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ii ABSTRACT

Nowadays applications have to process data at high data rates. These data
rates are increasing faster than the frequencies on which Field Programmable
Gate Arrays (FPGAs) operates. In this thesis a parallel design is presented
so that the FPGA still can be useful to process data at high rates.

At the CAES group a ML605 FPGA evaluation board is available which is
interfaced with an Analog to Digital Converter (ADC). On this FPGA board
a multiprocessor system is installed named Starburst. It is possible to create
hardware accelerators and integrate them into this system. An Universal Soft-
ware Radio Peripheral (USRP) box is available, combined with the GNURadio
software it is possible to create a software defined radio.

First a reference conventional demodulator is created which processes the
samples in sequential order. The performance of this demodulator was tested
using GNURadio. The performance was tested by detecting packages at the
receiver side. The amount of packages combined with a certain level of noise
that was added resulted in a Packet Error Rate (PER) for different Signal to
Noise Ratios (SNRs).

Thereafter, the design was implemented as a hardware accelerator on the
FPGA. The performance of this implementation was compared to the one
created using GNURadio. The performance, measured with the PER for
different SNRs, of the implementation on the FPGA was comparable with the
one created in software for low SNRs. For high SNRs the implementation on
the FPGA has a certain floor in the PER.

After the reference conventional design was implemented a parallel design
has been created. The conventional design was a basis for this design. The
performance of this design was compared to the conventional one. The per-
formance was not as good as the conventional design. The design was less
robust to a timing difference between the clocks of the transmitter and the
receiver. However, the reasons for this are explained in this report together
with possible solution directions. Due to time constraints it was not possible
to create an implementation that addresses the discussed issues. However it
is expected that it is possible to create a parallel structure with an equal PER
assuming no clock difference. However the design will be less robust to a clock
difference between transmitter and receiver. A disadvantage of the design is
that it will take up a lot of resources on the FPGA which will limit the amount
of parallel paths that can be used. For the presented design, the maximum
amount of parallel paths will be around 16, which is enough for the 5 GS/s
ADC that is available.



iii

As future work it would be interesting to implement the design in combina-
tion with a high speed ADC that delivers samples in parallel. Further research
is required to improve the design so that it can be used in applications with
other data rates.
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2 CHAPTER 1. INTRODUCTION

1.1 Context

The amount of data generated by applications is increasing. At NXP they are
researching the use of polymer waveguides in cars. These polymer waveguides
have several advantages over the cables that are used at the moment. One of
the advantages is that it is possible to use higher data rates. These data rates
are higher than the clock frequency of currently available FPGAs. However
FPGAs can still be useful to process data. By processing data in parallel it is
possible to process data streams with a high data rate.

1.2 Problem Description

A high speed ADC is available which can read samples up to a rate of 5 GS/s.
The maximum clock frequencies of FPGAs is currently much lower, therefore
samples should be processed in parallel. This ADC is not interfaced yet with
the multiprocessor system called Starburst, which is installed on the available
Virtex 6 FPGA board. Because it will cost a lot of time to interface the
ADC with the platform, a proof of concept will be created with an available
set-up. The set-up consists of a narrow band Radio Frequency (RF) receiver
frontend that has been interfaced with a Virtex 6 FPGA board such that
software defined radio receiver applications can be prototyped on an embedded
multiprocessor system. This set-up can be used to implement a reference
conventional demodulator and a parallel demodulator as a proof of concept.

The objective of this graduation project is the creation of a demodulator
on a FPGA which can process data at a rate of 5 GS/s where data is processed
in parallel. This demodulator is implemented on a Virtex 6 FPGA which has
been interfaced with a RF receiver frontend. The demodulator should run
on a lower frequency than the frequency at which the samples arrive. The
implementation should be made such that it should be able to work with the
high speed ADC. The implementation should be made scalable, so that it can
be used at higher data rates. To keep the demodulator simple Phase Shift
Keying (PSK) is used as modulation technique. Binary Phase Shift Keying
(BPSK) is chosen because it is more suitable for the application in combi-
nation with polymer waveguides. The reason is that these waveguides have
a relatively high damping. BPSK will have a better performance under low
SNRs, from Bit Error Rate (BER) perspective, than higher order modulation
schemes. The demodulator should be kept simple so that the focus is on cre-
ating a parallel hardware structure. Design options should be explored and
the achieved performance of the system should be compared with theoretical
results. This implementation should be scalable such that the same concept
can be used to process samples of a high speed 5 GS/s ADC.
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1.3 Related Work

There is some work done in the field of processing data in parallel in demodu-
lators. In [13] a parallel demodulation structure is presented. This structure is
based on a frequency domain implementation of a matched filter. Besides that
a Symbol-Timing Recovery Loop is discussed that uses an adapted version of
the Gardner algorithm. This adapted version is suitable for implementation
on an FPGA. The structure is tested with an uncoded BPSK signal. Simula-
tion results show that their presented design is performing as well as the serial
design.

In [4] a parallel demodulator structure suitable for implementation on a
FPGA for a high order Quadrature Amplitude Modulation (QAM) signal
is presented. An architecture is presented for a 5 GS/s demodulator of a
64QAM signal. In this paper a symbol time recovery method was used that
was presented in [7], which is not sensitive to SNR and carrier frequency offset.
This timing recovery method is more complex but useful for QAM signals.

In [9] trade-offs for serial and parallel demodulation are discussed for
Quasi-Bandlimited Minimum Shift Keying (QBL-MSK). The parallel imple-
mentation in this case consists of 2 parallel paths, a In-Phase (I) and Quadra-
ture (Q) path. This parallel structure is not useful because it does not run
on a lower clock frequency than the rate at which the samples arrive. Two
synchronisation methods are used to for synchronisation. The first one is us-
ing average zero crossing and the other one uses the maximum eye opening
for synchronisation. They conclude that zero crossing is providing either less
or the same BER degradation as that obtained with maximum eye opening
synchronisation. This is significant because zero crossing synchronisation is
implemented much easier in hardware.

In [20] a frequency-domain parallel demodulation structure is discussed. In
this paper an improved structure is discussed which should be more useful in
high speed systems. The timing synchronisation is combined with the matched
filter. Because only the best points at the output of the matched filter are
used for timing synchronisation. Simulation results are given for a system with
Quadrature Phase Shift Keying (QPSK) modulation. They conclude that the
structure they presented is suitable for high-speed implementations.

All the related work above uses a frequency-domain parallel demodulation
structure. There was no related work found which uses a time-domain parallel
demodulation structure, except [9] where two time-domain parallel paths are
used which do not run on a lower frequency. In the related work architectures
and algorithms were discussed for symbol time recovery which can be useful
for the demodulator that is designed during this thesis.
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1.4 Outline

First in Chapter 2 the basics of BPSK are discussed, which is necessary to
understand the working of the BPSK demodulator. After that a conventional
Differential Binary Phase Shift Keying (DBPSK) demodulator design and
implementation are discussed in Chapter 3. This conventional demodulator
is created so that it is possible to compare the performance of the parallel
implementation with a conventional implementation. The design of the con-
ventional demodulator is used as a basis to design a parallel demodulation
structure which is discussed in Chapter 4. In Chapter 5 the results of the
measurements of both designs are compared with each other. Besides that
there is a section about the scalability of the parallel design in this chapter.
Chapter 6 will conclude this thesis with a conclusion and recommendations.
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6 CHAPTER 2. BPSK BASICS

In this chapter the modulation technique of BPSK will be discussed. After
which other demodulation techniques are discussed. A demodulation tech-
nique will be chosen which is used in the rest of this thesis.

2.1 Phase Shift Keying

PSK is a digital modulation technique where the information is modulated by
changing the phase of the carrier signal. Because it is a digital modulation
technique the number of distinct phases that used is finite.

To demodulate a PSK signal the received signal can be compared to a
reference signal, this method is called coherent demodulation. In case there is
no reference signal used the method is called non-coherent demodulation. In
the last case the received signal should be compared with itself. Differential
modulation should be used to be able to demodulate a signal with a non-
coherent technique.

2.1.1 BPSK

The simplest form of PSK uses only two distinct phases to convey the data.
This method is called BPSK. Symbols are used to transmit data from trans-
mitter to receiver. These symbols represent a certain bit or multiple bits. For
BPSK each symbol represents one bit. A constellation diagram can be used
to compare modulation techniques with each other. In Figure 2.1 the constel-
lation diagram of BPSK is depicted. In a constellation diagram the signal is
depicted in the complex plane at symbol sampling instants. The points in the
diagram represents the possible symbols that can be transmitted, in this case
two symbols are depicted with values 0 and 1. The points in the diagram are
chosen arbitrary, they can be depicted anywhere on the unity circle as long as
they are 180 degrees apart from each other. For non-differential modulation
each symbol represents a fixed bit value, 1 or 0. This is not the case for differ-
ential modulation, where a symbol transition represents a fixed bit value. All
modulation techniques use a defined period in which they send one symbol.
This period is called the symbol period.

2.1.2 Non-Coherent versus Coherent

As mentioned earlier, a coherent or a non-coherent method can be used for
demodulation. A choice has to be made which of the two is more suitable to
use in the research presented in this thesis. There are basically two points
worth considering for this decision namely: performance with respect to the
BER and ease of creating a parallel implementation.
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Figure 2.1: Constellation Diagram of BPSK

2.1.3 Performance

The performance can be measured by the BER compared to the SNR per
bit. In [8] the theoretical relation between the BER and the SNR per bit are
given for the case of non-differential modulation and differential modulation.
These relations are depicted in Figure 2.2. It can be seen that the chance of
an error for differential method is larger than for the coherent method for the
same SNR per bit. That is due to the fact that each symbol period should be
compared with the previous symbol period. That means that the chance of
a symbol error depends on two symbol periods. The chance that there is an
error in two symbol periods is higher than the chance of an error in a single
symbol period.

Figure 2.2: Probability of a symbol error for BPSK and DBPSK
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2.1.4 Implementation

As discussed before for non-coherent BPSK no reference signal is required at
the receiver because the info is encoded in changes of the phase. That means
that no circuit is necessary to generate this reference signal. Therefore the
implementation of non-coherent BPSK can be less complex than the imple-
mentation of a coherent demodulation technique. Assuming that creation of
the reference signal is part of the demodulator, when that is the case the
circuit required to create the reference signal should be made parallel too.

Because the focus in this thesis is on parallelism in demodulators the non-
coherent method is used. The reason therefore is that there is no reference
signal required at the receiver and therefore it is easier to create a parallel
structure, because there is no circuit required for the creation of the reference
signal. The degradation in BER is not problematic as long as the parallel
demodulator is compared with a demodulator that uses the same technique.
In future designs it is possible to add a circuit to the design that creates the
reference signal.

2.2 Modulation

Equation 2.1 can be used to modulate a signal using BPSK. Where x(n) is
the data signal consisting of bits and k is the sensitivity given by Equation 2.2
where f0 is the frequency used and fs is the sampling frequency. x(n) should
be interpolated with the number of Samples per Symbol (SPS). SPS is the
number of samples that is used to send one symbol it is equivalent to the
symbol period.

y(m) = cos
(
km+ π · x(n)

)
(2.1)

k = 2π
f0
fs

(2.2)

To be able to demodulate without a reference signal the signal should be
modulated differential. To make the signal differential each bit should be
compared with the previous bit, when they are the same x(n) should be 0
otherwise it should be 1. This can be accomplished by using an Exclusive Or
(XOR) of the current bit with the previous bit.

In Figure 2.3 an example is depicted of a BPSK signal that is modulated
differential. The upper plot shows the modulated signal and the lower one
shows the bits that were modulated. In this case the symbol time is exactly
one period of the carrier wave. It is best for the frequency response to use
exact periods of the carrier wave for the symbol time, because the bandwidth
needed to represent a signal is smaller in case the symbol transitions are at
the zero crossing of the carrier signal.
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In Figure 2.4 the frequency response of two possible BPSK signals are
depicted. Each frequency response plot corresponds to the BPSK signal that
is depicted below it. It can be seen that the frequency response is damping
faster when the bit transition takes place when the carrier is at a zero crossing
(right case). When instead the bit transition takes place at the maximum
value of the carrier (left case) the frequency response is damping much slower.

Figure 2.3: Signal modulated using DBPSK (above) and bits that were used (below)

Figure 2.4: Frequency response of two possible BPSK signals with 16 samples per symbol
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2.3 Demodulation

It is possible to demodulate a DBPSK signal in time domain or in the fre-
quency domain. In this thesis the focus is on the time domain demodulation
of the signal. The reason therefore is that I have more knowledge with demod-
ulating signals in time-domain. The demodulation of a BPSK signal starts
with a mixing process to remove the carrier frequency out of the signal. This
can be done by multiplying the received signal with a cosine at the carrier
frequency. This demodulation step can be described mathematically. The
multiplication of two cosines can be rewritten using Equation 2.3. The result
is a sum of two cosines, one with the frequency difference and one with the
sum of the two frequencies.

cos(α) · cos(β) =
cos(α+ β) + cos(α− β)

2
(2.3)

A simplified version of the received signal x(t) is given by Equation 2.4.
Where m(t) is the modulation signal and ωc is the carrier frequency. To de-
modulate the signal it can be multiplied with a signal at the same frequency,
see Equation 2.5. This signal is either the reference signal for coherent de-
modulation of a signal that is generated using the local oscillator in case of
non-coherent demodulation. The result of this multiplication is given by Equa-
tion 2.6. One part of the signal is now independent of the carrier frequency,
this part is useful to further demodulate the signal. With a low-pass filter the
high frequency part can be removed from the signal.

x(t) = cos
(
ωct+ πm(t)

)
(2.4)

y(t) = x(t) · cos(ωct) (2.5)

y(t) =
cos

(
2ωct+ πm(t)

)
+ cos

(
πm(t)

)
2

(2.6)

Assuming that an ideal low-pass filter is used, the result of the filtering
process is given by Equation 2.7. It is known that m(t) contains only zeros
and ones (the actual bits). This signal is multiplied with π within the cosine.
The cosine of 0 and π is respectively 1 and -1. That means that y(t) contains
directly the bits where a 0 is represented by a value of −1

2 and a 1 by 1
2 .

y(t) =
1

2
cos

(
πm(t)

)
(2.7)

So given that m(t) only takes values of 0 and 1, y(t) can be simplified to:

y(t) = −1

2
|m(t) = 0 (2.8)

y(t) =
1

2
|m(t) = 1 (2.9)
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Which means the signal is completed demodulation. Concluding the demod-
ulation of a BPSK signal can be done with a mixer and a low-pass filter.
This demodulation method is assuming that there is no phase or frequency
difference between the received and local signal.

When there is an unknown phase difference between the local signal and
the received signal another demodulation method should be used. Which is the
case for non-coherent demodulation. A second mixer should be added to the
demodulator. This second mixer should use a local signal that is orthogonal
with the other local signal. When x(t) has an unknown phase difference it is
described by Equation 2.10.

x(t) = cos
(
ωct+ πm(t) + φ

)
(2.10)

where ωc is the carrier frequency, m(t) the modulation signal and φ the un-
known phase. If the received signal is mixed with a cosine and sine separately
the multiplication results are given by Equation 2.11 and 2.12. The result of
the multiplication with a cosine will be referred to as the I component of the
signal. The result of the multiplication with a sine will be referred to as the
Q component of the signal.

I(t) =
cos

(
2ωct+ πm(t) + φ

)
+ cos

(
πm(t) + φ

)
2

(2.11)

Q(t) =
sin

(
2ωct+ πm(t) + φ

)
+ sin

(
πm(t) + φ

)
2

(2.12)

In Figure 2.5 the signals I(t) and Q(t) are depicted. In this case the
received signal and the local generated signal at the receiver are in phase with
each other.

When both multiplication results are filtered with an ideal low-pass filter
the results become:

I(t) =
1

2
cos

(
πm(t) + φ

)
(2.13)

Q(t) =
1

2
sin

(
πm(t) + φ

)
(2.14)
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Figure 2.5: Signals showing the bits that are modulated (a), modulated DBPSK signal (b),
I component (c) and Q component (d) of the signal after mixing

Assuming that m(t) can only be 0 or 1 the results can be split up:

I(t) =
1

2
cos

(
φ
)
|m(t) = 0 (2.15)

I(t) = −1

2
cos

(
φ
)
|m(t) = 1 (2.16)

Q(t) =
1

2
sin

(
φ
)
|m(t) = 0 (2.17)

Q(t) = −1

2
sin

(
φ
)
|m(t) = 1 (2.18)

Now there are two signals (I(t) and Q(t)) that both contain a part of
the modulated signal. It depends on the phase difference how the signal is
divided over these two signals. When the received signal and the local signal
are in phase, I(t) will contain all information. When they are 90 degrees out
of phase all information will be in Q(t). If the phase difference is somewhere
in between the information is divided over I(t) and Q(t). For non-coherent
demodulation it is not known if the signals are in phase or not.

Because the bits are now varying between 1 and -1 the signal can be differ-
ential decoded by multipying the signals with a delayed version of themselves.
The result will be a signal that contains the symbols varying between -1 and
1. After this differential multiplication I(t) and Q(t) can be summed and the
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result is the completely demodulated signal. In Figure 2.6 the resulting sig-
nals are depicted. The last signal is the demodulated signal. When this signal
is sampled at the right sample moments the bits can be recovered. How the
right sampling moment is determined will be explained in the next section.

Figure 2.6: Signals showing respectively the filtered I and Q component of the signal, dif-
ferential I and Q signal and the sum of both differential signals.

2.4 Symbol Time Recovery

In the previous sections it was mentioned that the signal should be sampled
at the right sampling moments. When the signal is not sampled at the right
moments the change of an error increases. When the worst sampling moment
is used the signal is completely lost. For non-coherent demodulation to get the
correct sample moments the demodulator should include a symbol recovering
algorithm. A few possible algorithms are discussed below. The discussed
algorithms are algorithms consisting of simple operations so that they are
suitable for implementation on an FPGA.

2.4.1 Early Late

The timing recovery consists of an error function to estimate the error that
was made. The error is passed through a loop filter to get the right values that
are necessary to correct the timing error. There are a lot of error functions
that can be used, one is the early late algorithm [5]. The error function is given
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by Equation 2.19. There are three samples per symbol used to estimate the
error, one just before the actual sample and one just after the actual sample.

e(n) =
(
x[nT + Ts]− x[nT − Ts]

)
x[nT ] (2.19)

where e(n) is the error function at sample moment n, x(n) is the oversampled
demodulated signal at sample moment n, T is the symbol period and Ts is
smaller or equal to halve the symbol period.

2.4.2 Gardner

Another algorithm is the Gardner algorithm [3], of which a simplified version
is also used in [13]. The error function for the Gardner algorithm is given by
Equation 2.20. Where e(n) is the error for sample n. For each symbol two
samples are required to estimate the error. One at the optimal sampling time
and one halfway the symbol period.

e(n) =
(
x[nT ]− x[(n− 1)T ]

)
x[nT − T/2] (2.20)

where e(n) is the error function at sample moment n, x(n) is the oversampled
demodulated signal at sample moment n and T is the symbol period.

2.4.3 Mueller Muller

The algorithm that uses the least samples per symbol is the Mueller Muller
Algorithm [6]. The error function for this algorithm is given by Equation 2.21.
The hat indicates the symbol decision that was at that sampling instance.
Advantage of this algorithm is that it only needs 1 sample per symbol. This
will in turn result in less robustness of the symbol recovery.

e(n) =
(
x̂[nT ]x[(n− 1)T ]

)
−
(
x[nT ]x̂[(n− 1)T ]

)
(2.21)

where e(n) is the error function at sample moment n, x(n) is the oversampled
demodulated signal at sample moment n and T is the symbol period.

All of the above discussed algorithms need bit transitions to be able to
find the right sampling moment. Besides that the algorithm needs a certain
time amount for finding the right sample moment. Therefore the first bits
that were transmitted will have a higher change of error. When a constant
stream of bits will be transmitted this will not be a problem. However when
there are a lots of zeros or ones in a burst this can become a problem. Which
will result in less robustness against a clock difference.
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2.5 Summary

In this chapter the choice for BPSK was discussed. After that, the difference
between coherent and non-coherent was made clear. Thereafter, the basics
of modulation and demodulation for BPSK were explained. DBPSK mod-
ulation is chosen because it is simpler to implement and that technique is
easier to create a parallel structure for. Because I have more knowledge about
time domain demodulation that one is used in the demodulator instead of fre-
quency domain demodulation. Three symbol time recovering algorithms were
discussed and their importance in the demodulation process.
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In the previous chapter the basic principals of the demodulation technique
for BPSK were discussed. In this chapter the actual design of a sequential
DBPSK demodulator is discussed. Sequential means that the samples are
processed one after each other in the order that they arrive at the demodulator.
In this thesis we refer to this design as the conventional design. After that the
GNURadio software is discussed and the implementation of the demodulator
in this software. Thereafter the implementation on the FPGA is discussed.
The set-up used for the measurements is clarified after that. Finally some
measurement results are discussed. This whole chapter will be a basis for our
parallel DBPSK demodulator design.

3.1 Design

As discussed earlier it is possible to demodulate the signal in the time do-
main as well as in the frequency domain. We have chosen for a time domain
implementation because there is more personal experience with this implemen-
tation. The focus in this thesis is on parallelising a demodulator, therefore it
is best to implement a well known demodulation process. Besides that there is
more knowledge and information available about time domain demodulation.
The design is roughly split in two parts, known as the demodulation part and
the sampling part. First the demodulation part will be discussed after which
the symbol recovery part will be discussed. At last in this section the top level
design which combines these two parts will be discussed.

3.1.1 Demodulation

A demodulator consists of a mixer and a low-pass filter. In the created design
a differential demodulation technique is used. A demodulation structure was
created which was discussed in [8]. This structure uses an I and Q path to
demodulate the signal. These paths are created by multiplying the received
signal with a cosine and a sine at the carrier frequency. Both paths are filtered
with a moving average filter. Both paths contain a differential multiplier that
is used to multiply a delayed version of the signal with the signal. In this
way it can be determined if there was a transition in the signal from positive
to negative, from negative to positive or that there was no transition. The
signals can be added together after this multiplier.

As discussed the received signal should be multiplied with a sine and cosine
which are generated at the receiver side with a local oscillator. In Figure 3.1
the block scheme of a part of the demodulator is depicted, this block is referred
to as the ”demod block”. It was chosen to create the block in this way so that
the same block can be used for both the I and Q demodulation path. The
inputs are the received signal and a local signal. This local signal should be
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Figure 3.1: Schematic of demodulation block

a cosine and a sine, for respectively the I and Q path. The outputs are the I
and Q part of the demodulated signal.

The Finite Impulse Response (FIR) filter in the demodulation block should
sample over exactly one symbol period. A matched filter should be used to
filter the signal. The modulation signal used by BPSK is a square wave. For
a square wave a moving average filter is the matched filter.

For a complete demodulation two demodulation blocks are necessary. One
of them has as input a sine, the other one a cosine, the output of both blocks
can be added and result in the completely demodulated signal. The block
diagram of this demodulation block is depicted in Figure 3.2.

Figure 3.2: Schematic of demodulation block

3.1.2 Sampling

The next step in the demodulation is finding the optimal sampling moment. In
the previous chapter a few algorithms were discussed. In our design the early
late algorithm is implemented. This one is chosen because it is a relatively
robust algorithm. Disadvantages is that it requires an oversampling rate of 3
times, but the extra hardware that it costs is available and is small compared
to the rest of the design. The early late algorithm is a bit simplified to be
able to implement it on the FPGA without using too much resources. The
simplified version only uses the sign of the samples to determine the error.
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A shift register is used to store the samples, every time a new sample is
available it will shift in the register and the oldest sample will shift out of
the register. From this register for each symbol 3 samples are read, this is
illustrated in Figure 3.3. One sample is before, one is exact at and the last
one is after the used sample moment. The sample register has 1.5 · SPS
number of places. This minimal size is required because the best sampling
moment could occur everywhere in a series of 1 · SPS samples. The early
sample should be taken 0.25 ·SPS before the used sample and the late sample
should be taken 0.25·SPS after the used sample. Therefore the register should
be 0.5 · SPS longer than 1 · SPS. In the depicted case there are 8 SPS and
the used sample moment is at 0. In Figure 3.4 the same register is depicted
but now the used sample moment is at 7.

Figure 3.3: Scheme of the sampling shift register (sample moment = 0, SPS = 8)

Figure 3.4: Scheme of the sampling shift register (sample moment = 7, SPS = 8)

With the three samples that are read from the register it is decided if the
next sample moment should be earlier or later than the current one. The
working is described with the following code:

if(sample < 0) {

if(early_sample < 0 && late_sample >= 0){

sample_moment --;

} else if(early_sample >= 0 && late_sample < 0){

sample_moment ++;

}

} else {

if(early_sample < 0 && late_sample >= 0){

sample_moment ++;

} else if(early_sample >= 0 && late_sample < 0){

sample_moment --;

}

}

The code listed above will change the sample moment every time that the
sample moment is close to a bit transition. The ideal sampling moment is



20 CHAPTER 3. CONVENTIONAL DBPSK DEMODULATOR

halfway between two bit transitions. When the sample moment is at the end
of the register and it should move more to the right it is reset to 0 again. The
opposite is implemented for the beginning of the register. In Figure 3.5 this
is illustrated. This figures illustrates a simplified version of the register where
the early and late sample are ignored. The sample moment can change along
the black arrow, when it reaches the end it can also move along the red arrow.
The red arrow indicates the resets that were described before.

Figure 3.5: Scheme of the sampling shift register with arrows indicating how the sample
moment can change in time

Figure 3.6: Plot of the signal with the sample moments (arrows) that are used

At these resets bits can be lost, but it is possible to compensate for this
with additional hardware. When the sample moment is reset from the end of
the register to the beginning the next sample will be the same as the previous.
Therefore the extra hardware should skip a sample at this moment. When
the sample moment is reset from the beginning to the end a sample gets
lost without extra hardware. Therefore an extra sample should be taken at
this moment. That the reset of the sample moment can cause problems is
illustrated. In Figure 3.6 the ideal sample moment of the demodulated signal
is depicted. In Figure 3.7 the non-ideal sample moment is depicted, in this
case the sample moment is reset. Due to this reset one bit has been lost, which
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can be seen by comparing the samples that are token in Figure 3.6 with the
ones token in Figure 3.7.

Figure 3.7: Plot of the signal with the sample moments (arrows) that are used

When there is a clock difference between the transmitter and receiver the
sample moment will shift over time. Every time the sample moment reaches
the end or beginning of the register it will be reset. Due to noise it is possible
that the sample moment is reset multiple times at the edge of the register.
Therefore it is better to use a sample moment that has a range that is twice
as large. To accomplish that the size of the register should be increased to 2.5
times the symbol period. Instead of resetting it from the end to the beginning
and the other way around it can be reset to halfway the register. In that
way the number of resets is reduced, because resets can not occur right after
each other, when the sample moment is halfway the register it cannot be
reset. An illustration of this implementation is depicted in Figure 3.8. The
sample moment can change along the black arrows when it reaches the end
or beginning of the register it can move along the red arrows. The red arrows
indicate the resets that were described. It can be seen that the resets cannot
occur right after each other, because from the middle of the register the sample
moment can only change along the black arrows.

In the case that there is no compensation for bit loss at the resets this
can increase the performance. When there is compensation it is not necessary
to increase the size of the register. For simplicity there is chosen for a larger
register without compensation for bit loss when the sample moment is reset.
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The effect of this choice will be discussed in the results section.

Figure 3.8: Scheme of the bigger sampling shift register with arrows indicating how the
sample moment can change in time

The Early Late sampler requires a smooth input signal so that the algo-
rithm functions. The signal that comes out of the demodulator is not smooth
in between the bit transitions, this could be seen in Figure 2.6. The early late
algorithm cannot always find the right sample moment. Therefore the input
needs to be filtered to get a smooth signal so that the early late algorithm
functions better. In Figure 3.9 the used sample moments are depicted. The
circle indicates a local maximum of the signal which will be indicated by the
early late algorithm as the best sample moment. The local maximum is caused
by the differential multiplier, the signal should not be sampled at this moment
because there is no actual symbol here. In Figure 3.10 the sample moments
of the filtered signal are depicted. Now there is no local maximum any more.
The sample moments will now be more precise.

Figure 3.9: Plot of the unfiltered signal with the sample moments (arrows) that are used,
the circle indicates a local maximum that is not a symbol

The symbol decision is made based on the unfiltered signal. In that signal
the distance in amplitude between the distinct symbols is larger. This can be
seen by looking at the eye diagrams which are depicted in Figure 3.11 and 3.12.
What can be seen is that the eye of the unfiltered signal has a larger opening.
For the filtered signal there are multiple positive levels and one negative and
for the unfiltered signal there are only two levels.
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Figure 3.10: Plot of the filtered signal with the sample moments (arrows) that are used

Figure 3.11: Eye diagram of the filtered
signal

Figure 3.12: Eye diagram of the unfiltered
signal

3.1.3 Top Level Design

The demodulator design has to be adapted because an intermediate frequency
is used in the RF frontend. In the RF frontend two mixers are used to multiply
the received signal with a sine and cosine at a frequency just below the carrier
frequency. The resulting signals are the I and Q component of the signal at
an intermediate frequency. Both signals are sampled and used for further de-
modulation. A method to convert the signals from the intermediate frequency
to a zero intermediate frequency was described in [2]. This design uses four
mixers for the conversion. The resulting signals are added and subtracted to
get the right I and Q signals. In Figure 3.13 the design of a demodulator is
depicted using the method with four multipliers, the part inside the grey block
is the mixer design that was presented in [2].

In our design a slightly different structure is used, in which the previous
designed demod blocks can be used. The FIR filter is moved in front of the
adders, which can be done be cause both operations are add operations. The
most left adders can be combined with the most right adder by moving the
differentiating operation in front of the left adders. The resulting signal is
differential and therefore the subtracter should be changed in an adder. Now
the previous discussed demodulation blocks can be used in the design. The
resulting top level design is depicted in Figure 3.14. The demodulated signal
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Figure 3.13: Schematic of the top level design demodulator using four mixers

will be sampled using the early late algorithm. The early late sampler also
performs the bit decisions. The used design is not optimal from a resources
perspective, the number of multipliers and FIR filters has increased.

Figure 3.14: Schematic of the top level design demodulator including early late sampler
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3.2 Implementation

3.2.1 GNURadio

The test set-up, of which the description will follow in Section 3.3, makes
use of software called GNURadio. With this software it is possible to design
software defined radios. In GNURadio it is possible to create signal processing
flow graphs. The flow graphs can be created with blocks that are included in
the software. Besides the standard blocks, the software offers the possibility
to define custom blocks. These blocks can be written in C++ or Python.

At the CAES group there are USRP (N210) boxes from Ettus Research
available. With these boxes it is possible to output an analogue RF signal
that was defined in GNURadio. The boxes can also receive signals from their
input.

In GNURadio a demodulator was designed as described in the previous
section. The demodulator part consists of standard blocks that are by de-
fault available in GNURadio. The early late sampler was developed during
the thesis by using C++. In Figure 3.15 the design of the demod block in
GNURadio is depicted. The design is exactly the same as described above, it
can be compared with Figure 3.1. The length of the moving average filter and
the amount of delay are dependent of the number of samples per symbol. In
Figure 3.15 for example there are 16 samples per symbol.

Figure 3.15: Demodulator design in GNURadio

This demod block is used in another block which does the complete de-
modulation. This block is depicted in Figure 3.16. The design of this block
can be compared with the block scheme depicted in Figure 3.14. The demod
block that was described above has as parameter the number of samples per
symbol. The frequency of the sine and cosine are determined by dividing the
sample rate by the number of samples. The input of this block is the signal
that was received from the USRP. The output is the oversampled demodulated
signal.

The top level flow graph of the demodulator in GNURadio is depicted
in Figure 3.17. The left most block outputs the signal that was received by
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Figure 3.16: Higher order demodulator block design in GNURadio

the USRP. The demodulator block has as parameters the number of samples
per symbol and the sample rate, both are necessary to demodulate the signal
correctly. The early late sampler also needs both parameters, but the sample
rate is in this case defined by the rate at which the samples appear at the input
of the block. The early late sampling algorithm is implemented as described
in Section 3.1.2 and is written in C++.

Figure 3.17: Complete signal flow graph at the receiver side

3.2.2 FPGA

The actual design of the parallel demodulator is made for an FPGA. How
this demodulator is created will be discussed in the next chapter. In this
subsection the implementation of a conventional DBPSK demodulator on an
FPGA is described.

Hardware Accelerators

The demodulator is designed for a Xilinx ML-605 development board [19], on
which the Starburst multi processor system is installed. The Starburst system
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is created by the CAES group at the University of Twente. On the ML-605
board there is a Virtex 6 FPGA. A Bitshark FMC-1RX [12] is interfaced
with the ML-605 board. Hardware accelerators can be created for this FPGA
which can be integrated in the Starburst system. These accelerators can
be connected to each other via a ring, via which data can stream from one
accelerator to another.

Design

A hardware accelerator is available that can be used to read samples from an
ADC in the RF frontend. A demodulator accelerator is created during this
thesis. With another hardware accelerator it is possible to output samples to
a buffer. In Figure 3.18 a flow graph of the hardware accelerators is depicted.

Figure 3.18: Flow graph of the hardware accelerators that are used

Xilinx modules are used to design the demodulator accelerator. With the
Xilinx CORE Generator software it is possible to create hardware description
files of these modules which can be used in the hardware accelerator. In Fig-
ure 3.19 the schematic of the demod block is depicted, in red Xilinx blocks are
highlighted. A FIR filter was used as a moving average filter [14]. A multi-
plier block designed by Xilinx was used [16]. A delay block had to be created
because such a block was not available in the CORE Generator software.

Figure 3.19: Schematic of the demod block (in red the Xilinx modules)

The early late sampler was, with exception of the FIR filter, completely
designed during this thesis. The FIR filter is exactly the same as was used
in the demod block. The sample register is created with a register file where
each sample that comes in is stored. For every symbol three samples are read
from this register file. These samples are with some logic combined to decide
if the sample moment should change. This sample moment is the output of
the early late block, which will be used to sample the demodulated signal.
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Figure 3.20: Schematic of the early late block (in red the Xilinx modules)

In Figure 3.21 the schematic of the complete demodulation block is de-
picted, again in red the modules from Xilinx that were used. The sine and
cosine block are both Read-only Memory (ROM) blocks created with the block
memory generator from Xilinx [18]. A read address pointer is used for reading
values from the ROMs. In these ROMs samples of a cosine and sine are stored.
The adder was created using the adder/subtracter block from Xilinx [15]. The
demod and early late block in the schematic are the blocks that were described
before. The sampler block consists of a shift register where the demodulated
signal is stored. The sample moment determines which register place of the
shift register will be forwarded to the output.

Figure 3.21: Schematic of the complete demodulation block (in red the Xilinx modules)

As described before, the delay block was created during this thesis. In the
implementation of the delay a register file was used, which will be implemented
with distributed Random Access Memory (RAM). It is probably better to use
a RAM based shift register [17] instead of a custom made delay with file
register. The reason is in that case the register will be implemented using
block RAM instead of using distributed RAM. This will save resources on
the FPGA, this depends however on the number of RAMs are available. A
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implementation test shows that when a RAM based shift register is used this
is optimised without using RAM blocks. However when the standard Xilinx
block is used the chance of bugs in the design is smaller. The same block
can also be used for the sampler block, in that case the option for variable
length should be used to be able to use the right sample moment. When these
modifications are applied to the design only the early late block contains self
defined blocks. By using the blocks that are created by Xilinx the created
hardware will probably be more efficient.

3.3 Results

Some measurements are done to validate if the demodulator is functioning
as expected. First the set-up is discussed, after that the measurements are
discussed.

3.3.1 Set-up

The schematic of the set-up is depicted in Figure 3.22. A signal is generated
in GNURadio this signal is send to the USRP. The output of the USRP is
via a cable connected to a Bitshark ADC. This ADC is interfaced with the
FPGA, with the help of hardware accelerators the signal is demodulated. In
the Linux core on the Starburst system it is possible to read outputs of the
FPGA. A package detector block is added in the hardware accelerator that
counts the number of detected packages. This number can be read via the
USB port of the ML605 board.

Figure 3.22: Schematic of the setup that is used to perform the measurements

3.3.2 PER

Test signals were created using GNURadio to test the performance of the de-
signed demodulator. Both designs, the one in GNURadio and the hardware
accelerator are tested and compared with each other. Because there is no
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synchronisation between the transmitter and the receiver it is difficult to de-
termine the BER. Therefore it is chosen to transmit packets and measure how
much of the packets are received. This is done by adding a block in the modu-
lator in GNURadio, this block adds a header to the signal. At the receiver side
a detector is added to see if a header is received. The number of headers that
is detected is used to determine the PER of the system. Disadvantage of this
method is that the PER is probably a best case PER, because the header is
designed to be detected easily. But the PER that is calculated can be useful
to compare the conventional demodulator with the parallel design. In Fig-
ure 3.23 the flow graph that is used to create the test signals is depicted. The
Simple Framer block adds a header, a counter and an end byte to the signal.
Only the header is used at the receiver side to determine the PER. Drawback
of this method is that there is not much information about the performance
of the time synchronisation block. For actual data the performance can be
worse, due to less bit transitions. The DBPSK modulator uses Equation 2.1
to modulate the signal, where x(n) contains the interpolated differential bits.
The differential bits are created inside the DBPSK modulator. The channel
model is used to add noise and different sampling offsets to the signal, so that
the performance of the demodulator could be tested.

Figure 3.23: Flow graph that was used in GNURadio to create test signals

At the receiver side a frame detector block is added. In this block the last
64 bits are stored and compared with the correct header. When the stored
bits are as expected a counter is increased. The counter and the exact sample
moment are stored in a buffer. After a certain amount of time they are read
and saved by a software program that runs on the Linux core.

3.3.3 Measurements

In Figure 3.24 the PER of the GNURadio and FPGA implementation of the
demodulator is depicted. In yellow the theoretical value of the PER is de-
picted, however this is assuming that there is no correlation between errors.
This theoretical PER relation is created by combining the theoretical value of
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the BER with Equation 3.1.

pp = 1− (1− pe)N (3.1)

where pp is the probability of a packet error, pe the probability of a bit error
and N the size of the packet in bits. As can be seen for low SNR the im-
plementation of the demodulator is performing better than can be expected
for uncorrelated errors. Which is probably caused by the fact that the errors
are dependent on each other. For DBPSK this is indeed the case because
the chance of paired errors is higher due to the differential encoding. In [11]
the PER for DBPSK is calculated, conclusion is that for DBPSK it can not
be assumed that the errors are independent of each other. However it seems
that the measured PER is still better than the theoretical value that is given
in [11], it is not clear why this is the case.

What also can be seen in the figure is that the PER of the FPGA has a
certain floor. It does not matter how high the SNR is, 0.4% of the packets
will never be detected. Most likely this is caused by an error in the VHDL
code because this error is not present in the GNURadio implementation.

Figure 3.24: PER for the FPGA implementation, GNURadio implementation and the the-
oretical value assuming no error dependency

In Figure 3.25 the output of the FPGA implementation is depicted over a
time interval. In theory it is possible to detect a packet at every sample that
is depicted in the graph. In the graph it can be seen that the exact sample
moment changes over time, this is caused by a difference in clock frequency
between the crystal in the USRP and the one on the FPGA board. The
difference between the two can be calculated by dividing the total number of
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samples in a certain range by the amount the sample moment has changed.
Their difference was:

number of samples

change in sample moment
=

80 · 16 · 10 000

24
≈ 53.3 · 104 (3.2)

where the number of samples is calculated by multiplying the packet length
with the number of samples per bit, which is multiplied with the total number
of packets. The result indicates that every 53.3 · 104 samples the FPGA
takes one sample less. Which means that the difference in clock frequency
is 1.9 ppm. This difference is dependent on the accuracy of the crystals
used in the USRP, the Bitshark ADC and the ML605 board. In the USRP
a Temperature Compensated Crystal Oscillator (TCXO) with an accuracy of
2.5 ppm is used [10]. The ML605 has an oscillator with an frequency accuracy
of 50 ppm [19]. There was no frequency accuracy given for the oscillator in
the Bitshark RF frontend.

Figure 3.25: Exact sample moment and detected packages over time (SNR per bit = 10 dB)

In GNURadio it is possible to change the sample rate with a re-sampling
factor. In this way it can be tested how well the system can handle a clock
difference between transmitter and receiver. In Figure 3.26 the PER of the
FPGA implementation is depicted for a few re-sampling rates. In Figure 3.27
the exact sample moment and number of detected packages is depicted for a re-
sampling rate of 1.00001. This re-sampling rate corresponds to an additional
ppm of 10. Using Equation 3.2 the total difference is calculated and is ≈ 12
ppm. For the re-sampling rate of 1.0001 the ppm is ≈ 1.0 · 102, it can be seen
that for this value the BER is increasing compared to the situation without
re-sampling factor. Given the values of frequency accuracies of the USRP
and the ML605 it can be concluded that in worst case the performance can
be affected by a difference in clock frequency. During the measurements the
clock difference between the USRP and the FPGA were not that extreme that
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the results were effected significantly, this can be concluded from the fact that
the results for the GNURadio implementation are the same as for the FPGA
implementation. The GNURadio implementation is not affected by a clock
difference because the transmitter and receiver use the same clock.

Figure 3.26: PER of FPGA implementation for different re-sampling factors

Figure 3.27: Exact sample moment and detected packages over time for a re-sampling factor
of 1.00001 (SNR per bit = 10 dB)

But what effect causes the increase of packet loss when the frequency
difference is larger? The problem can be found in the reset of the sample
moment. Every time such a reset is done a bit is lost, and almost each bit
loss will cause a packet loss. When it is assumed that each bit loss results
in packet loss, the change of packet loss for a certain clock difference can be
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calculated. This can be calculated by calculating the chance that a reset will
occur during the time that a packet is received, which is the re-sampling rate
multiplied with the packet length. When this chance is taken in to account a
PER with correction can be calculated, which is depicted in Figure 3.28.

Probably the chance of a reset during a packet is slightly exaggerated
because not all bit losses will result in a packet loss. But the results give
an indication that an improvement can be made by adding extra hardware to
prevent these bit losses. This extra hardware should add an extra sample when
the sampling moment is reset from the end of the register to the beginning.
And skip a sample when the sample moment is reset from the beginning of
the register to the end. The frame detector should be edited such that it can
handle these changes in sample rate. It was chosen not to add this in my
project due to time constraints. Besides that, the results are good enough to
compare with a parallel implementation. It is best to keep the design simple
so that parallelising it will not become too difficult.

Figure 3.28: PER of FPGA implementation for different re-sampling factors with compen-
sation for packet loss due to resets

During the design process it was chosen to double the length of the sam-
pling register. Measurements were done with a smaller sampling register and
it was studied what the effect was of the size of this register. The effect on
the PER of a register that is exactly the length of a symbol period is depicted
in Figure 3.29. It can be seen that there are a lot of jumps in the sample mo-
ment. Every time the sample moment reaches the edge of the sample register
a lot of packages will be missed.

In Figure 3.30 the PER is depicted for the implementation with a small
sampling register. It can be seen that the performance is a lot worse due
to the described effect. Another thing that can be seen is that the result is
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Figure 3.29: Effect of a sampling register that is exactly the length of the symbol period

less dependent of the re-sampling factor. This is according to the previous
described theory that the packet loss is caused by the effect of resets in the
sample moment. Because the total range in which the sample moment is
changing frequently stays the same.

Figure 3.30: PER for FPGA implementation with a sample register that is exactly the
length of the symbol period with different re-sampling factors. For comparison the PER of
the FPGA implementation with a sample register with a length of twice the symbol period
is depicted.
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3.4 Summary

In this chapter the design and implementation of a conventional demodulator
was discussed. Time-domain demodulation of the signal was selected, because
there is more knowledge to implement this and the focus is on parallelising
the demodulation process. This design will be the starting point of creating a
parallel demodulation structure. The test set-up was discussed together with
its disadvantages. Measurements were done and the results were discussed.
These results were useful to determine the performance of the design but
also to discover some disadvantages of the design. One of the things that was
discovered was that increasing the size of the sampling register can improve the
PER. A disadvantage of the design is that bit losses will occur when the sample
moment is reset. With extra hardware this can be prevented. It was chosen
not to implement this due to time constraints. However the current design
will still be useful to compare with the parallel implementation. Measurements
show that the implementation has a certain PER floor. Due to that floor the
PER will never reach 0 %. The results of the parallel design described in
the next chapter will be compared to the results that were presented in this
chapter.
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Subject of this thesis is to design a demodulator on an FPGA which can
handle high data rates. To do so a parallel demodulator is designed. In this
chapter the design of such a demodulator is discussed. In the previous chapter
the design of a conventional DBPSK demodulator was discussed, this design
will be the basis of the parallel design. This parallel design will be discussed
in this chapter. After which the discussion of the implementation follows.
The implementation that is discussed in this chapter will be used in the next
chapter to test the performance and compare it with the conventional design.

4.1 Design

An FMC125 ADC of 4DSP [1] was available at the CAES group which has
a possibility to sample at 5Gs/s. At this high speed it delivers its samples
using 8 parallel channels. However it is from time perspective decided not to
use this because it is not interfaced with the Starburst platform yet. Instead
a proof of concept is made which can be used to work with parallel samples.
It is chosen to create a switch module that switches packets of samples to
different demodulation modules. In the next section the functioning of this
switch is discussed.

4.1.1 Switch

The switch stores samples from the signal that is received from the ADC in
a register. From this register packets of samples with a certain length are
forwarded to different demodulation modules. These packets should have a
certain overlap to be able to get all bits from the signal. In Figure 4.1 an
example is depicted to explain how the packets are divided over the cores.
The numbers in the model represent symbol periods of the signal. What can
be seen is that the first two symbol periods that are received are forwarded to
core 0. These two packages contain the bits that are demodulated by core 0.
Two older packages are needed to be able to demodulate the signal correctly.
Therefore also symbol period -1 and -2 are forwarded to core 0. The reason
for this will be explained later.
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Figure 4.1: Illustration of the functioning of the switch

In the design of the switch it is assumed that samples arrive one after
another. For high speed ADCs the samples will probably arrive in parallel.
The design will however still function. In Figure 4.2 this is illustrated. In this
example the numbers represents samples instead of symbol periods. It can be
seen that the samples arrive in parallel. Each core receives a part of the input
signal in the correct order. Only 2 cores are depicted in the illustration, but
in a real design there should be more cores to keep up with the rate at which
the samples arrive.

Figure 4.2: Illustration of the functioning of the switch when the samples arrival in parallel
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4.1.2 Demodulation

In Figure 4.3 the different blocks within a core are depicted with their inputs
and outputs. The symbol periods are coloured to indicate if the periods are
valid or invalid. Red means that the data of this symbol period is invalid,
green means that the data is valid. It can be seen that after the FIR filter 1
out of 4 symbol periods becomes invalid, that is due to the fact that the filter
averages over one symbol period. For the first symbol period in a packet this
will result in invalid data because it is averaged with the last symbol period
of the previous packet. For the differential multiplier another symbol period
becomes invalid, due to the fact that each symbol period is multiplied with the
previous. Because of that the symbol period after the invalid symbol period
will also become invalid. For this specific example halve of the final output
will be invalid. Each package of 4 symbol periods will result in two valid bits.
For that reason an overlap in packages between cores is used so that every
symbol period will result in a valid bit.

Figure 4.3: Parallel demodulation

For the example it was chosen to use a package length of 4 symbol periods.
When 4 demodulation cores are used the clock frequency in the demodulator
can be halved. A formula can be created to calculate with which factor the
clock frequency will be changed:

n =
N

(N −X)M
(4.1)

where N is the length of the packages expressed in symbol periods, X the over-
lap between the packages expressed in symbol periods and M is the number
of demodulation cores. For the example this results in a factor of 1

2 .
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In the previous chapter it was discussed how long the sampling register
should be. When a sampling register is used that has a length of twice the
symbol period the overlap between packets should increase to 3 symbol periods
instead of 2. In that case the previous example will not result in a decrease of
the clock frequency. The length of the packages or the number of cores should
be increased to still have a lower clock frequency in the demodulator. For
example 8 demodulation cores could be used instead to still be able to halve
the clock frequency. In that case each core would extract one bit out of each
package.

4.1.3 Symbol Time Recovery

The demodulation design did not change much, however the symbol time
recovery has to change. The most easy implementation would be to place a
symbol time recovery on each core that decides for that core what the sample
moment should be. This will however cause problems when the separate cores
use different sample moments. When the sample register has a length of
two symbol periods than this will most likely cause bit loss. In Figure 4.4
an example for the position of the best sample moments in the sampling
register are depicted. These ideal sample moments are indicated with arrows.
When the different cores do not use the same sample moments this will cause
problems.

Figure 4.4: Example of the best sample moment within a sampling register with a width of
twice the symbol period

For a sampling register with exactly one symbol period length the chance
that all cores use the same sample moment is bigger. In Figure 4.5 two exam-
ples for the best sample moment are depicted for the smaller register. For the
blue example all cores will use the same sample moment. The orange example
gives no certainty that all cores will use the same sample moment. Some cores
will reset their sample moment earlier then others. For example a core which
did not had a symbol transition will keep its old sample moment. Due to noise
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it is also possible that one core will reset it and another will not. In that case
some will sample at the end and some at the beginning of the period.

Figure 4.5: Two examples of the best sample moment of a sampling register with a width
equal to the symbol period

The simplest solution to the described problem is to decide the sample
moment based on just one symbol recovery core. For example the output of
the first demodulation core can be used to determine the best sample mo-
ment. This sample moment can be forwarded to each core. In this way it is
guaranteed that all cores will use the same sample moment. This solution has
however a disadvantage, namely the sample moment is not determined very
often. When there is no bit transition in the signal received by the first core
the sample moment can not change. This reduces the robustness against a
clock difference between transmitter and receiver.

It is possible to create a better solution. An example solution is depicted
in Figure 4.6. The outputs of multiple symbol recovery loops are added to-
gether. With this combined signal it is decided if the sample moment should
be changed or not. In this way the design becomes more robust. The algo-
rithm will now function if there is at least one bit transition in one of the
cores.

4.2 Implementation

The above discussed design has been implemented on an FPGA. The imple-
mentation that has been created did not utilise all optimisations that were
discussed above. No parallel implementation has been made in GNURadio.
However experiments were done in GNURadio that simulates the parallel de-
sign. The biggest part of the parallel design consists of blocks that were



4.2. IMPLEMENTATION 43

Figure 4.6: Parallel demodulation

created for the conventional design. A block called ”switch” was added to
perform the switching of packets to the multiple demodulation blocks.

4.2.1 Switch

The switch consists mainly of two registers. In the first register the received
signal is stored. The second is used as an output buffer. When the input
register is completely filled the contents are copied to the output register.
The output register is read and forwarded to four different outputs. This
reading is done at a lower rate than the rate at which the samples arrive at
the input register. In Figure 4.7 the design of the switch is illustrated. For
the design that was created the input register is filled with 8 symbol periods.
Two extra symbol periods (indicated in red) are necessary for the overlap
that is required. Another output of the switch block indicates that a new
package of samples was sent. This information is important for the sampling
of the signal, because sampling should not be done on the data that is invalid.
In Section 4.1.2 it was explained why parts of the output signal are invalid.
When a new package of samples arrives the sampling should pause for 2 symbol
periods on each core.

There was chosen for a package length of 4 symbol periods and 4 demod-
ulation blocks. Afterwards this was not the best choice as was discussed in
Section 4.1.2. To be able to reduce the clock speed the sampling register can
only have a width of one symbol period. This will not give the best results
possible. Due to a lack of time the design has not been changed.
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Figure 4.7: Illustration of the functioning of the switch block

4.2.2 Demodulation

The demodulation method of the conventional implementation can be used
in the demodulation cores that are used in the parallel implementation. In
Figure 4.8 the block scheme of the demodulation core is depicted. The demod
block within this design is the same as for the conventional design.

Figure 4.8: Demodulation block used in the parallel implementation

4.2.3 Top Level Implementation

In Figure 4.9 a block scheme of the top level implementation is depicted. As
can be seen in the figure each core has its own demodulation and sampling
block. The symbol time recovering is only based on the output of the first
core. This was chosen for simplicity and due to a lack of time this has not
been changed to an improved symbol time recovering loop.
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Figure 4.9: Parallel implementation

Symbol Time Recovering

The early late block needs a small adjustment for the parallel implementation.
It should not run always but only when valid data is available. The reason
why parts of the signal are invalid was discussed in Section 4.1.2. A signal is
used to indicate that the first sample of a new packet was transmitted, the
first symbol periods after that are invalid and should be ignored. It was chosen
to use this signal as a trigger for the algorithm. Therefore the algorithm runs
only once for every 8 symbol periods. An improvement can be made here to
do it for all symbol periods that are valid. The calculated sample moment is
forwarded to each sampler.

Sampling

For the sampling the same adjustment is needed. The sampler has to know
when a new package was transmitted by the switch, the data right after that
signal will be invalid. In the implementation there is chosen to sample both
bits of the core at the same moment, a shift register is used to implement that.

4.3 Conclusion

In this chapter a parallel design was presented. After that it was implemented
on an FPGA. Some shortcomings of the design together with possible solu-
tions were discussed. The shortcomings are related to finding the right sample
moment. The first shortcoming is that there is bit loss when the sample mo-
ment is reset. This resets occur relatively often because the sampling register
is exactly one symbol period. The other shortcoming is that the right sam-
ple moment is only determined based on one parallel path. Solutions were
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presented that should overcome these shortcomings. However due to time
constraint my design has still these shortcomings in it. In the next chapter
measurement results of the presented parallel design are presented and the re-
sults are compared with the results obtained using a conventional demodulator
that has been presented in Chapter 3.
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In this chapter the results of the parallel demodulator are discussed. The
results are compared with the results that were presented in Chapter 3. The
set-up that is used has already been explained in Section 3.3.1.

5.1 Results Parallel Receiver

In Figure 5.1 the PER of the parallel implementation on the FPGA is depicted
for several re-sampling rates. For comparison also the PER of the GNURadio
implementation is depicted. What can be seen is that the implementation is
performing worse than the GNURadio implementation. But this is probably
due to the fact that the sampling register has a width of only one symbol period
instead of 2. Therefore it is useful to compare it with the other implementation
on the FPGA that was made.

Figure 5.1: PER of parallel implementation for different re-sampling factors, for comparison
the PER of the conventional implementation in GNURadio is also depicted.

In Figure 5.2 the PER of different implementations is depicted. What can
be seen is that the implementation with the short sampling register performs
worse than the parallel implementation which also uses this same register size.
The reason for this can be explained with Figure 5.3, which can be compared
with Figure 3.29. The sample moment of the parallel implementation has
less jumps due to the fact that the sample moment can only change 1 out
of 8 times. For comparison the conventional implementation was changed so
that the sample moment was only calculated 1 out of 8 times. It can be seen
in the graph that the performance of this implementation is comparable with
the parallel implementation. This means that the parallel implementation was
done correctly and that it only performs worse due to the known shortcomings



5.1. RESULTS PARALLEL RECEIVER 49

of the design. These shortcomings are the small sampling register and the fact
that the early late algorithm is slower.

Figure 5.2: PER for different implementations

Figure 5.3: Sample moment and total number of detected packages over time for the parallel
implementation

Figure 5.4 shows the same PERs as Figure 5.2 but with a re-sampling
rate of 1.0005. What can be seen is that the parallel implementation is now
worse than the conventional implementation. Due to the high re-sampling
rate the early late algorithm is too slow and cannot all the time decide the
right sampling moment. That the design is less robust to a clock difference
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was already predicted during the design process.

Figure 5.4: PER for different implementations when using a re-sampling rate of 1.0005

5.2 Scalability

Besides the performance of the design the scalability of the design is important.
The implementation that was made used 4 demodulation cores with a reduced
clock frequency of 2. Is it possible to further decrease the clock frequency
with the same design? And is there a linear relation between the number of
demodulation cores used in the design and the resources that are used on the
FPGA?

The amount of resources used by the demodulation cores scales linear.
Every core requires a certain amount of resources which is independent of the
number of other cores or the size of the packages send by the switch. The
same holds for the sampler block that is used. When there is a early late
block for each core the amount of resources for them scales also linear. There
is only a little bit of logic required to combine the outputs of these blocks.

The only block which can make the scalability non-linear is the switch
block. As the number of cores and the size of the packages grows the size of
the switch grows. The switch can be seen as a memory unit. On one side data
from the received signal is written to the memory. On the other side data is
read by the different cores. The cores read a certain part of the memory with
a certain overlap between cores.
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One possibility is to use shift registers in the switch. There should be one
shift register for the input and one for the output, in that way the demodu-
lation cores can read from the register before the data is overwritten. When
there are multiple parallel inputs they should all have their own shift regis-
ter. The total amount of places in the registers will increase with the package
length and the amount of demodulation cores that is used. The total places
in the shift registers can be calculated:

S = ((N − 2)M + 2)SPS (5.1)

where N is the length of the packages expressed in symbol periods, M the
number of demodulation cores and SPS the number of samples per symbol.
In this case it was assumed that the overlap is 2 symbol periods which was the
case for the design that was created during this thesis. Apart from a constant
part the resources required for this register scale linear. In Figure 5.5 the shift
registers that are required for the switch are depicted. Every register place in
the output shift register needs a multiplexer to be able to set the data. When
the input shift registers all contain new data the information in the input
shift registers is used to set the output shift register with the new values. In
Figure 5.5 there is only a multiplexer depicted for output register place 0 but
in reality every output register place needs such a switch.

Figure 5.5: Switch design with shift registers

In Table 5.1 the slice registers and Lookup Tables (LUTs) used by the
switch for different number of cores are listed. It can be seen that for a
doubling of the number of cores the amount of resources is increased with
a factor smaller than 2. Which means that the design of the switch is also
scalable. The amount of resources required for the switch is a big part of the
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FPGA. For the 32 cores design of the switch 22% of the slice registers and
12% of the LUTs are used. Conclusion is that the design is scalable but that
the switch will become too big for certain number of cores.

Table 5.1: FPGA resources needed by the switch for different number of cores and a package
length of 4 symbol periods

Cores Slice registers LUTs

4 9328 5195

8 17551 6188

16 34266 11799

32 67217 18052

Another possibility is to use block RAMs. The total number of required
RAMs will then be the number of cores multiplied with the number of parallel
inputs of the received signal. When there are for example 8 parallel inputs
and 8 demodulation cores, there are at least 64 block RAMs required. For
large package lengths it will be efficient to use block RAMs, but for a package
length that is relatively small compared to the RAM size it is better to use
registers. Otherwise a lot of RAM will be unused. The number of RAMs
required will increase quadratically, for that reason it will in most cases be
better to use the register file implementation.

In Table 5.2 some estimations are listed for an implementation with 32
parallel paths. For the estimations it is assumed that the blocks are imple-
mented 32 times and that the switch block has a larger register file so that it
can send packages to each parallel path. What can be seen is that with the
limited resources of the FPGA the number of parallel paths is limited some-
where around 32. Probably it is not possible to implement the design with
32 parallel because also other hardware accelerators are used. The amount of
LUTs used reaches 94%. Some improvements can be made to the design, for
this estimations no RAMs were used. It is also good to note that 32 parallel
paths means an input of 16 parallel samples which is twice the number of the
high speed ADC that was available. For this ADC the design will probably fit
on the FPGA according to this estimations. When 16 parallel paths are used
all resources will be halve of what is listed in the table.

Table 5.2: Estimated resources per block for 32 parallel paths

Block Slice registers Slice registers (%) LUTs LUTs (%)

Switch 67217 22 % 18052 12 %

Demod 61440 20 % 97344 65 %

Early Late 34266 11 % 11799 8 %

Sampler 13568 5 % 8736 9 %
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5.3 Alternative Parallel Structure

Because the hardware resources that are required by the parallel design is
increasing fast for multiple cores a better structure is desirable. In Figure 5.6
an alternative parallel design is depicted. In this case four parallel paths are
used, which means that the clock frequency is reduced with a factor of four.
In Figure 5.6 seven parallel inputs are depicted, these inputs are actually four
parallel inputs and three delayed inputs that are used for the filtering. Delay
elements should therefore be added to the design.

In the demodulator each sample is multiplied with a different value of the
cosine. In the alternative structure these multiplications are done in parallel.
The results of these multiplications are filtered by a parallel FIR. This FIR
filter sums the samples that arrive in parallel and outputs the result to the
output. Another FIR filter performs the filtering with another selection of the
input signals. When there are 4 parallel paths then there are also four parallel
FIR filters in the structure. Each filtered signal is forwarded to a differential
multiplier. The early late sampler determines which of the four samples is the
sample that should be used.

This design does not require a switch for switching samples to the multiple
cores which will reduce the amount of resources that are required. Another
benefit is that there is no invalid data at the outputs and therefore no resources
are spilled on invalid data. Due to a lack of time this structure has not been
worked out in more detail. In future work this structure can be used to create
a parallel structure that uses less resources.

5.4 Summary

In this chapter measurement results with the parallel implementation of the
demodulator were presented. These results were compared with the conven-
tional implementation. The results of the PER measurements were worse than
the conventional implementation, however some improvements were discussed
which could improve the design. When the design was compared with an
adapted version of the conventional design the results are almost identically.
The scalability of the design was discussed and the conclusion is that the de-
sign is scalable. However there will be too few resources on the FPGA when
there are too many multiple paths. For the ADC this will most likely work but
for future designs some optimisations should be made for the parallel design.
The main goal of this thesis was to develop a parallel demodulation structure
in FPGA hardware, which has been presented in this chapter.
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Figure 5.6: Alternative parallel design
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This thesis discusses the implementation of a parallel demodulator on a
FPGA. The demodulator was compared with a conventional implementation
which processes the data sequential.

6.1 Conclusion

The first demodulator that was implemented was a conventional demodulator.
This demodulator was compared with a demodulator that was made in GNU-
Radio. The implementation that was made on the FPGA has for low SNRs
the same performance as the GNURadio implementation. For high SNRs the
FPGA implementation has a certain floor, therefore it will never reach a PER
of 0 %. Shortcomings of the design were discussed with relation to the sam-
ple moment. When the sample moment is reset a bit loss will occur. With
extra hardware this could be prevented. It was chosen not to implement this
improvement due to a lack of time. The design that was created formed the
basis of the parallel design.

After the conventional demodulator was implemented a parallel demod-
ulator has been implemented. The design of it and its shortcomings were
discussed. The sampling register that was chosen to implement was actually
too small. It was chosen to implement only one symbol time recovery circuit,
however from a PER performance perspective it was better to implement one
for each parallel path.

Measurements were done to compare the parallel implementation with the
conventional one. From the measurements it was concluded that the parallel
implementation performs worse than the conventional one, however the results
look promising. With some improvements that are discussed in this thesis the
design should perform the same as the conventional design. However when the
clock difference between the two becomes too high the parallel design will per-
form worse. The main goal of this thesis, namely designing and implementing
a parallel demodulation structure, is achieved.

The design that was presented can be scaled so that different numbers of
parallel paths are used. In that way it can be used for different bit-rates and
interfaced with ADCs running at higher clock frequencies. However, a lot of
resources are used when everything is implemented multiple times. The num-
ber of parallel paths is limited by the amount of resources that are available
on the used FPGA. For the design that was presented the number of parallel
paths is limited to approximately 16.

Although the clock frequency of an FPGA does not keep up with the
data rate required by nowadays applications they can still be useful. It has
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been shown that it is possible to create a scalable parallel demodulator on
an FPGA. These parallel demodulators can be used in combination with high
speed ADCs which deliver samples in parallel. In that way it is possible to
process the data from the 5GS/s ADC on the FPGA. The parallel structure
presented in this thesis can be used in the future to create other parallel
demodulation structures.

6.2 Recommendations

The main achievement in this thesis was to create a parallel structure for a
demodulator. In this report a few improvements were discussed which prob-
ably will improve the performance a lot. In future work this improvements
can be applied to the design and the performance can be tested. Another im-
provement would be to implement the structure depicted in Figure 3.13. This
structure uses less hardware than the implementation that was made during
this thesis.

Besides that it is also interesting to look at a frequency-domain parallel
demodulator. The design that was discussed in this report was based on a
time-domain parallel demodulator. It would be interesting to compare the
designs with each other. There can also be made improvements in the struc-
ture that was presented. Afterwards splitting the input signal in packages was
probably not the best solution to create a parallel demodulator. Because the
switch that is required will use a lot of space, besides that the demodulator
block will take up a lot of space. For future work it could be interesting to in-
vestigate other parallel designs principles that can be used for demodulation,
for example the one presented in Section 5.3.

In this thesis there was no actual theoretical value for the PER used. It
would be derive a theoretical upper bound on the PER for DBPSK. It is
interesting to know how good the design is according to this theory.

Due to timing constraints it was chosen not to use the high speed ADC
that was available. It would be interesting to interface the design with this
ADC. In that way the performance of the system can be tested as it would be
in a real high bit-rate receiver application.
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