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Preface

This report is written in the context of the Bachelor 
Assignment of Industrial Design at the University of Twente. 
This assignment came forth from a meeting at Benchmark. 
The initial idea was to create a technical project involving 
an application for manufacturing. During the course of the 
study, most information on manufacturing and production 
remains theoretical. Gaining work experience in the industry 
as an industrial designer could be a great addition.

During our meeting the subject of the Microsoft HoloLens© 
was discussed. The HoloLens© is a wearable computer that 
allows you to see holograms in your surroundings. As I have 
always been interested in emerging technologies, I was 
immediately interested. The decision was made to create 
the assignment around application and integration of this 
device in the manufacturing environment.

Benchmark gave me the experience to work within a large 
corporation. To some extend it has shown me how a large 
corporation operates and gave me some scope on the pros 
and cons of such an enterprise. 

The project created a challenge, as it differs from other 
university projects or courses. During the project, I have 
acquired new skills and insights. It has been interesting to 
work with the HoloLens©. Thanks to this project I am now 
able to use the Unity game engine and gained experience in 
C# programming. The most important thing was learning to 
see technology as a tool instead of a solution. 
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This report comprises possible solutions for problems 
observed and analysed in the manufacturing process of 
Benchmark Electronics Almelo. The focus is on application 
and integration of the Microsoft HoloLens© in the current 
and future manufacturing process. Two focus points 
are discussed, namely improvement of Work Process 
Instructions and data gathering for process improvements. 

On a low-, mid-, and high-tech level, elaborations are made 
on how augmented holograms can be integrated into the 
process. This results in descriptions of workflow for several 
operator functions. Especially guidance during assembly and 
guidance during quality inspection seem to be promising 
directions for the use of holograms within the scope of the 
researched subjects.

Finally a proposal of a HoloLens© application for holographic 
guidance during assembly is described. Conclusions are 
drawn about the use of the HoloLens© in the manufacturing 
environment.

1. Abstract
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augmented reality using HL in mind, ideas and concepts 
were created. The HL is incorporated in each of the 
concepts in a different way. Eventually a proposal for a 
demo application to showcase on the HL is created. Using 
Unity and Visual Studio, the proposal was made into a 
holographic application for guidance during assembly.

We live in a world that is getting more and more digital. 
Interaction takes place mostly through digital interfaces 
on smartphones or computers. Our digital interaction 
has already evolved from a command line interface to 
a graphical user interface. Instead of telling computers 
exactly what to do, we have created digital metaphors in 
the form of pointers and icons. The next step will be the 
natural interface, where interaction with the digital world 
is intuitive and resembles the way we interact with the real 
world. Mixing reality and virtuality is a hot topic and more 
and more companies are emerging with new technologies 
allowing users to interact with the digital world in an 
intuitive way. 

Benchmark Electronics Almelo (to be named Benchmark 
hereafter) is a company interested in emerging technologies 
that could benefit the workflow. Every quarter, Benchmark 
invests into a technology related project that could 
improve production. As some graduation projects in the 
field of augmented reality have been executed within 
Benchmark over the years, a certain experience had been 
acquired on the possibilities of augmented reality. When 
Microsoft released the HoloLens© (HL) near the end of 
2016, this technology was chosen as project to research 
and investigate further. The HL is a wearable computer 
that allows users to emerge in augmented reality, where 
interaction is possible between the real and virtual world. 
Using holograms and natural interaction, one can interact 
with virtual objects in his real surroundings. As this is 
a relatively new topic, the question has arisen how the 
interaction could look within the scope of a company. Who 
will be interacting with augmented holograms and how will 
this look? How does this go about using a device that is 
present?

This Bachelor Assignment examines the technology of 
augmented reality using Microsoft HL as well as some 
processes within Benchmark to see if and how the two 
can match each other. The report starts off with additional 
context about the company and its products. Several 
tours through the production areas have given insight in 
the processes and workflow of the company. Interviews 
and talks have brought up some of the present problems 
Benchmark is facing. While keeping the possibilities of 

2. Introduction



9

This chapter elaborates on the company Benchmark and the 
present Manufacturing Areas. It offers context and allows 
for better understanding of the later parts of the report.

3.1 Benchmark
Benchmark develops, produces, and assembles products 
containing electronic components for a business market. 
Worldwide 18 enterprises are present. Almelo is one of the 
four sites that houses engineering besides manufacturing, 
allowing for involvement in the whole process. A total of 
about 400 employees are working, divided over Engineering 
and Manufacturing. Walls and doors prevent the two from 
interacting with each other directly.

3.2 Products
Benchmark manufactures a lot of products that include 
electronics. Specifically, printed circuit boards (PCBs) are 
one of the main concerns. Using PCBs, products can be 
made on a small scale. PCBs are either shipped directly to 
clients or used in the creation of an assembly internally. 
PCBs are susceptible to defects when handled uncarefully, 
and due to the size, it is hard to determine whether a PCB 
is broken without testing it electrically. Manufacturing 
products with electronic components is complex, as there 
are lots of aspects that can result into defective products 
or products that will malfunction in the future. Benchmark 
wants to be a reliable partner to its clients, thus strives 
to prevent defects in outgoing products. Strict work 
instructions are used and all products are checked carefully 
on quality. Before shipping, every product is tested and 
evaluated.

3.3 Engineering Area
The Engineering Area is situated in a large room, where 
different sub departments are grouped together and 
surrounded by walls. Groups are either based on client 
or on function, such as design engineering or software. 
Engineering controls Manufacturing. Some of the main tasks 
of Engineering consist of:
•	 Creation of CAD-models
•	 Purchase of product parts
•	 Creation of Work Process Instructions (WPI)

3. Context
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Several different manufacturing areas are present in the 
building. Here, the different areas are described. Figure 1 
also shows a visual representation of the different sorts of 
areas.

3.4 Clean Room
The Clean Room is used for assembly, quality inspection 
and testing of products from a specific product line. Most 
product parts come in from the warehouse, a restricted 
area for storage of larger and more expensive parts. 
Before entering the area, the parts are cleaned using 
pressurized air and alcoholic cloth. Once cleaned, the parts 
are handed to a Water Spider operator, who prepares 
orders of assembly kits. The parts needed for assembly 
of a product are combined with necessary labels, Kanban 
(‘tech-consumables’, small often used parts, like screws), 
and tools. All is numbered according to the assembly order. 
Carts are used for moving the orders to the assembly 
operators, who assemble products either on a table, or 
when a table is too small, on a large cart. Folders containing 
paper WPI are available that show how to assemble each 
product step by step. Finished products go through quality 
inspections, where an operator checks the product for visual 
and mechanical errors. After passing, a test engineer tests 
the product for defects in functionality by connecting it to 
a testing machine. If the product passes, it will be stored 
in stock, waiting to be sent out to the client or to be sent 
back as a prefab part into another assembly. In the Clean 
Room rules apply to clothing and air condition to prevent 
contaminations on products.
 

3.5 PCB Area
The PCB line is set in a long hallway and comprises a linear 
approach to the manufacturing process (see Figure 1). It 
starts on one side with loose components that are placed 
into machines. These machines create circuit boards. 
Operators control the mostly automated processes of the 
machines by switching them on or off and supervising. After 
creation, the PCBs are tested on functionality in special 
machines. If needed, other parts can be added manually 
further down the line. The machines creating the PCBs are 
expensive and high tech that are worked all day. A finished 
PCB is placed on a cart to be transported to an assembly 
area. As the PCBs are susceptible to damage, they are 
protected using special bags and trays.

3.6 Box Build
Another assembly area, called Box Build, produces series 
of smaller products. Assembly and testing is done in a 
U-shape, where products go around a cabinet containing 
the parts needed. It is comparable to the workflow in the 
Clean Room, but on a smaller scale and following a linear 
path. 



Clean Room

PCB Area

Box Build
Starting on the left, the creation of a 
product follows the U-shape (I) and 
a finished product, assembled and 
tested, can be taken somewhere else. 
The operators work around a cabinet 
(H) that contains most of the parts for 
that product.

The smaller and larger carts are used 
throughout all manufacturing areas. 
There is no standardized cart size, but 
most carts resemble one of the two.

Product parts get in through the 
cleaning area, behind (A). From there 
the products go to the Water Spider 
operator, who prepares orders for 
assembly operators. He combines the 
large parts with small kanban, such 
as screws, and puts it all on a cart. 
Assembly operators take the cart to 
their workplace (B). Depending on 
the size of the product, either regular 
tables or movable table-carts are 
used. Finished assemblies are placed 
in line to be inspected on quality (C) 
and finally, before leaving the area, 
products are tested (D). 

The linear approach starts on the left, 
where a waterspider operator collects 
small parts from the automated 
cabinet (E). Parts are placed into 
machines that create the PCBs (F). 
Further to the right PCBs are tested 
or manually assembled (G).

Figure 1. Depictions of some of the important 
manufacturing areas at Benchmark Electronics 
Almelo.
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4.5 Operators not following WPI
Some defects in faulty products can be caused by 
incorrect execution of assembly steps due to the operator 
disregarding the instructions.  Possibly the operator does 
not understand the instructions and moves on to trial and 
error. Some of the operators choose to apply another order 
of steps to the assembly or inspection process, as they see 
more efficient ways of fulfilling their tasks. This problem is 
known to exist among assembly operators in Clean Room 
and Box Build.

4.6 PFS
Not all occurring errors during production are reported. 
Assembly operators have to fill in a list with questions after 
assembling a product. This list needs to be digitized into 
PFS, the system used to analyse the production processes 
and keep up statuses of products. With this list, it could 
be prevented that a product that is already defective will 
continue along the production process to eventually be 
rejected. A large part of the created assemblies will function 
as a prefab part in another assembly. If an assembly is 
already showing a certain defect, it can be rejected before 
being used in another product, that in turn will not pass 
quality inspection. However, assembly operators often do 
not fill in the question list or digitize the list. 

4.7 Training/guiding
Training or guiding of new operators does not always 
happen. As new operators make a relatively larger number 
of mistakes, they should be guided through their functions 
by a more experienced operator. In practice, however, new 
operators are set to work straightaway, only to be checked 
on after a few hours. 

The mandatory quality standard is not always met. 
Benchmark wants to reduce product loss rates. Several 
potential causes for product losses are described here.

4.1 ESD
Electrostatic Discharge (ESD) is one of the major problems 
when working with electrical parts and PCBs. ESD is current 
that builds up in persons or things. It can jump to anything 
close by once the voltage is high enough. People can only 
perceive ESD from about 3000V, hearing the sound of 
a spark. However, a discharge of 5V and up can already 
be devastating for an electronic product. Precautions 
have already been taken in the form of ESD-safe clothing 
or transportation bags, but these measurements do not 
completely prevent damage from ESD. 

4.2 Filth
As strict agreements are made with clients about the 
number of dust or filth particles per surface area, products 
can be rejected for being too filthy. 

4.3 WPI outdated
Products being manufactured get updated by Engineering 
over time and therefore a new version of the Work Process 
Instruction (WPI) is needed that incorporates the updates 
made to the product. The new instructions should replace 
the old ones in the manufacturing areas. This does not 
always happen, resulting in co-existing instruction versions. 
Because of this, products sometimes are based on the 
wrong instructions and therefore do not contain the update. 
This product relates to both assembly operators and quality 
inspection operators. 

4.4 WPI unclear
WPI can be unclear to the operators. Lack of understanding 
or the quality of the instructions may be reasons for this 
unclarity. The instructions are printed on paper, sometimes 
only in black and white, while quality inspection needs 
colored prints to properly compare the product to the 
printed example. 

4. Problem definition
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5.3 Tools
A possibility for solving some of the challenges present 
lies in the technology of mixed reality, where virtuality and 
reality are blended for an observer.
Milgram and Kishino (1994) describe reality and virtuality in 
terms of the properties objects. They state: 
“Real objects are any objects that have an actual objective 
existence. Virtual objects are objects that exist in essence or 
effect, but not formally or actually” (p.1324).
Real objects are useful, as we can sense and use them. 
However, we have little control over them. Virtual objects 
on the other hand, we can control easily, but they are not as 
useful as real objects, as we cannot really sense them. They 
are a description of the properties of an object, that are not 
actually present in reality. Take for example a paprika.

A real paprika can be eaten or touched, but made into a 
blue paprika, as the initial properties of the paprika cannot 
be changed. It is more useful, as we can eat it and get 
energy from it. A virtual paprika can be given the color 
property blue, but we cannot eat it, as it does not actually 
exist. There is a high amount of control over the properties 
of the paprika.

In the previous chapters, the environment and context 
were described, followed by an explanation of the present 
problems and challenges. In this chapter, some of the 
problems are looked at in more detail, and possibilities for 
solving the problems will be discussed.

5.1 Observations
During tours and interviews with employees, views 
from both Engineering and Manufacturing were heard. 
Engineering seemed to have a caring feeling for the 
products, as they are the ones that design them. They 
seemed to blame Manufacturing in some way for not 
putting in enough effort to prevent defects in products.

The operators on the other hand, seemed to care less about 
the created products, perhaps due to a larger emotional 
distance, since they work briefly on a product and see a lot 
of the same products. Operators were unhappy about the 
structure around WPI they were receiving, originating at 
Engineering. 

Solving some of the problems surrounding the WPI could 
improve both workflow and happiness on the work floor 
and maybe bring the departments closer together.

5.2 Trends
Improving processes is hard for Benchmark as not all 
statuses of products and processes are documented well. 
Systems are present for keeping and interpreting data, but 
the lack of this data prevents them from doing so (Figure 2). 
This results in the impossibility of focusing on specific parts 
of the process where a relatively large number of defects 
originates. Looking at ways to improve the capturing of data 
could allow Benchmark to improve processes.

5. Possible solutions

acceptable
domain

acceptable
domain

time

time

measured value

Figure 2. Example of how measured values in certain situations could 
give insight into a flaw in the manufacturing system somewhere. 
Above, a trend of values moving outside the acceptable domain is 
recognisable, while on the bottom, where only 1 in 3 values is shown, 
a trend is harder to recognise.
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augmented environment of the surface of Mars (NASA Jet 
Propulsion Lab, 2016). Someone wearing the device can 
‘walk’ over the surface of Mars. For NASA, this has opened 
new ways of interacting with and researching data. 

The HL is not the first apparatus that allows users to view 
holograms or augmented reality, however the device is the 
first wearable augmented reality computer produced on 
large scale that places user experience first.

The HL seems a promising product with lots of possibilities. 
Possible solutions will be created for using the HL in the 
existing and future environment of Benchmark, while 
keeping in mind the current workflow and uses that apply. 

5.5 Focus
As mentioned in the problem definition, a variety of 
problems has to do with the current way of instructing 
operators. In the next parts, possible technological solutions 
will be looked into that improve WPI. New solutions for 
improvements in work process instruction could also help in 
building up a system that allows for improvements through 
data analysis. On different levels of technology, solutions 
for integrating the HL will be looked into. The image 
below shows a graphical depiction of the focus area of the 
assignment (see Figure 3). In the next chapter, Ideation, 
preliminary visuals have been created that focus on the use 
of HL and augmented reality. From these ideas, 3 concepts 
have been created that focus on the improvement of WPI. 

In mixed reality, both control and usefulness are present 
to some extent. Properties of virtuality are traded in for 
real properties. For example, a virtual paprika can be 
visible through a mixed reality medium, allowing someone 
to observe the paprika. It can be controlled in size and 
color, and it can be sensed. This arises possibilities, such 
as teaching someone about what color and size paprikas 
he should or should not eat by showing various paprikas, 
without having to go through the trouble of finding various 
shaped and colored paprikas.
In Appendix A, a research paper is appended on mixed 
reality and the various current concepts of it.

5.4 HoloLens©

The Microsoft HL is the first self-contained holographic 
computer. The device allows you to experience augmented 
reality through holograms you can interact with in the world 
around you (Microsoft, 2016a). The device is equipped 
with sensors that scan the real surrounding of the wearer 
(Microsoft, 2016c). In relation to the real environment, 
three-dimensional or flat holograms can be placed. Once a 
hologram is placed in the environment, the viewer can walk 
around it. 
Appendix B describes the HL in detail. The figure on the 
next page summarizes the details of appendix B, based on 
information from Kipman (2016), Microsoft (2016d), and 
Microsoft (2016e) (see Figure 4).

Some of the already existing applications built around 
the HL, showcase the possibilities of using the device. 
For example, NASA has used satellite data to create an 
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spatial tracking 
cameras

natural input

Spatial tracking allows for 
recognition of the 
environment. The device 
captures and creates a 3D 
model of the surrounding 
and uses this to calculate 
how the holograms should 
look to fit in the 
environment.

The device is able to 
recognise several gestures 
the user can make with his 
hand. Due to the fact that 
it is an optical see-through 
HMD, it is able to use 
gazing as an input method. 
Furthermore, the device 
can be voice controlled, 
through implementation of 
several microphones.

The device is a wearable 
Windows computer 
packed with several 
sensors and processors to 
understand environment 
and run holographic 
applications. 

The device is worn as a 
pair of goggles. A band 
tightly strapped around 
the head of the user and a 
nose support piece ensure 
the device stays fixed on 
the head of the user.

Two optic wave lenses 
placed in front of the eyes 
of the user display 
stereoscopic holograms. 
Due to the intensity of the 
light emitted, the 
holograms blend in with 
the surrounding.

speakers providing 
3D sound 
experience

Holographic 
computer

optic wave lenses
support piece 
for nose

Figure 4. depiction of the front view of 
the HL with some explanations
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Certain steps are holographically 
displayed on a specific location 
of the product. For example, 
checking if 6 screws are present, 
is done by showing a 3D object of 
a screw, together with an object 
that indicates where to look (A1). 
When an operator gazes at that 
object (A2), the more specific 
locations are shown by adding a 
holographic visual to it, a bounding 
box (A3). Once an operator has 
checked a feature, a popup comes 
up, immediately asking if that step 
went well (A4). Instead of having 
to write it down, the operator can 
gaze at the right answer or just 
speak to the HL (see Figure 5).

Figure 5. Sketch displaying 
holographics on products.

Figure 6. Sketch displaying ideas 
on creation of holographic guides.

Creating a holographic guide 
should be a process that is not 
taking up a fairly larger amount 
of time creating a written one 
does. Therefore, a library with 
some standardized animations 
should be built. In a holographic 
guiding building-application on a 
computer, one drags and drops 
features to a certain point on 
the 3D model (B1). The program 
calculates the perpendiculars 
and parallels to that part of the 
object and uses this in the guide 
(B2). Some content, like labels, 
are used as variables, that change 
depending on the serial number 
of the product the operator is 
working on (B3) (see Figure 6).

A1

A2

A3

A4

B3

B2

B1

6. Ideation
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Displaying virtual objects in 
space allows the operators to be 
guided through the process by 
following a certain line (C1). Each 
point asks them to do something. 
As a certain task is subject to a 
specified time period, the color 
of the virtual objects can change 
over time, showing a certain push 
proceed faster (C2). It starts green, 
but when the given time has 
ended, it has gradually changed to 
a dark orange. Guiding an operator 
can be done through floating 
displays, showing instructions, 
either as text or as 3D images (C3) 
(see Figure 7).

HL does not recognize specific 
objects, but does recognize 
the surrounding environment. 
Once the surrounding is known, 
it could be used virtually to 
pinpoint some specific places 
(D1). Placing an object in this 
area, gets around the fact that 
the HL does not recognize the 
object. As long as the object 
stays in this spot, it is possible 
to augment info onto the object. 
This could be done by putting 
visual markings on some spots, 
creating ways of placing an 
object on a specific spot (D2) 
(D3), or by simply displaying a 
virtual layout of where to put 
the product (D4) (see Figure 8).

C3

D1

D2

D3

D4

C1

Figure 7. Sketch displaying ideas on 
holographic guidance through a room.

Figure 8. Sketch displaying ideas on combining 
virtual cues with real objects.
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The way inspecting and building 
products is structured now, allows 
for multiple errors or defects. 
Due to the amount of steps and 
repetition, the chance on an 
error is increased. Restructuring 
the way information is gathered 
and input can result in skipping a 
few steps and also lowering the 
chance of an error. For example, 
it might not be necessary to first 
read the task on one paper sheet, 
than fill in another paper sheet 
with the results, to finally digitise 
that result sheet manually. When 
for example using a ‘digital paper 
sheet’, reading and filling in can 
be done from the same place, 
without the need to again digitise 
it (see Figure 9).

Using holographic models 
of products being built at 
Benchmark, a better insight and 
feeling for the product can be 
created. On one hand, an operator 
can learn how the product works 
and is assembled beforehand. 
This might lower defects, as he 
has seen his job holographically 
already. On the other hand, 
viewing or reviewing models 
can be used during creation of a 

product in the engineering side 
of the building. An engineer can 
already see the virtual product in 
real size (E1) and even collaborate 
on it with someone else (E2), 
without having to build the 
actual product. It can create a 
better sense of understanding 
of space, as the engineers can 
see the product in their actual 
environment (see Figure 10).

E1

E2

Figure 9. Sketch displaying ideas on how 
system interaction can be improved.

Figure 10. Sketch displaying ideas on 
(re)viewing holographic models.
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Using holograms, it is possible 
to guide someone through the 
building very easily. Displaying 
all sorts of visual cues show 
someone how he should walk. 
This can be done in multiple ways, 
showing some direction arrows 
(F1), pushing one in the right 
direction, showing a virtual wire 
to follow (F2), or close off other 
routes virtually (F3). Using this 
way of guiding, it is possible to get 
products or goods from one place 
to the other fairly easy. It can also 
be used to show someone new 
around (see Figure 11).

If more data is available, it can 
become much more insightful 
using a mixed reality medium 
like the HL. Presenting data 
on a paper is static, presenting 
data on a computer medium is 
dynamic, allowing for movement, 
but presenting data on the HL, 
also provides context. Data can 
become more insightful as it can 
be presented in the environment 
the data is coming from, allowing 
a viewer to link real events to 
data points (see Figure 12).

F2

F3

F1

Figure 12. Sketch displaying ideas on 
displaying holographic data.

Figure 11. Sketch displaying ideas on the use of 
holographic cues for guidance through a building.
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7.1 Low tech concept

This concept focusses on the current situation of the 
Manufacturing Area and how the current problems could be 
solved on a short-term notice. The main goal was to design 
a workflow without disrupting the current structure.

7.1.1 Workflow
A system is used that comprises all WPI and sends them 
to the right employees. Benchmark already uses inhouse 
databases to store all WPI. These can be used for storage. 
Tablets are connected to the cloud-based system and have 
data going between them (see Figure 13).

Small and light tablets offer most convenience in handling. 
In terms of interface, they can resemble the WPI already 
present. Using tablets skips a few of the overkill steps 
present when using paper and offers at least a foolproof 
way of getting process results by forcing an operator to fill 
in a certain value before being able to continue:
•	 operator reads step on tablet, possibly accompanied by 

an explaining image
•	 operator fulfills step on product
•	 operator fills in result
•	 button to continue becomes interactive, allowing 

operator to continue
An application for using the WPI on the tablets would be 
needed for this. 
The tablets offer a set of advantages (see Figure 14 and 15):
•	 direct results from operators are stored in the cloud
•	 current work process instruction is always available
•	 colored and up to date pictures are available in 

instructions

7.1.2 HoloLens©

The HL is used as an added-value object. Especially as a 
marketing tool it can create happier clients. Projects can be 
taken digitally to the client and shown on location. Updates 
on products in the making can be shown in a whole new 
way. 

Showing this technology to clients could be impressive to 
them. As most people have never experienced convincing 
augmented reality, they will probably be overwhelmed by 

7. Conceptual phase

when an error 
occurs, interface 
immediately asks 
operator to state 
explanation. 

Due to being connected 
over wifi, results are 
immediately send to PFS. 
Serial number and working 
operator are already linked 
to the product.

Figure 14. Interface changes dynamically to 
ask what problems occured.

Cloud based data storage system, 
which is already present at 
Benchmark is used for storing data 
from Manufacturing and Engineering.  
It contains up to date versions of all 
process instructions for all products.

System is able to visualise graphs 
using data from manufacturing 
processes. As operators are ‘forced’ to 
gather data digitally, the possibility of 
losing data is minimized.

Engineers look at gathered data 
to see where most defects are 
originating. Insight is created in 
current inventory flow. This data is 
used to improve processes.

Processes, models, and instructions 
are editted and updated based on 
findings.

Updated models and WPIs are stored 
in the cloud database system as new 
versions. 

Data and WPI are gathered from the 
cloud, and are always up to date. The 
operator only gets to see the most 
recent version.

Depending on their function, users 
get a certain interface that shows 
them the right instructions.
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G.
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Figure 13. Schematic overview of 
the workflow.

read task and possibly 
see image

check product 
and fulfill step

fill in result on tablet 
to continue

Figure 15. Depictions of how tablet interface could look. Left: operator reads task 
and checks image. Middle: operator checks or assembles product. Right: operator 
pushes pass or fail button, allowing him to continue.

The interactive nature of the interface 
ensures that findings of the operators 
are saved.

Operators that work with paper 
versions of WPI get a small mobile 
tablet.

Using the stored models  in the 
database, holographic experiences 
or applications are built to show to 
potential clients or as final products. 

Final products can be tested 
or showcased in a holographic 
environment to review them as if they 
were already integrated into their 
final environment.

Data from processes are gathered 
from user input and sent to the cloud 
system. It is stored to be analysed. 

Applications are deployed on HL and 
possibly combined with real objects. 
The HL can be taken anywhere to 
show to (potential) clients.

I.

H.

K. M.

J. L.
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current problems is excluded and data loss is prevented. 
Due to the fact that the workflow is very similar to the old 
one, problems switching will be avoided. WPI are still used 
in a similar way, so the only thing operators need to learn 
is how to operate the tablet and the application. Investing 
in tablets is a relatively cheap option. Problems such as 
battery life during the day, deterioration of the quality of the 
tablets, or breaking of the tablets may still occur. A period 
of testing with (a few) operators can be a suitable way of 
finding out whether this structure fits the company.
 
Using the HL as a tool to add value for clients is a way to 
make clients more appreciative of the work Benchmark 
performs. The extra time needed for creating holographic 
presentations of products is a tradeoff for both a more 
impressive as a more insightful way of presenting projects 
to clients. The HL is also used for showing virtual tours 
through the building. In doing so, the innovative nature of 
the company can be shown to potential clients or partners 
(Figure 16).

the way holograms appear in their surroundings. Using the 
HL can help Benchmark improve its image of an innovative 
enterprise.

Showing an update of a product, does require someone 
to create a model that is usable on the HL. Due to some 
of the limitations of the HL, most CAD-models need to be 
converted before being able to deploy it on the device. For 
example, this includes the reduction of vertices.
The gap between the real and virtual world can be 
minimized by taking small real parts that can be held 
in place of a virtual part when reviewing or showing a 
product to a client (see Figure 17). This creates a feeling 
of scale and existence of the product, as an observer is 
seemingly physically touching a part of the hologram. Rapid 
prototyping techniques, like 3D printing, offer a great 
solution here. It is cheap and relatively fast and quality is not 
of great importance. Benchmark already possesses several 
3D printers, allowing this to be a relatively easy outcome. 
Testing or showing finished products is also possible by 
taking a product and simulating an augmented environment 
around it. 

This concept solves the problems with work instructions by 
creating a digital workflow rather than an analog one. This 
way, the paper workflow that creates a large amount of the 

Figure 16. Depiction of holographic 
tour.
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Figure 17. Depiction of field of vision when viewing holographic 
models combined with small parts.
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A smart digital system is used for data analysis. The HL 
is used as a development tool and offers insight in data. 
Tryouts in Manufacturing show where the HL can best be 
integrated on a short-term notice. The HL has a supportive 
value. (see Figure 18).

7.2.1 Workflow
A digital system is used to aid and structure the processes 
and gain feedback about the production line. The system is 
central in the workflow. In the Manufacturing Area, a shift is 
made from analog, to digital. This allows for better tracking 
of data and offers operators the current work process 
information.

There are three aspects where the HL will be offering 
support to the company, as a development tool, as a data 
visualisation tool, and as a virtual WPI projection tool. 

7.2.2 Development Tool
In the development area, the HL is used as a review tool. 
CAD models can be viewed holographically, to get an idea 
how they look. As most CAD files cannot be imported 
directly onto the HL, it is important to have a tool that 
converts the created CAD-files to a HL ready file format. 
This will keep up the workflow, as developers do not have 
to convert the files manually. 

It is important that the file converter should do the 
following (see Figure 19):
•	 turn the CAD model into a surface-model file format 

for HL (.fbx .obj)
•	 reduce the amount of vertices
•	 remove unimportant/small parts, such as screws
•	 upload the converted file to the HL or to a shared 

database the HL has access to

Scenario development
Mark, a product engineer at Benchmark, is having trouble 
finding the right layout for a set of buttons on a product he 
is developing in his CAD program. He cannot quite grasp 
the right layout that is both easy to use and looks good on 
the product. He decides to view his model holographically, 
to get a better understanding of the product in a real 

7.2 Mid tech concept
7. Conceptual phase

Cloud based data system, used for 
storing data from Manufacturing 
and Engineering. It converts data 
to use on HL and keeps graphs in 
environment up to date.

Data from Manufacturing is used 
to create insightful real-time graphs 
build into an application usable 
for HL. It connects data with real 
environment.

3D visualisations are projected in the 
production area, to get better insight 
in the production processes and 
where improvements could be made. 
One is looking at data and area it has 
to do with simultaneously.

The gathered insight is used to 
edit products, instructions, or even 
processes. 

Engineering works with HLs in 
development of products. While 
creating a model, an engineer can 
review it holographically.  Created 
CAD models are editted for use on HL 
by the system automatically, to keep 
up the workflow. The 3D view of the 
created models functions as input for 
the further creation of the model or 
the process line.

System shares a database with HL 
for distribution and deployment of 
models.

A.

B.

C.

D.

E.

F.

environment, on true size. He saves his file and opens the 
conversion program. From his file explorer, he drags the 
file into the program. Once he clicks ‘send’ the program 
starts to convert the file to a format ready for the HL. 
In the meantime, Mark grabs one of the available HLs 
from a cabinet and puts it on. The program has finished 
converting the file and has sent it to the HL. Mark sees his 
model floating in front of him, waiting to be placed in his 
surroundings. He taps his finger and gazes at a table. With a 
tap, he places the object. He can now see the button layout 
he was thinking about on the product in front of him. The 
virtual product has given him conformation that this layout 
will both be useful and easy on the eye. He now puts down 
the HL to start working on his next task.
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Figure 18. Schematic overview of the 
workflow

Figure 19. Automatic file conversion

Try outs with the HL in Manufacturing 
introduce workers to augmented 
reality solutions and offer some 
advantages like a handsfree workflow.

An all-digital system ensures up to 
date information and allows to gather 
data to analyse.

A connection can be established from 
the operator who is working on a 
product to an engineer. The engineer 
knows more about the product and 
can offer help.

The engineer can get information 
about the product the operator is 
working on from the database.

Due to internet connection, 
instructions are up to date and data is 
gathered continuously.

The engineer is able to see the view 
of the operator and can draw visual 
cues to help the operator get to 
understand the step.

H.

G.

J. M.

I. K.

User places file in application on 
computer.

file.stp

Send

To HoloLens

System converts CAD file to 
HoloLens format. 

System uploads file to HoloLens 
or to database available to 
HoloLens.

User can (re)view model 
holographically.

Send

To HoloLens

file.stp
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linked to data from a specific machine or process, directly 
allows the viewer to get a feeling of how the machine is 
performing (see Figure 20).

Benchmark is already collecting and displaying data on 
boards throughout the Manufacturing Environment. As 
the HL is implemented, these could become interactively 
integrated within the work environment

7.2.4 WPI Projection
Integration of augmented reality in the Manufacturing 
Environment is a large step to achieve. It is possible, to get 
used to augmented reality in a familiar way by displaying 
the known WPI holographically. Floating panels are used 
to display the instructions. The panels can get placed 
anywhere in the environment. Using the HL to display the 
instruction guide, allows the operators to use a hands-free 
approach (see Figure 21).

7.2.3 Data Visualisation
A shift to digital, makes it possible to continuously gather 
data from all processes. The output of all processes is 
combined by the system to create data visualisations. 
Visualisations can be updated in real time. Using the HL, 
the gathered data can be made insightful, by creating 3D 
graphs that, due to being displayed in a digital medium, can 
change over time. Another way the data can be clarified, is 
by placing graphs and visualisations into specific places in 
the working area at Benchmark.
Instead of looking at a paper stuck to a wall somewhere, 
someone wearing a HL could walk to a machine to see 
specific data about or related to it. 
This would especially suit the PCB area. This room houses 
machines that are large enough to be picked up by the HL 
sensors. Since the machines are stationary, visuals can be 
displayed above or next to them. Displaying a graph that is 

Figure 20. Depictions of ideas for displaying 
holographic data. Left a holographic graph 
that shows a certain machine delivering below 
standard. Right top: accident map overlay on 
environment. Right bottom: floating throughput 
of machines.
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connection is started with the right engineer directly, as the 
system knows which engineer knows how to assemble the 
product right. The engineer gets a pop up on his computer, 
which he opens. Besides seeing the explanation on the step 
the operator needs to fulfill, he can also see a livestream of 
the field of vision of the operator. He guides the operator 
through this step of the process by telling him what to do. 
Both are happy it all worked out. The system registers that 
there was a call for help at a certain step in the process, and 
saves this for data analysis.

The application handling the display of the instructions 
holographically, also includes a shortcut to skype. Whenever 
the operator has a question about a step, the skype 
application can be launched. Using Skype on the HL allows 
the operators to call someone from Engineering. The 
engineer is able to see the field of view of the operator. 
Besides explaining by words, the engineer can also draw 
visual cues in the operator’s view. The skype application 
built for HL already allows this. 

One of the advantages of this system is that Engineering 
gets more approachable for operators. Instead of phoning 
or going and getting an engineer to explain, a simple skype 
call will suffice. The hands-free workflow is possible for all 
functions that would be using a tablet or paper sheet for 
instructions, such as assembly and quality inspection. 

Scenario WPI projection
Operator Michael is working on a product assembly. He 
looks at the holographically projected instructions in front 
of him. As the instructions are floating in real space, he 
always has his hands free to work on the assembly. At a 
certain moment, he does not understand what the next step 
involves him to do. Instead of walking to the phone and 
trying to explain the problem he encountered or walking 
all the way to the department where the engineers are 
located to get someone to help him, he looks at the bottom 
of his virtual instructions and taps the help icon. A skype 

Figure 21. Depiction of floating work process 
instruction for an operator. Black rectangle 
depicts the holographic field of vision.
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This concept is the most advanced in terms of technology. 
In this concept, it was attempted to take all the possibilities 
of the technology and combine it into a solution for the 
Manufacturing Area. The current situation and needs were 
considered, and a set of solutions established. 

7.3.1 Workflow
The concept comprises a dedicated smart system, 
integrated in all workflow, that controls HLs employees are 
wearing (see Figure 22). The system controls all processes 
and leads all employees to tasks that need to be fulfilled. 
Using machine learning algorithms, the system will create an 
efficient workflow, that gets faster over time. All operators 
wear HLs and can be positioned in several functions. The 
system knows where manpower is needed and can guide 
operators there. Holographic guidance makes functions 
easy to understand. This matches the lean management 
philosophy Benchmark is trying to integrate in the 
production processes, where the goal is to reduce waste 
and wait times.

To create a truly leading system, all inventory is traced, both 
physically as well as digitally. Digital tracking goes through 
serial numbers and received updates from operators and 
machines. The physical tracking system uses cameras that 
are placed in the ceiling throughout the Manufacturing 
Areas. The carts that are used to move products and parts 
from one place to another can be followed. As a product is 
placed on a specific cart each time, it is enough to track the 
carts through space and not the products themselves.
The system can integrate the tracking of these carts into the 
holographics of the HL. As carts might not get recognized 
by the HL due to their size and constant movement, the 
camera system can still push the coordinates of the carts, 
and so, the places where holograms need to be displayed. 
To do this, the dimensions of the carts should be known by 
the system, as well as their position in space. One way to 
accomplish this, could be to place easily trackable markers 
on the corners of each cart. The tracking system only tracks 
4 points for each cart this way (see Figure 23). Besides the 
tracking of carts, the system also knows the location of the 
present operators, as they are all wearing HLs, which scan 
the environment and know their own position in space.

7.3 High tech concept
7. Conceptual phase

Smart integrated system controls all 
workflow by efficiency calculations

Data that is gathered by the system 
is internally processed and used to 
gain insight in where the process can 
be improved. Machine learning allows 
the system to gradually become more 
efficient.

Results from internal analysis are 
also presented to engineers for 
improvements to production lines 
and products, things that are not 
efficiency related to the system.

Using HLs, engineers create models 
and production lines. The HL is used 
as a (re)view tool.

System communicates guiding tasks 
to HL based on location, time, and 
processes.

Based on tracked processes, HLs 
are sent to a certain task. Tasks and 
function decide what an operator 
sees holographically.

HL guides operators through their 
task by giving visual overlays on the 
real world.

A.

B.

C.

D.

E.

F.

G.

Holographic guidance is suitable for at least the following 
types of operators: assembly, quality inspection, and Water 
Spider. They can be found in the Clean Room and Box Build 
Area.
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Figure 22. Schematic overview of the 
workflow

Figure 23. Visualisation of the camera 
tracking. Top: state 1. Below: state 2, 
after a small movement.

Through camera tracking, location of 
all carts is known to system.

Operator moves parts and products 
through manufacturing areas on carts. 

HL reports back to system location 
and direction operator is facing and 
the status of the task it is occupied 
with.

I.

H. J.

Actual view Computer tracing Software 
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assembling. The first step is to pin a holographic reference 
plane somewhere in the environment. This plane is used to 
show the steps he will have to perform, accompanied by 
audio guides. On the plane, the same assembly he has to 
create is being built holographically. He now easily can go 
through assembling the product. If the visual guide is not 
enough to create the assemblies, he can also open a large 
floating screen with written instructions.

7.3.3 Holographic Guidance for 
Quality Inspection 
Quality inspection is done by displaying holographic cues 
onto the product. The use of floating bounding boxes 
is used to guide the operator his attention directly to a 
certain spot on the product. Holographic objects are used 
to indicate that a certain function has to be performed. For 
example, checking if all screws are present and screwed in 
tightly, displays a floating screw. Checking surface quality 
displays a small floating smooth or rough plane. Using voice 
commands and gesture recognition, the operator can go 
through the steps. (see Figure 25).

Scenario quality inspection guidance
Max is working in quality inspection. As he arrives at his job, 
he puts on his coat, his gloves and hairnet. He goes into the 

7.3.2 Holographic Guidance for 
Assembly 
Assembly operators are guided through the process of 
building the product holographically. Instead of written 
text and pictures, guidance is accomplished by the use 
of holograms. A reference hologram, that shows the step 
the operator has to take is placed somewhere around the 
operator, while he is performing the assembly tasks. The 
operator can look at the hologram, that shows a virtual 
version of the product, and repeat the steps on the real 
product. The operator does not have to read instructions, 
and it is easier to see what the exact step is, as the operator 
can even walk or look around the product in 3D. He has his 
hands free for the task (see Figure 24).

Scenario assembly guiding
Jim starts his shift as an assembly operator. He goes 
through the procedure of putting on the right clothing and 
his HL. He logs on, and the system greets him. In a floating 
window, it shows him what he is going to be doing today as 
his first task, assembling a certain product. The HL asks him 
if he wants to start and once he does, a virtual path appears 
showing how to get to a certain cart containing the goods 
he needs for assembling a product. He collects the cart and 
takes it to an assembly spot. He selects the option to start 

Figure 24. Depiction of holographic work process 
instruction for an operator. Black rectangle depicts 
the holographic field of vision.
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found. A specific list is available for each order that has to 
be picked, and therefore virtual locations can be displayed 
per order.

Scenario Water Spider guidance
Michael enters the room and puts on his HL. He logs in and 
starts the appropriate app. A large virtual screen appears. 
On it, he can see a list of orders that need to be prepared. 
Every order contains a set of small parts that need to be 
included with some other parts on a cart. These parts create 
the full assembly. The list is ordered, so that priorities are 
on top. He can select multiple orders at once. When he 
looks at the cabinets where all small parts are located, he 
can see multiple floating colored balls, showing him which 
parts he has to pick up. All floating balls of the same color 
correspond to one order. The colored balls give a cue for 
the location of a pickup. Once he gets close to one, a small 
floating message appears, showing the product and amount 
he has to collect. Once he has grabbed all parts for that ball 
he can close it by saying ‘check’, or by double airtapping it. 
All small parts are collected in small boxes and placed on 
a cart that has an overlay in the same color of the floating 
balls. Once finished, Michael is visually instructed to place 
the cart in a certain location in the area.

Clean Room, where among other things, quality inspection 
is performed on assembled products. He walks towards his 
working space, a line of tables. On his table, he opens up 
a small drawer, where his HL has been charging overnight. 
He puts on the device and opens the start menu. Max 
looks at the wall next to him and pins the instruction menu 
onto the wall. He sees he has to get the cart with product 
number [GUVB-005-GLISE-7793]. When looking over at 
the row of carts, he sees one cart with a marker above it, 
that must be his. He goes and gets this cart from the row, 
and brings it to his work space. Looking at the product, he 
now sees holographic cues of what he has to do. The first 
task asks him to check the upper surface for scratches. He 
does not see any, so he says “clean”. The next task asks him 
to check the product for 6 screws. On the places the screws 
should be present, yellow boxes appear, while a screw is 
rotating above the product. While gazing at a one of the 
yellow boxes, he says “check” as the screw is present. The 
box turns green, and Max goes on. Once he has performed 
all steps for the inspection, he sees visual cues to bring the 
cart with the product to a row of other carts that have been 
checked. 

7.3.4 Holographic Guidance for Water 
Spider 
The Water Spider collects parts and prepares orders for 
assembly. Using the HL, it becomes easier to collect all 
parts, as visual cues are displayed on where to pick up the 
parts, and where to put them. As the storage of the small 
parts is fixed on a specific location, it is possible to augment 
visual cues from the specific places where the parts can be 

Figure 25. Depiction of holographic work 
process instruction for quality inspection. Black 
rectangle depicts the holographic field of vision.
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7.3.5 Engineering
In engineering, some changes need to be made in order 
to make this concept possible. As WPI have become 
holographic guides, there is a need for someone who 
creates holographic guides, based on the available CAD 
files. A special program is needed to create these guides. 
The engineer loads a model in the program. Using in-
program controls such as dragging objects, he creates a 
guide. The program will, eventually, render a holographic 
application guide from the input of the engineer and store 
this in the cloud. For quality inspection, the engineer 
clicks some part of the model that needs to be inspected 
and adds a certain inspection variable to it. A variety of 
animations and prefab models are included in the program, 
so the creation of a guide is kept simple. Using the 
directions of the faces selected, the program knows how 
to display the holograms. A bounding box will for example 
be parallel to the selected face, while an arrow will be 
perpendicular (see Figure 26).

The system tracks all objects and persons. Instead of 
tracking data and outputting this visually in graphs to show 
what could be improved, the system itself creates the most 
efficient workflow. The system can estimate how much time 
is needed for a certain operator to fulfill a certain task and 
use this to control the workflow. If one operator is almost 
finished in quality inspection, the system can already start 
to think out what his next task could be. As there might 
not be another product to be inspected soon, the system 
could guide him to another function. As the HL will offer a 
managing approach to the operators, operators can be put 
into different roles. Tasks get easier to follow and operators 
are no longer bound to learning curves that force them to 
a specific function. The system, calculating where more or 
less power is needed, can now distribute workforce.

Figure 26. Depiction of creating a holographic quality 
inspection guide.
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The application is based on the holographic guidance for 
assembly, also described in the High Tech Concept. It should 
show the user a holographic version of the product he is 
assembling. By repeating how the holograms move, he can 
assemble the real product the right way. As the HL does not 
have any buttons, natural input will be present in two ways. 
To proceed to the next step, the user can air-tap, which the 
HL will recognize as a gesture to proceed. The other way is 
by speech input. The user can say something like “proceed”, 
“next”, or “next step” to proceed to the next step, or ‘back’, 
“previous”, or “previous step” to go back to the previous 
step. A holographic model of the product to be assembled 
is placed in the environment of the user, for example on the 
table the assembly is created on (see Figure 28).

8.2 Method
In order to create the application, several steps needed to 
be taken. In Appendix C a general method can be found for 
building applications for the HL, based on the descriptions 
of Vroegop (2016). Here, the specifics creating this 
application are explained.

During the concept phase, several possible solutions were 
created for the integration of holograms. In this phase, an 
elaboration is made on one of the aspects of the concepts, 
namely holographic guidance for assembly.

The goal of this phase was chosen as a prototype 
application, working on the HL. Benchmark sees the benefit 
of having a prototype or demo application in-house, to 
make people enthusiastic about the HL and show and 
explore the possibilities of the device. Having an application 
to show and use, makes the whole concept of using the HL 
vivid. It is more approachable when compared to a report 
laying around. For me it is an interesting challenge, that 
forces me to learn how to work with the device and how to 
create an application for it. Creating a holographic guiding 
application seemed challenging, yet achievable, in the given 
time span.

8.1 Design application
Creating an application that guides the user through 
assembling a product, starts with a product. A product 
used in the assembly line in the clean room, was obtained. 
Together with the WPI this was used as the base for 
developing a holographic assembly guide (see Figure 27).

8. Executive phase

Figure 27. Product assembled (left) and disassembled (right).
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8.2.2 Instructions
The instructions show what steps need to be taken and 
what is needed in order to create the assembly. The 
instructions for assembly of the product were carefully 
read. Since certain parts of the product were missing 
or already taken care of (labeling the product), not the 
whole instructions were used. For a demo application, this 
however is not a problem and these steps were left out of 
the holographic application.

The instructions were followed a few times, and once clear, 
a set of drawings was made, based on how the application 
would be going to look (see Figure 29).
The goal for the application was to create a holographic 
guide that offers a good explanation of how to assemble 
the product. In step 1, 4, and 6, a screwdriver is used to 
screw or unscrew. To let the user know he should use a 
screwdriver, it should also be incorporated in the application 
and shown to the user. The screwdriver should also rotate 
in the right direction, clockwise or counterclockwise, to give 
the user extra feedback on what exact action he should 
perform.

8.2.1 Model
The available CAD-files used for manufacturing, cannot 
be used on the HL. The HL uses surface models, existing 
of flat surfaces. Either the CAD-file of the product could 
be converted into a surface model, or a new model could 
be created from scratch. The choice was made to quickly 
recreate a new surface model resembling the original one. 
For testing purposes, it comes in handy to have control 
over the model, the number of vertices, and the subparts it 
consists of. The model was recreated in Blender. In Figure 
30, a rendering of this model can be seen, where (A) depicts 
an exploded view, (B) the assembled product, and (C) the 
disassembled product (see Figure 30).
Note that the model, as it is created now, is a simplified 
version of the real product. When comparing Figure 27 and 
Figure 30, it can be noticed that the original product has a 
lot more detail in it. The limited number of vertices that HL 
can use, make a simplified model preferable, but one should 
always consider to what extend the details of a model can 
be left out. The more a model is simplified, the harder it 
might be to recognize the parts. An outcome to preserve 
both recognizability and a limited number of vertices, can 
be to apply a texture resembling the real product onto the 
virtual one. For this relatively simple product it did not seem 
necessary.

Figure 28. Depiction of how working with the application should look.
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C

Figure 30. Renderings of the model.

BA

1.	 Unscrew 4 screws with a TORX 
TX20 screwdriver and remove the 
top bracket. 

2.	 Connect the 2 modules using a 
couple piece. 

3.	 Place the coupled unit on the rails 
of the bottom bracket by hooking it 
behind the outer edge. 

4.	 Screw in the 4 already present 
screws in the coupled unit using a 
flathead screwdriver 1.0 x 5.0. 

5.	 Place the Memory Card in the slot 
on top of the coupled unit. 

6.	 Screw in the top bracket using the 4 
screws from step 1 using the TORX 
TX20 screwdriver.

Figure 29. The steps to be created and animated in 
the application.

1.

3.

5.

2.

4.

6.
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for step 3, cannot be called in either of these methods right 
away, as this would mean that it is either performed once, 
at the start of the application, or that step 3 is started every 
frame the application is running.
In other words, just using these functions is not possible for 
the way this animation is used. A framework was set up that 
handles the animations.

A variable integer StepNumber was created to handle 
animations. This integer can be edited by user input (speech 
or air-tap), and is fed into the update method. In the update 
method, the StepNumber is checked every frame and 
accordingly another method is called. In other words, as 
long as the StepNumer is 1, the function StepOne() will be 
performed, and the animations scripted for that step will be 
played. As the user changes StepNumber to 2, the update 
method will now call another function that handles the 
animations of second step.

Each step contains a set of sub steps that need to be carried 
out. The method for each step contains a SubStepNumber, 
that is used to create an animation in steps. The sub steps 
for step 1 have already been described, and the application 
handles them in the same order. By creating a sub step 
number, the objects can be moved independently and in a 
specific order (see Figure 31).

Before developing the application using the actual model, 
tryouts were made using simple cubes that moved from 
point to point, rotated, and disappeared, to check if the 
written code was actually working. Most of the testing was 
done in the integrated test area in Unity. Instead of human 
input (speech and airtap) mouse clicks were used. Once 
the cubes were moving according to how they should, the 
application was changed to work with the actual model and 
HL input.

Microsoft has created a set of HL specific scripts that 
take care of actions like spatial perception, and gesture 
recognition. These scripts are available to developers and 
have been used in this application.

For the full code see Appendix D.

The next step was to translate these rough steps into 
more approachable sub steps, that eventually can be 
programmed. As an example, step 1 is broken down into sub 
steps here. The full steps read
Unscrew 4 screws with a TORX TX20 screwdriver and 
remove the top bracket.
In sub steps this would mean the following:
1.1 Screwdriver moves from initial position to screw, 
indicating to put the screwdriver on the screw.
1.2 Screwdriver rotates for a few seconds in the right 
direction (counterclockwise).
1.3 Screwdriver moves back to its initial position, indicating 
that the screwdriver needs to be pulled out of the screw.
1.4 The bracket needs to move upwards, showing that it has 
to be removed.
1.5 Everything needs to go to its starting position to repeat 
the animation.

Note that a few things are not present in these sub steps;
the choice was made to have the screwdriver only move 
to one screw (for the sake of only having to program one 
movement). The other screws are indicated with red wires. 
Removal of the screws is not animated, as removing the 
screws is a logical result of unscrewing.

The other steps were broken down likewise, where every 
sub step is translated into objects that visually move or 
rotate. 

8.2.3 Unity
Building an application for the HL is done in Unity (Unity, 
2016). Models can be loaded in and by writing scripts and 
attaching these to so called GameObjects (3D objects in 
Unity), the objects can be moved around. In Unity, the 
project needs to be set up as a holographic one, specifically 
for the HL. Practically this means that the application 
will try to run as fast as possible, ditching quality when 
performance is needed. It is important to keep a high frame 
rate in the application as users will eventually be looking at 
and moving through the application very close to their eyes. 
Low latency makes it easier on the eyes and can prevent 
motion sickness (Hettinger, 1992).

Unity C# scripts standardly have two methods, the Start() 
and the Update() method. Start() is used to initialize the 
application and runs only once, when the class is called 
for the first time (usually when starting the application). 
Update() is called every frame the application is running. 
Writing a function that for example handles the animations 
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8.2.4 Deploying
A HL emulator running on a computer was used to test 
the application. The emulator runs a simulation of the HL 
and uses button presses for gazing input and air-taps. The 
computer microphone is used for speech recognition. After 
many modifications, the application was working properly. 
Screenshots of the actual application running on the 
emulator have been appended (see Figure 32).

Testing the application on the HL was done by sideloading 
the application over a USB connection to the device. 

Speech

“proceed”
“next”

“go back”
“previous”

Airtap

int StepNumber

void Update()

1 ...

2 ... StepTwo();

3 ...

4 ...

5 ...

// what is the 
StepNumber?

StepTwo()

1 ... DoSomething();
if (DoSomething() = done)
SubStepNumber = 2;

SubStepNumber = 1;

2 ... DoSomethingElse();
if (DoSomethingElse() = done)
...
SubStepNumber = 1;

// what is the 
SubstepNumber?

// Repeat unitl 
Update() does not call 
this step anymore.

Show / Hide
Translate
Rotate

InputOutput

Figure 32. Screenshots of the application running on 
the HL emulator.

Figure 31. Graphical explanation of the code.
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Initially deploying the application on the device did not 
work. An unknown error came forth while deploying the 
application. It turned out that the path before the build 
solution, the folder containing all the needed files to deploy 
the application, may only contain 23 characters and no 
spaces (Windows Holographic Developer Forum, 2016). In 
order to read the files, the maximum length of a path is 60, 
but most of it is already used in deeper folders required for 
running the application.

for example:

C:\Users\COMPANION\Documents\University of Twente\
Bachelor Assignment\Holographic Guiding Prototype\Build

Contains both more than 23 characters and spaces, and 
gives an error when deploying. Placing the build solution in 
the root of the C directory solves this problem:

C:\HOLO\Build

After solving the error, the application was running fine.
Some tests have shown that holographic guiding is an easy 
way of approaching the assembly process (see Figure 33). 
Feedback was used for some minor improvements, such 
as creating colored screwdrivers, based on the color of the 
actual screwdrivers used.

Figure 33. Someone succesfully assembling a product 
using the holographic guide.
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being too tight around the head. It is recommended to 
keep exploring ways to have normal work conditions 
and augmented reality co-exist in the Manufacturing 
Environment.

Work needs to be done in order to create a workflow 
suitable for using the HL within the company. Specific 
programs need to be written that make the job of creating 
holographic guides easier. On the subject of CAD 
development, it is also recommended to find a way to make 
reviewing models on the HL easier. Now, a model needs 
to be converted into the right file format and uploaded 
to the HL manually. For some cases, such as showing 
a product to a client a few times over the course of a 
project, this is an alright approach. Integrating augmented 
reality into the company, should not limit the workflow by 
having employees constantly fiddle with the right models, 
file formats, or device limitations. These things should be 
automated.

As shown, a step in holographic assembly can be broken 
down into sub steps of three types, showing/hiding, moving, 
and rotating. It should be possible to create a user-friendly 
program that makes it easy to apply animations to steps. 
The model can be loaded in, and parts can be selected and 
given one of the possible animations.

Technology is constantly changing and improving. It is wise 
to keep up with the latest applications and possibilities 
of the HL. Apps can be improved by editing them with 
newer software and functions. This version of the HL has 
had criticism on some points. It might be the case that 
Microsoft is working on a second version of the HL already, 
that will have all sorts of improvements. It is recommended 
that Benchmark keeps an eye out for announcements of 
Microsoft revolving the HL. 

Introducing a new technology into a work environment 
where specific rules and structure apply is a large operation. 
I recommend Benchmark to think about how much they are 
willing to invest in this technology. Based on that decide 
on where in the company they are going to integrate 
augmented reality technology. 

It is important to keep in mind that not everyone is 
comfortable working with augmented reality or a device 
worn around the head. Some people might experience 
headaches from either having to cope with holograms and 
constantly shining bright light in their eyes or the device 

9. Recommendations & future
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create applications for it. Designing an augmented reality 
application also requires some thinking in 3D in terms of 
animation and interaction.

Creating an application for the HL is done through Unity, 
which has proven not to be the most straightforward 
method. Streamlining the workflow would be a necessity if 
more of these guiding applications will be made. Ideally a 
program is created where, using a graphical user interface, 
the guide is created. This also goes for other ways of 
integrating the HL in an industrial environment. The 
workflow is disrupted quite a bit when someone has to 
convert a model or write a whole application before being 
able to use the HL.

Emerging technologies can be so new, that while 
developing, new features come out. Over the course of 
this bachelor assignment, integration of the HL went from 
a unity SDK add-on to fully integrated into the software. 
A new tracking system for augmented reality has started 
collaborating with Microsoft, called Vuforia. Some of 
the initial ideas included tracking objects, however, the 
HL would only be able to track surroundings. With the 
collaboration between Microsoft and Vuforia, tracking 
software for specific objects is now available to the HL. 

At the moment, the HL asks for too much investment 
in development to be a usable solution in the company. 
Creating an application demo has shown what is involved 
in making something work on the device. Benchmark 
has its core business somewhere else, and therefore it 
is improbable that deep integration will ever be built by 
Benchmark itself. However, this report has also shown that 
the device can be used in a variety of other situations where 
less development might be needed.

Researching the HL has allowed to get an insight in the 
possibilities and limits of the device. The HL is a new 
product, an emerging technology. The HL offers imposing 
techniques and results. However, compromises are 
present that do make the HL somewhat unpractical in 
some situations. At the time of writing, the product is still 
promoted as a developer product, not yet as a finished 
consumer product. The HL is an expensive tool, and 
therefore it should always be a consideration if the product 
is good enough now to invest in. Benchmark should really 
think about what their motive is to start using the HL. If the 
main goal would be to make more money, the HL might be 
an uncertain investment. The question arises if investing in 
the integration of HLs is a viable investment, as a second, 
improved version of the product could come out next year. 
If the goal is to innovate within the working environment, 
investing in the HL offers a look and step into the future 
and could offer an advantage of already being acquainted 
with applied augmented reality solutions. It could offer a 
long-term advantage of being ready when new devices find 
their way to the market and prove their usability.
Integrating new emerging technologies is an expensive and 
risky investment, especially on a larger scale (for example 
when giving the whole Manufacturing crew a HL). The level 
of investment Benchmark is willing to make, also determines 
what possibilities are present for augmented reality.

Looking at the created concepts, we can conclude that 
the HL can be used in several aspects of the industry, in 
different ways, with different advantages to them. The way 
of integrating depends on to what extend a shift is made 
to using HLs. Due to the fact that augmented reality is a 
new technology for the manufacturing environment of 
Benchmark, it could be wise to integrate solutions step by 
step, for example following the concepts from low to high, 
letting the company structure and employees get used to 
having HLs around to work with.

Investing in the technology alone is not enough. As noticed 
during this assignment, there is more to it than just buying 
a HL. It costs time and research to get to understand the 
device. There is no extensive application collection yet 
to choose some usable applications from to use. The HL 
is a developers device and so, a developer is needed to 

10. Conclusions
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by definition do not actually exist in reality, they can only 
be viewed indirectly, by simulating them, making them 
appear through a certain medium. Indirect viewing of real 
objects can be done by sampling them, using some sort of 
apparatus e.g. a camera.

Finally, a distinction is made between real and virtual images 
as follows:

Real images have a certain luminosity at the location they 
appear to be1. Virtual images on the contrary, do not have 
luminosity at the location they appear to be in. Doing so, 
they are able to make a distinction between an photograph 
of an object (real image) and a stereoscopic image from two 
photographs, resulting in an 3D image. This 3D image is 
situated in the real world environment, and therefore the 
luminosity is incorrect with its surrounding (virtual image).

Between real and virtual, there is a continuum that mixes 
parts of both reality with virtuality.
Milgram and Kishino (1994) use the Virtuality Continuum to 
describe the spectrum of mixed reality (see Figure A1).

To get a grip on this broad term of mixed reality, research 
was carried out. Besides the terms Milgram and Kishino 
set, other forms of mixed reality were found, that are 
researched.
Based on the found results, a new continuum was made, 
including more in-depth forms of mixed reality. In the 
continuum short descriptions of each form are adopted and 
some example applications are adapted (see Figure A2).

1	 Milgram and Kishino do not note the theoretical possibility that 
a certain real environment can be scanned, and the luminosity from said 
surrounding could be projected on a simulated virtual object, resulting in the 
definition of a real image. This would however still be a virtual image.

Introduction
Between reality and virtuality there is a whole range of ways 
of visualising objects. It can be confusing when a certain 
term should be used and what a certain term actually 
means. Therefore, a clear taxonomy is needed for the 
description of everything from reality to virtuality.

For starters, a clear description is needed for what is 
real and what is virtual. Categorizing these terms can be 
difficult, since the observations we make of both worlds, 
can resemble each other. Using computers we are able 
to create physically accurate renderings of all sorts of 
objects, resulting in an unclear distinction of observations 
of what is real and what is virtual. Something that is real 
and something that seems real, can be totally different 
objects, since a represented object can be a virtual one. 
A picture of an object taken with a camera, represents a 
real object. A picture of an object made with a computer 
rendering technique, also resembles a real object, however 
only the first one is actually representing the real object. 
Both observations of said picture, will however look alike 
and it can be hard, or either impossible, for the viewer to tell 
which one is the actual real object. 

The distinction between virtuality and reality is therefore 
not arising from the possible observations of an object, but 
rather from the set of properties it has. Milgram and Kishino 
(1994, p.1324) describe the distinction between the two 
sorts as follows;

“Real objects are any objects that have an actual objective 
existence.
Virtual objects are objects that exist in essence or effect, 
but not formally or actually.”

Furthermore, they describe a taxonomy for observing real 
and virtual objects as follows:
Direct viewing is a direct observation of an object without 
the interference of a certain medium, with the exception of 
transparent mediums that can not alter the real properties 
of the object (seeing an object through air or glass).
Indirect viewing is the observation of an object with 
interference of a certain medium. Since virtual objects 

Appendix A
Research on mixed reality

Mixed Reality (MR)

Virtuality Continuum (VC)

Real 
Environment

Augmented
Reality (AR)

Augmented 
Virtuality (AV)

Virtual
Environment

Figure A1. Milgram and Kishino’s Virtuality 
Continuum.
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Hearing is based on sound waves, vibrations in a gaseous 
or liquid medium, that are catched by the inner ear. In the 
inner ear, vibrations are turned into impulses that the brain 
processes to hear sounds. Determining the source of sound 
is possible by comparing when either left and right ear hear 
the same sound. By creating sound emitting devices that 
have a small difference in when they play the same sound 
for left and right ear, we can fool the ears in hearing sound 
from a certain direction (see Figure A4).

Taste and smell work in a similar way. These senses create 
impulses when a certain chemical binds with receptors. We 
cannot really fake smell (yet), but according to Ranasinghe 
(2012) taste can be created using electrical surges on the 
tongue, combined with heat dissipating foil.

Touch is sensed by deformations of (parts of) the body by 
a certain pressure external to that part of the body (see 
Figure A5). Deformation of the skin and hairs on the skin 
send impulses to the brain that conclude something is 
being touched on that specific spot. We cannot really fool 
ourselves to being touched, as simulating touch would 
actually done by forcing pressure on the body, however we 
can kind of simulate the reason for touch. Haptic feedback 
is an example, used in touch keyboards on smartphones. 
The vibrations when pressing a button, resemble the touch 
of pressing real buttons.

Reality
Milgram and Kishino (1994, p.1324) determine real objects 
with the following;

“Real objects are any objects that have an actual objective 
existence.”

Since this determination follows from certain set of 
properties of an object that have to be known by the 
viewer, it can be difficult to explain reality. 

Observations in reality are made through the senses. Over 
time we have learned how our senses work and since we 
know how they process input, we can generate our own 
input. 

Sight is formed by photons that hit objects and reflect into 
the eye. In the eye cells generate impulses based on the 
incoming light and the brain develops an image. But there 
is more to it. We can see in three dimensions and estimate 
distances between objects. There are several ways we 
unconsciously use to perceive our surroundings.

1.	 The difference between the left and right eye. When 
looking at a certain object, the distance between the 
left and right eye result in a slightly different view of 
the object.

2.	 Recognition of objects and their relative size. Objects 
that are close to the viewer, appear larger. We use this 
illusion to compare sizes of objects we know with the 
size we remember them to be, to be able to estimate 
how far away they are. Arrangement of the objects also 
helps with this (close objects appear in front).

3.	 Focus and defocus of the eye. Some parts of the field 
of vision appear blurry, when the viewer focuses on 
something closer or further away. This helps estimate if 
things are at about the same distance from the viewer.

4.	 Relative movement of objects close and far. When 
moving the point of view, object that are close to the 
viewer, will appear to move relatively more than objects 
that are far away. As the point of view is always a bit 
shaky (the brain does cover up for this), unconsciously 
the observations of relative movement help a lot to 
estimate depth.

The combination of these (subconscious) observations, 
enables us to have a great understanding of the world 
around us. As we rely heavily on these simple principles for 
our vision, it is easy to create our own input 3D input, for 
example using stereoscopic displays (see Figure A3).

Relative displacement

Di�erence left and right eye

Focus and defocus, volgorde 
en relatieve grootte

Figure A3. Depiction of how to  estimate 
depth.
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The virtual environment comprises a global coordinate 
system, specifying the relative locations of all objects. Each 
object has its own specific properties; a local coordinate 
system, encompassing length, height, and depth of the 
object, reflective behaviour, and color.
This virtual environment can be simulated and rendered to 
make it possible to observe it.
An observation of a virtual object is for example possible 
through a simulation of an image.

As stated, a direct observation of total virtuality is not 
possible. Every observation a human can make, always 
goes via the senses, indicating some form of reality. All 
observations made through the senses, are based on 
physical properties of reality. To observe, for example, a 
virtual cube, first a calculation must be made for all of its 
properties, which have to be rendered. The render, in turn, 
has to be made visible through another medium, such as a 
display. This is always an indirect way of viewing the object.

Theoretically, an observation in virtuality is possible, but 
all senses and mediums should be excluded and the brain 
should have a direct connection to the virtual world to 
directly process virtual impulses.

Simulated Reality
When looking at the amount of realism we can already 
accomplish using simulated objects on, for example, 
displays, it could well be possible that at a certain moment 
in time, the distinction between real and virtual is not 
noticeable anymore. Combine this with a possible way to 
do direct observations in the virtual world and it might be 
impossible to know whether the viewer is actually in the 
virtual or the real world (Bostrom, 2003). If a person, for 
what reason so ever, forgets that he is actually in the virtual 
world, he may start believing that that is his reality. There 
is no reason anymore for the viewer to believe in a world 
other than his virtual one, and there is no reason to believe 
that this virtual world is not the real world. Simulating an 
entire truth like that, is called Simulated Reality.
Lots of books and movies incorporate this idea of simulated 
reality. In such movies the brain is often connected to some 
sort of computer system that creates impulses. One of 
the most famous movies to show this, is the Matrix. In the 
Matrix all of humanity is put in small spaces, suspended in 
some liquid. Their brains are connected to machines using 
pins in their head and back. The machine simulates another 
reality, where all of humanity lives consciously. 
According to several philosophers the concept of simulated 

Virtuality
According to Milgram and Kishino (1994), Virtual objects are 
objects that exist in essence or effect, but not formally or 
actually.

Since virtual objects do actually not exist, a certain 
medium is needed to allow a viewer to see a virtual 
object. In essence, a virtual object exists out of a set of 
virtual properties in a virtual environment. These virtual 
properties describe the object, but since they are just virtual 
properties, they can not really be observed. Simulating 
these properties allows a virtual object to - indirectly - be 
observed (see Figure A6).
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Figure A4: Depiction of how to estimate 
the source of a sound.

Figure A5: Depiction of how to sense.

Figure 6: Rendering of 3 cubes with 
different properties.
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adaptations, as happens in amplified reality. In between, 
there are several gradations in how reality and virtuality are 
mixed and what the total output is.

MR uses tools to influence the senses, fooling them in 
sensory observations. People have a strong sense of 
empathy and can easily be okay with something looking 
or sounding kinda-real. Have a look at children, who see 
all sorts of scary things at night. Something resembling 
the slightest form of a human figure (a chair with clothes 
on it), makes them assume there actually is a real person 
sitting in their room. This empathetic power is the key to 
mixed reality applications. Looking at something that kinda 
resembles anything recognisable can often be enough to 
have a viewer believe that he is looking at a thing instead 
of for example a group of pixels. The peculiar thing is, that 
even if the viewer knows he is looking at a group of pixels, 
he is still believing in what the group of pixels represents 
and can be emotionally, though irrationally, moved.

Practically, convincing observations of virtual objects in MR 
arise from the combination of several senses. For locating 
a certain object, sound can help to put the eyes in the right 
direction, so combining sound with sight is a great way to 
find an object in space.

Amplified Reality
Amplified Reality amplifies certain observable properties of 
real physical objects in reality using computers. According to 
Falk, Redström & Björk (1999), one of the most important 
distinguishable aspects of amplified reality, is the fact 
that the result should be publicly observable (in contrast 
to, augmented reality (see augmented reality), which is 
more user-centered). Furthermore, only initially principally 

reality could be rather plausible. Bostrom (2003) was one of 
the first to explain this, but has since gotten support from 
several other philosophers and scientists. The explanation is 
as follows;

Looking at the past, humans have been growing 
technologically. As we can see, technological growth has not 
yet stopped, and one can expect with reasonable certainty 
that humans will keep growing technologically, to reach 
a certain point where computer simulations are powerful 
enough to simulate large parts of or even whole realities.

Now, at least one of the following is very probable to be 
true;
1.	 Humans will never reach a point where these kind of 

simulation can be made. Technological growth will have 
to cease at a certain point to prevent us from creating 
these simulations. A reason for this could be the 
scenario where all technology is destroyed, or where 
humanity is exterminated. Another reason could be 
the physical impossibility of technological growth at a 
certain point.

2.	 Humans will sometime be able to create a large amount 
of simulations of realities, but due to reasons they do 
not want to. Reasons could be the cost of computing 
power, ethical reasons, or just a lack of interest in 
simulating a certain reality.

3.	 Humans will sometime be able to create large amount 
of simulations of realities, and will do so. Following 
on that, a whole simulated reality, will in turn be able 
to create simulations of realities, creating an infinite 
amount of simulated realities. Given that there is 
an infinite amount of simulated realities, it is very 
improbable that our reality is the first one to create a 
simulation and therefore, we are probably living inside a 
simulation of reality (see Figure A7).

However, as stated before, one would not be able to 
determine whether he is in a simulation or in reality. This 
makes it a speculative discussion, as we will probably never 
know what reality is.

Mixed Reality
Between the two extremes of the spectrum, there is the 
collection of observable reality adjustments, that mixes real 
and virtual objects, call Mixed Reality (MR). In MR there is 
always some form of real objects and some form of virtual 
objects. A certain medium links both worlds to each other. 
Such mediums can lead the observations, as happens in 
immersive reality or offer more supportive observation 

Figure A7: Graphic depiction of simulating 
realities

1st simulated reality

2nd simulated reality
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Diminished Reality
In Diminished Reality, certain parts of the real world are 
filtered and reduced or removed for the observer. Certain 
parts of his observation are less available, while his focus 
remains with his real surrounding. A reason for this can be 
to protect private information in some way.

Another application can be diminishing some interfering 
factors from the surrounding. A user can focus on an object, 
but due to external factors, he is less able to do so. Filtering 
out (some of) the interfering external factors can be a way 
to gain more focus for the user.

Active noise cancelling headphones use this principle. The 
headphones actively monitor the noise coming from the 
surrounding and create a soundwave opposite in phase 
to the monitored noise. As both soundwaves are exactly 
each other’s opposite, they cancel out, and the noise is 
significantly reduced. The result is that the user could use 
a lower volume on his headphones or have less distraction 
from his surrounding (see Figure A8).

Another example is a technique used to filter visual 
imperfections. Old photographs often are printed on 
very glossy paper. All sorts of reflective areas from the 
environment are visible when looking at the photo, 
especially light reflections are constructing the view. Using 
a technique that takes several samples of the photograph, 
the visual imperfections can be arranged on a different 
part of the photograph each sample (Google, 2016) The 
samples that do not show the imperfections can digitally be 
combined into one perfect picture (see Figure A9).

observable properties of objects are amplified and no 
virtual objects will be created that would initially not be 
observable.

Examples of amplified reality are projects like the Lovegety, 
a product that publicly emits a certain desire of a person to 
participate in a certain activity (Iwatini, 1998). Note that the 
initial state of the person already incorporated the desire to 
participate in an activity and the product just emitted this 
publicly to other owners of the product. Another example 
is the BubbleBadge, a wearable computer with display 
that shows certain characteristics of the wearer to people 
looking at the wearer (Falk & Björk, 1997).

Mediated Reality
Mediated Reality is officially the umbrella for observations 
made in reality, that are somehow mediated using virtual 
objects and computers.

There are two main ways of mediating reality:
1.	 Adding objects to the observations of reality, which is 

also and commonly known as Augmented Reality
2.	 Removing objects from the observations of reality, 

which is also known as Diminished Reality
Of course an application using both augmented and 
diminished reality is also possible. Both will be described 
separately in the following chapters.

An important aspect of mediated reality, is that it mediates 
the observations of reality (Mann, 1994). As the viewer 
observes, his observations are mediated in realtime.

environment noise

anti noise wave

result wave

Figure A8: Example of the working of active 
noise reduction.

Figure A9: Example selectively removing unwanted parts 
of reality.
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through, using transparent material to project on. Different 
types of displays are usable for AR. Head-mounted 
displays (HMD) are strapped to the viewer’s head and 
show information directly in front of the eyes of the user. 
Handheld displays are small displays, such as smartphones, 
that are capable of using video see-through to augment 
objects.Spatial displays are displays that do not need to be 
held by the viewer.
Since AR is interactive in realtime and registered in 3D, the 
environment has to be tracked in some way, to augment 
registered objects. Basically there are two ways of tracking 
in relation to the surrounding environment, defined and 
undefined. If the environment to augment in is defined, the 
system is looking for defined features of the environment 
that are recognisable. How specific the features are defined 
depends on the application. Very specifically defined 
features look for an exact object in the environment (see 
Figure A10). Here we can see that the exact image is 
needed in order for the system to know that it should 
augment something. Less specifically defined constraints 
are present in for example Snapchat, where the application 
augments certain virtual features on a human face. The face 
is recognised based on some abstracted features, namely 
the presence of some contrast where mouth and eyes 
should be (see Figure A11).

While this technique is actually not used in realtime, it could 
easily be extrapolated as a diminished reality application. 
Likewise application exist for diminishing repetitive patterns, 
as wire fences, as long as enough samples are made.

Basically there are two ways of diminished reality 
applications. The first one relies on pattern recognition 
and prediction of the pattern. This is the case with noise 
cancelling, as the headphones should predict how the 
noise will be filtered at the same moment it sensors it. This 
future-driven way of diminishing is less reliable since the 
technology should predict what it should fill in. Especially 
abrupt changes in the surrounding are hard to deal with.

The second one constantly samples parts of the surrounding 
and combines those to diminish a certain object. This is the 
case with the visual imperfections filtering technique. The 
technique relies on samples taken in the past. This past-
driven works more reliable since the technology does not 
have to ‘create’ something new. This technique, however, is 
only usable if it is clear what object to diminish.

Augmented Reality
Augmented Reality (AR) comprises looking directly or 
indirectly in realtime at the fysical, real world, to which 
virtual information has been added into the context of the 
environment. These additive factors can, for example, give 
extra information about the environment or simulate extra 
objects. This way, a user can be assisted in the tasks he is 
doing.

According to Azuma (1997), AR systems have the following 
characteristics:
1.	 Combine real and virtual
2.	 Interactive in realtime
3.	 Registered in 3D1

Adding, or augmenting, objects to reality is a fairly broad 
term, and therefore, a broad variety in technological levels is 
present within AR. Carmigniani and Fuhrt make an extensive 
description of the AR field (Fuhrt et al, 2011). Four sorts of 
devices are used to create an AR experience: display, input, 
tracking, and computing. 

Displays are used to view the environment and to augment 
objects onto. Displays can either be video see-through, 
displaying a camera feed onto a display, or optical see-

1	 With the third statement, Azuma excludes all systems that make 
use of 2D overlays, such as Google Glass. One could argue whether such 
systems should be included or excluded from the term AR.

Figure A10. Defined environment, 
specifically: layer.

Figure A11. Defined environment, 
unspecifically.
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Virtualized Reality
Virtualized Reality is the term for fully virtual environments 
that arise from a virtualized real environment using scanning 
and processing techniques.
Virtualizing a real environment can be done using cameras 
that scan and digitise the environment. Processing the 
data allows for the creation of a virtual environment. In the 
virtualized reality, the viewer can take on any point of view.

Events in virtualized reality have to be recorded from every 
angle. As the viewer in a virtualized environment is able to 
take on any point of view, this should be the same when 
an event is happening. A visual event should therefore be 
captured with multiple cameras, that are able to record the 
event from every angle and postprocess it in 3D. 

All events in virtualized reality appear from real events, 
happening in realtime or that have already happened and 
have been recorded and stored.

Practically, creating virtualized reality applications can 
be a rather difficult process. Due to the large amount of 
control needed over the real environment, it is hard to 
record events. The Robotics Institute has been working on 
a large virtualized reality sensor. Realization of this sensor 
should be accomplished using about 1000 cameras and 
200 microphones to collect data within the sensor. Once 
finished, the sensor should produce about 5.7 terabyte of 
data per second (The Virtualization Studion, n.d.).

Immersive Reality
The goal of immersive reality is to create an experience that 
integrates the viewer as much as possible into the virtual 
environment, so that he will be most conscious in the VE, or 
that the experience created, will be as real as possible.

To create immersive experiences goggles are often used 
that create a stereoscopic set of images in front of the user. 
Accompanied by sound, this is often enough to get the 
viewer immersed into the virtual environment. Tracking the 
rotation and place of the head and translating this into the 
position of the camera in the virtual space, enlarges the 
belief in the reality of the experience.

The most common technique for creating immersive reality 
uses small display screens that are placed in front of the 
viewer’s eyes. Using lenses, the image is made visible at 
this short distance from the eyes. Although development of 

As the systems already knows some defined constraints 
of the objects it is looking for, it can augment based on 
the aspects it finds. In example 1, the system knows how 
the image should look in 2D, and using recognition and 
distortion of the object in 3D, it is able to create a 3D 
space.

Augmented virtuality
Augmented Virtuality (AV) comprises adding elements 
from the real world to a virtual environment. Milgram and 
Colquhoun Jr. describe augmented virtuality in detail and 
add some examples (1999). In AV, a virtual environment is 
enhanced using real world objects, or real images.

AV can, for example be found in a lot of video games, where 
textures, real images of certain materials, are used to specify 
a certain object. Instead of modelling all properties of the 
object, only the dimensions are modelled. Using a texture, 
can save both a lot of time and computing power, as the 
system does not have to calculate how that specific material 
behaves.

Another example can be found in immersive reality (see 
immersive reality for explanation), where due to the 
covering of the eyes, the real world cannot be observed 
anymore. Glasgow Multimodal Interaction Group (2014) has 
made an application, where the real objects are augmented 
in the virtual environment to help the user, for example, 
locate his keyboard to then use it as an input device.

Virtual Reality
Virtual reality is the umbrella for all environments consisting 
fully out of virtual objects.

Virtual Reality is often used for all sorts of HMDs that 
place the viewer inside some sort virtual environment 
(VE). Although these HMDs indeed place the user inside 
a VE, which is a form of VR, the specific term used for 
these goggles, is immersive reality (see immersive reality). 
VR is a broader term, comprising all sorts of fully virtual 
environments.
Virtual reality can alsof be used in terms of, for example a 
game or a CAD-environment, where all objects are indeed 
virtual.
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immersive reality sets has improved over the past years, the 
experience still has some disadvantages.

Immersive reality sets on the high-end of the spectrum, 
can deliver a convincing experience of the VE, especially 
when the user’s movement in 3D is being tracked. Besides 
rotation of the head, some sets also track the position of 
the viewer in space within a certain area. Sight is one of the 
most important senses, and therefore, immersive reality is a 
convincing and overwhelming experience.
However, due to the fact that immersive reality is such an 
overwhelming experience, the flaws in quality can start 
to stand out. The amount of pixels might be large, but by 
magnifying them close to the eyes, they can become easily 
visible.
When rotation and movement of the user is being tracked, 
this amplifies the experience. However, movement has to 
be understood by the software and processed into visible 
movements for the viewer. As the viewer is fully immersed 
into a virtual environment, every movement that has a 
form of latency can cause nausea. The impulses from the 
vestibular and the eyes do not correspond to each other. 
The maximum latency between movement of the viewer 
and the moment the display shows this movement, should 
be shorter than the viewer can notice.

Three examples of immersive reality in low-end, medium-
end, and high-end that are momentarily available for 
purchase:

Google Cardboard uses the fact that almost every person 
has a personal smartphone, capable of generating 3D 
environments and tracking rotation. A cardboard viewer 
with two plastic lenses is used to place the smartphone in.
Samsung Gear VR makes use of the same principle of 
putting a smartphone in a viewer, but their viewer has build 
in straps to wear the pair of goggles and some extra sensor 
for tracking rotation of the user.
On the high-end spectrum, we see a collection of immersive 
reality sets that are head-mounted, have built-in sensors 
and even use extra cameras to track rotation as well as 
position in space. These headsets, like HTC’s Vive use a 
dedicated computer, which has to be attached to the set 
via cables at all times. This prevents taking the set with 
you wherever you go, but it allows for better immersive 
experiences due to computing power.
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Experience
The HL, which kinda resembles a pair of futuristic skiing-
goggles, uses sensors to scan the real surrounding of the 
wearer. In the real environment holograms can be placed, 
that either consist out of 3D shapes, or are flat planes 
flying in the air or pinned against a wall. Once a hologram 
is placed in the environment, the viewer can walk towards 
it, walk away from it, walk around it, all whilst the hologram 
stays in the same place. Looking away will, of course, make 
the hologram disappear, as it is out of view. However, when 
looking back, the hologram will still be visible on the same 
spot. As the HL is a computer on its own, there is no need 
for cables during the use of the product. The fully mobile HL 
will render all objects on its own in front of the eyes of the 
user.

Practically using the HL goes a bit like this:
First the user has to put on the HL. The apparatus needs 
to be put on the head of the user, so that  the eyes are 
covered by the lenses. A scalable headband is used to put 
the product in the right place and adjusting it, insures that 
the HL will not move during usage.

After putting on the HL, the user basically just sees the real 
environment he is in. Before holograms can be seen, they 
need to be called and placed somewhere, or an application 
that ensures this has to be started. Interacting with the HL 
mostly goes about using 3 varieties of natural interaction, 
gaze, gestures, and voice.
Gazing in terms of natural user interfaces (NUI) comprises 
following the gaze of the user. In the middle of user’s field 
of view, a small white dot is placed, which acts a bit like a 
computer cursor. Looking at certain objects can be called 
gazing. While gazing, selection can be made in one of two 
way; using a specific gesture for selecting something, or 
through voice commands (Microsoft, 2016d).
Gestures are specified hand movements that are recognised 
by the HL. At the moment there are two gestures supported 
by the HL, the Airtap, and the Bloom (Microsoft, 2016d).
Airtapping can be done by stretching your arm in front 
of you and pretending to tap someone in front of you on 
the shoulder. The HL recognises this as a select-gesture. 
Varieties on the single-tap, can be tapping and holding, 

Introduction
A promising product in mixed reality is the Microsoft HL. 
This pair of goggles can project all sorts of holograms into 
the surrounding of the viewer. Holograms can be any virtual 
3D or 2D object and due to the fact that the HL scans the 
environment continuously, holograms can be mapped to 
specific places in the environment, or even move around the 
real environment (Microsoft, 2016f).

Developer Microsoft already has a lot of ideas about 
applications for the HL, and shows potential in a variety of 
markets with demos or commercials. However due to the 
fact that at the time of writing this thesis the product is 
fairly new to the market, not a lot of real applications have 
been developed yet. Microsoft has gotten a lot of positive 
attention for what the HMD can do at the moment and this 
has woken interested parties.

Benchmark is one of the interested parties that likes to 
incorporate the HL into her processes. Based on previously 
conducted research by Benchmark itself as well as other 
students, the decision was made to achieve two HLs to 
explore the possibilities within the company.

In this chapter the focus is on the HL. The functions of 
the product will be described as well as experiencing the 
product. To get a grip on the potential of the product, 
some applications of large developers will be looked into. 
Furthermore, a description is given on how to develop 
applications for this product, and the constraint of the 
product are stated. It is important to know both possibilities 
as well as limits when creating solutions incorporating such 
emerging technologies.

Function
First a description is given on how the device functions 
more from an experience point of view, second a more 
technical description is given on how the product functions.

Research on HoloLens©

Appendix B
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in, are stored in the memory of the HL and linked to the 
hotspot used for wireless connectivity on that place. This 
way, returning to a certain environment, allows for quickly 
reloading the already made maps of that environment. Even 
the placed holograms and their position in space are stored.

As stated in the part on experiencing the HL, mostly 
forms of natural user interfaces are used. This is a good 
thing, a handsfree device like the HL should not be 
immobilised by the use of input devices that are not 
portable e.g. keyboards, mouses etc. The advantage of 
using natural input, is that the user does not have to learn 
representations for interacting with the interface, such 
as cursor is your focus. Fully leaving the graphical user 
interface (GUI) behind has not happened yet. When using 
the HL, a lot of structural menus are used to navigate 
through. These menus are, just as in a GUI, 2D screens with 
buttons for settings. The menu can be pinned somewhere 
to a wall. It is unclear why they chose for this approach. It 
might have to do something with the convenience of not 
having to create new ways of navigating through the menus. 
Still, unfortunate, as MR opens the door to new and creative 
ways of losing 2D representations of menus and cursors.

On the side of the HL, two small speakers have been 
placed, directed at the wearer’s ears. Spatial sound, creating 
sound that seems to be coming from somewhere in the 
environment, is used to help create a feeling of reality to 
some holograms.

All input and output are processed in the HL itself. A 
specially designed chip, the holographic processor unit 
(HPU), does most of the work

All is combined into the HL, which can be used fully mobile 
for about 3 hours on the build in battery. The electronics on 
the inside are mostly not visible.

tapping and dragging, or double tapping. Support for 
these varieties differs per application. The bloom action 
can be evoked by putting all fingers of a hand together, 
facing upwards and than spreading them out. This action 
resembles what happens when the start-button is pressed 
on a Windows-computer. Here, a flying start menu will 
appear in front of the user (see Figure B1).

The final way of interacting naturally with the HL, is through 
voice commands. Voice commands for several actions are 
programmed into the HL, such as “select”. If recognised, the 
HL will act on these commands.
Once a certain application is started, holograms can be 
visible in the physical space. Looking through the lenses, 
shows objects that seem to be present in reality. The 
holograms are very bright, and appear to be on a specific 
point in space.

Technical
The HL can be divided into several parts working together.
Microsoft explains the HL as an optical see-through HMD 
using holographic lenses, consisting out of waveguides, 
to project stereoscopic images on (Microsoft, 2016c). 
According to them, the key to creating a great holographic 
experience is to use holograms that are lightpoint rich, i.e. 
have high holographic density. Lightpoints can be described 
as small collections of light, that together build up the 
holograms. 

Holograms are placed in the real environment, with regards 
to the context. You cannot see a hologram through a table, 
for example. Scanning the environment is established using 
multiple cameras scanning the surrounding. About 5 times 
per second images are taken from the HL cameras and 
processed in a specially developed Holo Processor Unit 
(HPU) into a 3D map of the surrounding. This is stored 
and constantly combined with new data to create a better 
understanding of the environment the user is in. This is 
called spatial recognition. Spatial recognition is limited to 
a few scans per second due to two main reasons. Firstly, 
scanning and understanding the environment in 3D 
requires a lot of processing power, which drains the battery 
faster. Secondly, it is not needed to constantly map the 
environment, as it probably will not change noticably over 
the course of a few seconds. Furthermore, limiting the 
spatial recognition speed, allows for ignoring fast changes 
in the environment, such as someone walking by, that are 
actually not part of the environment.
The spatial maps of each environment the HL has been 

Figure B1. Gestures. Left: Airtap, Right: Bloom. 
Retrieved from Microsoft Windows Dev Center.
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As the rooms have been set up the exact same way, there is 
no need for a virtual environment, and the persons involved 
can interact with each other in the real environment and 
context.

Volvo 
Car Builder Volvo has teamed up with HL to create a new 
experience of choosing your car (Erickson, 2015). Before 
buying or even manufacturing the car, customers can look 
at holograms of Volvo cars to help them choose or edit 
specific parts of the car[]. Besides the whole car, Volvo uses 
some holographic material to show their safety systems 
to potential customers[]. Although one could consider 
Volvo to be taking innovative steps, incorporating the HL, 
questions arise what the advantage of showing a hologram 
of a car that is available in the same space is. It might just be 
impressing potential buyers.

While researching several applications that have been 
developed for the HL, it became clear that most applications 
are either developed more as a demo showing off the 
potential of the HL, or by companies using enormous 
budgets. Most of the impressive applications show an idea 
of potential of the device, however, with a pretty specific 

focused app. 

Applications
To get an idea of the possibilities of the HL, some 
applications have been looked into. Those are described 
here.

Mars environment - JPL / NASA
Data of the Curiosity Rover and satellites orbiting Mars have 
already lead to a large amount of data about the surface of 
Mars. Using the HL, NASA/JPL created a 3D visualisation 
of the surface of Mars that has opened a whole new way 
of researching, by visually being able to see Mars (Nase 
Jet Propulsion Lab, 2016). It was even proven possible to 
augment the surface of Mars in separate, controlled rooms 
for multiple users, that were able to see augmented versions 
of each other (see Figure B2).

Holoportation - Microsoft
One of the applications developed by Microsoft is 
Holoportation, where a virtual copy of a person is projected 
inside another room as a hologram that can be seen 
with the HL (Microsoft, 2016b). To create a convincing 
experience in Holoportation, two rooms need to be set 
up the exact same way. In one room there is a set of 3D 
cameras to track events in that room in realtime. The data is 
processed and used to create a 3D hologram for the viewer 
in the other room, wearing a HL (and possibly vice versa). 

Figure B2. Depiction of the NASA/JPL HoloLens application. Retrieved from 
Microsoft HoloLens & NASA OnSight YouTub video.
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Resolution models
The HL can process a maximum of 150.000 vertices safely. 
This is the total of all visible holograms. Only using visually 
simple objects, this is not a problem, however, the amount 
of vertices grows exponentially when using more detailed 
objects. Creating realistic curvature in a model, only using 
faces, requires more vertices (see Figure B3).

Limited field of vision
The holograms appearing in front of the eyes of the wearer 
are limited to the size of the holographic lenses, from 
which the lightpoints hit the eye. On the HL, this does not 
match the full field of vision humans have. In fact, it is quite 
noticeable that the field of vision is quite small  compared to 
the total human vision. Holograms that are too big to fit on 
the holographic lenses, are cut off visibly (see Figure B4).
Looking at small virtual objects, or virtual objects that 
appear far away, this is not really a problem. When an object 
is cut off visibly, it can become harder to distinguish what 
the hologram is and it does detract from the experience of 
the holograms being really there.

Surrounding
HL uses spatial mapping to create a virtual representation 
of the real world to place holograms in. This does ask for a 
surrounding that can actually be mapped. If the user sits in 
a location that constantly changes, for example due to large 
streams of people passing by, or moving machines, the HL 
will not be able to properly map the surrounding.

Constraints and limits
The HL has some limits to what it can do. Despite the 
product functions well, there are some limitations the 
products has that can lead to constraints when developing 
applications for the HL.

Battery
The built-in battery of the HL allows the user to move freely 
through the environment he is in. There is no need for extra 
cables to power the device and all inputs and outputs are 
processed on the device itself. This comes, however,  with 
a compromise in the form of a maximum time of use. Using 
the HL continuously allows for about 2-3 hours of use []. 
Although this might seem short in the first place, the battery 
powers a small wearable computer, generating 3D spatial 
holograms, processes that ask for processing power. It is 
important to note this maximum time of use when designing 
applications for the HL. An application that should be used 
all day long is impossible without recharging the device. The 
HL does offer the advantage using it while charging, but 
this does create the need for cables or portable batteries, 
a trade-off for the freedom that the HL offers in the first 
place.

Weight
Another point that has to do with maximum time of usage, 
is the weight of the product. The product does attach nicely 
to the head of the wearer, with a soft headband, however 
wearing the HL for longer periods of time can create red 
imprints on the forehead and nose, where the HL rests. 
Furthermore, it might be heavy on the muscles of the 
neck to constantly carry the extra weight. Especially when 
bending the head to look down, the extra momentum needs 
to established by the muscles, possibly leading to fatigue.

Figure B3: Several virtual objects; left: cube: 8 
vertices. Middle: monkeyhead: 507 vertices. Right: 
car: over 2.000.000 vertices.

Figure B4: Depiction of field of view while 
wearing HL.. Retrieved from Polygon.com.



56

Overheating
The HL is cooled passively. Tasks that ask a lot from the 
processor could cause the device to overheat. A built-in 
safety mechanism ensures the materials of the HL will not 
melt or break when it is used extensively, by shutting of 
active applications. This will take place when the average 
processing power is above a certain criteria for at least one 
minute.

Optical see through
The optical see through lenses of the HL are transparent, 
allowing light from the surrounding to be visible to the eyes 
of the viewer. Lightpoints are added to the observations 
the viewer makes and they blend with the surrounding, 
depending on the strength of the light of the surrounding 
and HL. Basically you could say, that the strongest light 
source will be best visible. Using the HL in a bright 
environment, creates holograms that seem transparent, 
due to the environment being as strong as the light 
created by the HL. Dark environments are better suitable 
to project holograms in. A depiction of this is made in [fig], 
where gradations from white to respectively each color 
channel to black are made. Note that full black colors will 
never be visible when a light source is used to project 
something. Black is the absence of light, and it will always 
be transparent (see Figure B5).

Figure: B5 Depiction of how 
lightpoints react to light (up) and 
dark (bottom) environment.
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models existing out of filled solids. Surface modeling 
programs create models of which only the outside 
properties of the surfaces are used to create visuals. 

Compose
Once created, models can be prepared to be used on the 
HL using either Unity or DirectX. Unity is a 3D environment 
that is used often for the development of games. Microsoft 
specifies to use Unity on their website. Unity has created 
plug-ins for HL developers.

Develop
Visual Studio is used to turn the composed Unity 
environment into something usable for the HL. Visual 
Studio is a platform created by Microsoft for development 
of especially Windows applications. In Visual Studio extra 
functionality can be coded.

Deploy
Once the application is finished, it needs to be deployed 
on the HL. Another way to view models on the HL, is by 
sideloading them into a Microsoft’s shared cloud storage 
system, OneDrive. The models need to be a stored in the 
specific Filmbox file format (.fbx) in order to be opened on 
the HL.

3D modellers have extended knowledge on creating 
models, animations, and working with vertices and faces. 
Domain experts should know the ins and outs of the 
domain that the models are being developed for, for 
example which filetypes can be used. As the HL works 
on a version of Windows 10, it comes in handy to have a 
developer for that field, to create extra functionality. AR 
experts are needed to develop for interaction in AR, as this 
is a whole different field of interaction regarded to GUIs. As 
users wearing the HL are able to walk around the real world, 
new scenarios open up, for example, what happens with an 
application when the user just walks out of its dimensions? 
Or how does a digital button look from behind? Finally a 
‘unity wizard’ should combine all input into a application 
that can be used on the HL.

Currently, the only available edition is the developer edition, 
which is not meant for the consumer sector yet. At the 
moment of writing this thesis, no plans have been revealed 
for release of a commercial version of the product. As with 
most developer editions of products, they are meant for 
getting to know the product and developing content for it. 
In order to use the HL at the moment, specific applications 
have to be written to fulfill a specif goal. The advantage 
is that the application will suit the exact needs of the 
developer, in this case, Benchmark. The disadvantage, 
however, is that the full application will need to be written 
for the HL. As Benchmark has two developer editions of the 
HL, it is good to know how an application is created.

Here, developing applications for the HL is described.

According to Vroegop (2016), creating models and 
applications for the HL takes on 4 steps: design, compose, 
develop, deploy.

Design
To show content on the HL, models need to be created in 
3D. The HL uses models existing out of vertices and faces 
(surface models). Vertices are points in a virtual coordinate 
system, that can be connected to each other, forming edges 
(lines between vertices). Faces are created from 3 or more 
vertices and form a surface (see Figure C1).

Programs that can be used to create models for the HL 

include:
•	 Maya
•	 3DS Max
•	 Blender
•	 Sketchup
In general, CAD/CAM programs are not suitable to be 
used in the development of surface models, as they create 

Development for HL
Appendix C

Figure C1: Vertices, edges, and faces.
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                ShowObjectsOf(StepOneContainer);
                HideObjectsOf(StepTwoContainer);
                HideObjectsOf(StepThreeContainer);
                movementStepOne = GameObject.
FindObjectOfType(typeof(MovementStepOne)) as 
MovementStepOne;
                movementStepOne.StepOne();
                break;
            case 2:
                ShowObjectsOf(StepTwoContainer);
                HideObjectsOf(StepOneContainer);
                HideObjectsOf(StepThreeContainer);
                //Debug.Log(“Step number” + 
StepNumber);
                movementStepTwo = GameObject.
FindObjectOfType(typeof(MovementStepTwo)) as 
MovementStepTwo;
                movementStepTwo.StepTwo();

                break;
            case 3:
                ShowObjectsOf(StepThreeContainer);
                HideObjectsOf(StepTwoContainer);
                HideObjectsOf(StepFourContainer);
                movementStepThree = GameObject.
FindObjectOfType(typeof(MovementStepThree)) as 
MovementStepThree;
                movementStepThree.StepThree();
                break;
            case 4:
                ShowObjectsOf(StepFourContainer);
                HideObjectsOf(StepThreeContainer);
                HideObjectsOf(StepFiveContainer);
                movementStepFour = GameObject.
FindObjectOfType(typeof(MovementStepFour)) as 
MovementStepFour;
                movementStepFour.StepFour();
                break;
            case 5:
                ShowObjectsOf(StepFiveContainer);
                HideObjectsOf(StepFourContainer);
                HideObjectsOf(StepSixContainer);
                movementStepFive = GameObject.
FindObjectOfType(typeof(MovementStepFive)) as 
MovementStepFive;
                movementStepFive.StepFive();
                break;
            case 6:
                ShowObjectsOf(StepSixContainer);
                HideObjectsOf(StepFiveContainer);
                //HideObjectsOf(StepSixContainer);
                movementStepSix = GameObject.
FindObjectOfType(typeof(MovementStepSix)) as 
MovementStepSix;
                movementStepSix.StepSix();
                break;
        }

    }

    private void _gestureRecognizer_
TappedEvent(InteractionSourceKind source, int tapCount, 
Ray headRay) {
        StepUp();

    }

    void HideObjectsOf(GameObject ContainingObjects) {
        foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
        r.enabled = false;
    }

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.VR.WSA.Input;
using UnityEngine.Windows.Speech;

public class HandlerScript: MonoBehaviour {

    private GestureRecognizer _gestureRecognizer;

    private int StepNumber;

    public MovementStepOne movementStepOne;
    public MovementStepTwo movementStepTwo;
    public MovementStepThree movementStepThree;
    public MovementStepFour movementStepFour;
    public MovementStepFive movementStepFive;
    public MovementStepSix movementStepSix;
    //public MovementStepSeven movementStepSeven;

    public GameObject StepOneContainer;
    public GameObject StepTwoContainer;
    public GameObject StepThreeContainer;
    public GameObject StepFourContainer;
    public GameObject StepFiveContainer;
    public GameObject StepSixContainer;
    //public GameObject StepSevenContainer;

    // Use this for initialization
    void Start() {

        HideObjectsOf(StepTwoContainer);
        HideObjectsOf(StepThreeContainer);
        HideObjectsOf(StepFourContainer);
        HideObjectsOf(StepFiveContainer);
        HideObjectsOf(StepSixContainer);
        //HideObjectsOf(StepTwoContainer);

        //Instead of tap recognizer, use different tap 
input

        _gestureRecognizer = new GestureRecognizer();
        _gestureRecognizer.TappedEvent += _
gestureRecognizer_TappedEvent;
        _gestureRecognizer.
SetRecognizableGestures(GestureSettings.Tap);
        _gestureRecognizer.StartCapturingGestures();

    }

    // Update is called once per frame
    void Update() {

        // instead of airtap, left mouse click is 
simulated.
        if (Input.GetMouseButtonDown(0)) {
            // show button clicked on console
            Debug.Log(“Pressed left click.”);
            //ObjectShouldMove = true;
            // increment the stepnumber when mouse is 
clicked
            StepUp();
        } else if (Input.GetMouseButtonDown(1)) {
            // show button clicked on console
            Debug.Log(“Pressed right click.”);
            // increment the stepnumber when mouse is 
clicked
            StepDown();
        }

        switch (StepNumber) {
            case 1:

Application code
Appendix D
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    public Transform BracketStartPos;
    public Transform BracketEndPos;
    public GameObject Bracket;

    void Start() {
        SubStepNumber1 = 0;
        Speed = 0.5 f;
        RotationSpeed = 100 f;
        TeleportSpeed = 1000 f;
    }

    void Update() {

    }

    public void StepOne() {
        Debug.Log(“MovementStepOne”);
        StartCoroutine(DoMovement1());
    }

    IEnumerator DoMovement1() {

        switch (SubStepNumber1) {
            case 0:
                Debug.Log(“Substep 1.0”);
                SubStepNumber1 = 1;
                break;

            case 1:
                Debug.Log(“SubStep 1.1”);
                if (Screwdriver.transform.position != 
ScrewdriverEndPos.transform.position) {
                    Screwdriver.transform.
position = Vector3.MoveTowards(transform.position, 
ScrewdriverEndPos.transform.position, Speed * Time.
deltaTime);
                } else
                    SubStepNumber1 = 2;
                break;
            case 2:
                Debug.Log(“Substep 1.2”);
                Screwdriver.transform.Rotate(0, 0, 
RotationSpeed * Time.deltaTime);
                yield
                return new WaitForSeconds(2 f);
                SubStepNumber1 = 3;
                break;
            case 3:
                Debug.Log(“Substep 1.3”);
                Screwdriver.transform.Rotate(0, 0, 0);
                if (Screwdriver.transform.position != 
ScrewdriverStartPos.transform.position) {
                    Screwdriver.transform.
position = Vector3.MoveTowards(transform.position, 
ScrewdriverStartPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber1 = 4;
                break;
            case 4:
                Debug.Log(“Substep 1.4”);
                if (Bracket.transform.position != 
BracketEndPos.transform.position) {
                    Bracket.transform.position = 
Vector3.MoveTowards(Bracket.transform.position, 
BracketEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber1 = 5;
                break;
            case 5:
                Debug.Log(“Substep 1.5”);
                yield
                return new WaitForSeconds(1 f);
                Bracket.transform.position = 
BracketStartPos.transform.position;

                SubStepNumber1 = 0;
                break;
        }

    }

}

public class MovementStepTwo: MonoBehaviour {

    private int SubStepNumber2;
    public float Speed;

    void ShowObjectsOf(GameObject ContainingObjects) {
        foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
        r.enabled = true;
    }

    public void StepUp() {
        StepNumber++;
    }

    public void StepDown() {
        StepNumber--;
    }

}

public class SpeechHandler: MonoBehaviour {

    public HandlerScript handlerScript;

    KeywordRecognizer keywordRecognizer = null;
    Dictionary < string, System.Action > keywords = new 
Dictionary < string, System.Action > ();

    // Use this for initialization
    void Start() {

        keywords.Add(“Reset world”, () => {
            // Call the OnReset method on every 
descendant object.
            this.BroadcastMessage(“OnReset”);
        });

        keywords.Add(“next step”, () => {
            handlerScript = GameObject.
FindObjectOfType(typeof(HandlerScript)) as 
HandlerScript;
            handlerScript.StepUp();
        });

        keywords.Add(“previous step”, () => {
            handlerScript = GameObject.
FindObjectOfType(typeof(HandlerScript)) as 
HandlerScript;
            handlerScript.StepDown();
        });

        // Tell the KeywordRecognizer about our 
keywords.
        keywordRecognizer = new 
KeywordRecognizer(keywords.Keys.ToArray());

        // Register a callback for the 
KeywordRecognizer and start recognizing!
        keywordRecognizer.OnPhraseRecognized += 
KeywordRecognizer_OnPhraseRecognized;
        keywordRecognizer.Start();

    }

    private void KeywordRecognizer_
OnPhraseRecognized(PhraseRecognizedEventArgs args) {
        System.Action keywordAction;
        if (keywords.TryGetValue(args.text, out 
keywordAction)) {
            keywordAction.Invoke();
        }
    }

    // Update is called once per frame
    void Update() {

    }
}

public class MovementStepOne: MonoBehaviour {

    private int SubStepNumber1;

    public float Speed;
    public float RotationSpeed;
    private float TeleportSpeed;

    //variables step 1

    public Transform ScrewdriverStartPos;
    public Transform ScrewdriverEndPos;
    public GameObject Screwdriver;
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                if (largePartOne.transform.position != 
largePartOneEndPos.transform.position) {
                    largePartOne.transform.position = 
Vector3.MoveTowards(largePartOne.transform.position, 
largePartOneEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber2 = 4;
                break;
            case 4:
                Debug.Log(“Substep 2.4”);

                if (largePartTwo.GetComponent < 
Renderer > ().enabled == false) {
                    largePartTwo.GetComponent < 
Renderer > ().enabled = true;
                } else
                    yield
                return new WaitForSeconds(1 f);
                SubStepNumber2 = 5;
                break;
            case 5:
                Debug.Log(“Substep 2.5”);
                if (largePartTwo.transform.position != 
largePartTwoEndPos.transform.position) {
                    largePartTwo.transform.position = 
Vector3.MoveTowards(largePartTwo.transform.position, 
largePartTwoEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber2 = 6;
                break;
            case 6:
                yield
                return new WaitForSeconds(2 f);

                if (largePartOne.GetComponent < 
Renderer > ().enabled == true) {
                    // Debug.Log(largePartOne.
GetComponent<Renderer>().enabled);
                    largePartOne.GetComponent < 
Renderer > ().enabled = false;
                }
                if (largePartTwo.GetComponent < 
Renderer > ().enabled == true) {
                    //Debug.Log(largePartTwo.
GetComponent<Renderer>().enabled);
                    largePartTwo.GetComponent < 
Renderer > ().enabled = false;
                }

                //largePartOne.
GetComponent<Renderer>().enabled = false;
                //largePartTwo.
GetComponent<Renderer>().enabled = false;

                largePartOne.transform.position = 
largePartOneStartPos.transform.position;
                largePartTwo.transform.position = 
largePartTwoStartPos.transform.position;

                yield
                return new WaitForSeconds(0.5 f);
                CouplePiece.transform.position = 
CouplePieceStartPos.transform.position;
                SubStepNumber2 = 0;
                break;
        }
    }
}

public class MovementStepThree: MonoBehaviour {

    private int SubStepNumber3;
    private float Speed;
    //variables step 3

    public Vector3 StartRotation;

    public GameObject box;
    public Transform boxStartPos;
    public Transform boxEndPos;

    public GameObject bottomBracket;
    public Transform bottomBracketStartPos;
    public Transform bottomBracketEndPos;
    private bool hidden;

    private Vector3 zeroPos;
    // Use this for initialization
    void Start() {
        Speed = 1 f;
        SubStepNumber3 = 0;
        zeroPos = new Vector3(0, transform.position.y, 

    public GameObject CouplePiece;
    public Transform CouplePieceStartPos;
    public Transform CouplePieceEndPos;

    public GameObject largePartOne;
    public Transform largePartOneStartPos;
    public Transform largePartOneEndPos;

    public GameObject largePartTwo;
    public Transform largePartTwoStartPos;
    public Transform largePartTwoEndPos;

    // Use this for initialization
    void Start() {
        SubStepNumber2 = 0;
        Speed = 1 f;

        largePartOne.GetComponent < Renderer > 
().enabled = false;
        largePartTwo.GetComponent < Renderer > 
().enabled = false;

        largePartOne.transform.position = 
largePartOneStartPos.transform.position;
        largePartTwo.transform.position = 
largePartTwoStartPos.transform.position;
        CouplePiece.transform.position = 
CouplePieceStartPos.transform.position;

    }

    // Update is called once per frame
    void Update() {

    }

    public void StepTwo() {
        //Debug.Log(“MovementStepTwo”);
        StartCoroutine(DoMovement2());
    }

    IEnumerator DoMovement2() {

        switch (SubStepNumber2) {
            case 0:
                Debug.Log(“Substep 2.0”);
                SubStepNumber2 = 1;
                break;
            case 1:
                Debug.Log(“Substep 2.1”);
                // if statement?
                if (largePartOne.GetComponent < 
Renderer > ().enabled == true) {
                    // Debug.Log(largePartOne.
GetComponent<Renderer>().enabled);
                    largePartOne.GetComponent < 
Renderer > ().enabled = false;
                }
                if (largePartTwo.GetComponent < 
Renderer > ().enabled == true) {
                    //Debug.Log(largePartTwo.
GetComponent<Renderer>().enabled);
                    largePartTwo.GetComponent < 
Renderer > ().enabled = false;
                }
                if (CouplePiece.transform.position != 
CouplePieceEndPos.transform.position) {
                    CouplePiece.transform.position = 
Vector3.MoveTowards(CouplePiece.transform.position, 
CouplePieceEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber2 = 2;
                break;
            case 2:
                Debug.Log(“Substep 2.2”);

                if (largePartOne.GetComponent < 
Renderer > ().enabled == false) {
                    largePartOne.GetComponent < 
Renderer > ().enabled = true;
                } else
                    yield
                return new WaitForSeconds(1 f);
                SubStepNumber2 = 3;
                break;
            case 3:
                Debug.Log(“Substep 2.3”);
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        yield
        return new WaitForSeconds(3 f);
    }

    void HideObjectsOf(GameObject ContainingObjects) {
        foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
        r.enabled = false;
        hidden = true;
    }

    void ShowObjectsOf(GameObject ContainingObjects) {
        foreach(Renderer r in ContainingObjects.
GetComponentsInChildren < Renderer > ())
        r.enabled = true;
        hidden = false;
    }
}

public class MovementStepFour: MonoBehaviour {

    public GameObject Screwdriver;
    public Transform ScrewDriverStartPos;
    public Transform ScrewDriverEndPos;

    private float Speed;
    private float RotationSpeed;
    private int SubStepNumber4;

    // Use this for initialization
    void Start() {
        SubStepNumber4 = 0;
        Screwdriver.transform.position = 
ScrewDriverStartPos.transform.position;
        Speed = 1 f;
        RotationSpeed = -100 f;
    }

    // Update is called once per frame
    void Update() {

    }

    public void StepFour() {
        StartCoroutine(DoMovement4());
    }

    IEnumerator DoMovement4() {
        switch (SubStepNumber4) {
            case 0:
                Debug.Log(“Substep 4.” + 
SubStepNumber4);
                SubStepNumber4 = 1;
                break;

            case 1:
                Debug.Log(“Substep 4.” + 
SubStepNumber4);
                if (Screwdriver.transform.position != 
ScrewDriverEndPos.transform.position) {
                    Screwdriver.transform.position = 
Vector3.MoveTowards(Screwdriver.transform.position, 
ScrewDriverEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber4 = 2;
                break;
            case 2:
                Debug.Log(“Substep 4.” + 
SubStepNumber4);
                Screwdriver.transform.Rotate(0, 0, 
RotationSpeed * Time.deltaTime);
                yield
                return new WaitForSeconds(2 f);
                SubStepNumber4 = 3;
                break;
            case 3:
                Debug.Log(“Substep 4.” + 
SubStepNumber4);
                if (Screwdriver.transform.position != 
ScrewDriverStartPos.transform.position) {
                    Screwdriver.transform.position = 
Vector3.MoveTowards(Screwdriver.transform.position, 
ScrewDriverStartPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber4 = 4;
                break;
            case 4:
                yield
                return new WaitForSeconds(1 f);
                SubStepNumber4 = 0;
                break;

transform.position.z);
        box.transform.position = boxStartPos.transform.
position;
        bottomBracket.transform.position = 
bottomBracketStartPos.transform.position;
        HideObjectsOf(box);

        box.transform.rotation = Quaternion.Euler(250, 
180, 0);
        //   box.transform.rotation = Quaternion.
AngleAxis(250, Vector3.right);
        //  box.transform.rotation = Quaternion.
AngleAxis(180, Vector3.left);
    }

    // Update is called once per frame
    void Update() {

    }

    public void StepThree() {
        //Debug.Log(“MovementStepThree”);
        StartCoroutine(DoMovement3());
    }

    IEnumerator DoMovement3() {
        switch (SubStepNumber3) {
            case 0:
                SubStepNumber3 = 1;
                break;

            case 1:
                Debug.Log(“SubStepNumber 3.” + 
SubStepNumber3);
                if (bottomBracket.transform.position != 
bottomBracketEndPos.transform.position) {
                    bottomBracket.transform.position = 
Vector3.MoveTowards(bottomBracket.transform.position, 
bottomBracketEndPos.transform.position, Speed * Time.
deltaTime);
                } else
                    SubStepNumber3 = 2;
                break;

            case 2:
                Debug.Log(“SubStepNumber 3.” + 
SubStepNumber3);
                if (hidden) {
                    ShowObjectsOf(box);
                }
                yield
                return new WaitForSeconds(1 f);
                SubStepNumber3 = 3;
                break;
            case 3:
                Debug.Log(“SubStepNumber 3.” + 
SubStepNumber3);
                if (box.transform.position != 
boxEndPos.transform.position) {
                    box.transform.position = Vector3.
MoveTowards(box.transform.position, boxEndPos.
transform.position, Speed * Time.deltaTime);
                } else SubStepNumber3 = 4;
                break;
            case 4:
                // Debug.Log(“SubStepNumber 3.” + 
SubStepNumber3);
                Debug.Log(box.transform.eulerAngles.x);
                if (box.transform.eulerAngles.x > 270.4 
f) {
                    box.transform.Rotate(0.2 f, 0, 0);
                    //box.transform.position = Vector3.
MoveTowards(box.transform.position, zeroPos, Speed * 
Time.deltaTime);
                } else
                    SubStepNumber3 = 5;
                break;

            case 5:
                yield
                return new WaitForSeconds(1 f);
                if (hidden == true) {
                    HideObjectsOf(box);
                }

                box.transform.position = boxStartPos.
transform.position;
                box.transform.rotation = Quaternion.
Euler(250, 180, 0);
                SubStepNumber3 = 0;
                break;
        }
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    IEnumerator DoMovement6() {

        switch (SubStepNumber6) {
            case 0:
                SubStepNumber6 = 1;
                break;
            case 1:
                if (Bracket.transform.position != 
BracketEndPos.transform.position) {
                    Bracket.transform.position = 
Vector3.MoveTowards(Bracket.transform.position, 
BracketEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber6 = 2;
                break;
            case 2:
                if (Screwdriver.transform.position != 
ScrewdriverEndPos.transform.position) {
                    Screwdriver.transform.position = 
Vector3.MoveTowards(Screwdriver.transform.position, 
ScrewdriverEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber6 = 3;
                break;
            case 3:
                Screwdriver.transform.Rotate(0, 0, 
RotationSpeed * Time.deltaTime);
                yield
                return new WaitForSeconds(2 f);
                SubStepNumber6 = 4;
                break;
            case 4:
                Screwdriver.transform.Rotate(0, 0, 0);
                if (Screwdriver.transform.position != 
ScrewdriverStartPos.transform.position) {
                    Screwdriver.transform.position = 
Vector3.MoveTowards(Screwdriver.transform.position, 
ScrewdriverStartPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber6 = 5;
                break;
            case 5:
                yield
                return new WaitForSeconds(1 f);
                Bracket.transform.position = 
BracketStartPos.transform.position;
                SubStepNumber6 = 0;
                break;

        }

    }
}

        }

    }
}

public class MovementStepFive: MonoBehaviour {

    public GameObject Simcard;
    public Transform SimcardStartPos;
    public Transform SimcardEndPos;
    private float Speed;
    private int SubStepNumber5;

    // Use this for initialization
    void Start() {
        Speed = 1 f;
        SubStepNumber5 = 0;
        Simcard.transform.position = SimcardStartPos.
transform.position;
    }

    // Update is called once per frame
    void Update() {

    }

    public void StepFive() {
        StartCoroutine(DoMovement5());
    }

    IEnumerator DoMovement5() {
        switch (SubStepNumber5) {
            case 0:
                SubStepNumber5 = 1;
                break;
            case 1:
                if (Simcard.transform.position != 
SimcardEndPos.transform.position) {
                    Simcard.transform.position = 
Vector3.MoveTowards(Simcard.transform.position, 
SimcardEndPos.transform.position, Speed * Time.
deltaTime);
                } else SubStepNumber5 = 2;
                break;
            case 2:
                yield
                return new WaitForSeconds(1 f);
                Simcard.transform.position = 
SimcardStartPos.transform.position;
                SubStepNumber5 = 0;
                break;
        }

    }
}

public class MovementStepSix: MonoBehaviour {

    public GameObject Screwdriver;
    public Transform ScrewdriverStartPos;
    public Transform ScrewdriverEndPos;

    public GameObject Bracket;
    public Transform BracketStartPos;
    public Transform BracketEndPos;

    private int SubStepNumber6;
    private float Speed;
    private float RotationSpeed;

    // Use this for initialization
    void Start() {
        Speed = 1 f;
        RotationSpeed = -100 f;

        Screwdriver.transform.position = 
ScrewdriverStartPos.transform.position;
        Bracket.transform.position = BracketStartPos.
transform.position;
    }

    // Update is called once per frame
    void Update() {

    }

    public void StepSix() {
        StartCoroutine(DoMovement6());
    }
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