
Faculty of Electrical Engineering,

Mathematics & Computer Science

Dynamic pricing for camping and bungalow parks:

integer linear programming models for revenue maximization

J.E. Span

MSc Thesis
May 2017

Assesment commitee:

prof. dr. M.Uetz (UT)
dr. N.Litvak (UT)

N.Beimer (Stratech)

Supervisors:

prof. dr. M.Uetz (UT)
N.Beimer (Stratech)

Telecommunication Engineering Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede
The Netherlands

1



Abstract

More and more airlines, hoteliers, webshops and other companies apply
dynamic pricing strategies to increase their revenue. This project presents
a deterministic integer linear program to �nd a dynamic pricing strategy to
increase revenue of camping and bungalow parks. A simulation framework
is proposed to evaluate the performance of a dynamic pricing strategy. The
computational experiments are used to validate and test the performance of
this linear program. The results show an increase of the revenue relative to
the pricing strategy that is currently used by most camping and bungalow
parks.

Keywords: Dynamic pricing, deterministic integer linear programming,
camping, bungalow, revenue maximization.
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Preface

This thesis is the �nal project of my study Applied Mathematics at the University of Twente. I
performed my research for the group Discrete Mathematics and Mathematical Programming in
the master's program Operations Research.

This project is done in cooperation with Stratech, which develops software for niche markets.
Stratech puts industry-speci�c issues into innovative solutions for (international) organizations
which are active in di�erent sectors. One of these sectors is the recreation sector, which is the
sector of the camping and bungalow parks.

Stratech observes that dynamic pricing is an upcoming research �eld. Competitors of Stratech
already started small studies to develop tools to support camping and bungalow parks with pricing
decisions. Stratech suspect that dynamic pricing will be integrated in the recreation sector soon.
Therefore, Stratech also want to start with some studies in this research �eld.

Stratech attempt to provide their software with a tool which support camping and bungalow parks
with pricing decisions to increase their revenue. At the beginning of September I was asked to
perform a study on dynamic pricing models and here is where my project started. The research
that I performed on this topic in the last 7 months is worked out in this report.

ii



Acknowledgements

I have enjoyed working on this project and I want to thank some people who helped and support
me during this project.

I would like to thank Niek Beimer who gave me the opportunity to perform my �nal assignment
at Stratech and being one of my supervisors. He was very helpful on the practical sight of this
project. He had the practical knowledge that was needed to come up with an appropriate model.
He was always prepared to give me the right data and taking time for brainstorm meetings.

Next I would like to thank Marc Uetz for being my supervisor of this project. He pushed me into
the right mathematical direction and our conversations were useful to get positive progress during
this project.

I also would like to thank Nelly Litvak who was prepared to take place into the assessment
committee and for the time spending on reading and judging my master thesis

I thank Yoeri Boink and Stefan Klootwijk to give up some time for me to listen en help me with
some mathematical problems. In special Yoeri, who also was prepared to read my thesis and give
me feedback.

Finally, I am very grateful to my parents and my family for supporting me. Especially I want to
thank Marieke for her extra support and always being there for me.

iii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Dynamic pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Demand forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Network revenue management . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Demand elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Expected revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Performance evaluation framework . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Performance of a pricing strategy . . . . . . . . . . . . . . . . . . 13

3.4.2 Simulation approach . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.3 Distinction of expected revenues . . . . . . . . . . . . . . . . . . . 16

4 Deterministic integer linear programming . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Aggregate expected reservation pricing model . . . . . . . . . . . . . . . . . 18

4.2 Validation and simulation of the expected revenue . . . . . . . . . . . . . . 19

4.2.1 Discrete demand simulation . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Extension of the demand elasticity function . . . . . . . . . . . . . 20

4.2.3 Computation of the revenue . . . . . . . . . . . . . . . . . . . . . 21

4.3 Additional approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Night stay pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Unexpected requests . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



5 Demand forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Demand model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Monte Carlo simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Maximize revenue of Monte Carlo path . . . . . . . . . . . . . . . . . . . . 29

6 Computational experiments and analysis . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Validation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.1 Integrality gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.2 Simulation gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.1 Revenue improvement . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3.3 Computational time . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4.1 Modi�ed demand elasticity function . . . . . . . . . . . . . . . . . 43

6.4.2 Modi�ed expected number of requests . . . . . . . . . . . . . . . . 45

6.5 Practical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5.1 Unexpected requests . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5.2 Night stay prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Critical review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Summary and recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.2 Recommendations future research . . . . . . . . . . . . . . . . . . . . . . . 53

8.3 Recommendations for Stratech . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Notation and de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



1 Introduction

The leisure industry is a worldwide active industry. One big part of the leisure industry is the
industry that rents campgrounds and bungalows. The companies of this part of the industry can
outsource tasks like administration, marketing and the management of bookings. Stratech is a
company that develops software for these tasks. Since 1989 Stratech develops innovative software
solutions for niche markets and one of these software solutions is Stratech-RCS and around 300
companies, domestically and abroad, use this software package. Currently, the seasonal prices
(low, mid and high season) for each accommodation are set at the beginning of the year. Except
for discounts, these prices are hold till the end of the year. Stratech observes that more and more
airlines, hoteliers, web shops and other companies successfully apply dynamic pricing strategies to
increase their revenue. Therefore, Stratech aims to augment Stratech-RCS with a dynamic pricing
tool to support camping and bungalow parks with pricing decisions.

In general, a dynamic pricing strategy is a pricing strategy in which businesses set �exible prices
for products or service based on current market demands. The goal of dynamic pricing is to
adjust the price of a product or service on the situation and/or customer to maximize pro�ts.
Dynamic pricing has become a more popular research �eld since the Airline Deregulation Act of
1978 [20]. The Airline Deregulation Act is the law that deregulated the airline industry in the
United States, removing U.S. Federal Government control over such things as fares, routes and
market entry of new airlines. The resulting free market has led to an increased number of �ights
and a decrease of fares. The development of dynamic pricing models has been upcoming since
then. Later, computers became faster and big data turned into a popular research �eld. All of
this led to more sophisticated dynamic pricing algorithms and thereby more companies integrated
dynamic pricing strategies [15, chapter 1]. It is most likely that dynamic pricing strategies will
soon be applied by camping and bungalow parks.

Dynamic pricing is a form of revenue management, which is the science of managing a limited
amount of supply to maximize revenue, by dynamically controlling the price/quantity o�ered
[1, 3, 4, 15]. In terms of business practice, varying prices is often the most natural mechanism for
revenue management. Many industries use various forms of dynamic pricing to respond to market
�uctuations and uncertain demand [15, chapter 9] and pricing is one of the most e�ective variables
that managers can manipulate to encourage or discourage demand. Pricing is not only important
from a �nancial point of view, but also from an operational point of view. Prices in�uence the
decision of customers and thereby help to regulate inventory [4]. Furthermore, demand forecasting
plays an important role in the revenue management [12,19]. Accurate demand forecasts are crucial
to a valuable revenue management, because prices are adjusted using the demand forecast [4,17,19].

A big challenge in dynamically setting prices is the uncertainty in predicting customer behavior.
How do customers respond on price changes? What is the customer willing to pay? But even when
the answers to these questions are known, it is not directly clear how prices should be adjusted to
obtain a higher revenue taking the limited amount of accommodations into account.

Stratech asks for an algorithm which periodically changes the o�ered prices to support camping
and bungalow parks to increase their revenue. Stratech requires that the prices will not changed
real time or high frequently, but at most once a day. In addition, prices should not be deviated
to much from the static prices and the algorithm will be used to support camping and bungalow
parks to make price decisions. Also, the algorithm needs to be generic in the sense that all users
of Stratech-RCS could use this algorithm.
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In this project we developed an algorithm that computes a dynamic pricing strategy for camping
and bungalow parks, which periodically assigns a price class to each possible reservation to max-
imize the total expected revenue. The performance of the obtained pricing strategy is evaluated
in a developed simulation framework. What this exactly means becomes clear in the remainder of
the report.

The remainder of the thesis is organized as follows: In Chapter 2 we give a literature review on
dynamic pricing models and solutions approaches and also a brief review on demand forecasting
models. In Chapter 3 a network revenue management model of the dynamic pricing problem
is proposed together with a model for the demand elasticity. Further, some practical modeling
problems are discussed at the end of this chapter. In Chapter 4 we propose a deterministic integer
linear program (ILP) which �nds the optimal expected revenue of the network revenue management
model and some methods are proposed to tackle some practical modeling problems. In Chapter 5
a demand forecasting model is proposed where customer requests are generated with a Bernouilli
process. Also, a Monte Carlo simulation is proposed which is used to generate sample paths for
the computational experiments. Finally, a ILP is proposed to maximize revenue of a single a
sample path. In Chapter 6 we proposed the computational experiments to test and validate the
performance of the proposed ILP and analyze the results of these experiments. In Chapter 7
we give a critical review on proposed model. In Chapter 8 we give a summary of this project
and recommendations for future research. Throughout the paper we use examples to support the
reader for understanding.
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2 Literature review

A large volume of the literature on dynamic pricing models is focused on the airline and hotel
industry. Literature speci�cally on dynamic pricing models for camping and bungalow parks are
very scarce. Fortunately, the hotel industry requires to handle the same kind of problem. In
particular, the hotel industry faces similar problems in revenue management concerning demand
forecast, customer behavior, occupancy, variable lengths of stay and limited and variable accom-
modation types. Camping and bungalow parks deviates from the hotel industry on average length
of stay, average time between booking date and arrival date, cancellation rate and demand elas-
ticity. For example, the average length of stay is close to 11 days in summer, and reservations
for summer can occur more than 9 months in advance for early bookers, while the average length
of stay in the hotel industry is close to 4 days and most reservation occur less than 3 months in
advanced. Some companies allow unsynchronised arrivals (Wednesday, Saturday, Sunday) when
others impose Saturday to Saturday stays. Further, camping and bungalow parks have di�erent
ancillary costs, inventory size, inventory heterogeneity and customer segments. We have focused
on the literature of dynamic pricing models concerning the hotel industry and keep in mind these
di�erences to come up with an appropriate model and solution strategy.

2.1 Dynamic pricing

A clear literature review on dynamic pricing in the hotel industry can be found in [2]. The
works [4] and [15] present an overview of dynamic pricing models for revenue management. From
these articles we obtained that the dynamic pricing problem is modeled and solved in many
di�erent ways. The dynamic pricing problem in the hotel industry is usually formulated as a
network revenue management problem. In [15, chapter 3] and section 3.1 a description is given of
this network. The network revenue management is widely used in the airline industry. However,
in contrast to the airline industry, the end of the horizon in not clear in the hotel industry. In the
airline industry each �ight has a certain departure day, called end of horizon. After this day no
seats can be sold. In the hotel industry we do not have such derparture day after no rooms can be
sold anymore, there is no clear end of horizon. Rolling horizon procedures are used to solve the
problem at a given cut-o� date (i.e. end of horizon). To point this out, customers usually can not
make a booking before a certain time. For example, if customers can not book longer than 1 year
in advance, then the cut-o� date is set on one year ahead and after each day the horizon `rolls'
one day forward. The work of [10] discusses rolling horizon models and techniques for the hotel
revenue management.

Two main solution approaches for the network revenue management problem are deterministic
linear programming (LP) and dynamic programming (DP). Generally, LP's generate, if frequently
resolved, good pricing strategies. However, the deterministic approach ignores demand uncertainty,
which is the main weakness of LP's. A stochastic DP formulation can overcome this weakness,
but its state space can easily su�er from Bellman's main curse of dimensionality.

In both main approaches a distinction is made between a choice based (or dependent) demand
model and an independent demand model. In the choice-based demand model, customers are
assumed to choose among all available possible reservations according to prespeci�ed choice prob-
abilities. An independent demand model assumes that demand for each possible reservation comes
from di�erent customers and that the demand for a product is lost when the product is not avail-
able or the price is too high. The work of [13] shows that choice-based availability control can
improve revenue, compared to models that are based on the independent demand model.
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A commonly used approach in the DP's is DCOMP, which is a decomposition of the network
problem into a set of smaller problems where each concerns only one resource (i.e. a single night
stay). A clear introduction to this concept can be found in [15, chapter 4] and examples of the
DCOMP approach can be found in [7,13,22,23]. The works [13,15,18] propose strong heuristics for
the network revenue management in practice. The works [8] and [22] consider variants of DCOMP
and [13] studied both deterministic and stochastic LP in a simulating setting. The DP approach
is popular in recent research and shows to generate strong heuristics [24].

The deterministic linear programming approach is one of the traditional approaches for making
pricing decisions in network revenue management. This deterministic linear program assumes that
the arrivals of customers are given by deterministic functions of the prices. The LP dates back
to the work of [9] and it has been widely used by practitioners [8]. The work of [16] proposed
a deterministic choice based linear model (CDLP) to solve the network revenue management
problem with column generation techniques. In [14] two new method are proposed to solve the
CDLP e�ciently.

Besides the LP and DP approach, another solution approach is proposed in [3]. The authors
developed a price optimization framework based on price multipliers. The price is the product of
four optimised multipliers (time, capacity, length of stay and group size). Each multiplier varies
around one and provides a varying discount or surcharge over some seasonal reference price set by
the company. A Monte Carlo simulation from [21] is used for simulating the demand.

Several di�erent modeling approaches and di�erent solution strategies were found in the literature.
Stratech asks for a model in which price changes occurs at most once a day. In all models that use
a DP approach prices may change every time period, where a time period correspond to a small
enough interval of time that there is at most one booking at each time period. As a consequence,
the time intervals are too small and a DP formulation is not suitable in our context. A LP
generates (if frequently resolved) good pricing strategies [24]. Therefore, we chose a LP approach
in this project. Furthermore, a choice based demand model shows to obtain better performance,
but reliable choice probabilities are necessary. Unfortunately, such reliable choice probabilities can
not be conducted from the available data of Stratech. Therefore, an independent demand model
is used in this project. The LP approach with independent demand that is used in this project is
a modi�cation of the LP proposed in [8].
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2.2 Demand forecasting

A demand forecast in the hotel industry (and camping and bungalow parks) has three dimensions:
time of booking, time of arrival and the length of stay. The work of [21] composed two competing
philosophies in the forecasting theory. One approach is based on using the historical data to
develop an empirical formula for the forecasting variable (number of future arrivals). The other
approach focuses on simulating a prede�ned model forward in time to obtain the forecast.

The work of [19] compared several forecasting methods and distingished three forecasting methods:
historical booking methods, advanced booking methods and combined booking methods. Methods
like moving average, exponential smoothing and other autoregressive models are often used in
practice [11]. All these methods are used to develop an empirical formula for the forecasting. The
authors of [19] argued that demand forecasting is quite company speci�c and one needs to be
careful by a general usage of a demand forecasting model.

A simulating prede�ned model is proposed in the work of [21]. The authors give a clear description
of a Monte Carlo simulation to forecast demand. We decided to use this simulation in this project,
because of its good performance in the hotel industry. Furthermore, this approach is also used in
other works to simulate future demand, see for example [3, 5�7].

5



3 Modeling

A dynamic pricing strategy is a pricing strategy in which businesses set �exible prices for products
or service based on current market demands. The dynamic pricing problem is modeled as a
revenue management network. Furthermore, we propose how we model the e�ect of price changes
on demand, called demand elasticity. This demand elasticity is a part of the demand forecasting
and, hence, also plays an important role in the dynamic pricing problem. Finally, we present an
performance evaluation framework for a dynamic pricing strategy.

3.1 Network revenue management

Camping and bungalow parks typically rent multiple object types (e.g. campground, luxury camp-
ground, bungalow, camper ground etc.). We assume that the demand model di�er along the object
types and that customers do not choose along objects. For example, a customer that intends to
book for a bungalow would not search for a campground even when the price of the bungalow is
higher than his willing of pay. We model the dynamic pricing problem for a single object type.
Furthermore, we model the dynamic pricing problem as a Revenue Management network.

We �rst de�ne a time horizon which denotes the begin and the end of the considered time period.

De�nition 1 We de�ne T = {d1, d2, ..., de} as the time horizon (in days). The �rst and last day
of the arrival horizon are denoted by d1 and de respectively.

To remark, de denotes the cut-o� date of the time horizon.

Customers arrive on a certain day in the time horizon. However, some camping and bungalow
parks allow unsynchronised arrivals (Wednesday, Saturday, Sunday) when others impose Saturday
to Saturday stays.

De�nition 2 We de�ne H = {a1, a2, ..., ae} as the arrival horizon (in days), where arrivals may
occur. The �rst and last day of the arrival horizon are denoted by a1 and ae respectively.

We also de�ne a set of night stays that can be consumed by the customer. A night stay is the
night between two consecutive days. For example, the night of '27-May-2017 on 28-May-2017' and
night of '28-May-2017 on 29-May-2017' etc. are night stays.

De�nition 3 The set I denotes the set of o�ered night stays. A single night stay i ∈ I is
denoted by the pair (d,d + 1) with d,d + 1 ∈ T , where d + 1 denotes the day after d.

Fig 1 illustrates how T , H and I relate to each other. A reservation r is a sequence of successive
night stays. For example, if we receive a customer reservation request for the weekend 27-May-
2017 till 29-May-2017, then the two night stays '27-May-2017 on 28-May-2017' and '28-May-2017
on 29-May-2017' are consumed by this customer. A reservation typically consists of an arrival day
and a number of nights reserved, called length of stay (LoS).

6



Horizon

a1 a2 a3

i1 i2 i3

d1 d2 d3 d4 d5 d6 d7

i4

Figure 1: Time horizon d1 to d7 of one week, with allowed arrivals a1 to a3 and o�ered night stays
i1 to i4

De�nition 4 We de�ne La as the set of possible lengths of stay from some arrival day a ∈ H.

De�nition 5 A reservation r is denoted by the pair (a, l), with a ∈ H and l ∈ La. The set
R = {(a, l) | a ∈ H, l ∈ La} denotes the set of all possible reservations.

Moreover, consider some reservation r with arrival day a ∈ H and l ∈ La, then
{(a, a + 1); (a + 1, a + 2); ...; (a + l − 1, a + l)} ⊆ I. We use ar to indicate that this is the arrival day
of reservation r and lr to indicate the length of stay of reservation r.

Furthermore, each company has a certain amount of available objects to rent. The number of
available objects is called the capacity.

De�nition 6 The capacity is de�ned by c = {c1, ..., cm}, where ci denotes the capacity of night
stay i at the beginning of the decision horizon.

Each reservation consumes a number of night stays. The night stay consumption for all reservations
is denoted by the m × n matrix A, with m the total number of considered night stays and n the
total number of reservations.

De�nition 7 The m × n matrix A represents the night stay consumption of all reservations,
where the (i, r)th element, ai,r , denotes the quantity of night stay i consumed by a reservation r;
ai,r = 1 if night stay i is used by reservation r and ai,r = 0 otherwise.

Let Ai be the ith row of A and Ar be the r th column of A, respectively. To simplify the notation,
we use r ∈ Ai to indicate that reservation r uses night stay i and i ∈ Ar to indicate that night stay
i is used by reservation r.

We are allowed to charge di�erent prices of each possible reservation separately. From now on,
each possible reservation can be placed in a certain price class and pr denotes the reference price
of reservation r. The reference price is the price established by the company at the beginning of
the year or, in other words, the price that is charged if we did not use dynamic prices.

De�nition 8 The set K is a non-empty set of integers, called price classes. We de�ne {pkr |
k ∈ K} as the set of prices for reservation r. The price that is charged for reservation r has to
take a value in this set.

7



We require that pr ∈ {pkr | k ∈ K}, which indicates that there is a price class for the reference
price. To give an example, consider three prices classes, i.e. K = {1, 2, 3}. Price class 1 indicates a
10% discount, price class 2 follows the reference price and price class 3 indicates a 10% surcharge
of the price. Then p1r = 0.9 · pr , p2r = 1 · pr (= reference price) and p3r = 1.1 · pr .

Stratech asks for periodically change of prices. Hence, price changes may occur at di�erent time
points and can hold for a certain time period. Therefore, we de�ne the decision periods. A decision
period is a certain time period of at least one day (e.g. day or week) and at the beginning of each
decision period prices can be changed which are hold till the end of the decision period.

De�nition 9 We de�ne D = {w1,w2, ...,we} as the set of decision periods with w1 the �rst
decision period and we the last decision period. We de�ne d1

w ∈ T and de
w ∈ T as the �rst and last

day of decision period w respectively. Prices are charged at the beginning of d1
w and holds till the

end of de
w.

To clarify, consider some decision period w, then prices of all reservation r with ar ≥ d1
w can be

changed, i.e. arrival day ar is later (or on the same day) in the time horizon than the �rst day of
decision period w. A request can be made on a certain day before arrival. Moreover, a request for
reservation r can be received in each decision period w if ar ≤ de

w. Each request that is received
in decision period w for a reservation r with ar ≥ d1

w is o�ered for the price pkr if price class k is
charged for reservation r in decision period w. Fig 2 illustrates the relation between H and D.

de
w1

de
w2

d1
w1

d1
w2

a1 a2 a3 a4 a5 a6 a7

w1 w2

r1

r2
r3
r4

Figure 2: Decision period w1 and w2 are periods of �ve days. At the beginning of day d1
w1

we can
charge new prices for all reservation ar ≥ d1

w1
, i.e. r1, r2, r3, r4. These prices holds till the end

of day de
w1
. At the beginning of d1

w2
we can charge new prices for all reservation ar ≥ d1

w2
, i.e. r2,

r3, r4. These prices hold till the end of day de
w2
.
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Throughout the paper, we reserve d ∈ T , a ∈ H, i ∈ I, l ∈ L, r ∈ R, k ∈ K, w ∈ D as the indices
for days, arrival days, night stays, length of stay, reservations, price classes and decision period
respectively. The following example is used to illustrate the network revenue management.

Example 1 Consider a small bungalow park which decide to start changing prices for his accom-
modations on Monday 8th of May, 2017. The week Monday May 22th to Sunday May 28th is
the last week of the time horizon and contains the ascension weekend. Thus, the considered time
horizon is given by T = { May 8th, May 9th,...,May 28th}. The park requires that arrivals only
occur in the ascension weekend except for the Sunday, so H = {Friday May 26th, Saturday May
27th }. For shorter notation, H = {a1, a2} = {Fr, Sa}. Further, a reservation needs to be made
for three night stays if Friday is the arrival day and for at most two night stays if Saturday is
the arrival day. Hence, La1

= {3} and La2
= {1, 2}. The park requires weekly price changes, so

D = {w1,w2,w3} = {May 8th - May 14th),(May 15th - May 21th),(May 22th - May 28th)}. Thus,
price changes in decision period w1 occur at the beginning of day d1

w1
(= May 8th) and are hold till

the end of day de
w1

(= May 14th). The same principle holds for periods w2, w3. The set of o�ered
night stays that can be consumed by the customer is given by I = {(Fr, Sa), (Sa, Su), (Su, Mo)}. As-
sume that the park has only 3 accommodations available for the ascension weekend, i.e. c = {3, 3, 3}.
Now, the night stay consumption matrix A is given by

A =
©«

r1 r2 r3

(Fr,Sa) 1 0 0

(Sa,Su) 1 1 1

(Su,Mo) 1 0 1

ª®®®¬
and the set of considered reservation becomes R = {(Fr, 3), (Sa, 1), (Sa, 2)}. See �g 3 for a visualiza-
tion of H, D and R and consider r1 = (Fr, 3), r2 = (Sa, 1), r3 = (Sa, 2). Assume price pkr3 is charged
for reservation r3 in decision period w1 and one request for r3 is received in decision period w1.
There is enough capacity, so the request can be accepted and night stays {i |i ∈ Ar3 } are consumed.
The revenue increases with pkr3 and the capacity becomes c = {3, 2, 2}.

w1 w2 w3

a1 a2

Fr Sa Su Mo
May 8 May21May14 May15 May22 May28

r1

r2

r3

Figure 3: Visualisation of H, D and R of example 1
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The developed ILP uses the expected number of requests for some reservation at a certain price
class in a certain decision period. This is the most important input parameter of the ILP proposed
in section 4.1.

De�nition 10 We de�ne bkr,w as the expected number of requests when price class k is charged
in decision period w for reservation r. We de�ne br,w as the the expected number of requests for
reservation r in decision period w at the reference price. The expected number of request br,w
is represented by a matrix b with the reservations r on the rows and decision periods w on the
columns.

Note that bkr,w = 0 for all k if ar < d1
w. We further note that bkr,w also could be zero if ar ≥ d1

w,
but that it is possible in practice that reservation r in decision period w is actually received, even
if it was not expected. This leads to some practical problems, but this is discussed later in more
detail in.
We now employ a few assumptions for the expected number of requests. First, we assume that
there exist some φ ∈ K such that bφr,w = 0. In this case, if there is not enough capacity to serve

a request for reservation r, then we charge the (large) price pφr to ensure that we do not receive
a request for reservation r in decision period w. Second, because we use an independent demand
model, we assume that bkr,w depends only on the price for reservation r in decision period w, but
not on the prices for the other reservations in decision period w.

Our goal is to �nd a pricing strategy which maximize the revenue of camping and bungalow parks.

De�nition 11 A pricing strategy is denoted by the binary vector uk
r,w, with

∑
k∈K uk

r,w = 1 for

all r ∈ R and w ∈ D. If uk
r,w = 1 then price class k is charged for reservation r in decision period

w.

In words, a dynamic pricing strategy assigns a single price class in each decision period to each
possible reservation.

De�nition 12 If k = {k |pr = pkr } and uk
r,w = 1 for all r and w, then uk

r,w is called a static

pricing strategy. If uk
r,w is not a static pricing strategy, then uk

r,w is called a dynamic pricing

strategy.

In words, a static pricing strategy is the pricing strategy which assigns the price class of the
reference price in each decision period to each possible reservation. Then the objective of the
network revenue management problem is to �nd pricing vector uk

r,w which maximize revenue.

10



3.2 Demand elasticity

The demand elasticity is the degree to which demand varies with its price. Camping and bun-
galow parks that currently use Stratech-RCS never used dynamic pricing strategies before. As a
consequence that there is an insu�cient amount of data concerning the e�ect of price changes on
demand. Therefore, an assumption needs to be made. We assume that the demand is a linear
function of the price. In Chapter 5 we propose a demand model to �nd the expected values br,w
and the values bkr,w are computed by a linear demand elasticity function. Usually, the demand
decreases when the price increases and visa versa. Within this project, the demand elasticity
function is modeled as a linear price class dependent function, denoted by DE(k). Note that
a more sophisticated demand elasticity might be more appropriate in practice. In practice, the
demand elasticity probably depends on the seasonality, time of booking and perhaps also on the
reservation. The values bkr,w are obtained by multiplying br,w with the value of DE(k) that varies
around one. The demand elasticity gives the expected amount of increase or decrease. Hence, a
value of DE(k) that is bigger than one indicates an increase of demand and a value smaller than
one indicates a decrease of demand. The demand elasticity function outputs the value 1 if the
price class of the reference price is charged. In general,

bkr,w = br,w · DE(k) k ∈ K .

In short, br,w is estimated with a demand forecasting model and bkr,w is estimated by the demand
elasticity function. We use the following example to illustrate the demand elasticity model.

Example 2 Consider the setting of example 1. In addition, consider the set of price classes
K = {1, 2, 3, 4}, where price class 1 indicates a 10% discount, 2 indicates the reference price, 3
indicates a 10% surcharge and 4 indicates price class φ. At the beginning of each decision period
some price class k ∈ K is assigned for each reservation r ∈ R. Assume that the demand forecast
model outputs

b =
©«

w1 w2 w3

r1 2.2 0 1

r2 0 1.8 0

r3 0 0 0.7

ª®®®¬.
As an illustration, the expected number of requests in decision period w2 for reservation r2 (i.e.
b2,2) equals 1.8 and equals zero for reservations r1 and r3. Note that the values are allowed to be
continuous because it is an expected value. Let k ∈ K and consider the array α = [0.9, 1, 1.1,∞].
α(k) indicates the k th element of α and consider the demand elasticity function

DE(k) =
{
−2α(k) + 3 if α(k) ≤ 1.1

0 if α(k) > 1.1
(1)

for all reservations r and decision period w (see �g 4). This demand elasticity indicates that if the
price increases with 10%, then we expect that the demand decreases with 20%. On the opposite,
if the price decreases with 10%, then we expect that the demand increases with 20%. Moreover, if
price class 4 is charged, then we expect no requests. Thus, if the price is increased with 10% in
decision period 2 for reservation r2, then b32,2 = 1.8 · 0.8 = 1.44. Similarly, the value bkr,w can be
found for all k, r and w.

11



k1 k2 k3

k4

Figure 4: Demand elasticity function DE(k) of example 2

3.3 Expected revenue

If the price for some reservation increases or decreases, then the demand elasticity function outputs
an expected decrease or increase of demand. With these expectations the expected revenue can
be calculated. The expected revenue is obtained by multiplying the expected number of requests
by the price that is charged for the reservation of the request. To point forward, in section 4.1
we propose a ILP to �nd the maximum expected revenue. The following example illustrates how
DE(k) and the values br,w are used to obtain the expected revenue.

Example 3 Consider the setting of example 2 and assume that the static pricing strategy is applied
and the bungalow park now has an in�nite capacity. The reference price (pr) for reservations r1,
r2 and r3 are ¤150,-, ¤50,- and ¤100,- respectively. With matrix b from example 2 and prices pr
the expected revenue (E[Rev]) is computed by

E[Rev] =
∑
w∈D

∑
r ∈R

br,wpr

= b1,1pr1 + b2,2pr2 + b1,3pr1 + b3,3pr3
= (2.2 · 150) + (1.8 · 75) + (1 · 150) + (0.7 · 100) = ¤640. (2)

In addition, consider the following two pricing strategies. In the �rst strategy the price is decreased
with 10% for each reservation at the beginning of each period. In the second strategy the price is
increased with 10% for each reservation at the beginning of each period. The expected revenue of
the �rst strategy is computed by

E[Rev] =
∑
w∈D

∑
r ∈R

DE(1) · br,w · 0.9pr =
∑
w∈D

∑
r ∈R

1.2 · br,w · 0.9pr = ¤720.

The expected revenue of the second strategy is computed by

E[Rev] =
∑
w∈D

∑
r ∈R

DE(3) · br,w · 1.1pr =
∑
w∈D

∑
r ∈R

0.8 · br,w · 1.1pr = ¤480.

It is obvious that the �rst strategy gives the optimal expected revenue, because 1.2·0.9 > 1 > 0.8·1.1.

12



previous example shows that the optimal expected revenue is easily found with an in�nite capacity,
but in practice there is a capacity constraint. In section 4.1 we proposed a ILP which takes into
account this capacity constraint and solves these kind of instances in general. The ILP �nds the
right trade o� between price surcharge and change in demand, given the available capacity. The
ILP �nd the optimal expected revenue and the output variables are used as a dynamic pricing
strategy.

3.4 Performance evaluation framework

Eventually we want to evaluate the performance of the pricing strategy of this algorithm relative
to the static pricing strategy that is currently used by most of the companies. In this section we
discuss the practical problems that arise in the evaluation of the performance of a pricing strategy
and how we overcome these problems.

3.4.1 Performance of a pricing strategy

In practice, the performance of a pricing strategy could be obtained with a practical experiment.
For example, we could test the performance of two pricing strategies on two comparable bungalow
parks in the same time period. One bungalow park applies a price strategy and the other bun-
galow park applies the other pricing strategy in the same time period. At the end both revenues
can be compared to evaluate the performance of both pricing strategies. Such practical experi-
ment was not suitable for this project and we developed a method to evaluate the performance
computationally.

It would be easy if the expected revenue of several pricing strategies can be evaluated as in example
3 and that we can claim that the pricing strategy with the highest expected revenue performs the
best. But note that the capacity is in�nite in this example and that the expected revenue of a
pricing strategy is meaningless if the capacity constraint in not taken into account. To explain,
consider the setting of example 3, but now with a �nite capacity c = {3, 3, 3}. With equation (2)
we computed the expected revenue of ¤640 when the static pricing strategy will be applied. But
note that r1, r2 and r3 all consumes night stay (Sa, Su) and in the coming three weeks we expect
a total of 5.7 (= 2.2 + 1.8 + 1 + 0.7) requests which makes use of night stay (Sa, Su). So, the
expected number of reservations that consumes night stay (Sa, Su) violates the capacity of that
night (5.7 > 3). An expected revenue of ¤640 is obtained, but the capacity constraint is not taken
into account. Hence, it would be incorrect to claim that ¤640 represent the expected revenue of
the static pricing strategy correctly. In contrast, the (maximum) expected revenue of ILP (6) -
(9) proposed in section 4.1 does take the capacity constraint into account. Hence, we set up a
simulation framework in which the performance of both pricing strategies can be evaluated.

13



3.4.2 Simulation approach

The developed simulation framework �nds a, so called simulated expected revenue, for a pricing
strategy. This revenue is computed in a simulated way and the global idea of the simulation is
described below. We assume that the pricing strategy with the highest simulated expected revenue
has the best performance.

Global idea simulation approach Simulate future requests (also called demand) for some
time and arrival horizon. Manage each request in chronological order and check if the reservation
of this request does not violate the capacity. If the request �ts and can be accepted, then the
total simulated expected revenue increases with the price suggested by the pricing strategy for
this request and the available capacity is updated. If the request can not be accepted, then the
request is denied and the total simulated expected revenue does not increase.

The simulation experiment sounds accessible, but if price changes are made we also need to predict
the behavior of the customers on these changes and some practical problems arise. Moreover, the
demand should change somehow due to the price changes and we need to predict the expected
future requests that would have occurred if we had used a certain pricing strategy. For example,
assume that we generated a future request for some reservation r in decision period w. The
customer of this request will behave di�erently on di�erent prices for reservation r. What would
this customer do if we charge the reference price or increase the price of the reservation? We
modeled the customers behavior on prices with the same demand elasticity model as used for the
expected number of requests. The expected increase or decrease due to the demand elasticity
function is now applied on single request. For example, if we receive a request and price class
k is charged and DE(k) = 1.2 then we expect an amount of 1.2 of this request. Similarly, if
DE(k) = 0.8, then we expect an amount of 0.8 of this request. If the static pricing strategy is
used, then DE(k) = 1 and we do not expect an increase or decrease of any requests. Therefore,
the simulated expected revenue is easily found by above simulation for the static pricing strategy.

Now we only need to �nd the simulated expected revenue of a dynamic pricing strategy. But, if we
use a dynamic pricing strategy it becomes more complex, because a practical problem arise here.
As we already saw above, if we use the demand elasticity model of section 3.2 we could end up
with fractional expected future requests, called continuous demand (also illustrated in example 4).
With this continuous demand we can compute the simulated expected revenue in a similar way
as described in above simulation approach, but a continuous demand is not realistic. In practice
customers just accept or deny the price of a reservation. In section 4.2.1 we propose how we obtain
a demand in which each customer just accepted or denies the price of a reservation. We employ a
few more de�nition before we illustrate a continuous demand with an example.

De�nition 13 A demand stream Q is a set of chronological ordered simulated requests. We
de�ne q(n) = (r,w) as the nth request of demand stream Q which denotes the request for reservation
r and is received in decision period w.

De�nition 14 We de�ne qr,w ∈ Q as the total number of realized requests for reservation r
in decision period w in demand stream Q. The values qr,w are represented by the matrix q with
the reservations on the row and decision periods on the columns.

De�nition 15 We de�ne Qu as the continuous demand stream, which is the obtained expected
demand stream by applying some pricing vector uk

r,w on demand stream Q.

14



Example 4 Consider the setting of example 3 and assume we have a demand stream
Q = {q(1), ..., q(5)} = {(r1,w1), (r1,w1), (r2,w2), (r3,w3), (r1,w3)} (see �g 5). Thus, we consider

b =


w1 w2 w3

r1 2.2 0 1

r2 0 1.8 0

r3 0 0 0.7

 and q =


w1 w2 w3

r1 2 0 1

r2 0 1 0

r3 0 0 1

 .
As an illustration, we expected 1.8 requests for reservation r2 in decision period w2 and we actually
received 1 request for reservation r2 in decision period w2, which is denoted by q(3) (or q2,2). If
the static pricing strategy is applied on this demand stream, then the simulated expected revenue
(E[SimRev]) is computed by

Esim[Rev] =
∑
w∈D

∑
r ∈R

br,wpr = 2 · 150 + 1 · 50 + 1 · 100 + 1 · 150 = ¤600.

When the price is decreased with 10% for each reservation at the beginning of each period, then
the simulated expected revenue is computed by

Esim[Rev] =
∑
w∈D

∑
r ∈R

DE(1) · qr,w · 0.9pr =
∑
w∈D

∑
r ∈R

1.2 · qr,w · 0.9pr = ¤768 (3)

And we obatin a continuous demand stream Qu = {1.2 · q(1), ..., 1.2 · q(5)} = {1.2 · (r1,w1), 1.2 ·
(r1,w1), 1.2 · (r2,w2), 1.2 · (r3,w3), 1.2 · (r1,w3)}. This means that qu(n) ∈ Qu now consumes 1.2 of
the capacity instead of 1 on the night stays i ∈ Ar with r the reservation of request q(n). Thus, if
we apply a pricing strategy on demand stream Q, then we could end up with a continuous demand
stream Qu.

Fr Sa Su Mo
a1 a2

r1

r2

r3

r1

r1

q(1)

q(2)

q(3)

q(4)

q(5)

Figure 5: Visualization of demand stream Q from example 4

Note that we can perform the computation in equation (3), because we still have an in�nite
capacity. In section 4.2.3 we propose how Esim[Rev] is computed with a �nite capacity.

Unfortunately, a continuous demand stream is not a realistic demand stream and the simulated
expected revenue is calculated with this continuous demand stream. The simulated expected
revenue of an expected discrete demand due to the price changes would be more realistic. We
come back to this later.
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3.4.3 Distinction of expected revenues

The intended purpose of the simulated expected revenue is that it represents a realistic performance
of a dynamic pricing strategy.

De�nition 16 We de�ne Q̃u as the discrete demand stream computed from the (possibly)
continuous demand stream Qu.

In section 4.2.1 we propose a method to obtain a discrete demand stream Q̃u from a continuous
demand stream Qu.

We now formulate three di�erent expected revenues, which are used in the remainder of this report.
We �rst obtain an expected revenue using pricing vector uk

r,w and values bkr,w and pkr as proposed

in example 3. Second, we obtain a simulated expected revenue using pricing vector uk
r,w and a

possibly continuous demand stream Qu and prices pkr as proposed in example 4. Third, we obtain
a, so called, realistic expected revenue using pricing vector uk

r,w and a discrete demand stream Q̃u

and prices pkr .

De�nition 17 The expected revenue E[Rev] is the revenue obtained using some pricing vector
uk
r,w, expected requests bkr,w and prices pkr .

De�nition 18 The simulated expected revenue Esim[Rev] is the revenue obtained using using
some pricing vector uk

r,w, demand stream Qu and prices pkr .

De�nition 19 The realistic expected revenue Ereal[Rev] is the revenue obtained using some
pricing vector uk

r,w, demand stream Q̃u and prices pkr .

In section 4.2.3 we describe how E[Rev], Esim[Rev] and Ereal[Rev] are actually computed.

Eventually we want to validate that the simulated expected revenue is a good approximation of the
realistic expected revenue, because we assume that this realistic expected revenue gives a better
representation of the practice. Therefore, we de�ne the following.

De�nition 20 The integrality gap (Gint) is the relative di�erence between the simulated ex-
pected revenue of demand stream Q and the average realistic expected revenue (Ereal[Rev]) over
all discrete demand stream Q̃u obtained from Qu.

The integrality gap of a pricing strategy is computed by

Gint =
| Ereal[Rev] − Esim[Rev] |

Esim[Rev] · 100% (4)

Note that there is no integrality gap of the static pricing strategy, because Esim[Rev] = Ereal[Rev]
in this case. The integrality gap is used to validate that the simulated expected revenue gives a
good approximation of the simulated expected revenue.
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Now it is also important to know how the expected revenue of the ILP and the simulated expected
revenue relates. Therefore, we de�ne the following.

De�nition 21 The simulation gap (Gsim) is the relative di�erence between the expected rev-
enue and the average simulated expected revenue E sim[Rev] over all (possibly) continuous demand
streams Qu.

The simulation gap is computed by

Gsim =
|E sim[Rev] − E[Rev]|

E[Rev] (5)

The simulation gap is used to validate that the proposed ILP gives a good approximation of the
simulated expected revenue.
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4 Deterministic integer linear programming

In this section we propose a deterministic integer linear program (ILP) to �nd a dynamic pricing
strategy which periodically assigns a single price class to all possible reservations to maximize the
expected revenue. Further, a method is proposed to compute a discrete demand stream from a
continuous demand stream. Next, we propose and tackle some practical problems that occur and
propose the method that is used to compute the simulated and realistic expected revenue. Finally
we propose two additional solution approaches which make use of the ILP solution.

4.1 Aggregate expected reservation pricing model

The expected number of requests bkr,w is used to �nd the optimal price class for each reservation
r for every decision period w. The expected revenue is maximized with ILP (6) - (9) which �nds
the right trade o� between price surcharge and change in demand, given the available capacity.
The maximum expected revenue is found by assigning a single price class to each reservation r
at the beginning of decision period w taking into account that the capacity ci is not violated
for all night stays i ∈ I. This problem is formulated as a deterministic integer linear program,
which we call aggregated expected reservation integer linear program (AER-ILP). It is called the
aggregated expected reservation ILP because a price class is assigned to each possible reservation
separately and is based on the expected values bkr,w. The dynamic pricing strategy that maximize
the expected revenue is de�ned by ûk

r,w which are the output variables of the AER-ILP.

max
∑
w∈D

∑
r ∈R

ar ≥d1
w

∑
k∈K

uk
r,wpkr bkr,w (6)

s.t .
∑
w∈D

∑
r ∈R

ar ≥d1
w

∑
k∈K

ai,ruk
r,wbkr,w ≤ ci ∀i ∈ I (7)

∑
k∈K

uk
r,w = 1 ∀r ∈ R, ∀w ∈ D (8)

uk
r,w ∈ {0, 1} ∀r ∈ R, ∀k ∈ K, ∀w ∈ D (9)

The objective function (6) accounts for the maximum expected revenue over the time horizon T .
The constraints of (7) ensure that the capacity of all night stays i do not violate the capacity of
night stay i. Constraints (8) ensure that each reservation is o�ered at a single price each decision
period. Constraints (9) ensures that uk

r,w is one or zero for all k, r and w.
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4.2 Validation and simulation of the expected revenue

In section 3.4.3 we argued about the integrality gap due to the continuous demand. In this
section we propose the method that is used to compute a (more realistic) discrete demand from
a continuous demand and is used to �nd this integrality gap. Further, we give an extension of
the demand elasticity function, which is needed to overcame some practical problems. Finally, we
propose how the simulated and realistic expected revenue are actually computed.

4.2.1 Discrete demand simulation

In section 3.4.2 we illustrated that the demand elasticity function gives a certain expected increase
or decrease of requests and we showed that we could end up with a continuous demand stream in
the simulation framework. Now we explain how we obtain a discrete demand stream Q̃u from a
fractional demand stream Qu.

We computed a discrete demand stream Q̃u from a continuous demand stream Qu in a simulated
way. For each q(n) ∈ Qu the following simulation is performed to obtain Q̃u. If price class k is
charged for the reservation of request q(n) and DE(k) < 1, then with probability DE(k) one request
q(n) is added to Q̃u. If DE(k) < 1, then one request q(n) is added to Q̃u and with probability
1−DE(k) an extra request q(n) is added to Q̃u. If DE(k) = 1, then one request q(n) is added to Q̃u.
We use the following example to illustrate this simulation of a single request q(n) ∈ Qu discrete
demand.

Example 5 Consider request q(2) = 1.2 · (r1,w1) from demand stream Qu of example 4. Also
consider the demand elasticity function DE(k) and the set of price classes as in example 2. If we
charge price class 3 for reservation r1 in decision period 1, then DE(3) = 0.8 and the customer of
request q(2) accepts the price 1.1 · ¤150 = ¤165 with probability DE(k) = 0.8 and deny this price
with probability (1 − DE(k)) = 0.2. If we charge price class 1 for reservation r1 in decision period
1, then DE(1) = 1.2 and we receive an extra identical request with probability 1 − DE(k) = 0.2,
otherwise we only receive q(2). If we charge the reference price we just receive request q(2).

With above simulation we can generate a large number of di�erent discrete demand streams
Q̃u. The simulated expected revenue for each simulated discrete demand stream can be found
by algorithm 1 of section 4.2.3 and we can compute Ereal[Rev] by averaging over all simulated
continuous demand streams. This average simulated expected revenue is used to �nd the integrality
gap. These discrete demand are reasonable to use to �nd the integrality gap, because if we perform
enough discrete demand streams and average the number of requests over all these demand streams
then we end up with the (original) continuous demand stream.
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4.2.2 Extension of the demand elasticity function

Before we propose the method that is used to �nd the simulated and realistic expected revenue of
a certain pricing strategy, an annotation need to be made. The demand elasticity is used to �nd
the expected number of increase or decrease of demand. Now, it could be the case that demand
stream Q does not contain a request for reservation r in decision period w while br,w > 0. The
AER-ILP assigned a price class for this request, namely price class k for which ûk

r,w = 1. In the
simulation experiment we want to know if we could have received a request for reservation r if a
certain price class is assigned for this reservation. As an illustration of this case, take matrix b in
example 4, but now we also expected 2 request for reservation r2 in decision period w1 and matrix
q is still the same. In this case, qr2,w1

= 0, while we expected 2 request in this week. With current
demand elasticity DE(k)qr2,w1

= 0 for all k, but if we use a price class which decrease the price for
reservation r in decision period w1, then we assume that there should be some expectation that
we receive a request qr,w under this new price. Moreover, we assume that if we did not expect any
request for reservation r in decision period w and qr,w = 0, then we do not expect that we receive
a request for reservation r in decision period w at any price class.

We extend our demand elasticity function to tackle this problem. We �rst propose the following.

Proposition 1 If ûk
r,w = 1, pkr > pr and qr,w = 0 for some k, r and w, then qu

r,w = 0.

In words, if we did not receive a request for reservation r in decision period w and we increased
the price of r in decision period w, then we expect no request for reservation r in decision period
w. Now, if a pricing strategy assigns a price class which decreases the price for r in decision period
w, then their should be some probability that we received a request for r in decision period w.

De�nition 22 If br,w > 0 and qr,w = 0 for some reservation r and decision period w, then we
call this an unrealized request for reservation r in decision period w.

If a request is an unrealized request then the demand elasticity becomes

DE0
r,w(k) =

{
(DE(k) − 1)br,w if DE(k) ≥ 1

0 if DE(k) < 1
(10)

Function (10) states that if we decrease the price of reservation r in decision period w, then we
have an expected increase of a certain percentage, namely DE(k) − 1, of the number of request we
did expected (br,w). Using de�nition 22 and function (10) we propose the following.

Proposition 2 If br,w > 0 and qr,w = 0 for some reservation r in decision period w, then
DE(k) = DE0

r,w(k).

Hence, an unrealized request has the potential to become a request if we charge a lower price for
the corresponding reservation and decision period. From now on, we state that a demand stream
Q also contains unrealized request. We illustrate this using example 4, if we indeed expected two
request for reservation r2 in decision period w1, then we have Q = {q(1), ..., q(6)} = {(r1,w1), (r1,w1),
(r2,w1), (r2,w2), (r3,w3), (r1,w3)}, where (r2,w1) is an unrealized request.
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4.2.3 Computation of the revenue

The proposed AER-ILP computes a maximum expected revenue and outputs a pricing strategy
vector ûk

r,w. In this section we describe how the simulated and realistic expected revenues are
computed for both static and dynamic pricing strategies.

Simulated and realistic expected revenue

The demand elasticity function gives the value one for all reservations r and decision periods w

if the static pricing strategy is used. Therefore, with the simulation approach we always end up
with a (realistic) discrete demand stream. The following algorithm is used to compute Esim[Rev]
(or Ereal[Rev]) of a discrete demand stream Q with pricing strategy uk

r,w.

Algorithm 1 For n = 1 to |Q | (or |Q̃u |) the following is performed. If request q(n) ∈ Q (or
|Q̃u |) is a realized request and reservation r of this request does not violate the capacity (i.e. if
ci − 1 ≥ 0 ∀i ∈ Ar), then Esim[Rev] (or Ereal[Rev]) increases with pkr with k = {k |uk

r,w = 1} and
the capacity is updated with ci = ci − 1 for all i ∈ Ar . If request q(n) ∈ Q (or |Q̃u|) is an unrealized
request or the reservation of this request does violate the capacity, then this request is denied and
Esim[Rev] (or Ereal[Rev]) does not increase

The following example illustrates algorithm 1.

Example 6 Consider the setting of example 4, but now with a slightly di�erent expected request
matrix b. We now also expected two requests for reservation r2 in decision period w1. Thus,

b =
©«

w1 w2 w3

r1 2.2 0 1

r2 2 1.8 0

r3 0 0 0.7

ª®®®¬ and q =
©«

w1 w2 w3

r1 2 0 1

r2 0 1 0

r3 0 0 1

ª®®®¬.
and demand stream Q contains also an unrealized request, so Q = {q(1), ..., q(6)} = {(r1,w1), (r1,w1),
(r2,w1), (r2,w2), (r3,w3), (r1,w3)}, where (r2,w1) is the unrealized request. Consider a (�nite) capacity
c = {3, 3, 3} for the bungalow park and a static pricing strategy is applied. Then Esim[Rev] is
computed with algorithm 1 as follows. Start at n = 1, so q(1) = (r1,w1) is received at �rst. We
obtain that request q(1) �ts (i.e. ci − 1 > 0 ∀i ∈ Ar1), so the total simulated expected revenue
increases with pr1 = ¤150 and the capacity is updated (c = {2, 2, 2}). Similarly, q(2) = (r1,w1)
�ts, so the total simulated expected revenue increases with pr1 = ¤150 and the capacity is updated
(c = {1, 1, 1}). Next, q(3) = (r2,w1) is `received' which is an unrealized request, but the total
simulated expected revenue does not increases, because DE(k) = 1 and DE0

r2,w1
(k) = 0. Then,

q(4) = (r2,w2) is received and this request �ts, so the total simulated expected revenue increases
with pr2 = ¤50 and the capacity is updated (c = {1, 0, 1}). Now we obtain that request q(5) = (r2,w2)
does not �t, because ci − 1 < 0 for i = (Sa, Su) and this request is denied. Also q(6) does not �t
anymore. Thus, if we have a �nite capacity c = {3, 3, 3} and use the static pricing strategy we
obtain

Esim[Rev] = 2 · 150 + 1 · 50 = ¤350.
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It becomes a little bit more complex if Esim[Rev] is computed for a dynamic pricing strategy.
In this case, we also have to deal with the extended demand elasticity function as described in
section 4.2.2. The following algorithm is used to �nd Esim[Rev] when a dynamic pricing strategy
is applied.

Algorithm 2 For n = 1 to |Q | the following is performed. If q(n) = (r,w) ∈ Q is a realized
request, then DE = DE(k) with k = {k |ûk

r,w = 1}. Now, If value DE of does not violate the capacity

(i.e. if ci − DE ≥ 0 ∀i ∈ Ar), then Esim[Rev] increases with DE · pkr and the capacity is updated
with ci = ci −DE for all i ∈ Ar . If request q(n) is an unrealized request, then DE = DE0

r,w. Now, if

this DE does not violate the capacity, then Esim[Rev] increases with DE · pkr for k = {k |uk
r,w = 1}

and the capacity is updated.

The following example is used to illustrate algorithm 2.

Example 7 Consider expected request matrix b, demand stream Q and capacity c from example
6. Now a dynamic pricing strategy is applied which assigns price class 1 (decrease price with
10%) for each reservation in each decision period. Esim[Rev] is computed with algorithm 2 as
follows. Start at n = 1, so q(1) = (r1,w1) is received at �rst. This is a realized request, so
DE = DE(1) = 1.2. The value DE �ts in the capacity (because ci − DE > 0 ∀i ∈ Ar), so
Esim[Rev] increases with 1.2 · 0.9 · pr1 = ¤162 and the capacity is updated (c = {1.8, 1.8, 1.8}).
Similarly, for q(2) = (r1,w1) we have enough capacity, so Esim[Rev] increases with ¤162 and the
updated capacity becomes c = {0.6, 0.6, 0.6}. Next, q(3) = (r2,w1) is `received' which is an unrealized
request, so DE = DE0

r,w(1) = (DE(k)−1)br,w = (1.2−1)·2 = 0.2. Value DE = 0.2 �ts in the capacity,
so Esim[Rev] increases with 0.2 · 0.9 · pr2 = ¤9 and the updated capacity becomes c = {0.6, 0.4, 0.6}.
Then, q(4) = (r2,w2) is received, which is a realized request with DE = 1.2. This request does not �t
anymore, because ci − 1.2 < 0 ∀i ∈ Ar , so Esim[Rev] does not increase and request q(4) is denied.
Also, request q(5) and q(6) do not �t and are denied. Thus, if we have a �nite capacity c = {3, 3, 3}
and use the above dynamic pricing strategy, then the simulated expected revenue is denoted by

Esim[Rev] = 2 · 162 + 1 · 9 = ¤333.

In this case, the dynamic pricing strategy which decrease the price with 10% gives a lower simulated
expected revenue than the static pricing strategy. Hence, we assume that this it is not the optimal
pricing strategy. The simulated expected revenue is used to quantify the performance of a pricing
strategy. We assume that the pricing strategy with the highest simulated expected revenue has
the best performance.
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4.3 Additional approaches

In this section we propose two additional solution approaches which come up during this project.
The �rst solution approach is to use the dynamic pricing strategy obtained from the AER-ILP to
dynamically change prices per night stays instead of prices per reservations. The second solution
approach is an extension of the dynamic pricing strategy that is obtained from the AER-ILP,
which includes price decisions for unexpected requests.

4.3.1 Night stay pricing

In this section we discuss an additional model to �nd a pricing strategy which use prices per night
stay instead of prices per possible reservation. We developed such model because in the Stratech-
RCS software the calculation of the prices for reservations are often based on prices per night stay.
This means that the price for some reservation r is computed by summing up the prices of all
night stays i ∈ Ar .

But, pricing night stays instead of pricing each reservation separately seems a kind of sub-optimal.
We argue as follows, a price for night stay i has an e�ect on the prices of all reservations r ∈ Ai. It
is harder to manage the occupancy with a night stay pricing strategy, because if we use night stay
prices, then we can not deny single requests by charging a large price like price class φ. To explain,
if we use price class φ for a certain night stay, then we have no request for all reservations r ∈ Ai,
which is probably undesirable. We attempt to �nd an appropriate night stay pricing strategy and
in the computational experiments we test this strategy. We now propose two methods to compute
a pricing strategy which periodically change night stay prices.

We computed two pricing strategies using night stay prices which are obtained from the output
variables of the AER-ILP. We �rst divide the price for each reservation by the number of nights
that is consumed by this reservation to obtain a night stay price for all night stays {i |Ar }. Next,
we average all night stay prices i of reservations r ∈ Ai to obtain the price of night stay i.

De�nition 23 pi,w is a night stay pricing strategy, where price pi,w is charged for night stay
i in decision period w.

The night stay pricing strategy pi,w is found by

pi,w =

(∑
r ∈Ai

∑
k∈K ûk

r,w pk
r

lr

)
|{r |r ∈ Ai}| . (11)

Where |{r |r ∈ Ai}| denotes the number of reservation that consumes night stay i and ûk
r,w denotes

the output variables of the AER-ILP. Further, we de�ne p∗r,w as the price for reservation r in
decision period w that is obtained from the night stay pricing strategy and is computed by

p∗r,w =
∑
i∈Ar

pi,w . (12)
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Now, Esim[Rev] is computed in a quite similar way as algorithm 2 of section 4.2.3, but we �rst
need to mention the following. There are no price classes for reservation anymore, but just prices
p∗r,w. Therefore, the price class dependent demand elasticity function can not be used here. To
overcome this, a linear demand elasticity function is used, which has the same linear slope as the
price class dependent elasticity function. This demand elasticity function is based on function (1)
of section 3.2. We consider

DE(p∗r,w) = −2
p∗r,w
pr
+ 3 (13)

with extended demand elasticity function

DE0
r,w(p∗r,w) =

{
(DE(p∗r,w) − 1)br,w if DE(p∗r,w) ≥ 1

0 if DE(p∗r,w) < 1
(14)

Where
p∗r,w
pr

denotes increase (or decrease) of the price relative to the reference price. We developed
two di�erent methods to compute the simulated expected revenue of a night stay pricing strategy.
In the �rst method night stay prices are used for all request and Esim[Rev] is computed in a
similar way as algorithm 2, but now with demand elasticity functions (13) and (14) and prices
p∗r,w computed with equations (11)and (12). In the second method is quite similar to the �rst one,

but a request for reservation r in decision period w is now denied if ûφr,w = 1. The �rst method is
called the night stay pricing method and the second method is called AER-ILP night stay pricing
method

4.3.2 Unexpected requests

An extra annotation need to be made on the proposed AER-ILP. Notice that the AER-ILP only
gives a meaningful price class for reservation r in decision period w if br,w > 0, because if br,w = 0,
then uk

r,wpkr bkr,w = 0 for all price classes. In practice it is possible that we receive a request for
reservation r in decision period w while we did not expected this request. We need to make a
decision which price we charge for a request that we did not expected, i.e. the price for a request
for reservation r in decision period w while br,w = 0

We used the following two methods to decide which price is charged for a reservation of an
unexpected request. The �rst method is called the reference method. In this method the reference
price is charged for the reservation of an unexpected request. If the request is not an unexpected
request, then price class k = {k |ûk

r,w = 1} is charged, with ûk
r,w the output variables of the AER-ILP.

The second method is called the night stay method. In this method the price for the reservation of
an unexpected request is computed using prices p∗r,w as described in section 4.3.1. If the request

is not an unexpected request, then the price class k = {k |ûk
r,w = 1} is charged. The simulated

expected revenue of the reference method and the night stay method can be found with algorithm
3 and 4 respectively, which are quite similar to algorithm 2.

algorithm 3 For n = 1 to |Q | perform the following. If q(n) is an unexpected request and ûφr,w = 0,

then perform algorithm 1 for this single request. If q(n) is not an unexpected request and ûφr,w = 0,
then perform algorithm 2 for this single request.

algorithm 4 For n = 1 to |Q | The following is performed. If q(n) ∈ Q is an unexpected request
and ûφr,w = 0, then perform algorithm 2 for this single request, but now with demand elasticity
function (13) and (14) and prices p∗r,w computed with equation (12). If q(n) is not an unexpected

request and ûφr,w = 0, then perform algorithm 2 for this single request.
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5 Demand forecasting

Before we discuss the computational experiments we end up with a chapter about the demand
forecasting, which also played an important role in this project. In this section a model is proposed
to forecast the request process. The request process is the process of incoming customer reservation
requests. The model is based on the work of [21], which showed to have a good performance in
the hotel industry. The proposed demand model is used to generate sample paths and to �nd
appropriate values br,w for the computational experiments. The values bkr,w are determined by
the demand elasticity function as described in section 3.2. At the end of this chapter we propose
a Monte Carlo simulator to generate sample paths.

5.1 Demand model

A request is typically made in a certain time period before the intended arrival day. The number
of periods between an arrival day and the day of the request is called the lead time. A lead
time of zero represents the so called walk-in customers who request in decision period w with
d1
w ≤ ar ≤ de

w. The occupancy is the number of objects that are occupied at a particular night
stay. We employ the following de�nition.

De�nition 24 The total requests at any period τ before arrival day a is the total number of
requests made exactly τ periods before the particular arrival day a. The request curve is the
graph of total requests as a function of the lead time.

In �g 6 we illustrate the number of periods τ before arrival day a. As illustration, decision week
w1 is two period before a and so τ = 2. Fig 7 shows an example of the request curve for the �rst

w1 w2

a

w3

τ = 2 τ = 1 τ = 0

Figure 6: Number of periods before arrival day a

arrival day of the ascension weekend in 2014 of a certain bungalow park in the Netherlands with
periods of one day.

Clearly, requests appear over time and a certain seasonality is involved here. For di�erent periods
in the year there is a high occupancy and periods with a low occupancy. Also, for di�erent periods
in the year there is a higher number of requests then other periods. Seasonality is a major factor
that considerably e�ects the number of requests. Camping and bungalows parks usually divide
their arrival horizon into di�erent seasons and set prices along these seasons. Typically, a season
with a high number of expected arrivals contains higher prices than a season with a low number
of expected arrivals. We assume that we have S di�erent seasons during the year and Sa indicates
the season in which arrival day a appears.

The request process is modeled as a Bernoulli process and we employ the following de�nition.

De�nition 25 We de�ne B(τ, a) as the expected number of request for arrival day a that are made
τ periods before arrival.
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Figure 7: Request curve

We use B(0, a) to denote the expected number of walk-in customers at arrival day a. We assume
that reservations obey a binomial distribution with probability ρ. Thus,

B(τ, a) = Nρ

with N the size of the `potential' population of requests and ρ the probability that a request will
occur. We need to �nd an estimate of B(τ, a) to generate future requests. However, from the
historical data we only have one realization of B(·, a). Of course, it will be inaccurate to base the
estimate of B(τ, a) on this single observation. We analyzed the historical data of several camping
and bungalow parks in the Netherlands. This data includes the date of received a request, the
reservation of this request and the object type chosen by the customer of the request. From this
data we observed that the shape of the request curve is quite the same within each season. As
consequence, we can make our estimate more accurate by separating the e�ect of the request
behavior B(τ, ·) from the arrival process B(·, a). In particular, if we take period M as an upper
bound beyond no requests occur, then we assume that

B(τ, a) = B′(τ)s(a)

with
∑M
τ=1 B′(τ) = 1 and s(a) the number of arrivals on arrival day a. Now, our goal is to �nd a

good estimate B̂(τ, a) for B(τ, a) using

B̂(τ, a) = B̂′(τ)ŝ(a).

Where B̂′(τ) and ŝ(a) are estimates of B′(τ) and s(a) respectively.
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When this expected number of request for each arrival day is computed, the LoS needs to be
computing of each request. The LoS plays an important role, because the LoS can actually impact
the occupancy. We consider a distribution of the LoS obtained from the historical data. From
the data of several bungalow parks in the Netherlands we observed that the lead time does not
typically impact the LoS. The major in�uence factor on the LoS comes from the seasonality and
day of the week (i.e. Su,Mo,..,Sa) of the arrival day a, de�ned by ad. Let l ∈ La, then we need
to �nd the probabilities Pr(l | Sa, ad) for all S and a, which is the probability that an arrival on
arrival day a has a length of stay of l.

If the expectations B̂(τ, a) and probabilities Pr(l | Sa) are known, then the request progress can be
simulated over time. We developed a Monte Carlo simulator (MC-sim) which perform Bernoulli
trails to �nd the number of arrivals of a certain arrival day and add a LoS to each request with the
corresponding probability distribution. This simulator is described in section 5.2 in more detail.
Using the stochastic model we compute br,w by

br,w = B̂(war − w, ar ) · Pr(lr | Sar , ad). (15)

Where war is the decision period for which d1
w ≤ ar ≤ de

w and war − w denotes the number of
periods before arrival day a. In the work of [21] some methods are given to �nd the B̂′(τ), ŝ(a) and
probabilities Pr(lr |Sar , ad). In this project some easy methods are applied to �nd these estimates
and are only used to get an indication of the values br,w to come up with appropriate expected
number of request in the computational experiments.
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5.2 Monte Carlo simulator

For purpose of simulating the request process, a binomial distribution is considered together with
the expectations B(τ, a) for all τ and a and probabilities Pr(lr |Sar ) for all r. The two quantities N
and ρ are set such that the following two equations are satis�ed:

B(τ, a) = Nρ (16)

Var = Nρ(1 − ρ). (17)

To complete the simulation, each generated reservation needs to be provided with a length of stay.
The MC-sim is build up in the following steps:

1. Initialize Q = ∅.

2. For w = w1, ...we perform the following:

(a) For all a ∈ {a|de
w ≥ a ≥ d1

w} perform the following:
If B(τ, a) , 0 (with τ = wa −w) then Solve (16) and (17) for N and ρ with values B(τ, a)
and Var. Generate the total number of arrivals (denoted by X) for arrival day a with
the binomial distribution and parameters N and ρ.

(b) If X > 0, then pick for each generated arrival a length of stay using the LoS probabilities
Pr(l |Sa, ad).

(c) If X = 0, then generate an unrealized request for all reservations with arrival day a and
length of stay l ∈ {l |Pr(l |Sa, ad) > 0}.

(d) Randomly add the requests generated in step (2b) and (2c) to Q to obtain all (realized
and unrealized) request of decision period w

3. Output demand stream Q

After the Monte Carlo simulation, we end up with a demand stream Q, which is called a sample
path. So, a sample path is a chronological list of requests and such a path is used as a sample
path for our numerical experiments.

De�nition 26 A sample path is a demand stream Q generated by the MC-sim.
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5.3 Maximize revenue of Monte Carlo path

In this section we proposed the computation of the maximum simulated expected revenue of a
sample path. The maximum simulated expected revenue for a certain sample path is used as a
benchmark in the computational experiments.

De�nition 27 We de�ne qk
r,w as the expected number of realized (and unrealized) requests at price

class k for reservation r in decision period w.

The values qk
r,w are computed from qr,w with the same demand elasticity model is used in section

3.2. Hence,
qk
r,w = qr,w · DE(k) ∀k ∈ K

with DE(k) the same linear price class dependent function as used for computation of the values
bkr,w. Moreover, if qr,w = 0 and br,w > 0, then we use the extended demand elasticity function as

described in section 4.2.2 to compute qk
r,w. The maximum simulated expected revenue of a sample

path is found by solving the AER-ILP with values qk
r,w instead of the values bkr,w and is found

in ILP (18) - (21). The output variables v̂kr,w denotes the optimal dynamic pricing strategy for
sample path Q. ILP (18) - (21) is called the optimal aggregated simulated expected reservation ILP
(OPT-ILP) and the maximum simulated expected revenue and pricing strategy v̂kr,w is found by
solving

max
∑
w∈D

∑
r ∈R

ar ≥d1
w

∑
k∈K

vkr,wpkr qk
r,w (18)

s.t .
∑
w∈D

∑
r ∈R

ar ≥d1
w

∑
k∈K

ai,rvkr,wqk
r,w ≤ ci ∀i ∈ I (19)

∑
k∈K

vkr,w = 1 ∀r ∈ R, ∀w ∈ D (20)

vkr,w ∈ {0, 1} ∀r ∈ R, ∀k ∈ K, ∀w ∈ D . (21)

The objective function (18) accounts for the maximum simulated expected revenue over the time
horizon. The constraints of (7) ensure that the capacity of all night stays i do not violate the
capacity of night stay i. Constraints (8) ensure that each reservation is o�ered at a single price
each decision period. Constraints (9) ensures that vkr,w is one or zero for all k, r and w.
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6 Computational experiments and analysis

In this chapter we describe and discuss the computational experiments that are performed to test
analyze the proposed pricing model. The experiments are divided into four subjects: validation,
performance, sensitivity and practice.

The validation experiments are performed to test how well the proposed pricing model serves its
intended purpose. We validate that the optimal expected revenue is a reasonable quantity in the
sense that this value gives a good approximation of the simulated expected revenue. Furthermore,
we validate that the simulated expected revenue is a reasonable quantity in the sense that this
value gives a good approximation of the realistic expected revenue.

The performance experiments are performed to quantify the performance of the AER-ILP. We
computed the simulated expected revenue of the static pricing strategy and the dynamic pricing
strategy from the output variables of the AER-ILP. We also compared both pricing strategies with
the benchmark obtained from the OPT-ILP.

The sensitivity experiments are performed to evaluate the sensitivity of the AER-ILP. We solved
the AER-ILP using input values bkr,w which are computed with di�erent linear slopes of the

demand elasticity function. We also solved the AER-ILP using modi�ed input values bkr,w. With
the output variables of both experiments we computed the simulated expected revenue to evaluate
the sensitivity of the AER-ILP.

The practical experiments are performed to evaluate the performance of the AER-ILP in a more
practical setting. We computed the simulated expected revenue in the case that unexpected request
occur. Furthermore, we computed the simulated expected revenue in the case that reservations
are priced using prices per night stay.

We �rst give an experiment setup in which we initialize all model parameters. Next, we described
per subject (validation, performance, sensitivity and practice) the performed experiments and
analyze the results directly after each experiment. Finally, we give a critical view on the developed
model.
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6.1 Experimental setup

The chosen model parameters attempt to represents a practical simulation setting for the high
season period of a camping or bungalow park. The AER-ILP and the OPT-ILP are implemented
in Matlab and all experiments are performed on an Intel Core processor 2.4 GHz.

Time horizon and decision periods

The time horizon Tβ indicates the time horizon where β ∈ {4, 8, 16, 32} denotes the number of
weeks till the end of the horizon. For example, T4 = {d1, d2, ..., d28} and T32 = {d1, d2, ..., d224}. The
decision horizon D and the arrival horizon H are set as follows.

� If time horizon Tβ is considered, then D = {w1,w2, ...,we}, where wj ∈ D denotes the j th

week of Tβ and de
we
= de.

� If time horizon T4 or T8 is considered, then H = {a1, a2, ..., ae}, with ae = de and a1 denotes
the arrival day exactly 4 weeks before ae.

� If time horizon T16 or T32 is considered, then H = {a1, a2, ..., ae}, with ae = de and a1 denotes
the arrival day exactly 8 weeks before ae.

Thus, a request can be made during the whole time horizon Tβ, but the arrival day of the reservation
of a request is in the last month or in the last two months of the horizon. We choose these time
series because in practice this last month(s) could be seen as the month(s) in the summer holidays.
We remark that we slightly abuse de�nition 3 in the experiments, because we allowed requests
for reservations which have its arrival day within time period Tβ and its departure outside this
horizon. For example, in time period T4 a request can be made for the reservation with arrival
day d28 and length of stay of 14 days.

Demand model parameters

We designed a matrix B(τ, a) for each time horizon Tβ. Further, to reduce complexity, the maximum
LoS is 14 days and the LoS probabilities of table 1 holds for all arrival days.

LoS 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pr 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.2

Table 1: LOS probabilities

So, it is most likely that a reservation of a request has a LoS of 7 and 14 days. With B(τ, a) of each
Tβ and LoS probabilities from table 1 the values br,w are computed by equation (15) of section 5.1
for each Tβ.

Sample paths

Sample paths are generated with the MC-sim of section 5.2 using the matrix B(τ, a), Var = 0.3
and the LoS probabilities from table 1. We obtained that it is time consuming to �nd the optimal
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simulated expected revenue for large sample paths. The larger the time horizon and number of
reservations, the more request are generated by the MC-sim. Therefore, a di�erent amount of
sample paths is used for each time horizon. The number of sample paths per time horizon Tβ are
proposed in second column of table 2. The sample paths for each time horizon Tβ are generated on

# samples # size Q

T4 1000 250

T8 500 850

T16 250 2500

T32 100 3200

Table 2: The number and size of the sample paths per time horizon

forehand with the MC-sim of section 5.2. The set Qβ includes all sample paths for time horizon
Tβ. For example, Q4 includes 1000 sample paths for time horizon T4. The last column of table 2
gives the rounded average the number of request per sample path for each time horizon.

Capacity

Di�erent capacities are used for each time horizon Tβ and each night stay in the arrival horizon
contains the same capacity. The capacities are divided into three categories: low (L), medium (M)
and high (H). A low capacity means that the expected occupancy on each night stay is signi�cant
higher than actually �ts in the capacity. A medium capacity means that the expected occupancy
is not signi�cant or slightly higher than could �ts in the capacity. A large capacity means that
the expected occupancy is slightly higher than �ts in the capacity. The three capacity categories
for time horizon T16 are illustrated in �g 8. According to �g 8, we established that the capacity
of 200 is called a low capacity, because the expected occupancy is signi�cantly higher than the
capacity. The capacity of 300 is called a medium capacity, because the expected occupancy is not
signi�cantly or slightly higher than the capacity. The capacity of 400 is called a high capacity,
because the expected occupancy is slightly higher than the capacity. The used capacities for each
time horizon can be found in table 3.

From now on, an instance is de�ned by {β,C}, with β the considered time horizon Tβ (β = 4, 8, 16
or 32) and C = {L, M,H} the capacity category. For example, with instance {16, M} we consider
a time horizon of 16 weeks with a capacity of 300 of each night stay.

Capacity category

Low Medium High

T
im
e
h
o
ri
zo
n T4 50 75 100

T8 100 150 200

T16 200 300 400

T32 300 450 600

Table 3: Capacity per category and time horizon

32



Figure 8: The expected occupancy in time horizon T16

Prices and demand elasticity

The price pr for each reservation r only depends on the LoS of reservation r and are proposed in
table 4.

LoS 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Price (¤) 40 80 117 155 193 230 270 305 343 381 418 456 494 531

Table 4: Prices in per length of stay

Furthermore, twelve price classes are considered (i.e. K = {k1, k2, ..., k12 = {1, 2, ..., 12}}) and

α = [0.9, 0.92, 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06, 1.08, 1.1,∞].

The linear price class dependent function DE(k) is denoted by

DE(k) =
{
−2α(k) + 3 α(k) ≤ 1.1

0 if α(k) > 1.1
(22)

This is the same linear function as in example 2.
Note that k12 correspond to price class φ and k6 correspond to the price class of the reference
price.
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Figure 9: Demand elasticity function DE(k) with twelve price classes

6.2 Validation analysis

In section 3.4.3 we de�ned the quantities E[Rev], Esim[Rev], E sim[Rev], Ereal[Rev] and Ereal[Rev].
With these quantities we can �nd the integrality gap with equation (4) and the simulation gap
with equation (5) which can also be found in section 3.4.2. We set up an experiment to �nd the
integrality gap for the pricing strategies obtained from the AER-ILP (6) - (9) and the OPT-ILP
(18) - (21). Next, we set up an experiment to �nd the simulation gap for the AER-ILP.

6.2.1 Integrality gap

The integrality gap is used to validate that the simulated expected revenue gives a good approxi-
mation of the simulated expected revenue.

Experiment

The experiment to �nd the integrality gap is build up is described below and this experiment is
performed 100 times for each instance {β,C} with input parameters c obtained from table 3 and
the generated bkr,w for time horizon Tβ.

Experiment in steps:

1. Randomly pick one sample path from Qβ.

2. Solve the AER-ILP.

3. Compute Esim[Rev] for the picked sample path with dynamic pricing strategy ûk
r,w and

algorithm 2 of section 4.2.3.

4. Generate 1000 discrete demand stream as described in section 4.2.1.

5. Compute Ereal[Rev] of each discrete demand stream with algorithm 1 of section 4.2.3.

6. Compute Ereal[Rev] over all 1000 discrete demand streams.

7. Compute Gint with equation (4) in section 3.4.3.
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The �nal integrality gap of the pricing strategy of the AER-ILP is found by averaging the computed
integrality gap over the 100 experiments. In a similar way we computed the integrality gap of the
pricing strategy of the OPT-ILP by solving the OPT-ILP instead of the AER-ILP in step (2) and
use input parameter qk

r,w (from the sample path picked in step (1)) instead of the values bkr,w.

Results and discussion

Fig 10 presents the integrality gap of the pricing strategies obtained from both AER-ILP and
OPT-ILP for all instances {β,C}. We observe that the integrality gap obtained from the AER-

Figure 10: Integrality Gap of the AER-ILP and the OPT-ILP

ILP and the OPT-ILP are smaller than 0.6% and 2.12% respectively. It seems that these values
are not signi�cantly high in both cases. But we need to realize that the value of the simulated
expected revenues increases with the size of the time horizon, because more requests can be
accepted. Therefore, the absolute di�erence of the simulated expected revenue may signi�cant. In
�g 11 we present the average simulated expected revenues obtained from the sample paths. We
observe that an integrality gap of 1% in instance {32,H} means that the realistic expected revenue
deviates approximately ¤10.000 from the simulated expected revenue (± ¤1.000.000). But for
instance {4, L} this means that the realistic expected revenue deviates approximately ¤500 from
the simulated expected revenue (± ¤50.000). Computing these absolute values in a similar way for
the integrality gaps 0.6% and 2.12% still results in not signi�cant high values although the absolute
di�erence between Ereal[Rev] and Esim[Rev] is quite larger for instances with a longer horizon.
Fortunately, we also observe that the integrality gap decreases the longer the time horizon. To
explain this latter, the larger the amount of request the more variation is possible. The simulated
extra or denied reservations do not make a signi�cant impact on the total occupancy if there is a
large amount of capacity.
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Figure 11: The simulated expected revenue per instance

We also inspected the variance of the realistic expected revenue. The variance of each instance is
computed by

Varβ,C =

√√√1000∑
j=1

(
Ereal[Rev]j,β,C − Ereal[Rev]

)2
with Varb,C the variance of instance {b,C} and Ereal[Rev]j,β,C the realistic expected revenue of
the j th computed discrete demand for instance {b,C}. For the instances with short time horizon
(β = 4, 8) the variance is approximately 2%− 3% of Ereal[Rev] and is quite similar for all capacity
categories. For the instances with a long time horizon (β = 16, 32) the variance is approximately
0.5%− 1% of Ereal[Rev] and is also quite similar for all capacity categories. The variance is small
in all cases, which means that the integrality gap is quite consistent over all discrete demand
streams. Taking this all into account, we assume that the simulated expected revenue gives a
good approximation of the realistic expected revenue.

We further observe that the integrality gap of the AER-ILP is smaller than the integrality gap of
the OPT-ILP. To explain, the OPT-ILP gives an optimal dynamic pricing policy and capacities
are quite tight in this solution and continuous demand is allowed. If we simulate the discrete
demand from the continuous demand, then the realistic expected revenue is always lower than
the simulated expected revenue. On the other hand, the solution of the AER-ILP is not optimal
for a sample path and capacities may not tight. If we simulate the discrete demand from this
continuous demand, we observed that the realistic expected revenue could be higher than the
simulated expected revenue. Therefore, on average we have a lower integrality gap.

Another observation is that the integrality gap decreases if the capacity of the instance increases.
We can argue this similar as above, the bigger the capacity the more request can be accepted and
the more variation is possible in the discrete demand.
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6.2.2 Simulation gap

The simulation gap is used to validate that the AER-ILP gives a good approximation of the
simulated expected revenue.

Experiment

The experiment to �nd the simulation gap is build up as described below and this experiment is
performed for all instances {β,C} with input parameters c obtained from table 3 and the generated
bkr,w for time horizon Tβ.

Experiment in steps:

1. Compute E[Rev] by solving the AER-ILP (6) - (9).

2. Compute Esim[Rev] for each sample path of Qβ with pricing strategy ûk
r,w and algorithm 2

of section 4.2.3.

3. Compute E sim[Rev] over all sample paths Qβ.

4. Compute Gsim with equation (4) of section 3.4.3.

Results and discussion

Fig 12 presents the simulation gap of the AER-ILP for all instances {Tβ, c}. We noticed that the
simulation gap is lower than 2.87% for each instance and the simulation gap is decreasing by the
size of the capacity for instances with time horizon β = 8 and 16. For the instances with time
horizon β = 4 and 32 we see the same e�ect, except that the instance with medium capacity
shows a lower simulation gap than the instance with high capacity. Besides, the e�ect of the

Figure 12: Simulation Gap

simulation gap on the absolute di�erence of simulated expected revenue is also not signi�cantly
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high as already argued in section 6.2.1. Further, we can not observe some consistencies in the
results of the simulation gap, which could be caused by the randomly generated B(τ, a) for each
time horizon. It could be the case that the AER-ILP computes a better approximation of the
simulated expected revenue for di�erent expected requests matrices. Fortunately, the simulation
gap is quite small along all instances.

We also inspected the variance of the simulated expected revenue for each instance, which is
computed by

Varβ,C =

√√√√ |Qβ |∑
j=1

(
Esim[Rev]j,β,C − E sim[Rev]

)2
with Varb,C the variance of instance {b,C} and Ereal[Rev]j,β,C the simulated expected revenue of
the j th sample path of instance {b,C}. For the instances with shortest time horizon (β = 4) the
variance is approximately 3.5 − 4% of the mean absolute di�erence, for the instances with time
horizon of 8 weeks ahead (β = 8) the variance is approximately 1.5% − 2% of the mean absolute
di�erence, and for the instances with a long horizon (β = 16, 32) the variance is approximately
0.5% − 1% of the mean absolute di�erence. In all cases the variance was quite similar along the
capacity categories. The simulation gap of the instance with the shortest time horizon shows the
smallest simulation gap, but the highest variance. Overall, the variance is quite small, especially
for the instance with a long time horizon, which means that the simulation gap is also quite
consistent over all sample paths.

Taking this all into account, we assume that the expected revenue gives a good approximation of
the simulated expected revenue.
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6.3 Performance analysis

In this section we describe two experiments to quantify the performance of the AER-ILP. We
assumed that the pricing strategy which generates the highest simulated expected revenue has the
best performance. The �rst experiment is used to �nd the performance of the dynamic pricing
strategy from the AER-ILP relative to the static pricing strategy. The second experiment is
used to �nd the performance of the dynamic pricing strategy from the AER-ILP relative to the
benchmark obtained from the OPT-ILP.

6.3.1 Revenue improvement

We �rst evaluate if the dynamic pricing strategy of the AER-ILP leads to a revenue improvement
relative to the static pricing strategy.

Experiment

Below experiment �nds Esim[Rev] for the dynamic pricing strategy obtained from the AER-ILP
and the static pricing strategy. This experiment is performed for each instances {β,C} with
parameters c and the generated bkr,w for time horizon Tβ.

Experiment in steps:

1. Solve the AER-ILP.

2. Compute Esim[Rev] for each sample path of Qβ using pricing strategy ûk
r,w and algorithm 2

of section 4.2.3.

3. Compute Esim[Rev] for each sample path using the static pricing strategy and algorithm 2
of section 4.2.3.

4. Compute E sim[Rev] over all Esim[Rev] computed in step (2) and step (3) separately.

Results and discussion

Fig 13 presents the performance of the AER-ILP relative to the static pricing strategy for all
instances {Tβ, c}. This �gure shows that the dynamic pricing strategy of the AER-ILP has a
better performance than the static pricing strategy in each instance. The �gure also shows that
the AER-ILP performs better on instances with a small time horizon relative to the static pricing
strategy. Thereby, the AER-ILP performs better on instances with a low capacity. To explain these
occurrences, we need to take a look at the distribution of the used price classes from the output
variables of the AER-ILP. See �g 14 for a price class distribution of instances {16, 200}, {16, 300}
and {16, 400}. This �gure shows that price class 11 and 12 are frequently used in the instances
with low capacity. In contrast, price class 1 is frequently used in instances with high capacity.
This is not surprising, because for an instance with a low capacity we expect a signi�cantly higher
occupancy than �ts in the capacity. A lot of request need to be denied (i.e. use price class 12) or
need to be given a higher price (i.e. price class 11) to meet the capacity constraints. On the other
hand, if we have a high capacity, then the number of (`desirable') requests can be increased by
using price class 1 and not many request need to be denied to meet the capacity constraint. So,
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Figure 13: Percentage improvement of the simulated expected revenue of AER-ILP relative to the
static pricing strategy

with the AER-ILP we get a solution where we deny `undesirable' request and accept `desirable'
requests. With the static pricing strategy we need to accept all request by its reference price and
this latter (apparently) leads to a sub optimal result. This e�ect is the strongest on instances with
a short horizon and low capacity.

6.3.2 Benchmark

The benchmark is found by solving the OPT-ILP and this value is compared to the simulated
expected revenues of the static pricing strategy and dynamic pricing strategy obtained from the
AER-ILP.

Experiments

The experiment to �nd the benchmark is build up as described below and this experiment is
performed for all instances {β,C} with input parameters c from table 3 and the generated bkr,w for
time horizon Tβ.

Experiment in steps:

1. Compute the maximum Esim[Rev] of each sample path Qβ by solving the OPT-ILP for each
sample path.

2. Compute the maximum E sim[Rev] over all sample paths of Qβ.

We also use the E sim[Rev] of the AER-ILP of previous experiment.
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Figure 14: Price class distribution of instances {16, 200}, {16, 300} and {16, 400}

Result and discussion

Fig 15 presents the performance of the AER-ILP and the static pricing strategy relative to the
benchmark for all instances {β,C}. A performance of 0.95 indicates that the simulated expected
revenue is 95% of the maximum simulated expected revenue. First observe that the performance of
the AER-ILP is close to the OPT-ILP for all instances. If we take a closer look to the distribution
of the price classes of both AER-ILP and OPT-ILP, then we can see that the distributions of the
AER-ILP and OPT-ILP are quite the same (see �g 16). The exact price class assignment is to
complex to analyze, but is seems that the AER-ILP uses a quite same price class assignment as
the OPT-ILP, because it computes a simulated expected revenue of around 96% of the optimal
simulated expected revenue for each instance.

Additionally, in �g 13 we observed that the AER-ILP obtains the highest revenue improvement
on the instance with the lowest capacity and shortest time horizon. Thereby, we noticed that the
static pricing strategy has the worst performance relative to the benchmark on this instance (see
also �g 15). Apparently, the chosen model parameters of this instance are unfavorable for the
static pricing strategy, because the performance of the AER-ILP is consistent over all instances.

We remark that we also wanted to �nd the performance of the relaxation of the AER-ILP, but
due to a Matlab error these results were not reliable and could (unfortunately) not be analyzed in
this section.

6.3.3 Computational time

The CPU times of the AER-ILP for all instances {Tβ, c} can be found in �g 17. The larges CPU
time is observed at the instance with the longest time horizon and the lowest capacity. This is not
surprising, because this is the `hardest' problem to solve, because this instance does have to most
optimization variables and the capacities are very tight. Overall, the CPU times are quite good,
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Figure 15: AER-ILP and AER-ILP Relaxation performance relative to the benchmark

in the sense that it can be used in practice. Instances {T32, L}, {T32, M} and {T32,H} are instances
that we could have in practice and price changes occur weekly, so there is enough time to run the
ILP.
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Figure 16: the price class distribution for the AER-ILP and OPT-ILP for instance {16, M}

6.4 Sensitivity analysis

In this section we describe two experiments to evaluate the sensitivity of the AER-ILP. In the �rst
experiment we use di�erent linear slopes of the demand elasticity function to compute the values
bkr,w, which are used as input of the AER-ILP. In the second experiment we modi�ed the values

br,w and use these as input of the AER-ILP. Moreover, in this latter experiment the values bkr,w
are computed by the demand elasticity function as described in the experimental set up.

6.4.1 Modi�ed demand elasticity function

In this experiment di�erent linear slopes are used. The demand elasticity function (22) has a
linear slope of -0.2. The linear slopes -0.3, -0.4 and -0.5 are used to evaluate the sensitivity. For
example, a linear slope of -0.4 indicates that a price increase of 10% leads to a 40% decrease of
demand and a price decrease of 10% leads to a 40% increase of demand.

Experiment

The experiment to evaluate the performance of the AER-ILP with di�erent linear slopes of the
demand elasticity function is build up as described below. This experiment is performed for each
instances {β,C} and each modi�ed linear slope with input parameters c and the bkr,w generated
with the modi�ed demand elasticity function for time horizon Tβ.

Experiment in steps:

1. Solve the AER-ILP.

2. Compute Esim[Rev] of each sample of Qβ with dynamic pricing strategy ûk
r,w from (1) and

algorithm 2 of section 4.2.3.
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Figure 17: CPU times in seconds of the AER-ILP and the OPT-ILP

The same benchmark is used as found in the experiment of section 6.3.2 to quantify the perfor-
mance of the AER-ILP with di�erent slopes of the demand elasticity function.

Results and discussion

Fig 18 presents the performance of the AER-ILP for di�erent linear slopes of the demand elasticity
function on instance {8, M}. The results of the other instances are quite the same and can be found
in Appendix B. Fig 18 shows that if the linear slope decreases with 0.1, then the performance

Figure 18: Performance AER-ILP on instance {8, M} for di�erent linear slopes of the demand
elasticity function

decreases with 1%. So, a di�erent linear slope of the demand elasticity function does not have a
signi�cant in�uence on the performance of the AER-ILP. Even when a slope of -0.5 is used, the
performance is still way better than the static pricing strategy. Intuitively, this is not what we
expected, because the demand elasticity has plays an important role in the AER-ILP. We noticed
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br,w < 5 br,w ≥ 5

Modi�cation 1 0.1 0.5

Modi�cation 2 0.2 1

Modi�cation 3 0.4 1.5

Modi�cation 4 0.75 2

Modi�cation 5 1 3

Table 5: The values that are randomly add or subtract

in the experiments that the values br,w are often quite very small, because the reservations are
highly aggregated. The demand elasticity add or subtract a certain percentage of this values. A
certain percentage of a small number, is still a small number. Hence, the overall e�ect of the
modi�ed linear slopes is not signi�cant as we see in the results.

In this setting the AER-ILP is not very sensitive for a change in the demand elasticity function.
Unfortunately, this experiment does not give us that much information about the sensitivity of
the AER-ILP in general, because we made the assumption that the demand elasticity function is
always linear with a slope of -0.2 and the reservation were highly aggregated. In practice, we will
possibly have an di�erent reservation aggregation and a di�erent demand elasticity model. This
could lead to other sensitivities of the AER-ILP.

6.4.2 Modi�ed expected number of requests

Because the values bkr,w are often quite small, we used another approach in this experiment. Now

we randomly add or subtract a certain value to every br,w as follows. If bkr,w < 5, then we add or

subtract a `small' value. If bkr,w ≥ 5, then we add or subtract a `large' value. Five experiments
were performed and the values that were randomly added of subtracted can be found in table 5.
To remark, if a value is subtracted while br,w = 0, then br,w remains zero. And, if a value is
subtracted from br,w and br,w becomes < 0, then br,w = 0.

Experiment

Experiment in steps:

1. Solve the AER-ILP with the modi�ed expected request matrix as input.

2. Compute Esim[Rev] of each sample of Qβ with dynamic pricing strategy ûk
r,w from (1) and

algorithm 2 of section 4.2.3.

We use the same benchmark as the experiment in section 6.3.2 to quantify the performance of the
AER-ILP with a modi�ed values br,w as input.
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Results and discussion

Fig 19 shows the results of above experiment for all instances {β, M}. The results of the other
instances are quite similar and can be found in Appendix B. The �gure shows that the performance

Figure 19: Performance of the AER-ILP for all modi�cations on instances {β, M}

of the AER-ILP is more sensitive on instances with a long time horizon than on instances with a
short time horizon. To explain, afterwards we noticed that a long time horizon has a larger matrix
b and contains more zeros than the matrix b of the shorter time horizon. For the instances with
a long time horizon more zeros become a positive number and values close to zero could become
zero. The method to modify matrix b is quite `rigorous' on the larger matrices b. Therefore, it is
not surprising that the instances with a larger horizon are more sensitive in this experiment. In
this setting the AER-ILP is quite sensitive because the modi�ed input leads to a (approximately)
40% decrease of performance if modi�cation 5 is used as.

Also in this experiment the sensitivity of the AER-ILP does not become totally clear, because
the modi�cation had a di�erent e�ect along the instances. So, here we mention that additional
experiments are needed to �nd the sensitivity of the performance of the AER-ILP on a modi�ed
expected request matrix.
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6.5 Practical analysis

In this section we propose two experiments. On one hand, an experiment is propose to measure
the performance of the AER-ILP on sample paths including unexpected requests. On the other
hand, an experiment is proposed to quantify the performance of the AER-ILP using night stay
prices as described in section 4.3.1.

6.5.1 Unexpected requests

The MC-sim of section 5.2 does not generate unexpected request, but in practice they could
appear. To generate a demand stream Q including unexpected request, we added an extra step
after step 2d of the MC-sim. We added the following step:

2e) consider every arrival day a ∈ {a|d1
w ≥ a ≥ de

w}. If B(τ, a) = 0 then we randomly add a request
to Q with arrival day a and a LoS taken from the LoS distribution. If this reservation is already
made in one of the other periods w of Q, then randomly remove one of these request, otherwise
do nothing.

In this way we do not add to much extra request to the sample path, but the sample path now
contains unexpected requests. For each instance {β,C} we generated the same number of sample
paths as proposed in table 2. The set Qm

β includes all sample paths for time horizon Tβ using
above modi�ed MC-sim.

Experiment

The experiment to evaluate the performance of the AER-ILP using the reference method and the
night stay method as described in section 4.3.2 is build up as described below. This experiment
is performed for each instances {β,C} with input parameters c and the generated bkr,w for time
horizon Tβ.

Experiment in steps:

1. Solve the AER-ILP

2. Compute Esim[Rev] of each sample of Qm
β with the reference method and algorithm 3 of

section 4.3.2.

3. Compute Esim[Rev] of each sample of Qm
β with the night stay method and algorithm 4 of

section 4.3.2.

Results and discussion

Fig 20 proposes the results of above experiment for instance {8, 150}. We analyze only this instance,
because we noticed that the results for the other instances were quite similar. Fig 20 shows that
the night stay pricing method has the best performance. Furthermore, the strategy to assign the
reference price to each unexpected request is still better than the static pricing strategy. From this
experiment we conclude that it is better to use the night stay method than the reference method
to price unexpected request.
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Figure 20: Performance of reference method, night stay method and the static pricing strategy
for instance {8, 150}

We also observe that the performance of the AER-ILP is decreased with 4%. The unexpected
request does have in�uence on the performance, but is not signi�cant. It is not surprisingly that
the performance is decreased, because now the same e�ect occurs as we argued in section 6.3.1.
That is that in both proposed method the `undesirable' request are not denied, but are o�ered by
the price suggested by the methods. Apparently, this lead to weaker performance.

6.5.2 Night stay prices

In section 4.3.1 we proposed a method to compute the prices per night stay pi,w by equation (11)
of section 4.3.1. Furthermore, we proposed two di�erent night stay pricing method to obtain the
simulated expected revenue using night stay prices.

Experiment

The experiment to evaluate the performance of the AER-ILP using the night stay pricing method
and the AER-ILP night stay pricing method as described in section 4.2.3 is build up as described
below. This experiment is performed for each instances {β,C} with input parameters c and the
generated bkr,w for time horizon Tβ.

Experiment in steps:

1. Solve the AER-ILP

2. Compute Esim[Rev] of each sample of Qβ with the `night stay pricing method' as described
in section 4.2.3.

3. Compute Esim[Rev] of each sample of Qβ with the `AER-ILP night stay pricing method' as
described in section 4.2.3.
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Results and discussion

Fig 21 shows the results of above experiment. The results show that the `AER-ILP night stay

Figure 21: performance of using night stay prices

method' obtains a better performance than the `night stay pricing method'. We also observe that
both methods still perform better than the static pricing strategy. It is remarkable to see that the
`AER-ILP night stay pricing method' almost has the same performance as the AER-ILP. It seems
that the most important task is to price `desirable' requests and deny `undesirable' requests. This
experiment supports the argumentation in section 4.3.1, where we argued that prices per night
stay leads to sub-optimal results. With prices per night stay it is harder to manage the occupancy,
because the price of night stay has in�uence in the price of all reservation r ∈ Ai.
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7 Critical review

In this section we give a critical review on the proposed pricing model and experiments. We discuss
the assumptions and model choices that are made during this project which makes the model less
realistic.

In the proposed pricing model we assumed that the demand for each object comes from di�erent
customers and that the demand for an object is lost when the object is not available or the price
is higher than the customers willing to pay. Additionally, the model is build for a single object
type, assuming that customers do not choose along di�erent object types. In practice, customers
probably choose along di�erent reservations and along di�erent object types. For example, consider
a customer that wants to book for a campground for the last two weeks of the summer holidays.
We assumed that this customer is only interested in a campground for this speci�c two weeks in
the summer holiday and if there is no campground available for these two weeks (or the price is
high), then we lose this customer. But in practice, this customer will probably look for alternatives
(other week or other object type) and we probably not lose this customer. But we do not know
the impact of this in. In the hotel industry it is already showed that choice based demand models
show better performance than the independent demand model, but for camping and bungalow
parks it could be possible that the independent demand model gives a good approximation of this
e�ect.

We also noticed that the proposed pricing model is only suitable in the high season. To explain,
we noticed that a camping or bungalow park is fully occupied in the high season, while this is not
the case for the low and mid season. The values bkr,w are small for the low and mid season and∑

w∈D

∑
r ∈R

∑
k∈K

ai, juk
r,wbkr,w ≤ ci

always holds ∀i ∈ I even if we decrease the price for all r and w. In this case we do not have this
capacity constraint and we just use the price class for which we have the highest value of pr · bkr,w.
This gives us a trivial solution as we already obtained in example 3 in section 3.3. Therefore,
another pricing model is needed to �nd appropriate pricing strategies for the low and mid season.

Next, we modeled the demand elasticity with a price class dependent function, which holds for
all reservations in every decision period. In practice, the demand elasticity probably depends on
the seasonality, time of booking and perhaps also on the reservation. So, a more sophisticated
demand elasticity model might be more appropriate in practice. Moreover, we suspect that the
performance of the AER-ILP would be similar for other kind of demand models, but we did not
test this in this project.

Further, we developed a simulation framework to evaluate the performance of a pricing strategy.
We attempted to model the customers behavior on price changes with the demand elasticity model
of section 3.2 and the extended demand elasticity model of section 4.2.2. With these models we
computed the simulated expected revenue as described in section 4.2.3 to quantify the performance
of a pricing strategy. It is very likely that customer behavior on price changes can be better
modeled with other (more sophisticated) models to obtain a more realistic quanti�cation of the
performance of a pricing strategy. This may lead to other performance results of the proposed
pricing model.

We also developed some methods to make pricing decisions for unexpected request and some
methods to price reservations with night stay prices. Also in this case, there are probably other
(more sophisticated) methods to make pricing decisions for unexpected request and �nd appro-
priate night stay prices to maximize revenue. These method may shows better results than those
proposed in this project.
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We also proposed a demand forecasting model which performs well in the hotel industry. But
most reservations in the hotel industry occur less then 3 months in advanced, while the lead time
for camping and bungalows could be more than 9 months. The in�uence of this aspect is not
tested in this project. Therefore, the proposed demand model may be inaccurate or not suitable
for camping and bungalow parks.

Furthermore, an annotation need to be made on the capacity constraint of the AER-ILP. This
constraint does not take into account the planning board that is used by the users of Stratech-RCS.
In practice, every accepted request is assigned to a speci�c object in the Stratech-RCS software.
Some of them are �xed in the planning board, while others can be shifted. It could be the case
that there is enough capacity, but that some request can not be accepted. An example of this is
given in �g 22. It is possible to reschedule the planning board to overcome this, but some camping
and bungalow parks allow customers to choose a speci�c object type and the reservation of this
request is then �xed in the planning board. This aspect is not taken into account in the proposed
pricing model.

a1 a2 a3 a4 a5 a6 a7

c1=1 c2=1 c3=1 c4=1 c5=1 c6=1

Bungalow 1

Bungalow 2

r1

r2

r3

Figure 22: Because r1 and r2 are planned on bungalow 1 and bungalow 2 respectively, r3 does not
�t in the planning board, while there is enough capacity available.

Finally we want to mention that the performed experiments take into account only a single ex-
perimental set up. All users of Stratech-RSC have there own `characteristics' and manage their
camping or bungalow parks in many di�erent ways. For example, a part of the customers of
Stratech impose Saterday to Saterday arrivals, which lead to a less highly aggregation of reser-
vation than customer who impose daily arrivals. It would be desirable to perform experiments
with di�erent experimental settings to analyze the performance of the proposed pricing model.
For example, di�erent levels of reservation aggregation, other demand elasticity functions, other
(or more) price classes, di�erent expected request matrices or length of stay probabilities. Also,
other (more sophisticated) sensitivity experiments could be performed to quantify the sensitivity
of the AER-ILP. Additionally, it is also interesting to compare the performance of a daily decision
period or monthly price decision periods.
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8 Summary and recommendations

In this last chapter we give a summary of the work that is done within this project and end up
with recommendations for future research and give some recommendations for Stratech on future
work that has to be done to develop an appropriate dynamic pricing tool to support camping and
bungalow parks to increase their revenue.

8.1 Summary

In this project we developed an algorithm for camping and bungalow parks that computes a
dynamic pricing strategy which periodically assigns a price class to each possible reservation to
maximize the total expected revenue. In a simulation framework we evaluated the performance of
the obtained pricing strategy.

We started by modeling the dynamic pricing problem as a network revenue management problem
and derived a model for the demand elasticity with a linear price class dependent function. Next,
we developed an integer linear program, called aggregated expected reservation ILP (AER-ILP),
which maximize the total expected revenue using the expected number of request at each price
class as main input parameter. The AER-ILP �nds the right trade o� between price surcharge and
expected change in demand, given the available capacity. The output variables of the AER-ILP
are used as a pricing strategy which assigns a certain price class to each possible reservation for
each period in which price changes are allowed. This price class decreases, increases or holds the
initial price of the reservation.

We set up a simulation framework for the validation and analysis of the performance of the AER-
ILP. In this framework we de�ned the so called simulated expected revenue, which quanti�es the
performance of the AER-ILP.

The computational experiments are used to validate the model, analyze the performance and sen-
sitivity of the AER-ILP and to analyze the performance of of the AER-ILP including unexpected
request and use a night stay pricing strategy. We validated that the proposed pricing model serves
its intended purpose and gives a reasonable output. Furthermore, the AR-ILP propose strong
performance relative to the static pricing strategy and the benchmark. We also found that the
CPU time of the AER-ILP is suitable for practice purpose. The sensitivity of the AER-ILP did
not become very clear in these experiments, because the reservations were highly aggregated in
the simulation setting and one of the experiments was quite `rigorous'.

We also did performed some additional experiment. We noticed that a big part of the users of
Stratech-RSC make use of night stay pricing and derive the price for a reservation on the price
per night stay. We argued that it might be sub-optimal to depend reservation prices on prices per
night stay. In the computational experiments we found that this is indeed the case. Furthermore,
the AER-ILP is based on the expected number of request which are determined at forehand. We
noticed that in practice we can receive requests that we did not expected. Therefore, we performed
an experiments to evaluate the performance of the AER-ILP by simulating unexpected requests.
This e�ect was not signi�cant and the AER-ILP still performed well.
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From this project we conclude that the developed AER-ILP could perform well in practice provided
that an independent demand model gives a good approximation of the demand of camping and
bungalow park customers and that we have a reliable demand elasticity model and expected
demand forecast. From the experimental result we suspect that the AER-ILP is valuable for the
high season weekends (ascension, Pentecost, Easter, Fronleichnam etc.), because customers want
to book for such speci�c weekend and there are no alternatives. The independent demand model
probably gives a good representation of the customer demand.

8.2 Recommendations future research

In the critical review on the model we already give some aspects which could improve the proposed
pricing model. From a practical point of view the dynamic pricing problem is a very complex
research area, because there are a lot of aspect in the customers booking behavior. A task for
future research is to (accurately) analyze customer behavior. This can, for example, be done with
web clicks analysis or performing (extensive) data analysis on the historical data. Moreover, it
is an important tasks to come up with a reliable demand forecasting model. In this project we
only proposed the demand model, but did not test its performance in the setting of camping and
bungalow parks.

As already mentioned in the literature review, LP's generates good pricing strategies when they
are frequently resolved. For future research is would be valuable to evaluate the performance of
the AER-ILP in practice (and on real date) and frequently resolve the algorithm with updated
capacities and expected requests.

Futhermore, due to the lack of time in this project we could not perform and analyze all valuable
experiments. In the critical review we already mentioned that it would be desirable to perform
more (sophisticated) experiments, especially for the analysis of the sensitivity. Also, experiments
in di�erent experimental set up settings are not performed yet and are valuable to found out for
which users this pricing model is suitable.

Another aspect for future research is to include planning board constraints, as we already men-
tioned in the critical review. This makes the problem more complex, but makes it more realistic.
Every user of Stratech-RCS uses this planning board and so it is an important aspect to take into
account.
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8.3 Recommendations for Stratech

We end up with some recommendation for Stratech and discuss the work that has to be done to
develop an appropriate pricing tool for their customers.

First of all, Stratech needs to realize that integrating dynamic pricing models requires time and
investment. Time is needed to gather data of customer behavior on price changes. This data
is necessary to obtain a sophisticated demand elasticity model. A camping or bungalow park
needs to start with small price changes to collect this data. The work of [3] proposed a model
which uses price multiplier to obtain the price for each reservation. This model is an accessible
model to make some (small) price changes and gather data of the customer booking behavior.
Furthermore, Stratech needs to invest in a reliable demand forecasting model. We mention that
a demand forecasting is often company speci�c and needs to be careful managed. Stratech needs
to keep in mind that it is possible that there is not a generic demand forecasting model that can
be used for each company. Another valuable investment would be to analyze web clicks on the
sites of the camping and bungalow parks. This data will give much more information than the
historical booking data.

Furthermore, Stratech can think about a pricing model which uses a choice based demand model,
which is (probably) a more realistic model. Also in this case, additional data is needed to �nd
customer choice probabilities. Besides, this project proposed a model which is only suitable for
the high season periods, so Stratech need to come up with another pricing model to determine
appropriate prices in the low and mid season.

Also, it was an important result that it is essential to o�er the `right' reservations. Apparently,
if the reservation are highly aggregated, then there are a lot of `undesirable' reservation, which
cause lower revenues. Stratech could do some extra research on this topic.

As a �nal note, there is still much research to do and one of the most important task is to gather
data on customers booking behavior and customers responses on price changes, because these are
the most important input parameters for pricing models.
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1 Appendices

A Notation and de�nitions

All de�nition and notions are summarized in this appendix.

T = {d1, ..., de} The time horizon with d1 and de the �rst and last day respectively.

I = {1, ...,m} The set of o�ered night stays, with night stay i ∈ I
H = {a1, ..., ae} The arrival horizon with a1 and ae the �rst and last day respectively

D = {w1, ...,we} The decision horizon with w1 and we the �rst and last period re-
spectively

d1
w, d

e
w The �rst and last day of decision period w.

La = {1, ...L} The set of possible LoS at day a ∈ H and L the maximum length
of stay.

R = {(a, l)|a ∈ H, l ∈ La} The set of considered reservations. m is the size of set R.
r = (a, l) Reservation r consist of an arrival day a and LoS l

ar Arrival day of reservation r

lr Length of stay of reservation r

c = {c1, ..., cm} The network capacity with ci the capacity for night stay i

A The m × n night stay consumption matrix. Ai is the reservation
incidence vector. Ar is the night stay incidence vector.

K The set of price classes

pkr The price of reservation r at price class k ∈ K

bkr,w
The expected number of requests for reservation r at price class k
in period w. br,w is the expected number of requests for reservation
r in period w following the reference price

DE(k) linear price dependent demand elasticity function

ûk
j,w The optimal solution variables of AER-ILP (6) - (9)

v̂kj,w The optimal solution variables of OPT-ILP (18) - (21)

Q Demand stream with chronological ordered requests

Qu Possibly continuous demand stream obtained from pricing strategy

uk
r,w

Q̃u Discrete demand stream obtained from Qu

pi,w The price charged for night stay r in period w

p∗i,w The price charged for night stay i in period w obtained from ûk
j,w
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B(τ, a) The expected number of arrivals on day a that are made exactly w days before
arrival

N The number of `potential' population

ρ The probability that a request will occur

Sa Indicates the season in which day a appears

M Upper bound, the period beyond no requests occur

B′Sa
(w) The shape of the request process with

∑M
w=1 B′S(w) = 1

s(a) The level of the request process, i.e. the (expected) number of arrivals on day a

R(τ, a) The actual number of arrivals at day a that are made exactly τ periods before
arrival

ad Weekday of arrival day a

Pr(l |Sa, da) The probability that a reservation for arrival day a has a LoS of exactly l days.

AER-ILP Aggregated expected reservation integer linear program

OPT-ILP Simulated Aggregated expected reservation integer linear program
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B Computational results

arrival day | τ 1 2 3 4

1 0.00 3.26 5.97 0.00

2 0.00 4.37 4.15 2.20

3 6.11 2.59 9.21 0.00

4 3.06 0.00 9.06 5.72

5 0.00 0.00 0.00 46.88

6 0.00 0.00 4.70 2.06

7 7.58 2.79 9.65 0.00

8 0.00 0.00 0.00 0.00

9 0.00 2.32 0.00 0.00

10 7.07 3.24 3.40 0.00

11 0.00 0.00 0.00 6.51

12 0.00 0.00 0.00 44.21

13 4.58 3.90 0.00 8.87

14 0.00 4.21 0.00 0.00

15 0.00 2.47 0.00 3.24

16 0.00 8.10 0.00 4.35

17 0.00 0.00 0.00 5.73

18 3.63 0.00 0.00 8.00

19 0.00 0.00 0.00 0.00

20 4.58 5.63 0.00 8.41

21 0.00 5.32 0.00 0.00

22 0.00 0.00 0.00 0.00

23 0.00 0.00 0.00 0.00

24 8.85 4.94 4.32 0.00

25 0.00 8.62 6.48 0.00

26 32.72 32.36 0.00 42.68

27 0.00 2.31 5.91 2.53

28 6.42 2.73 2.41 0.00

Table 6: Expected request matrix for time horizon of 4 weeks ahead
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Instance AR-ILP Static price Revenue

{4, L} 0.97 0.73 ¤48.096,-

{4, M} 0.97 0.79 ¤58.836,-

{4,H} 0.97 0.84 ¤66.910,-

{8, L} 0.96 0.76 ¤133.994,-

{8, M} 0.97 0.82 ¤177.453,-

{8,H} 0.98 0.87 ¤216.258,-

{16, L} 0.97 0.82 ¤504.289,-

{16, M} 0.97 0.87 ¤679.187,-

{16,H} 0.98 0.9 ¤789.800,-

{32, L} 0.98 0.82 ¤704.681,-

{32, M} 0.98 0.88 ¤911.867,-

{32, H} 0.98 0.92 ¤1.040.340,-

Table 7: Performance AER-ILP and static pricing strategy relative to the benchmark

Instance k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12

{4, L} 45.81% 0.25% 0.25% 0.00% 0.74% 0% 0.74% 0.99% 0.99% 1.23% 17.98% 31.03%

{4, M} 47.78% 0.25% 0% 0.00% 0.74% 1.48% 1.48% 1.48% 2.22% 4.19% 21.43% 18.97%

{4,H} 47.29% 0.25% 0.99% 0.99% 1.48% 1.48% 5.17% 1.72% 3.94% 3.69% 19.21% 13.79%

{8, L} 12.99% 0.28% 1.02% 0.56% 0.56% 1.11% 0.83% 1.39% 2.32% 2.23% 40.72% 35.99%

{8, M} 13.64% 1.02% 0.74% 1.02% 1.21% 1.02% 2.60% 0.56% 2.13% 1.95% 46.94% 27.18%

{8,H} 16.88% 1.30% 2.04% 2.41% 2.69% 1.58% 3.43% 1.95% 2.50% 6.03% 43.69% 15.49%

{16, L} 5.33% 0.18% 1.10% 0.74% 1.53% 1.56% 1.44% 1.96% 1.56% 3.83% 54.90% 25.84%

{16, M} 21.55% 3.10% 3.40% 3.16% 2.02% 1.78% 3.49% 1.35% 3.95% 2.76% 40.40% 13.03%

{16,H} 42.43% 2.67% 3.37% 5.03% 5.55% 4.81% 4.84% 4.08% 4.63% 4.14% 13.70% 4.75%

{32, L} 19.79% 0.64% 0.66% 1.05% 1.52% 2.18% 1.74% 1.05% 2.20% 2.10% 46.50% 20.57%

{32, M} 32.75% 3.06% 2.50% 2.86% 4.82% 4.13% 5.09% 2.13% 4.06% 3.33% 25.83% 9.44%

{32, H} 62.21% 2.50% 2.15% 3.42% 1.71% 2.15% 3.33% 2.20% 3.74% 3.11% 10.08% 3.40%

Table 8: Price Class distribution

Instance AER-ILP OPT-ILP

{4, L} 20.27 1.97

{4, M} 20.17 1.62

{4,H} 20.97 1.52

{8, L} 291.32 68.06

{8, M} 194.31 95.35

{8,H} 164.67 62.63

{16, L} 999.87 367.72

{16, M} 988.44 323.37

{16,H} 622.83 185.29

{32, L} 999.72 417.31

{32, M} 999.89 335.29

{32, H} 343.15 126.35

Table 9: CPU times AER-ILP and OPT-ILP
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Instance Slope -0.2 Slope -0.3 Slope -0.4 Slope -0.5 Static price

{4, M} 0.97 0.96 0.95 0.95 0.79

{8, M} 0.97 0.96 0.95 0.94 0.82

{16,M} 0.97 0.96 0.95 0.95 0.87

{32,M} 0.98 0.97 0.96 0.96 0.88

Table 10: Performance of AER-ILP with di�erent demand elasticity functions

Instance AER-ILP Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Static price

{4, L} 0.97 0.94 0.93 0.88 0.8 0.8 0.73

{4, M} 0.97 0.96 0.93 0.9 0.86 0.8 0.79

{4,H} 0.97 0.97 0.95 0.89 0.83 0.8 0.84

{8, L} 0.96 0.93 0.86 0.79 0.73 0.71 0.76

{8, M} 0.97 0.94 0.89 0.79 0.67 0.67 0.82

{8,H} 0.98 0.95 0.91 0.82 0.67 0.61 0.87

{16, L} 0.97 0.9 0.8 0.69 0.62 0.63 0.82

{16, M} 0.97 0.93 0.86 0.72 0.55 0.53 0.87

{16,H} 0.98 0.96 0.91 0.8 0.59 0.52 0.9

{32, L} 0.98 0.82 0.66 0.56 0.55 0.53 0.82

{32, M} 0.98 0.89 0.77 0.56 0.48 0.47 0.88

{32, H} 0.98 0.92 0.84 0.66 0.47 0.45 0.92

Table 11: Performance AER-ILP with modi�ed expected request matrix
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