1)

Usually the collective behavior of the population oscillators is studied by calculating the order
parameter r which measures the average amount of synchronization amongst oscillators. In
figure 3.1 it can be seen that for a certain K-value a threshold is reached and r becomes higher
up to a coherence level of almost 1.

Figure 3.1: In this figure the average coherence r vs the coupling strength K is shown. It can be seen that for a certain
K-value a threshold is reached and r becomes higher up to a coherence level of almost 1.

To quantify this synchronization, r is defined in equation 3.2 with ψ the average phase of the
N phase-oscillators between 0 and 2π:

r e iψ = 1

N

N∑
j=1

e iθ j (3.2)

4



Multiplying both sides by e−θi equation 3.2 becomes:

r e i (ψ−θi ) = 1

N

N∑
j=1

e i (θ j−θi ) (3.3)

Using Euler’s formula equation 3.3 becomes:

r [cos(ψ−θi )+ i sin(ψ−θi )] = 1

N

N∑
j=1

[cos(θ j −θi )+ i sin(θ j −θi )] (3.4)

Equating the imaginary parts of equation 3.4 gives:

r sin(ψ−θi ) = 1

N

N∑
j=1

sin(θ j −θi ) (3.5)

Thus,equation 3.1 can be transformed in equation following the method of S. H. Strogatz
(2000) [32]:

θ̇i =ωi + r K sin(ψ−θi ) (3.6)

In this context a higher level of phase coherence is equivalent with a higher level of synchro-
nization [36]. In figure 3.2 phase θ is plotted over time for all the different oscillators N (in
this case N = 103).

Figure 3.2: In this figure phase parameter θ is plotted over time (t-values of 50,150 and 250 ms are shown) for all the
different oscillators N (in this case N = 103). This is done for the K-value of 1, 2 and 3. In this way it can
be seen that when K becomes higher than a certain threshold all the phases of the different oscillators
become phase-locked.
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In this way an illustration is given that higher than a certain K-value the phases θ be-
come phase-locked. This shows that synchronization occurs when K becomes larger. Using
these computations it can be concluded that a critical value for K, Kc , is the onset for syn-
chronization. This is analogous to the transition between background and spike-wave ac-
tivity seen in the onset of seizures. This synchronization phenomenon is called node-driven
synchrony, since it can occur within a node. A node being here analogous to the coupling of
those N oscillators. The theoretical value of this Kc as proposed by Kuramoto is [10]:

Kc = 2

πg (0)
(3.7)

The value g(0) comes from the probability distribution g (ω) from whichωi are drawn. In this
case the normal distribution is used with µ = 0, since a prerequisite for choosing a distribu-
tion is that the distribution is symmetrical and that g (ω) = g (−ω) [5]. Thus the probability
distribution is

g (ω) = 1

σ
p

2π
e
−

(
ω−µ
2σ2

)2

with µ= 0 (3.8)

resulting in

g (0) = 1

σ
p

2π
(3.9)

Using equation 3.9 in equation 3.7 gives

Kc = 2

π 1
σ
p

2π

= 2
p

2π

π 1
σ

= 2π
p

2

π
p
π 1
σ

= 2
p

2p
π
σ (3.10)

A simulation of this for different values of σ is shown in figure 3.3.

Figure 3.3: In this figure plots of K vs. r are shown again, but now for different values ofσ. In this figure also the the-
oretical value of Kc based on eq. 3.10 is shown. It can be seen that this theoretical value is approximately
the onset for synchronization.
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However, since only a finite system can be simulated, the numerical onset for synchro-
nization can only be approximated by the theoretical Kc . That’s why the proposal of Schmidt
et al. (2014) to use a Kc of 2p

π
, is used in the rest of the paper [25]. In figure 3.4 again a plot

is shown of K vs. r with µ = 0 and σ = 1 with also the theoretical and proposed value of Kc

shown. This shows that setting Kc = 2p
π

is a logical choice.

Figure 3.4: In this figure again K vs r is plotted. Now next to the theoretical value of Kc also the proposed value of
Kc by Schmidt et al. (2014) [25] is shown. It can be seen that the proposed value is a good value to use,
since no synchronization has occurred yet for smaller K-values, unlike for the theoretical value.

To represent a collection of cortical columns N is set to use this model as a represen-
tation of the brain for modeling epilepsy. Together this network of N oscillators form node
p, with a node representing a recording site. To be able to use the Kuramoto model, it is as-
sumed that this network is all-to-all connected. However, since an EEG consists of multiple
nodes, P such nodes were connected following the method of Barreto et al. (2008) [2]. Those
P nodes thus all representing a Kuramoto model of N coupled oscillators.
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Figure 4.1: Comparison of recorded seizure with output Kuramoto model. A: EEG recording of epileptic seizure.
B: Kuramoto model in which one node represents one recording site. The model within one node is an
all-to-all connected network representing a collection of cortical columns [25].

4 EXTENDED KURAMOTO MODEL

To connect P nodes (all nodes representing a Kuramoto model of N coupled oscilla-
tors) Barreto et al. introduced a P ·P coupling matrix ρ with entries ρp,q , representing the
coupling strength from node q to node p. This describes the interaction between nodes p

and q weighted by a global coupling parameter C. The equation for θ̇p
i then becomes (here

super-or subscript p is introduced to point out that it resembles the variable for node p, the
same holds for subscript q).

θ̇
p
i =ωp

i + Kp

N

N∑
j=1

sin(θp
j −θ

p
i )+C

P∑
q=1

ρp,q

N

N∑
j=1

sin(θq
j −θ

p
i ) (4.1)

Again following the same steps as in equation 3.2,3.3,3.4 and 3.5 equation 4.1 can be trans-
formed in:

θ̇
p
i =ωp

i + rp Kp sin(ψp −θp
i )+C

P∑
q=1

rqρp,q sin(ψq −θp
i ) (4.2)

with de order parameter rp for synchronicity here defined as:

rp e iψp = 1

N

N∑
n=1

e iθp
n (4.3)

In this way the Kuramoto model is extended to represent EEG waves for all the recording sites.
This is illustrated in figure 4.1. In this figure it can be seen that the Kuramoto model models
epileptic EEG currents quite well. That is why this model was chosen. In figure 4.2 MatLab
representations of this extended model are shown. For this the K-value is always chosen to
be below the critical value of K to make sure that node-driven synchrony will not occur.
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(a) Graph representation (b) Plots of C vs. rp for node p: 1-7

(c) Graph representation (d) Plots of C vs. rp for node p: 1-7

(e) Graph representation (f) Plots of C vs. rp for node p: 1-7

Figure 4.2: Three different networks of seven nodes with their C (global coupling parameter) vs. rp (order parameter
for synchronicity) plot. A rp of zero means no synchronicity and a rp of one means fully synchronized.
a: It can be seen that in this network one cycle exists connecting node 1, 4 and 2 and node 6 and 7 con-
nected to this cycle. All other nodes are disconnected.
b: It can be seen that in this network only the nodes in the cycle and the connected nodes become syn-
chronized (rp becomes high for a certain value of C for the nodes in the cycle).
c: It can be seen that in this network no cycles exist.
d: It can be seen that in this network all 7 nodes stay desynchronized (rp stays low).
e: It can be seen that in this network one cycle exists connecting node 1, 4 and 2 and all other nodes are
connected to this cycle.
f: It can be seen that in this network all 7 nodes become synchronized (rp becomes high for a
certain value of C).
Kp is chosen lower than Kc for all nodes to make sure no node-driven synchrony occurs.
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With this it can be seen that synchronization of the different nodes is influenced by the
C-value. To illustrate this three different networks of seven nodes were created in MatLab:
one with a cycle and two nodes connected to this and the other two disconnected (figure
4.2a), one with no cycles (figure 4.2c) and one with a cycle and all other nodes connected to
the cycle (figure 4.2e). Comparing figure 4.2b with figure 4.2d it can be seen that the exis-
tence of cycles within the network plays a big role in this type of synchrony, since without
the existence of cycles the curves of C vs. rp stay low for all nodes. However, if a cycle exists
(in this case 1–>4–>2–>1) those curves shoot up at some critical value of C, called Cc . Also
the nodes connected to this cycle become synchronized. This is clearly shown in figure 4.2f
where all nodes are connected to the cycle in some way. This type of synchrony is called
network-driven synchrony. With this type of synchrony it can occur that there is synchrony
across the network while all the individual nodes are in desynchronized state. So the local
coupling parameter Kp is below the critical value Kc and therefore all the individual nodes
are not synchronized. This means that no node-driven synchrony occurs in this network.

4.1 USING Cc AS A MEASURE FOR NETWORK-DRIVEN SYNCHRONY

As stated before, network-driven synchrony occurs when a certain value for C is reached,
called Cc . To find this critical value one needs to find the value for which the equilibrium
point of the system is degenerate [29]. To do this one first needs to create the Jacobian matrix
of the system as defined in equation 4.2. This Jacobian matrix is defined as followed:

J =
[
∂θ

∂r1
· · · ∂θ
∂rq

]
=


∂θ1
∂r1

· · · ∂θ1
∂rq

...
. . .

...
∂θq

∂r1
· · · ∂θq

∂rq

 (4.4)

In this matrix the diagonal elements are the elements where one differentiates with re-
spect to rp while considering node p. The other elements are also differentiated with respect
to rp but now a node q is considered. Therefore those diagonal elements give a different solu-
tion than the other elements. Solving this Jacobian matrix for the extended Kuramoto model
gives:

J =

(K1 +C ·ρ1,1) · sin(ψ1 −θ1) · · · C ·ρ1,q · sin(ψ1 −θq )
...

. . .
...

C ·ρq,1 · sin(ψq −θ1) · · · (Kq +C ·ρq,q ) · sin(ψq −θq )

 (4.5)

Since we are looking for the point where network-driven synchrony starts, we want to
make sure no node-driven synchrony occurs. Therefore on the diagonal elements the critical
value for node-driven synchrony, Kc , is substracted from Kp , which will be defined as Kp,p .
This leads to the following matrix:

J =

(K1,1 +C ·ρ1,1) · sin(ψ1 −θ1) · · · C ·ρ1,q · sin(ψ1 −θq )
...

. . .
...

C ·ρq,1 · sin(ψq −θ1) · · · (Kq,q +C ·ρq,q ) · sin(ψq −θq )

 (4.6)
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Before this critical value occurs, there is no synchrony yet (since no node-driven syn-
chrony, so the sinus elements in the matrix will be set to one to make sure that does not hap-
pen. This holds since without synchrony the order parameter rp = 0. This gives the following
Jacobian:

J =

(K1,1 +C ·ρ1,1) · · · C ·ρ1,q
...

. . .
...

C ·ρq,1 · · · Kp,p +C ·ρq,q

 (4.7)

Now the final step in finding this critical C-value is solving J = 0, because that is the
point where the system is degenerate. Since J is a matrix the solution can be found solving
det(J)=0 This leads to the equation as proposed by Schmidt et al. (2014) [25]:

det(Ccρ+K ) = 0 (4.8)

with K being a P ·P-dimensional diagonal matrix with elements Kp,p = Kp −Kc and ρ being
the connectivity matrix with elements rp,q . Solving this equation gives the critical value Cc

for the onset of network-driven synchrony.
Testing this for a system with two nodes, one situation in which the nodes are con-

nected and the other in which they are disconnected, gives Cc = 0.3284,Cc non-existent,
respectively. From this can be concluded that if no cycle exists, Cc does not exist and no
network-driven synchrony is possible. Changing the strength of all the bonds in the cycle
in this two-node system from 1 to 0.5 gives Cc = 0.6568 and to 0.25 gives Cc = 1.3135. This
leads to the conclusion that stronger bonds lead to a lower Cc -value. Even in a way that when
the strength is halve the size, Cc is twice as high. This can easily be explained by expanding
Ccρ+K : [

0 ρ1,2Cc

ρ2,1Cc 0

]
+

[
Kp −Kc 0

0 Kp −Kc

]
=

[
Kp −Kc ρ1,2Cc

ρ2,1Cc Kp −Kc

]
(4.9)

Solving equation 4.8 by using this expansion gives:

(Kp −Kc )2 −ρ1,2ρ2,1 ·C 2
c = 0

(Kp −Kc )2 = ρ1,2ρ2,1 ·C 2
c

C 2
c = (Kp −Kc )2

ρ1,2ρ2,1

Cc =
√

(Kp −Kc )2

ρ1,2ρ2,1

(4.10)

From this equation it can clearly be seen that Cc changes when the cycle changes and
that when the cycle is broken, the denominator becomes zero and Cc becomes non-existent.
To test the influence of multiple cycles and cycle-size on Cc , Cc was computed in a system
with three nodes. The results can be found in table 4.1:
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Cycle(s) Other connection Cc

1-2-1 no 0.3284
1-2-1 2-3 0.3284
1-2-1 3-2 0.3284
1-3-2-1 no 0.3284
1-3-2-1 & 1-2-1 no 0.2479
1-2-1 & 2-3-2 no 0.2322

Table 4.1: Test of Cc in a system with three nodes. In this test different systems with three nodes are created: one or
more cycles and zero or one other connection. For those different systems the Cc -value is computed. It can
be observed that the size of the cycle and whether there are other connections does not matter. However, it
can be seen that the amount of cycles does matter (Cc is lower) and that when the cycles are distinct that
the Cc -value is even lower.

From this table it can be concluded that the cycles in a system matter for the value of
Cc . What can also be seen is that when there is only one cycle, the size of that cycle does not
change the value of Cc . However, the amount of cycles does matter: more cycles gives a lower
Cc , when those cycles are distinct even a lower value can be observed. Those are interesting
observations, since according to Schmidt et al. (2014) the Cc -value is significantly lower for
epileptic patients [25]. This would mean that those patients probably have more and stronger
cycles than healthy subjects, explaining the lower Cc -value. To test their statement statisti-
cal analysis is performed to compare this Cc -value for epileptic patients with that of healthy
subjects.

4.2 USING rg AS A MEASURE FOR NODE-DRIVEN SYNCHRONY

In the previous section Kp was set at a smaller value than Kc making sure that node-
driven synchrony did not occur. However, it was also stated that if no cycles exist, no Cc -value
could be found and no network-driven synchrony is possible. Also network-driven synchrony
only occurred for a C-value larger than Cc . In those cases it could still be possible for syn-
chrony across the network to occur caused by node-driven synchrony. To test this, C is set at
a very low value (< Cc ), making sure no network-driven synchrony occurs. As a measure for
node-driven synchrony the order parameter rg is used, which is defined as the average of rp

(see equation 4.3) over all P nodes:

rg =
∣∣∣∣∣ 1

P

P∑
p=1

rp e iψp

∣∣∣∣∣ (4.11)

This is a suitable way for defining rg , since rp is the measure of phase coherence within
one node. A rp close to zero means hardly any synchrony within the node and rp close to
one means a lot of synchrony within the node. So a higher rg means that more nodes in
the network are synchronized. To test the influence of one node being synchronized on the
network as a whole, the K-value for that node is set higher than Kc (meaning that this node
will automatically synchronize) and the other K-values lower.
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5 PREPARING REST-EEG FOR TESTING

However, before the parameters rg and Cc can be used for analysis of real data, it is
necessary to create the connectivity matrix ρ, which was introduced in the previous section.
This connectivity matrix is extracted from a rest-EEG. Since in this research it is tried to repro-
duce the findings of Schmidt et al. (2014) their way of extracting data is used [25]. Therefore
a 20 second segment of background activity (meaning eyes-closed) of a recorded rest-EEG
needs to be extracted. To achieve this, appropriate rest-EEGs were selected and put in Mat-
Lab. With the help of MatLab a 20 second segment with the annotation along the lines of
’eyes closed’ was selected. Then this segment had to be bandpass filtered between 1-70 Hz
to exclude noise. For this the default bandpass filter in MatLab was used. Afterwards it was
notch-filtered between 48-52 Hz to exclude interference from wires, light fluorescents and
other equipments which are captured by the electrodes and acquisition system (Correa et al.,
2011 [8]). The suggestion of using a notch filter stems from the work of Sameni (2012) [24].
However, for the implementation in MatLab the IIR notch filter was used, since according to
Nehorai (1985) this gives better results when implemented by filtering out all that is desired
[21].

This data is then divided into 5 frequency bands 5.1 based on the work of Shackman et
al. (2010) [30]. However, another subdivision in the was made alpha band, since recent work
from Chowdhury et al. (2014) found significant differences in rest-EEG data of the different
alpha bands between epileptic patients and healthy subjects [7]. This led to this division:

Frequency band Range
delta 1-3 Hz
theta 3-6 Hz
low alpha 6-9 Hz
high alpha 10-14 Hz
beta 15-30 Hz
gamma 30-70 Hz

Table 5.1: Division of rest-EEG into the different frequency bands used for this research.

To look at the interdependencies between the different nodes within a frequency band,
time-lagged cross-correlation is used. The method used is a linear method proposed by
Bialonski et al. (2013) [4]. They proposed two methods. For this purpose the method tak-
ing time-lagging into account is necessary, since there might be time lags due to propagation
of electrical activity along anatomical pathways during the seizure. It is possible to use a lin-
ear method, since according to research conducted by Stam et al. (2009) a resting-EEG is
predominantly linear [31]. This gives the following equation for the coupling matrix ρ:

ρp,q = max
τ

∣∣∣∣∣∣∣
ξ(xp , xq )(τ)√

ξ(xp , xp )(0)ξ(xq , xq )(0)

∣∣∣∣∣∣∣ where ξ(xp , xq )(τ) =


T−τ∑
t=1

xp (t +τ)xq (t ) if τ≥ 0

T∑
t=1−τ

xp (t +τ)xq (t ) if τ< 0

(5.1)
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Since this data is of finite length there could be autocorrelation effects included in this
coupling matrix. Therefore 99 surrogate datasets are created from the original EEG data via
the iterative amplitude-adjusted Fourier transform (IAAFT). This is proven to be an effective
method by Maiwald et al. (2008) [17] and Schreiber et al. (1996) [28]. Coupling matrices are
also created from these surrogate data. Comparing these with the actual coupling matrix,
connections ρp,q are rejected when they do not exceed the 95% level of significance. Fol-
lowing the method of Schmidt et al. then a directional matrix is created by setting ρp,q = 0
if τp,q ≤ 0 and ρq,p = 0 if τp,q ≥ 0. With this the zero time-lag connections are also removed.
Furthermore spurious connections are removed, meaning direct connections between nodes
are removed when stronger indirect connections via one or two other nodes exist.

All of the steps above give the functional connectivity matrix ρ, which can be used for
further testing. An illustration of this procedure can be seen in figure 5.1.

Figure 5.1: Illustration of the procedure to derive the functional network structure. A: An artefact-free 20s resting-
state segment of EEG from each subject is extracted. B: Applying the time-lagged cross-correlation to all
combinations of channel pairs yields a bidirectional connectivity matrix. C: Connections are removed
if they are not significantly different from surrogate data (95% level of significance). D: Using the time-
lags, a unidirectional connectivity matrix can be inferred. E: Setting to zero all connections that can be
explained by stronger, indirect connections removes spurious connections. [25]
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6 TESTING

Now the connectivity matrix can be computed based on real rest EEG-data. For this
43 patients were selected (18 male/25 female) above the age of 10, all categorized as having
primary generalized epilepsy (sample A). About half of the patients use anti-epileptica. This
data was compared to a control-group of 41 subjects (19 male/22 female) also above the age
of 10 (sample B). After computation of the connectivity matrices for all frequency bands for
all subjects, Cc and rg can be computed for all the connectivity matrices. For rg per frequency
band 19 results were computed, one for every node. This is summarized in table 6.1.

Frequency band Cc -results total Cc -results rg -results total rg -results
delta 1 per subject A:43, B:41 19 per subject A:19·43, B:19·41
theta 1 per subject A:43, B:41 19 per subject A:19·43, B:19·41
low alpha 1 per subject A:43, B:41 19 per subject A:19·43, B:19·41
high alpha 1 per subject A:43, B:41 19 per subject A:19·43, B:19·41
beta 1 per subject A:43, B:41 19 per subject A:19·43, B:19·41
gamma 1 per subject A:43, B:41 19 per subject A:19·43, B:19·41

Table 6.1: Summary of all the different calculations performed used for statistical testing. The value 19 stems from
all the different nodes used. A stands for sample A: patients with primary generalized epilepsy and B
stands for sample B: control-group.

On all these results statistical tests need to be performed to test the results of Schmidt et al.
(2014), who stated that there were significant differences between sample A and sample B
[25].

First of all the Kolmogorov-Smirnov test was performed on all these results to test
whether the underlying distribution of both sample A and sample B was normal. This test
returns a test decision for the null hypothesis that the data in vector x comes from a standard
normal distribution, against the alternative that it does not come from such a distribution.
The result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0 oth-
erwise. For all data-vectors this test returned a 1, so we cannot assume that the underlying
distributions are normal. This result is important, since now no test for comparing the two
samples can be used which assumes an underlying normal distribution, like the t-test. How-
ever, there are a couple of statistical tests which can be used that do not make this assump-
tions. Schmidt et al. (2014) used the Wilcoxon rank sum test [25].

However, other commonly used possibilities are the Mann-Whitney U test, the Kruskal
Wallis and the Friedman test. The latter was used in the work of Schmidt et al. (2016) [26].
These four possible tests are compared and contrasted to eventually be able to choose a suit-
able test for our data.

6.1 WILCOXON RANK SUM TEST/MANN-WHITNEY U TEST

The Mann-Whitney U test is basically the same as the Wilcoxon rank sum test. In most
of the literature they are used interchangeably. The Wilcoxon rank sum test is the test that
was originally used in the work of Schmidt et al. (2014) [25]. In this test a vector is created

15



containing all data, so both of sample A and sample B. The data is then categorized in as-
cending order and each value is given a rank according to the position which it is in. If two or
more data-points have the same value they will all get the average rank. Then the sum of the
ranks is calculated for both samples. Afterwards the hypothesis H0: A = B is tested versus H1:
A < B (in case of Cc -values) or H1: A > B (in case of rg -values).

This test, like any non-parametric test, does not depend on assumptions on the distri-
bution. So one can also use it when, as in this case, the normality of the distribution cannot
be confirmed. Another advantage of this test is that it is less sensitive to outliers. When sam-
ples are paired the Wilcoxon signed rank test is used, which is a slightly different test, but this
is not the case here. So this looks like quite an appropriate test. However, it is shown that this
test can give wrongfully significant results when the two samples are drawn from two popu-
lations with the same average but with different variances. This could then lead to a rejection
of the null-hypothesis, while this is actually true [20].

6.2 FRIEDMAN TEST

The Friedman test is mostly used for three or more correlated samples. Since our data
is not correlated, this measurement is not appropriate to use. For completeness a short ex-
planation of the test is still given. Per subject the different samples are ranked (highest score,
highest ranking). Then the sum (Tg ) and the mean of those rankings are calculated. Eventu-
ally this will lead to formula for chi-squared, which is the statistic used by this test:

χ2 =
∑(

(Tg )2

n

)
− (Tal l )2

nk

k(k+1)
12

with n = nr. of subjects, k = measurements per subject and df = k-1

(6.1)
With this statistic the null-hypothesis can be tested [15].

6.3 KRUSKAL WALLIS

The Kruskal Wallis is in essence the same as the Wilcoxon rank sum test. It also ranks
all the data according to the position of the data in an ascending vector of all values. The main
difference is that this test is mostly used for three or more samples. Next to the sums of ranks
takes this test also the averages of each group into account. Therefore this might be a more
accurate measurement than the Wilcoxon rank sum test, also when only considering two
samples. However, this test only checks whether the distributions are different and not if one
is greater/smaller than the other. The test statistic used in this test is H, which is formulated
as followed:

H =
∑(

(Tg )2

ng

)
− (Tal l )2

N

N (N+1)
12

with (6.2)

Tg = sum of ranks of group,
Tal l = sum of ranks total,
ng = number of samples of group,
N = total number of samples.
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This statistic is a close approximation of the chi-squared distribution when each of the k
samples has a sample size larger than 5 with df = k-1. In this way the null-hypothesis can
be tested [16].

The best test seems to be Kruskal Wallis. However, we want to find out if the data
confirms our hypotheses. This means confirming that the Cc of epileptic patients is smaller
than the Cc of the control group and that the rg of epileptic patients is greater than the rg

of the control group. Therefore we want to perform left-tailed tests and right-tailed tests
respectively. So for this purpose the Wilcoxon rank sum test is used.

6.4 LEAVE-ONE-OUT METHOD

Another test used to take a more detailed look to the specificity and sensitivity of the
different markers is the leave-one-out method.This method was proposed by Schmidt et al.
(2016) as a good method for testing [26]. This test pools all the data (both of the epilepsy
patients and the control group) and successively leaves one subject out. The remaining data
is used as the training set. With this method thresholds are determined to give the highest
sensitivity for 100% specificity and the highest specificity for 100% sensitivity. Afterwards
these thresholds are used to classify the test subject: if the value is on the epilepsy side of
both thresholds (in the case of Cc below and in the case of rg above), then it is classified as
epilepsy. If the value is on the control side of both thresholds, the value is classified as control.
If the value lies between the two thresholds, the value is classified as uncertain. An illustration
of this method is shown in figure 6.1.

Figure 6.1: The leave-one-out method
This test pools all the data (both of the epilepsy pa-
tients and the control group) and successively leaves
one subject out. The remaining data is used as the
training set. With this method thresholds are deter-
mined to give the highest sensitivity for 100% speci-
ficity and the highest specificity for 100% sensitiv-
ity. Afterwards these thresholds are used to classify
the test subject: if the value is on the epilepsy side
of both thresholds, then it is classified as epilepsy. If
the value is on the control side of both thresholds,
the value is classified as control. If the value lies be-
tween the two thresholds, the value is classified as
uncertain. [26].
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7 RESULTS

7.1 TESTING Cc

As stated before a left-tailed Wilcoxon rank sum test was performed. This gave the
following results:

Frequency band p-value
delta 0.3737
theta 0.5919
low alpha 0.0761
high alpha 0.3866
beta 0.2689
gamma 0.3496

Table 7.1: In this table the found p-values for the different frequency bands are shown. These value were computed
using a left-tailed Wilcoxon rank sum test for comparison of the Cc -values of the epileptic patients and
the control-group. The value printed in bold is a significant p-value when α is set to 0.1.

As can be seen in table 7.1 the only band that gives significant results is the low alpha band.
This band gives a significant value when α is set to 0.1.

Using the leave-one-out method for this biomarker gives the following results, see table
7.2. However, none of the bands give significant results.

Fr. band thr. spec. thr. sens. epi class. as epi contr class. as contr spec. sens.
delta 0.6233 0.6233 43/43 1/41 2.4% 100%
theta 0.8809 0.7719 42/43 1/41 2.4% 97.7%
low alpha 0.2455 0.2192 0/43 40/41 97.6% 0%
high alpha 0.2333 0.1745 0/43 39/41 95.1% 0%
beta 2.0169 2.0169 21/43 14/41 34.1% 48.8%
gamma 0.7083 0.8330 3/43 41/41 100% 7.0%

Table 7.2: Leave-one-out method applied on the Cc -values for all the different frequency bands.

7.2 TESTING rg

As stated before a right-tailed Wilcoxon rank sum test was performed for the testing of
the biomarker rg . This gave the following significant results (p-value less than 0.05):

• The p-value for node F3 of the beta band is 0.0272.

• The p-value for node C4 of the beta band is 0.0346.

• The p-value for node T5 of the low alpha band is 0.0112.

• The p-value for node Cz of the gamma band is 0.0078.

• The p-value for node Pz of the high alpha band is 0.0375.
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For all the results, see table 11.1 in Appendix 11.1, with those significant values printed in
bold.

Also for this biomarker the leave-one-out method was performed, this time giving
some interesting results:

• Node P4 of the delta band:

– 42/43 epilepsy patients and 19/41 controls were classified correctly.

– 0/43 of the epilepsy patients and 2/41 controls were classified as undefined.

– 1/43 of the epilepsy patients and 19/41 controls were wrongly classified.

• Node Fz of the delta band:

– 21/43 epilepsy patients and 40/41 controls were classified correctly.

– 0/43 epilepsy patients and 0/41 controls were classified as undefined.

– 22/43 epilepsy patients and 1/41 controls were wrongly classified.

• Node P3 of the low alpha band:

– 42/43 epilepsy patients and 20/41 controls were classified correctly.

– 1/43 epilepsy patients and 2/41 controls were classified as undefined.

– 1/43 epilepsy patients and 20/41 controls were wrongly classified.

• Node T5 of the high alpha band:

– 22/43 epilepsy patients and 40/41 controls were classified correctly.

– 0/43 epilepsy patients and 1/41 controls were classified as undefined.

– 21/43 epilepsy patients and 0/41 controls were wrongly classified.

• Node F7 of the gamma band:

– 21/43 epilepsy patients and 40/41 controls were classified correctly.

– 0/43 epilepsy patients and 0/41 controls were classified as undefined.

– 22/43 epilepsy patients and 1/41 controls were wrongly classified.

The complete table with all results (notable results marked in bold) and also the values for
th1 and th2 can be found in Appendix 11.1 table 11.2.
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8 CONCLUSION

The Kuramoto model and then specifically the extended Kuramoto model seems to
be a good tool to model brain waves found in an EEG. Also the theoretical model shows the
effect of the biomarkers Cc and rg on synchronicity very well. This shows that more and
stronger cycles lead to a lower Cc -value, causing synchronicity across the network to occur
more easily. The rg -value is higher when the node that is set to synchronize has a higher
effect on the synchronicity across the network as a whole. Therefore, theoretically, those two
biomarkers seem to be appropriate for distinguishing between epilepsy patients and healthy
subjects. Since it is believed that epilepsy is caused by abnormal or excessive synchronous
activity in the brain.

However, when testing those biomarkers on real resting EEG data hardly any signif-
icant results were found. For the Cc -value only the low alpha band gave promising results
for a 90% significance level. But then using the leave-one-out method, no interesting results
were found. The biomarker rg looks a little more promising: node F3 and C4 of the beta band,
node T5 of the low alpha band, node Pz of the high alpha band and node Cz of the gamma
band all gave significant results for a significance level of 95%.

Especially the leave-one-out method for this biomarker gave some promising results
for diagnostic purposes, since it either classified almost all controls correctly and about 50%
of the epilepsy patients (1) or the other way around (2). Those markers were for option 1:

• Node Fz of the delta band: 97.6 % specificity and 48.8% sensitivity.

• Node T5 of the high alpha band: 97.6 % specificity and 51.2 % sensitivity.

• Node F7 of the gamma band: 97.6 % specificity and 48.8% sensitivity.

And for option 2:

• Node P4 of the delta band: 46.3% specificity and 97.7% sensitivity.

• Node P3 of the low alpha band: 48.8% specificity and 97.7% sensitivity.

So the method proposed by Schmidt et al. (2014) seems to be a good method theoreti-
cally. However, the results they found could not be reproduced, when testing the method on
a new set of data. Only the biomarker Cc for the low-alpha band also gave significant results
for this new dataset.
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9 DISCUSSION

There were some statistically significant results found using the Wilcoxon rank sum
test. However, looking at it more critically those results for the biomarker rg could just be
random, since some p-values were that high that they would have given a significant re-
sults when the hypothesis was formulated exactly the other way around (using a left-tailed
Wilcoxon rank sum test instead of a right-tailed). Also comparing these results with the re-
sults found by Schmidt et al. (2014) [25] and Schmidt et al. (2016) [26] completely different
results were found again. This supports the suspicion that those results were all just found
randomly and that every dataset used for this analysis gives again another result.

Even though hardly any results could be found, using the Kuramoto model as a di-
agnostic tool for epilepsy could work. Theoretically it still seems a good model and more
research should be conducted to see if this model can or cannot be used in a clinical setting.

One big advantage of this model is that a rest-EEG can be used, so no provocation
of epileptic seizures is needed. This would be an improvement, since this induction is time-
consuming, costly and not particularly nice for the patients. Furthermore anyone can analyze
this rest-EEG, since only a piece annotated with ’eyes closed’ has to be selected and then the
data can be put in the model. So at first no expert in analyzing EEGs is needed.

However, the results found in this research do not look promising, since there could be
multiple other explanations given for not finding significant differences. First of all, for this
research data of people diagnosed with having idiopathic generalized epilepsy were selected
and people who came to the hospital for whatever reason and then eventually classified as
normal after having had an EEG. This could have led to wrongly used data, since the people
classified as normal could still have epilepsy but with it not being detected (yet). Further-
more, the epilepsy patients were all classified by an expert as having idiopathic generalized
epilepsy, however it could be that some were classified incorrectly and actually had another
type of epilepsy.

Also some of the epileptic patients used medicines as treatment for their epilepsy. It
could be that those drugs influenced the network structure in such a way that no significant
differences could be found. To test this a comparison should be made between the patients
with and without medication for epilepsy to test whether significant differences could be
found between them.

So to really be able to use the Kuramoto model as a diagnostic tool for epilepsy further
testing needs to be done on a very large scale. There could definitely still be a future in using
this model, especially when looking at the results of the biomarker rg of the leave-one-out
method. Based on these results, it could still be possible to develop a nice diagnostic tool for
testing on epilepsy.
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11 APPENDIX

11.1 RESULTS

Node p delta p theta p l. alpha p h. alpha p beta p gamma
Fp2 0.9723 0.9734 0.6564 0.1581 0.2077 0.4857
Fp1 0.7403 0.9815 0.5534 0.6432 0.4360 0.3177
F4 0.8122 0.9890 0.3771 0.6855 0.7135 0.7166
F3 0.8644 0.7974 0.3976 0.3737 0.0272 0.2539
C4 0.6058 0.9654 0.5955 0.4537 0.0346 0.2988
C3 0.6727 0.3873 0.9252 0.6161 0.9802 0.6398
P4 0.7043 04964 0.3050 0.9483 0.4466 0.1830
P3 0.4360 0.4964 0.5710 0.6531 0.4857 0.6093
O2 0.5885 0.7166 0.3403 0.4011 0.9012 0.2370
O1 0.3669 0.6950 0.3370 0.7432 0.4786 0.7074
F8 0.5920 0.5498 0.1927 0.9879 0.5428 0.7766
F7 0.4929 0.3081 0.1170 0.4715 0.6662 0.3436
T4 0.3568 0.9871 0.3830 0.5710 0.1317 0.2288
T3 0.9625 0.3703 0.3635 0.8882 0.1084 0.6630
T6 0.2001 0.8097 0.7135 0.6297 0.4045 0.2001
T5 0.5071 0.8800 0.0112 0.5498 0.5071 0.9434
Fz 0.7074 0.6823 0.8504 0.6093 0.9717 0.1496
Cz 0.9336 0.4360 0.9633 0.4893 0.2370 0.0078
Pz 0.5605 0.1395 0.6887 0.0375 0.9834 0.5000

Table 11.1: Found p-value for different frequency bands and different nodes for comparing rg epilepsy patients and
control-group using the right-tailed Wilcoxon rank sum test.
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Node fr. band thr. spec. thr. sens. epi class. as epi contr class. as contr spec. sens.
Fp2 delta 0.0704 0.0811 41/43 0/41 0% 95.3%
... theta 0.0664 0.0664 42/43 0/41 0% 97.7%
... l.alpha 0.0678 0.0678 21/43 19/41 46.3% 48.8%
... h.alpha 0.1424 0.1424 0/43 40/41 97.6% 0%
... beta 0.1032 0.1002 0/43 40/41 97.6% 0%
... gamma 0.1050 0.1050 0/43 40/41 97.6% 0%
Fp1 delta 0.0733 0.0776 41/43 0/41 0% 95.3%
... theta 0.0723 0.0753 42/43 0/41 0% 97.7%
... l.alpha 0.1281 0.1242 1/43 41/41 100% 2.3%
... h.alpha 0.0739 0.0769 42/43 0/41 0% 97.7%
... beta 0.1080 0.1029 1/43 40/41 97.6% 2.3%
... gamma 0.0690 0.0690 42/43 0/41 0% 97.7%
F4 delta 0.0805 0.0767 41/43 1/41 2.4% 95.3%
... theta 0.0702 0.0758 40/43 0/41 0% 93.0%
... l.alpha 0.1322 0.1237 0/43 41/41 100% 0%
... h.alpha 0.0753 0.0763 42/43 0/41 0% 97.7%
... beta 0.0567 0.0567 42/43 1/41 2.4% 97.7%
... gamma 0.0727 0.0706 41/43 0/41 0% 95.3%
F3 delta 0.0716 0.0762 41/43 0/41 0% 95.3%
... theta 0.0807 0.0775 42/43 1/41 2.4% 97.7%
... l.alpha 0.1223 0.1223 0/43 40/41 97.6% 0%
... h.alpha 0.0784 0.0693 22/43 22/41 53.7% 51.2%
... beta 0.1073 0.1072 0/43 40/41 97.6% 0%
... gamma 0.1014 0.1000 0/43 40/41 97.6% 0%
C4 delta 0.0767 0.0732 42/43 1/41 2.4% 97.7%
... theta 0.0672 0.0738 42/43 0/41 0% 97.7%
... l.alpha 0.1177 0.1177 0/43 40/41 97.6% 0%
... h.alpha 0.1235 0.1235 0/43 41/41 100% 0%
... beta 0.1130 0.1079 1/43 41/41 100% 2.3%
... gamma 0.0589 0.0589 42/43 0/41 0% 97.7%
C3 delta 0.0786 0.0722 42/43 1/41 2.4% 97.7%
... theta 0.1193 0.1193 0/43 20/41 48.8% 0%
... l.alpha 0.0730 0.0748 40/43 0/41 0% 93.0%
... h.alpha 0.1119 0.1119 0/43 40/41 97.6% 0%
... beta 0.0694 0.0740 40/43 0/41 0% 93.0%
... gamma 0.1096 0.1025 1/43 19/41 46.3% 2.3%
P4 delta 0.1250 0.1250 42/43 19/41 46.3% 97.7%
... theta 0.0703 0.0597 42/43 1/41 2.4% 97.7%
... l.alpha 0.1231 0.1214 1/43 41/41 100% 2.3%
... h.alpha 0.0745 0.0714 41/43 0/41 0% 95.3%
... beta 0.1072 0.1072 0/43 40/41 97.6% 0%
... gamma 0.1015 0.1015 0/43 40/41 97.6% 0%
P3 delta 0.0750 0.0750 42/43 0/41 0% 97.7%
... theta 0.0697 0.0753 21/43 21/41 51.2% 48.8%
... l.alpha 0.0658 0.0750 42/43 20/41 48.8% 97.7%
... h.alpha 0.1201 0.1190 0/43 40/41 97.6% 0%
... beta 0.1075 0.1075 0/43 40/41 100% 0%
... gamma 0.1032 0.1032 0/43 40/41 97.6% 0%
O2 delta 0.1207 0.1207 22/43 20/49 48.8% 51.2%
... theta 0.0761 0.0722 42/43 1/41 2.4% 97.7%
... l.alpha 0.0713 0.0745 42/43 0/41 0% 97.7%
... h.alpha 0.1171 0.1160 0/43 40/41 97.6% 0%
... beta 0.0721 0.0656 42/43 1/41 2.4% 97.7%
... gamma 0.1108 0.1108 0/43 40/41 97.6% 0%
O1 delta 0.1272 0.1272 0/43 40/41 97.6% 0%
... theta 0.0736 0.0675 42/43 1/41 2.4% 97.7%
... l.alpha 0.1136 0.1136 0/43 40/41 97.6% 0%

Table 11.2: Leave-one-out method applied on the rg -values for all nodes and all frequency bands. Promising results
are marked in bold.
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Node fr. band thr. spec. thr. sens. epi class. as epi contr class. as contr spec. sens.
... h.alpha 0.0710 0.0710 42/43 0/41 0% 97.7%
... beta 0.0700 0.0589 41/43 1/41 2.4% 95.3%
... gamma 0.0730 0.0695 42/43 1/41 2.4% 97.7%
F8 delta 0.0714 0.0645 42/43 1/41 2.4% 97.7%
... theta 0.1476 0.1476 0/43 40/41 97.6% 0%
... l.alpha 0.1203 0.1172 1/43 41/41 100% 2.3%
... h.alpha 0.0637 0.0761 36/43 0/41 0% 83.7%
... beta 0.0748 0.0720 21/43 0/41 0% 48.8%
... gamma 0.0714 0.0622 42/43 1/41 2.4% 97.7%
F7 delta 0.1241 0.1210 1/43 40/41 97.6% 2.3%
... theta 0.1200 0.1051 1/43 40/41 97.6% 2.3%
... l.alpha 0.1167 0.1167 0/43 41/41 100% 0%
... h.alpha 00814 0.0697 42/43 1/41 2.4% 97.7%
... beta 0.0670 0.0696 42/43 0/41 0% 97.7%
... gamma 0.1128 0.1128 21/43 40/41 97.6% 48.8%
T4 delta 0.0753 0.0753 21/43 0/41 51.2% 48.8%
... theta 0.0600 0.0701 41/43 0/41 0% 95.3%
... l.alpha 0.1131 0.1066 0/43 21/41 51.2% 0%
... h.alpha 0.1189 0.1189 21/43 20/41 48.8% 48.8%
... beta 0.1051 0.0981 1/43 40/41 97.6% 2.3%
... gamma 0.0971 0.0959 0/43 40/41 97.6% 0%
T3 delta 0.0762 0.0785 40/43 0/41 0% 93.0%
... theta 0.1182 0.1112 1/43 41/41 100% 23%
... l.alpha 0.1151 0.1112 1/43 40/41 97.6% 2.3%
... h.alpha 0.0680 0.0680 42/43 0/41 0% 97.7%
... beta 0.1124 0.1077 1/43 40/41 97.6% 2.3%
... gamma 0.0733 0.0710 42/43 1/41 2.4% 97.7%
T6 delta 0.1195 0.1195 0/43 40/41 97.6% 0%
... theta 0.0722 0.0766 42/43 0/41 0% 97.7%
... l.alpha 0.0608 0.0608 42/43 1/41 2.4% 97.7%
... h.alpha 0.0741 0.0683 41/43 0/41 0% 95.3%
... beta 0.0697 0.0697 42/43 0/41 0% 97.7%
... gamma 0.1038 0.1038 0/43 40/41 97.6% 0%
T5 delta 0.0772 0.0777 40/43 0/41 0% 93.0%
... theta 0.0657 0.0725 41/43 0/41 0% 95.3%
... l.alpha 0.1148 0.1073 0/43 40/41 97.6% 0%
... h.alpha 0.1161 0.1149 22/43 40/41 97.6% 51.2%
... beta 0.1078 0.0988 22/43 21/41 51.2% 51.2%
... gamma 0.0703 0.0703 42/43 0/41 0% 97.7%
Fz delta 0.1120 0.1120 21/43 40/41 97.6% 48.8%
... theta 0.0755 0.0669 42/43 1/41 2.4% 97.7%
... l.alpha 0.0808 0.0542 42/43 1/41 2.4% 97.7%
... h.alpha 0.1143 0.1065 1/43 41/41 100% 2.3%
... beta 0.0657 0.0696 41/43 0/41 0% 95.3%
... gamma 0.1037 0.1037 0/43 40/41 97.6% 0%
Cz delta 0.0698 0.0698 42/43 1/43 2.4% 97.7%
... theta 0.1115 0.1049 1/43 41/41 100% 2.3%
... l.alpha 0.0612 0.0612 42/43 0/41 0% 97.7%
... h.alpha 0.0719 0.0742 40/43 0/41 0% 93.0%
... beta 0.1067 0.1067 1/43 41/41 100% 2.3%
... gamma 0.1016 0.1016 0/43 40/41 97.6% 0%
Pz delta 0.0669 0.0753 40/43 0/41 0% 93.3%
... theta 0.1073 0.1073 0/43 40/41 97.6% 0%
... l.alpha 0.0765 0.0730 42/43 1/41 2.4% 97.7%
... h.alpha 0.1102 0.1102 0/43 40/41 97.6% 0%
... beta 0.0661 0.0661 42/43 0/41 0% 97.7%
... gamma 0.0998 0.0984 0/43 40/41 97.6% 0%

Table 11.2: Part 2 of the leave-one-out method part applied on the rg -values for all nodes and all frequency
bands. Promising results are marked in bold.
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