
Mixed Reality
Application and
Integration with
HoloLens© in a
Manufacturing
Environment

Joran van der Sluis
Bachelor Thesis

Industrial Design
March 2017

3

Colophon

Mixed Reality Application and Integration with HoloLens©
in a Manufacturing Environment

Author
Joran van der Sluis
s1368753

Bachelor Assignment Industrial Design
March 2017

Final exam
April 26, 2017

Bachelor coordinator
Dr. Ir. A. P. van den Beukel

Project coordinator
Dr. Ir. R. E. Wendrich

Second examinator
Dr. Ir. T. Vaneker

Coordinator Benchmark Electronics B.V.
C. Suurmeijer

Industrial Design
Faculty of Engineering Technology
University of Twente
Drienerlolaan 5
7522 NB Enschede

Benchmark Electronics B.V.
Lelyweg 10
7602 AE Almelo

This report was written in the context of the Bachelor
Assignment of the study Industrial Design at University of
Twente.

Preface

This report is written in the context of the Bachelor
Assignment of Industrial Design at the University of Twente.
This assignment came forth from a meeting at Benchmark.
The initial idea was to create a technical project involving
an application for manufacturing. During the course of the
study, most information on manufacturing and production
remains theoretical. Gaining work experience in the industry
as an industrial designer could be a great addition.

During our meeting the subject of the Microsoft HoloLens©
was discussed. The HoloLens© is a wearable computer that
allows you to see holograms in your surroundings. As I have
always been interested in emerging technologies, I was
immediately interested. The decision was made to create
the assignment around application and integration of this
device in the manufacturing environment.

Benchmark gave me the experience to work within a large
corporation. To some extend it has shown me how a large
corporation operates and gave me some scope on the pros
and cons of such an enterprise.

The project created a challenge, as it differs from other
university projects or courses. During the project, I have
acquired new skills and insights. It has been interesting to
work with the HoloLens©. Thanks to this project I am now
able to use the Unity game engine and gained experience in
C# programming. The most important thing was learning to
see technology as a tool instead of a solution.

4

5

6

1.

2.

3.
3.1
3.2
3.3
3.4
3.5
3.6

4.
4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.
5.1
5.2
5.3
5.4
5.5

6.

7.
7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3

7.3.4
7.3.5

8.
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4

9.

10.

11

A

B

C

D

7

8

9
9
9
9
10
10
10

12
12
12
12
12
12
12
12

13
13
13
13
14
14

16

20
20
20
20
24
24
24
26
26
28
28
28
30

page pageChapter Chapter

31
32

33
33
33
34
34
36
37

39

40

41

43

52

57

58

Abstract

Introduction

Context
Benchmark
Products
Engineering Area
Clean Room
PCB Area
Box Build

Problem definition
ESD
Filth
WPI Outdated
WPI Unclear
Operators Not Following WPI
PFS
Training and Guiding

Possible Solutions
Observations
Trends
Tools
HoloLens©

Focus

Ideation

Conceptual phase
Low tech concept
Workflow
HoloLens©

Mid tech concept
Workflow
Development Tool
Data Visualisation
WPI Projection
High tech concept
Workflow
Holographic Guidance for Assembly
Holographic Guidance for Quality
Inspection

Holographic Guidance for Water Spider
Engineering

Executive phase
Design Application
Method
Model
Instructions
Unity
Deploying

Recommendations & future

Conclusions

References

Appendices

Research on mixed reality

Research on HoloLens©

Development for HoloLens©

Application code

Table of contents

7

This report comprises possible solutions for problems
observed and analysed in the manufacturing process of
Benchmark Electronics Almelo. The focus is on application
and integration of the Microsoft HoloLens© in the current
and future manufacturing process. Two focus points
are discussed, namely improvement of Work Process
Instructions and data gathering for process improvements.

On a low-, mid-, and high-tech level, elaborations are made
on how augmented holograms can be integrated into the
process. This results in descriptions of workflow for several
operator functions. Especially guidance during assembly and
guidance during quality inspection seem to be promising
directions for the use of holograms within the scope of the
researched subjects.

Finally a proposal of a HoloLens© application for holographic
guidance during assembly is described. Conclusions are
drawn about the use of the HoloLens© in the manufacturing
environment.

1. Abstract

8

augmented reality using HL in mind, ideas and concepts
were created. The HL is incorporated in each of the
concepts in a different way. Eventually a proposal for a
demo application to showcase on the HL is created. Using
Unity and Visual Studio, the proposal was made into a
holographic application for guidance during assembly.

We live in a world that is getting more and more digital.
Interaction takes place mostly through digital interfaces
on smartphones or computers. Our digital interaction
has already evolved from a command line interface to
a graphical user interface. Instead of telling computers
exactly what to do, we have created digital metaphors in
the form of pointers and icons. The next step will be the
natural interface, where interaction with the digital world
is intuitive and resembles the way we interact with the real
world. Mixing reality and virtuality is a hot topic and more
and more companies are emerging with new technologies
allowing users to interact with the digital world in an
intuitive way.

Benchmark Electronics Almelo (to be named Benchmark
hereafter) is a company interested in emerging technologies
that could benefit the workflow. Every quarter, Benchmark
invests into a technology related project that could
improve production. As some graduation projects in the
field of augmented reality have been executed within
Benchmark over the years, a certain experience had been
acquired on the possibilities of augmented reality. When
Microsoft released the HoloLens© (HL) near the end of
2016, this technology was chosen as project to research
and investigate further. The HL is a wearable computer
that allows users to emerge in augmented reality, where
interaction is possible between the real and virtual world.
Using holograms and natural interaction, one can interact
with virtual objects in his real surroundings. As this is
a relatively new topic, the question has arisen how the
interaction could look within the scope of a company. Who
will be interacting with augmented holograms and how will
this look? How does this go about using a device that is
present?

This Bachelor Assignment examines the technology of
augmented reality using Microsoft HL as well as some
processes within Benchmark to see if and how the two
can match each other. The report starts off with additional
context about the company and its products. Several
tours through the production areas have given insight in
the processes and workflow of the company. Interviews
and talks have brought up some of the present problems
Benchmark is facing. While keeping the possibilities of

2. Introduction

9

This chapter elaborates on the company Benchmark and the
present Manufacturing Areas. It offers context and allows
for better understanding of the later parts of the report.

3.1 Benchmark
Benchmark develops, produces, and assembles products
containing electronic components for a business market.
Worldwide 18 enterprises are present. Almelo is one of the
four sites that houses engineering besides manufacturing,
allowing for involvement in the whole process. A total of
about 400 employees are working, divided over Engineering
and Manufacturing. Walls and doors prevent the two from
interacting with each other directly.

3.2 Products
Benchmark manufactures a lot of products that include
electronics. Specifically, printed circuit boards (PCBs) are
one of the main concerns. Using PCBs, products can be
made on a small scale. PCBs are either shipped directly to
clients or used in the creation of an assembly internally.
PCBs are susceptible to defects when handled uncarefully,
and due to the size, it is hard to determine whether a PCB
is broken without testing it electrically. Manufacturing
products with electronic components is complex, as there
are lots of aspects that can result into defective products
or products that will malfunction in the future. Benchmark
wants to be a reliable partner to its clients, thus strives
to prevent defects in outgoing products. Strict work
instructions are used and all products are checked carefully
on quality. Before shipping, every product is tested and
evaluated.

3.3 Engineering Area
The Engineering Area is situated in a large room, where
different sub departments are grouped together and
surrounded by walls. Groups are either based on client
or on function, such as design engineering or software.
Engineering controls Manufacturing. Some of the main tasks
of Engineering consist of:
•	 Creation of CAD-models
•	 Purchase of product parts
•	 Creation of Work Process Instructions (WPI)

3. Context

10

Several different manufacturing areas are present in the
building. Here, the different areas are described. Figure 1
also shows a visual representation of the different sorts of
areas.

3.4 Clean Room
The Clean Room is used for assembly, quality inspection
and testing of products from a specific product line. Most
product parts come in from the warehouse, a restricted
area for storage of larger and more expensive parts.
Before entering the area, the parts are cleaned using
pressurized air and alcoholic cloth. Once cleaned, the parts
are handed to a Water Spider operator, who prepares
orders of assembly kits. The parts needed for assembly
of a product are combined with necessary labels, Kanban
(‘tech-consumables’, small often used parts, like screws),
and tools. All is numbered according to the assembly order.
Carts are used for moving the orders to the assembly
operators, who assemble products either on a table, or
when a table is too small, on a large cart. Folders containing
paper WPI are available that show how to assemble each
product step by step. Finished products go through quality
inspections, where an operator checks the product for visual
and mechanical errors. After passing, a test engineer tests
the product for defects in functionality by connecting it to
a testing machine. If the product passes, it will be stored
in stock, waiting to be sent out to the client or to be sent
back as a prefab part into another assembly. In the Clean
Room rules apply to clothing and air condition to prevent
contaminations on products.

3.5 PCB Area
The PCB line is set in a long hallway and comprises a linear
approach to the manufacturing process (see Figure 1). It
starts on one side with loose components that are placed
into machines. These machines create circuit boards.
Operators control the mostly automated processes of the
machines by switching them on or off and supervising. After
creation, the PCBs are tested on functionality in special
machines. If needed, other parts can be added manually
further down the line. The machines creating the PCBs are
expensive and high tech that are worked all day. A finished
PCB is placed on a cart to be transported to an assembly
area. As the PCBs are susceptible to damage, they are
protected using special bags and trays.

3.6 Box Build
Another assembly area, called Box Build, produces series
of smaller products. Assembly and testing is done in a
U-shape, where products go around a cabinet containing
the parts needed. It is comparable to the workflow in the
Clean Room, but on a smaller scale and following a linear
path.

Clean Room

PCB Area

Box Build
Starting on the left, the creation of a
product follows the U-shape (I) and
a finished product, assembled and
tested, can be taken somewhere else.
The operators work around a cabinet
(H) that contains most of the parts for
that product.

The smaller and larger carts are used
throughout all manufacturing areas.
There is no standardized cart size, but
most carts resemble one of the two.

Product parts get in through the
cleaning area, behind (A). From there
the products go to the Water Spider
operator, who prepares orders for
assembly operators. He combines the
large parts with small kanban, such
as screws, and puts it all on a cart.
Assembly operators take the cart to
their workplace (B). Depending on
the size of the product, either regular
tables or movable table-carts are
used. Finished assemblies are placed
in line to be inspected on quality (C)
and finally, before leaving the area,
products are tested (D).

The linear approach starts on the left,
where a waterspider operator collects
small parts from the automated
cabinet (E). Parts are placed into
machines that create the PCBs (F).
Further to the right PCBs are tested
or manually assembled (G).

Figure 1. Depictions of some of the important
manufacturing areas at Benchmark Electronics
Almelo.

12

4.5 Operators not following WPI
Some defects in faulty products can be caused by
incorrect execution of assembly steps due to the operator
disregarding the instructions. Possibly the operator does
not understand the instructions and moves on to trial and
error. Some of the operators choose to apply another order
of steps to the assembly or inspection process, as they see
more efficient ways of fulfilling their tasks. This problem is
known to exist among assembly operators in Clean Room
and Box Build.

4.6 PFS
Not all occurring errors during production are reported.
Assembly operators have to fill in a list with questions after
assembling a product. This list needs to be digitized into
PFS, the system used to analyse the production processes
and keep up statuses of products. With this list, it could
be prevented that a product that is already defective will
continue along the production process to eventually be
rejected. A large part of the created assemblies will function
as a prefab part in another assembly. If an assembly is
already showing a certain defect, it can be rejected before
being used in another product, that in turn will not pass
quality inspection. However, assembly operators often do
not fill in the question list or digitize the list.

4.7 Training/guiding
Training or guiding of new operators does not always
happen. As new operators make a relatively larger number
of mistakes, they should be guided through their functions
by a more experienced operator. In practice, however, new
operators are set to work straightaway, only to be checked
on after a few hours.

The mandatory quality standard is not always met.
Benchmark wants to reduce product loss rates. Several
potential causes for product losses are described here.

4.1 ESD
Electrostatic Discharge (ESD) is one of the major problems
when working with electrical parts and PCBs. ESD is current
that builds up in persons or things. It can jump to anything
close by once the voltage is high enough. People can only
perceive ESD from about 3000V, hearing the sound of
a spark. However, a discharge of 5V and up can already
be devastating for an electronic product. Precautions
have already been taken in the form of ESD-safe clothing
or transportation bags, but these measurements do not
completely prevent damage from ESD.

4.2 Filth
As strict agreements are made with clients about the
number of dust or filth particles per surface area, products
can be rejected for being too filthy.

4.3 WPI outdated
Products being manufactured get updated by Engineering
over time and therefore a new version of the Work Process
Instruction (WPI) is needed that incorporates the updates
made to the product. The new instructions should replace
the old ones in the manufacturing areas. This does not
always happen, resulting in co-existing instruction versions.
Because of this, products sometimes are based on the
wrong instructions and therefore do not contain the update.
This product relates to both assembly operators and quality
inspection operators.

4.4 WPI unclear
WPI can be unclear to the operators. Lack of understanding
or the quality of the instructions may be reasons for this
unclarity. The instructions are printed on paper, sometimes
only in black and white, while quality inspection needs
colored prints to properly compare the product to the
printed example.

4. Problem definition

13

5.3 Tools
A possibility for solving some of the challenges present
lies in the technology of mixed reality, where virtuality and
reality are blended for an observer.
Milgram and Kishino (1994) describe reality and virtuality in
terms of the properties objects. They state:
“Real objects are any objects that have an actual objective
existence. Virtual objects are objects that exist in essence or
effect, but not formally or actually” (p.1324).
Real objects are useful, as we can sense and use them.
However, we have little control over them. Virtual objects
on the other hand, we can control easily, but they are not as
useful as real objects, as we cannot really sense them. They
are a description of the properties of an object, that are not
actually present in reality. Take for example a paprika.

A real paprika can be eaten or touched, but made into a
blue paprika, as the initial properties of the paprika cannot
be changed. It is more useful, as we can eat it and get
energy from it. A virtual paprika can be given the color
property blue, but we cannot eat it, as it does not actually
exist. There is a high amount of control over the properties
of the paprika.

In the previous chapters, the environment and context
were described, followed by an explanation of the present
problems and challenges. In this chapter, some of the
problems are looked at in more detail, and possibilities for
solving the problems will be discussed.

5.1 Observations
During tours and interviews with employees, views
from both Engineering and Manufacturing were heard.
Engineering seemed to have a caring feeling for the
products, as they are the ones that design them. They
seemed to blame Manufacturing in some way for not
putting in enough effort to prevent defects in products.

The operators on the other hand, seemed to care less about
the created products, perhaps due to a larger emotional
distance, since they work briefly on a product and see a lot
of the same products. Operators were unhappy about the
structure around WPI they were receiving, originating at
Engineering.

Solving some of the problems surrounding the WPI could
improve both workflow and happiness on the work floor
and maybe bring the departments closer together.

5.2 Trends
Improving processes is hard for Benchmark as not all
statuses of products and processes are documented well.
Systems are present for keeping and interpreting data, but
the lack of this data prevents them from doing so (Figure 2).
This results in the impossibility of focusing on specific parts
of the process where a relatively large number of defects
originates. Looking at ways to improve the capturing of data
could allow Benchmark to improve processes.

5. Possible solutions

acceptable
domain

acceptable
domain

time

time

measured value

Figure 2. Example of how measured values in certain situations could
give insight into a flaw in the manufacturing system somewhere.
Above, a trend of values moving outside the acceptable domain is
recognisable, while on the bottom, where only 1 in 3 values is shown,
a trend is harder to recognise.

14

augmented environment of the surface of Mars (NASA Jet
Propulsion Lab, 2016). Someone wearing the device can
‘walk’ over the surface of Mars. For NASA, this has opened
new ways of interacting with and researching data.

The HL is not the first apparatus that allows users to view
holograms or augmented reality, however the device is the
first wearable augmented reality computer produced on
large scale that places user experience first.

The HL seems a promising product with lots of possibilities.
Possible solutions will be created for using the HL in the
existing and future environment of Benchmark, while
keeping in mind the current workflow and uses that apply.

5.5 Focus
As mentioned in the problem definition, a variety of
problems has to do with the current way of instructing
operators. In the next parts, possible technological solutions
will be looked into that improve WPI. New solutions for
improvements in work process instruction could also help in
building up a system that allows for improvements through
data analysis. On different levels of technology, solutions
for integrating the HL will be looked into. The image
below shows a graphical depiction of the focus area of the
assignment (see Figure 3). In the next chapter, Ideation,
preliminary visuals have been created that focus on the use
of HL and augmented reality. From these ideas, 3 concepts
have been created that focus on the improvement of WPI.

In mixed reality, both control and usefulness are present
to some extent. Properties of virtuality are traded in for
real properties. For example, a virtual paprika can be
visible through a mixed reality medium, allowing someone
to observe the paprika. It can be controlled in size and
color, and it can be sensed. This arises possibilities, such
as teaching someone about what color and size paprikas
he should or should not eat by showing various paprikas,
without having to go through the trouble of finding various
shaped and colored paprikas.
In Appendix A, a research paper is appended on mixed
reality and the various current concepts of it.

5.4 HoloLens©

The Microsoft HL is the first self-contained holographic
computer. The device allows you to experience augmented
reality through holograms you can interact with in the world
around you (Microsoft, 2016a). The device is equipped
with sensors that scan the real surrounding of the wearer
(Microsoft, 2016c). In relation to the real environment,
three-dimensional or flat holograms can be placed. Once a
hologram is placed in the environment, the viewer can walk
around it.
Appendix B describes the HL in detail. The figure on the
next page summarizes the details of appendix B, based on
information from Kipman (2016), Microsoft (2016d), and
Microsoft (2016e) (see Figure 4).

Some of the already existing applications built around
the HL, showcase the possibilities of using the device.
For example, NASA has used satellite data to create an

x

en
gi

ne
er

ou
td

at
ed

 s
he

et
s

pr
es

en
t W

PI

op
er

at
or

pr
od

uc
t

W
PI

cloud systemupdated sheets

focus
Figure 3. Graphical depiction of
focus area

15

spatial tracking
cameras

natural input

Spatial tracking allows for
recognition of the
environment. The device
captures and creates a 3D
model of the surrounding
and uses this to calculate
how the holograms should
look to fit in the
environment.

The device is able to
recognise several gestures
the user can make with his
hand. Due to the fact that
it is an optical see-through
HMD, it is able to use
gazing as an input method.
Furthermore, the device
can be voice controlled,
through implementation of
several microphones.

The device is a wearable
Windows computer
packed with several
sensors and processors to
understand environment
and run holographic
applications.

The device is worn as a
pair of goggles. A band
tightly strapped around
the head of the user and a
nose support piece ensure
the device stays fixed on
the head of the user.

Two optic wave lenses
placed in front of the eyes
of the user display
stereoscopic holograms.
Due to the intensity of the
light emitted, the
holograms blend in with
the surrounding.

speakers providing
3D sound
experience

Holographic
computer

optic wave lenses
support piece
for nose

Figure 4. depiction of the front view of
the HL with some explanations

x

en
gi

ne
er

ou
td

at
ed

 s
he

et
s

pr
es

en
t W

PI

op
er

at
or

pr
od

uc
t

W
PI

cloud systemupdated sheets

focus

16

Certain steps are holographically
displayed on a specific location
of the product. For example,
checking if 6 screws are present,
is done by showing a 3D object of
a screw, together with an object
that indicates where to look (A1).
When an operator gazes at that
object (A2), the more specific
locations are shown by adding a
holographic visual to it, a bounding
box (A3). Once an operator has
checked a feature, a popup comes
up, immediately asking if that step
went well (A4). Instead of having
to write it down, the operator can
gaze at the right answer or just
speak to the HL (see Figure 5).

Figure 5. Sketch displaying
holographics on products.

Figure 6. Sketch displaying ideas
on creation of holographic guides.

Creating a holographic guide
should be a process that is not
taking up a fairly larger amount
of time creating a written one
does. Therefore, a library with
some standardized animations
should be built. In a holographic
guiding building-application on a
computer, one drags and drops
features to a certain point on
the 3D model (B1). The program
calculates the perpendiculars
and parallels to that part of the
object and uses this in the guide
(B2). Some content, like labels,
are used as variables, that change
depending on the serial number
of the product the operator is
working on (B3) (see Figure 6).

A1

A2

A3

A4

B3

B2

B1

6. Ideation

17

Displaying virtual objects in
space allows the operators to be
guided through the process by
following a certain line (C1). Each
point asks them to do something.
As a certain task is subject to a
specified time period, the color
of the virtual objects can change
over time, showing a certain push
proceed faster (C2). It starts green,
but when the given time has
ended, it has gradually changed to
a dark orange. Guiding an operator
can be done through floating
displays, showing instructions,
either as text or as 3D images (C3)
(see Figure 7).

HL does not recognize specific
objects, but does recognize
the surrounding environment.
Once the surrounding is known,
it could be used virtually to
pinpoint some specific places
(D1). Placing an object in this
area, gets around the fact that
the HL does not recognize the
object. As long as the object
stays in this spot, it is possible
to augment info onto the object.
This could be done by putting
visual markings on some spots,
creating ways of placing an
object on a specific spot (D2)
(D3), or by simply displaying a
virtual layout of where to put
the product (D4) (see Figure 8).

C3

D1

D2

D3

D4

C1

Figure 7. Sketch displaying ideas on
holographic guidance through a room.

Figure 8. Sketch displaying ideas on combining
virtual cues with real objects.

18

The way inspecting and building
products is structured now, allows
for multiple errors or defects.
Due to the amount of steps and
repetition, the chance on an
error is increased. Restructuring
the way information is gathered
and input can result in skipping a
few steps and also lowering the
chance of an error. For example,
it might not be necessary to first
read the task on one paper sheet,
than fill in another paper sheet
with the results, to finally digitise
that result sheet manually. When
for example using a ‘digital paper
sheet’, reading and filling in can
be done from the same place,
without the need to again digitise
it (see Figure 9).

Using holographic models
of products being built at
Benchmark, a better insight and
feeling for the product can be
created. On one hand, an operator
can learn how the product works
and is assembled beforehand.
This might lower defects, as he
has seen his job holographically
already. On the other hand,
viewing or reviewing models
can be used during creation of a

product in the engineering side
of the building. An engineer can
already see the virtual product in
real size (E1) and even collaborate
on it with someone else (E2),
without having to build the
actual product. It can create a
better sense of understanding
of space, as the engineers can
see the product in their actual
environment (see Figure 10).

E1

E2

Figure 9. Sketch displaying ideas on how
system interaction can be improved.

Figure 10. Sketch displaying ideas on
(re)viewing holographic models.

19

Using holograms, it is possible
to guide someone through the
building very easily. Displaying
all sorts of visual cues show
someone how he should walk.
This can be done in multiple ways,
showing some direction arrows
(F1), pushing one in the right
direction, showing a virtual wire
to follow (F2), or close off other
routes virtually (F3). Using this
way of guiding, it is possible to get
products or goods from one place
to the other fairly easy. It can also
be used to show someone new
around (see Figure 11).

If more data is available, it can
become much more insightful
using a mixed reality medium
like the HL. Presenting data
on a paper is static, presenting
data on a computer medium is
dynamic, allowing for movement,
but presenting data on the HL,
also provides context. Data can
become more insightful as it can
be presented in the environment
the data is coming from, allowing
a viewer to link real events to
data points (see Figure 12).

F2

F3

F1

Figure 12. Sketch displaying ideas on
displaying holographic data.

Figure 11. Sketch displaying ideas on the use of
holographic cues for guidance through a building.

20

7.1 Low tech concept

This concept focusses on the current situation of the
Manufacturing Area and how the current problems could be
solved on a short-term notice. The main goal was to design
a workflow without disrupting the current structure.

7.1.1 Workflow
A system is used that comprises all WPI and sends them
to the right employees. Benchmark already uses inhouse
databases to store all WPI. These can be used for storage.
Tablets are connected to the cloud-based system and have
data going between them (see Figure 13).

Small and light tablets offer most convenience in handling.
In terms of interface, they can resemble the WPI already
present. Using tablets skips a few of the overkill steps
present when using paper and offers at least a foolproof
way of getting process results by forcing an operator to fill
in a certain value before being able to continue:
•	 operator reads step on tablet, possibly accompanied by

an explaining image
•	 operator fulfills step on product
•	 operator fills in result
•	 button to continue becomes interactive, allowing

operator to continue
An application for using the WPI on the tablets would be
needed for this.
The tablets offer a set of advantages (see Figure 14 and 15):
•	 direct results from operators are stored in the cloud
•	 current work process instruction is always available
•	 colored and up to date pictures are available in

instructions

7.1.2 HoloLens©

The HL is used as an added-value object. Especially as a
marketing tool it can create happier clients. Projects can be
taken digitally to the client and shown on location. Updates
on products in the making can be shown in a whole new
way.

Showing this technology to clients could be impressive to
them. As most people have never experienced convincing
augmented reality, they will probably be overwhelmed by

7. Conceptual phase

when an error
occurs, interface
immediately asks
operator to state
explanation.

Due to being connected
over wifi, results are
immediately send to PFS.
Serial number and working
operator are already linked
to the product.

Figure 14. Interface changes dynamically to
ask what problems occured.

Cloud based data storage system,
which is already present at
Benchmark is used for storing data
from Manufacturing and Engineering.
It contains up to date versions of all
process instructions for all products.

System is able to visualise graphs
using data from manufacturing
processes. As operators are ‘forced’ to
gather data digitally, the possibility of
losing data is minimized.

Engineers look at gathered data
to see where most defects are
originating. Insight is created in
current inventory flow. This data is
used to improve processes.

Processes, models, and instructions
are editted and updated based on
findings.

Updated models and WPIs are stored
in the cloud database system as new
versions.

Data and WPI are gathered from the
cloud, and are always up to date. The
operator only gets to see the most
recent version.

Depending on their function, users
get a certain interface that shows
them the right instructions.

A.

B.

C.

D.

E.

F.

G.

thesystem

InputOutput

D

B

A

K

L

F

GI

H

J

M

C

E

21

thesystem

InputOutput

D

B

A

K

L

F

GI

H

J

M

C

E

Figure 13. Schematic overview of
the workflow.

read task and possibly
see image

check product
and fulfill step

fill in result on tablet
to continue

Figure 15. Depictions of how tablet interface could look. Left: operator reads task
and checks image. Middle: operator checks or assembles product. Right: operator
pushes pass or fail button, allowing him to continue.

The interactive nature of the interface
ensures that findings of the operators
are saved.

Operators that work with paper
versions of WPI get a small mobile
tablet.

Using the stored models in the
database, holographic experiences
or applications are built to show to
potential clients or as final products.

Final products can be tested
or showcased in a holographic
environment to review them as if they
were already integrated into their
final environment.

Data from processes are gathered
from user input and sent to the cloud
system. It is stored to be analysed.

Applications are deployed on HL and
possibly combined with real objects.
The HL can be taken anywhere to
show to (potential) clients.

I.

H.

K. M.

J. L.

22

current problems is excluded and data loss is prevented.
Due to the fact that the workflow is very similar to the old
one, problems switching will be avoided. WPI are still used
in a similar way, so the only thing operators need to learn
is how to operate the tablet and the application. Investing
in tablets is a relatively cheap option. Problems such as
battery life during the day, deterioration of the quality of the
tablets, or breaking of the tablets may still occur. A period
of testing with (a few) operators can be a suitable way of
finding out whether this structure fits the company.

Using the HL as a tool to add value for clients is a way to
make clients more appreciative of the work Benchmark
performs. The extra time needed for creating holographic
presentations of products is a tradeoff for both a more
impressive as a more insightful way of presenting projects
to clients. The HL is also used for showing virtual tours
through the building. In doing so, the innovative nature of
the company can be shown to potential clients or partners
(Figure 16).

the way holograms appear in their surroundings. Using the
HL can help Benchmark improve its image of an innovative
enterprise.

Showing an update of a product, does require someone
to create a model that is usable on the HL. Due to some
of the limitations of the HL, most CAD-models need to be
converted before being able to deploy it on the device. For
example, this includes the reduction of vertices.
The gap between the real and virtual world can be
minimized by taking small real parts that can be held
in place of a virtual part when reviewing or showing a
product to a client (see Figure 17). This creates a feeling
of scale and existence of the product, as an observer is
seemingly physically touching a part of the hologram. Rapid
prototyping techniques, like 3D printing, offer a great
solution here. It is cheap and relatively fast and quality is not
of great importance. Benchmark already possesses several
3D printers, allowing this to be a relatively easy outcome.
Testing or showing finished products is also possible by
taking a product and simulating an augmented environment
around it.

This concept solves the problems with work instructions by
creating a digital workflow rather than an analog one. This
way, the paper workflow that creates a large amount of the

Figure 16. Depiction of holographic
tour.

23

Figure 17. Depiction of field of vision when viewing holographic
models combined with small parts.

24

A smart digital system is used for data analysis. The HL
is used as a development tool and offers insight in data.
Tryouts in Manufacturing show where the HL can best be
integrated on a short-term notice. The HL has a supportive
value. (see Figure 18).

7.2.1 Workflow
A digital system is used to aid and structure the processes
and gain feedback about the production line. The system is
central in the workflow. In the Manufacturing Area, a shift is
made from analog, to digital. This allows for better tracking
of data and offers operators the current work process
information.

There are three aspects where the HL will be offering
support to the company, as a development tool, as a data
visualisation tool, and as a virtual WPI projection tool.

7.2.2 Development Tool
In the development area, the HL is used as a review tool.
CAD models can be viewed holographically, to get an idea
how they look. As most CAD files cannot be imported
directly onto the HL, it is important to have a tool that
converts the created CAD-files to a HL ready file format.
This will keep up the workflow, as developers do not have
to convert the files manually.

It is important that the file converter should do the
following (see Figure 19):
•	 turn the CAD model into a surface-model file format

for HL (.fbx .obj)
•	 reduce the amount of vertices
•	 remove unimportant/small parts, such as screws
•	 upload the converted file to the HL or to a shared

database the HL has access to

Scenario development
Mark, a product engineer at Benchmark, is having trouble
finding the right layout for a set of buttons on a product he
is developing in his CAD program. He cannot quite grasp
the right layout that is both easy to use and looks good on
the product. He decides to view his model holographically,
to get a better understanding of the product in a real

7.2 Mid tech concept
7. Conceptual phase

Cloud based data system, used for
storing data from Manufacturing
and Engineering. It converts data
to use on HL and keeps graphs in
environment up to date.

Data from Manufacturing is used
to create insightful real-time graphs
build into an application usable
for HL. It connects data with real
environment.

3D visualisations are projected in the
production area, to get better insight
in the production processes and
where improvements could be made.
One is looking at data and area it has
to do with simultaneously.

The gathered insight is used to
edit products, instructions, or even
processes.

Engineering works with HLs in
development of products. While
creating a model, an engineer can
review it holographically. Created
CAD models are editted for use on HL
by the system automatically, to keep
up the workflow. The 3D view of the
created models functions as input for
the further creation of the model or
the process line.

System shares a database with HL
for distribution and deployment of
models.

A.

B.

C.

D.

E.

F.

environment, on true size. He saves his file and opens the
conversion program. From his file explorer, he drags the
file into the program. Once he clicks ‘send’ the program
starts to convert the file to a format ready for the HL.
In the meantime, Mark grabs one of the available HLs
from a cabinet and puts it on. The program has finished
converting the file and has sent it to the HL. Mark sees his
model floating in front of him, waiting to be placed in his
surroundings. He taps his finger and gazes at a table. With a
tap, he places the object. He can now see the button layout
he was thinking about on the product in front of him. The
virtual product has given him conformation that this layout
will both be useful and easy on the eye. He now puts down
the HL to start working on his next task.

25

thesystem

InputOutput

A

B

C

D

E
F

M

J

K

G

H

I

Figure 18. Schematic overview of the
workflow

Figure 19. Automatic file conversion

Try outs with the HL in Manufacturing
introduce workers to augmented
reality solutions and offer some
advantages like a handsfree workflow.

An all-digital system ensures up to
date information and allows to gather
data to analyse.

A connection can be established from
the operator who is working on a
product to an engineer. The engineer
knows more about the product and
can offer help.

The engineer can get information
about the product the operator is
working on from the database.

Due to internet connection,
instructions are up to date and data is
gathered continuously.

The engineer is able to see the view
of the operator and can draw visual
cues to help the operator get to
understand the step.

H.

G.

J. M.

I. K.

User places file in application on
computer.

file.stp

Send

To HoloLens

System converts CAD file to
HoloLens format.

System uploads file to HoloLens
or to database available to
HoloLens.

User can (re)view model
holographically.

Send

To HoloLens

file.stp

26

linked to data from a specific machine or process, directly
allows the viewer to get a feeling of how the machine is
performing (see Figure 20).

Benchmark is already collecting and displaying data on
boards throughout the Manufacturing Environment. As
the HL is implemented, these could become interactively
integrated within the work environment

7.2.4 WPI Projection
Integration of augmented reality in the Manufacturing
Environment is a large step to achieve. It is possible, to get
used to augmented reality in a familiar way by displaying
the known WPI holographically. Floating panels are used
to display the instructions. The panels can get placed
anywhere in the environment. Using the HL to display the
instruction guide, allows the operators to use a hands-free
approach (see Figure 21).

7.2.3 Data Visualisation
A shift to digital, makes it possible to continuously gather
data from all processes. The output of all processes is
combined by the system to create data visualisations.
Visualisations can be updated in real time. Using the HL,
the gathered data can be made insightful, by creating 3D
graphs that, due to being displayed in a digital medium, can
change over time. Another way the data can be clarified, is
by placing graphs and visualisations into specific places in
the working area at Benchmark.
Instead of looking at a paper stuck to a wall somewhere,
someone wearing a HL could walk to a machine to see
specific data about or related to it.
This would especially suit the PCB area. This room houses
machines that are large enough to be picked up by the HL
sensors. Since the machines are stationary, visuals can be
displayed above or next to them. Displaying a graph that is

Figure 20. Depictions of ideas for displaying
holographic data. Left a holographic graph
that shows a certain machine delivering below
standard. Right top: accident map overlay on
environment. Right bottom: floating throughput
of machines.

27

connection is started with the right engineer directly, as the
system knows which engineer knows how to assemble the
product right. The engineer gets a pop up on his computer,
which he opens. Besides seeing the explanation on the step
the operator needs to fulfill, he can also see a livestream of
the field of vision of the operator. He guides the operator
through this step of the process by telling him what to do.
Both are happy it all worked out. The system registers that
there was a call for help at a certain step in the process, and
saves this for data analysis.

The application handling the display of the instructions
holographically, also includes a shortcut to skype. Whenever
the operator has a question about a step, the skype
application can be launched. Using Skype on the HL allows
the operators to call someone from Engineering. The
engineer is able to see the field of view of the operator.
Besides explaining by words, the engineer can also draw
visual cues in the operator’s view. The skype application
built for HL already allows this.

One of the advantages of this system is that Engineering
gets more approachable for operators. Instead of phoning
or going and getting an engineer to explain, a simple skype
call will suffice. The hands-free workflow is possible for all
functions that would be using a tablet or paper sheet for
instructions, such as assembly and quality inspection.

Scenario WPI projection
Operator Michael is working on a product assembly. He
looks at the holographically projected instructions in front
of him. As the instructions are floating in real space, he
always has his hands free to work on the assembly. At a
certain moment, he does not understand what the next step
involves him to do. Instead of walking to the phone and
trying to explain the problem he encountered or walking
all the way to the department where the engineers are
located to get someone to help him, he looks at the bottom
of his virtual instructions and taps the help icon. A skype

Figure 21. Depiction of floating work process
instruction for an operator. Black rectangle
depicts the holographic field of vision.

28

This concept is the most advanced in terms of technology.
In this concept, it was attempted to take all the possibilities
of the technology and combine it into a solution for the
Manufacturing Area. The current situation and needs were
considered, and a set of solutions established.

7.3.1 Workflow
The concept comprises a dedicated smart system,
integrated in all workflow, that controls HLs employees are
wearing (see Figure 22). The system controls all processes
and leads all employees to tasks that need to be fulfilled.
Using machine learning algorithms, the system will create an
efficient workflow, that gets faster over time. All operators
wear HLs and can be positioned in several functions. The
system knows where manpower is needed and can guide
operators there. Holographic guidance makes functions
easy to understand. This matches the lean management
philosophy Benchmark is trying to integrate in the
production processes, where the goal is to reduce waste
and wait times.

To create a truly leading system, all inventory is traced, both
physically as well as digitally. Digital tracking goes through
serial numbers and received updates from operators and
machines. The physical tracking system uses cameras that
are placed in the ceiling throughout the Manufacturing
Areas. The carts that are used to move products and parts
from one place to another can be followed. As a product is
placed on a specific cart each time, it is enough to track the
carts through space and not the products themselves.
The system can integrate the tracking of these carts into the
holographics of the HL. As carts might not get recognized
by the HL due to their size and constant movement, the
camera system can still push the coordinates of the carts,
and so, the places where holograms need to be displayed.
To do this, the dimensions of the carts should be known by
the system, as well as their position in space. One way to
accomplish this, could be to place easily trackable markers
on the corners of each cart. The tracking system only tracks
4 points for each cart this way (see Figure 23). Besides the
tracking of carts, the system also knows the location of the
present operators, as they are all wearing HLs, which scan
the environment and know their own position in space.

7.3 High tech concept
7. Conceptual phase

Smart integrated system controls all
workflow by efficiency calculations

Data that is gathered by the system
is internally processed and used to
gain insight in where the process can
be improved. Machine learning allows
the system to gradually become more
efficient.

Results from internal analysis are
also presented to engineers for
improvements to production lines
and products, things that are not
efficiency related to the system.

Using HLs, engineers create models
and production lines. The HL is used
as a (re)view tool.

System communicates guiding tasks
to HL based on location, time, and
processes.

Based on tracked processes, HLs
are sent to a certain task. Tasks and
function decide what an operator
sees holographically.

HL guides operators through their
task by giving visual overlays on the
real world.

A.

B.

C.

D.

E.

F.

G.

Holographic guidance is suitable for at least the following
types of operators: assembly, quality inspection, and Water
Spider. They can be found in the Clean Room and Box Build
Area.

29

thesystem

InputOutput

A

B

C

D
J

E

F

G

HI

Figure 22. Schematic overview of the
workflow

Figure 23. Visualisation of the camera
tracking. Top: state 1. Below: state 2,
after a small movement.

Through camera tracking, location of
all carts is known to system.

Operator moves parts and products
through manufacturing areas on carts.

HL reports back to system location
and direction operator is facing and
the status of the task it is occupied
with.

I.

H. J.

Actual view Computer tracing Software

30

assembling. The first step is to pin a holographic reference
plane somewhere in the environment. This plane is used to
show the steps he will have to perform, accompanied by
audio guides. On the plane, the same assembly he has to
create is being built holographically. He now easily can go
through assembling the product. If the visual guide is not
enough to create the assemblies, he can also open a large
floating screen with written instructions.

7.3.3 Holographic Guidance for
Quality Inspection
Quality inspection is done by displaying holographic cues
onto the product. The use of floating bounding boxes
is used to guide the operator his attention directly to a
certain spot on the product. Holographic objects are used
to indicate that a certain function has to be performed. For
example, checking if all screws are present and screwed in
tightly, displays a floating screw. Checking surface quality
displays a small floating smooth or rough plane. Using voice
commands and gesture recognition, the operator can go
through the steps. (see Figure 25).

Scenario quality inspection guidance
Max is working in quality inspection. As he arrives at his job,
he puts on his coat, his gloves and hairnet. He goes into the

7.3.2 Holographic Guidance for
Assembly
Assembly operators are guided through the process of
building the product holographically. Instead of written
text and pictures, guidance is accomplished by the use
of holograms. A reference hologram, that shows the step
the operator has to take is placed somewhere around the
operator, while he is performing the assembly tasks. The
operator can look at the hologram, that shows a virtual
version of the product, and repeat the steps on the real
product. The operator does not have to read instructions,
and it is easier to see what the exact step is, as the operator
can even walk or look around the product in 3D. He has his
hands free for the task (see Figure 24).

Scenario assembly guiding
Jim starts his shift as an assembly operator. He goes
through the procedure of putting on the right clothing and
his HL. He logs on, and the system greets him. In a floating
window, it shows him what he is going to be doing today as
his first task, assembling a certain product. The HL asks him
if he wants to start and once he does, a virtual path appears
showing how to get to a certain cart containing the goods
he needs for assembling a product. He collects the cart and
takes it to an assembly spot. He selects the option to start

Figure 24. Depiction of holographic work process
instruction for an operator. Black rectangle depicts
the holographic field of vision.

31

found. A specific list is available for each order that has to
be picked, and therefore virtual locations can be displayed
per order.

Scenario Water Spider guidance
Michael enters the room and puts on his HL. He logs in and
starts the appropriate app. A large virtual screen appears.
On it, he can see a list of orders that need to be prepared.
Every order contains a set of small parts that need to be
included with some other parts on a cart. These parts create
the full assembly. The list is ordered, so that priorities are
on top. He can select multiple orders at once. When he
looks at the cabinets where all small parts are located, he
can see multiple floating colored balls, showing him which
parts he has to pick up. All floating balls of the same color
correspond to one order. The colored balls give a cue for
the location of a pickup. Once he gets close to one, a small
floating message appears, showing the product and amount
he has to collect. Once he has grabbed all parts for that ball
he can close it by saying ‘check’, or by double airtapping it.
All small parts are collected in small boxes and placed on
a cart that has an overlay in the same color of the floating
balls. Once finished, Michael is visually instructed to place
the cart in a certain location in the area.

Clean Room, where among other things, quality inspection
is performed on assembled products. He walks towards his
working space, a line of tables. On his table, he opens up
a small drawer, where his HL has been charging overnight.
He puts on the device and opens the start menu. Max
looks at the wall next to him and pins the instruction menu
onto the wall. He sees he has to get the cart with product
number [GUVB-005-GLISE-7793]. When looking over at
the row of carts, he sees one cart with a marker above it,
that must be his. He goes and gets this cart from the row,
and brings it to his work space. Looking at the product, he
now sees holographic cues of what he has to do. The first
task asks him to check the upper surface for scratches. He
does not see any, so he says “clean”. The next task asks him
to check the product for 6 screws. On the places the screws
should be present, yellow boxes appear, while a screw is
rotating above the product. While gazing at a one of the
yellow boxes, he says “check” as the screw is present. The
box turns green, and Max goes on. Once he has performed
all steps for the inspection, he sees visual cues to bring the
cart with the product to a row of other carts that have been
checked.

7.3.4 Holographic Guidance for Water
Spider
The Water Spider collects parts and prepares orders for
assembly. Using the HL, it becomes easier to collect all
parts, as visual cues are displayed on where to pick up the
parts, and where to put them. As the storage of the small
parts is fixed on a specific location, it is possible to augment
visual cues from the specific places where the parts can be

Figure 25. Depiction of holographic work
process instruction for quality inspection. Black
rectangle depicts the holographic field of vision.

32

7.3.5 Engineering
In engineering, some changes need to be made in order
to make this concept possible. As WPI have become
holographic guides, there is a need for someone who
creates holographic guides, based on the available CAD
files. A special program is needed to create these guides.
The engineer loads a model in the program. Using in-
program controls such as dragging objects, he creates a
guide. The program will, eventually, render a holographic
application guide from the input of the engineer and store
this in the cloud. For quality inspection, the engineer
clicks some part of the model that needs to be inspected
and adds a certain inspection variable to it. A variety of
animations and prefab models are included in the program,
so the creation of a guide is kept simple. Using the
directions of the faces selected, the program knows how
to display the holograms. A bounding box will for example
be parallel to the selected face, while an arrow will be
perpendicular (see Figure 26).

The system tracks all objects and persons. Instead of
tracking data and outputting this visually in graphs to show
what could be improved, the system itself creates the most
efficient workflow. The system can estimate how much time
is needed for a certain operator to fulfill a certain task and
use this to control the workflow. If one operator is almost
finished in quality inspection, the system can already start
to think out what his next task could be. As there might
not be another product to be inspected soon, the system
could guide him to another function. As the HL will offer a
managing approach to the operators, operators can be put
into different roles. Tasks get easier to follow and operators
are no longer bound to learning curves that force them to
a specific function. The system, calculating where more or
less power is needed, can now distribute workforce.

Figure 26. Depiction of creating a holographic quality
inspection guide.

33

The application is based on the holographic guidance for
assembly, also described in the High Tech Concept. It should
show the user a holographic version of the product he is
assembling. By repeating how the holograms move, he can
assemble the real product the right way. As the HL does not
have any buttons, natural input will be present in two ways.
To proceed to the next step, the user can air-tap, which the
HL will recognize as a gesture to proceed. The other way is
by speech input. The user can say something like “proceed”,
“next”, or “next step” to proceed to the next step, or ‘back’,
“previous”, or “previous step” to go back to the previous
step. A holographic model of the product to be assembled
is placed in the environment of the user, for example on the
table the assembly is created on (see Figure 28).

8.2 Method
In order to create the application, several steps needed to
be taken. In Appendix C a general method can be found for
building applications for the HL, based on the descriptions
of Vroegop (2016). Here, the specifics creating this
application are explained.

During the concept phase, several possible solutions were
created for the integration of holograms. In this phase, an
elaboration is made on one of the aspects of the concepts,
namely holographic guidance for assembly.

The goal of this phase was chosen as a prototype
application, working on the HL. Benchmark sees the benefit
of having a prototype or demo application in-house, to
make people enthusiastic about the HL and show and
explore the possibilities of the device. Having an application
to show and use, makes the whole concept of using the HL
vivid. It is more approachable when compared to a report
laying around. For me it is an interesting challenge, that
forces me to learn how to work with the device and how to
create an application for it. Creating a holographic guiding
application seemed challenging, yet achievable, in the given
time span.

8.1 Design application
Creating an application that guides the user through
assembling a product, starts with a product. A product
used in the assembly line in the clean room, was obtained.
Together with the WPI this was used as the base for
developing a holographic assembly guide (see Figure 27).

8. Executive phase

Figure 27. Product assembled (left) and disassembled (right).

34

8.2.2 Instructions
The instructions show what steps need to be taken and
what is needed in order to create the assembly. The
instructions for assembly of the product were carefully
read. Since certain parts of the product were missing
or already taken care of (labeling the product), not the
whole instructions were used. For a demo application, this
however is not a problem and these steps were left out of
the holographic application.

The instructions were followed a few times, and once clear,
a set of drawings was made, based on how the application
would be going to look (see Figure 29).
The goal for the application was to create a holographic
guide that offers a good explanation of how to assemble
the product. In step 1, 4, and 6, a screwdriver is used to
screw or unscrew. To let the user know he should use a
screwdriver, it should also be incorporated in the application
and shown to the user. The screwdriver should also rotate
in the right direction, clockwise or counterclockwise, to give
the user extra feedback on what exact action he should
perform.

8.2.1 Model
The available CAD-files used for manufacturing, cannot
be used on the HL. The HL uses surface models, existing
of flat surfaces. Either the CAD-file of the product could
be converted into a surface model, or a new model could
be created from scratch. The choice was made to quickly
recreate a new surface model resembling the original one.
For testing purposes, it comes in handy to have control
over the model, the number of vertices, and the subparts it
consists of. The model was recreated in Blender. In Figure
30, a rendering of this model can be seen, where (A) depicts
an exploded view, (B) the assembled product, and (C) the
disassembled product (see Figure 30).
Note that the model, as it is created now, is a simplified
version of the real product. When comparing Figure 27 and
Figure 30, it can be noticed that the original product has a
lot more detail in it. The limited number of vertices that HL
can use, make a simplified model preferable, but one should
always consider to what extend the details of a model can
be left out. The more a model is simplified, the harder it
might be to recognize the parts. An outcome to preserve
both recognizability and a limited number of vertices, can
be to apply a texture resembling the real product onto the
virtual one. For this relatively simple product it did not seem
necessary.

Figure 28. Depiction of how working with the application should look.

35

C

Figure 30. Renderings of the model.

BA

1.	 Unscrew 4 screws with a TORX
TX20 screwdriver and remove the
top bracket.

2.	 Connect the 2 modules using a
couple piece.

3.	 Place the coupled unit on the rails
of the bottom bracket by hooking it
behind the outer edge.

4.	 Screw in the 4 already present
screws in the coupled unit using a
flathead screwdriver 1.0 x 5.0.

5.	 Place the Memory Card in the slot
on top of the coupled unit.

6.	 Screw in the top bracket using the 4
screws from step 1 using the TORX
TX20 screwdriver.

Figure 29. The steps to be created and animated in
the application.

1.

3.

5.

2.

4.

6.

36

for step 3, cannot be called in either of these methods right
away, as this would mean that it is either performed once,
at the start of the application, or that step 3 is started every
frame the application is running.
In other words, just using these functions is not possible for
the way this animation is used. A framework was set up that
handles the animations.

A variable integer StepNumber was created to handle
animations. This integer can be edited by user input (speech
or air-tap), and is fed into the update method. In the update
method, the StepNumber is checked every frame and
accordingly another method is called. In other words, as
long as the StepNumer is 1, the function StepOne() will be
performed, and the animations scripted for that step will be
played. As the user changes StepNumber to 2, the update
method will now call another function that handles the
animations of second step.

Each step contains a set of sub steps that need to be carried
out. The method for each step contains a SubStepNumber,
that is used to create an animation in steps. The sub steps
for step 1 have already been described, and the application
handles them in the same order. By creating a sub step
number, the objects can be moved independently and in a
specific order (see Figure 31).

Before developing the application using the actual model,
tryouts were made using simple cubes that moved from
point to point, rotated, and disappeared, to check if the
written code was actually working. Most of the testing was
done in the integrated test area in Unity. Instead of human
input (speech and airtap) mouse clicks were used. Once
the cubes were moving according to how they should, the
application was changed to work with the actual model and
HL input.

Microsoft has created a set of HL specific scripts that
take care of actions like spatial perception, and gesture
recognition. These scripts are available to developers and
have been used in this application.

For the full code see Appendix D.

The next step was to translate these rough steps into
more approachable sub steps, that eventually can be
programmed. As an example, step 1 is broken down into sub
steps here. The full steps read
Unscrew 4 screws with a TORX TX20 screwdriver and
remove the top bracket.
In sub steps this would mean the following:
1.1 Screwdriver moves from initial position to screw,
indicating to put the screwdriver on the screw.
1.2 Screwdriver rotates for a few seconds in the right
direction (counterclockwise).
1.3 Screwdriver moves back to its initial position, indicating
that the screwdriver needs to be pulled out of the screw.
1.4 The bracket needs to move upwards, showing that it has
to be removed.
1.5 Everything needs to go to its starting position to repeat
the animation.

Note that a few things are not present in these sub steps;
the choice was made to have the screwdriver only move
to one screw (for the sake of only having to program one
movement). The other screws are indicated with red wires.
Removal of the screws is not animated, as removing the
screws is a logical result of unscrewing.

The other steps were broken down likewise, where every
sub step is translated into objects that visually move or
rotate.

8.2.3 Unity
Building an application for the HL is done in Unity (Unity,
2016). Models can be loaded in and by writing scripts and
attaching these to so called GameObjects (3D objects in
Unity), the objects can be moved around. In Unity, the
project needs to be set up as a holographic one, specifically
for the HL. Practically this means that the application
will try to run as fast as possible, ditching quality when
performance is needed. It is important to keep a high frame
rate in the application as users will eventually be looking at
and moving through the application very close to their eyes.
Low latency makes it easier on the eyes and can prevent
motion sickness (Hettinger, 1992).

Unity C# scripts standardly have two methods, the Start()
and the Update() method. Start() is used to initialize the
application and runs only once, when the class is called
for the first time (usually when starting the application).
Update() is called every frame the application is running.
Writing a function that for example handles the animations

37

8.2.4 Deploying
A HL emulator running on a computer was used to test
the application. The emulator runs a simulation of the HL
and uses button presses for gazing input and air-taps. The
computer microphone is used for speech recognition. After
many modifications, the application was working properly.
Screenshots of the actual application running on the
emulator have been appended (see Figure 32).

Testing the application on the HL was done by sideloading
the application over a USB connection to the device.

Speech

“proceed”
“next”

“go back”
“previous”

Airtap

int StepNumber

void Update()

1 ...

2 ... StepTwo();

3 ...

4 ...

5 ...

// what is the
StepNumber?

StepTwo()

1 ... DoSomething();
if (DoSomething() = done)
SubStepNumber = 2;

SubStepNumber = 1;

2 ... DoSomethingElse();
if (DoSomethingElse() = done)
...
SubStepNumber = 1;

// what is the
SubstepNumber?

// Repeat unitl
Update() does not call
this step anymore.

Show / Hide
Translate
Rotate

InputOutput

Figure 32. Screenshots of the application running on
the HL emulator.

Figure 31. Graphical explanation of the code.

38

Initially deploying the application on the device did not
work. An unknown error came forth while deploying the
application. It turned out that the path before the build
solution, the folder containing all the needed files to deploy
the application, may only contain 23 characters and no
spaces (Windows Holographic Developer Forum, 2016). In
order to read the files, the maximum length of a path is 60,
but most of it is already used in deeper folders required for
running the application.

for example:

C:\Users\COMPANION\Documents\University of Twente\
Bachelor Assignment\Holographic Guiding Prototype\Build

Contains both more than 23 characters and spaces, and
gives an error when deploying. Placing the build solution in
the root of the C directory solves this problem:

C:\HOLO\Build

After solving the error, the application was running fine.
Some tests have shown that holographic guiding is an easy
way of approaching the assembly process (see Figure 33).
Feedback was used for some minor improvements, such
as creating colored screwdrivers, based on the color of the
actual screwdrivers used.

Figure 33. Someone succesfully assembling a product
using the holographic guide.

39

being too tight around the head. It is recommended to
keep exploring ways to have normal work conditions
and augmented reality co-exist in the Manufacturing
Environment.

Work needs to be done in order to create a workflow
suitable for using the HL within the company. Specific
programs need to be written that make the job of creating
holographic guides easier. On the subject of CAD
development, it is also recommended to find a way to make
reviewing models on the HL easier. Now, a model needs
to be converted into the right file format and uploaded
to the HL manually. For some cases, such as showing
a product to a client a few times over the course of a
project, this is an alright approach. Integrating augmented
reality into the company, should not limit the workflow by
having employees constantly fiddle with the right models,
file formats, or device limitations. These things should be
automated.

As shown, a step in holographic assembly can be broken
down into sub steps of three types, showing/hiding, moving,
and rotating. It should be possible to create a user-friendly
program that makes it easy to apply animations to steps.
The model can be loaded in, and parts can be selected and
given one of the possible animations.

Technology is constantly changing and improving. It is wise
to keep up with the latest applications and possibilities
of the HL. Apps can be improved by editing them with
newer software and functions. This version of the HL has
had criticism on some points. It might be the case that
Microsoft is working on a second version of the HL already,
that will have all sorts of improvements. It is recommended
that Benchmark keeps an eye out for announcements of
Microsoft revolving the HL.

Introducing a new technology into a work environment
where specific rules and structure apply is a large operation.
I recommend Benchmark to think about how much they are
willing to invest in this technology. Based on that decide
on where in the company they are going to integrate
augmented reality technology.

It is important to keep in mind that not everyone is
comfortable working with augmented reality or a device
worn around the head. Some people might experience
headaches from either having to cope with holograms and
constantly shining bright light in their eyes or the device

9. Recommendations & future

40

create applications for it. Designing an augmented reality
application also requires some thinking in 3D in terms of
animation and interaction.

Creating an application for the HL is done through Unity,
which has proven not to be the most straightforward
method. Streamlining the workflow would be a necessity if
more of these guiding applications will be made. Ideally a
program is created where, using a graphical user interface,
the guide is created. This also goes for other ways of
integrating the HL in an industrial environment. The
workflow is disrupted quite a bit when someone has to
convert a model or write a whole application before being
able to use the HL.

Emerging technologies can be so new, that while
developing, new features come out. Over the course of
this bachelor assignment, integration of the HL went from
a unity SDK add-on to fully integrated into the software.
A new tracking system for augmented reality has started
collaborating with Microsoft, called Vuforia. Some of
the initial ideas included tracking objects, however, the
HL would only be able to track surroundings. With the
collaboration between Microsoft and Vuforia, tracking
software for specific objects is now available to the HL.

At the moment, the HL asks for too much investment
in development to be a usable solution in the company.
Creating an application demo has shown what is involved
in making something work on the device. Benchmark
has its core business somewhere else, and therefore it
is improbable that deep integration will ever be built by
Benchmark itself. However, this report has also shown that
the device can be used in a variety of other situations where
less development might be needed.

Researching the HL has allowed to get an insight in the
possibilities and limits of the device. The HL is a new
product, an emerging technology. The HL offers imposing
techniques and results. However, compromises are
present that do make the HL somewhat unpractical in
some situations. At the time of writing, the product is still
promoted as a developer product, not yet as a finished
consumer product. The HL is an expensive tool, and
therefore it should always be a consideration if the product
is good enough now to invest in. Benchmark should really
think about what their motive is to start using the HL. If the
main goal would be to make more money, the HL might be
an uncertain investment. The question arises if investing in
the integration of HLs is a viable investment, as a second,
improved version of the product could come out next year.
If the goal is to innovate within the working environment,
investing in the HL offers a look and step into the future
and could offer an advantage of already being acquainted
with applied augmented reality solutions. It could offer a
long-term advantage of being ready when new devices find
their way to the market and prove their usability.
Integrating new emerging technologies is an expensive and
risky investment, especially on a larger scale (for example
when giving the whole Manufacturing crew a HL). The level
of investment Benchmark is willing to make, also determines
what possibilities are present for augmented reality.

Looking at the created concepts, we can conclude that
the HL can be used in several aspects of the industry, in
different ways, with different advantages to them. The way
of integrating depends on to what extend a shift is made
to using HLs. Due to the fact that augmented reality is a
new technology for the manufacturing environment of
Benchmark, it could be wise to integrate solutions step by
step, for example following the concepts from low to high,
letting the company structure and employees get used to
having HLs around to work with.

Investing in the technology alone is not enough. As noticed
during this assignment, there is more to it than just buying
a HL. It costs time and research to get to understand the
device. There is no extensive application collection yet
to choose some usable applications from to use. The HL
is a developers device and so, a developer is needed to

10. Conclusions

41

Teleoperators & Virtual Environments, 1(3), 306-310.
14.	 I3D Past Projects (25 March 2016). holoportation:

virtual 3D teleportation in real-time (Microsoft
Research). Retrieved from: https://www.youtube.com/
watch?v=7d59O6cfaM0

15.	 Iwatani, Y. (1998). Love: Japanese Style. in Wired.
Retrieved from: http://archive.wired.com/culture/
lifestyle/news/1998/06/12899

16.	 Kipman, A. (February 2016). A futuristic vision of the
age of holograms [Tedx presentation]. Received from:
https://www.ted.com/talks/alex_kipman_the_dawn_of_
the_age_of_holograms

17.	 Mann, S., & Nnlf, S. M. (1994). Mediated reality.
18.	 Microsoft (retrieved on 28 November 2016)

Developing for the Microsoft HoloLens. Retrieved from
https://www.microsoft.com/microsoft-HoloLens/en-us/
developers

19.	 Microsoft (retrieved on 28 November 2016)
Holoportation - Microsoft Research. Retrieved from:
https://www.microsoft.com/en-us/research/project/
holoportation-3/

20.	 Microsoft (2016). Microsoft HoloLens | Hardware.
Retrieved from: https://www.microsoft.com/microsoft-
HoloLens/en-us/hardware

21.	 Microsoft (2016) Gestures. Retrieved from: https://
developer.microsoft.com/en-us/windows/holographic/
gestures

22.	 Microsoft (2016). Gaze. Retrieved on 6 December
2016 from: https://developer.microsoft.com/en-us/
windows/holographic/gaze

23.	 Microsoft (2016). Introducing the Microsoft HoloLens
Development Edition. Retrieved on December 4 2016
from: https://www.microsoft.com/microsoft-HoloLens/
en-us/development-edition

24.	 Microsoft (2016). Order options | HoloLens. (n.d.)
Retrieved from: https://www.microsoft.com/microsoft-
HoloLens/en-us/order-now

25.	 Microsoft HoloLens (19 November 2015). Microsoft
HoloLens: Partner Spotlight with Volvo Cars. Retrieved
from https://www.youtube.com/watch?v=DilzwF90vec

26.	 Microsoft HoloLens (29 February 2016). Microsoft
HoloLens: Gesture Input. Retrieved from: https://www.
youtube.com/watch?v=kwn9Lh0E_vU

1.	 Azuma, R. T. (1997). A survey of augmented reality.
Presence: Teleoperators and virtual environments, 6(4),
355-385.

2.	 Benchmark (n.d.) Benchmark. Retrieved from: http://
www.bench.com/

3.	 Bostrom, N. (2003). Are we living in a computer
simulation?. The Philosophical Quarterly, 53(211), 243-
255.

4.	 CPI (n.d.) The Windowless Fuselage. Retrieved from:
http://www.uk-cpi.com/windowless-fuselage/#.
WDQf4ubhBhH

5.	 Dubois, E., & Nigay, L. (2000, April). Augmented reality:
which augmentation for which reality?. In Proceedings of
DARE 2000 on Designing augmented reality environments
(pp. 165-166). ACM.

6.	 Erickson, S. (19 November 2015) Microsoft
HoloLens and Volvo Cars explore the future of car
buying. Retrieved from: https://blogs.windows.
com/devices/2015/11/19/microsoft-HoloLens-
and-volvo-cars-explore-the-future-of-car-
buying/#riTOOUlBgzwpm5Gg.97

7.	 Falk, J., Redström, J., & Björk, S. (1999, September).
Amplifying reality. In International Symposium on
Handheld and Ubiquitous Computing (pp. 274-279).
Springer Berlin Heidelberg.

8.	 Falk, J., & Björk, S. (1999, May). The BubbleBadge: a
wearable public display. In CHI’99 extended abstracts
on Human factors in computing systems (pp. 318-319).
ACM.

9.	 Ford, P. (2 October 2009) Diminished Reality. Retrieved
from http://paulford.com/diminished-reality/#more-5

10.	 Furht, B. (Ed.). (2011). Handbook of augmented reality.
Springer Science & Business Media.

11.	 Glasgow Multimodal Interaction Group (2014).
Augmented Virtuality Prototypes. [Youtube video].
Retrieved from: https://www.youtube.com/
watch?v=fEiyzJDFiJI

12.	 Google (15 November 2016) Now your photos
look better than ever – even those dusty old prints.
Retrieved from: https://blog.google/products/photos/
now-your-photos-look-better-ever-even-those-dusty-
old-prints/

13.	 Hettinger, L. J., & Riccio, G. E. (1992). Visually induced
motion sickness in virtual environments. Presence:

11. References

42

27.	 Microsoft Research (23 November 2016) Mobile
Holoportation. Retrieved from: https://www.youtube.
com/watch?v=nTkFO2xNkIk&feature=youtu.be

28.	 Milgram, P., & Kishino, F. (1994). A taxonomy of
mixed reality visual displays. IEICE TRANSACTIONS on
Information and Systems, 77(12), 1321-1329.

29.	 Milgram, P., & Colquhoun, H. (1999). A taxonomy of
real and virtual world display integration. Mixed reality:
Merging real and virtual worlds, 1, 1-26.

30.	 Moravec, H. (1999). Simulation, consciousness,
existence. Intercommunication 28:98-112 (1999)

31.	 NASA Jet Propulsion Lab (30 March 2016).
Mixed-Reality Tech Brings Mars to Earth.
Retrieved from https://www.youtube.com/
watch?list=PLTiv_XWHnOZpzQKYC6nLf6M9AuBbng_
O8&v=wPOCcG33mJQ

32.	 Ranasinghe, R.A.N. (2012). Digitally stimulating the
sensation of taste through electrical and thermal
stimulation. In: ISWC ‘12 Proceedings of the 2012 16th
Annual International Symposium on Wearable Computers.
DOI 10.1109/ISWC.2012.2

33.	 Robertson, A. (1 March 2016). Microsoft’s HoloLens
is new, improved, and still has big problems. Retrieved
from http://www.theverge.com/2015/5/1/8527645/
microsoft-HoloLens-build-2015-augmented-reality-
headset

34.	 Schnabel, M. A., Wang, X., Seichter, H., & Kvan, T.
(2007). From virtuality to reality and back. Proceedings
of the International Association of Societies of Design
Research, 1, 15.

35.	 Unity (5 July 2016). Unite Europ 2016 - Real World
HoloLens Mixed Reality Development with Unity
Be Part of the Future. Retrieved from: https://www.
youtube.com/watch?v=JbsmKVSSLM8

36.	 The Virtualization Studio - Research. Retrieved from
http://www.cs.cmu.edu/~virtualized-reality/page_
Research.html

37.	 Vroegop, D. (2016) Cimsolutions presentation about
HoloLens.

38.	 Warren, T. (18 June 2016). Microsoft: don’t expect
HoloLens’ field of view to get much better. Retrieved
from: http://www.theverge.com/2015/6/18/8809323/
microsoft-HoloLens-field-of-view-kudo-tsunoda

39.	 Windows Holographic Developer Forum (Edited August
2016) Cannot build and deploy to HoloLens anymore,
SerializationWeaver input line too long. Retrieved
from: https://forums.hololens.com/discussion/1824/
cannot-build-and-deploy-to-hololens-anymore-
serializationweaver-input-line-too-long

43

by definition do not actually exist in reality, they can only
be viewed indirectly, by simulating them, making them
appear through a certain medium. Indirect viewing of real
objects can be done by sampling them, using some sort of
apparatus e.g. a camera.

Finally, a distinction is made between real and virtual images
as follows:

Real images have a certain luminosity at the location they
appear to be1. Virtual images on the contrary, do not have
luminosity at the location they appear to be in. Doing so,
they are able to make a distinction between an photograph
of an object (real image) and a stereoscopic image from two
photographs, resulting in an 3D image. This 3D image is
situated in the real world environment, and therefore the
luminosity is incorrect with its surrounding (virtual image).

Between real and virtual, there is a continuum that mixes
parts of both reality with virtuality.
Milgram and Kishino (1994) use the Virtuality Continuum to
describe the spectrum of mixed reality (see Figure A1).

To get a grip on this broad term of mixed reality, research
was carried out. Besides the terms Milgram and Kishino
set, other forms of mixed reality were found, that are
researched.
Based on the found results, a new continuum was made,
including more in-depth forms of mixed reality. In the
continuum short descriptions of each form are adopted and
some example applications are adapted (see Figure A2).

1	 Milgram and Kishino do not note the theoretical possibility that
a certain real environment can be scanned, and the luminosity from said
surrounding could be projected on a simulated virtual object, resulting in the
definition of a real image. This would however still be a virtual image.

Introduction
Between reality and virtuality there is a whole range of ways
of visualising objects. It can be confusing when a certain
term should be used and what a certain term actually
means. Therefore, a clear taxonomy is needed for the
description of everything from reality to virtuality.

For starters, a clear description is needed for what is
real and what is virtual. Categorizing these terms can be
difficult, since the observations we make of both worlds,
can resemble each other. Using computers we are able
to create physically accurate renderings of all sorts of
objects, resulting in an unclear distinction of observations
of what is real and what is virtual. Something that is real
and something that seems real, can be totally different
objects, since a represented object can be a virtual one.
A picture of an object taken with a camera, represents a
real object. A picture of an object made with a computer
rendering technique, also resembles a real object, however
only the first one is actually representing the real object.
Both observations of said picture, will however look alike
and it can be hard, or either impossible, for the viewer to tell
which one is the actual real object.

The distinction between virtuality and reality is therefore
not arising from the possible observations of an object, but
rather from the set of properties it has. Milgram and Kishino
(1994, p.1324) describe the distinction between the two
sorts as follows;

“Real objects are any objects that have an actual objective
existence.
Virtual objects are objects that exist in essence or effect,
but not formally or actually.”

Furthermore, they describe a taxonomy for observing real
and virtual objects as follows:
Direct viewing is a direct observation of an object without
the interference of a certain medium, with the exception of
transparent mediums that can not alter the real properties
of the object (seeing an object through air or glass).
Indirect viewing is the observation of an object with
interference of a certain medium. Since virtual objects

Appendix A
Research on mixed reality

Mixed Reality (MR)

Virtuality Continuum (VC)

Real
Environment

Augmented
Reality (AR)

Augmented
Virtuality (AV)

Virtual
Environment

Figure A1. Milgram and Kishino’s Virtuality
Continuum.

44

Reality
Augm

ented
Reality

D
im

inished
Reality

Am
plified

Reality

Sim
ulated

Reality
Sim

ulated
Reality

Augm
ented

Virtuality
Virtualized
Reality

Virtual
Reality

Virtuality
Im

m
ersive

Reality

M
ixed Reality

Reality Virtuality continuum

Applications

Real environm
ent, w

here
virtual objects are being
augm

ented in realtim
e.

Virtual environm
ent, w

here
real objects are being
augm

ented in realtim
e.

Real environm
ent that has

been fully recorded an
digitised into a virtual
environm

ent, w
ith full

freedom
 of place of

observing.

C
ollection of environm

ents
w

ithout objects from
 reality or

real objects.

Virtual environm
ent w

here a
user is consciously integrated
as far as possible.

C
ollection of objects that

exist in essence of effect,
but not form

ally or actually.

Real environm
ent, w

here
parts are filtered or
dim

inished w
ith the help of

virtual obects.

W
ay of influencing reality,

w
here parts of reality are

am
plified, w

ithoug editing the
properties of the objects that
are being am

plified, or adding
to the properties being
am

plified.

C
ollection of objects that

have an actual objective
existence.

Philosophical concept of a
reality fully being sim

ulated
w

ithout the observers of that
reality being able to perceive
being sim

ulated.

C
AD

 environm
ent

G
am

e

m
ars om

geving
Terasensor

3D
 D

om
e

Lytro im
m

erse

Layer
AN

C
Lovegety

Pokem
on G

O

H
TC

 Vive

PSVR

O
culus Rift

C
ardboard

VE
RE

hololens

Figure A2. Virtuality-reality continuum with
descriptions and some examples.

45

Hearing is based on sound waves, vibrations in a gaseous
or liquid medium, that are catched by the inner ear. In the
inner ear, vibrations are turned into impulses that the brain
processes to hear sounds. Determining the source of sound
is possible by comparing when either left and right ear hear
the same sound. By creating sound emitting devices that
have a small difference in when they play the same sound
for left and right ear, we can fool the ears in hearing sound
from a certain direction (see Figure A4).

Taste and smell work in a similar way. These senses create
impulses when a certain chemical binds with receptors. We
cannot really fake smell (yet), but according to Ranasinghe
(2012) taste can be created using electrical surges on the
tongue, combined with heat dissipating foil.

Touch is sensed by deformations of (parts of) the body by
a certain pressure external to that part of the body (see
Figure A5). Deformation of the skin and hairs on the skin
send impulses to the brain that conclude something is
being touched on that specific spot. We cannot really fool
ourselves to being touched, as simulating touch would
actually done by forcing pressure on the body, however we
can kind of simulate the reason for touch. Haptic feedback
is an example, used in touch keyboards on smartphones.
The vibrations when pressing a button, resemble the touch
of pressing real buttons.

Reality
Milgram and Kishino (1994, p.1324) determine real objects
with the following;

“Real objects are any objects that have an actual objective
existence.”

Since this determination follows from certain set of
properties of an object that have to be known by the
viewer, it can be difficult to explain reality.

Observations in reality are made through the senses. Over
time we have learned how our senses work and since we
know how they process input, we can generate our own
input.

Sight is formed by photons that hit objects and reflect into
the eye. In the eye cells generate impulses based on the
incoming light and the brain develops an image. But there
is more to it. We can see in three dimensions and estimate
distances between objects. There are several ways we
unconsciously use to perceive our surroundings.

1.	 The difference between the left and right eye. When
looking at a certain object, the distance between the
left and right eye result in a slightly different view of
the object.

2.	 Recognition of objects and their relative size. Objects
that are close to the viewer, appear larger. We use this
illusion to compare sizes of objects we know with the
size we remember them to be, to be able to estimate
how far away they are. Arrangement of the objects also
helps with this (close objects appear in front).

3.	 Focus and defocus of the eye. Some parts of the field
of vision appear blurry, when the viewer focuses on
something closer or further away. This helps estimate if
things are at about the same distance from the viewer.

4.	 Relative movement of objects close and far. When
moving the point of view, object that are close to the
viewer, will appear to move relatively more than objects
that are far away. As the point of view is always a bit
shaky (the brain does cover up for this), unconsciously
the observations of relative movement help a lot to
estimate depth.

The combination of these (subconscious) observations,
enables us to have a great understanding of the world
around us. As we rely heavily on these simple principles for
our vision, it is easy to create our own input 3D input, for
example using stereoscopic displays (see Figure A3).

Relative displacement

Di�erence left and right eye

Focus and defocus, volgorde
en relatieve grootte

Figure A3. Depiction of how to estimate
depth.

46

The virtual environment comprises a global coordinate
system, specifying the relative locations of all objects. Each
object has its own specific properties; a local coordinate
system, encompassing length, height, and depth of the
object, reflective behaviour, and color.
This virtual environment can be simulated and rendered to
make it possible to observe it.
An observation of a virtual object is for example possible
through a simulation of an image.

As stated, a direct observation of total virtuality is not
possible. Every observation a human can make, always
goes via the senses, indicating some form of reality. All
observations made through the senses, are based on
physical properties of reality. To observe, for example, a
virtual cube, first a calculation must be made for all of its
properties, which have to be rendered. The render, in turn,
has to be made visible through another medium, such as a
display. This is always an indirect way of viewing the object.

Theoretically, an observation in virtuality is possible, but
all senses and mediums should be excluded and the brain
should have a direct connection to the virtual world to
directly process virtual impulses.

Simulated Reality
When looking at the amount of realism we can already
accomplish using simulated objects on, for example,
displays, it could well be possible that at a certain moment
in time, the distinction between real and virtual is not
noticeable anymore. Combine this with a possible way to
do direct observations in the virtual world and it might be
impossible to know whether the viewer is actually in the
virtual or the real world (Bostrom, 2003). If a person, for
what reason so ever, forgets that he is actually in the virtual
world, he may start believing that that is his reality. There
is no reason anymore for the viewer to believe in a world
other than his virtual one, and there is no reason to believe
that this virtual world is not the real world. Simulating an
entire truth like that, is called Simulated Reality.
Lots of books and movies incorporate this idea of simulated
reality. In such movies the brain is often connected to some
sort of computer system that creates impulses. One of
the most famous movies to show this, is the Matrix. In the
Matrix all of humanity is put in small spaces, suspended in
some liquid. Their brains are connected to machines using
pins in their head and back. The machine simulates another
reality, where all of humanity lives consciously.
According to several philosophers the concept of simulated

Virtuality
According to Milgram and Kishino (1994), Virtual objects are
objects that exist in essence or effect, but not formally or
actually.

Since virtual objects do actually not exist, a certain
medium is needed to allow a viewer to see a virtual
object. In essence, a virtual object exists out of a set of
virtual properties in a virtual environment. These virtual
properties describe the object, but since they are just virtual
properties, they can not really be observed. Simulating
these properties allows a virtual object to - indirectly - be
observed (see Figure A6).

geluidsbron

oor 1

tijdsverschil geluidsgolf
tussen oor 1 en 2

oor 2

extern object

lichaamvervorming huid
en haren

haren op lichaam

Figure A4: Depiction of how to estimate
the source of a sound.

Figure A5: Depiction of how to sense.

Figure 6: Rendering of 3 cubes with
different properties.

47

adaptations, as happens in amplified reality. In between,
there are several gradations in how reality and virtuality are
mixed and what the total output is.

MR uses tools to influence the senses, fooling them in
sensory observations. People have a strong sense of
empathy and can easily be okay with something looking
or sounding kinda-real. Have a look at children, who see
all sorts of scary things at night. Something resembling
the slightest form of a human figure (a chair with clothes
on it), makes them assume there actually is a real person
sitting in their room. This empathetic power is the key to
mixed reality applications. Looking at something that kinda
resembles anything recognisable can often be enough to
have a viewer believe that he is looking at a thing instead
of for example a group of pixels. The peculiar thing is, that
even if the viewer knows he is looking at a group of pixels,
he is still believing in what the group of pixels represents
and can be emotionally, though irrationally, moved.

Practically, convincing observations of virtual objects in MR
arise from the combination of several senses. For locating
a certain object, sound can help to put the eyes in the right
direction, so combining sound with sight is a great way to
find an object in space.

Amplified Reality
Amplified Reality amplifies certain observable properties of
real physical objects in reality using computers. According to
Falk, Redström & Björk (1999), one of the most important
distinguishable aspects of amplified reality, is the fact
that the result should be publicly observable (in contrast
to, augmented reality (see augmented reality), which is
more user-centered). Furthermore, only initially principally

reality could be rather plausible. Bostrom (2003) was one of
the first to explain this, but has since gotten support from
several other philosophers and scientists. The explanation is
as follows;

Looking at the past, humans have been growing
technologically. As we can see, technological growth has not
yet stopped, and one can expect with reasonable certainty
that humans will keep growing technologically, to reach
a certain point where computer simulations are powerful
enough to simulate large parts of or even whole realities.

Now, at least one of the following is very probable to be
true;
1.	 Humans will never reach a point where these kind of

simulation can be made. Technological growth will have
to cease at a certain point to prevent us from creating
these simulations. A reason for this could be the
scenario where all technology is destroyed, or where
humanity is exterminated. Another reason could be
the physical impossibility of technological growth at a
certain point.

2.	 Humans will sometime be able to create a large amount
of simulations of realities, but due to reasons they do
not want to. Reasons could be the cost of computing
power, ethical reasons, or just a lack of interest in
simulating a certain reality.

3.	 Humans will sometime be able to create large amount
of simulations of realities, and will do so. Following
on that, a whole simulated reality, will in turn be able
to create simulations of realities, creating an infinite
amount of simulated realities. Given that there is
an infinite amount of simulated realities, it is very
improbable that our reality is the first one to create a
simulation and therefore, we are probably living inside a
simulation of reality (see Figure A7).

However, as stated before, one would not be able to
determine whether he is in a simulation or in reality. This
makes it a speculative discussion, as we will probably never
know what reality is.

Mixed Reality
Between the two extremes of the spectrum, there is the
collection of observable reality adjustments, that mixes real
and virtual objects, call Mixed Reality (MR). In MR there is
always some form of real objects and some form of virtual
objects. A certain medium links both worlds to each other.
Such mediums can lead the observations, as happens in
immersive reality or offer more supportive observation

Figure A7: Graphic depiction of simulating
realities

1st simulated reality

2nd simulated reality

...

∞

1st reality

48

Diminished Reality
In Diminished Reality, certain parts of the real world are
filtered and reduced or removed for the observer. Certain
parts of his observation are less available, while his focus
remains with his real surrounding. A reason for this can be
to protect private information in some way.

Another application can be diminishing some interfering
factors from the surrounding. A user can focus on an object,
but due to external factors, he is less able to do so. Filtering
out (some of) the interfering external factors can be a way
to gain more focus for the user.

Active noise cancelling headphones use this principle. The
headphones actively monitor the noise coming from the
surrounding and create a soundwave opposite in phase
to the monitored noise. As both soundwaves are exactly
each other’s opposite, they cancel out, and the noise is
significantly reduced. The result is that the user could use
a lower volume on his headphones or have less distraction
from his surrounding (see Figure A8).

Another example is a technique used to filter visual
imperfections. Old photographs often are printed on
very glossy paper. All sorts of reflective areas from the
environment are visible when looking at the photo,
especially light reflections are constructing the view. Using
a technique that takes several samples of the photograph,
the visual imperfections can be arranged on a different
part of the photograph each sample (Google, 2016) The
samples that do not show the imperfections can digitally be
combined into one perfect picture (see Figure A9).

observable properties of objects are amplified and no
virtual objects will be created that would initially not be
observable.

Examples of amplified reality are projects like the Lovegety,
a product that publicly emits a certain desire of a person to
participate in a certain activity (Iwatini, 1998). Note that the
initial state of the person already incorporated the desire to
participate in an activity and the product just emitted this
publicly to other owners of the product. Another example
is the BubbleBadge, a wearable computer with display
that shows certain characteristics of the wearer to people
looking at the wearer (Falk & Björk, 1997).

Mediated Reality
Mediated Reality is officially the umbrella for observations
made in reality, that are somehow mediated using virtual
objects and computers.

There are two main ways of mediating reality:
1.	 Adding objects to the observations of reality, which is

also and commonly known as Augmented Reality
2.	 Removing objects from the observations of reality,

which is also known as Diminished Reality
Of course an application using both augmented and
diminished reality is also possible. Both will be described
separately in the following chapters.

An important aspect of mediated reality, is that it mediates
the observations of reality (Mann, 1994). As the viewer
observes, his observations are mediated in realtime.

environment noise

anti noise wave

result wave

Figure A8: Example of the working of active
noise reduction.

Figure A9: Example selectively removing unwanted parts
of reality.

49

through, using transparent material to project on. Different
types of displays are usable for AR. Head-mounted
displays (HMD) are strapped to the viewer’s head and
show information directly in front of the eyes of the user.
Handheld displays are small displays, such as smartphones,
that are capable of using video see-through to augment
objects.Spatial displays are displays that do not need to be
held by the viewer.
Since AR is interactive in realtime and registered in 3D, the
environment has to be tracked in some way, to augment
registered objects. Basically there are two ways of tracking
in relation to the surrounding environment, defined and
undefined. If the environment to augment in is defined, the
system is looking for defined features of the environment
that are recognisable. How specific the features are defined
depends on the application. Very specifically defined
features look for an exact object in the environment (see
Figure A10). Here we can see that the exact image is
needed in order for the system to know that it should
augment something. Less specifically defined constraints
are present in for example Snapchat, where the application
augments certain virtual features on a human face. The face
is recognised based on some abstracted features, namely
the presence of some contrast where mouth and eyes
should be (see Figure A11).

While this technique is actually not used in realtime, it could
easily be extrapolated as a diminished reality application.
Likewise application exist for diminishing repetitive patterns,
as wire fences, as long as enough samples are made.

Basically there are two ways of diminished reality
applications. The first one relies on pattern recognition
and prediction of the pattern. This is the case with noise
cancelling, as the headphones should predict how the
noise will be filtered at the same moment it sensors it. This
future-driven way of diminishing is less reliable since the
technology should predict what it should fill in. Especially
abrupt changes in the surrounding are hard to deal with.

The second one constantly samples parts of the surrounding
and combines those to diminish a certain object. This is the
case with the visual imperfections filtering technique. The
technique relies on samples taken in the past. This past-
driven works more reliable since the technology does not
have to ‘create’ something new. This technique, however, is
only usable if it is clear what object to diminish.

Augmented Reality
Augmented Reality (AR) comprises looking directly or
indirectly in realtime at the fysical, real world, to which
virtual information has been added into the context of the
environment. These additive factors can, for example, give
extra information about the environment or simulate extra
objects. This way, a user can be assisted in the tasks he is
doing.

According to Azuma (1997), AR systems have the following
characteristics:
1.	 Combine real and virtual
2.	 Interactive in realtime
3.	 Registered in 3D1

Adding, or augmenting, objects to reality is a fairly broad
term, and therefore, a broad variety in technological levels is
present within AR. Carmigniani and Fuhrt make an extensive
description of the AR field (Fuhrt et al, 2011). Four sorts of
devices are used to create an AR experience: display, input,
tracking, and computing.

Displays are used to view the environment and to augment
objects onto. Displays can either be video see-through,
displaying a camera feed onto a display, or optical see-

1	 With the third statement, Azuma excludes all systems that make
use of 2D overlays, such as Google Glass. One could argue whether such
systems should be included or excluded from the term AR.

Figure A10. Defined environment,
specifically: layer.

Figure A11. Defined environment,
unspecifically.

50

Virtualized Reality
Virtualized Reality is the term for fully virtual environments
that arise from a virtualized real environment using scanning
and processing techniques.
Virtualizing a real environment can be done using cameras
that scan and digitise the environment. Processing the
data allows for the creation of a virtual environment. In the
virtualized reality, the viewer can take on any point of view.

Events in virtualized reality have to be recorded from every
angle. As the viewer in a virtualized environment is able to
take on any point of view, this should be the same when
an event is happening. A visual event should therefore be
captured with multiple cameras, that are able to record the
event from every angle and postprocess it in 3D.

All events in virtualized reality appear from real events,
happening in realtime or that have already happened and
have been recorded and stored.

Practically, creating virtualized reality applications can
be a rather difficult process. Due to the large amount of
control needed over the real environment, it is hard to
record events. The Robotics Institute has been working on
a large virtualized reality sensor. Realization of this sensor
should be accomplished using about 1000 cameras and
200 microphones to collect data within the sensor. Once
finished, the sensor should produce about 5.7 terabyte of
data per second (The Virtualization Studion, n.d.).

Immersive Reality
The goal of immersive reality is to create an experience that
integrates the viewer as much as possible into the virtual
environment, so that he will be most conscious in the VE, or
that the experience created, will be as real as possible.

To create immersive experiences goggles are often used
that create a stereoscopic set of images in front of the user.
Accompanied by sound, this is often enough to get the
viewer immersed into the virtual environment. Tracking the
rotation and place of the head and translating this into the
position of the camera in the virtual space, enlarges the
belief in the reality of the experience.

The most common technique for creating immersive reality
uses small display screens that are placed in front of the
viewer’s eyes. Using lenses, the image is made visible at
this short distance from the eyes. Although development of

As the systems already knows some defined constraints
of the objects it is looking for, it can augment based on
the aspects it finds. In example 1, the system knows how
the image should look in 2D, and using recognition and
distortion of the object in 3D, it is able to create a 3D
space.

Augmented virtuality
Augmented Virtuality (AV) comprises adding elements
from the real world to a virtual environment. Milgram and
Colquhoun Jr. describe augmented virtuality in detail and
add some examples (1999). In AV, a virtual environment is
enhanced using real world objects, or real images.

AV can, for example be found in a lot of video games, where
textures, real images of certain materials, are used to specify
a certain object. Instead of modelling all properties of the
object, only the dimensions are modelled. Using a texture,
can save both a lot of time and computing power, as the
system does not have to calculate how that specific material
behaves.

Another example can be found in immersive reality (see
immersive reality for explanation), where due to the
covering of the eyes, the real world cannot be observed
anymore. Glasgow Multimodal Interaction Group (2014) has
made an application, where the real objects are augmented
in the virtual environment to help the user, for example,
locate his keyboard to then use it as an input device.

Virtual Reality
Virtual reality is the umbrella for all environments consisting
fully out of virtual objects.

Virtual Reality is often used for all sorts of HMDs that
place the viewer inside some sort virtual environment
(VE). Although these HMDs indeed place the user inside
a VE, which is a form of VR, the specific term used for
these goggles, is immersive reality (see immersive reality).
VR is a broader term, comprising all sorts of fully virtual
environments.
Virtual reality can alsof be used in terms of, for example a
game or a CAD-environment, where all objects are indeed
virtual.

51

immersive reality sets has improved over the past years, the
experience still has some disadvantages.

Immersive reality sets on the high-end of the spectrum,
can deliver a convincing experience of the VE, especially
when the user’s movement in 3D is being tracked. Besides
rotation of the head, some sets also track the position of
the viewer in space within a certain area. Sight is one of the
most important senses, and therefore, immersive reality is a
convincing and overwhelming experience.
However, due to the fact that immersive reality is such an
overwhelming experience, the flaws in quality can start
to stand out. The amount of pixels might be large, but by
magnifying them close to the eyes, they can become easily
visible.
When rotation and movement of the user is being tracked,
this amplifies the experience. However, movement has to
be understood by the software and processed into visible
movements for the viewer. As the viewer is fully immersed
into a virtual environment, every movement that has a
form of latency can cause nausea. The impulses from the
vestibular and the eyes do not correspond to each other.
The maximum latency between movement of the viewer
and the moment the display shows this movement, should
be shorter than the viewer can notice.

Three examples of immersive reality in low-end, medium-
end, and high-end that are momentarily available for
purchase:

Google Cardboard uses the fact that almost every person
has a personal smartphone, capable of generating 3D
environments and tracking rotation. A cardboard viewer
with two plastic lenses is used to place the smartphone in.
Samsung Gear VR makes use of the same principle of
putting a smartphone in a viewer, but their viewer has build
in straps to wear the pair of goggles and some extra sensor
for tracking rotation of the user.
On the high-end spectrum, we see a collection of immersive
reality sets that are head-mounted, have built-in sensors
and even use extra cameras to track rotation as well as
position in space. These headsets, like HTC’s Vive use a
dedicated computer, which has to be attached to the set
via cables at all times. This prevents taking the set with
you wherever you go, but it allows for better immersive
experiences due to computing power.

52

Experience
The HL, which kinda resembles a pair of futuristic skiing-
goggles, uses sensors to scan the real surrounding of the
wearer. In the real environment holograms can be placed,
that either consist out of 3D shapes, or are flat planes
flying in the air or pinned against a wall. Once a hologram
is placed in the environment, the viewer can walk towards
it, walk away from it, walk around it, all whilst the hologram
stays in the same place. Looking away will, of course, make
the hologram disappear, as it is out of view. However, when
looking back, the hologram will still be visible on the same
spot. As the HL is a computer on its own, there is no need
for cables during the use of the product. The fully mobile HL
will render all objects on its own in front of the eyes of the
user.

Practically using the HL goes a bit like this:
First the user has to put on the HL. The apparatus needs
to be put on the head of the user, so that the eyes are
covered by the lenses. A scalable headband is used to put
the product in the right place and adjusting it, insures that
the HL will not move during usage.

After putting on the HL, the user basically just sees the real
environment he is in. Before holograms can be seen, they
need to be called and placed somewhere, or an application
that ensures this has to be started. Interacting with the HL
mostly goes about using 3 varieties of natural interaction,
gaze, gestures, and voice.
Gazing in terms of natural user interfaces (NUI) comprises
following the gaze of the user. In the middle of user’s field
of view, a small white dot is placed, which acts a bit like a
computer cursor. Looking at certain objects can be called
gazing. While gazing, selection can be made in one of two
way; using a specific gesture for selecting something, or
through voice commands (Microsoft, 2016d).
Gestures are specified hand movements that are recognised
by the HL. At the moment there are two gestures supported
by the HL, the Airtap, and the Bloom (Microsoft, 2016d).
Airtapping can be done by stretching your arm in front
of you and pretending to tap someone in front of you on
the shoulder. The HL recognises this as a select-gesture.
Varieties on the single-tap, can be tapping and holding,

Introduction
A promising product in mixed reality is the Microsoft HL.
This pair of goggles can project all sorts of holograms into
the surrounding of the viewer. Holograms can be any virtual
3D or 2D object and due to the fact that the HL scans the
environment continuously, holograms can be mapped to
specific places in the environment, or even move around the
real environment (Microsoft, 2016f).

Developer Microsoft already has a lot of ideas about
applications for the HL, and shows potential in a variety of
markets with demos or commercials. However due to the
fact that at the time of writing this thesis the product is
fairly new to the market, not a lot of real applications have
been developed yet. Microsoft has gotten a lot of positive
attention for what the HMD can do at the moment and this
has woken interested parties.

Benchmark is one of the interested parties that likes to
incorporate the HL into her processes. Based on previously
conducted research by Benchmark itself as well as other
students, the decision was made to achieve two HLs to
explore the possibilities within the company.

In this chapter the focus is on the HL. The functions of
the product will be described as well as experiencing the
product. To get a grip on the potential of the product,
some applications of large developers will be looked into.
Furthermore, a description is given on how to develop
applications for this product, and the constraint of the
product are stated. It is important to know both possibilities
as well as limits when creating solutions incorporating such
emerging technologies.

Function
First a description is given on how the device functions
more from an experience point of view, second a more
technical description is given on how the product functions.

Research on HoloLens©

Appendix B

53

in, are stored in the memory of the HL and linked to the
hotspot used for wireless connectivity on that place. This
way, returning to a certain environment, allows for quickly
reloading the already made maps of that environment. Even
the placed holograms and their position in space are stored.

As stated in the part on experiencing the HL, mostly
forms of natural user interfaces are used. This is a good
thing, a handsfree device like the HL should not be
immobilised by the use of input devices that are not
portable e.g. keyboards, mouses etc. The advantage of
using natural input, is that the user does not have to learn
representations for interacting with the interface, such
as cursor is your focus. Fully leaving the graphical user
interface (GUI) behind has not happened yet. When using
the HL, a lot of structural menus are used to navigate
through. These menus are, just as in a GUI, 2D screens with
buttons for settings. The menu can be pinned somewhere
to a wall. It is unclear why they chose for this approach. It
might have to do something with the convenience of not
having to create new ways of navigating through the menus.
Still, unfortunate, as MR opens the door to new and creative
ways of losing 2D representations of menus and cursors.

On the side of the HL, two small speakers have been
placed, directed at the wearer’s ears. Spatial sound, creating
sound that seems to be coming from somewhere in the
environment, is used to help create a feeling of reality to
some holograms.

All input and output are processed in the HL itself. A
specially designed chip, the holographic processor unit
(HPU), does most of the work

All is combined into the HL, which can be used fully mobile
for about 3 hours on the build in battery. The electronics on
the inside are mostly not visible.

tapping and dragging, or double tapping. Support for
these varieties differs per application. The bloom action
can be evoked by putting all fingers of a hand together,
facing upwards and than spreading them out. This action
resembles what happens when the start-button is pressed
on a Windows-computer. Here, a flying start menu will
appear in front of the user (see Figure B1).

The final way of interacting naturally with the HL, is through
voice commands. Voice commands for several actions are
programmed into the HL, such as “select”. If recognised, the
HL will act on these commands.
Once a certain application is started, holograms can be
visible in the physical space. Looking through the lenses,
shows objects that seem to be present in reality. The
holograms are very bright, and appear to be on a specific
point in space.

Technical
The HL can be divided into several parts working together.
Microsoft explains the HL as an optical see-through HMD
using holographic lenses, consisting out of waveguides,
to project stereoscopic images on (Microsoft, 2016c).
According to them, the key to creating a great holographic
experience is to use holograms that are lightpoint rich, i.e.
have high holographic density. Lightpoints can be described
as small collections of light, that together build up the
holograms.

Holograms are placed in the real environment, with regards
to the context. You cannot see a hologram through a table,
for example. Scanning the environment is established using
multiple cameras scanning the surrounding. About 5 times
per second images are taken from the HL cameras and
processed in a specially developed Holo Processor Unit
(HPU) into a 3D map of the surrounding. This is stored
and constantly combined with new data to create a better
understanding of the environment the user is in. This is
called spatial recognition. Spatial recognition is limited to
a few scans per second due to two main reasons. Firstly,
scanning and understanding the environment in 3D
requires a lot of processing power, which drains the battery
faster. Secondly, it is not needed to constantly map the
environment, as it probably will not change noticably over
the course of a few seconds. Furthermore, limiting the
spatial recognition speed, allows for ignoring fast changes
in the environment, such as someone walking by, that are
actually not part of the environment.
The spatial maps of each environment the HL has been

Figure B1. Gestures. Left: Airtap, Right: Bloom.
Retrieved from Microsoft Windows Dev Center.

54

As the rooms have been set up the exact same way, there is
no need for a virtual environment, and the persons involved
can interact with each other in the real environment and
context.

Volvo
Car Builder Volvo has teamed up with HL to create a new
experience of choosing your car (Erickson, 2015). Before
buying or even manufacturing the car, customers can look
at holograms of Volvo cars to help them choose or edit
specific parts of the car[]. Besides the whole car, Volvo uses
some holographic material to show their safety systems
to potential customers[]. Although one could consider
Volvo to be taking innovative steps, incorporating the HL,
questions arise what the advantage of showing a hologram
of a car that is available in the same space is. It might just be
impressing potential buyers.

While researching several applications that have been
developed for the HL, it became clear that most applications
are either developed more as a demo showing off the
potential of the HL, or by companies using enormous
budgets. Most of the impressive applications show an idea
of potential of the device, however, with a pretty specific

focused app.

Applications
To get an idea of the possibilities of the HL, some
applications have been looked into. Those are described
here.

Mars environment - JPL / NASA
Data of the Curiosity Rover and satellites orbiting Mars have
already lead to a large amount of data about the surface of
Mars. Using the HL, NASA/JPL created a 3D visualisation
of the surface of Mars that has opened a whole new way
of researching, by visually being able to see Mars (Nase
Jet Propulsion Lab, 2016). It was even proven possible to
augment the surface of Mars in separate, controlled rooms
for multiple users, that were able to see augmented versions
of each other (see Figure B2).

Holoportation - Microsoft
One of the applications developed by Microsoft is
Holoportation, where a virtual copy of a person is projected
inside another room as a hologram that can be seen
with the HL (Microsoft, 2016b). To create a convincing
experience in Holoportation, two rooms need to be set
up the exact same way. In one room there is a set of 3D
cameras to track events in that room in realtime. The data is
processed and used to create a 3D hologram for the viewer
in the other room, wearing a HL (and possibly vice versa).

Figure B2. Depiction of the NASA/JPL HoloLens application. Retrieved from
Microsoft HoloLens & NASA OnSight YouTub video.

55

Resolution models
The HL can process a maximum of 150.000 vertices safely.
This is the total of all visible holograms. Only using visually
simple objects, this is not a problem, however, the amount
of vertices grows exponentially when using more detailed
objects. Creating realistic curvature in a model, only using
faces, requires more vertices (see Figure B3).

Limited field of vision
The holograms appearing in front of the eyes of the wearer
are limited to the size of the holographic lenses, from
which the lightpoints hit the eye. On the HL, this does not
match the full field of vision humans have. In fact, it is quite
noticeable that the field of vision is quite small compared to
the total human vision. Holograms that are too big to fit on
the holographic lenses, are cut off visibly (see Figure B4).
Looking at small virtual objects, or virtual objects that
appear far away, this is not really a problem. When an object
is cut off visibly, it can become harder to distinguish what
the hologram is and it does detract from the experience of
the holograms being really there.

Surrounding
HL uses spatial mapping to create a virtual representation
of the real world to place holograms in. This does ask for a
surrounding that can actually be mapped. If the user sits in
a location that constantly changes, for example due to large
streams of people passing by, or moving machines, the HL
will not be able to properly map the surrounding.

Constraints and limits
The HL has some limits to what it can do. Despite the
product functions well, there are some limitations the
products has that can lead to constraints when developing
applications for the HL.

Battery
The built-in battery of the HL allows the user to move freely
through the environment he is in. There is no need for extra
cables to power the device and all inputs and outputs are
processed on the device itself. This comes, however, with
a compromise in the form of a maximum time of use. Using
the HL continuously allows for about 2-3 hours of use [].
Although this might seem short in the first place, the battery
powers a small wearable computer, generating 3D spatial
holograms, processes that ask for processing power. It is
important to note this maximum time of use when designing
applications for the HL. An application that should be used
all day long is impossible without recharging the device. The
HL does offer the advantage using it while charging, but
this does create the need for cables or portable batteries,
a trade-off for the freedom that the HL offers in the first
place.

Weight
Another point that has to do with maximum time of usage,
is the weight of the product. The product does attach nicely
to the head of the wearer, with a soft headband, however
wearing the HL for longer periods of time can create red
imprints on the forehead and nose, where the HL rests.
Furthermore, it might be heavy on the muscles of the
neck to constantly carry the extra weight. Especially when
bending the head to look down, the extra momentum needs
to established by the muscles, possibly leading to fatigue.

Figure B3: Several virtual objects; left: cube: 8
vertices. Middle: monkeyhead: 507 vertices. Right:
car: over 2.000.000 vertices.

Figure B4: Depiction of field of view while
wearing HL.. Retrieved from Polygon.com.

56

Overheating
The HL is cooled passively. Tasks that ask a lot from the
processor could cause the device to overheat. A built-in
safety mechanism ensures the materials of the HL will not
melt or break when it is used extensively, by shutting of
active applications. This will take place when the average
processing power is above a certain criteria for at least one
minute.

Optical see through
The optical see through lenses of the HL are transparent,
allowing light from the surrounding to be visible to the eyes
of the viewer. Lightpoints are added to the observations
the viewer makes and they blend with the surrounding,
depending on the strength of the light of the surrounding
and HL. Basically you could say, that the strongest light
source will be best visible. Using the HL in a bright
environment, creates holograms that seem transparent,
due to the environment being as strong as the light
created by the HL. Dark environments are better suitable
to project holograms in. A depiction of this is made in [fig],
where gradations from white to respectively each color
channel to black are made. Note that full black colors will
never be visible when a light source is used to project
something. Black is the absence of light, and it will always
be transparent (see Figure B5).

Figure: B5 Depiction of how
lightpoints react to light (up) and
dark (bottom) environment.

57

models existing out of filled solids. Surface modeling
programs create models of which only the outside
properties of the surfaces are used to create visuals.

Compose
Once created, models can be prepared to be used on the
HL using either Unity or DirectX. Unity is a 3D environment
that is used often for the development of games. Microsoft
specifies to use Unity on their website. Unity has created
plug-ins for HL developers.

Develop
Visual Studio is used to turn the composed Unity
environment into something usable for the HL. Visual
Studio is a platform created by Microsoft for development
of especially Windows applications. In Visual Studio extra
functionality can be coded.

Deploy
Once the application is finished, it needs to be deployed
on the HL. Another way to view models on the HL, is by
sideloading them into a Microsoft’s shared cloud storage
system, OneDrive. The models need to be a stored in the
specific Filmbox file format (.fbx) in order to be opened on
the HL.

3D modellers have extended knowledge on creating
models, animations, and working with vertices and faces.
Domain experts should know the ins and outs of the
domain that the models are being developed for, for
example which filetypes can be used. As the HL works
on a version of Windows 10, it comes in handy to have a
developer for that field, to create extra functionality. AR
experts are needed to develop for interaction in AR, as this
is a whole different field of interaction regarded to GUIs. As
users wearing the HL are able to walk around the real world,
new scenarios open up, for example, what happens with an
application when the user just walks out of its dimensions?
Or how does a digital button look from behind? Finally a
‘unity wizard’ should combine all input into a application
that can be used on the HL.

Currently, the only available edition is the developer edition,
which is not meant for the consumer sector yet. At the
moment of writing this thesis, no plans have been revealed
for release of a commercial version of the product. As with
most developer editions of products, they are meant for
getting to know the product and developing content for it.
In order to use the HL at the moment, specific applications
have to be written to fulfill a specif goal. The advantage
is that the application will suit the exact needs of the
developer, in this case, Benchmark. The disadvantage,
however, is that the full application will need to be written
for the HL. As Benchmark has two developer editions of the
HL, it is good to know how an application is created.

Here, developing applications for the HL is described.

According to Vroegop (2016), creating models and
applications for the HL takes on 4 steps: design, compose,
develop, deploy.

Design
To show content on the HL, models need to be created in
3D. The HL uses models existing out of vertices and faces
(surface models). Vertices are points in a virtual coordinate
system, that can be connected to each other, forming edges
(lines between vertices). Faces are created from 3 or more
vertices and form a surface (see Figure C1).

Programs that can be used to create models for the HL

include:
•	 Maya
•	 3DS Max
•	 Blender
•	 Sketchup
In general, CAD/CAM programs are not suitable to be
used in the development of surface models, as they create

Development for HL
Appendix C

Figure C1: Vertices, edges, and faces.

58

 ShowObjectsOf(StepOneContainer);
 HideObjectsOf(StepTwoContainer);
 HideObjectsOf(StepThreeContainer);
 movementStepOne = GameObject.
FindObjectOfType(typeof(MovementStepOne)) as
MovementStepOne;
 movementStepOne.StepOne();
 break;
 case 2:
 ShowObjectsOf(StepTwoContainer);
 HideObjectsOf(StepOneContainer);
 HideObjectsOf(StepThreeContainer);
 //Debug.Log(“Step number” +
StepNumber);
 movementStepTwo = GameObject.
FindObjectOfType(typeof(MovementStepTwo)) as
MovementStepTwo;
 movementStepTwo.StepTwo();

 break;
 case 3:
 ShowObjectsOf(StepThreeContainer);
 HideObjectsOf(StepTwoContainer);
 HideObjectsOf(StepFourContainer);
 movementStepThree = GameObject.
FindObjectOfType(typeof(MovementStepThree)) as
MovementStepThree;
 movementStepThree.StepThree();
 break;
 case 4:
 ShowObjectsOf(StepFourContainer);
 HideObjectsOf(StepThreeContainer);
 HideObjectsOf(StepFiveContainer);
 movementStepFour = GameObject.
FindObjectOfType(typeof(MovementStepFour)) as
MovementStepFour;
 movementStepFour.StepFour();
 break;
 case 5:
 ShowObjectsOf(StepFiveContainer);
 HideObjectsOf(StepFourContainer);
 HideObjectsOf(StepSixContainer);
 movementStepFive = GameObject.
FindObjectOfType(typeof(MovementStepFive)) as
MovementStepFive;
 movementStepFive.StepFive();
 break;
 case 6:
 ShowObjectsOf(StepSixContainer);
 HideObjectsOf(StepFiveContainer);
 //HideObjectsOf(StepSixContainer);
 movementStepSix = GameObject.
FindObjectOfType(typeof(MovementStepSix)) as
MovementStepSix;
 movementStepSix.StepSix();
 break;
 }

 }

 private void _gestureRecognizer_
TappedEvent(InteractionSourceKind source, int tapCount,
Ray headRay) {
 StepUp();

 }

 void HideObjectsOf(GameObject ContainingObjects) {
 foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
 r.enabled = false;
 }

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.VR.WSA.Input;
using UnityEngine.Windows.Speech;

public class HandlerScript: MonoBehaviour {

 private GestureRecognizer _gestureRecognizer;

 private int StepNumber;

 public MovementStepOne movementStepOne;
 public MovementStepTwo movementStepTwo;
 public MovementStepThree movementStepThree;
 public MovementStepFour movementStepFour;
 public MovementStepFive movementStepFive;
 public MovementStepSix movementStepSix;
 //public MovementStepSeven movementStepSeven;

 public GameObject StepOneContainer;
 public GameObject StepTwoContainer;
 public GameObject StepThreeContainer;
 public GameObject StepFourContainer;
 public GameObject StepFiveContainer;
 public GameObject StepSixContainer;
 //public GameObject StepSevenContainer;

 // Use this for initialization
 void Start() {

 HideObjectsOf(StepTwoContainer);
 HideObjectsOf(StepThreeContainer);
 HideObjectsOf(StepFourContainer);
 HideObjectsOf(StepFiveContainer);
 HideObjectsOf(StepSixContainer);
 //HideObjectsOf(StepTwoContainer);

 //Instead of tap recognizer, use different tap
input

 _gestureRecognizer = new GestureRecognizer();
 _gestureRecognizer.TappedEvent += _
gestureRecognizer_TappedEvent;
 _gestureRecognizer.
SetRecognizableGestures(GestureSettings.Tap);
 _gestureRecognizer.StartCapturingGestures();

 }

 // Update is called once per frame
 void Update() {

 // instead of airtap, left mouse click is
simulated.
 if (Input.GetMouseButtonDown(0)) {
 // show button clicked on console
 Debug.Log(“Pressed left click.”);
 //ObjectShouldMove = true;
 // increment the stepnumber when mouse is
clicked
 StepUp();
 } else if (Input.GetMouseButtonDown(1)) {
 // show button clicked on console
 Debug.Log(“Pressed right click.”);
 // increment the stepnumber when mouse is
clicked
 StepDown();
 }

 switch (StepNumber) {
 case 1:

Application code
Appendix D

59

 public Transform BracketStartPos;
 public Transform BracketEndPos;
 public GameObject Bracket;

 void Start() {
 SubStepNumber1 = 0;
 Speed = 0.5 f;
 RotationSpeed = 100 f;
 TeleportSpeed = 1000 f;
 }

 void Update() {

 }

 public void StepOne() {
 Debug.Log(“MovementStepOne”);
 StartCoroutine(DoMovement1());
 }

 IEnumerator DoMovement1() {

 switch (SubStepNumber1) {
 case 0:
 Debug.Log(“Substep 1.0”);
 SubStepNumber1 = 1;
 break;

 case 1:
 Debug.Log(“SubStep 1.1”);
 if (Screwdriver.transform.position !=
ScrewdriverEndPos.transform.position) {
 Screwdriver.transform.
position = Vector3.MoveTowards(transform.position,
ScrewdriverEndPos.transform.position, Speed * Time.
deltaTime);
 } else
 SubStepNumber1 = 2;
 break;
 case 2:
 Debug.Log(“Substep 1.2”);
 Screwdriver.transform.Rotate(0, 0,
RotationSpeed * Time.deltaTime);
 yield
 return new WaitForSeconds(2 f);
 SubStepNumber1 = 3;
 break;
 case 3:
 Debug.Log(“Substep 1.3”);
 Screwdriver.transform.Rotate(0, 0, 0);
 if (Screwdriver.transform.position !=
ScrewdriverStartPos.transform.position) {
 Screwdriver.transform.
position = Vector3.MoveTowards(transform.position,
ScrewdriverStartPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber1 = 4;
 break;
 case 4:
 Debug.Log(“Substep 1.4”);
 if (Bracket.transform.position !=
BracketEndPos.transform.position) {
 Bracket.transform.position =
Vector3.MoveTowards(Bracket.transform.position,
BracketEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber1 = 5;
 break;
 case 5:
 Debug.Log(“Substep 1.5”);
 yield
 return new WaitForSeconds(1 f);
 Bracket.transform.position =
BracketStartPos.transform.position;

 SubStepNumber1 = 0;
 break;
 }

 }

}

public class MovementStepTwo: MonoBehaviour {

 private int SubStepNumber2;
 public float Speed;

 void ShowObjectsOf(GameObject ContainingObjects) {
 foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
 r.enabled = true;
 }

 public void StepUp() {
 StepNumber++;
 }

 public void StepDown() {
 StepNumber--;
 }

}

public class SpeechHandler: MonoBehaviour {

 public HandlerScript handlerScript;

 KeywordRecognizer keywordRecognizer = null;
 Dictionary < string, System.Action > keywords = new
Dictionary < string, System.Action > ();

 // Use this for initialization
 void Start() {

 keywords.Add(“Reset world”, () => {
 // Call the OnReset method on every
descendant object.
 this.BroadcastMessage(“OnReset”);
 });

 keywords.Add(“next step”, () => {
 handlerScript = GameObject.
FindObjectOfType(typeof(HandlerScript)) as
HandlerScript;
 handlerScript.StepUp();
 });

 keywords.Add(“previous step”, () => {
 handlerScript = GameObject.
FindObjectOfType(typeof(HandlerScript)) as
HandlerScript;
 handlerScript.StepDown();
 });

 // Tell the KeywordRecognizer about our
keywords.
 keywordRecognizer = new
KeywordRecognizer(keywords.Keys.ToArray());

 // Register a callback for the
KeywordRecognizer and start recognizing!
 keywordRecognizer.OnPhraseRecognized +=
KeywordRecognizer_OnPhraseRecognized;
 keywordRecognizer.Start();

 }

 private void KeywordRecognizer_
OnPhraseRecognized(PhraseRecognizedEventArgs args) {
 System.Action keywordAction;
 if (keywords.TryGetValue(args.text, out
keywordAction)) {
 keywordAction.Invoke();
 }
 }

 // Update is called once per frame
 void Update() {

 }
}

public class MovementStepOne: MonoBehaviour {

 private int SubStepNumber1;

 public float Speed;
 public float RotationSpeed;
 private float TeleportSpeed;

 //variables step 1

 public Transform ScrewdriverStartPos;
 public Transform ScrewdriverEndPos;
 public GameObject Screwdriver;

60

 if (largePartOne.transform.position !=
largePartOneEndPos.transform.position) {
 largePartOne.transform.position =
Vector3.MoveTowards(largePartOne.transform.position,
largePartOneEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber2 = 4;
 break;
 case 4:
 Debug.Log(“Substep 2.4”);

 if (largePartTwo.GetComponent <
Renderer > ().enabled == false) {
 largePartTwo.GetComponent <
Renderer > ().enabled = true;
 } else
 yield
 return new WaitForSeconds(1 f);
 SubStepNumber2 = 5;
 break;
 case 5:
 Debug.Log(“Substep 2.5”);
 if (largePartTwo.transform.position !=
largePartTwoEndPos.transform.position) {
 largePartTwo.transform.position =
Vector3.MoveTowards(largePartTwo.transform.position,
largePartTwoEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber2 = 6;
 break;
 case 6:
 yield
 return new WaitForSeconds(2 f);

 if (largePartOne.GetComponent <
Renderer > ().enabled == true) {
 // Debug.Log(largePartOne.
GetComponent<Renderer>().enabled);
 largePartOne.GetComponent <
Renderer > ().enabled = false;
 }
 if (largePartTwo.GetComponent <
Renderer > ().enabled == true) {
 //Debug.Log(largePartTwo.
GetComponent<Renderer>().enabled);
 largePartTwo.GetComponent <
Renderer > ().enabled = false;
 }

 //largePartOne.
GetComponent<Renderer>().enabled = false;
 //largePartTwo.
GetComponent<Renderer>().enabled = false;

 largePartOne.transform.position =
largePartOneStartPos.transform.position;
 largePartTwo.transform.position =
largePartTwoStartPos.transform.position;

 yield
 return new WaitForSeconds(0.5 f);
 CouplePiece.transform.position =
CouplePieceStartPos.transform.position;
 SubStepNumber2 = 0;
 break;
 }
 }
}

public class MovementStepThree: MonoBehaviour {

 private int SubStepNumber3;
 private float Speed;
 //variables step 3

 public Vector3 StartRotation;

 public GameObject box;
 public Transform boxStartPos;
 public Transform boxEndPos;

 public GameObject bottomBracket;
 public Transform bottomBracketStartPos;
 public Transform bottomBracketEndPos;
 private bool hidden;

 private Vector3 zeroPos;
 // Use this for initialization
 void Start() {
 Speed = 1 f;
 SubStepNumber3 = 0;
 zeroPos = new Vector3(0, transform.position.y,

 public GameObject CouplePiece;
 public Transform CouplePieceStartPos;
 public Transform CouplePieceEndPos;

 public GameObject largePartOne;
 public Transform largePartOneStartPos;
 public Transform largePartOneEndPos;

 public GameObject largePartTwo;
 public Transform largePartTwoStartPos;
 public Transform largePartTwoEndPos;

 // Use this for initialization
 void Start() {
 SubStepNumber2 = 0;
 Speed = 1 f;

 largePartOne.GetComponent < Renderer >
().enabled = false;
 largePartTwo.GetComponent < Renderer >
().enabled = false;

 largePartOne.transform.position =
largePartOneStartPos.transform.position;
 largePartTwo.transform.position =
largePartTwoStartPos.transform.position;
 CouplePiece.transform.position =
CouplePieceStartPos.transform.position;

 }

 // Update is called once per frame
 void Update() {

 }

 public void StepTwo() {
 //Debug.Log(“MovementStepTwo”);
 StartCoroutine(DoMovement2());
 }

 IEnumerator DoMovement2() {

 switch (SubStepNumber2) {
 case 0:
 Debug.Log(“Substep 2.0”);
 SubStepNumber2 = 1;
 break;
 case 1:
 Debug.Log(“Substep 2.1”);
 // if statement?
 if (largePartOne.GetComponent <
Renderer > ().enabled == true) {
 // Debug.Log(largePartOne.
GetComponent<Renderer>().enabled);
 largePartOne.GetComponent <
Renderer > ().enabled = false;
 }
 if (largePartTwo.GetComponent <
Renderer > ().enabled == true) {
 //Debug.Log(largePartTwo.
GetComponent<Renderer>().enabled);
 largePartTwo.GetComponent <
Renderer > ().enabled = false;
 }
 if (CouplePiece.transform.position !=
CouplePieceEndPos.transform.position) {
 CouplePiece.transform.position =
Vector3.MoveTowards(CouplePiece.transform.position,
CouplePieceEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber2 = 2;
 break;
 case 2:
 Debug.Log(“Substep 2.2”);

 if (largePartOne.GetComponent <
Renderer > ().enabled == false) {
 largePartOne.GetComponent <
Renderer > ().enabled = true;
 } else
 yield
 return new WaitForSeconds(1 f);
 SubStepNumber2 = 3;
 break;
 case 3:
 Debug.Log(“Substep 2.3”);

61

 yield
 return new WaitForSeconds(3 f);
 }

 void HideObjectsOf(GameObject ContainingObjects) {
 foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
 r.enabled = false;
 hidden = true;
 }

 void ShowObjectsOf(GameObject ContainingObjects) {
 foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
 r.enabled = true;
 hidden = false;
 }
}

public class MovementStepFour: MonoBehaviour {

 public GameObject Screwdriver;
 public Transform ScrewDriverStartPos;
 public Transform ScrewDriverEndPos;

 private float Speed;
 private float RotationSpeed;
 private int SubStepNumber4;

 // Use this for initialization
 void Start() {
 SubStepNumber4 = 0;
 Screwdriver.transform.position =
ScrewDriverStartPos.transform.position;
 Speed = 1 f;
 RotationSpeed = -100 f;
 }

 // Update is called once per frame
 void Update() {

 }

 public void StepFour() {
 StartCoroutine(DoMovement4());
 }

 IEnumerator DoMovement4() {
 switch (SubStepNumber4) {
 case 0:
 Debug.Log(“Substep 4.” +
SubStepNumber4);
 SubStepNumber4 = 1;
 break;

 case 1:
 Debug.Log(“Substep 4.” +
SubStepNumber4);
 if (Screwdriver.transform.position !=
ScrewDriverEndPos.transform.position) {
 Screwdriver.transform.position =
Vector3.MoveTowards(Screwdriver.transform.position,
ScrewDriverEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber4 = 2;
 break;
 case 2:
 Debug.Log(“Substep 4.” +
SubStepNumber4);
 Screwdriver.transform.Rotate(0, 0,
RotationSpeed * Time.deltaTime);
 yield
 return new WaitForSeconds(2 f);
 SubStepNumber4 = 3;
 break;
 case 3:
 Debug.Log(“Substep 4.” +
SubStepNumber4);
 if (Screwdriver.transform.position !=
ScrewDriverStartPos.transform.position) {
 Screwdriver.transform.position =
Vector3.MoveTowards(Screwdriver.transform.position,
ScrewDriverStartPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber4 = 4;
 break;
 case 4:
 yield
 return new WaitForSeconds(1 f);
 SubStepNumber4 = 0;
 break;

transform.position.z);
 box.transform.position = boxStartPos.transform.
position;
 bottomBracket.transform.position =
bottomBracketStartPos.transform.position;
 HideObjectsOf(box);

 box.transform.rotation = Quaternion.Euler(250,
180, 0);
 // box.transform.rotation = Quaternion.
AngleAxis(250, Vector3.right);
 // box.transform.rotation = Quaternion.
AngleAxis(180, Vector3.left);
 }

 // Update is called once per frame
 void Update() {

 }

 public void StepThree() {
 //Debug.Log(“MovementStepThree”);
 StartCoroutine(DoMovement3());
 }

 IEnumerator DoMovement3() {
 switch (SubStepNumber3) {
 case 0:
 SubStepNumber3 = 1;
 break;

 case 1:
 Debug.Log(“SubStepNumber 3.” +
SubStepNumber3);
 if (bottomBracket.transform.position !=
bottomBracketEndPos.transform.position) {
 bottomBracket.transform.position =
Vector3.MoveTowards(bottomBracket.transform.position,
bottomBracketEndPos.transform.position, Speed * Time.
deltaTime);
 } else
 SubStepNumber3 = 2;
 break;

 case 2:
 Debug.Log(“SubStepNumber 3.” +
SubStepNumber3);
 if (hidden) {
 ShowObjectsOf(box);
 }
 yield
 return new WaitForSeconds(1 f);
 SubStepNumber3 = 3;
 break;
 case 3:
 Debug.Log(“SubStepNumber 3.” +
SubStepNumber3);
 if (box.transform.position !=
boxEndPos.transform.position) {
 box.transform.position = Vector3.
MoveTowards(box.transform.position, boxEndPos.
transform.position, Speed * Time.deltaTime);
 } else SubStepNumber3 = 4;
 break;
 case 4:
 // Debug.Log(“SubStepNumber 3.” +
SubStepNumber3);
 Debug.Log(box.transform.eulerAngles.x);
 if (box.transform.eulerAngles.x > 270.4
f) {
 box.transform.Rotate(0.2 f, 0, 0);
 //box.transform.position = Vector3.
MoveTowards(box.transform.position, zeroPos, Speed *
Time.deltaTime);
 } else
 SubStepNumber3 = 5;
 break;

 case 5:
 yield
 return new WaitForSeconds(1 f);
 if (hidden == true) {
 HideObjectsOf(box);
 }

 box.transform.position = boxStartPos.
transform.position;
 box.transform.rotation = Quaternion.
Euler(250, 180, 0);
 SubStepNumber3 = 0;
 break;
 }

62

 IEnumerator DoMovement6() {

 switch (SubStepNumber6) {
 case 0:
 SubStepNumber6 = 1;
 break;
 case 1:
 if (Bracket.transform.position !=
BracketEndPos.transform.position) {
 Bracket.transform.position =
Vector3.MoveTowards(Bracket.transform.position,
BracketEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber6 = 2;
 break;
 case 2:
 if (Screwdriver.transform.position !=
ScrewdriverEndPos.transform.position) {
 Screwdriver.transform.position =
Vector3.MoveTowards(Screwdriver.transform.position,
ScrewdriverEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber6 = 3;
 break;
 case 3:
 Screwdriver.transform.Rotate(0, 0,
RotationSpeed * Time.deltaTime);
 yield
 return new WaitForSeconds(2 f);
 SubStepNumber6 = 4;
 break;
 case 4:
 Screwdriver.transform.Rotate(0, 0, 0);
 if (Screwdriver.transform.position !=
ScrewdriverStartPos.transform.position) {
 Screwdriver.transform.position =
Vector3.MoveTowards(Screwdriver.transform.position,
ScrewdriverStartPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber6 = 5;
 break;
 case 5:
 yield
 return new WaitForSeconds(1 f);
 Bracket.transform.position =
BracketStartPos.transform.position;
 SubStepNumber6 = 0;
 break;

 }

 }
}

 }

 }
}

public class MovementStepFive: MonoBehaviour {

 public GameObject Simcard;
 public Transform SimcardStartPos;
 public Transform SimcardEndPos;
 private float Speed;
 private int SubStepNumber5;

 // Use this for initialization
 void Start() {
 Speed = 1 f;
 SubStepNumber5 = 0;
 Simcard.transform.position = SimcardStartPos.
transform.position;
 }

 // Update is called once per frame
 void Update() {

 }

 public void StepFive() {
 StartCoroutine(DoMovement5());
 }

 IEnumerator DoMovement5() {
 switch (SubStepNumber5) {
 case 0:
 SubStepNumber5 = 1;
 break;
 case 1:
 if (Simcard.transform.position !=
SimcardEndPos.transform.position) {
 Simcard.transform.position =
Vector3.MoveTowards(Simcard.transform.position,
SimcardEndPos.transform.position, Speed * Time.
deltaTime);
 } else SubStepNumber5 = 2;
 break;
 case 2:
 yield
 return new WaitForSeconds(1 f);
 Simcard.transform.position =
SimcardStartPos.transform.position;
 SubStepNumber5 = 0;
 break;
 }

 }
}

public class MovementStepSix: MonoBehaviour {

 public GameObject Screwdriver;
 public Transform ScrewdriverStartPos;
 public Transform ScrewdriverEndPos;

 public GameObject Bracket;
 public Transform BracketStartPos;
 public Transform BracketEndPos;

 private int SubStepNumber6;
 private float Speed;
 private float RotationSpeed;

 // Use this for initialization
 void Start() {
 Speed = 1 f;
 RotationSpeed = -100 f;

 Screwdriver.transform.position =
ScrewdriverStartPos.transform.position;
 Bracket.transform.position = BracketStartPos.
transform.position;
 }

 // Update is called once per frame
 void Update() {

 }

 public void StepSix() {
 StartCoroutine(DoMovement6());
 }

2017

