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Abstract
Credit valuation adjustment (CVA) has become an important aspect of ac-
counting and regulatory standards. On the one hand, the regulatory stan-
dards (Basel accords) demand a capital risk charge for CVA volatility. Basel
allows to hedge the CVA, which results in a reduction of the risk charge.
On the other hand, the accounting standards (IFRS) require that the finan-
cial instrument is valued at fair value, which is achieved by including CVA.
Consequently, changes in CVA have an effect on P&L, since fluctuations of
the instrument’s value affect the balance sheet equity. However, there is a
mismatch between hedging the regulatory risk charge and accounting P&L
volatility. The hedge instruments reducing the risk charge cause additional
P&L volatility, due to the fact that the regulatory view on CVA is more con-
servative than the accounting one (Berns, 2015; Pykhtin, 2012). There is a
trade-off between achieving risk charge reduction and creating additional
P&L volatility.

We present a methodology to define the optimal hedge amounts, which
leads to maximal CVA charge reduction while minimizing additional P&L
volatility. The Hull-White model is selected to simulate the risk factors de-
termining the value of the interest rate swap of time. By applying the Monte
Carlo method, the expected exposure path is found. Furthermore, the CDS
spreads are simulated, which are used in the CVA calculation and CDS cal-
culation. The combination of results are implemented in the regulatory and
accounting regimes, yielding in the CVA risk charge and CVA P&L. Using
the optimization criteria, we found the optimal hedge amount for each risk
appetite. In the implementation case we use an interest rate swap, due to
the notional size of interest rate derivatives to the OTC market. Here, we
present a step-by-step guidance from implementing the risk factor model
to finding the optimal hedging amount. For a bank more focused on capi-
tal, we see that the hedge amount should be set closer to Basel’s EAD level.
For a bank focused on reducing additional P&L volatility, we find that the
hedge amount should be set closer to expected exposure level.
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Chapter 1

Introduction

1.1 Background

The recent financial crisis showed that counterparty credit risk (CCR) is to be
considered significant. According to Gregory (2009), CCR is the risk that
a counterparty in a derivatives transaction will default prior to expiration
of a trade and will not make current and future payments required by the
contract. High-profile bankruptcies and bailouts of Lehman Brothers, Bears
Stearns, Merril Lynch, AIG and more, erased the misconception that certain
counterparties would never fail.

CCR is a specific form of credit risk. Traditionally, credit risk is thought
of as lending risk, where a party borrows money from another party and
fails to pay some or the whole amount due to insolvency. However, CCR
differentiates on two aspects from traditional credit risk (Gregory, 2009):

1. The future credit exposure of a derivative contract is uncertain, since
the exposure is determined by the market value of the contract.

2. Counterparty credit risk is normally bilateral, since the value of a
derivatives contract could have a negative or positive value.

CCR exposure is significant in the over-the-counter (OTC) market. In an
OTC transaction two parties do a trade without the supervision of an ex-
change. Exchange-traded contracts are standardized, follow the terms of
the exchange and eliminate the CCR due to third party agreements to guar-
antee the contract payments as agreed on. In an OTC trade there are no
third party agreements, which means the CCR will not be eliminated and
there is a risk that the contract will not be honored (Hull, 2012). The advan-
tage of OTC trades on the other hand, lies in the possibility to create highly
specified derivative contracts adapted to the needs of the two parties.

During the financial crisis banks suffered large CCR losses on their OTC
derivatives portfolios. Most of these losses were not caused by the coun-
terparty default but due to the change in value of the derivative contracts.
The Basel Committee on Banking Supervision (BCBS) states that (BCBS, 2011):

"During the financial crisis, roughly two-thirds of losses attributed to Counter-
party Credit Risk were due to Credit Valuation Adjustments losses and only about
one-third were due to actual defaults".

The downgrade of a counterparty’s creditworthiness, or the fact the coun-
terparty is less likely than expected to meet their obligations, caused the
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value of the derivative contracts to be written down (BCBS, 2015). The
risky price of a derivative can be thought of as the risk-free price (the price
assuming no counterparty risk) minus a component to correct for counter-
party risk. This latter component is called credit valuation adjustment (CVA)
(Gregory, 2009).

Accounting standards (IFRS) require that the value of a financial instru-
ment includes counterparty credit risk, which leads to the fair value of the
instrument. The fair value is achieved by a valuation adjustment referred
to as CVA. The CVA has an effect on the profit and loss (P&L), since losses
(gains) caused by fluctuations of the counterparty’s credit quality reduce
(increase) the balance sheet equity. Regulatory standards (Basel Accords)
demand a capital charge for future changes in credit quality of the coun-
terparty, i.e. CVA volatility (Berns, 2015). Basel II/III define the capital
charge in two parts, namely: a charge for the current CVA (CCR capital re-
quirements) and a charge for future CVA changes (CVA risk charge). Since
banks actively manage CVA position by their CVA desks, regulatory stan-
dards allow to reduce the CVA risk charge by entering in eligible hedges
such as CDS hedges. Hedging future CVA volatility leads to a decrease of
CVA risks, which implies that less capital is necessary.

FIGURE 1.1: Balancing between CVA P&L hedging and cap-
ital optimization (Lu, 2015).

As illustrated, CVA can be interpreted from the accounting perspective or
the regulatory perspective. However, there is a mismatch between the reg-
ulatory capital reduction and accounting CVA P&L hedging (Lu, 2015). Be-
tween the two regimes, different valuation methods are applied for CVA.
In general, the regulatory view on CVA is more conservative than the ac-
counting one (Pykhtin, 2012). Intuitively, regulatory capitals are set to pro-
tect from stressed situations based on events with small probability, while
accounting CVA P&L looks at the expected exposure at present time (Lu,
2015). This difference leads to the following problem of hedging the CVA
risk charge: eligible hedge instruments reduce the regulatory CVA risk
charge, while under IFRS the hedge instrument is recognized as a deriva-
tive and accounted for at fair value through P&L introducing P&L volatility.
In other words, hedging CVA exposures from the regulatory perspective
leads to overhedging from the accounting perspective, meaning a part of
the hedge would be naked from the accounting point of view because of
the mismatch in exposure profiles, and therefore a mismatch in spread sen-
sitivity. This overhedging creates additional P&L volatility (Berns, 2015).
Figure 1.1 shows the trade-off between choosing CVA P&L volatility and
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regulatory CVA capital. If the firm is more focused on reducing capital, it
exposes itself to more CVA P&L volatility, and vice versa (Lu, 2015).

A real-world example of the mismatch between the regulatory and account-
ing treatments of CVA can be found in the recent history of Deutsche Bank.
The bank used a hedging strategy to achieve regulatory capital relief in the
first half of 2013. The reduction in the CVA risk charge led to large losses
due to P&L volatility. The mismatch forces banks to decide which regime
is more significant. As J. Kruger, Lloyds Banking Group, puts it well: “It’s
a trade-off. How much volatility is it worth to halve your CVA capital? That’s the
million-dollar question” (Carver, 2013).

On the first of July 2015, the BCBS released a consultative document dis-
cussing a review of the credit valuation adjustment risk framework. 1 The
document presents a proposed revision of the current CVA risk framework
set out in Basel III. The proposal sets forth two different frameworks to ac-
commodate different types of banks, namely the "FRTB-CVA framework"
and the "Basic-CVA framework". The aim of the proposition is to cap-
ture all CVA risks, better alignment with industry practices for accounting
purposes, and better alignment with the market risk framework. Unfortu-
nately, the mismatch still exists within the new CVA risk framework, due to
recent developments on the proposed framework leaving only the punitive
"Basic-CVA framework".

1.2 Research design

1.2.1 Research objective and questions

The current accounting and regulatory regimes lead to the situation where
it is hard to reduce the CVA risk charge and lower P&L volatility. The mis-
match between the two regimes demands for a trade-off. Therefore, the
research objective of this thesis is defined as follows:

Propose a methodology to define the optimal hedge amounts, which leads to maxi-
mal CVA risk charge reduction while minimizing additional P&L volatility.

Research questions are set up to achieve our research objective. The re-
search questions are formulated as follows:

1. What is credit valuation adjustment?

(a) What are the components of the Basel CVA approach?

(b) What are the components of the IFRS CVA approach?

2. How do regulatory CVA and accounting CVA have an influence on
P&L?

(a) How does CVA have an impact on P&L volatility?

(b) How do CVA hedges have an impact on P&L volatility?
1Basel Committee on Banking Supervison, Review of the Credit Valuation Adjustment Risk

Framework, July 2015, www.bis.org/bcbs/publ/d325.htm.
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3. How to define the optimal hedge amount leading to maximal CVA
charge reduction and minimal additional P&L volatility?

The first question targets the definition of CVA by describing the underly-
ing mathematical foundation and implementation of regulatory CVA and
accounting CVA. The second question focuses on the interplay of the hedges
on P&L. Finally, the last question aims at defining the optimal hedge amount.

1.2.2 Scope

The concept of CVA is broad and complex. Therefore it is critical to have a
distinct demarcation to make it clear which components of CVA are in- and
excluded within this research.

1. Basel CVA risk charge: Three approaches are proposed by the Basel
CVA framework, namely the Internal Models approach (IMA-CVA), the
Standardized approach (SA-CVA) and the Basic approach (BA-CVA). We
consider the BA-CVA only, since IMA-CVA and SA-CVA are too com-
plex to model by ourselves. Furthermore, recent developments show
that IMA-CVA is canceled by the BCBS 2 and SA-CVA is under con-
sideration to be axed as well 3.

2. Risk mitigation: Reducing CVA risk is possible in multiple ways,
such as hedging, netting agreements, credit support annex, special
purpose vehicles and more. Since the research objective is to define
the optimal hedge ratio, we focus on the risk mitigation via hedging.
Adding more risk mitigation tools would make the results indistinct.

3. Accounting framework methodology: In accounting literature there
is no specific method prescribed to calculate CVA. Various approaches
are available to compute CVA. We use the most commonly used ap-
proach in practice by derivative dealers and end users.

4. xVA: Different valuation adjustments are generalized by the term XVA.
It quantifies the values of components such as counterparty risk, col-
lateral, funding or margin. Examples of xVA are CVA, DVA, FVA,
ColVA, KVA and MVA (Gregory, 2015). We include CVA only since
we are focusing on counterparty risk.

1.2.3 Outline

The thesis outline is set up as follows:

Chapter 2. CVA Frameworks: The concept of CVA is introduced by defin-
ing its components. The components combine into a standardized for-
mula to compute CVA. Next, the regulatory framework with regard to
the CVA risk charge is described. Furthermore, the accounting frame-
work with the CVA approach used in this research is explained. We
choose the most common CVA approach, since multiple accounting
alternatives for CVA computations are available.

2Risk.net, Dealers fret over Basel CVA revisions, October 2015,
http://www.risk.net/2427911

3Risk.net, Basel considered axing standardised approach to CVA calculation, November 2016,
http://www.risk.net/2477114
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Chapter 3. Optimization methodology: A step-by-step methodology is in-
troduced to combine the accounting framework and the regulatory
framework to define the optimal hedge amount. We use the method-
ology on a pre-specified interest rate derivative contract, namely an
interest rate swap.

Chapter 4. Model foundation: Here, the necessary models and valuation
techniques are explained. The methodology suggests to use an inter-
est rate model to generate input to compute CVA for the interest rate
swap. The procedure behind the calibration of the interest rate model
is explained. Furthermore, pricing of the interest rate derivatives and
credit hedges are presented.

Chapter 5. Implementation case: The results of the implementation of the
pre-specified financial contract within the optimization methodology
are presented. The model is calibrated to represent the current time.
It shows the interplay between the regulatory and accounting frame-
works effected by the hedge amount.

Chapter 6. Conclusion: Finally, we come to a conclusion based on the find-
ings of the implementation case. We discuss the limitations of our
research and give suggestions for further research.
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Chapter 2

The CVA frameworks

In this chapter we introduce the regulatory CVA framework and the ac-
counting CVA framework. First, we start by explaining credit valuation
adjustment and present a generalized formula by Gregory (2009) to com-
pute CVA. Next, we examine the proposed regulatory CVA framework and
in particular the basic approach. Then, the accounting CVA framework is
discussed, which is based on IFRS13. Lastly, the difference in hedging is
explained with the use of an example.

2.1 Credit valuation adjustment

2.1.1 Definitions and notations

Asymmetry of potential losses with respect to the value of the underlying
transaction is one of the characterizing features of counterparty credit risk
(Gregory, 2009). A contract is considered to be an asset to the firm if the
mark-to-market (MtM) is positive and a liability if the MtM value is nega-
tive. If the counterparty defaults and the contract is considered an asset
then the loss would be the value of the contract at that specific time since
the counterparty is unable to undertake future contract commitments. 1 We
define exposure for uncollateralized trades as follows:

Definition 2.1. Exposure. Let V (t) be the default-free MtM value of a contract
at time t. The Exposure at time t for the non-negative part of position V (t) is
defined as:

E(t) = max(V (t); 0) . (2.1)

The contract value can be expressed as the expectation of the future con-
tract values in all future scenarios. In other words, different future sce-
narios have different future exposures. When these future exposures are
combined we get an exposure distribution at a future point in time. The
expected exposure is the average of this exposure distributions (Lu, 2015).
We define the expected exposure as follows:

Definition 2.2. Expected Exposure. Expected Exposure at time t is defined as:

EE(t) = E
[
E(t)

]
. (2.2)

1assuming no collateral, netting agreements or other risk mitigators.
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The combination of future scenarios gives an exposure distribution (i.e.,
probability distribution). For risk management practices this probability
distribution may be used to find the worst exposure at a certain time in the
future with a certain confidence level. For example, with a confidence level
of 99% implies the potential exposure that is exceeded with less than 1%
probability (Lu, 2015). We define the potential future exposure with a high
confidence level quantile as follows:

Definition 2.3. Potential Future Exposure. Potential Future Exposure at time
t is defined as:

PFEα(t) = inf{x : P(E(t) ≤ x) ≥ α} (2.3)

where α is the confidence level and P the real-world measure.

The percentage of the outstanding claim recovered when a counterparty
defaults is represented by the recovery rate (RR). The outstanding claim re-
covered can also be expressed alternatively by the loss given default (LGD),
which is the percentage of the outstanding claim lost (Gregory, 2015). These
percentages depend on, among other things, the default time, valuation of
the derivatives at the default time, the remaining assets of the defaulting
party and the seniority of the derivative trade (Lu, 2015). We define the loss
given default as follows:

Definition 2.4. Loss Given Default. The Loss Given Default is defined as:

LGD = 1− RR (2.4)

where RR is the Recovery Rate.

The probability of default describes the likelihood of a default over a partic-
ular time horizon. The probability of default may be defined as real-world,
where the actual probability of default is estimated via historical data, or
as risk neutral, where the probability of default is estimated via market-
implied probabilities (Gregory, 2015). We define the default probability as
follows:

Definition 2.5. Default probability. The incremental Default Probability of a
given time frame is defined as:

PD(t, t+ dt) = H(t)dt (2.5)

and the total default probability from time 0 to T is:

PD(0, T ) =

∫ T

0
H(t)dt (2.6)
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2.1.2 Introduction of CVA

Credit valuation adjustment (CVA) is defined as the adjustment to the value
of derivatives due to expected loss from future counterparty default. Intu-
itively, one can view CVA as the difference between the risk free value of
a derivative and the risky value of a derivative, where the counterparty’s
default is allowed (Lu, 2015):

CVA = Π(t)−Πrisky (2.7)

where Π is risk-free value without counterparty risk at time t and Πrisky is
the market value of the portfolio accounting counterparty risk at time t. We
define the CVA term as follows (Gregory, 2009):

CVA = LGD
∫ T

0
D(t)EE(t)H(t)dt (2.8)

where D(t) is the relevant risk-free discount factor. An important note is
that the risk neutral measure should be taken is we are interest in the expec-
tation the market price of credit risk, while the real world measure should
be taken if interested in exposures in risk management perspective (Tim-
mer, 2014). Equation (2.8) shows that CVA is built up by three components:
loss-given-default, exposure and default probability. Here we assume no
wrong-way risk, i.e. dependency between default probability and market
risk exposure, since CVA pricing is already a complex process excluding
wrong-way risk. Including wrong-way risk is out of scope for this thesis.
Furthermore wrong-way risk is a broad subject, which can give birth to
multiple potential research subjects for future theses 2.

Until this point we considered the pricing of CVA from the perspective that
the institution was risk-free themselves and could not default, which is re-
ferred to unilateral CVA (CVA). This seems like a straightforward assump-
tion, since the accountancy concepts are based on the assumption that a
business is a "going concern" and will remain in existence for an indefi-
nite period. However, credit exposure has a liability component and can
be included in the pricing of the counterparty risk, which is known as debt
value adjustment (DVA), where own creditworthiness is taken into account
(Gregory, 2009). We define the DVA term as follows (Gregory, 2009):

DVA = LGD
∫ T

0
D(t)ENE(t)H(t)dt . (2.9)

where ENE(t) is defined as the Expected Negative Exposure. Here the
Negative Exposure is the negative part of the default-free MtM value. In-
cluding CVA and DVA is referred to as bilateral CVA (BCVA). We define
BCVA as follows:

BCVA = CVA−DVA . (2.10)
2For the interested, see Hull and White (2012) and Delsing (2015) to learn more about

CVA and wrong-way risk.
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2.1.3 Hedging

By definition is CVA a complex but an important concept. Managing CVA
positions is an essential part of risk management. CVA risks involve two
types of factors, namely market risk factors and credit risk factors. Market
risk factors influence the derivative valuations and market risk exposure
by changes in underlying factors such as interest rate, FX rates and equi-
ties. Credit risk factors include counterparties’ default risk by underlying
CDS spreads.

To make hedging decision, it must be clear to know the purpose of hedging.
The most common credit risk hedging goals are (Lu, 2015):

• Reduction of CVA P&L fluctuations

• Reduction of counterparty credit default risk

• Reduction of the regulatory capital requirements

CVA P&L fluctuations show the influence on a daily basis, while counter-
party default risk and regulatory capital requirements are more of a tail
risk, due to the very small probability.

FIGURE 2.1: Two types of CDS hedging strategies: strat-
egy CDS Hedge 1 involves a single 5 year CDS and strategy
CDS Hedge 2 involves a 1-,2-,3-,4- and 5-year CDSs (Gre-

gory, 2009)

Let us consider an interest rate swap, where we want to hedge CVA move-
ments caused by credit spread changes. This concept is illustrated using
the following simple example. In this case we assume an upwards-sloping
credit curve,3 which results in a total CVA of 1.5 bps based on the expo-
sure profile in Figure 2.1. Two types of hedging strategies using CDSs are
shown. CDS hedge 1 uses one 5-year CDS protection with the initial cost
of 10.3 bps.4 CDS hedge 2 uses multiple CDSs, a term structure hedge, to
match the exposure profile better with the initial cost of cost 8.1 bps.5 (Gre-
gory, 2009) If the CVA changes due to movements in credit spread, the CDS

31year = 100 bps, 2year = 150 bps, 3year = 200 bps, 4year = 250 bps, 5year = 300 bps.
4300*3.42%
5(100*-0.92%)+(150*-0.42%) + (200*0.11%) + (250*0.97%) + (300*2.35%)
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will compensate these movements.

Over time the exposure profile might be different due to changes in the
underlying market factors. If the credit hedge is static (i.e., not adjusted
from the time of initiation), the CDS hedge is less effective to compensate
for the CVA movements, due to differences in sensitivities. Alternatively,
hedging could be done dynamically (i.e., adjust the hedge to the new ex-
posure profile at specific points in time). Then, the CVA sensitivities are
compensated by CDS movements. The more points in time that the hedge
is adjusted to the exposure profile, the better the hedge will offset the CVA
movements. However, increasing the number of times adjusting the hedge
will lead to higher hedging costs.

A solution to the problem that the CDS might deviate from the exposure
profile is making use of a contingent CDS (CCDS). A CCDS works the same
as a standard CDS, except that the notional amount of protection is based
on the value of the derivative contract at the default time. For example, if
a derivative contract has an exposure of $10m at the counterparty default
time, then the CCDS will pay a protection amount of $10m. In other words,
the CCDS follows the exposure profile of the derivative (Gregory, 2009).

Until this point we only considered hedges against credit spread move-
ments. As noted before, CVA is also driven by an exposure component
influenced by market risk factors. Dependent on the type of derivative con-
tract, FX, interest rate and so on, different types of hedges may be used to
offset the CVA caused by exposure movements. However, exposure hedges
are not included within the scope of this thesis, because the regulatory CVA
framework does not allow exposure hedges, as we will see later on.

2.2 Regulatory CVA framework

2.2.1 CVA under the Basel Accords

Basel I & II

The first Basel Accord was the start of international standards for banking
regulation. The Basel I Accord was set up in 1988 by the BCBS to define
international risk-based standards for capital adequacy. From 1988 it was
gradually accepted by the members of the G-10 countries and many other
countries around the world. The Accord mainly focused on credit risk with
the introduction of risk-weighed assets (RWA) to reflect the bank’s total credit
exposure accordingly. The capital a bank has to hold is calculated based on
the exposure the RWA generate (Hull, 2012).

The Basel I Accord set the foundation of capital requirements, however it
showed some weaknesses (it lacked risk sensitivities). Therefore, the BCBS
introduced a new framework with a set of rules supplementing and im-
proving the Basel I Accord, known as Basel II. The Accord includes market
risk and operational risk next to credit risk. The Basel II framework consists
of three pillars: (I) minimal capital requirements, (II) supervisory review,
and (III) market discipline (Gregory, 2009).
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As stated before, CCR is the risk that the counterparty does not fulfill its
obligations on a derivative contract. Introduced as part of the Pillar I was
the CCR charge, which is a capital charge to mitigate the losses on an OTC
contract caused by the default of the counterparty. Two approaches are
available under Basel II to compute the CCR charge, namely the Standard-
ised approach and the Internal Ratings-Basel approach.

Basel III

The financial crisis showed that the Basel II framework had shortcomings,
including insufficient capital requirements, excessive leverage, procyclical-
ity and systematic risk (Gregory, 2009). The BCBS proposed a new set of
changes to the previous regulatory framework, which are set up in Basel
III. Basel III largely focuses on counterparty credit risk and CVA. As stated
by the BCBS most of the losses did not arise by defaults of the counterparty
but from credit deterioration of the counterparty affecting the fair value of
the derivative contracts. The CCR charge under Basel II was focused on
the actual default of the counterparty rather than the potential accounting
losses that can arise from CVA . To close this gap in the framework, the
BCBS introduced the CVA risk charge to capitalise against variability in
CVA (BCBS, 2015).

The current CVA framework consists of two approaches for computing this
CVA risk charge, namely the "Advanced Approach" and the "Standardised
Approach". Changes in the credit spreads are the drivers of CVA variability
within the two approaches. Both approaches do not take exposure variabil-
ity driven by daily changes of market risk factors into account. The current
advanced approach is only available for banks who meet the criteria to use
the internal model method (IMM) for computing the exposure at default (EAD).
The current standardised approach is a pre-defined regulatory formula us-
ing rating-based risk weights to compute the CVA risk charge (BCBS, 2015).

Review of the CVA risk framework

On the first of July 2015, the BCBS released the consultative document
named ’Review of the Credit Valuation Adjustment Risk Framework’. This
consultative document presents a proposed revision on the current CVA
framework set out in Basel III capital standards for the treatment of counter-
party credit risk. The reasons for revising the current CVA framework are
in threefold: capturing all CVA risks and better recognition of CVA hedges,
alignment with industry practices for accounting purposes, and alignment
with proposed revision to the market risk framework (BCBS, 2015).

The proposal sets forth two different frameworks to accommodate differ-
ent types of banks. Firstly, the "FRTB-CVA framework" is available to banks
which meet pre-specified conditions set out in the fundamental review of the
trading book (FRTB). This framework consists of a proposed standardised ap-
proach (SA-CVA) and a proposed internal models approach (IMA-CVA). Sec-
ondly, the "Basic CVA framework" is available for banks which do not meet
the pre-specified FRTB conditions. This framework consists of a proposed
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basic approach (BA-CVA).

Since the release of the consultative document several developments re-
garding the proposed CVA risk framework have taken place. In October
2015 the BCBS revised the proposed framework by eliminating the IMA-
CVA approach (Sherif, 2015b) and in November 2015 to axe the SA-CVA
approach (Sherif, 2015a), leaving the BA-CVA approach.

2.2.2 Proposed Basic Framework

The definitions and notations of the Basic CVA approach are adopted from
BCBS (2015).

Basic CVA approach formula

The basic CVA capital charge K is calculated according to

K = Kspread +KEE (2.11)

whereKspread is the contribution of credit spread variability andKEE is the
contribution of EE variability to CVA capital. The EE variability component
consists of a simple scaling of Kunhedged

spread by β. Here β is set to 0.5, which
assigns one-third of the capital requirement to EE variability.

KEE = βKunhedged
spread . (2.12)

Combining Equation (2.11) and Equation (2.12) results in the following ba-
sic CVA capital charge

K = Kspread + βKunhedged
spread . (2.13)

The component of the basic CVA capital charge, Kunhedged
spread , is calculated via

Kunhedged
spread =

√
(ρ ·

∑
c

Sc)2 + (1− ρ2) ·
∑
c

S2
c (2.14)

where

• Sc = RWb(c) ·
∑

NS∈cMNS · EADNS is the supervisory ES of CVA of
counterparty c, where the summation is performed over all netting
sets with the counterparty

• b(c) is the supervisory risk bucket of counterparty c

• RWh is the supervisory weight for risk bucket b

• EADNS is the EAD of netting set NS calculated according to the An-
nex 4 of the Basel framework and used for default capital calculations
for counterparty risk

• MNS is the effective maturity for netting set Ns

• ρ is the supervisory correlation between the credit spread of a and the
systematic factor

The composition of Kunhedged
spread is similar to the Kspread, however the hedg-

ing components are absent. Hence, EE variability cannot be hedged, which
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implies that the basic CVA framework does not recognize exposure hedges.

The other component of the basic CVA capital charge, Kspread, is calculated
via

K2
spread = (ρ ·

∑
c

(Sc −
∑
h∈c

rhcS
SN
h )−

∑
i

Sindi )2

+ (1− ρ2) ·
∑
c

(Sc −
∑
h∈c

rhcS
SN
h )2

+
∑
c

∑
h∈c

(1− r2hc)(SSNh )2

(2.15)

where

• SSNh = RWb(h)M
SN
h BSN

h is the supervisory ES of the price of single-
name hedge h

• Sindt = RWb(i)M
ind
i Bind

i is the supervisory ES of price index of hedge
i

• b(e) is the supervisory risk bucket of entity e (single-name or index)

• BSN
h is the discounted notional of single-name hedge h

• MSN
h is the remaining maturity of single-name hedge h

• Bind
i is discounted notional of index hedge i

• M ind
i is remaining maturity of index hedge i

• rhc is the correlation between the credit spread of counterparty c and
the credit spread of a single-name hedge h of counterparty c.

The Kspread component consists of three major terms under the square root
partitioned by the plus symbols. The first term accumulates for the system-
atic components of CVA in combination with the systematic components of
the single-name and index hedges. The second term accumulates for the
unsystematic components of CVA in combination with the unsystematic
components of the single-name hedges. The last term accumulates for the
components of indirect hedges, which are not aligned with counterparties’
credit spreads.

Eligible hedges

Eligible hedges under the Basic CVA framework are single-name CDS, single-
name contingent CDS and index CDS. An additional requirement is set up
for eligible single-name hedges, which states that the single-name hedges
must (i) reference the counterparty directly, (ii) reference an entity legally
related to the counterparty or (iii) reference an entity that belongs to the
same sector and region as the counterparty.

Comparison to the current Standardised Approach

The Basic CVA approach is based on the current Standardised Approach.
The most important changes between the approaches are (BCBS, 2015):
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• The 99% VaR of the standard normal distribution is replaced by the
97.5% Expected Shortfall of the standard normal distribution. The
factor is integrated into the risk weights.

• EAD is divided by the alpha multiplier to approximate the discounted
EE curve better.

• The risk of non-perfect hedges between the credit spread of the coun-
terparty and the credit spread of the hedge is introduced into the for-
mula.

• Multiple netting sets and multiple single-name hedges related to the
same counterparty are explicitly treated within the formula.

• Risk weights are defined for the SA-TB single-name credit spread
buckets plut two extra bucket for credit indices. Therefore, risk weights
based on ratings are discarded.

EAD frameworks

In March 2014 the BCBS released a document named ’The standardised
approach for measuring counterparty credit risk exposures’ (BCBS, 2014).
This document presents a formulation for its standardised approach (SA-CCR)
for measuring EAD for counterparty credit risk. The new approach replaces
the current non-internal model, the current exposure method (CEM) and the
standardised method (SM). A brief summary of the SA-CCR for measuring
EAD is given in Appendix A.

2.3 Accounting CVA framework

2.3.1 CVA under IFRS

IFRS13

Similar to the regulatory framework, the accounting framework acknowl-
edged the fact that major bank default and losses due to credit deterioration
during the financial crisis highlighted the urgency to implement CCR ad-
justment to the valuation process of derivatives. On the first of January 2013
IFRS 13 Fair Value Measurement became effective. IFRS 13 requires that
derivative contracts are valuated at fair value, which includes the counter-
party credit risk into derivative valuations. IFRS 13 defines fair value as
(IASB, 2011):

"The price that would be received to sell an asset or paid to transfer a liability
in an orderly transaction between market participants at the measurement date."

The fair value is measured based on market participants’ assumptions. Fur-
thermore, IFRS 13 states explicitly that the fair value of a liability should
reflect the effect of non-performance risk, including an entity’s own credit
risk. This results in considering the effects of credit risk when determining
the fair value, by including DVA and CVA on derivatives. However, many
entities cited a number of reasons for neglecting DVA in their derivative
valuations, including: the counter-intuitive impact of recognising a gain
or loss due to own credit deterioration, the difficulty to monetise from own
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credit gain, the increase of systematic risk due to hedging DVA, and anoma-
lies in accounting standards (EY, 2014).

2.3.2 IFRS13 calculation approach

The accounting literature does not describe a specific method to estimate
the effect of credit risk on the fair value of derivatives. Several credit ad-
justment valuation methods are available. The degree of sophistication in
the credit adjustment valuation methods differ significantly dependent on
the several factors, such as cost and availability of modeling, availability of
data, derivative instruments, and more (EY, 2014).

EY (2014) states that the ’expected exposure approach’ is the most advanced
approach used and common practice within the financial sector to calculate
credit adjustments. Therefore, we choose this approach to calculate the ac-
counting CVA. The approach is considered to be the most theoretically pure
approach, includes the bilateral nature of derivatives, and can be applied
at transaction level. Unfortunately, the approach is costly to implement
at large scale, involves highly complex modeling and advanced technical
skills, and an excellent IT infrastructure (EY, 2014).

The approach simulates market variables to compute the price of the deriva-
tive over time, resulting in an exposure path. By simulating multiple expo-
sure paths, the average results in the expected exposure path. For CVA only
positive exposure paths (EE) are used, while for DVA the negative exposure
paths (ENE) are used. Furthermore, default probabilities of the counter-
party are inserted for CVA, and own default probabilities are inserted for
DVA. The approach is defined as follows:

CVA = LGD
∫ T

0
D(t)EE(t)H(t)dt (2.16)

DVA = LGD
∫ T

0
D(t)ENE(t)H(t)dt . (2.17)

Eligible hedges

The accounting framework has a broader understanding of hedging CVA
risk in comparison to the regulatory framework. Next to credit risk hedges,
such as CDS, contigent CDS and index CDS, market risk hedges are al-
lowed too. Since credit risk hedges only allow for capital relief seen from
the regulatory framework, we focus on credit risk hedges only.

2.4 Hedging anomaly: regulatory vs accounting

In the previous sections we saw that hedging with eligible instruments low-
ers regulatory CVA capital and reduces accounting P&L fluctuations. Let
us consider a derivative contract with one single counterparty. The goal is
to hedge against CVA credit spread sensitivity due to changes in counter-
party’s credit spread. The hedges we choose are eligible hedges according
to both frameworks, such as a single-name CDS. We would like the CDS
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to compensate for credit spread movements in CVA, such that the hedge
creates delta neutrality. The delta neutral condition is defined as follows:

∆CV A = ∆CDS (2.18)

where ∆ describes the first order derivative of CVA and CDS. The value
of a CDS consists of a premium leg and a default leg. The default leg of
the CDS should compensate for the CVA fluctuations. The cashflow of the
default leg is given by D(0, τ)B1τ<T , where D is the discount factor, B the
payment amount (or notional) at default time τ if τ < T . The value of the
default leg is given by (Berns, 2015):

PVdefaultleg = LGD B

∫ T

0
D(t)H(t)dt . (2.19)

By comparing Equation (2.16) and Equation (2.19), the two equations coin-
cide, if the notional B is set equal to EE∗. This results in the optimal hedge
amount B from IFRS perspective:

B = EE∗ (2.20)

where EE∗ is the average expected exposure of EE(t) defined as:

EE∗ =
1

T

∫ T

0
EE(t)dt . (2.21)

The CVA credit spread sensitivities can be written as:

∆CV A = EE∗∆CDS (2.22)

where ∆CDS is the credit spread sensitivity of the default leg of the CDS
with notional amount B = 1.

The risk charge is given by Equation (2.11), where only Kspread can be
hedged. Let us consider Kspread without index hedges and only direct
single-name CDS hedge, which simplifies Equation (2.15) into:

Kspread =

√
(ρ ·

∑
c

(Sc − Sh))2 + (1− ρ2) ·
∑
c

(Sc − Sh)2 . (2.23)

If we assume Sc = Sh, the Kspread term is cancelled out. In other words, the
hedge is optimal from the regulatory perspective to compensate for credit
spread movements. By setting Sc = Sh we find that the optimal hedge
amount B from the regulatory perspective is:

B = EAD . (2.24)

The CVA credit spread sensitivities can be written as:

∆CV A = EAD∆CDS (2.25)

where ∆CDS is the credit spread sensitivity of the default leg of the CDS
with notional amount B = 1.
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By comparing Equation (2.20) and Equation (2.24) we see that the hedge no-
tional for hedging on the accounting side isEE∗, while the notional amount
to reduce the CVA risk charge is EAD. Normally, EAD > EE∗ holds due
to the conservative regulatory assumptions. Equation (2.22) and Equation
(2.25) implicate that the CVA sensitivities differ due to hedging at different
notional amounts, and hence creating more P&L volatility if a firm is focus-
ing on capital reduction.

We use a simple example to illustrate this concept. Let us consider one
interest rate swap with an single counterparty with a maturity of 5 years.
We show the realized P&L each quarter over the last two and a half years
of the swap. We assume a flat exposure profile, i.e., EE∗, so that the CDS
with notional B = EE∗ should cancel all P&L fluctuations. The hedge is
set on two levels, namely EE∗ and EAD. The left plot of Figure 2.2 shows
the individual P&L effects of CVA, the EE∗ hedge and the EAD hedge.
The individual P&L of the EAD hedge is considerably larger then the P&L
of the EE∗ hedge. The right plot shows the residual P&L, i.e., CVA P&L
minus the P&L of the hedges. No P&L volatility is observed at EE∗ level,
whilst there is substantially P&L volatility at EAD level.

FIGURE 2.2: On the left the individual P&L of the CVA, the
EE hedge and the EAD hedge. On the right the residual
P&L due to the two hedges, computed by extracting the in-

dividual hedge P&L from the individual CVA P&L.
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Chapter 3

Optimization methodology

CVA applies to bilateral OTC traded derivatives. Even after the financial
crisis, the OTC market is still large in size (543 Trillion USD) (BIS, 2016).
Several types of financial contracts are traded in the OTC market, such as
interest rate contracts, equity-linked contracts, commodity contracts, for-
eign exchange contracts and more. As presented in Figure 3.1 interest rate
contracts make up the largest part of the OTC market. Not only the per-
formance of financial firms is affected by interest rate fluctuations but also
the performance of non-financial firms. Both types of firms search to pro-
tect themselves against interest rate fluctuations by entering in interest rate
linked contracts.

FIGURE 3.1: Notional outstanding of different OTC deriva-
tives expressed in percentages of the OTC market in 2016

(BIS, 2016).

We focus on a specific interest rate derivative, namely an interest rate swap,
due to OTC notional size and the impact on the OTC market. The method-
ology presented is linked to the interest rate swap. The methodology could
be used for other derivative types, such as FX, equity and commodity con-
tracts. However, the underlying models should be adjusted to the type of
product.

3.1 Methodology

The presented methodology aims to define the optimal hedge amount of
the hedge. We assume that a bank either wants to hedge P&L and/or re-
duce the risk charge, which implies that the hedge amount B is always set
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at EE level, EAD level or in between. Equation (3.1) shows that the no-
tional B is adjusted by a scaling factor α on the interval of [0,1].

B = α EE + (1− α) EAD . (3.1)

Following Berns (2015), we introduce a synthetic volatility (σsyn), which
consists of the additional P&L volatility (σcva,pnl) caused by changes of the
hedge instruments and regulatory risk charge volatility (σcva,reg) 1. Equa-
tion (3.2) shows that the additional P&L volatility and risk charge volatility
depend on the hedge notional B.

σ2syn(B) = ω σ2cva,pnl(B) + (1− ω) σ2cva,reg(B) . (3.2)

Due to the mismatch in sensitivities of CVA and hedges, there is no com-
plete offsetting. Therefore, both volatilities move in opposite directions.
A higher hedge notional decreases σcva,reg, while increasing σcva,hed. The
goal is to minimize σsyn by adjusting B by changing the scaling factor α.
This leads to the optimal allocation between P&L volatility and the CVA
risk charge following this optimization criteria (Berns, 2015). The ω is the
weight factor on the interval [0,1] and represents the risk appetite of the
bank between P&L volatility and the CVA risk charge. With ω close to 0,
the bank is more focused on reducing the risk charge, while a ω close to 1,
the bank is more focused on lowering additional P&L volatility. Section 3.2
provides a more in depth description of the risk appetite ω.

To define the optimal hedge ratio we follow the following steps:

Step 1. The set up of the interest rate model: We start by setting up the in-
terest rate model. The Hull-White model is selected to model the evo-
lution of the short rates of interest. The model is chosen because it
can fit the initial term structure of interest rates and is used for risk-
management purposes within the financial industry (Brigo, 2007). More
complex multifactor extensions of single factor models are available.
However, the Hull-White model satisfies to model interest rates suffi-
ciently in order to reach the objective of this thesis.

The model parameters are calibrated to reflect the initial term-structure
using implied market data. The Hull-White model is given by:

dr(t) = [ϑ(t)− ar(t)] dt+ σdW (t) (3.3)

where a, ϑ(t) and σ represent the mean reversion rate, long term short
rate and volatility of the short rate, respectively. The diffusion term
W (t) denotes the Wiener process under the risk neutral measure Q,
which makes it an Ornstein-Uhlenbeck process.

Step 2. The modeling of short rates: The idea of the calibration is to set
ϑ(t) to the initial term-structure using implied market data and cali-
brate a and σ, so that the model fits observed market prices. Based on

1Berns (2015) and Pykhtin (2012) show we can interpret the risk charge as a value at risk
measure with a portfolio of positions subject to normally distributed CVA changes
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real market data,2 the calibrated Hull-White model is used to model
short rates over the time of the interest rate derivative.

Step 3. Determine exposures over time: The simulated short rates path is
used to calculate the zero-coupon bond prices. These zero-coupon
bond prices are used as input to price the interest rate swap. The
interest rate swap prices are calculated over time, which gives the
price path of the swap. Based on the price of the swap at time t we
can determine the (expected) exposure of the swap at time t using
Equation (2.1) and Equation (2.2).

Step 4. Determine accounting CVA and CVA risk charge: The different ex-
posure paths of the interest rate swap lead to an exposure distribu-
tion. From this distribution we extract different properties, which are
implemented in the accounting framework and the regulatory frame-
work. The accounting framework yields the CVA using Equation
(2.16), while the regulatory framework provides the CVA risk charge
using Equation (2.11).

Step 5. Define the optimal hedge ratio: The notional amounts of eligible
hedge instruments for the accounting CVA and the regulatory CVA
charge show the interplay between the two frameworks using Equa-
tion (3.1) and Equation (3.2). For every risk appetite ω we set out the
optimal hedge amount to see the interplay between the trade-off of
regulatory capital and P&L volatility.

3.1.1 Monte Carlo method

Monte Carlo simulation is based on the risk-neutral approach. By gener-
ating a large number of random price paths via simulation a distribution
function of possible outcomes is generated. From this distribution function
different properties (e.g. expected price path, potential future exposure)
can be determined. In our case we repeat Step 1 to 3 N times to find the
expected values using the Monte Carlo method and the probability theory
of the law of large numbers.3 More specifically, different zero-coupon bond
prices are generated from the short rate paths, resulting in multiple paths
of interest rate swap prices and a different exposure path.

3.2 The Bank’s risk appetite ω

The banking business has become a broad landscape due to wide variety of
banking activities. Each bank has its own specific capital structure, i.e., the
financing of assets by the combination of equity and debt. The most impor-
tant factors driving the capital structure are size, activity diversity and mar-
ket risk (ECB, 2014; ECB, 2016). Large banks usually have a high degree of
leverage, because it could lead to greater profitability and return on equity.
These banks are usually better diversified geographically or across product
lines and can liquidate positions more easily, while smaller banks do not
have advantage and search for financial stability (ECB, 2016). Within the

2extracted from a Bloomberg terminal
3following (Sen and Singer, 1993) on the theory of large numbers
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CVA trade-off, each bank has to decide individually between the amount
of capital reduction it would like to achieve and the lowering of additional
P&L fluctuations. We define this as the risk appetite of the bank, which is
the choice between P&L volatility and the CVA risk charge. For example,
a smaller bank is in search of financial stability and constant earnings (i.e.,
less P&L volatility) would focus on lowering P&L volatility and concentrate
less on reducing the CVA risk charge. While another bank could be more
focused on capital reduction to increase profitability and return on equity
and would take P&L volatility for granted. A bank’s risk appetite could
also be somewhere in between, where the focus lays on reducing the CVA
risk charge and lowering P&L volatility.
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Chapter 4

Model foundation

In this chapter we lay the foundation of the model to define the optimal
hedge amount. We start by introducing essential definitions and notations
to understand interest rate characteristics. We introduce interest rate deriva-
tives, credit default swaps and the Hull-White interest rate model. Then,
we elaborate on the valuation models of the interest rate derivatives using
the Black model and the Hull-White model. Lastly, we describe the steps to
calibrate the Hull-White model to current market data.

4.1 Definitions and notations

The definitions and notations are adopted from Brigo (2007) and Brigo (2012).

Definition 4.1. Bank Account (Money-market account). We de-
fine M(t) to be the value of a bank account at time t ≥ 0. We assume
M(0) = 1 and that the bank account evolves according to the follow-
ing differential equation:

M(t) = M(t)r(t)dt (4.1)

where rt is a positive function of time. As a consequence,

M(t) = M0 · exp

∫ t

0
r(s)ds . (4.2)

Definition 4.2. Stochastic discount factor. The (stochastic) dis-
count factor D(t, T ) between two time instants t and T is the amount
at time t that is "equivalent" to one unit of currency payable at time
T , and is give by

D(t, T ) =
M(t)

M(T )
= exp

(
−
∫ T

t
r(s)ds

)
. (4.3)

Definition 4.3. Zero-coupon bond. A T-maturity zero-coupon
bond (pure discount bond) is a contract that guarantees its holder
the payment of one unit of currency at time T , with no intermedi-
ate payments. The contract value at time t < T is denoted by P (t, T ).
Clearly, P (T, T ) = 1 for all T .

Definition 4.4. Time to maturity The time to maturity T − t is
the amount of time (in years) from the present time t to the maturity
T > t.
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Definition 4.5. Year fraction, Day-count convention We denote
by τ(t, T ) the chosen time measure between t and T , which is usu-
ally referred t oas year fraction between the dates t and T . When t
and T are less than one-day distant (typically when dealing with limit
quantities involving time to maturities tending to zero), τ(t, T ) is to
be interpreted as the time difference T − t (in years). The particular
choice that is made to measure the time between two dates reflects what
is knows as the day count convention.

Actual/360. A year is assumed to be 360 days long and the
year fraction between two dates is the actual number of days
between them divided by 360. If we denote by D2 −D1 the ac-
tual number of days between the two dates, D1 = (d1,m1, y1)
included and D2 = (d2,m2, y2) excluded, we have that the year
fraction in this case is

D2 −D1

360
. (4.4)

Definition 4.6. Continuously-compounded spot interest rate
The continuously-compounded spot interest rate prevailing at time t
for the maturity T is denoted by R(t, T ) and is that constant rate at
which an investment of P (t, T ) units of currency at time t accrues
continuously to yield a unit amount of currency at maturity T . In
formulas:

R(t, T ) := − ln(P (t, T ))

τ(t, T )
. (4.5)

The continuously-compounded interest rate is therefore a con-
stant rate that is consistent with the zero-coupon-bond prices in
that

exp(R(t, T )τ(t, T ))P (t, T ) = 1 (4.6)

from which we can express the bond price in terms of the continuously-
compounded rate R:

P (t, T ) = exp{−R(t, T )τ(t, T )} . (4.7)

The simple-compounded spot interest rate is defined as:

L(t, T ) :=
1− P (t, T )

τ(t, T )P (t, T )
. (4.8)

The annually-compounded spot interest rate is defined as:

Y (t, T ) :=
1

(P (t, T ))1/τ(t,T )
− 1 . (4.9)

Definition 4.7. Zero-coupon curve The zero-coupon curve (some-
times also referred to as "yield curve") at time t is the graph of the
function

T 7→
{
L(t, T ) t < T ≤ t+ 1 (years)
Y (t, T ) T > t+ 1 (years) (4.10)
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such a zero-coupon curve is also called the term structure of in-
terest rates at time t.

Definition 4.8. Zero-bond curve The zero-bond curve at time t is
the graph of the function

T 7→ P (t, T ) T > t (4.11)

which, because of the positivity of interest rates, is a T-decreasing func-
tion starting from P (t, t) = 1. Such a curve is also referred to as the
term structure of discount factors.

Definition 4.9. Simply-compounded forward interest rate The
simply-compounded forward interest rate prevailing at time t for the
expiry T > t and maturity S > T is denoted by F (t;T, S) and is
defined by

F (t;T, S) :=
1

τ(T, S)

(P (t, T )

P (t, S)
− 1
)

. (4.12)

Definition 4.10. Instantaneous forward interest rate The instan-
taneous forward interest rate prevailing at time t for the maturity
T > t is denoted by f(t, T ) and is defined as

f(t, T ) := lim
S↓T+

F (t;T, S) = −∂ logPM (t, T )

∂T
(4.13)

so that we also have

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
(4.14)

(Brigo, 2007; Brigo, 2012).

4.2 Interest rate swap, swaptions and CDSs

4.2.1 Interest rate swap

An interest rate swap (IRS) is an OTC agreement between two counterparties
where a fixed rate of interest payments is exchanged for a floating rate of
interest payments. A receiver (payer) IRS receives (pays) the fixed rate and
pays (receives) the floating rate.

Let {T0, . . . , Tn} be a set of future times of which T0, . . . , Tn−1 correspond
to the dates on which the floating rate is determined, or reset dates, and
T1, . . . , Tn correspond to the dates on which payments are exchanges, or
payments dates. Let τi = Ti − Ti−1 be the year fractions between two con-
sectutive dates for i = 1, . . . , n and we assume constant year fractions, so
τi = τ . Let K be the fixed rate, or swap rate . We define the value of an IRS
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as follows (Brigo, 2007):

IRSpayer(t, T,N,K) =
n∑
i=1

P (t, Ti)Nτ (F (t, Ti−1, Ti)−K)

= N
n∑
i=1

P (t, Ti)
(P (t, Ti−1)

P (t, Ti)
− 1
)
−Nτ

n∑
i=1

P (t, Ti)K

= N(P (t, T0)− P (t, Tn))−Nτ
n∑
i=1

P (t, Ti)K

= Bfloat(t)−Bfixed(t,K)

(4.15)

IRSreceiver(t, T,N,K) = Bfixed(t,K)−Bfloat(t) (4.16)

where Bfloat(t) and Bfixed(t) represent the value of the floating-rate bond
with notional N and the value of the fixed-rate bond with notional N , re-
spectively. We see that a payer (receiver) IRS can be interpreted as a long
(short) position in a floating-rate bond and a short (long) position in a fixed-
rate bond. Usually the swap rate is chosen such that the sum of the values
of the fixed-rate bond and floating-rate bond (thus the IRS) is zero at initia-
tion. The swap rate at time t for period T0 to Tn is given by:

S0,n(t) =
P (t, T0)− P (t, Tn)∑n

i=1 τP (t, Ti)
. (4.17)

4.2.2 Swaption

A swaption is an option on an IRS. The holder of an European swaption
has the right, not the obligation, to enter an IRS at a given future time and a
predetermined strike K. The swaption maturity Tm coincides with the first
reset date of the underlying IRS. The length of the IRS (Tn − Tm) is referred
as the tenor of the swaption. Market practice is to valuate swaptions using
Black’s formula, given by Brigo (2007):

Swaption(t0, T, τ,N,K) = N

n∑
i=m+1

τiP (t0, Ti)[ωSm,n(t0)Φ(ωd1)−ωKΦ(ωd2)]

(4.18)
with ω ∈ {−1, 1}, where ω = 1 results in a payer swaption and ω = −1
results in a receiver swaption and

d1 =
log(

Sm,n(t0)
K ) +

σ2
m,n

2 Tm

σm,n
√
Tm

= d2 + σ2m,n
√
Tm . (4.19)

4.2.3 Credit default swap

A credit default swap (CDS) provides protection against default and can be
thought of as an insurance contract on default. Here partyA (the protection
buyer) agrees with party B (the protection seller) to protect against the de-
fault at time τ of party C (the reference entity). Party A pays premiums at
fixed intervals until either maturity T , or if party C defaults at time τ ≤ T .
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The premiums at fixed intervals is referred to the premium leg of the CDS.
If τ > T , party B pays nothing to party A. If τ ≤ T , party B pays a certain
cash amount to party A. The cash amount, or notional, is typically set to
the LGD of reference party C. The cash amount payment is referred to the
default leg of the CDS.

Let R be the CDS spread at a set of times {Ta+1, , Tb}, let αi = Ti − Ti−1,
let T0 = 0 and R is fixed in advance at time 0. Premium payments con-
tinue up to default time τ if this occurs before maturity Tb or until matu-
rity Tb if no default occurs. The price at time t of the CDS is denoted by
CDSa,b(t, R,LGD). The CDS price is computed via risk-neutral valuation.
The CDS pricing formula, given by Brigo (2012):

CDSa,b(t, R,LGD) = −R Et[P (t, τ)(τ − Tβ(τ)−1)1{Ta<τ≤Tb}]

−
b∑

i=a+1

P (t, Ti)αiR Et[1{τ≥Ti}] + LGD Et[1{Ta<τ≤Tb}P (t, τ)]

= −R
[
P (t, Ti)αiQτ≥Ti +

∫ Ti

Ti−1

(u− Ti−1)P (t, u)dQ(τ ≤ u)

]
+ LGD

∫ Tb

Ta

P (t, u)dQ(τ ≤ u)

= PV defaultleg(t)− PV premiumleg(t) .
(4.20)

Default probabilities can be estimated using credit spreads from CDSs. The
hazard rate λ between time zero and time T is given by:

λ =
R(T )

LGD
(4.21)

where R(T ) is the credit spread for a maturity T . If CDS spreads of differ-
ent maturities are known, it is possible to bootstrap the term structures of
hazard rates (Hull, 2012) 1.

4.3 Hull-White One Factor

4.3.1 Short rate process

The dynamics of the short rate of a mean-reverting stochastic process is de-
scribed by the Vašiček model , which is expressed in the following stochas-
tic differential equation (Vašiček, 1977):

dr(t) = [θ − ar(t)] dt+ σdW (t) (4.22)

where a, θ and σ represent the mean reversion rate, long term short rate
and volatility of the short rate, respectively. The diffusion term Wt denotes
the Wiener process under the risk neutral measure Q, which makes it an
Ornstein-Uhlenbeck process (Hull, 2011). The model captures mean rever-
sion, which is an essential characteristic of interest rates. Unfortunately, the

1We follow the methodology behind the credit curve bootstrapping of Nezet (2015).
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model cannot satisfactorily reproduce the initial yield curve T → P (0, T ),
due to lack of flexibility of the parameters of the models. Hull and White
(1990) introduced the time-varying parameter of θ (denoted as ϑ(t)) within
the Vasicek model, named the Hull-White One Factor model. The function
ϑ(t) can be defined such that it fits the current term structure of interest
rate. The Hull-White One Factor model is given by the dynamics:

dr(t) = [ϑ(t)− ar(t)] dt+ σdW (t) . (4.23)

According to Brigo (2007), more complex multifactor extensions of single
factor models are available. However, the Hull-White model satisfies to
model interest rates sufficiently to reach the objective of this thesis. Fur-
thermore, the Hull-White model is a commonly used approach within the
banking industry (Delsing, 2015).

4.3.2 Pricing of zero-coupon bond and option

We focus on the Hull-White One Factor model given by the dynamics:

dr(t) = [ϑ(t)− ar(t)]dt+ σdW (t) (4.24)

where a and σ are positive constants and ϑ(t) is chosen to fit the term struc-
ture of interest rates observed in the market. Let us assume that the term
structure of discount factors observed in the market is a smooth function
T → PM (0, T ). We denote by fM (0, T ) the instantaneous forward rates by
the market term structure at time 0 for maturity T as associated with the
bond prices, i.e. (Brigo, 2007),

fM (0, T ) = −∂ logPM (0, T )

∂T
. (4.25)

The function ϑ(t) is defined as (Brigo, 2007),

ϑ(t) =
∂fM (0, t)

∂T
+ afM (0, t) +

σ2

2a
(1− e−2at) (4.26)

where ∂fM

∂T denotes the partial derivative of fM , which we define as,

lim
t→0

∂fM (0, T )

∂T
=
fM (0, T + ∆t)− (fM (0, T −∆t)

2∆t
. (4.27)

The price of a pure discount bond at time t at time T is given by (Brigo,
2007)

P (t, T ) = A(t, T )e−B(t,T )r(t) (4.28)

where

A(t, T ) =
PM (0, T )

PM (0, t)
exp

[
B(t, T )fM (0, t)− σ2

4a
(1− e−2at)B(t, T )2

]
(4.29)

B(t, T ) =
1

a

[
1− e−a(T−t)

]
. (4.30)

The price of an European call option ZBC(t, T, S,X) at time t with strike
X , maturity T and written on a pure discount bond maturing at time S is
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given by (Brigo, 2007)

ZBC(t, T, S,X) = P (t, S)Φ(h)−XP (t, T )Φ(h− σp) (4.31)

where

σp = σ

√
1− e−2a(T−t)

2a
B(T, S) (4.32)

h =
1

σp
log(

P (t, S)

P (t, T )X
+
σp
2

. (4.33)

The price of an European put option ZBP (t, T, S,X) is given by (Brigo,
2007)

ZBP (t, T, S,X) = XP (t, T )Φ(−h+ σp)− P (t, S)Φ(−h) . (4.34)

4.3.3 Calibration

The pricing of bonds and options within the Hull-White model has been
discussed. The Hull-White model needs to be calibrated to real-market
data. The function ϑ(t) is chosen to make the model consistent to the initial
term structure. The goal of the calibration is to estimate the remaining set
of parameters P .

P = {a, σ} . (4.35)

FIGURE 4.1: The Hull-White optimization process to fit ob-
served market prices.

Since we are working under the risk-neutral measure we would like to set
the model parameters such that the model is consistent with current market
prices. We use the inverse problem approach for the calibration, where we
calculate the causal factors from a set of observations. The goal is to find
model parameters to fit observed market prices. Since our aim is to value
an interest rate swap, we calibrate the model to swaption prices. The prob-
lem is ill-posed, because it is possible that multiple parameter sets may be
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consistent with the market prices. The calibration is an optimization prob-
lem, where we aim to minimize the difference between the swaption market
prices and swaption model prices. Figure 4.1 illustrates the calibration pro-
cedure. We optimize using the least squares approach.2 Assuming we have
M different observed swaption prices, the formulation of the optimization
problem is given by

min
P

M∑
i=1

(
Swaptionmarketi − Swaptionmodeli (P )

)2
(4.36)

where Swaptionmarketi and Swaptionmodeli represent the ith swaption prices
for the market and model, respectively (Delsing, 2015).

The swaption market quotes implied Black volatilities and these implied
volatilities of swaptions are used as input in the Black pricing formula,
which in return give the market prices of the swaptions.

According to Delsing (2015), Equation (4.36) the optimization problem is
a non-convex function without a particular structure. In this case, most
gradient-based optimization methods cannot guarantee a global minimum
and only a local one. However, by picking initial parameters close enough
to the global minimum will converge towards the global minimum. There-
fore, we apply the Genetic Algorithms (GA) optimization method to find
good initial parameters (Delsing, 2015). Other optimization methods were
considered, such as Branch and Bound (BB), and Stimulated Annealing (SA),
however Delsing (2015) states that GA is faster than BB and seen as a gen-
eralization of SA. The Genetic Algorithms are used to find a good initial
parameter set, based on the implementation, see Scrucca (2016), and is in-
cluded through the GA package for R.

2Obviously many other optimization functions are available.
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Chapter 5

Implementation case

In this chapter we use a stylized derivative contract to show the implemen-
tation of the methodology presented in Chapter 3. We start off by setting
up and calibrating the Hull-White model. Next, the short rates are modeled
using the calibrated Hull-White model. Then, the exposures are computed
and implemented within both frameworks to find the P&L results and the
CVA risk charges. Finally, the optimal hedge amounts are predicted for
each risk appetite.

The derivative contract is a fix-float IRS, with the details displayed in Table
5.1. The IRS is valued at each fiscal quarter, where 1 January (Q1), 1 April
(Q2), 1 July (Q3) and 1 October (Q4) are defined as the start of the four quar-
ters. For each quarter the P&L and risk charge are determined. The results
are split up in two time frames: Time frame I (01 Jan 2014 - 01 Oct 2016)
and Time frame II (01 Jan 2017 - 01 Jan 2019). Time frame I considers results
from the past. At each fiscal quarter, the data at that time is used to com-
pute results by repeating methodology steps 1 to 4. Time frame II considers
simulation results in the future, which implies the necessity of predicting
variables in the future. We assume that the calibrated parameter set P on
01 Oct 2016 has the predictive power to estimate variables in future points
in time. Furthermore, future CDS spreads are necessary to generate results
in the future. We generate these CDS spreads using a mean-reverting model
based on data from the past. This procedure is described in Appendix B.1

TABLE 5.1: Details of the interest rate swap contract used
for the implementation case.

Interest rate swap contract

Fixed leg Floating leg
Effective date 01-01-14 01-01-14
Maturity date 01-01-19 01-01-19
Currency USD USD
Rate 1.507% 6M USD LIBOR
Notional 1MM 1MM
Payment frequency Semiannual Semiannual
Day count ACT/360 ACT/360

Counterparty Deutsche Bank A.G.

1To predict real-case scenarios, it is necessary to include a PD model to estimate CDS
spreads.
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5.1 Implementation of steps

We follow the steps of the methodology presented in Chapter 3.

Step 1. The set up of the interest rate model

We calibrate the Hull-White model to the relevant underlying rate, the 6
month USD LIBOR. As explained in Chapter 4, to calibrate the Hull-White
model to a specific point in time, we need the data of the term structure
of the underlying rate and swaption volatility surface. We use only ATM
swaptions volatilities, where the swap rate is equal to the strike of the swap-
tion, i.e., K = Sm,n(0), where K represents the strike of the swaptiopn and
Sm,n(0) represents the swap rate at time 0. The underlying term structure
and the swaption volatilities are presented in Appendix C.

The calibration procedure of the Hull-White model to the swaption volatil-
ity surface at time zero delivers the outcome of the parameter set P =
{a, σ}, where a = 0.04518101 and σ = 0.011371370. The outcomes of the
parameter set P of other points in time are presented in Appendix D.

Step 2. The modeling of short rates

With the calibrated Hull-White model we can construct the model implied
term structure. Figure 5.1 shows that the model implied term structure fol-
lows the market term structure well. In Appendix E, we show by using a
Chi-square goodness of fit test there is no significant difference between the
two term structures.

FIGURE 5.1: Comparison of the observed market term
structure and the modeled implied term structure on 01-01-

2014.
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The Hull-White model simulates interest rate paths of the 6M USD LIBOR
over the time of maturity of the IRS. One simulated interest path is shown
in figure 5.2. Multiple paths are simulated with the use of the Monte Carlo
method leading to different interest rate paths due to randomness under
the Ornstein-Uhlenbeck process. Figure 5.3 presents 100 simulated interest
rate paths 2. Over time the short rate reverts to the long-term short rate ϑ(t)
following from (4.26). The paths show an upward trend since the long-term
short rate lies above the initial starting point. The mean of the simulated 6M
USD LIBOR paths after 5 years is 0.0432.

FIGURE 5.2: One simulated path of 6M USD LIBOR on 01-
01-14 with the use of the calibrated Hull-White model.

FIGURE 5.3: Multiple simulated paths of 6M USD LIBOR on
01-01-14 with the use of the calibrated Hull-White model. It
shows an upward trend because the long-term short rate

lies above the initial starting point.

2For the sake of example, N is set to 100. For computations N is set to 10000.
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Step 3. Determine exposures over time

The simulated interest rate paths are used to compute the value of the IRS
over time for every individual path using Equation (4.15) and Equation
(4.16). When these exposures are combined we get an exposure distribution
at a future point in time. Figure 5.4 shows several characteristics, which are
extracted from this exposure distribution.

The exposure profiles of payer and receiver swaps differ due to the shape
of the yield curve and its volatility. An upward sloping yield curve cre-
ates higher (positive) exposure on a payer swap compared to the (positive)
exposure on a receiver swap as a results of that the value of early fixed pay-
ments is high compared to floating payments. Contrarily, for a downward
sloping yield curve it is vice versa. In our case the yield curve is upward
sloping, since the payer swap shows higher exposures than the receiver
swap.

FIGURE 5.4: Positive and negative exposure and PFE pro-
files of receiver and payer swap. The payer swap shows
higher positive exposures than the receiver swap due to an

upward sloping yield curve.

As Figure 5.5 shows the hazard rate curve is upward sloping. This means
that the market expects default on the long-term instead on the short-term.
A downward sloping curve is usually seen for a firm in distress, where
short-term default is expected. The firm’s credit curve changes over time
by experiencing less or more financial distress. As mentioned before, the
default probabilities of time frame I are extracted from CDS spreads ob-
served in the market, while the default probabilities of time frame II are
simulated following a mean-reverting model.
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FIGURE 5.5: Hazard rate, survival probability and default
probability of counterparty on 01-01-14.

Step 4. Determine Accounting CVA and Basel Capital Charge

The combination of steps 1-3 leads to the computation of the accounting
CVA and the CVA risk charge. Figure 5.6 shows CVA over time. The "CVA
realized" considers time frame I, which implies actual realized CVA ob-
served from this point in time. The peak is the highest at the half of time
to maturity, due to the peak in exposure profile and high CDS spreads. The
"CVA projected" looks at time frame II, where we see that CVA is leveling
off. The exposure reduces since we approach time to maturity, which leads
to lower impact of CDS spread sensitivities.

FIGURE 5.6: The modeled CVA over time of the contract.
The solid line shows the realized CVA, while the dotted line

show the project CVA in future points in time.

As discussed in Chapter 2, EAD > EE∗ holds due to the conservative reg-
ulatory assumptions. This implicates that the CVA sensitivities differ due
to hedging at different notional amounts. We use the actual expected ex-
posure profile EE(t) and not the average expected exposure profile EE∗.
This means the hedges are not set to EE∗ but to the maximum of EE, iden-
tical as the CDS hedge I in Figure 2.1. Figure 5.7 shows how EAD and EE
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change over time. TheEAD is larger than EE at every point in time, which
cause additional P&L and differences in the risk charge amount.

FIGURE 5.7: The modeled EAD and EE over time of the
contract. The EAD is at any point in time larger than EE

due to conservative regulatory assumptions.

As shown in Figure 5.6, we see that CVA fluctuates over time. The changes
in the value of CVA have an effect on the P&L. Figure 5.8 displays the CVA
fluctuations on P&L considering time frame I. Furthermore, three type of
hedges are used to compensate for the CVA movements. The hedges are
set at α’s of 0 (EE level), 0.5 (12 [EE + EAD] level) and 1 (EAD level) fol-
lowing Equation (3.1). Hedging at EE level does not always lower P&L
compared to not hedging. The hedge does not fully mitigate credit spread
sensitivity, due to the a misalignment in exposure profile and CDS profile.
Also the CVA risk charge is given in Figure 5.8. We see that the a higher
hedge notional leads to more reduction on the CVA risk charge. When we
hedge at EAD level, we do not get full capital relief. This is due to the
KEE term in Equation (2.12), because the exposure component cannot be
hedged. Similarly, Figure 5.9 displays the P&L fluctuations and risk charge
considering time frame II. We see that P&L and the risk charge both reduce
closer to the maturity of the contract.
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FIGURE 5.8: The realized risk charge and P&L over time
frame I.

FIGURE 5.9: The predicted risk charge and P&L over time
frame II.
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Step 5. Define the optimal hedge ratio

To define the optimal hedge ratio, we use Equation (3.1) and Equation (3.2)3.
By minimizing σ2syn of Equation (3.2), we can find the optimal hedge no-
tional B by adjusting α in Equation (3.1). However, Equation (3.2) is de-
pendent on ω, which defines the risk appetite of the bank between P&L
volatility and the CVA risk charge. The risk appetite ω is different for each
individual bank as explained in Section 3.2. Therefore we do not set a spe-
cific risk appetite, but find the optimal α for each risk appetite ω. As men-
tioned in Section 3.1, α lays on the interval of [0,1], where α = 0 the hedge
notional is set on EAD, while α = 1 the hedge notional is set on EE. Like-
wise, ω lays on the interval of [0,1], where ω = 0 the focus lies on reducing
the risk charge, while ω = 1 the focus lies on lowering additional P&L
volatility.

The power of the model is to find the optimal hedge amounts by simulat-
ing future results. Here, the forecasted P&L results and CVA risk charges
in future points in time are predicted using our simulation model. Fig-
ure 5.10 shows the optimal scaling factor α for each ω. Here the optimal
hedge amounts are chosen such that maximal CVA risk charge reduction is
achieved and additional P&L volatility is minimized. For a ω lower than
0.28, we see that the α should be set to 0. For a ω between the range of 0.28-
0.71, we find that the α grows linearly. For a ω larger than 0.71, we see that
the α should be set to 1. A bank more focused on reducing capital (ω = 0)
should set the hedge notional closer to EAD level. A bank more focused
on reducing additional P&L volatility (ω = 1) should set the hedge notional
closer to EE level.

FIGURE 5.10: Scaling factor α set out against risk appetite
ω, which represents the optimal hedge amount for each type

of risk appetite.

3To recall Equation (3.1) ”B = αEE + (1 − α) EAD” and Equation (3.2) ”σ2
syn(B) =

ω σ2
cva,pnl(B) + (1− ω) σ2

cva,reg(B)”
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Optimal hedge amounts sensitivity to model parameters

The optimal hedge amounts are found by following the steps described in
the methodology. Here, the model is calibrated to the market data to pre-
dict future results. The outcome presented in Figure 5.10 seems to be clearly
and non-contentious. However, the result is based on specific input param-
eters, while other input parameters could lead to different results. There-
fore, we look at the effect of Hull-White input parameters on the optimal
hedge amounts.

The first parameter in consideration is the σ within the Hull-White model
given by Equation (4.23). The parameter describes the volatility of the short
rate. Figure 5.11 shows the optimal hedge amounts by changing parameter
σ. We find that larger σ’s have a greater effect on the change of the optimal
hedge amounts than smaller σ’s. This means that for a higher volatility,
i.e., a larger σ, we need to pick a higher α, i.e., an optimal hedging amount
closer to EE level, and vice versa for a lower volatility. Furthermore, we see
more non-linearity at 1.5σ and 2σ between the scaling factor α and the risk
appetite ω, where α is not 0 or 1.

FIGURE 5.11: Scaling factor α set out against risk appetite ω
with different volatility parameters sigma. The parameter

sigma varies from 1/2 times sigma to 2 times sigma.

The second parameter in consideration is the kwithin the Hull-White model
given by Equation (4.23). The parameter describes the speed of the rever-
sion to the mean. Figure 5.12 shows the optimal hedge amounts by chang-
ing parameter k. The effects of different k’s are not that great in comparison
to the effect of different σ’s. A change of a factor 10 in k gives minimal
changes in the optimal hedge amounts. There is a small shift horizontally
and a slight shift in gradient in the optimal hedge amounts, where α is not
0 or 1.
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FIGURE 5.12: Scaling factor α set out against risk appetite
ω with different volatility parameters k. The parameter k

varies from 1/10 times sigma to 10 times k.
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Chapter 6

Conclusion

In this chapter we conclude based on the findings. We also discuss the
limitations of our research and present recommendations to focus on for
further research.

6.1 Conclusion

In this thesis, we looked at the mismatch between the accounting CVA
framework and the regulatory CVA framework. The accounting and regu-
latory regimes lead to the situation where it is hard to reduce the CVA risk
charge and lower P&L volatility. This demands for a trade-off between the
two regimes. Therefore, the goal of the research was to propose and im-
plement a methodology to define the optimal hedge amount, which leads
to maximal CVA risk charge reduction while minimizing additional P&L
volatility.

We proposed a methodology composed of a step-by-step guide to find the
optimal hedge amounts. In our case, we focused on interest rate swaps par-
ticularly. The interest rate model we introduced is the Hull-White model,
which is calibrated to market swaption prices by using the least squares ap-
proach. We find that this interest rate model is capable of simulating future
implied term structures. A large part of this thesis is dedicated to the pric-
ing of the interest rate swap using the predicted implied term structures.
With the implementation of the accounting and regulatory frameworks, we
find, as expected, that the regulatory framework is more conservative in
comparison to the accounting framework with regards to exposure profiles.
Using the historical time frame I, we demonstrated the trade-off between
the two regimes. Using time frame II, we predicted the future CVA risk
charges and P&L volatility. We used historical CDS spreads for the first
time frame, while predicting CDS spreads in the future for the second time
frame using a mean-reverting model.

We demonstrated that our methodology is capable of estimating the op-
timal hedge amounts B by adjusting scaling factor α using a single-name
CDS hedge instrument. This is shown for each type of risk appetite ω of
the bank. The power of the model lies in the possibility to simulate future
results to find the optimal hedge amount. For a bank more focused on cap-
ital, we see that the hedge amount should be set closer to EAD level. For a
bank focused on P&L volatility, we find that the hedge amount should be
set closer to EE level. Furthermore, the effect of changes in Hull-White in-
put parameter on the optimal hedge amounts is shown, where the volatility
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has a large impact on the outcome in comparison to the speed of reversion.

One of the advantages is that our methodology offers guidance to finding
the optimal hedge amount. Furthermore, by following this methodology a
lot of freedom is provided, because the user can implement different types
of risk factor models and valuation models to his liking.

6.2 Discussion

In this section we discuss limitations of our research.

• Probability default model: In our case we compute historical proba-
bility of default using market CDS spreads and future probability of
default spreads using a mean-reverting model. However, this mean-
reverting PD model has been arbitrarily chosen to compute CVA over
time and therefore does not reflect reality. We propose to implement
a PD model calibrated to real market conditions to compute future
default probabilities.

• Optimization criteria: We follow an adjusted version of the optimiza-
tion criteria of Berns (2015), where we minimize σ2syn to find the op-
timal hedge amount B. Other types of optimization criteria formulas
could be derived to meet the research goal.

• Risk neutral measure: In our case we use the Hull-White model cal-
ibrated to market swaption prices, using the risk neutral measure Q
for the accounting and regulatory frameworks. Under the accounting
regime this is the correct approach. However, under the regulatory
regime the real world measure P should be used instead of using his-
torical market data to fit parameters.

• Hedge instrument: We use a 5-year CDS as the hedge instrument.
Since we do not assume an average exposure pathEE∗, but the actual
exposure path EE, the hedge 5-year CDS does not hedge perfectly
(see Chapter 2.1.3). The hedge always leads to a reduction in the risk
charge, but due to the misalignment in exposure not always in a lower
P&L volatility. By implementing different hedging strategies, such
as CCDS or using multiple CDSs (see Figure 2.1), the exposure path
could be matched significantly better.

6.3 Further research

In this section we present multiple recommendations for further research.

• Portfolio level and derivative types: This methodology is applied to
a single interest rate derivative. Other OTC derivative types can be
included as well, such as FX, equity-linked and commodity-linked.
Furthermore, we believe that the model brings more benefits if it is ex-
tended to portfolio level, i.e., including various derivative products,
counterparties and other conditions.

• Hedge instruments and strategies: We use one type of eligible hedge
instrument, namely the 5-year CDS. The strategy is to use dynamic
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hedging over each quarter. Other hedge instruments, eligible under
both regimes, can be implemented within this methodology. An im-
portant factor of considering hedge instruments is the liquidity of
these instruments. Also, the effect of a hedge strategy is interesting
to investigate, since the number of times adjusting the hedge could
have an effect on the optimal hedge amount.

• Model choice: We use the Hull-White model to simulate interest rates.
As we see, the effect of input parameters has an effect on the optimal
hedge amounts. The next step should be to do an in-depth sensitivity
analysis for more parameters. Also, the effect of other interest rate
models could be examined. Furthermore, we focus on the regulatory
BA-CVA approach and the accounting expected exposure approach.
Other regulatory and accounting approaches could be implemented
in the model to extend the scope of the model.

• Including XVa, WWR and risk mitigators: In our case we excluded
other valuation adjustments, wrong-way risk and risk mitigators. Re-
cently, discussion of other valuation adjustments and wrong-way risk
is getting more attention. The effect on the optimal hedge amount
could be investigated by including other valuation adjustments, wrong
way risk and risk mitigators.
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Appendix A

Regulatory EAD framework

This appendix gives a brief summary of the regulatory EAD framework
for interest rate derivatives. For a detailed description we refer to ’The
standardised approach for measuring counterparty credit risk exposures’
(BCBS, 2014).

EAD calculation:

The calculation of exposure at default (EAD) under the SA-CCR is calcu-
lated via

EAD = α ∗ (RC + PFE) (A.1)

where α is 1.4, RC is the replacement cost, and PFE is the potential future
exposure.

Replacement costs calculation:

The replacement costs (RC) is defined as the greater of (i) the current market
value of the derivative contract and (ii) zero.

RC = max[V ; 0] (A.2)

where V is the value of the derivative transaction.

PFE calculation:

The PFE add-on consists of (i) an aggregate add-on component and (ii) a
multiplier.

PFE = multiplier ∗AddOn . (A.3)

Multiplier calculation

The multiplier is calculated via

multiplier = min

[
1;Floor+ (1−Floor) ∗ exp

( V

2 ∗ (1− Floor) ∗AddOn

)]
(A.4)

where exp(· · · ) equals to the exponential function, floor is 5%, V is the
value of the derivative transaction.

AddOn calculation
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The AddOn component is calculated via

AddOnIRj = SF
(IR)
j · EffectiveNotional(IR)

j . (A.5)

The SF IRj represents the interest rate supervisory factor, which is set on
0.50%. The effective notionalDIR

jk is calculated for time bucket k of hedging
set j according to:

D
(IR)
jk =

∑
i∈Ccrj ,MBk

δi ∗ d(IR)
i ∗MF

(type)
i (A.6)

where notional i ∈ Ccrj ,MBk refers to trades of currency j that belon to
maturiy bucket k. The parameter δi is defined as the supervisory delta ad-
justment, which is +1 is long in the primary risk factor and −1 is short in
the primary risk factor. The parameter MFi represents a maturity factor.
The aggregation across maturity buckets for each hedging set is calculated
according to the following formula

EffectiveNotional
(IR)
j = [(D

(IR)
j1 )2 + (D

(IR)
j1 )2 + (D

(IR)
j1 )2

+ 1.4 ∗D(IR)
j1 ∗D(IR)

j2 + 1.4 ∗D(IR)
j2 ∗D(IR)

j3

+ 0.6 ·D(IR)
j1 ·D(IR)

j3 ]1/2

(A.7)

dIRi = TradeNotional · exp(−0.05 · Si)− exp(−0.05 · Ei)
0.05

. (A.8)
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CDS spreads

Future CDS spreads, in specific time frame II, are modeled using a mean-
reverting model. The parameters of the model are based on the available
CDS spread data of time frame I. We model the 6m CDS spread over time.

We make use of an Ornstein-Uhlenbeck process to simulate the 6m CDS
spread over time. It has the property that the process tends to drift towards
its long-term mean, i.e. it is mean-reverting. The generalized equation of
an Ornstein-Uhlenbeck process is given by:

dx(t) = θ(µ− x(t))dt+ σdW (t) (B.1)

where θ > 0, µ and σ are parameters and W (t) denotes the Wiener process.

Based on the available 6m CDS data we set θ = 1, µ = 64 and σ = 75. How-
ever, the CDS spreads could go negative using these parameters. Therefore
we floor the 6m CDS spreads at 10bps, since we assume that a counterparty
always has a default probability. Also, historical spreads of the counter-
party do not show lower values than 10bps. Now, the 6m CDS spread is
simulated by implementing the parameters into equation (B.1).

We assume that the other CDS tenors (1y, 2y, 3y, 4y, 5y, 7y, 10y) move in
parallel to the 6m tenor. Therefore, the other CDS tenors are calculated by
adding a specific spread add-on to the 6m spread. The add-on is based on
data of time frame I and is the difference between the average CDS spread
of a specific tenor, other than the 6m CDS, and the average CDS spread of
the 6m tenor. Table B.1 shows the add-on in bps. For example, if the 6m
CDS spread is 10bps, then the 1y CDS spread results in 15bps (10+5) and
the 5y CDS spread results in 65bps (10+55).

TABLE B.1: The add-on per CDS tenor seen from the 6m
CDS tenor

CDS tenor Add-on (bps)
6m -
1y 5
2y 15
3y 30
4y 45
5y 55
7y 75
10y 90
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Figure B.1 shows the CDS spreads of the tenors over time. The actual CDS
spreads are used until t2.75 and the simulated CDS spreads are used from
t2.75. The actual CDS spread cross each other, due to the changing slope
of the hazard rate over time (as mentioned in Section 5.1). The simulated
spreads do not have this characteristic, since we always use a pre-specified
add-on.

FIGURE B.1: The left side of t2.75 shows actual CDS speads,
while the right side of t2.75 shows the simulated CDS

spreads.
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Appendix C

Market data

Data extracted from Bloomberg Terminal. In this appendix the data of 01-
01-14 is shown. Data of other dates are available upon request.

TABLE C.1: Swaption volatilities on 01-01-14.

Expiry 1Yr 2Yr 3Yr 4Yr 5Yr 6Yr 7Yr 8Yr 9Yr
1Mo 44.38 48.48 47.18 42.93 37.73 32.19 28.67 28.02 25.95
3Mo 53.46 53.58 49.8 44.77 38.69 33.51 30.1 29.55 27.54
6Mo 60.27 58.74 52.24 44.1 38.41 33.68 30.54 30.05 28.24
9Mo 61.96 57.72 50.86 43.71 37.27 33.14 30.52 29.61 27.96
1Yr 63.83 57.29 48.34 40.8 35.59 32.07 29.77 29.48 28.02
2Yr 53.64 44.63 38.22 33.61 30.67 28.58 26.98 26.96 25.91
3Yr 39.65 34.74 31.27 28.71 26.79 25.46 24.43 24.62 23.83
4Yr 31.37 28.82 26.85 25.31 24.02 23.2 22.5 22.78 22.28
5Yr 26.97 25.27 24.09 23.15 22.31 21.7 21.14 21.51 21.12
6Yr 24.54 23.36 22.46 21.69 21.05 20.54 20.14 20.54 20.21
7Yr 22.4 21.61 20.91 20.37 19.88 19.52 19.17 19.61 19.38
8Yr 20.84 20.19 19.71 19.3 18.99 18.67 18.36 18.87 18.65
9Yr 19.25 18.9 18.55 18.37 18.1 17.82 17.61 18.14 17.95
10Yr 17.96 17.69 17.59 17.44 17.22 17.06 16.89 17.45 17.27
12Yr 17.35 17.06 16.82 16.71 16.57 16.36 16.17 16.74 16.66
15Yr 15.64 15.44 15.46 15.41 15.36 15.22 15.13 15.79 15.76

Expiry 10Yr 12Yr 15Yr
1Mo 22.69 20.81 18.87
3Mo 24.22 22.25 20.18
6Mo 25.16 23.24 21.16
9Mo 25.57 23.64 21.47
1Yr 25.31 23.58 21.57
2Yr 23.77 22.39 20.58
3Yr 22.21 21.13 19.7
4Yr 20.99 20.14 18.95
5Yr 20.06 19.35 18.31
6Yr 19.22 18.57 17.63
7Yr 18.42 17.82 17.01
8Yr 17.75 17.17 16.41
9Yr 17.1 16.58 15.84
10Yr 16.49 16.02 15.27
12Yr 15.9 15.43 14.67
15Yr 14.95 14.46 13.72
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TABLE C.2: Discount rates on 01-01-14.

Payment date Discount
5-1-2015 0.995998
3-7-2015 0.993078
4-1-2016 0.98858
3-1-2017 0.971354
3-1-2018 0.944616
3-1-2019 0.909728
4-1-2021 0.832141
3-1-2024 0.719884
5-1-2026 0.651659
3-1-2029 0.563621
3-1-2034 0.443509
4-1-2039 0.355144
4-1-2044 0.287128
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Calibration parameters

TABLE D.1: Starting parameters for each quarterly time
step.

time frame date k sigma r0 swap time
I 1-1-2014 0.04518101 0.01137137 0.3464 0
I 1-4-2014 0.033748474 0.009647178 0.3279 0.25
I 1-7-2014 0.029416889 0.009187273 0.3279 0.5
I 1-10-2014 0.0341414 0.00906414 0.3247 0.75
I 1-1-2015 0.033459392 0.009036356 0.3648 1
I 1-4-2015 0.031870835 0.009354411 0.4034 1.25
I 1-7-2015 0.038000235 0.009698421 0.44835 1.5
I 1-10-2015 0.031450729 0.009098801 0.531 1.75
I 1-1-2016 0.026990294 0.008315626 0.84225 2
I 1-4-2016 0.024140119 0.00761476 0.9011 2.25
I 1-7-2016 0.012935267 0.006415365 0.92365 2.5
I 1-10-2016 0.014321835 0.006096298 1.24778 2.75
II 1-1-2017 0.014321835 0.006096298 1.26266 3
II 1-4-2017 0.014321835 0.006096298 1.279485 3.25
II 1-7-2017 0.014321835 0.006096298 1.295196 3.5
II 1-10-2017 0.014321835 0.006096298 1.307183 3.75
II 1-1-2018 0.014321835 0.006096298 1.33598 4
II 1-4-2018 0.014321835 0.006096298 1.374019 4.25
II 1-7-2018 0.014321835 0.006096298 1.39161 4.5
II 1-10-2018 0.014321835 0.006096298 1.384896 4.75
II 1-1-2019 0.014321835 0.006096298 1.401037 5
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Appendix E

Goodness of fit

We use the Chi-squared test as a goodness of fit test to see if the implied
term structure differs statistically from the market term structure.

Let Oi be the observed frequencies in category i and Ei be the expected
frequencies in each category, for each of the k categories i = 1, 2, 3, · · · , k,
into which the data has been grouped. The test statistic is given by:

χ2 =

n∑
i=1

(Oi − Ei)2

Ei
. (E.1)

The hypothesis are:

• H0 : Oi = Ei

• H1 : Oi 6= Ei

with the summation over all k categories, and k − 1 degrees of freedom
(Gingrich, 2004).

The goodness of fit test is based on an α of 1%. By applying the test statistic
on the data we find the error of the data χ2 = 0.1376, whereas the critical
value is χ2 = 158.9502 . Since 0.1376 < 158.9502, we do not reject H0.

The model’s term structure follows the initial can be ascribed to the initial
term structure.
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