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Summary 
The well-known international company Philips has the mission to improve the life of 3 billion people 
through their innovations. The driving factor for reaching this goal is to improve customer service while 
maintaining low inventories and low costs. The target customer service level for 2020 is to deliver 95% 
of all order lines on time and in full. The order line fill rate of the division of Philips that we study is 
89% at the start of this research. Philips is interested in researching how to reach the 95% and still stay 
profitable. Therefore, the goal of this research is the following:  
 
The goal of this research is to improve a part of Philips’ supply chain in order to improve the customer 

service level in the most profitable way. 
 
The scope of this research is to find ways for customer service level improvement for a certain range 
of products. We decide to only research how to improve product availability at the warehouses, since 
low product availability is the main reason for a low customer service level. The order line fill rate for 
product availability at the warehouse is called CSL-availability. The CSL-availability at the start of this 
research of the studied division of Philips is 91%. Comparing this to the 89% order line fill rate, we can 
conclude that only 2% of the order lines are not fulfilled due to other reasons than availability at the 
warehouse, whereas 9% cannot be fulfilled because of stock-outs at the warehouses.  
 
The scope of this research is limited to two product groups, where one already has a 93% CSL-
availability, but can improve the total CSL-availability by 1,5% and thus has a big influence on the total 
average customer service level. The other product group has a CSL-availability of 87%. This leaves more 
room for improvement, but due to the relative low amount of order lines for this product type only a 
0,5% total CSL improvement can be achieved.  Solutions for improvement that we find during this 
research however can probably also be implemented for other product groups. 
 
The biggest challenge for Philips is to achieve a high service level at low cost, because customers expect 
highly customized products and fast delivery times. Variability in demand and low forecast accuracies 
are found to be the main reasons for stock-outs at the warehouses. We researched different ways of 
coping with demand variability and come to the conclusion that for this scope lead time reduction is 
the most viable solution. Possible solutions are: changing the mode of transportation from sea to air, 
late customization or a dual sourcing strategy where a percentage of the products are transported by 
air and the rest by sea. We built a simulation model to quantify the impact of lead time reduction on 
the CSL-availability year to date and performed a cost analysis. For the analysis, we chose one SKU per 
product group, since there is no more data available. Due to the wide variation of SKUs of product 
group A, the chosen SKU represents only 0,5% of all order lines and is therefore not representative for 
the whole product group. We recommend Philips to also study other SKUs before implementing a 
solution for this product group. The SKU of product group B represents 43% of all order lines. 
Therefore, our conclusions about this product group are much more valuable. 
 
The results and conclusion of the CSL-availability year to date and cost analysis for each solution after 
running the simulation model are listed below. Note that the recommendations are based on the 
results for only one SKU per product group. Therefore, we recommend to test the settings for other 
SKUs of those two product groups before implementation. 

 Changing the transportation mode from sea to air reduces the lead time by six weeks for 
product group A. The improvement in CSL-availability YTD is 3,1% for two weeks of safety stock 
and 2,6% for one week of safety stock. The profit increase due to less inventory costs, less lost 
sales and more sales due to less cancellations is 5,3% for two weeks of safety stock and 7,1% 
for one week of safety stock. We also researched a dual sourcing strategy, where products are 
partly shipped via sea transport and partly via air transport. However, the most profitable 
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solution is to ship everything via air. Therefore, we can recommend Philips to implement this 
solution. 

 Building a production line at the production site in North America decreases the lead time and 
improves the CSL-availability with 3,1%. However, the benefits are clearly not enough to cover 
the costs of a new production line. Therefore, we recommend Philips not to build a new 
production line.  

 Changing the transportation mode from sea to air reduces the lead time by four weeks for 
product group B. Here, we found that shipping all orders via air is too costly, because of the 
high transportation cost. Nevertheless, we also researched a dual sourcing strategy, where 
products are partly shipped via sea transport and partly via air transport. The best solution is 
to send 6% for two weeks of safety stock and 25% for one week of safety stock of all shipments 
via air respectively and the rest via sea. We advise Philips to implement these settings, which 
will result in a profit increase of 0,5% and 4,1% respectively and an improvement in CSL-
availability of 1,6% and 9,2% respectively. 

 We develop one feasible idea for late customization for SKU B, which reduces the lead time by 
six weeks, but adds additional stock in the pipeline. The lead time reduction leads to an 
average CSL-availability YTD improvement of 1,8% for two weeks of safety stock and 5,3% for 
one week of safety stock. The additional handling and inventory costs however lead to a profit 
decrease of 5,1% when having two weeks of safety stock and 1,2% when having one week of 
safety stock, which makes this solution not desirable for implementation. 

 
Our final recommendations for further research to Philips are the following: 

 We have seen that big and small customers are supplied from the same stock, which leads to 
high variations in demand and more complications in forecasting demand accurately. 
Therefore, we recommend to research if serving big and small customers in a different way or 
from different stocks leads to higher service levels. For example, bigger customers could be 
supplied directly from the production site.  

 We recommend to investigate if the target setting for the customer service level is cost-

effective. Literature suggests that there is an optimal balance between inventories and 

customer service target settings, see (Jeffery, Butler, & Malone, 2008). Above that point, 

improvement of customer service level through setting higher safety stocks is too costly. We 

did not research the optimal target setting for Philips, because finding the right safety stock 

settings is out of scope. Furthermore, to perform this analysis with the method described in 

this article, a volume fill rate instead of an order fill rate is needed. 

 We advise to reconsider if order line fill rate is the right measurement. Markets can influence 
the outcome of their CSL by prioritizing small customers just to get a nice KPI. This can result 
in lost opportunities with big customers. A Market can choose to not fulfill a few big order lines 
and still have a higher KPI than another Market that prioritizes big order lines over smaller 
ones, resulting in a higher sales volume but a lower KPI. We suggest Philips to use the volume 
fill rate instead of the order line fill rate, which makes it easier for production to prioritize 
orders and gives better insight in the performance of the markets in relation to sales and 
profitability. 
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1 Introduction 
This research is done within the scope of my graduation project of the Master program Industrial 
Engineering and Management at the University of Twente. It is held inside a supply chain management 
team of the global company Philips.  
 

A supply chain is a set of facilities, supplies, customers, products and methods of controlling 
inventory, purchasing, and distribution. The chain links suppliers and customers, beginning with 
the production of raw material by a supplier, and ending with the consumption of a product by 
the customer. (Sabria & Beamon, 2000, p. 581)  

 
The supply chain is a network in which a finished good is produced and distributed to the customer, to 
fulfill the customers’ needs. The objective of supply chain management is to reach a high customer 
service level in the most cost-efficient way in order to sustain profit and growth. For a global company 
like Philips, it is substantial to make optimal strategic decisions like “location of facilities (plants and 
distribution centers), flow of goods throughout the supply chain [...], and assignment of customers to 
distribution centers” (Sabria & Beamon, 2000). Furthermore, operational optimization which includes 
determining the safety stocks, production batches, order quantities, production lead times and 
distribution is significant to reach the objective of a high customer service level. Uncertainties like 
customer demand have a great impact on the supply chain performance of the company. To forecast 
the demand accurately is a big challenge for most companies (Beutel & Minner, 2012). Supply chain 
management aims to find a balance between inventory levels and shortage due to low forecast 
accuracy. 
 

1.1 Introduction to Philips 
Philips is a well-known international company founded in 1891 with its headquarters currently in 
Amsterdam. Their mission is “Improving people's lives through meaningful innovation”. By 2025, 
Philips wants to help 3 billion people improving their lives through sustainable and healthy innovations. 
The satisfaction and health of their customers is the driving factor for Philips. 
Philips is divided into the sectors Health Systems and Personal Health. The sector Personal Health is 
organized in three pillars, Business Groups, Markets and a Single-Value Added Layer (which includes 
HR, Design, Procurement etc.). The sector is divided into five different business groups (BGs). BGs are 
responsible for strategic review and profit and loss, while being accountable for operations 
(Manufacturing and Supply Center) and innovation activities. The Markets are responsible for demand 
planning, in-market activation, e- commerce, consumer care and the Commercial Organizations (CO) 
and their activities. A BG is divided into several businesses categories, which can be seen as a high level 
group of products. 
 
This study will focus on a business category inside Philips, further referred to as the case study 
business. The case study business of Philips is growing and is selling a wide variety of products. The 
customers are distributors and retailers and not directly the end-consumer. Philips customers expect 
shorter delivery times and more customization. That is why the case study business needs to be able 
to react fast and flexible to customer orders to hold its high reputation and constantly gain new 
customers. The challenge for the Philips business is to deliver reliably to the customers whatever 
product they want. 
 
The supply chain of the case study business is organized in the following way. The end-customer buys 
Philips products from the shelf at a retailer, who is not part of Philips. The customers of the Philips 
business are retailers or distributors who sell to retailers. Customers can order at their Philips 
Commercial Organization (CO). The COs make forecasts of these orders, which are communicated to 
one of the Supply Centers (SCs) depending on the region and the type of product. The SCs order 
according to the forecast at one of the in-house factories or at one of many suppliers. Raw materials, 
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which are necessary for the in-house factories are also ordered at suppliers by the responsible person 
of the factory. The finished products are stored at Regional Distribution Centers (RDCs), which are 
linked to the COs and then delivered to the customer or are directly delivered from the factory to a 
distributor. For a detailed description of the supply chain see Chapter 2.1. 
 

1.2 The customer service level at Philips 

The customer service level KPI (CSL), or customer service level of OTTR (on-time to request) orders, 
measures how many of the order lines were delivered On Time (OT) & In Full (IF) as requested by the 
customer versus the total number of order lines requested by the customer. To calculate the CSL OTTR, 
the following formula is used. 
 

𝐶𝑆𝐿 𝑂𝑇𝑇𝑅% = 
∑𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑂𝑇&𝐼𝐹

∑𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
 

 
In Full means that the actual delivered quantity is at least the requested quantity. On time means that 
the actual delivery date is before or on the requested delivery date. 
 
A CSL OTTR failure occurs when a customer receives an order not in full or not on the requested 
delivery date; or both. In Philips terminology, this failure is called a CSL OTTR hit and is categorized in 
six buckets; namely customer, availability, Sales Office, warehouse, distribution and other. Every hit 
can only be placed in one of the buckets. It can happen that a CSL OTTR hit occurs due to multiple 
reasons. Therefore the hit needs to be reviewed in the right order. For every bucket it is checked if the 
hit falls in that bucket. The first bucket is called customer bucket and includes all failures which are 
caused by wrong expectations of the customer, for example when he orders a product which is already 
phased out. The next bucket is the availability bucket. A hit occurs if products are not available at the 
RDC due to production or transport issues or if the forecast was not accurate. Next, the hit can be 
assigned to the Sales Office bucket if there is some financial issue like a credit block issue, which means 
that a customer has exceeded his credit limit and still places an order. Since the system does not allow 
to process orders above the credit limit, this order will not be fulfilled. The next bucket is the 
Warehouse bucket. Mostly late goods dispatch causes a hit in this bucket. A hit falls in the next bucket, 
the Distribution bucket, if there are problems due to the distribution from the RDC to the customer. 
Mainly these problems occur due to a failure of the carrier, e.g. traffic delay or planning error. The last 
bucket is for all other reasons like system errors, which could not be placed in one of the other buckets. 
Due to the responsibilities of the business group, this research will focus on the improvement of the 
CSL OTTR of the availability bucket, also called CSL availability.  
 

1.3 Goal 
Philips strives for high quality products and a high customer service level. Their goal is to reach a 
customer service level of on-time to request orders of 95% by 2020. The goal for 2016 is to reach a CSL 
of 87% for all products in all BGs. The case study business reached a CSL OTTR Year to date (YTD) of 
84% in 2015. 
 

1.4 Problem description  
Because of the growing targets inside the Philips business, it is a prerequisite to deliver all receiving 
orders on time and in full when requested by the customer. So the CSL OTTR is a key enabler to support 
the strategy to grow. The operational committee has the vision to grow to a 95% CSL OTTR in 2020. 
The Supply Chain Management team would like to investigate what is needed to be done differently 
to reach this target.  
When receiving an order, the Philips business wants to deliver the product on-time and in full, 
regardless of orders already promised. The demand forecasts are made by the Markets. For the 
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Markets, it is difficult to reach a high forecast accuracy. The company measures the forecast accuracy 
using the weighted mean absolute percentage error (wMAPE). At the start of this research, the wMAPE 
of the forecast of two month before the sale is 47% on average for the first 3 month of 2016. Therefore, 
the supply chain management team needs to setup their supply chain flexibly to cope with low forecast 
accuracy. 
 
Another challenge the Philips business faces is the fact that different international customers have 
different requirements regarding the products; for example the language on the packaging. In the 
current set-up, late customization is not possible for all products and therefore the amount of products 
produced for a specific region has to be decided in an early stage. That is why the finished goods are 
not flexible, which means that they cannot be used for different markets, which leads to wasted 
resources due to high inventories or high customer order lead-times due to unavailability of products. 
 

1.5 Research questions 

1.5.1 Main research statement 
From the problem description and the goal of the company, the following main research statement 
can be formulated: 
 
The goal of this research is to improve a part of Philips’ supply chain in order to improve the customer 

service level in the most profitable way. 
 

1.5.2 Sub-questions 
To reach the research goal, a number of sub-questions can be asked. First we need to take a look at 
the current state of the supply chain and gather all the data needed for the project. Then the data can 
be analyzed and possible causes for the problem can be found. After the analysis, different solutions 
to the given problem can be gathered from given models and/or brainstorming. The best possible 
solutions should be compared and finally an advice for the best solution can be given. Due to time 
limitations, we will not research how to implement the solution. This process leads to the following 
sub-questions divided into three phases. 
 

Definition phase: 

1. How is the current supply chain of the case study business structured? 

In Chapter 2, we describe the current structure of the supply chain in general for all products 

of the case study business. We look at the order process and the product flow. 

 

2. How is the customer service level measured? What are the results? What are the root causes 

for low customer service levels? 

We describe how the customer service level is measured in Chapter 2. We gather data about 

customer service levels for different product groups and show the results. We find product 

groups which are the main drivers for low customer service level and look at the root causes 

for the low performance. 

Analysis phase: 

3. Which factors influence the service levels and how do they relate to each other? What 

solutions/ interventions to improve the service level have already been found by researchers? 

Literature provides a lot of information on customer service levels. We perform a literature 

study about the factors that influence the customer service level and possible solution models 

in Chapter 3. 
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4. Which of those solutions/ interventions could be suitable for Philips and should be analyzed in 

further detail? 

To answer this research question, we talk to stakeholders and discuss different types of 

solution models. Chapter 4 gives an overview of different solution designs and answers 

whether or not a solution is suitable for Philips. We decide on solution models that we want 

to investigate in this chapter. 

Solutions phase: 

5. What are the expected costs and impacts of each solution / intervention on the customer 

service levels? What set of solutions / interventions should Philips implement? 

In order to generate results, we first develop a simulation model in Chapter 5. Then in Chapter 

6, we report the costs and improvement in customer service level of each solution. With this 

information, we evaluate whether a solution should be implemented or not. The 

implementation of the solution is not be researched due to time limitations. 

1.6 Scope 
For this research, the following scope is defined: 

 The research will be done in the case study business. 

 The data used for this research will be limited to the data from the last year, January 2015 until 

August 2016.  

 The Regional Distribution Centers (RDCs) have their own team working on the planning. 

Therefore the forecasts and lead-times between the RDC and the customer will be taken as 

input. 

 The analysis of the forecasts and forecast accuracy will not be done in this research since the 

supply chain should be able to react fast to forecast changes. 

 The research will only focus on CSL failures due to availability reasons at the RDC, like 

unavailability of a product due to production, transportation or forecast issues. 

1.7 Research Approach 
In Chapter 1 we have described the background and defined the main objective of the research and 
the corresponding research questions. The main goal of this research is to find ways to improve the 
customer service level of the case study business of Philips. 
 
In Chapter 2, we give an overview of the current supply chain of the case study business. We define 
our scope to be CSL OTTR failures due to unavailability of products. We gather data to find the product 
groups which are the main drivers for low CSL OTTR and their measured root causes. In Chapter 3, we 
perform a literature study about which factors influence the customer service level and what types of 
solutions are known to improve the customer service level. After the literature study, we talk to 
stakeholders to discuss which of the solutions that are described in literature are suitable in practice 
and for this type of research in Chapter 4. 
 
To model our solutions and generate results, we use discrete-event simulation described in (Law, 
2007). We develop a simulation model in Chapter 5. In Chapter 6, we design our experiments and state 
the results. We compare the costs and improvement in service level of each solution and give advice 
on which solution Philips should implement. Finally, in Chapter 7, we list further recommendations and 
our overall conclusions of this research.  
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2 Context analysis 
The first part of the research has the aim to gather all information needed for this research to be able 
to find the core root causes to the problem. To answer sub-question 1, the supply chain structure will 
be described in further detail to gain a better understanding of the processes inside Philips. In the 
second part of this section, the customer service level of different product groups will be evaluated in 
order to answer sub-question 2. This will be the basis to make a decision on which problem to tackle. 
 

2.1 The supply chain 
The supply chain of Philips is quite big and complex due to the vast amount of suppliers, factories, 
markets and products which are spread out globally. This chapter will give a general overview of the 
order flow and the physical product flow.  
 

2.1.1 The products 
The products are divided into different groups on different levels. The highest level is the Material 
Article Group (MAG), which is the most aggregated level. The MAG consist of multiple Article Groups 
(AGs). One step down in the hierarchy is the Product Article Group. This is a code which gives 
information about the kind of product and information on the factory it comes from and is only used 
by the factories. The next level is a so called 12NC code which contains all specific information of the 
product that is needed for production, e.g. color, size, type and country sold in. 
 

2.1.2 The customer 
The customers of Philips are retailers like e.g. Amazon or distributors, who sell to retailers. The retailers 
and distributors are not a part of Philips. They are selling the final product to the consumer. 
 
Philips’ customers are spread all over the world and therefore split up into different markets. Philips 
has several Commercial Organizations (COs), which are responsible for customer orders from one or 
several specific countries. For example, one CO is responsible for the market DACH, which includes 
customers from the countries Germany, Austria and Switzerland.  
 

2.1.3 Order process 
The demand planners at the COs forecast the total volumes of the customer orders. They are in close 
contact with their customers and have information about special discounts or promotions. Forecasts 
of monthly sales volumes are made for the next 12 months and need to be updated weekly. The 6-12 
months forecasts are needed for strategy planning and making strategic decisions on, for example, 
capacity. The 3-6 months forecasts include information on new product introductions or on products 
which are phasing out. For the next 0-3 months, a weekly volume forecast is required for the 
production. In these three months, there is a frozen window in which the production planning is fixed. 
Therefore, forecast changes during that frozen period cannot be taken into account in the production 
planning anymore. However, most changes are made in the frozen windows, which can lead to stock-
outs in the warehouses and therefore a lower customer service level. When a demand planner needs 
more products in a week of the frozen time window, then the factories can deliver this earliest in the 
first week after the frozen window. However, if there is extra capacity left, then the factories can 
deliver earlier or airfreight can be used to shorten the delivery time. 
The forecast that is created by the demand planner is referred to by the unconstrained forecast within 
Philips. It is the forecasted demand of the markets without any capacity restrictions. For this forecast, 
a statistical method is used to calculate a baseline for the forecast. This baseline is then evaluated and 
sometimes changed by the demand planner based on experience and additional information like 
promotions. The supply planners at the SCs get the so called unconstrained forecast of all COs. 
Together with the factory, either one of the in-house factories or one of the suppliers or both, a 
production schedule is made. Due to capacity restrictions, the factories cannot always supply the 
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forecasted quantities. Then the capacity is allocated using allocation rules. After that step, a confirmed 
supply planning is sent out to the demand planners. The quantity that the factory confirmed to deliver 
is referred to by the constrained forecast within Philips. The raw materials, which are necessary for the 
in-house factories, are also ordered at suppliers by the responsible person of the factory.  
 

2.1.4 Physical product flow 
The products are produced at one of the in-house factories or at the suppliers. The finished goods are 
delivered to the warehouses of the COs, which are called Regional Distribution Centers (RDCs). From 
the RDCs, the products are delivered to distributors and the distributors send the products further to 
the retailers or directly to the consumer, see Figure 2.1. In some cases, finished goods will be sent 
directly to the distributor and not through the RDC or the finished goods will be sent directly from the 
RDC to a retailer, see Appendix A.1. The transportation is done by ship, train, truck or air freight 
depending on the urgency and the location. Each CO is linked to one RDC. In Europe, there are three 
RDCs, the 3DCs, which store products for different European countries. In that way, if one country has 
a shortage, the products can be re-allocated to another country taking into consideration packaging 
and language requirements. Other countries around the world have, with some exceptions, one RDC 
per country. Sometimes an RDC can also have a packaging function, which means that finished goods 
are combined and are sold as a set of products. These sets can be unique per country. Since the RDCs, 
factories and customers are spread all over the world, the replenishment lead times and the customer 
lead times vary for different products and different markets. 
 

 
Figure 2.1 Supply chain structure 

 

2.1.5 Inventories 
Philips divides inventories into commercial inventory and industrial inventory. Commercial inventory 
is the inventory of finished goods at the RDC. Markets are responsible for holding the right amount of 
stock. High inventory levels can lead to high inventory holding costs and have as a risk that the 
inventory does not get consumed. On the other hand, if inventory is too low there is a risk that Philips 
cannot deliver the right products to its customers and thereby decreases customer service levels. For 
every product there is a certain level of safety stock, which differs depending on the size of the product, 
the desired service level and the demand for the product.  
 
Industrial inventory consists of all component and key module inventory in the supply chain before it 
is a market specific finished good. The BG is responsible for handling the industrial inventories. The 
availability of components influences whether factories can manufacture the finished good, which is 
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ordered by the CO in the market. For this inventory, there is the same trade-off between inventory 
costs and availability.   
 

2.2 Customer service level  
Philips reviews its CSL OTTR on a weekly and monthly basis. Every week the CSL OTTR is reported for 
the current week and compared to the performance of the weeks before. At the end of the month, 
the performance of the whole month is compared to previous months. Also the CSL OTTR YTD (yield 
to date) is reported, which is the average CSL OTTR of all weeks of the year. The goal is to reach a CSL 
OTTR YTD of 95% by 2020. At the start of this project (week 20 of 2016), the CSL OTTR YTD of the case 
study business is 89%. So the CSL OTTR needs to improve by 6% within the next 3 years to reach to 
target of 95% for that business.  
 
The CSL OTTR failures are categorized in six buckets; customer, availability, sales office, warehouse, 
distribution and other. Due to CSL OTTR reports of the Customer Collaboration Team of Philips, 78% 
of all CSL OTTR failures are assigned to the availability bucket. Since this is the biggest bucket and due 
to the responsibilities of the supply chain management team and the business group, the focus of this 
research will be limited on how to decrease the amount of hits, which fall into the availability bucket. 
For the rest of this research, it is assumed that the other the buckets will not change. In the following, 
we call the CSL OTTR YTD for product availability at the RDC CSL-availability YTD. 
 
The CSL-availability YTD at the start of this research (2016 week 20) of the case study business is 91%. 
Due to the calculation of the CSL-availability, if the CSL-availability score is increased with 1%, the total 
CSL OTTR will increase also with 1% assuming that the other buckets do not change. Since the current 
CSL OTTR YTD of the case study business is 89%, the CSL-availability YTD needs to increase by 6% to 
reach the goal of a CSL OTTR YTD of 95%. Therefore, the target for the CSL-availability YTD is 97%. 
 

2.2.1 The availability bucket – root causes 
Inside the CSL-availability bucket, there are three main root cause categories namely production, 
mainstream and forecast and other CO related issues. Every availability hit is categorized in one of the 
three root causes. We first explain the meaning of the three categories and then quantify how many 
failures fall in each category in Table 2.1. A hit can be identified as either production or mainstream 
and if it does not fit in one of these root causes, it automatically gets the forecast and other CO related 
issues root cause assigned. When a hit’s root cause is production, then there are any kind of production 
issues like capacity shortage, quality issues or machine downtime. The mainstream root cause is about 
all kinds of transportation issues from the factory to the RDC, e.g. traffic delays or carrier capacity 
issues. Finally the forecast and other CO related issues root cause is about everything which does not 
fit to the production or mainstream root cause and relates to a low forecast accuracy of the markets. 
Root causes for this category can be e.g. long lead times to the markets or customer collaboration 
issues. Other CO related issues are for example low safety stock settings or selling new products to the 
customer which is not in the warehouse yet. Due to one of the three previous reasons, the requested 
product is not available at the RDC and therefore the CSL OTTR failure is categorized into the CSL-
availability bucket. For a more detailed root cause analysis, see Appendix A.2. 
 
To be able to measure the CSL OTTR availability, all order lines requested by the customer and all 
orders lines that caused an availability hit are gathered in a database and linked to the specific root 
cause (production, mainstream or forecast and other CO related issues). Every order can be linked to 
a certain business, market, supply center and product. Also the order quantities and the quantities 
that caused the hit are stored in the database. With this information, the CSL OTTR availability score 
for each product, market, business, supply center and root cause can be calculated. Philips reports the 
results in a weekly CSL-availability dashboard. In the dashboard, the scores can be evaluated on 
different levels. For example a product can be reviewed on Main Article Group (MAG) or Article Group 
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(AG) level down to the specific product. Markets can be reviewed per region, cluster or specific 
country. This gives the business the possibility to analyze which product groups or products have the 
biggest impact on CSL in what market and from which supply center they are ordered. The impact of a 
specific product can be calculated through dividing the amount of hits of that product by the total 
amount of orders of all products. 
 
Table 2.1 shows results of our root cause analysis given the data from the CSL-availability dashboard 
from 2015 and the first half of 2016. 84% of the availability hits of the case study business of 2016 have 
forecast and other CO related issues as a root cause. In 2015 it was 74%. The rest of the hits in 2016 is 
split evenly through production and mainstream. In 2016, of the 9% of the order lines with a CSL-
availability hit, 7,5% were due to forecasting and other CO related issues and only 1,4% are due to 
production and mainstream issues. 
 
Table 2.1 Root cause analysis 

 2015  2016  

Root cause % of hits Impact on CSL-
availability 

% of hits Impact on CSL-
availability 

Forecasting & Other CO 
related Issues 

74% 7,70% 84% 7,50% 

Mainstream delay issue 19% 1,90% 8% 0,70% 

Production issue 8% 0,80% 8% 0,70% 

Total  10,40%  8,90% 

CSL-availability  89,60%  91,10% 

 

2.2.2 Product group focus 
In this section, the CSL OTTR of different product groups is analyzed to decide on which product groups 
the focus should lie during this research. The data used for this research is from the year 2015 and the 
first half of 2016. The years 2015 and 2016 will be compared to analyze developments and distinguish 
current issues from structural issues. Stakeholders are also asked to evaluate if possible differences in 
product group performance are caused by incidental issues. 
 
Recall that the customer service level is calculated by dividing the amount of all OTIF order lines by the 
total order lines during a period. Therefore every hit has the same impact on the CSL OTTR, 
independent of the quantity ordered or the size or importance of the customer. If the number of hits 
is reduced, then the CSL OTTR improves and therefore the goal is to minimize the number of hits. Also 
it holds that the more hits, the more impact on the CSL OTTR. Logically, a product group with a big 
amount of order lines has a higher chance to have a lot of impact than a product group with a small 
amount of orders. If we look at the amount of hits within all orders of a specific product group, then a 
product group with a big amount of order lines can perform better than a product group with a small 
amount of order lines, but still have a greater impact on the total CSL availability OTTR, when the 
number of hits is bigger.  
 
When the focus lies on a small product group which performs badly on its own, a reduction of the 
amount of hits might be easy to achieve. However, it will have a relatively small impact on the CSL 
OTTR, because it has a relatively small number of hits. Product groups with a really small amount of 
hits or no hits can be left out, because they have almost no impact on the CSL OTTR. Therefore it would 
be preferred to look at a big product group in terms of order lines with a bad performance on its own. 
If a big product group performs really well on its own compared to other product groups, still a big 
improvement on the CSL OTTR can be achieved, but it will probably be harder to really improve the 
performance. So, a balance needs to be found between the impact of the product group and the 
possibility of improvement.  
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To find the right product group to focus on, first the CSL-availability data from the Philips CSL-
availability report was analyzed for different AGs. Table 2.2 shows the results of this analysis. The 
column “Impact on total CSL” shows with how much percentage the CSL OTTR of the case study 
business rises if the CSL availability of that AG improves to 100%. 
Then we interviewed the S&OP manager and the corresponding Supply Planners, see Appendix A.3, to 
find out the root causes for low CSL performance. In that way, low performance due to current issues, 
like reduced safety stock due to maintenance in the factory or new product introductions, could be 
filtered out. The focus can then be on AG’s with a structural issue and a high impact on the CSL 
availability. 
 
Table 2.2 Impact on CSL per product group, sorted on highest to lowest impact on the total CSL in 2016 

AG  2015 2016  

 % of all 
order lines 

Impact on 
tot. CSL 

CSL-
availability 

Impact on 
tot. CSL 

CSL-
availability 

Comments 

A 21% 1,59% 92% 1,51% 93% Structural and biggest 
impact 

C 7% 0,86% 88% 1,11% 83% Temporary problem in 
production 

D 13% 1,20% 91% 1,09% 92%  

E 21% 1,76% 92% 1,08% 95%  

F 11% 1,76% 86% 0,88% 92% Supplier issue in 2015, 
now solved 

G 3% 0,34% 86% 0,62% 76% Temporary problem 
with supplier 

H 4% 0,39% 91% 0,58% 86% Temporary problem in 
production 

B 4% 0,88% 78% 0,53% 87% Structural 

I 1% 0,12% 87% 0,22% 85% Temporary problem 
with supplier 

J 3% 0,22% 92% 0,21% 93%  

K 2% 0,24% 89% 0,20% 91%  

L 1% 0,11% 93% 0,17% 88% Temporary problem in 
production 

M 1% 0,14% 86% 0,17% 84% Structural 

N 2% 0,24% 91% 0,15% 94%  

 
For this research, we choose to focus on product group A from the in-house production site A and 
product group B which is produced at a supplier. 
 
Product group A accounts for 21% of all order lines. It has a CSL-availability of 92% in 2015, which leads 
to a reduction of the total CSL-availability of the case study business of 1,6%, see Table 2.2. Although 
the CSL-availability is already reasonably high, the impact on the overall CSL is the biggest. Therefore 
a small improvement for this product group can result in a big improvement for the overall CSL.  
 
The products of product group A are produced in an in-house factory in Europe and are sold globally. 
The order process for the products is visualized in Figure 2.2. In week 1, the markets fill in the forecasts 
on Monday into a planning system. The demand planners make a high level production plan manually 
on Wednesday taking into consideration the production capacity and the prioritization wishes of the 
markets. The factory planner will confirm or adjust the plan on Thursday and the confirmed plan will 
be sent out to the markets on Friday. So the total planning lead time is one week. The next week 
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products will be produced and are planned to be ready at the latest Saturday at 6:00 am. So in general 
the production lead time is one week, however prioritization is possible to shorten the lead time. 
Products which are produced in the beginning of the week can be shipped earlier and therefore arrive 
earlier at the RDC. As soon as the products are ready, they are booked into the Warehouse at the 
factory and can be shipped as soon as there is a full truck load available for shipping. The distribution 
time to the countries varies depending on the distance and shipping method. 
 

Planning phase:
Forecast vs. 

production capacity
Production Shipping to RDC

Weekly order based 
on Forecast

Arrival at RDC

1 week 1 week 1-7 weeks

 
Figure 2.2 Product group A order lead time 

The total lead time from the point of placing an order until the order arrives thus varies from 3 to 9 
weeks depending on the location of the market. 
 
Product group B accounts for 4% of all order lines. It had a CSL-availability of 78% in 2015, which lead 
to a reduction of the total CSL-availability of the case study business of 0,88%, see Table 2.2. The impact 
on the overall CSL is lower than that of product group A, but the CSL-availability is much lower, which 
leaves much room for improvement. Therefore we expect the effect on the CSL to be quite high.  
 
The products of product group B are ordered at a supplier in Asia and shipped to Europe. Therefore 
the scope for this project will be all the products, which are sent to Europe. The order process of 
product group B is similar to that of product group A. The order confirmation takes one week, the 
production takes three weeks and the delivery of the products from Asia to Europe takes five to six 
weeks, see Figure 2.3. Therefore the total lead time is nine weeks. 
 

Planning phase:
Forecast vs. 

production capacity
Production Shipping to RDC

Weekly order based 
on Forecast

Arrival at RDC

1 week 3 weeks 5-6 weeks

 
Figure 2.3 Product group B order lead time 

 

2.2.3 Root causes product groups 
The following table shows the root cause split for product groups A and B. We can see that also within 

these product groups, the biggest root cause for a CSL-availability hit are forecast errors. 

  Root cause split  

AG CSL-availability 2016 Forecasting & Other Mainstream Production 

A 93% 6% 1% 0% 

B 87% 10% 2% 1% 

TOTAL 91% 7% 1% 1% 

 
Since forecasting is the biggest issue for the case study business and since it has the biggest impact on 

the customer service level, the focus of this research lies on understanding more in detail the origin of 
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this root cause and finding a way to resolve these issues. To understand better why a hit occurs, we 

brainstorm with several stakeholders listed in Appendix A.3 amongst which the Supply Chain Manager 

Customer Collaboration about potential root causes for forecasting errors, transport problems and 

production issues, see Appendix A.2. From that, we can conclude that demand variability is one of the 

main factors that influence the forecast accuracy. Note, that we excluded improving forecast methods 

from our scope in Chapter 1.6. We are interested in understanding better how demand variability 

influences the customer service level and in how the customer service level can be improved. 

Therefore, we conduct a literature study in Chapter 3. 

2.3 Conclusions 
In this chapter, we gave an overview of the current supply chain, described how the customer service 
level is measured at Philips and analyzed the main drivers and root causes for low customer service 
level. 
 
Due to CSL OTTR reports of the Customer Collaboration Team of Philips, 78% of all CSL OTTR failures 
are assigned to the availability bucket. We focus on improving product availability due to this high 
percentage and due to the responsibilities of the supply chain management team. The CSL-availability 
YTD, which is the CSL OTTR YTD of product availability, at the start of this research (2016 week 20) of 
the case study business is 91%. 
 
Most of the CSL-availability hits, 84% in the first half of 2016 and 74% in 2015, are due to forecast 
errors. Due to the responsibilities of the supply chain management team, we do not want to research 
the effect of different forecasting methods, but we want to find ways of being more independent of 
bad forecasts. 
 
The focus of this research will lie on product group A, because of its big impact on the CSL-availability. 
Although, it has a quite high CSL-availability YTD of 93%, small improvements in this product group 
have a big impact, up to 1,5%, on the overall CSL-availability of the case study business. 
The focus of this research will also lie on product group B, because of its structurally low CSL-availability 
YTD of 87%. This CSL-availability YTD leaves much room for improvement.  
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3 Literature study: Customer service level improvement 
Before choosing a strategy on improving the service level, a deep understanding of the customer 
service level and the factors which influence the customer service level is needed. This chapter 
focusses on answering sub-questions 3 and 4. First, a literature study is done to gain insight in factors 
which influence the customer service level and their relation, see sections 3.1 and 3.2. Then, we choose 
a focus area for this research and study solution methods which are found in literature, see section 
3.3. 
 

3.1 Customer service level in inventory management 
The customer service level is a measurement which is used in companies to measure their 
performance. Performance measurements which are customer service related are “stock service level, 
delivery precision, delivery reliability, delivery lead time and flexibility” (Jonsson & Mattsson, 2009, p. 
47). The CSL-availability measure, used by Philips, is a stock service level, which measures the amount 
of order lines which can be delivered in full directly from stock. In literature this sort of measure is 
often called order fill rate or line item fill rate. Larsen & Thorstenson (2008) describe the order fill rate 
“as the fraction of complete orders that can be filled directly from inventory” (p. 798). Therefore the 
problem of improving the customer service level can be seen as an inventory management problem. 
 

3.1.1 Characteristics of the order fill rate 
Let us again look at the formula of the order line fill rate to discuss the characteristics of the 
performance measure: 
 

𝐶𝑆𝐿 𝑂𝑇𝑇𝑅% = 
∑𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑂𝑇&𝐼𝐹

∑𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
 

 
Imagine a set of order lines with some having a great amount of products on order and some only a 
small amount of products on order. To reach a higher customer service level, a company should then 
prioritize the order lines with a small amount of products on order to minimize the amount of failures 
due to unavailability of products. Logically the customer service level is lower when prioritizing the 
other way around. In practice, customers with big order volumes have a higher chance to have a higher 
prioritization, because they also drive sales. To reach a trade-off between customer service level and 
sales, companies can split the order of a big customer to prevent too many order line hits. 
Moreover when delivering to several markets, replenishment decisions in situations of shortages at 
the production site influence the total customer service level. The amount of order lines and volumes 
per order line can differ between markets. Therefore prioritizing a market with customers who 
frequently order small order lines opposite to markets with customers who order a large bulk of 
products in one order line on a monthly basis can lead to a higher customer service level, because of 
simply fulfilling more small order lines instead of fulfilling bigger order lines. We will evaluate in the 
discussion in Chapter 7 what kind of effect this characteristic can have on the company. 
 

3.1.2 Demand variability in relation to the customer service level 
Many researchers ( (Gupta & Maranas, 2003); (Jeffery, Butler, & Malone, 2008); (Towill, 1996)) state 
that a big challenge for companies nowadays is to achieve a high customer service level at the lowest 
cost possible, because customers expect highly customized products and fast delivery times. 
Companies need to react quickly and flexible to changes in demand to avoid excess stock or 
unavailability of stock. 
 
Variability in demand is described a lot in literature. Lee et al. (1997) describe that order variation 
throughout the supply chain, also called the Bullwhip effect, can lead to “excessive inventory, poor 
customer service due to unavailable products or long backlogs, uncertain production planning (i.e., 



21 
 

excessive revisions), and high costs for corrections, such as for expedited shipments and overtime” (p. 
93). The authors suggest fighting the bullwhip effect and therefore improving inventory availability 
through “information sharing, channel alignment, and operational efficiency” (Lee, Padmanabhan, & 
Whang, 1997, p. 98). 
 
Jeffery, Butler & Malone (2008) found that “the [minimum cost volume fill rate] service level decreases 
as forecast error and demand variability increase” (p. 231). “The higher the demand uncertainty, the 
more difficult it is to generate accurate forecasts” (Jonsson & Mattsson, 2009, p. 105). So high demand 
variability leads to inaccurate forecasts and can therefore lead to a poor customer service due to 
unavailability of stock (Beutel & Minner, 2012). 
 

3.2 Coping with demand variability 
In this section, we evaluate methods from literature to cope with demand uncertainty and decide 
which methods to look at regarding the scope of the case study. 
 

3.2.1 Forecast accuracy 
One way to cope with demand variability is to invest in better forecast accuracy (Li, Erlebacher, & 
Kropp, 1997). In this research, we will not focus on finding a better forecasting method, but assume 
the current method as given and will use the forecast data as input. A way to reach a better forecast 
accuracy is by looking at the length of the forecast horizon.  
 

The longer the horizon, meaning the farther in the future that must be forecast, the more 
difficult it will be to avoid forecast errors. By reducing throughput times to allow a shorter 
forecast horizon, measures to cut throughput times in material flows are effective methods of 
improving potential forecast precision. (Jonsson & Mattsson, 2009, p. 111) 
 

Towill (1996) states that researchers have found as a rule of thumb that “reducing the lead time by 50 
per cent will reduce the forecast error by 50 per cent” (p. 17). These statements let us assume that 
lead time reduction will have a positive effect on the forecast accuracy and therefore improve the 
customer service level. 
 

3.2.2 Safety Stocks 
To buffer against demand uncertainty and forecast errors and to reach a certain target service level, 
companies add safety stocks to their inventories. Beutel and Minner (2012) describe that “inaccuracy 
of forecasts leads to overstocks and respective markdowns or shortages and unsatisfied customers” 
(p. 637). The authors state that safety stocks are used to secure against forecast errors.  
 
A standard way of calculating the size of the safety stock for a periodic review system with an order 
size of a multiple of the fixed order quantity is described in (Beutel & Minner, 2012): 

 

𝑆𝑆 = 𝑘 ∙  √𝐿𝑇 ∙  𝜎𝑑
2 +  𝜇𝑑

2 ∙  𝜎𝐿𝑇
2      

 
where SS is the safety stock in volume, k is the service level factor, LT is the replenishment lead time 
plus review period, 𝜎𝑑 is the standard deviation of demand, 𝜇𝑑 is the mean demand per period and 
𝜎𝐿𝑇 is the standard deviation of lead time. From the method, we can see that if we keep all other 
factors constant, the service level will increase when the lead time decreases. Because the forecast 
error will decrease with shorter lead times, the effect on the service level should in theory be even 
bigger.  
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3.2.3 Lead time  
In the last two sections, we have seen that lead time has an effect on forecast accuracy and safety 
stocks and therefore also on the customer service level. 
Ouyang & Wu (1997) state the importance of lead time reduction in inventory management. “By 
shortening the lead time, we can lower the safety stock, reduce the loss caused by stock-out, improve 
the service level to the customer, and increase the competitive ability in business” (p. 875). The authors 
describe the lead time as consisting of “order preparation, order transit, supplier lead time, delivery 
time, and setup time” (Ouyang & Wu, 1997, p. 875). 
 
Lee et al. (1997) describe lead time reduction or just-in-time replenishment as a solution to counteract 
the bullwhip effect. “With long lead times, it is not uncommon to have weeks of safety stocks. The 
result is that the fluctuations in the order quantities over time can be much greater than those in the 
demand data” (Lee, Padmanabhan, & Whang, 1997, p. 95). Therefore reducing the lead time will 
reduce the bullwhip effect and therefore increase the customer service level. 
 
Ciancimino et al. (2012) study the effect of different lead time settings on the average fill rate for a 
synchronized supply chain and conclude that long lead times affect the customer service level. The 
authors suggest to raise the safety stocks to maintain a high service level when having long lead times, 
which can lead to higher inventory holding costs, but also refer to studies, which have proven the 
benefits of lead time reduction (Ciancimino, Cannella, Bruccoleri, & Framinan, 2012). 
 
Hopp et al. (1990) list some benefits of lead time reduction from a sales and production perspective. 
With reduced lead time, companies cannot only deliver faster and reduce inventory, but also reduce 
the need for a distant forecast (Hopp, Spearman, & Woodruff, 1990). 
 

3.2.4 Product variants 
Customization is one of the challenges companies have to cope with nowadays. From a marketing 
point of view, a wide range of products can raise the overall market share, because a wide group of 
customer segments can be targeted (Wan, Evers, & Dresner, 2012). However, “marketing research has 
also suggested that ‘excess’ product variety may lead to selection confusion for customers, thus 
reducing the marginal benefits from variety” (Wan, Evers, & Dresner, 2012, p. 316). The authors Wan 
et al. (2012) also state the difficulty of product variety for operations management especially inventory 
management and operational performance. Stock-outs can result from high product variety and 
therefore cause a poor customer service level. 
 
Lu, Efstathiou & del Valle Lehne (2006) find that to reach a high customer service level, companies can 
increase their inventories or reduce their number of SKUs. This will be a trade-off between lost sales 
and inventory holding costs. The authors also suggest to “maintain a responsive lean and dynamic 
inventory” (Lu, Efststhiou, & del Valle Lehne, 2006, p. 249), by phasing out SKUs that are not popular. 
 
The aggregation level of the products to forecast has also an influence on the forecast accuracy. 
“Forecasting single products is considerably more difficult than forecasting groups of products” 
(Jonsson & Mattsson, 2009, p. 112). From this, it can be concluded that less product variants lead to a 
better forecast accuracy and therefore to a better customer service level. 
 
Thonemann & Bradley (2002) state that a “[h]igh product variety decreases supply-chain performance 
measured in terms of replenishment lead time and cost” (p. 549). According to the authors, there is a 
trade-off between the product variety a company wants to offer their customers and the costs of setup 
times and higher inventory levels due to longer lead times and different products (Thonemann & 
Bradley, 2002). Postponement strategies can therefore help reducing lead time to the customer, by 
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placing the customer order decoupling point later in the supply chain, which also reduces the necessity 
of long term forecasts. 
 

3.2.5 The Customer Order Decoupling Point and late customization 
In the previous section, we addressed the challenge of mass customization and the need for companies 
to act rapidly and flexibly to demand changes. The customer order decoupling point is the point in the 
supply chain where products are pull driven by order of the costumers. Before that point products are 
pushed through the chain. Lu, Efstathiou & del Valle Lehne (2006) find that placing the customer order 
decoupling point late in the supply chain, by having (semi-)finished goods in stock, helps serving the 
customer within a short time and helps dealing with mass customization, but as a trade-off can 
increase stock holding costs because of semi-finished good inventory. 
 
Brown et al. (2002) state that manufacturers must hold high levels of inventories due to uncertain 
demand and long lead times in order to guarantee a certain customer service level, which is costly and 
risky. In order to increase the service level, or reduce inventories, the authors suggest postponement 
strategies, also called late customization, where “inventory is held at an intermediate point in a 
generic, non-differentiated form and is only differentiated when demand is better known” (Brown, 
Ettl, Lin, Petrakian, & Yao, 2002, p. 284). Brown, Lee & Petrakian (2000) state that “delaying the point 
of product differentiation can be an effective technique to cut supply-chain costs and improve 
customer service” (p. 65). 
 

3.2.6 Information sharing 
Lee et al. (1997) describe that the bullwhip effect, which can cause poor customer service levels, can 
be reduced through information sharing. The authors suggest to “make demand data at a downstream 
site available to the upstream site” (Lee, Padmanabhan, & Whang, 1997, p. 98). Then both sites have 
the same information to update their forecasts. 
 
Ciancimino et al. (2012) describe information sharing or supply chain collaboration as “the alignment 
of planning, forecasting and replenishment systems among partners” (p. 49). In their research, the 
authors conclude that “synchronisation eliminates the bullwhip effect and creates stability in 
inventories under different parameter settings” (Ciancimino, Cannella, Bruccoleri, & Framinan, 2012, 
p. 50).  
 
Zhao et al. (2002) study the impact of information sharing and the co-ordination of the replenishment 
of retailers under demand uncertainty on the supply chain performance. They find that information 
sharing and order co-ordination have a positive impact on costs and customer service level under all 
demand patterns (Zhao, Xie, & Zhang, 2002).  
 

3.2.7 Order batching 
Lee et al. (1997) describe order batching as one of the four major causes for the bullwhip effect. The 
authors describe that order batching results in higher fluctuations of order sizes upstream the supply 
chain (Lee, Padmanabhan, & Whang, 1997). However, there are common reasons for companies to 
order in batches, such as the costs for processing an order, which can increase exponentially when 
ordering frequently instead of periodically or transportation costs which are optimal for full truck 
loads, which is why suppliers want to supply batches at the size of a full truck load (Lee, Padmanabhan, 
& Whang, 1997). Lee et al. (1997) suggest that “companies need to devise strategies that lead to 
smaller batches or more frequent resupply” (p. 100). 
 
Also Moyaux et al. (2007) also suggest that a lot-for-lot type ordering policy can eliminate the bullwhip 
effect. On the other hand, the authors also emphasize that “many reasons, such as inventory 
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management, lot-sizing, and market, supply or operation uncertainties, motivate companies not to use 
this strategy” (Moyaux, Chaib-draa, & D’Amours, 2007, p. 396). 
 

3.2.8 Echelon-based inventory control 
Van der Heijden & Diks (1999) describe that in a local inventory control system, where inventories are 
controlled locally, if no demand or inventory information is shared between locations, a bullwhip effect 
may be caused and high safety stocks are required to reach a high service level. An integral control 
system however, where inventories are controlled centrally and are balanced with the use of the 
concept of echelon stocks, can reach the same customer service level with much less safety stock in 
the supply chain (Van der Heijden & Diks, 1999). Also Lee et al. (1997) states that “[e]chelon inventory 
— the total inventory at its upstream and downstream sites — is key to optimal inventory control” (p. 
99) and suggests it as a way to improve operational efficiency to counteract the bullwhip effect. 
 

3.3 Methods for improving the customer service level 
After understanding the factors, which influence the customer service level, we can focus on finding 
ways for improvement. Regarding the scope of the case study business, we decide to exclude the 
opportunities in improving the forecast accuracy and the safety stock settings and instead focus on 
ways to act more flexibly and rapidly to demand changes. Options for synchronization, order batching 
and echelon-based inventory control have already been evaluated and partly implemented by the 
company. Possibilities for reducing the amount of product variants is left for further research since it 
is only relevant for one of the two studied product groups. Therefore, in this section we will focus on 
lead time reduction and late customization. 
 

3.3.1 Lead time reduction 
The replenishment lead time for the case study business is the lead time from the placement of an 
order until the arrival of the order in the RDC. This lead time consists of the order planning lead time, 
the production lead time and the transportation lead time. In this chapter, we will study ways to reduce 
those three lead times.  
 
Safety stocks buffer against uncertainty in demand during the lead time plus review period. Therefore, 
a shorter review period at the same safety stock level should lead to higher customer service levels. 
Jonsson and Mattsson (2009) state that “[t]he review interval also influences the total lead time and 
thus the reaction time for covering material requirements as they arise” (p. 213) and that more safety 
stock is required with longer periodic review intervals (Jonsson & Mattsson, 2009). Therefore, to reach 
a higher customer service level, a continuous review period would be desirable. However, with a 
periodic replenishment system “planning of new orders can be carried out for a large number of items 
together, thereby making administration more efficient” (Jonsson & Mattsson, 2009, p. 213). 
Therefore choosing the length of the interval in periodic interval is a trade-off between costs for higher 
safety stocks or lower customer service level on the one hand and efficiency and cost downstream the 
supply chain due to administrative processes, transportation and production costs on the other hand. 
 
According to Johnson (2003), the reduction of production lead time, also called manufacturing 
throughput time, reduces forecast error. The author provides a framework for reducing the production 
lead time. To reach a reduction in product lead time, he suggests to reduce:  

1) setup times or the number of setups required,  

2) processing times including scrap, rework, the number of operations needed and the time for 

the operations,  

3) move times or the number of moves, 
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4) and/or waiting times through reduction in step 1,2 and/or 3, the right batch sizing, reducing 

arrival variability of orders, reducing machine utilization, increasing available resources or 

reducing the number of queues (Johnson, 2003). 

Hopp et al. (1990) also suggest strategies to reduce the production lead time, like quality management, 
reducing the WIP, reducing the setup time, splitting batches, introducing transfer batches, maintaining 
shorter queues, smoothing the work flow and eliminating manufacturing variability.  
 
The method of transportation influences the time it takes to transport products from the supplier to 
the inventory in the warehouse. Inventory management decisions like deployment strategies, control 
policies and safety stock settings influence the choice of transportation methods (Ganeshan & 
Harrison, 2002). “[T]he best choice of mode is often found by trading-off the cost of using the particular 
mode of transport with the indirect cost of inventory associated with that mode” (Ganeshan & 
Harrison, 2002, p. 3). Air transportation is often fast, reliable and requires low safety stocks, but is also 
quite expensive. Shipping via sea is much less expensive, but requires higher safety stocks due to longer 
lead times and unreliability (Ganeshan & Harrison, 2002). Naturally, the choice of transportation mode 
also depends on the geographic locations of suppliers and warehouses, the size and frequency of the 
shipments and the desired customer service level (Ganeshan & Harrison, 2002). 
 
To find a good trade-off between long lead times of cheap transportation methods and the costs of 
faster methods, researchers suggest dual sourcing as a solution. This means that companies should 
“get the bulk of their materials from a cheaper regular supplier at a lower cost (and longer lead time) 
but turn to premium expedited channels when needed” (Veeraraghaven & Scheller-Wolf, 2008, p. 
850). 
 

3.3.2 Late customization 
Next, we discuss forms of postponement strategies, also called late customization. Brown et. al (2000) 
state that companies from several industries like semiconductor and automobile industries “have been 
able to delay the point of product differentiation, either by standardizing some components or 
processes or by moving the customization steps to downstream sites, such as distribution centers or 
retail channels” (p. 66). The authors describe product postponement as delaying the customization of 
the product through using standardized components, that can be customized at a later stage in the 
chain, when the demand for the product is more known (Brown, Lee, & Petrakian, 2000). “In process 
postponement, the firm designs the manufacturing and distribution processes so that it can delay 
product differentiation, often by moving the push-pull boundary or decoupling point toward the final 
customer” (Brown, Lee, & Petrakian, 2000, pp. 67-68). 
 
Research proves for different industries the positive effects of postponement strategies on customer 
service levels and inventory levels. Brown et. al (2002) describe the reduction of inventory levels and 
better service levels due to product and process postponement for the semiconductor firm Xilinx. 
Whitney (1993) describes a company in the automobile industry that changes the design of their 
product, which enables them to react more flexibly to demand by first producing standard parts and 
then customizing the products later in the production. Christopher (as cited in (Huanga & Li, 2008)) 
describes that advantages in postponement strategies are reduction in inventory, increased flexibility 
(because a standardized component can be used for several finished goods) and the ease of forecasting 
on a more generic level. Furthermore, we have already seen that postponement strategies help 
shorten the lead time to the final customer, which reduces the need for long term forecasts and can 
rely more on real time demand. Therefore, we find it interesting to explore options for late 
customization for the case study firm. 
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3.4 Simulation 
Simulation is a tool to analyze different settings and controls for a supply chain by generating a 
mathematical model for the real system and running experiments with different control settings in the 
model, which can be done in seconds for several years of simulation time (Axsäter, 2006). Although it 
has limitations due to making assumptions for the model and using historical data and experiences, 
simulation can give valuable insights at low cost and time compared to real world experiments 
(Axsäter, 2006). Therefore, we will use simulation as a tool for analyzing different settings for lead 
times and inventory control to gain more insight in what effect those changes can have on the 
customer service level. 
 

3.5 Conclusions 
In this chapter, we have performed a literature study to find several factors that influence the customer 
service level. First of all, due to the logic of the calculation, to reach a higher order fill rate, a company 
should then prioritize the order lines with a small number of products. However, sales and profitability 
targets give a higher prioritization to customers who order larger amounts.  
 
High uncertainty in demand combined with the customers’ expectation of fast delivery lead times and 
highly customized products is a big challenge for companies nowadays. Often this uncertainty leads to 
order variation throughout the supply chain and the bullwhip effect. There are several ways to cope 
with demand uncertainty, like improving forecast accuracy, increasing safety stocks or reducing the 
number of product variants. Reducing the lead time and review period while keeping the safety stock 
at the same level will increase the customer service level. 
 
Regarding the scope of the case study business, we decide to exclude the opportunities in improving 
the forecast accuracy and the safety stock settings and instead focus on ways to act more flexibly and 
rapidly to demand changes. Options for synchronization, order batching and echelon-based inventory 
control have already been evaluated and partly implemented by the company. Possibilities for 
reducing the number of product variants is left for further research since it is only relevant for one of 
the two studied product groups. Therefore, we will focus on lead time reduction and late customization 
and address simulation as a tool to measure the effect of a certain setting on the customer service 
level. 
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4 Solution design 
In this chapter, we evaluate which types of solutions are most suitable to research for the case study 
business at Philips. We develop solutions for lead time reduction and late customization through ideas 
we got from literature or ideas from stakeholders at Philips. For each idea, we evaluate the relevance, 
the ease of implementation and the expected impact on the CSL-availability through stakeholder 
discussions. Then we choose a few types of solutions for each product group to investigate in more 
detail. In this chapter, we thus answer research question 4. 
 

4.1 Lead time reduction 
The transportation lead time is in most of the cases the biggest contributor to the total replenishment 
lead time, up to seven weeks for product group A and six weeks for product group B. Therefore, the 
biggest opportunity lies in reducing the transportation lead times. As discussed in the previous chapter, 
factors which influence the transportation lead time are the mode of transportation and the distance 
of the factory to the warehouse. Let us discuss opportunities in reduction of those factors for product 
group A first and for product group B second. 
 

4.1.1 Transportation lead time reduction product group A 
Air Freight North America 
The products for North America are currently transported by road and sea. Only for urgent matters Air 
Freight is used. Air Freight reduces the transportation time drastically from up to seven weeks to one 
week. The actual transportation time via air is one day, but due to administrative processes, the actual 
lead time is one week. Therefore it can have a great positive effect on the CSL-availability to use air 
instead of sea transportation. Air Freight is currently only used for firefighting due to the high 
transportation costs. However, it is unclear if an improvement in the CSL-availability will outweigh the 
added costs for Air Freight. Another possibility would be to ship most of the products by sea and if the 
inventory level runs low to also transport a certain amount of products by air to reduce the chance of 
a stock out, which is called dual sourcing. We will investigate this solution to see if the CSL-availability 
improvement can outweigh the higher costs for transportation. Since we reduce the lead time with 
this solution, the inventory in the pipeline will decrease and therefore we expect to save inventory 
holding costs. Implementing this solution would not require many changes. Air freight is used already 
for firefighting and therefore using it more often would only require the right training of the shipping 
team and probably adjustments in the replenishment lead time, which will have to be communicated 
to the responsible planners. We will therefore neglect any initial costs for implementing the solution. 
 
Production North America 
All products of product group A are currently produced in one factory in Europe. Therefore the distance 
to e.g. America is really long. A way to shorten the transportation lead time to those far away countries 
is to open another factory nearby that country. This is of course only suitable for countries with a high 
demand. Since Philips is a global company and therefore has its factories spread out globally, it could 
be interesting to research the impact of adding an extra production line for this product group in one 
of the current factories. We therefore evaluate the effect of lead time reduction of this solution on the 
customer service level. 
 
Factory warehouse: Supply Center for Europe 
An idea for Europe could be to use the factory warehouse, which is currently used as Supply Center for 
the country where the factory is placed, also as a Supply Center for whole Europe. However this is not 
desirable since most customers expect very short delivery times for their orders. It could be an idea to 
transport big orders, which are known far enough in advance, directly to the customer from the factory 
and not through the RDC of the country. Due to time limitations, we decide to exclude this idea from 
our analysis and suggest Philips to research this further.  
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Combined shipping Europe and sharing production plan with shipping department 
After production, the finished goods arrive at the factory warehouse. They are not shipped directly, 
except for a few countries which have daily shipping. Finished goods are first stored in the warehouse. 
The shipping planner waits until a certain amount of goods arrives from the production facility and 
then plans a shipment for the next day. 24 hours are reserved for picking and packing. Because the 
factory also produces other products, truck loads combine different types of finished goods and drive 
them to one specific warehouse. For Europe, on average two or three trucks are sent out weekly. To 
reduce the waiting time of finished goods in the factory warehouse, the shipping to the three 
warehouses in Europe could be combined. Also the waiting time of products would decrease if the 
production plan was available and followed by the factory. However, to change the process of the 
shipping, the scope should consist of the whole factory and not only one product group of the factory. 
In addition to that, the effect on the CSL-availability is expected to be very low, because we will only 
reach a lead time reduction of a few hours or maybe a day with these kinds of solutions. Therefore we 
exclude this part of the transportation process from further investigation. 
Furthermore, an idea could be to merge some warehouses into a hub. This has already been done 
recently in Europe and will therefore not be investigated further. The impact that this solution had on 
the customer service level is unfortunately not measured by Philips, since the main goal of this project 
was to reduce inventory levels. 
 

4.1.2 Transportation lead time reduction product group B 
Air Freight 
The transportation lead time is also the biggest factor of the lead time for this product. Products are 
shipped by sea from Asia to Europe. As discussed earlier, transportation by air can reduce the 
transportation lead time drastically to one week. Again, the actual lead time for air freight is only one 
day, but due to administrative processes it takes one week for the product to actually be checked in 
as available at the warehouse. We will investigate if the costs for Air Freight can be outweighed by an 
improvement in the CSL-availability.  
 
Supplier in Europe 
Another possibility could be to search for a supplier which is closer to the RDCs, i.e. a supplier in 
Europe. This solution has some implications. Since the product is produced at a supplier, Philips only 
partly owns the product design and therefore will have to develop a whole new product or buy the 
rights when switching to another supplier. Furthermore, the case study business already investigated 
the option to buy at another supplier in Europe, but no supplier could be found in Europe for that type 
of product since it is more cost effective to produce in Asia. We can still investigate the effect of lead 
time reduction on the CSL-availability, which can help for future decision making in the choosing of a 
supplier. 
 
Insourcing 
The case study business also investigated if insourcing the product could be a good investment, but 
since the product is not a core product and there is not enough expertise inside Philips for that type of 
product it would be too costly. 
 
 

4.1.3 Production and planning lead time product group A 
The lead time for production of product group A is one week at most. The length of the production 
lead time depends on the production schedule. Orders which are planned first are finished in the 
beginning of the week and orders which are planned last are finished at the end of the week. When 
placing an order, planners always assume the worst case scenario of a production lead time of one 
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week. However, priority orders can be finished faster through scheduling them in the beginning of the 
week. 
 
Throughput time 
The production is organized as a line production and the products are produced in batches. Since 
optimizing the production lead time through reducing processing times, setup times, scrap, rework, 
move times per part e.g. through automation will only reduce the total lead time with a really small 
percentage and are constantly worked on within a team at the factory, we will not investigate those 
possibilities. Also the machine reliability is already researched by an expert team and will not be 
investigated. Furthermore, possibilities for synchronization will not be investigated, since a lot has 
been implemented already. However, the information sharing between the shipping team and the 
factory could be more visible, but that would require the scope of all products of the factory, since 
truckloads of different products are combined. 
 
Lot and batch sizes 
From our literature study in section 3.2.7, we learned that reducing lot sizes for ordering can reduce 
the bullwhip effect. Furthermore, sending out orders more frequently reduces the total lead time due 
to lower waiting times before transportation. However there is a trade-off between lead time 
reduction and costs for transportation. The factory recently tried to deliver in smaller lot sizes, which 
resulted in higher transportation costs. Due to the small impact on the lead time and high costs, the 
factory decided to increase the lot sizes again to save costs and therefore we decide to not investigate 
this option.   
Reducing the batch sizes in production can also shorten the production lead time due to shorter 
waiting times. However there is also a trade-off between batch sizes and setup times. This trade-off is 
continuously evaluated and optimized by stakeholders at the factory. Therefore, and because we 
expect a small impact on the lead times, we will not investigate this decision further. 
 
Components 
Furthermore, the availability of components can have an impact on the lead time. If components are 
not available, then the orders will have to wait until the components arrive before production can 
start. Therefore the material replenishment process can influence the total lead time from placing the 
order at the factory until the arrival of the product at the warehouse. However, the amount of orders 
which could not finish production in one week due to unavailability of components are almost zero 
according to the Inventory Planner Procurement at the factory. On top of that, there have been recent 
projects helping 2nd tier suppliers to improve their flexibility and lead time. Therefore, we will not 
investigate improvement possibilities for material replenishment.  
 
Daily replenishment 
Safety stocks buffer against uncertainty in demand during the lead time plus review period. Therefore, 
a shorter review period at the same safety stock level should lead to higher customer service levels. 
The case study business currently uses a periodic replenishment method, where replenishment sizes 
are evaluated once a week. Every week on Monday, the demand planner places an order and has to 
wait one week to place a next order. Thus if new demand information comes in on Tuesday, this 
information waits one week before being able to react on. Therefore, a more frequent replenishment, 
like daily replenishment, could let the supply chain react faster to changes in demand. However, the 
factory now aggregates the demand for early production steps as much as possible and schedules 
production for one week. Daily changes to that schedule can lead to less capacity due to more 
changeovers or even require having a daily production schedule instead, which also leads to less 
capacity.  
Furthermore, implementing this solution for a single product group is however not advisable, because 
the factory produces more products and would then have two different procedures of making 
production schedules and material replenishment. Also the markets would then have different ways 
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of forecasting and ordering for these products. Therefore this project would need a bigger scope, 
namely all product groups that are produced at that factory, and is not further investigated in this 
research. Moreover, for countries with long transportation lead times, this solution would probably 
have a rather small effect on the customer service level, because the total lead time of eight weeks 
plus one week review period is only reduced by a few days. For countries that have already shorter 
lead times of two weeks, reducing the review period could be more interesting. If this is combined with 
daily production and daily shipping, the lead time could be reduced to 4 days having a review period 
of 1 day. 
 
Scheduling 
The production schedule also influences the lead time of a product. In the current situation, there is 
no optimal schedule made. Therefore it can happen that products are scheduled to be produced, but 
the right components are not available or the workers do not accept the schedule, which results in 
waiting times and machines standing still or doing additional non-planned changeovers. Therefore, 
sometimes orders are not finished on time during the week, which can cause a lower customer service 
level due to late arrival at the RDC. An optimal schedule can help to improve the customer service 
level. However the impact is expected to be quite low, since the number of failures due to production 
issues is only 3% according to the CSL availability OTTR report. But having a better production schedule 
also has other benefits for other KPIs of the factory and is therefore currently implemented. 
 

4.1.4 Production and planning lead time product group B 
The production lead time of the supplier of product group B is currently three weeks, however the 
actual production time is much shorter. The manufacturer of the products of product group B plans 
some extra time for production to secure against risks in demand fluctuations. The planning lead time 
is the same as for product group A and has the same issues. We will therefore not discuss the planning 
lead time again. 
 
Shorten production lead time 
The supplier wants to be able to deliver products to Philips within the agreed lead time. Due to demand 
variability, the supplier keeps safety stock of components, which also have a certain lead time to arrive. 
Since some components have really long lead times, the supplier would have to hold really high safety 
stocks to ensure a short lead time for Philips since there is demand variability, which cannot be 
forecasted accurately. Consequently, the production lead time is a trade-off between costs and the 
risk of not being able to supply in time and it would be quite risky for the supplier to ensure a shorter 
lead time, since the demand forecast is not quite accurate. Therefore, we will only investigate what 
kind of effect a reduction in the lead time would have on the customer service level and will not focus 
on the implementation. 
 

4.2 Late customization 
Product group A 
To find opportunities for late customization, we asked several stakeholders, see Appendix A.3, for ideas 
on this topic. This product group has more than 150 different customizations and has to be packed in 
packages with different languages, which leads to almost 300 different SKUs. Although late 
customization seems to be a good opportunity in this case, it is hard to implement due to health 
restrictions in production. All products are produced and sealed in packages, which are not allowed to 
be opened again unless they are in an environment, which satisfies the health requirements. 
Therefore, the possibilities for postponement are limited. One project about postponing the packaging 
process, which makes a SKU country specific has already been stopped due to high costs. Therefore, 
we will not investigate this idea further. 
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Product group B 
Late customization can reduce the replenishment lead time to the RDC, through customizing the 
product at a later stage in the supply chain closer to the RDC. An opportunity for late customization 
for this product is to pack the products at a later stage in the supply chain closer to the RDC. Therefore 
we will investigate different options of late packaging in Europe for this product. We investigate two 
types with high volumes and 3 different country versions. See Figure 4.1 for a state mapping for the 
late customization solution. The total replenishment lead time is three weeks and consists of one week 
planning lead time, one week packing lead time and one week transportation lead time. 
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Figure 4.1 State mapping late customization 

 
Option 1 – Key Modules 
One idea is to send key modules to a packaging center in Europe and then pack the key modules 
together to a finished good and send them out to the RDC. However, this idea is not possible in 
practice, since some key modules are already country specific due to plugs, which are directly 
connected to the key module. Furthermore, two key modules have to be paired during production. 
One of those key modules is already country specific due to software, which is installed in a pre-defined 
language. This makes the combination of the two key modules country specific and leaves us with less 
flexibility. Therefore, this option will not be further investigated. 
 
Option 2 – Sleeving 
Another option for late customization is to send the finished good to a packaging center in a plain box, 
and put a sleeve around it to make it country specific. There are currently three different country 
versions. To make this solution cost effective, the product has to have high volumes. Therefore, we 
investigate the costs for the solution for two products with the highest volume in this category. This 
solution considers some changes in the supply chain lay-out. The supplier in Asia has to pack the 
finished good in a plain box instead of the designed box. The packaging center will need to have the 
right amount of safety stock to be able to deliver the finished goods in two weeks lead time. If a stock-
out occurs, the total lead time will increase. Of course, this also depends on the safety stock settings 
at the warehouse. In this research, we ignore the calculation of the right amount of safety stocks and 
start out with setting the safety stocks to two weeks. In the cost analysis, we will evaluate what 
happens to the costs if we change the amount of safety stocks. Furthermore, extra communication is 
needed between the packing center and the Supply Center (SC). 
 

4.3 Solutions to address  
In this chapter, we evaluated different solution ideas on the ease of implementation and on the CSL-
availability effect through stakeholder discussions. In the following tables, we summarize the solutions 
we decided to investigate further and their expected ease of implementation and effect on CSL-
availability. The notation “++”means that the solution will be quite easy to implement, i.e. does not 
need difficult organizational and/or physical changes in the supply chain or that we expect a very high 
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positive impact on CSL-availability. Solutions which reduce the lead time drastically are expected to 
have a high impact on the CSL-availability. The size of the impact will be evaluated in the next chapters 
through a simulation model. 
 

Solution A Ease of 

implementation 

Qualitative 

impact 

assessment 

Conclusion for investigation 

Air Freight North America  

(4.1.1, p. 27) 

++ + Investigate costs and effect on 

CSL-availability for: 

- Using only air freight 

- Combining shipping and air 

freight (dual sourcing) 

Production North America  

(4.1.3, p. 28) 

- + Investigate effect on CSL-

availability 

 

Solution B Ease of 

implementa-

tion 

Qualitative 

impact 

assessment 

Conclusion for investigation 

Late customization (Option 2) 

(4.2, p. 30) 

-+ + Investigate costs and effect on 

CSL-availability 

Supplier in Europe 

(4.1.2, p. 28) 

-- ++ Investigate effect on CSL-

availability 

Shorten production LT 

(4.1.4, p. 30) 

-- - Investigate effect on CSL-

availability 

Air Freight 

(4.1.2, p. 28) 

++ ++ Investigate costs and effect on 

CSL-availability for: 

- Using only air freight 

- Combining shipping and air 

freight (dual sourcing) 

 

4.4 Conclusion 
In this chapter, we have described different solution designs for lead time reduction and late 
customization. Each solution is discussed with several stakeholders and we evaluated if that solution 
is suitable for Philips and what the expected improvement in CSL-availability is.  
 
The biggest opportunity in lead time reduction lies in the transportation lead time. Product group A 

has a transportation lead time of seven weeks to North America compared to a production lead time 

of one week. Product group B has a transportation lead time of six weeks compared to a production 

lead time of three weeks. For both product groups, there is an opportunity to use air freight instead of 

sea freight to shorten the transportation lead time. The lead time for air freight is one week for both 

product groups, due to administrative processes. The costs for implementing this solution are not yet 

investigated by Philips. Therefore, we will investigate the costs for shipping everything via air and a 
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dual sourcing approach, where we ship part of the order via air and the other part via sea in Chapter 

6. 

Another idea to reduce the transportation lead time is to move the production closer to the country 

in which the products are sold, by opening a new production site or finding a supplier. For product 

group A this could be a possibility since there is already a production site close to North America and 

only a new production line would be needed. We will investigate if the improvement in CSL-availability 

weighs out the costs of that solution. For product group B, the implementation is not possible, since 

there is no supplier close to Europe currently and insourcing of the product requires more expertise 

inside Philips. 

We evaluated different methods of reducing the production and planning lead time. Product group A 

is produced in a factory where also other product groups are produced. This leads to a lot of 

dependencies, e.g. different product groups are shipped together. Therefore a reduction in production 

lead time does not always lead to a reduction in the total lead time but could just increase waiting 

times for the products. Therefore, we recommend to scope an improvement project for all product 

groups in that factory. Due to time limitations and our earlier defined scope, we do not investigate 

solutions for production and planning lead time reduction. The production lead time of product group 

B is three weeks. The supplier of this product does not want to reduce the lead time since it reduces 

the supplier’s risk of not being able to deliver the promised amount of products. Therefore, we will 

only investigate what kind of effect a reduction in the lead time would have on the customer service 

level and will not focus on the implementation in Chapter 6. 

Finally, we look at opportunities for late customization. For product group A, there were limited 

options due to health restrictions see section 4.2. After discussions with stakeholders, see Appendix 

A.3, at the production site and different project owners, we decided that none of the options was 

suitable for Philips. For product group B, we developed an idea which we call “sleeving”. That means 

that the packing of the product is postponed to a later stage in the supply chain to a packing center in 

Europe. This reduces the lead time to the markets to two weeks, assuming that we have enough safety 

stock at the packing center. We investigate the costs for this idea of late customization in Chapter 6. 
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5 Model development and validation 
In this chapter, we build a simulation model, which will help us to evaluate the effect of lead time 
reduction on the customer service level, the CSL-availability. To develop this model, we follow the 
procedure described in Chapter 1.7 in Law (2007). We will start by formulating the problem, goal of 
the study and scope. Then we collect data and define a model. Furthermore we discuss whether the 
model assumptions are valid. The next step is to construct a computer program and verify and validate 
the program. After these steps, we will continue with designing experiments in the following chapter. 
 

5.1 Problem formulation 
The case study business would like to increase the customer service level by 6% in the next 4 years. To 
achieve that, the business needs to improve the availability of the products at the warehouses in 
different markets, which is measured in the CSL-availability performance indicator. Our previous root 
cause analysis has shown that lead time reduction in the form of late customization or dual sourcing is 
a potential solution for improving the lead time. The company is interested in having a tool to measure 
the effect of lead time reduction on the CSL-availability.  
 

5.1.1 Goal of the simulation study 
The goal of this study is to develop a simulation model that can test the effect of different lead time 
and inventory control settings on the CSL-availability in order to find the required setting to ensure a 
service level improvement of 6%.  
 

5.1.2 Scope 
We will develop the simulation model for a specific SKU from product group A for one specific market 
and for one SKU from product group B for one specific market. In Appendix B.1, we will discuss what 
changes need to be made for applying the simulation in other contexts. We only use one SKU from 
both products groups, because there was no more data available for us. We discuss in Chapter 7 what 
consequences this can have on the conclusions that we get from the results. 
 
The model will be used to simulate the inventory level at the market warehouse (RDC). The inventory 
is consumed by the customer through placing order lines. In section 5.1.5, we describe how we model 
the input demand for the model. The CSL-availability is calculated on a weekly basis through dividing 
all order lines that were fulfilled in full and on time during that week by the total requested order lines 
during that week. Every week, the replenishment size is calculated depending on the forecast and the 
inventory level. After one week of planning, we have one week of production and seven weeks of 
transportation lead time for product group A and three weeks of production and five weeks of 
transportation for product group B, which results in a total of nine weeks of replenishment lead time 
including review period for both groups. In addition to that, there is two weeks of safety stock at the 
RDC for both SKUs. See Figure 5.1 for a state mapping of the product flow. The model only simulates 
the inventory level and not the flow in the factory or on the truck.  
 
The costs of a solution are dependent on the type of solution and will not be calculated within the 
model. The results of the cost calculation are presented in Chapter 6.2.  
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Figure 5.1 Product flow in simulation 

5.1.3 Output 
The output of the simulation is the CSL-availability level for the certain SKU given the defined input 
setting for the total replenishment lead time. To calculate the CSL-availability level, we need to know 
the total number of order lines and the number of order lines which could be delivered directly from 
inventory.  
 

5.1.4 Input 
As input for the simulation, we need information on demand per order line, the number of order lines 
and the replenishment lead times, i.e. production and transportation lead time of the SKUs to 
investigate. We collected data from one year, week 32 2015 to week 32 2016, about the number of 
order lines per week, the number of products per order line, the safety stock settings and the set lead 
times for the two SKUs. The demand data is used to create input distributions for the simulation model, 
see section 5.1.5 for further explanation. The safety stock settings will be a static parameter and are 
described as weeks of average demand. The replenishment lead time will be the experiment factor 
and is measured in weeks. 
 

5.1.5 Demand distribution 
To model the demand input, we have three different choices, namely using the data directly as input, 
finding an empirical distribution or fitting a theoretical probability distribution on the data, see Chapter 
5 in (Law, 2007). Each of the approaches has advantages and disadvantages.  
The advantage of using the data directly in the model is that complicated correlations or time-varying 
parameters are included in the data, which are often complicated to model. However, the data 
represents historic demand and not what could happen in the future. Also we have only a limited 
amount of data, which limits the total amount of simulation runs.  
Using an empirical input distribution generates demand data that are not in the current data set but 
that could occur as well. This gives us the opportunity to define the simulation length as long as needed 
for generating valid results, which do not depend on the initialization of the model. The empirical 
distribution simply models demand patterns, which are different from but comparable to the real data. 
This is preferable for analyzing possible variations in the future, but also has the risk of excluding 
important correlations in the demand.  
Finally, fitting a theoretical probability distribution to the data gives a much smoother distribution than 
using an empirical distribution and also gives us the possibility to generate data which are similar to 
but not in the current data set. It also gives us the opportunity for easy sensitivity analysis to input 
parameters. Unfortunately, we also have the risk of ignoring important correlations in the data with 
this approach.  
 
Fitting a theoretical probability distribution is generally preferred in research. Therefore we start with 
this approach for modeling our data. We try to fit a theoretical probability distribution on the number 
of order lines per week and on the amount of order lines per order line for each of the two SKUs. Note 
that we assume independence between the number of order lines and the amount of products per 
order line in this scenario. The detailed procedure of finding a distribution is described in Appendix 
B.2.  The distribution of the amount of products per order line for both SKUs is however heavily skewed 
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to the left and has a great variation, e.g. for the SKU of product group B, 90% of all order lines have an 
amount of smaller than 10 units per order lines and the other 10% is almost evenly distributed between 
10 and 2000. Therefore it is impossible to fit a theoretical probability distribution and we decide to use 
an empirical distribution for that data. For the SKU of product group A, the number of order lines per 
week is estimated by a normal distribution 𝒩(μ, σ2) with parameters 𝜇 = 20 and 𝜎2 = 10. For the 
demand per order line we describe the empirical distribution in Appendix B.3.2. For the SKU of product 
group B, the number of order lines per week is estimated by a normal distribution 𝒩(μ, σ2) with 
parameters 𝜇 = 190 and 𝜎2 = 31. For the demand per order line we describe the empirical 
distribution in Appendix B.4.2.  
 
We test the validity of the input distribution by simulating the demand and comparing the results to 
the real data. For this model run, we use a lead time of nine weeks and a safety stock of two weeks as 
in practice. The initial stock is two weeks of average demand and the first nine weeks we expect 
replenishment orders of average demand. Since we want to be independent of these initial settings, 
we let the simulation run for 5000 weeks. In the following tables, we compare the average and 
standard deviation of the total demand per week, the number of order lines per week and the amount 
of products per order line for each SKU, see Table 5.1 and Table 5.2. Note that for the SKU of product 
group B we first filtered out weeks from which we knew that there were promotions. For product 
group A, those weeks were not known and therefore we considered all data. 
 
Table 5.1 Input distribution validation SKU A 

SKU A Data Model output  Percentage of deviation 

Average total demand per week 3736 3839 3% 

Std. dev. total demand per week  1997 2333 17% 

Average # order lines 20 20 0% 

Std. dev. # order lines 10 10 0% 

Average # products per order line 190 189 -1% 

Std. dev. # products per order line 344 344 0% 
 
Table 5.2  Input distribution validation SKU B 

 
We can see in Table 5.1 and Table 5.2, that for both SKUs most of the values from the model output 
only deviate slightly from the data that we want to model, namely 0%-3%. However for both SKUs, the 
standard deviation of the total demand per week deviates around almost 20% from the original data. 
Making the empirical distribution more accurate by assigning smaller intervals changed the standard 
deviation by only 1-2%. In our approach for modeling the demand, we assume independence between 
the number of order lines and the amount of products per order line. Since the standard deviation of 
the modeled demand deviates that much from the real demand, we expect that there is some 
correlation between the number of order lines per week and the amount of products per order line. 
We test some assumptions about that in Appendix B.4.4 and Appendix B.3.4 for both SKUs. For 
example, one could think that the demand of the previous week influences the demand of the current 
week. Another example is that the amount of products per order line can be dependent on the total 
number of order lines.  
 

SKU B Data Model output  Percentage of deviation 

Average total demand per week 2512 2537 1% 

Std. dev. total demand per week  1235 1005 -19% 

Average # order lines 190 190 0% 

Std. dev. # order lines 31 31 0% 

Average # products per order line 13 13 0% 

Std. dev. # products per order line 65 65 0% 
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For the SKU of product group A, we see from the demand data that the correlation between the 
average amount of products per order line and the number of order lines are negatively correlated 
with a value of -0,46. So if the number of order lines in one week is high, then the amount of products 
on an order line is likely be low on average. That would mean that customers either place one order 
line with a large amount of products in one week or they split their order into multiple order lines with 
a smaller amount of products on an order line. With this insight, we start modeling the demand for 
this SKU differently. The distribution for the number of order lines stays the same, but we make the 
distribution of the amount of products per order line dependent of the amount of order lines. Since it 
is way too time consuming to create an empirical distribution of the amount of products on an order 
line for every possible amount of order lines, we make two different distributions, namely one for if 
the number of order lines is above average and one for if the number of order lines is below or equal 
to the average. The two empirical distributions can be found in Appendix B.3.1. Table 5.3 shows the 
demand output of the model after these changes and compares it with the real demand. We see that 
the difference between the standard deviation of the real and the modeled demand is only 5%. We 
decide to use this demand model approach for this SKU. The slightly lower standard deviation however 
lets us expect that the customer service level output of the model will be slightly higher than in reality. 
 
Table 5.3 Second input distribution validation SKU A 

SKU A Data Model output  Percentage of deviation 

Average total demand per week 3736 3749 0% 

Std. dev. total demand per week 1997 1892 -5% 

Average # order lines 20 20 0% 

Std. dev. # order lines 10 10 0% 

Average # products per order line 190 185 -3% 

Std. dev. # products per order line 344 330 -4% 

 
The SKU of product group B however shows no such correlations as we have seen for the SKU of 
product group A, see Appendix B.4.4. Therefore, we try to use the data directly as input for the model. 
This allows us to include the correlations, which are hard to find, but also limits the amount of data we 
have to simulate. We also decide to include the weeks with promotions again, since this gives us more 
available data and a more valid representation of the reality, since there are probably correlations 
between the weeks and the amount of products per week. When we run the model and compare the 
outcome for the CSL-availability, we do not see a big difference. The differences that we see can be 
explained by the fact that we do not use weeks of promotion in our theoretical and empirical 
distribution, but include promotions when we use the demand data directly as input. See Appendix 
B.4.4 and Appendix B.6 for a comparison between the two demand models. Using a theoretical and 
empirical distribution for a simulation is preferred to using the data directly, because it gives us the 
possibility to generate data which are similar to but not in the current data set. Therefore, we decide 
to use the theoretical and empirical distributions as demand input in the following. 
 

5.1.6 Intermezzo: Big order lines vs. small order lines 
When analyzing the demand data, there was one thing that was noticeable. We saw that the CSL-
availability is lower for order lines with a larger amount of products per order line. In Table 5.4, we 
show the CSL-availability for different numbers of products per order line. 
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Table 5.4 CSL-availability for different order line sizes 

Product group A Product group B 

Products per Order line CSL availability Products per Order line CSL-availability 

1 to 100 89,0% 1 to 99 82,9% 

100 to 400 82,8% 100 to 399 77,1% 

400+ 79,2% 400+ 66,2% 

600+ 74,7% 600+ 64,5% 

 
When looking at the CSL-availability per customer, we see that customers with a CSL-availability of 
lower than 80% order together 56% of the total volume that is ordered for SKU A and 67% of the total 
volume that is ordered for SKU B. This, together with the fact that the number of products per order 
line is heavily skewed and spread out, lets us suggest to research if handling big order lines in a different 
way than small order lines. An idea could be to serve big order lines directly from the factory, since 
demand is often known a lot earlier than the demand for small order lines. Due to time limitations, we 
decide to exclude this idea from our analysis and suggest Philips to research this further. 
 

5.2 Model definition 
In this section, we describe the logic of the simulation program and the assumptions we made. We 
also discuss the validity and the influence of the chosen assumptions on the model.  
 

5.2.1 Simulation logic 
In this section, we define the logic of the simulation model. All assumptions stated here are further 

discussed in the next section. 

For the simulation model, we define three events stated below. For a flow chart of this model, see 

Appendix B.7. The three events happen in the stated order during one week. Then the program goes 

to the next week and the three events occur again. This repeats until the program has reached a pre-

defined number of weeks. The three events are: 

1) Arrival of a forecast replenishment at the CO inventory at the beginning of the week 

2) Demand for the product in order lines throughout the week 

3) Inventory evaluation and possible ordering at the end of the week 

Each week, these three events happen in this order. At the beginning of the week, we evaluate if a 
forecast replenishment arrives at the CO inventory and the inventory level will be incremented by the 
ordered amount. We ignore lead time variability and the lead times for order handling on arrival, and 
assume that there will be always enough capacity in the warehouse. Then the program moves to the 
next event. 
 
Throughout the week, customers arrive and will order products. The program reads the available input 
data of the demand and assigns the number of order lines and the amount of products per order line 
in the given order. We do not use prioritization of customers and just serve the order lines first come 
first serve. Then, order line for order line, the inventory level is decremented by the amount of 
products of the specific order line and it is immediately checked if we were able to fulfill that order 
line in full to be able to measure the CSL-availability after the simulation. If an order line cannot be 
delivered in full, then it is delivered partly. All orders which could not be fulfilled are backordered and 
delivered immediately when stock is available. An order line can only count as a hit once.  
 
In the last event, the inventory evaluation event evaluates how much we will have to order and 
schedules the arrival of that order. The inventory is reviewed on a weekly basis. A replenishment order 
will be placed when there is at least one product needed. Only full pallets can be shipped and therefore 



39 
 

the size of the replenishment order is rounded up according to the pallet size. The replenishment size 
will be calculated by subtracting the inventory level and the products in pipeline from the safety stock 
and the forecasted demand over the lead time: 
 

𝑅[𝑖 + 𝐿𝑇] = ( ∑ 𝐹𝑗

𝑖+𝐿𝑇

𝑗=𝑖+1

) + 𝑆𝑆 − ( ∑ 𝑃𝑆𝑗

𝑖+𝐿𝑇−1

𝑗=(𝑖+1)

)− 𝐼  

 
where 𝑅[𝑖] is the replenishment size for week 𝑖, 𝐿𝑇 is the replenishment lead time, 𝐹𝑗 is the forecast 

for week 𝑗, 𝑆𝑆 is the safety stock, 𝑃𝑆𝑗 is the stock in the pipeline which arrives in week 𝑗 and 𝐼 is the 

current inventory level, which is the on-hand inventory minus backorders. For simplicity reasons, we 
decide to use as a forecast 𝐹𝑗 for all weeks 𝑗 the weekly average demand of the period week 32 2015 

to week 32 2016. As soon as one product is needed we will replenish. The minimum order quantity is 
one pallet, which contains 2544 products for the SKU of product group A and 180 products for the SKU 
of product group B. The replenishment size 𝑅[𝑖] is always rounded up to the next multiple of 2544 or 
180 respectively. The safety stock is defined as a safety lead time of two weeks, which means that the 
forecasted demand of the two weeks after the replenishment horizon should also lie on stock. In this 
case it means that the safety stock is two times the average weekly demand of the period week 32 
2015 to week 32 2016.  
 

5.2.2 Assumptions 
In this section we give an overview of our model assumptions. These assumptions are validated with 
several stakeholders that we report in Appendix A.3. In the next section, we discuss the validity and 
impact on the output of these assumptions. 
 

 Every CO has its own inventory (inventory cannot be shared between COs). 

 The warehouse has infinite storage capacity and goods receipt capacity. 

 Customer orders are served First Come First Serve per week. That means that the stock will 
not be reserved for some weeks for a certain customer. 

 A customer order is always in multiples of twelve products for product group A or three 
products for product group B.  

 If an order line cannot be delivered in full, then part of the order is delivered and other part is 
backordered. 

 All other unfulfilled demand is also backordered and backorders are served FCFS in the next 
week. However, for the SKU of product group A, if an order line cannot be (partially) fulfilled, 
there is a 70% chance that the order line is cancelled completely by the customer and does 
not need to be delivered, not even partly. 

 Weeks with special promotions are treated the same as other weeks for the SKU of product 
group A. For the SKU of product group B, we filter out promotion weeks.  

 The replenishment lead time (production and transportation lead time) does not vary. The 
shipping of the order is done weekly and the full order can be shipped. Also no incidental Air 
Freight is used to shorten the lead time when the inventory levels get low.  

 The factory of the SKU of product group A has unlimited capacity. The factory of SKU of product 
group B has a maximum capacity of 5040 products per week. If an order exceeds this amount, 
then only 5040 products will be shipped and nothing is backordered.  

 All components are always available. 

 As soon as one product is needed we will replenish. Replenishment takes places in multiples 

of one pallet size. 
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5.2.3 Discussion of validity 
In the previous section, we formulated some assumptions for our model. These assumptions have 
influence on the performance and output of the model. In reality, not all of these assumptions are 
always true. Therefore, we will discuss how these assumptions can influence the output of the model 
and how valid the model is compared to reality. 
 
Every CO has its own inventory (inventory cannot be shared between COs). 
The market we chose for the SKU of product group A has two physical stock locations in reality whereas 
we model only one stock location, since the available demand data is aggregated for both stock 
locations. When in reality one stock location is out of stock and the other still has stock it can lead to 
CSL-availability hits at one stock location, whereas in the model it would not lead to a CSL-availability 
hit since there is still enough total stock. Of course in reality sometimes lateral trans-shipments are 
possible, but we still expect that our model gives a much higher CSL-availability than in practice for this 
SKU. 
We assume that every CO has its own inventory and that COs cannot share or exchange parts of their 
inventory. In practice this is not always true. The market of the SKU of product group B we chose to 
model shares a warehouse with two other markets. They all have stock allocated to their market but 
also there is some safety stock unallocated which can be shared between the three markets. Also when 
one market has shortage and there is no more unallocated safety stock left, then the market can ask 
for additional inventory from other markets if available. However, the SKUs of product group B cannot 
be shared between markets due to language regulations. Therefore, this assumption will not influence 
the OTTR of model for the chosen SKU compared to practice. If we choose a SKU of another product 
group, then it can happen that the model will give a slightly smaller CSL-availability than in reality, 
because in reality markets can have some extra buffer stock against shortages. However the impact 
for the chosen market will be small, because it sells way more than the other two markets and 
therefore the extra safety stock is not big enough to save a lot of order lines from getting hit. 
 
The warehouse has infinite storage capacity and goods receipt capacity. 
Next, we assume that the warehouse has infinite storage capacity and goods receipt capacity. These 
assumptions were discussed with the warehouses in question and can be assumed to be valid. If the 
warehouse is full, then there are possibilities to rent extra space to store the products. This leads to 
extra costs, which we will ignore in this analysis for simplicity reasons. This assumption has therefore 
no impact on the model CSL-availability. 
 
Customer orders are served First Come First Serve per week. That means that the stock will not be 
reserved for some weeks for a certain customer. 
The following assumption is that the customers are served with a first come first serve rule. That means 
that we serve the customers in a week in order of when the customer order was known in the system. 
In reality, each customer is categorized in different prioritization categories, which depends on the 
product and market. In general, promotions and special deals always have the highest priority. When 
order lines of a promotion are fulfilled, it can happen that our stock levels are temporarily low. 
Therefore there will be a higher chance of having a shortage and therefore more hits on the CSL-
availability.  
 
Another prioritization rule is that customers, whose inventory is managed by Philips, have a higher 
priority than other customers. For those customers, the market will decide when and how much to 
replenish. If the customer decides to place an additional order on its own then he has the same 
prioritization as all other customers. Also there can be some qualitative prioritization rules which are 
customer- and market-specific.  
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Since the prioritization rules are quite complicated and market- and customer-specific it is really hard 
to include those rules into the model. For simplicity reasons, we decide to follow the simple first come 
first serve rule. In the sensitivity analysis in section 5.4, we test what effect different priority rules have 
on the customer service level. If mostly order lines with a high amount of product are preferred, then 
the CSL-availability is lower than that if mostly order lines with a small amount of products are 
preferred. However, if sometimes small order lines and sometimes big order lines are preferred, the 
CSL-availability is not clearly higher or lower than using a first come first serve strategy. 
 
We also exclude possible stock reservations, which means that for a certain customer, part of the stock 
can be reserved for several weeks, so that the market can be sure that the customer gets his order on 
time and in full. How often and when this is done is not measured and therefore this effect cannot be 
included in the model. Of course, this means that less stock is available for the rest of the customers 
and can therefore increase the risk of lower customer service level. This means that our model can 
give a higher service level than in reality. Unfortunately, due to the logic of our simulation model, this 
effect is hard to include in the model and to test the sensitivity of the output to this factor. We generate 
each week the demand for that current week and do not know how long before the delivery date the 
order has been placed. We do not have any information on how long stock should be reserved in the 
system and for which order lines stock will be reserved and for which not.  
 
A customer order is always in multiples of twelve for product group A or three for product group B.  
Furthermore, we assume that orders are only delivered in multiples of twelve for the SKU of product 
group A and in multiples of three for the SKU of product group B. In our demand model we round all 
customer orders up to these multiples. This is an agreement for the chosen product groups between 
Philips and the customer. The products are packed in multiples of three in shipping boxes and it is not 
desirable to break those boxes. Only in special cases, for example when sending out samples, those 
boxes are opened and single products are sent. Since these single cases will have almost no influence 
on the output and performance of the model, we will exclude these from further analysis.  
 
If an order line cannot be delivered in full, then part of the order is delivered and other part is 
backordered. 
And 
All other unfulfilled demand is also backordered and backorders are served first in the next week. 
However, for the SKU of product group A there is a 70% chance that the order line is cancelled 
completely by the customer and does not need to be delivered, not even partly. 
These two assumptions are about handling a stock-out or almost stock-out. When an order arrives and 
we are not able to ship the full order, then we will send out the part of the order we have and the rest 
is backordered. This is sometimes done in practice, but it depends on the customer. In practice, when 
a big order cannot be fulfilled immediately and the customer chooses to have the order delivered later 
when we have enough stock, then following orders can possibly still be served in full, which prevents 
a CSL-availability hit from happening. In our model, this is not possible. Therefore, we expect to have 
some weeks where the customer service level in the model will be lower than it would have been in 
practice.  
 
Other orders of the SKU of product group B, which cannot be fulfilled due to a stock-out are always 
backordered. This also happens in practice most of the time. It can happen that a customer cancels the 
order and places it again a few days later or order at a competitor, but these situations are very rare 
and can be left out from the model without having a big influence on the outcome. For the SKU of 
product group A, 70% of the orders, which cannot be delivered in full on time are cancelled. We can 
see this in our demand data since we know when zero products are delivered and an extra column 
reports the reason, which can be cancellation or e.g. double order. A cancellation still counts as a CSL-
availability hit, but leaves us with more inventory for next order lines or with less backorders for the 
next week. 
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All backordered demand is served directly the next week as soon as stock arrives, so it has the highest 
priority. This is also done in practice except for a few exceptions.  
 
Weeks with special promotions are treated the same as other weeks for the SKU of product group 
A. For the SKU of product group B, we filter out promotion weeks. 
Our demand data includes also weeks with promotions. That means that a certain customer or several 
customers can have a special offer to the consumer for which the customer(s) will need more products 
than usual. For the SKU of product group A, there is no information about promotions and therefore 
we decide to not take this effect into consideration in our analysis.  
For the SKU of product group B we decide to exclude promotion weeks in the demand input. In 
practice, those promotions are often known on the forehand and planned carefully with the customer 
and can be taken into account in the forecast. It can happen that safety stock is reduced due to 
promotions and special deals. Although promotions are often planned with customers a long time 
before the promotion starts, it happens that customers want a promotion quite quickly. Due to the 
long lead time, the forecast within that time cannot be changed. Therefore either the promotion has 
to be cancelled or if enough safety stock is expected to be available, markets can choose to accept the 
promotion anyways. This can lead to reduced stock levels after promotions and therefore a higher 
chance of CSL availability hits when demand is higher than expected. Therefore we expect our model 
to give a higher customer service level after a promotion week. However promotions do not occur that 
often for that product, i.e. around 7 times a year and therefore we can expect the total effect on the 
model as limited. 
 
The replenishment lead time (production and transportation lead time) does not vary. The shipping 
of the order is done weekly and the full order can be shipped. Also no incidental Air Freight is used 
to shorten the lead time when the inventory levels get low. 
Our next assumption is that the replenishment lead time (production and transportation lead time) 
does not vary. A truck and boat is sent out every week and is able to ship the full order. In practice, the 
capacity of the truck and ship is never fully used, but low truck loads are sent out weekly. However, it 
can happen that the transportation lead time is a little longer than expected due to delays on the road 
or sea. In practice, for the SKU of product group A 10% and respectively for the SKU of product group 
B 20% of all order lines, which are late, are still delivered in the same week, which means that the 
replenishment order came in a few days late. Therefore, with the assumption that the replenishment 
lead time does not vary and the whole order is delivered in the beginning of the week before the 
demand comes in, the model will give a better customer service level than there is in reality. For 
simplicity reasons, we keep this assumption, since we do not see big influences on the outcome in the 
sensitivity analysis in section 5.4. 
Furthermore, in practice the company can decide to ship an order via air when the inventory levels run 
really low and demand increase is expected. This incidental firefighting occurs rarely and is therefore 
excluded from analysis. It helps in practice to reduce the amount of hits and improve the customer 
service level. Because this occurs rarely, it will not have much impact on the outcome of the model.  
 
The factory of the SKU of product group A has unlimited capacity. The factory of the SKU of product 
group B has a maximum capacity of 5040 products per week. If an order exceeds this amount, then 
only 5040 products will be shipped and nothing is backordered. 
The factory, which produces the SKU of product group A, is most of the time able to fulfill the placed 
replenishment orders. We therefore do not limit the capacity for this SKU. In the model, we find that 
2% of the replenishment order exceeds 10.000 products. We will also see later, that this phenomenon 
does not influence the outcome, see section 5.4. 
 
Furthermore, for product group B the factory has a maximum weekly capacity of 5500 products for all 
markets which order the product. Since 90% of the total volume of the product is sold in the market 
we chose to analyze, we assume that the factory can always make 4950 products, which is 90% of the 
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total capacity, for this market. Since 4950 is not a multiple of 180, which is the amount of products on 
one pallet and therefore the minimum order quantity, we round the maximum capacity to 5040. In 
reality, it is not guaranteed that we get this amount when we place an order, but it can also happen 
that the market can get more products when other markets are ordering less. We expect that the 
negative aspect of not being able to order more is canceled out by the fact that it does not happen 
that we get promised less if other markets demand is higher. Furthermore, as soon as one product is 
needed, a whole pallet will be shipped, which is also done in practice. In the model, only 4% of the 
replenishment orders exceed 5500 products before taking into account capacity restrictions. 
Therefore, we do not expect a great influence on the overall CSL-availability.  
 
All components are always available. 
The amount of problems reported with component availability at the factories for the two SKUs is 
almost zero, which we verified with the Inventory Planner Procurement at the production site. We 
therefore assume that all components are always available. If it is not the case in practice, then the 
capacity of the supplier is limited and it can happen that the replenishment order cannot be delivered 
in full. However this does not lead to CSL-availability hits immediately, since there is some safety stock 
at the warehouse. We therefore expect that this assumption will have almost no consequence for the 
CSL-availability.  
 
As soon as one products is needed we will replenish. Replenishment takes places in multiples of one 
pallet size. 
This is precisely as it is done it practice and should therefore not influence the outcome. If an order 
size is smaller than a pallet size, we always round up to the next highest multiple of the pallet size. 
 

5.2.4 Conclusion and further approach 
Let us now discuss, what we expect from the model compared to reality given the structure of the 
program and the assumptions we made in the previous sections. 
 
Most of the assumptions we made, simplify our model in comparison to reality in such a way, that we 
expect our model to give a higher CSL-availability output than in reality. We assume that suppliers can 
deliver everything we order up to a maximum capacity and that the components are always available. 
Also everything is delivered on time, which also means that the warehouse can accept all products and 
has no delays between receiving a delivery and assigning the stock into the system. However, we see 
that around 15% of the CSL-availability hits of those two products are caused due to supply and 
delivery issues. Since our model ignores those issues, we expect a higher CSL-availability from our 
model.  
 
Another aspect which is difficult to model but influences the outcome of our model is the prioritization 
of customers. First of all, some customers are of such importance that stock reservations are made, 
which means that the stock is lying ready in the warehouse, but is not available for other customers. 
In our model, we assume that the stock is always available for all customers and therefore the outcome 
of the model is expected to be higher than in reality. In addition to that, if an order line with a large 
amount of products is preferred, it can mean that all following order lines cannot be served directly 
from stock and lower the CSL-availability.  
 
Finally, a factor that can influence the CSL-availability is promotion combined with forecasting. We use 
the average demand of the period week 32 2015 to week 32 2016 as forecast. However, for the SKU 
of product group A, the demand data includes weeks with promotions and therefore the forecast of 
the model for weeks without promotions is most likely a little higher than the average forecast for 
those weeks in practice, since promotions are often known to demand planners.  
 



44 
 

In the following sections, we will run our model and evaluate the outcome with regards to our 
expectations. Furthermore, we will conduct a sensitivity analysis to test the influence of different 
parameter settings on the outcome of the model. 
 

5.3 Program construction, verification and validation 
The described simulation model is constructed in C# using Microsoft Visual Studio. During and after 
programming, we verified the model through debugging. For the validation of the program, we 
discussed the assumptions and our expectations for the model in the previous chapter. We expect the 
OTTR output of the model to be higher than the OTTR in reality.  
 
In the following table, Table 5.5, we compare the CSL-availability YTD measured in practice to the CSL-
availability YTD output from our simulation model for both SKUs. For this model run, we use a lead 
time of nine weeks and a safety stock of two weeks as in practice. The demand distribution described 
in Chapter 5.1.5 is used for the SKU of product group A. Real data from week 32 in 2015 to week 32 in 
2016 is used as demand input for the SKU of product group B. The initial stock is two weeks of average 
demand and the first nine weeks we expect replenishment orders of average demand. Since we want 
to be independent of these initial setting, we let the simulation run for 5000 weeks. 
 
Table 5.5 CSL results 

CSL-availability In practice Model output 

SKU A 86,8% 97,3% 

SKU B 82,7% 99,2% 

 
As expected, the CSL-availability output from the model is higher than the OTTR in reality. However 
the difference between the model and reality is still quite large. This can be caused by various reasons. 
We discussed some hypotheses of possible reasons for the CSL-availability being higher in the model 
than in practice in section 5.2.3. For the following factors, we conduct a sensitivity analysis in the next 
section to understand the influence of these factors on the outcome: 
 

1) Forecast 

2) Lead time variability 

3) Capacity of the factory 

4) Customer prioritization (e.g. FCFS) 

5) Order cancellation 

6) A combination of those factors 

 

5.4 Sensitivity analysis 
In this section, we perform a sensitivity analysis in order to test the robustness of the model by studying 
the relationship between the input parameters and the output. This can help us understand why the 
model gives a higher output than the CSL-availability in reality. We test how sensitive the model reacts 
to forecast variability, replenishment lead time variability, supplier capacity, the order of serving order 
lines, order cancellation and a combination of those.  
 
For the following simulation runs, we again use 5000 weeks of simulation to be independent of the 
chosen initial conditions. We start with an initial inventory of one or two weeks safety stock depending 
on the safety stock parameter and the first nine weeks we expect replenishment orders of average 
demand. The replenishment lead time is nine weeks for both SKUs. If not stated otherwise, the 
production capacity for the SKU of product group B is 5040 and the production capacity for the SKU of 
product group A is unlimited. Furthermore, the order lines are served FCFS and for SKU B there are no 
order cancellations and for SKU A 70% of all order lines which cannot be fulfilled are cancelled, if not 
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stated otherwise. We test the sensitivity of the model output to different input settings with a normal 
safety stock of two weeks, called 2 weeks SS in the following figures, and a reduced safety stock of one 
week, called 1 week SS in the following figures, to see if the output is more sensitive to input 
parameters when stocks are low. For more detailed tables and additional settings see Appendix B.5. 
 
In the following figure, Figure 5.2, we see the output for both SKUs with two safety stock settings, 
when we change the forecast input. We look at how robust the outcome is to changes in the forecast, 
like constant under-forecasting or constant over-forecasting. For example, -2% in the figure means 
that we use a constant forecast which is 2% smaller than the average demand. 
 

  
Figure 5.2 Sensitivity to forecast  

 
First of all, when we look at the output of the SKU of product group B in Figure 5.2, we see that reducing 
the safety stock by one week results in a reduction of the CSL-availability by 7,5%, whereas the 
reduction in CSL-availability of the SKU of product group A is 2,4%. This shows us that the CSL-
availability of SKU B is quite sensitive to reduced stock levels. This can be explained with the fact that 
orders which cannot be delivered on time are often cancelled for the SKU of product group A. This 
results in a lower backlog situation than for the SKU of product group B. 
Looking at the graph for SKU B, we see that the more under-forecasting, the lower the CSL-availability 
gets. A constant under-forecast of 5% under the average demand leads to a CSL-availability reduction 
of 3-9% depending on the amount of safety stock. For the SKU of product group A we also see a 
reduction in CSL-availability when the forecast is decreased. However, this reduction is less significant 
compared to the other product group, namely 1-2%, which can be explained again with the fact that a 
lot of order lines that cannot be delivered are cancelled, which leaves that product group with less 
backorders. From these graphs, we can conclude that under-forecasting can lead to a lower CSL-
availability. This can be part of the reason that our model has a higher CSL-availability, because in 
practice under-forecasting happens. However, unfortunately we lack the data to get insights in how 
often this happens. 
 
Next, we test the sensitivity of the output to variability in replenishment lead time. In Figure 5.3, we 
show the results of varying the percentage of order lines which have to be served from the current 
stock due to a late arrival of replenishment. We do this for the chances of 20% and 30% for a delivery 
being late. In our model, we let deliveries be late at random with a chance of 20% or 30%. The 
predefined percentage of order lines now have to be served from the current stock before the 
replenishment arrives, which can lead to additional availability hits. We assume for the SKU of product 
group A, that now no order lines are cancelled, because they are expected to be delivered just a few 
days late. For these simulation runs, we take the average demand as forecast.  
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Figure 5.3 Sensitivity to lead time variability  

 
In Figure 5.3, we see that the CSL-availability of the SKU of product group A decreases by 2%-4% or 4%-
7% when the chance of products arriving late is 20% or 30% respectively. Nevertheless, the CSL-
availability of the SKU of product group B does only decrease by around 1%. This can be explained by 
the assumption for the SKU of product group A, that the order lines in the beginning of the week are 
not cancelled and that the number of order lines per week are much smaller than for the SKU of 
product group B. We therefore can conclude that lead time variability has almost no effect on the CSL-
availability output. 
 
Let us now take a look at the production capacity. The capacity of the SKU of product group B is 5040 
per week, which we show as 100% in the graph. We estimate the capacity for the SKU of product group 
A as 10176 per week, which is more than twice the average demand.  
 

  
Figure 5.4 Sensitivity to capacity 
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The results in from show that the CSL-availability only significantly decreases if the capacity falls below 
60%. When the capacity falls under 60%, the factory produces less than the average demand per week, 
which leads to CSL-availability hits. Therefore, we can conclude that the amount of capacity does not 
influence the CSL-availability as long as it stays above 60%.  
 
Next, we will test how the order of serving customers influences the output of the system. We test our 
FCFS approach against two sorting methods, descending and ascending. In the descending sorting 
method, order lines with a large amount of products are served first and the small ones last. For the 
ascending sorting method it is the other way around. See Figure 5.5 for the outcomes. 
 

  
Figure 5.5 Sensitivity to order of serving customers 

  
Due to the logic of the calculation of the CSL-availability, we already expect that the CSL-availability is 
higher for an ascending than for a descending order. This behavior can also be seen in Figure 5.5. 
Serving order lines with a large amount of products first lead to a reduction in CSL-availability of 2,4% 
- 5,4% for the SKU of product group A and 1,9% - 6,2% for the SKU of product group B compared to a 
FCFS prioritization. Therefore, we can conclude, that the order of serving customers matters 
significantly. 
 
In the previous tables we have seen that the sensitivity of the output of SKU B to the input parameters 
was higher than that of SKU A. The reason for this is that 70% of the orders of the SKU of product group 
A that get an availability hit are cancelled. Therefore, we test how the output of SKU A reacts to 
changes in the percentage of order cancellations, see Figure 5.6.  
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Figure 5.6 Sensitivity to order line cancellations 

 
Figure 5.6 shows that the CSL-availability output decreases when decreasing the chance of 
cancellation. This is logical since the amount of backorders increases if less orders are cancelled and 
we remain with less stock. Also the difference between the outputs of two weeks safety stock and one 
week safety stock increases when decreasing the chance of cancellation of an order line. From this we 
can conclude that when more customers decide to keep their orders as backorder and have them 
delivered as soon as products are available, the CSL-availability is more sensitive to low stock 
situations. 
 
Finally, we test how a combination of the previous factors influences the outcome. For both SKUs, we 
let the forecast be 2% less than the average demand, the demand is served FCFS, the chance of a 
product delivered late is 30% and 30% of the order lines are affected by the late delivery. The SKU of 
product group A has a 60% chance of products being cancelled instead of a 70% chance. For the SKU 
of product group B, we limit the production capacity to 4500 instead of 5040 products. The results are 
shown in Table 5.6 and Table 5.7 for safety stocks of one week and two weeks.  
 
Table 5.6 Sensitivity analysis: combination of factors for SKU A 

CSL-availability output SKU A 

Combination 2 weeks SS 1 week SS 

Initial assumptions 98,5% 96,1% 

- 2% under-forecasting 

- Cancellation: 60% 

- Chance of delivering late: 30% 

- #OL affected when late: 30% 

92,4% 86,6% 

 
Table 5.7 Sensitivity analysis: combination of factors for SKU B 

CSL-availability output SKU B 

Combination 2 weeks SS 1 week SS 

Initial assumptions 97,3% 89,2% 

- 2% under-forecasting 

- Max Replenishment Cap: 4500 

- Chance of delivering late: 30% 

- #OL affected when late: 30% 

95,5% 84,3% 
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If we sum up all drops in CSL-availability for the SKU of product group A that we have seen for 2% 
under-forecasting (0,3% - 0,5% drop), 60% order cancellation (0,2% - 0,5% drop) and a chance of 
delivering late of 30% with 30% of the order lines affected when late (4,4% - 6,7% drop), we would 
expect a drop of 4,9% - 7,7% if the factors do not strengthen each other. The decrease in CSL-
availability is 1% - 2% more than only adding up the factors. If we sum up all drops in CSL-availability 
for the SKU of product group B that we have seen for 2% under-forecasting (1% - 3,3% drop), a 
production capacity of 4500 (0,1% - 0,2% drop) and a chance of delivering late of 30% with 30% of the 
order lines affected when late (0,5% - 1,6% drop), we would expect a drop of 1,6% - 5,1% if the factors 
do not strengthen each other. Here, the decrease in CSL-availability is only 0,2% more than only adding 
up the factors. Therefore, a combination of the factors seem to only add up and not to intensify the 
decrease in the outcome.  
 

5.5 Conclusions 
In this chapter, we have built a simulation model for two different SKUs. With this model we want to 
analyze how solutions like lead time reduction and dual sourcing help improve the CSL-availability. We 
here describe our most important finding about modeling the demand, the assumptions we made and 
the sensitivity analysis.  
 
The scope for the simulation study is one SKU from product group A and one SKU from product group 
B. We only use one SKU from both products groups, because there was no more data available for us. 
We discuss in Chapter 7 what consequences this can have on the conclusions that we get from the 
results. The demand is modeled by fitting a theoretical distribution for the number of order lines per 
week and an empirical distribution for the amount of products per order line. For the SKU of product 
group A, the number of order lines per week is estimated by a normal distribution 𝒩(μ, σ2) with 
parameters 𝜇 = 20 and 𝜎2 = 10. For the demand per order line we describe two empirical 
distributions in Appendix B.3.1. For the SKU of product group B, the number of order lines per week is 
estimated by a normal distribution 𝒩(μ, σ2) with parameters 𝜇 = 190 and 𝜎2 = 31. For the demand 
per order line we describe the empirical distribution in Appendix B.4.2. 
 
A full list of our assumptions, which are validated with the corresponding stakeholders, see Appendix 
A.3, is given in section 5.2.2. We now summarize two important assumptions, which we expect to have 
an influence on the outcome. First of all, the demand data for the SKU of product group A is aggregated 
over two different stock locations. Of course, with two stock locations, the risk of getting out of stock 
is higher than for one stock location. In our model, we use only one stock location, which means that 
out CSL-availability output of the model will be higher than in reality. However due to the unavailable 
data for the separate stock locations, it is impossible to analyze the effect of this assumption. Secondly, 
markets sometimes make stock reservations for customer orders. That means that the stock of an 
order will be reserved from the moment of ordering and is not available for serving other customer 
orders. Unfortunately, due to the logic of our simulation model and the unavailability of information 
on the handling of stock reservations, this effect is hard to include in the model and to test the 
sensitivity of the output to this factor. However, stock reservations can lower the customer service 
level in reality and therefore our model gives a higher output. 
 
We have tested the sensitivity of the model to demand forecast, replenishment lead time variability, 
production capacity, the order of serving customers and order cancellation for two and one weeks of 
safety stock. We list our findings about these factors. 
 

 We have seen that reducing safety stocks by one week reduces the CSL-availability, namely 

2,4% for the SKU of product group A and 7,5% for the SKU of product group B. 
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 We can conclude that under-forecasting has a low effect on the decrease of CSL-availability, 

namely a 2%-under-forecast leads to a reduction of CSL-availability of 0,3% - 0,5% for the SKU 

of product group A and 1% - 3% for the SKU of product group B.  

 We have seen that lead time variability has the biggest effect on the CSL-availability output of 

the SKU of product group A, namely 4,4% - 6,7%, which is due to the small number of order 

lines. For the SKU of product group B, the decrease is only 0,5% - 1,6%. 

 We have seen that the amount of capacity does not influence the CSL-availability as long as it 

stays above 60%. 

 The order of serving customers plays an important role on the total amount of CSL-availability 

hits, especially when in a low stock situation. Serving order lines with a large amount of 

products first lead to a reduction in CSL-availability of 2,4% - 5,4% for the SKU of product group 

A and 1,9% - 6,2% for the SKU of product group B compared to a FCFS prioritization. 

 About order cancellations for the SKU of product group A, we can conclude that the more 

customers decide to keep their orders as backorder and have them delivered as soon as 

products are available, the more the CSL-availability is sensitive to low stock situations. Also, 

less order cancellations lead to less CSL-availability.  

 A combination of the factors, with 2% under-forecasting, 60% order cancellation for the SKU 

of product group A or 4500 production capacity for the SKU of product group B and a chance 

of delivering late of 30% with 30% of the order lines affected when late, only seem to only add 

up and not to intensify the decrease in the outcome.  
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6 Experimental design and results 
In this chapter, we perform a theoretical analysis of what effect lead time reduction and dual sourcing 
can have on the output of our model, and we evaluate the results and costs. For that, we use the 
distributions described in section 5.1.5 as demand input. This has the advantage that we can create 
unlimited random demand data, which is based on and somewhat similar to the real demand, instead 
of using the limited historical data, which only describes what happened in the past. We also keep all 
assumptions we made in section 5.2.2 for all following experiments.  
 
To begin with, we design the experiments for lead time reduction and dual sourcing. For this we explain 
what kind of dual sourcing method we use. Then, we describe the type of our simulation, the warm-
up period and the number of replications needed. Next, we run the simulation and discuss the results 
and costs of the solutions. These steps give us the results we need to answer research question 5. 
 

6.1 Experimental design 
We start by designing the experiments for lead time reduction. Then we will describe the logic we use 
for experimenting with dual sourcing and also design experiments for this solution. Before we start 
giving results, we discuss the type of our simulation and define the warm-up period, the length of one 
simulation run and the number of replications needed.  
 

6.1.1 Replenishment lead time reduction 
The first solution method we want to assess is simple lead time reduction. We are interested in how 
the CSL-availability is influenced by a reduction in lead time, which can be achieved by the described 
solutions in Chapter 4, e.g. late customization, shortening production lead time or transporting all 
products by air. We are also interested in how the effect on the CSL-availability is influenced, when 
having a low stock situation and therefore we want to test different values of the safety stock. This is 
also interesting, because when lead time is reduced in practice, the safety stock will most probably be 
reduced too, since another objective of the company is to minimize inventories. 
 
So, we have two experiment factors, namely the replenishment lead time and the safety stock. We 

design our experiment using a 2𝑘 factorial design described in Chapter 12.2 in (Law, 2007). To calculate 
the main effect of a factor, we need to create output for one low level and one high level of each 
factor, which results in four experiments. Since we are interested in more than two values for the 
factor replenishment lead time, we design more experiments. The experiments for both SKUs are 
defined in the following table, Table 6.1. 
 
Table 6.1 Experiment configurations studied for lead time reduction 

Experiment Replenishment Lead Time (in weeks) Safety stock (in weeks) 

1 9 2 

2 7 2 

3 5 2 

4 4 2 

5 3 2 

6 2 2 

7 9 1 

8 7 1 

9 5 1 

10 4 1 

11 3 1 

12 2 1 

 



52 
 

6.1.2 Dual sourcing: Method and experiment design 
The other solution we want to research for both SKUs is dual sourcing, which in our case means 
sourcing our products via sea transport regularly and via air transport when stock levels run low. For 
this approach, we design experiments following the method described in (Veeraraghavan & Scheller-
Wolf, 2008).  
 
Let 𝑖 be the index for the current week in the simulation model. We call all orders shipped via sea 
regular orders with a lead time 𝑙𝑟 of nine weeks and orders shipped via air expedited orders with a 
lead time 𝑙𝑒 of five weeks and let 𝑙 = 𝑙𝑟 − 𝑙𝑒. In our simulation model, we calculate the replenishment 
orders at the end of each week. Therefore 𝐼𝑖 is the on-hand stock at the end of week 𝑖. 𝑋𝑖

𝑒  is the 
expedited order that we order in week 𝑖 and it “is based on the on-hand inventory plus the expedited 
and regular orders that will arrive within 𝑙𝑒 periods[…]. This expedited order [𝑋𝑖

𝑒] tries to restore the 
expedited inventory position [𝐼𝑃𝑖

𝑒] to some target parameter level 𝑧𝑒” (Veeraraghavan & Scheller-
Wolf, 2008, p. 852). Respectively, 𝑋𝑖

𝑟  is the regular order in week 𝑖 and “is based on the regular 
inventory position (sum of on-hand inventory and all outstanding orders, including [𝑋𝑖

𝑒]), [𝐼𝑃𝑖
𝑟], and 

tries to restore it to some target parameter level 𝑧𝑟” (Veeraraghavan & Scheller-Wolf, 2008, p. 852). 
We summarize the notations in Table 6.2. 
 
Table 6.2 Dual sourcing notations 

Variable Description 

𝒊 Week index 

𝒍𝒓 Regular order (sea) lead time 

𝒍𝒆 Expedited order (air) lead time 

𝒍 𝑙 = 𝑙𝑟 − 𝑙𝑒  
𝑰𝒊 On-hand stock at the end of week 𝑖 

𝑿𝒊
𝒆 Expedited order size in week 𝑖 

𝑰𝑷𝒊
𝒆 Expedited inventory position in week 𝑖 

𝒛𝒆 Order-up-to-level for expedited orders 

𝑿𝒊
𝒆 Regular order size in week 𝑖 

𝑰𝑷𝒊
𝒓 Regular inventory position in week 𝑖 

𝒛𝒓 Order-up-to-level for regular orders 

 
We start in our model by adding the expedited orders from five weeks ago and the regular orders from 
nine weeks ago to our inventory position. Then the demand is subtracted from the inventory position. 
After that we start planning what we need to order, following the method described in (Veeraraghavan 
& Scheller-Wolf, 2008). We start by calculating the expedited inventory position, which “is comprised 
of on-hand inventory and all the orders due to arrive in the next 𝑙𝑒 periods” (Veeraraghavan & Scheller-
Wolf, 2008, p. 852): 
 

𝐼𝑃𝑖
𝑒 = 𝐼𝑖 + (𝑋𝑖−𝑙𝑒

𝑒 +⋯+ 𝑋𝑖−1
𝑒 ) + (𝑋𝑖−𝑙𝑟

𝑟 +⋯+ 𝑋𝑖−𝑙−1
𝑟 ). 

 
Next we calculate the order size of the expedited order. Note that the order size has to be positive, 
since we will not fly back any products. The expedited order 𝑋𝑖

𝑒  arrives in week 𝑖 + 𝑙𝑒 and so will 𝑋𝑖−𝑙
𝑟 . 

To not let the inventory position exceed the target level 𝑧𝑒, we take that order into account and 
calculate 𝑋𝑖

𝑒  as follows: 
 

𝑋𝑖
𝑒 = 𝑀𝑎𝑥(0, 𝑧𝑒 − 𝐼𝑃𝑖

𝑒 − 𝑋𝑖−𝑙
𝑟 ). 

 
After the expedited order is made, we calculate the regular inventory position, which “is comprised of 
on-hand inventory and all the orders that will arrive in the next 𝑙𝑟 periods” (Veeraraghavan & Scheller-
Wolf, 2008, p. 852): 
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𝐼𝑃𝑖
𝑟 = 𝐼𝑖 + (𝑋𝑖−𝑙𝑒

𝑒 +⋯+ 𝑋𝑖−1
𝑒 ) + (𝑋𝑖−𝑙𝑟

𝑟 +⋯+ 𝑋𝑖−1
𝑟 ). 

 
Finally, we calculate the regular order, which also cannot be less than zero. To calculate the order size 
we also include information on the expedited order that we just made. The following formula shows 
how to calculate the regular order size. 
 

𝑋𝑖
𝑟 = 𝑧𝑟 − (𝐼𝑃𝑖

𝑟 + 𝑋𝑖
𝑒) 

 
After understanding the method of dual sourcing, we can start designing our experiments. We again 

design our experiment using a 2𝑘 factorial design as described in Chapter 12.2 in (Law, 2007). Our 
factors are the order-up-to-levels 𝑧𝑒 and 𝑧𝑟. The values of 𝑧𝑟 and 𝑧𝑒 are calculated in the following 
way:  
 

𝑧𝑟 = 𝑙𝑟 ∗ 𝑊𝑒𝑒𝑘𝑙𝑦 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 + 1 𝑜𝑟 2 𝑤𝑒𝑒𝑘𝑠 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 and 
𝑧𝑒 = 𝑙𝑒 ∗𝑊𝑒𝑒𝑘𝑙𝑦 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 + 𝑥 𝑤𝑒𝑒𝑘𝑠 𝑜𝑓 𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒𝑑 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘. 

 
We test different values for 𝑥 varying from 0 to 3 with both one and two weeks of safety stock for 𝑧𝑟. 
See Table 6.3 and Table 6.4 for an overview of the values of 𝑧𝑒and 𝑧𝑟 for the SKU of product group A 
and B respectively. 
 
Table 6.3 Experiment configurations studied for dual sourcing for SKU A 

Experiment 𝒛𝒆 𝒛𝒓 

13 26852 42196 

14 24934 42196 

15 23016 42196 

16 21098 42196 

17 26852 38360 

18 24934 38360 

19 23016 38360 

20 21098 38360 

 
Table 6.4 Experiment configurations studied for dual sourcing for SKU B 

Experiment 𝒛𝒆 𝒛𝒓 

21 17794 27962 

22 16523 27962 

23 15252 27962 

24 13981 27962 

25 17794 25420 

26 16523 25420 

27 15252 25420 

28 13981 25420 

 

6.1.3 Number of Replications and warm-up period 
Before running the experiments, we need to define the type of our simulation and find the length of 
each simulation run. Furthermore, we have to define the length of the warmup period if necessary and 
the number of replications needed.  
 
First we need to discuss the type of simulation. A simulation can be terminating or non-terminating. 
The definitions are given in Chapter 9.3 of the book of Law (2007). We define our simulation as a non-
terminating simulation “for which there is no natural event E to specify the length of a run” (Law, 2007, 
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p. 495). We simulate several numbers of weeks and ignore weekends, shifts and breaks by pasting 
together the weeks into one long simulation run of 𝑛 weeks. This works since the system state at the 
end of one week gives the initial conditions for the next week. 
 
The desired output of the program is the CSL-availability YTD, which is the average CSL-availability over 
the whole time horizon. Recall that the CSL-availability YTD is calculated with the following formula.  
 

𝐶𝑆𝐿 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑌𝑇𝐷% = 
∑𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑂𝑇&𝐼𝐹

∑𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
 

 
Note that due to the logic of the formula, we cannot simply calculate the CSL-availability for each week 
and take the average of those outcomes to get the CSL-availability YTD since the CSL-availability per 
week is a percentage of the total order lines in that week, but the amount of order lines changes each 
week. Therefore, let us define 𝑌1, 𝑌2, 𝑌3, … as output of our simulation program, which is the CSL-
availability YTD of week 𝑖 = 1,2,3,…, which means that 
 

𝑌𝑖 = 
∑ 𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑑 𝑂𝑇&𝐼𝐹 𝑖𝑛 𝑤𝑒𝑒𝑘 𝑘𝑖
𝑘=1

∑ 𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛 𝑤𝑒𝑒𝑘 𝑘𝑖
𝑘=1

. 

 
With our simulation program, we are interested in estimating the steady-state mean 𝑣 = 𝐸(𝑌), which 
is also defined by 𝑣 =  lim

𝑖→∞
𝐸(𝑌𝑖) (Law, 2007, p. 508). Law states that because of the initial conditions, 

the model has a warm-up period and if we want to estimate the mean by calculating the average for a 
specified simulation length, we need to delete the initial warm-up period first. Let 𝑚 be the length of 
the simulation and 𝑙 the length of the warm-up period, then we can estimate the steady-state 
parameter 𝑣 by the following formula (Law, 2007, p. 509). 
 

�̅�(𝑚, 𝑙) =  
∑ 𝑌𝑖
𝑚
𝑖=𝑙+1

𝑚 − 𝑙
 

 
We evaluate the warm-up period by using the method of Welch, which is described in Law (Law, 2007, 
p. 509). The warm-up period is 𝑙 = 200 and we choose 𝑛 = 5000 as the simulation run length. How 
we evaluated this is described in Appendix C. 
 
To determine the number of replications needed for each experiment we follow the sequential 
method, which is described by Law (2007, p. 505). We determine the number of replications needed 
for each experiment and then use the maximum of the minimal required number of runs as the number 
of runs for calculating the results, see Appendix C.2. The number of replications we use is 4 for the SKU 
of product group B and 2 for the SKU of product group A.  
 

6.2 Results 
In this section, we will present the results of the experiments and analyze the output. First, we run the 
experiments for the different settings of the factors lead time and safety stock and then for the dual 
sourcing solution. For all experiments, we use the replication/deletion approach described in Chapter 
9.5.2 in (Law, 2007). We calculate 2 replications for the SKU of product group A and 4 replications for 
the SKU of product group B for each experiment and delete the warm-up period. Then we take the 
average CSL-availability YTD of the different replications to give our result. We also give the 95% 
confidence intervals. In Appendix C.3 and Appendix C.4, you can find detailed tables with the results 
of our analysis. In this section, we report the most important results and conclusions from our analysis. 
 
To analyze the cost of the solution, we first recall the solutions that we want to discuss from Chapter 
4. For SKU A, we are interested in a cost analysis for using air freight either as only transport mode or 
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combined with shipping. Also, we are interested in the option of having a production line at the 
production site in North America. For SKU B, we are interested in a cost analysis for a late customization 
scenario and for using air freight either as only transport mode or combined with shipping. Moreover, 
we are interested in the effect of having a shorter production lead time at the current supplier or 
having a supplier in Europe. Note that due to confidentiality, all prices and numbers we use for this 
cost analysis are different from the prices in reality, but still representative. To be able to compare the 
solutions, we count the number of pallets that are ordered, the number of products sold and the 
number of products delivered late. 
 

6.2.1 Replenishment lead time reduction 
First, we look at the results for experiments 1-8 for both SKUs. See a visualization of the improvement 
in CSL-availability when reducing the lead time in Figure 6.1. In the graph, we can clearly see that the 
CSL-availability improves when reducing the lead time. This improvement in CSL-availability is stronger 
for the SKU of product group B, because for the other SKU we have to deal with a lot of order 
cancellation. Looking at the graph, one might think, that lead time reduction has not a big effect on 
the CSL-availability of the SKU of product group A. But if we take a look at the percentage of order lines 
that are cancelled, we see a decrease when we reduce lead time, which results in more sales. 
 

   

 
Figure 6.1 Result: Lead time reduction vs. CSL-availability 

 

To analyze the main effect of the change of a factor we follow the procedure within the 2𝑘 factorial 
design described in Chapter 12.2 in (Law, 2007). We choose experiments 1, 2, 7 and 8 for this 
evaluation. Let the CSL-availability YTD be denoted by 𝑅𝑖, where 𝑖 is the number of the experiment. To 
calculate the main effect of the lead time we use the following formula. 
 

𝑒𝐿𝑇 =
(𝑅2 − 𝑅1) + (𝑅8 − 𝑅7)

2
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When we calculate the effects for all experiments with a two weeks lead time reduction, we see that 
there is a CSL-availability improvement of 0,8% for the SKU of product group A and 1,7% for the SKU 
of product group B. For product group B, the improvements in CSL-availability are almost linear. The 
SKU of product group A does not have a completely linear improvement, which results from the fact 
that a lot of late orders are cancelled. However, we see that the amount of orders that is cancelled 
decreases by 0,5% on average for a lead time reduction of two weeks. When we calculate the effects 
for all experiments with a one week safety stock reduction, we see that there is a CSL-availability 
improvement of 1,5% for the SKU of product group A and 4,1% for the SKU of product group B. The 
amount of orders that is cancelled for product group A reduces by 2,2% on average. Therefore it might 
seem more attractive for Philips to set higher safety stocks for reaching the improvement in CSL-
availability. However, we excluded this analysis from our research scope. 
 
Air freight product group A 
We analyze the improvement in customer service level and the corresponding costs for transporting 
all products via air for the SKU of product group A. In Table 6.5, we list prices for the cost price per 
pallet for the finished goods, the selling price to the customer per product, the transport costs for sea 
and air transport and the percentage of CSL-availability hits that we consider as lost sales. 
 
Table 6.5 Prices for the SKU of product group A 

 Price 

Cost price per pallet -          1.833,00 €  

Sell price per product                    2,00 €  

Transport pallet (sea) -                54,00 €  

Transport pallet (air) -              135,00 €  

Lost sales -30% 

 
Before we can start with the cost analysis, we need to know how many pallets we order, how many 
products we sell and how many products are a CSL-availability hit. In addition to that, we collect data 
of the amount of products which are cancelled during the simulation run. The cancelled products are 
directly subtracted from the sales profit. Because of the cancellations, the amount of pallets ordered 
can also vary. In Table 6.6, we can for example see that more products are sold, but also more pallets 
are ordered. 
 
To get this information, we run our simulation model again and take the average of 2 replications. 
Since one simulation run is 5000 weeks long, we get large numbers and therefore divide everything by 
100 just to have smaller numbers to work with. Now we know the number of pallets and the demand 
for 50 weeks, which is almost a year. For all products, including cancelled orders, that we cannot deliver 
on time, which is a different amount for sea freighting and air freighting, we assign a penalty cost of 
30% of the selling price per late delivered product, which we call lost sales. We now describe the 
procedure of evaluating the costs, which is shown in Table 6.6. We calculate the amount of profit we 
have through sales by multiplying the selling price with the total amount of sold products. The cost 
price for buying a pallet of products and the price for transportation is multiplied with the number of 
pallets ordered in total. If we sum up these costs with the sales and lost sales, we get the absolute 
Integral Gross Margin (IGM). We see in Table 6.6 that the change in Absolute IGM is +0,3%, which 
means that transporting all products via air leads to 0,3% more income. Additionally, we have 
inventory savings because there is less inventory in the pipeline, when the lead time is lower. 
  
To evaluate the inventory savings, we calculate the Cost of Goods Sold (COGS) per week, which is the 
cost price of all pallets plus the transport price divided by the amount of weeks, which is 50. We then 
evaluate the amount of weeks that one pallet stays in the supply chain. Remember that the 
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replenishment lead time of nine weeks consisted of one week of planning lead time, one week of 
production lead time and seven weeks of transport. Additionally there is two weeks of safety stock in 
the RDC. Therefore a products stays on average ten weeks in the supply chain. When transporting the 
product via air, the transportation lead time is only one week. When multiplying the COGS per week 
with the amount of weeks that the product stays in the supply chain, we get the net inventory value. 
The costs of spending money on inventory can be calculated with Weighted Average Cost of Capital 
(WACC). The WACC is 6,7% in our fictive example. We subtract 6,7% of the net inventory value from 
the absolute IGM to evaluate the total profit for our product. 
 
Table 6.6 Cost analysis: Air Freight SKU A 

SKU A Sea Freight Air Freight Percentage change 

Sales € 355K € 361K  

Cost price all pallets € -128K € -130K  

Cost price transport € -3,7K € -10K  

Lost sales € -2,7K € -218 +92% 

    

Absolute IGM € 220K € 221K +0,3% 

    

COGS € -132K € -140K  

COGS per week € -2,6K € -2,8K  

Amount of weeks in Supply Chain 10 4  

Net inventory value € -26K € -11K  

    

WACC (6,7%) € -18K € -7,5K -58% 

    

Total per year € 203K € 213K +5,3% 

 
Now that we have described the procedure of how we calculate the costs of a solution, we can focus 
on looking at the results. The detailed cost tables for all following solutions can be found in Appendix 
C.3 and Appendix C.4. Let us now take a look at the result for transporting the SKU of product group A 
via air instead of sea in Table 6.7. 
 
Table 6.7 Result: Air Freight product group A 

 Sea Freight Air Freight Profit change 

2 weeks SS    

Total profit € 203K € 213K +5,3% 

CSL-availability 96,8% 99,9%  

Confidence Interval [96,7%, 96,9%] [99,9%, 99,9%]  

Percentage of order lines cancelled 1,7% 0,1%  

1 week SS    

Total profit € 196K € 210K +7,1% 

CSL-availability 96,1% 98,7%  

Confidence Interval [96,1%, 96,1%] [98,7%, 98,7%]  

Percentage of order lines cancelled 4,2% 1,5%  

 
We see that changing the mode of transportation results in a profit increase of 5,3% for two weeks of 
safety stock and an increase in profit of 7,1% for one week of safety stock. The improvement in CSL-
availability is 3,1% and 2,6% respectively. Therefore, implementing this solution seems desirable for 
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Philips. In section 6.2.2, we analyze if transporting part of the orders via sea and the other part via air 
results in a higher profit increase. 
 
Production site in North America for product group A 
Another idea to reduce the transportation lead time is to move the production closer to the country 
in which the products are sold. For product group A this could be a possibility since there is already a 
production site close to North America and only a new production line would be needed. The lead time 
for this solution consists of one week of production lead time and one week of transportation lead 
time. Before looking at the costs of the solution, we look at the cost benefits that we get from the lead 
time reduction. We estimate the costs for road transportation being half the costs for sea 
transportation per pallet. The savings from less lost sales due to CSL-availability improvement and a 
reduction in inventory costs due to a smaller lead time leave us with € 15K – € 20K of additional profit 
depending on the amount of safety stock as a budget for the project. Using these cost benefits for 
implementing the production line, it would take years before the project would start being profitable 
again, which is not desirable for Philips. Therefore, we can conclude that further investigation about 
the costs for this project is not necessary, because of the low benefits. 
 
Air freight product group B 
Now, we calculate the costs for the option that all products are transported via air for SKU B and 
compare that to the current costs. This SKU has different characteristics and therefore different prices. 
In Table 6.8, we list prices for the cost price per pallet for the finished goods, the selling price to the 
customer per product, the transport costs for sea and air transport and the percentage of CSL-
availability hits that we consider as lost sales. 
 
Table 6.8 Prices for SKU B 

 Price 

Cost price per pallet -               1.865,00 €  

Selling price per product                       30,00 €  

Transport pallet (sea) -                     54,00 €  

Transport pallet (air) -                  360,00 €  

Lost sales -30% 

 
The cost price for buying a pallet of products and the price for transportation is multiplied with the 
number of pallets ordered in total. The costs for the solution are calculated in almost the same manner 
as described above. The only difference is that we do not have to deal with cancellations. Note that 
we do not sell more when air freighting, because everything is backordered and eventually sold. We 
show the results for transporting everything via air in Table 6.9. 
 
Table 6.9 Result: Air Freight product group B 

 Sea Freight Air Freight Profit change 

2 weeks SS    

Total profit € 2.163K € 2.032K -6,1% 

CSL-availability 97,2% 99,0%  

Confidence Interval [97,2%, 97,3%] [99,0%, 99,1%]  

1 week SS    

Total profit € 2.072K € 1.998K -3,5% 

CSL-availability 89,4% 94,7%  

Confidence Interval [89,4%, 89,5%] [94,6%, 94,7%]  
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We see that the total profit decreases by 6,1% for two weeks of safety stock and by 3,1% for one week 
of safety stock. The improvement in CSL-availability is 1,8% and 5,3% respectively. However, we can 
conclude from the cost analysis that transporting all products via air is too costly even when in a low 
stock situation. The result is different from that of product group A, because for this product the costs 
of transporting via air are much higher compared to transporting via sea. Furthermore, the sales of 
SKU A increase due to less order cancellations. In section 6.2.2, we analyze if transporting part of the 
orders via sea and the other part via air results in a profit increase. 
 
Late customization product group B 
Next, we look at the solution of late customization for SKU B. In this scenario, we buy the finished good 
in a plain box, which we call Key Module (KM) from now on. The KMs are sent to a supplier for putting 
a sleeve around the products to make them country specific. We assume that the sleeving supplier has 
two weeks of safety stock and that this is enough to never run out of stock. We use this assumption to 
determine if this solution setup is profitable. If it seems that it is not then there is no further research 
needed for the optimal amount of safety stock. Furthermore, we ignore any cost increases due to 
additional communication between suppliers. 
 
Let the additional handling costs at the sleeving supplier be €100 per pallet and the additional 
transport price from the sleeving supplier to the RDC €10 per pallet. The price of the finished good at 
the first supplier decreases by €50 per pallet, because all products are put in plain boxes instead of 
country specific packaging. The other prices remain as stated in Table 6.8. The additional handling and 
transportation costs are added to the cost price for the pallets and the transport, see Appendix C.4.  
For evaluating the costs of inventory, we need to take a closer look at the supply chain. First, there are 
now KMs in the beginning of the supply chain, which have a slightly reduced COGS. The amount of 
weeks in the supply chain of the KMs is ten weeks consisting of eight weeks production and transport 
and two weeks safety stock at the sleeving supplier. The COGS for the finished product is slightly higher 
than in the current situation due to additional handling and transportation costs. However, the lead 
time in the supply chain is only four weeks consisting of one week reserved for sleeving at the supplier, 
one week of transportation to the RDC and two weeks of safety stock at the RDC. Table 6.10 shows the 
result of the cost analysis.  
 
Table 6.10 Result: Late customization product group B 

 Sea Freight Late customization Profit change 

2 weeks SS    

Total profit € 2.163K € 2.053K -5,1% 

CSL-availability 97,2% 99,0%  

Confidence Interval [97,2%, 97,3%] [99,0%, 99,1%]  

1 week SS    

Total profit € 2.072K € 2.046K -1,2% 

CSL-availability 89,4% 94,7%  

Confidence Interval [89,4%, 89,5%] [94,6%, 94,7%]  

 
We see that this solution results in a profit loss of 5,1% when having two weeks of safety stock and a 
profit loss of 1,2% when having one week of safety stock. The improvement in CSL-availability is 3,1% 
and 2,6% respectively.  The cost savings of the KM COGS and the lower penalty costs due to lost sales 
do not weigh out the increased handling costs and the increase in inventory. We assumed a safety 
stock of two weeks at the sleeving supplier. Even reducing the safety stock to one week without 
assuming more penalty costs does also not result in a profitable solution. 
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Supplier in Europe product group B 
Since no supplier for this product exists in Europe, we can only create a hypothetical situation. We 
assume one week of transportation lead time and two weeks of production lead time. If producing the 
product at the new supplier would cost the same as at the old one, then the profit would increase by 
5%-9%. However, production in Europe is most probably more expensive than in Europe and therefore 
the cost price for the product would be higher. The profitability does not decrease for an increase in 
cost price per pallet of 8% for two weeks of safety stock and 14% for one week of safety stock. If the 
increase in cost price per pallet stays under those percentages, then it is advisable to switch to the new 
supplier, assuming the transportation costs stay the same. 
 
Shorten production lead time supplier product group B 
The production lead time at the supplier is currently three weeks, because the supplier wants to lower 
the risk of not being able to deliver due to long lead time components. Assuming all costs stay the 
same and the supplier will not run low on stock for components, the profit would increase by 5% if the 
production lead time is shortened by two weeks and the CSL-availability increases by 1%-2%. We 
recommend Philips to negotiate the possibility of this lead time reduction. Philips can offer the supplier 
an increase in the cost price for up to 6% and still stay profitable. 
 

6.2.2 Dual sourcing 
In this section, we take a look at the cost analysis for implementing a dual sourcing strategy. For this 
we count the amount of pallets ordered via the regular and expedited channel. The regular channel 
will be our current supplier with a replenishment lead time of eight weeks plus one week planning lead 
time. The expedited channel is the same supplier, but then the products are transported via air with a 
replenishment lead time of two weeks for SKU A (one week production lead time plus one week 
transportation lead time) and four weeks for SKU B (three weeks production lead time plus one week 
transportation lead time) plus one week planning lead time for both SKUs. 
 
First, we look at costs for SKU A for implementing dual sourcing. Also here, we need to subtract the 
cancelled order lines from the total sales profit. The cost prices are the same as listed in Table 6.5. We 
vary 𝑧𝑒, the expedited order-up-to-level, for two values of 𝑧𝑟, the regular order-up-to-level. In the 
following graph, Figure 6.2, we plot the percentage of profit increase against the percentage of pallets 
that we send via air. 
 

 
Figure 6.2 Profitability dual sourcing product group A 
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Remember that we have seen earlier, that sending all products via air is indeed profitable. We are 
interested if the profit increases even more if we only send part of the pallets via air and the other part 
via sea. In Figure 6.2, we can see that the profitability increases the more we ship via air. Therefore, 
we can conclude that for this product group it is best to ship everything via air instead of sea. 
 
Next, we evaluate the costs for SKU B. The cost prices are the same as listed in Table 6.8. The difference 
in costs for transporting via sea instead of air is much bigger for this product group. We again vary 𝑧𝑒, 
the expedited order-up-to-level, for two values of 𝑧𝑟, the regular order-up-to-level. In the following 
graph, Figure 6.2 we plot the percentage of profit increase against the percentage of pallets that we 
send via air. 
 

 
Figure 6.3 Profitability dual sourcing product group B 
 

Remember that we have seen earlier, that sending all products via air is not profitable at all. We are 
interested if the profit increases if we only send part of the pallets via air and the other part via sea. In 
Figure 6.3, we see indeed that there are proportions of combining sea and air freight that are 
profitable. The most profitable solution that we found is sending 6% of all shipments via air, which 
corresponds with having an expedited order-up-to-level of 𝑧𝑒 = 15760, when having a regular order-
up-to-level of 𝑧𝑟 = 27962 and sending 25% of all shipments via air, which corresponds with having an 
expedited order-up-to-level of 𝑧𝑒 = 16523, when having a regular order-up-to-level of 𝑧𝑟 = 25420. 
We advise Philips to implement these settings, which will result in a profit increase of 0,5% and 4,1% 
respectively and an improvement in CSL-availability of 1,6% and 9,2% respectively. 
 

6.3 Conclusions 
In this chapter, we evaluated the impact on the customer service level and the costs for the different 
solutions that we have formulated in Chapter 4. The cost analysis is done with different price 
information, but comparable price proportions. We summarize our findings for each solution.  
 
For our experiments, we choose a warm-up period of 200 and a the simulation run length of 5000. 
The number of replications we use is 2 for the SKU of product group A and 4 for the SKU of product 
group B. When reducing the lead time by two weeks, the CSL-availability improves on average by 0,8% 
for the SKU of product group A and 1,7% for the SKU of product group B. 
When increasing the safety stock by one week, the CSL-availability improves on average by 1,5% for 
the SKU of product group A and 4,1% for the SKU of product group B. The CSL-availability of SKU A does 
not seem to improve as much as the CSL-availability of SKU B. However, SKU A has a lot more 
cancellations than SKU B, which decrease by 0,5% on average when decreasing the lead time by two 
weeks and 2,2% on average when increasing the safety stock by one week. Therefore it might seem 
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more attractive for Philips to set higher safety stocks for reaching the improvement in CSL-availability. 
However, we excluded this analysis from our research scope. 
 
A lead time reduction for SKU A can be reached through changing the transport mode from sea to air. 
The improvement in CSL-availability YTD is 3,1% for two weeks of safety stock and 2,6% for one week 
of safety stock. The profit increase due to less inventory costs, less lost sales and more sales due to 
less cancellations is 5,3% for two weeks of safety stock and 7,1% for one week of safety stock. We also 
researched a dual sourcing strategy, where products are partly shipped via sea transport and partly via 
air transport. However, it the most profitable solution is to ship everything via air. Therefore, we can 
recommend Philips to implement this solution. 
Another idea to achieve a shorter transportation lead time is to build a production line at the 
production site near the RDC in North America. The benefits of this solution, namely savings in 
inventory costs and less lost sales, are € 15K- € 20K. Without calculating the precise costs of 
implementing a new production line, we can estimate that the costs are way more than the benefits. 
Therefore, we can conclude that this solution would be too costly to implement for Philips. 
 
The lead time for SKU B can be reduced by transporting goods via air instead of sea either completely 
or partly with a dual sourcing strategy. Changing the transport mode completely from sea to air is 
however not profitable and will result in a profit loss of 6%. With a dual sourcing strategy, we found 
settings, which do lead to a profit increase. The most profitable settings for the expedited order-up-
to-level 𝑧𝑒 are 𝑧𝑒 = 15760 when the regular order-up-to-level is 𝑧𝑟 = 27962 and 𝑧𝑒 = 16523 when 
the regular order-up-to-level is 𝑧𝑟 = 25420. This corresponds with sending 6% and 25% of all 
shipments via air respectively.. We can advise Philips to implement these settings, which will result in 
a profit increase of 0,5% and 4,1% respectively and an improvement in CSL-availability of 1,6% and 
9,2% respectively. 
Implementing the idea of late customization results in a profit loss of 5,1% when having two weeks of 
safety stock and a profit loss of 1,2% when having one week of safety stock. The cost savings of the KM 
COGS and the lower penalty costs due to lost sales do not weigh out the increased handling costs and 
the increase in inventory. We assumed a safety stock of two weeks at the sleeving supplier. Reducing 
this to one week does also not result into a profitable solution. 
Switching to a supplier in Europe decreases the lead time. Since there is no supplier available, we 
assume a lead time consisting of two weeks of production and one week of transportation. A supplier 
in Europe will probably have a higher cost price per pallet. We conclude that if the increase in cost 
price per pallet stays under 8% for two weeks of safety stock and 14% for one week of safety stock, 
then it is advisable to switch to the new supplier, assuming the transportation costs stay the same. 
This will then result in an improvement in CSL-availability of 2,5% and 8,1% respectively. 
Finally, shortening production lead time at the supplier by two weeks and assuming all costs stays the 
same and the supplier will not run low on stock for components, the profit would increase by 5% if the 
production lead time is shortened by two weeks and the CSL-availability increases by 1%-2%. We 
recommend Philips to negotiate the possibility of this lead time reduction. Philips can offer the supplier 
an increase in the cost price for up to 6% and still stay profitable. 
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7 Overall conclusions 
In this chapter, we summarize our most important findings of this research point by point. 
 

 Due to CSL OTTR reports of the Customer Collaboration Team of Philips, 78% of all CSL OTTR 

failures are due to unavailability of products at the warehouses. 

 Most of the CSL-availability hits, 84% in the first half of 2016 and 74% in 2015, are due to 

forecast errors. 

 Product group A has a quite high CSL-availability YTD of 93%. But small improvements in this 

product group have a big impact, up to 1,5%, on the overall CSL-availability of the case study 

business. 

 Product group B has structurally low CSL-availability YTD of 87%. This CSL-availability YTD 

leaves much room for improvement. 

 Due to the logic of the calculation, to reach a higher order fill rate, a company should then 

prioritize the order lines with a small number of products. However, sales and profitability 

targets give a higher prioritization to customers who order larger amounts. 

 There are several ways to cope with demand uncertainty, like improving forecast accuracy, 

increasing safety stocks or reducing the number of product variants. Reducing the lead time 

and review period while keeping the safety stock at the same level will increase the customer 

service level. 

 The biggest opportunity in lead time reduction for product group A and B lies in the 

transportation lead time. 

 We have seen that reducing safety stocks by one week reduces the CSL-availability, namely 

2,4% for the SKU of product group A and 7,5% for the SKU of product group B. 

 The order of serving customers plays an important role on the total amount of CSL-availability 

hits, especially when in a low stock situation. Serving order lines with a large amount of 

products first lead to a reduction in CSL-availability of 2,4% - 5,4% for the SKU of product group 

A and 1,9% - 6,2% for the SKU of product group B compared to a FCFS prioritization. 

 When reducing the lead time by two weeks, the CSL-availability improves on average by 0,8% 

for the SKU of product group A and 1,7% for the SKU of product group B. 

 When increasing the safety stock by one week, the CSL-availability improves on average by 

1,5% for the SKU of product group A and 4,1% for the SKU of product group B. 

 The preferred solution for implementation for product group A is transporting all 

replenishment orders via air instead of sea. The improvement in CSL-availability YTD is 3,1% 

for two weeks of safety stock and 2,6% for one week of safety stock. The profit increase due 

to less inventory costs, less lost sales and more sales due to less cancellations is 5,3% for two 

weeks of safety stock and 7,1% for one week of safety stock. 

 Building an additional production line for product group A near the RDC in North America is 

not cost beneficial. 

 For product group B, sending 6% for two weeks of safety stock and 25% for one week of safety 

stock of all shipments via air will result in a profit increase of 0,5% and 4,1% respectively and 

an improvement in CSL-availability of 1,6% and 9,2% respectively. 

 If the increase in cost price per pallet, when switching to a supplier in Europe for product 

group B, stays under 8% for two weeks of safety stock and 14% for one week of safety stock, 

then it is advisable to switch to the new supplier, assuming the transportation costs stay the 

same. This will then result in an improvement in CSL-availability of 2,5% and 8,1% 

respectively. 
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 Finally, shortening production lead time at the supplier by two weeks and assuming all costs 

stays the same and the supplier will not run low on stock for components, the profit would 

increase by 5% if the production lead time is shortened by two weeks and the CSL-availability 

increases by 1%-2%. We recommend Philips to negotiate the possibility of this lead time 

reduction. Philips can offer the supplier an increase in the cost price for up to 6% and still 

stay profitable. 
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8 Recommendations for further research 
Finally, in the last chapter we discuss all our findings during this research. Moreover, we give 
recommendations to Philips for further research. 
 
We started this research with the goal of finding ways to improve the customer service level of a 
certain part of Philips, the case study business. We looked into how the CSL OTTR YTD is calculated and 
quickly we raise the question if it is the right measurement. The CSL OTTR YTD measures how many 
order lines can be fulfilled on time and in full. To get a nice KPI, all order lines with a small amount of 
products could be prioritized. However, Philips needs customers who order a large amount of products 
to stay profitable. If those customers are always prioritized last, then the satisfaction of those 
customers will decrease and opportunities for big sales are lost. Since the amount of products per 
order line varies heavily, e.g. for product group B from 3 to 1745 products on one order line, we find it 
questionable if it is fair to weigh such order lines the same. To us, it sounds more logical to use a 
volume fill rate, because volume has a more direct relationship to profitability than order lines when 
the volume per order line is so different. 
Some stakeholders in the management functions explained us that this measurement is used to give 
smaller customers a chance to be treated the same as bigger customers. However, stakeholders in the 
factory find it hard to work with that KPI because prioritizing in that KPI is not intuitive since sending 
more volume to a warehouse does not always lead to a better CSL OTTR. When using the volume fill 
rate as KPI, there is a more direct relationship and easier to prioritize. 
Furthermore, a comparison between different Markets can be unfair. Take for example one Market, 
which has a low CSL, because it misses a lot of small order lines. Then another Market can have a much 
higher CSL, while being short a lot more products, because it only misses one order line. The volume 
fill rate measures the percentage of products available on time. Markets get more comparable with 
this measurement, but it still remains a little unfair, since the total volume that a Market sells varies 
between Markets. 
All in all, we recommend Philips to reconsider using the order line fill rate. As an alternative, we suggest 
to use the volume fill rate, which makes it easier for production to prioritize orders and gives better 
insight in the performance of the markets in relation to sales and profitability. 
 
The scope of our project was the CSL-availability, because a lot of CSL OTTR hits are caused by 
unavailability at the RDC. The root cause for unavailability is mostly forecast related. We then started 
looking into the CSL-availability levels of different product groups. When trying to improve the CSL-
availability we recommend Philips to not only look at products groups with a low CSL-availability, but 
also focus on improving product groups with a high impact on the total CSL-availability of all product 
groups. Furthermore, we think it is important to focus on core products. Also, we can learn from 
product groups with a high CSL-availability and maybe copy solutions to other product groups. 
Therefore, we recommend Philips to keep an improvement sheet with possible solutions, which have 
worked earlier for product groups or maybe entire production sites. Such a sheet should contain 
information on improvement projects like: who was the owner of the project, what kind of 
improvements were made for which product groups, what were the difficulties of the project and what 
is the measured effect on the CSL-availability after implementation. Furthermore, when Philips wants 
to improve the CSL-availability of one single product group it is important to completely understand 
the root causes of CSL-availability hits.  
 
During our literature research, we found an article which indicates that targets for the customer service 
level have an optimal point regarding to the extra costs needed for reaching a higher target, see 
(Jeffery, Butler, & Malone, 2008). This article shows for which volume fill rate the balance between 
inventory costs and costs of lost sales is optimal. The authors use the following formula to calculate 
the costs for a given service level. 
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Cost(Service level) =  Inventory units/period*Inventory Holding Cost/unit 
- Expected Lost Sales units/period*Profit Margin/unit 

 
We recommend Philips to research if their target setting is indeed still cost-efficient. If reaching the 
CSL target results in too much costs, it can harm the profitability of the company. But on the other 
hand, we find that a high target setting encourages employees to come up with new ideas for reaching 
a higher CSL without increasing costs. This analysis is about finding the optimal balance between the 
costs for lost sales and costs for safety stocks. Since we excluded finding the right safety stock settings 
from the scope of our research, we do not derive the optimal service level regarding to inventory costs. 
Furthermore, the volume fill rate instead of the order fill rate is used in the article. Since the relation 
between the order line fill rate and the volume fill rate is not clearly defined, it is hard to evaluate the 
optimal order fill rate using this method. 
 
While designing the solutions we learned that products are constantly phased out and phased in. 
Therefore, when developing a solution, one should always consider a whole group of products and not 
a single SKU.  In our research, we performed a simulation study for only one single SKU per product 
group due to data limitations. However, the results can strongly depend on the SKU selection, due to 
e.g. different demand patterns of SKUs or different volumes of orders and shipments. Due to the wide 
variation of SKUs of product group A, the chosen SKU represents only 0,5% of all order lines and is 
therefore not representative for the whole product group. We recommend Philips to also study other 
SKUs before implementing a solution for this product group. The SKU of product group B represents 
43% of all order lines. Therefore, our conclusions about this product group are much more valuable.  
Also, when a product group is dependent on one or more other product groups, because e.g. they are 
all produced in the same production facility, it should be considered to include all product groups of 
that facility in the scope. Solutions can be more cost-effective when being implemented for a large 
amount of SKUs.  
 
One solution that we thought of for product group A, we excluded from our analysis due to time 
restrictions. However, we recommend Philips to research that idea further. The idea is the following: 
Product group A currently has almost 290 different SKUs, including SKUs which are currently phased 
in, which are sold in more than 35 different countries. Due to different languages and country 
regulations, not all countries are able to share the same SKU. The number of SKUs has risen by almost 
30% in the last two years. From a marketing point of view, the products are necessary to stay 
competitive in the market, but due to this high number of SKUs, the supply chain performance of the 
case study business decreases for this type of products. With every SKU the factory has to produce 
more in a single week, the capacity decreases due to changeovers. From literature, we know that the 
inventory levels at the RDC are also impacted by SKU variety, see Chapter 3.2.4. With more SKUs, more 
safety stock is needed, which results in extra costs. We learned from literature that product variety 
also influence the forecast accuracy. In the case study business, for each SKU a forecast is made and 
this process is more challenging if there are more SKUs, because the demand per SKU is more variable 
than the demand for the product group. We can assume from our learnings from literature and the 
experience from stakeholders that the demand variability of an SKU decreases when we reduce the 
amount of SKUs and therefore the forecast accuracy improves. This has a positive effect on the 
customer service level. Philips needs to perform further research to find a smart way of achieving SKU 
reduction. 
 
When building our simulation model, we started to analyze the demand of the SKUs. What comes to 
our attention is that the variation in order size per order line is really big. Order sizes vary from one to 
2000 products per order line. We saw in the data, that the CSL-availability for big order lines is lower 
than that for big order lines. We assume that the CSL-availability for big order lines is lower, because 
the Market tends to prioritize smaller customers. However this can lead to opportunity losses.  Looking 
at the CSL-availability per customer, we saw that the customers with a CSL-availability of lower than 
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80% order 56% of the total volume that is ordered for SKU A and 67% of the total volume that is 
ordered for SKU B. This, together with the fact that the number of products per order line is heavily 
skewed and spread out, lets us suggest to research if handling big order lines in a different way than 
small order lines. An idea could be to serve big order lines directly from the factory, since demand is 
often known a lot earlier than the demand for small order lines. Due to time limitations, we decide to 
exclude this idea from our analysis and suggest Philips to research this further.  
 
Finally, we perform a simulation study with a theoretical model with similar behaviors as in practice. 
We analyze the effect of lead time reduction and dual sourcing and on the costs of implementing 
solutions. For product group A, the best solution is to ship all products via air instead of sea. The 
improvement in CSL-availability YTD is 3,1% for two weeks of safety stock and 2,6% for one week of 
safety stock. The profit increase due to less inventory costs, less penalty costs for lost sales and more 
sales due to less cancellations is 5,3% for two weeks of safety stock and 7,1% for one week of safety 
stock. The use of a dual sourcing strategy has the most promising result for product group B. The best 
settings for the expedited order-up-to-level 𝑧𝑒 are 𝑧𝑒 = 15760 when the regular order-up-to-level is 
𝑧𝑟 = 27962 and 𝑧𝑒 = 16523 when the regular order-up-to-level is 𝑧𝑟 = 25420. This corresponds with 
sending 6% and 25% of all shipments via air respectively. It leads to a CSL-availability YTD increase of 
1,6% and 9,2% respectively and a profit increase of 0,5% and 4,1% respectively. However, these 
conclusions are bound to the particular SKUs of this study. We recommend Philips to research the best 
settings for other SKUs to find the best settings for the whole product group.  
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Appendix A Background information supply chain 

Appendix A.1 Supply chain mapping 
In Figure A.9.1, we see a detailed description of the possible product flows in the supply chain. Part (a) 
of the figure shows how the products and orders flow through the chain for around 80% of the SKUs 
for the case study business. The products are produced at one of the in-house factories or at the 
suppliers. The finished goods are delivered to the warehouses of the COs, which are called Regional 
Distribution Centers (RDCs). From the RDCs, the products are delivered to distributors and the 
distributors send the products further to the retailers or directly to the consumer. 
The order flow looks a bit different. A retailer orders products at the distributor. The distributor order 
the products he needs at his contact person from the Commercial Organization (CO) of his country. 
Almost each CO is linked to at least one RDC. There are COs which share one warehouse location, but 
there are also COs which have two warehouse locations. The CO has administrative tasks, like collecting 
customer orders and making demand forecasts, whereas the RDC is the location where the products 
are physically stored. The demand planner at the CO makes forecasts for all SKUs which are sold within 
that CO and stores them in a system. The supply planner can see all forecasts of all COs and makes a 
production plan and fills a confirmed production plan for each CO into the system after consultation 
with the supplier or the in-house factory. 
 
The supply chain structures of part (b) and (c) of Figure A.9.1 are quite similar to part (a). In (b), the 
finished goods will be sent directly from the RDC to a retailer and the retailer order directly at the CO, 
instead of ordering at and receiving the products from a distributor. In (c), finished goods will be send 
directly to the distributor and not through the RDC. This is done exceptionally for the few COs which 
have no RDC. 
 
The transportation of the products is done by ship, train, truck or air freight depending on the urgency 
and the location. Each CO is linked to one RDC. In Europe, there are three RDCs, the 3DC’s, which store 
products for different European countries. In that way, if one country has a shortage, the products can 
be re-allocated to another country taking into consideration packaging and language requirements. 
Other countries around the world have with some exceptions one RDC per country. Sometimes an RDC 
can also have a packaging function, which means that finished goods are combined and are sold as a 
set of products. These sets can be unique per country. Since the RDC’s, factories and customers are 
spread all over the world, the replenishment lead times and the customer lead times vary for different 
products and different markets. 
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Figure A.9.1 Three different supply chain mappings 
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Appendix A.2 Detailed root cause analysis 

 
Figure A.9.2 Root cause analysis diagram 
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In Figure A.9.2 a detailed root cause analysis for a CSL-availability hit is given. We will discuss here in 
more detail what the root causes for a CSL-availability hit are. A CSL-availability hit means, that for 
some reason, there is not enough stock available at the warehouse to fulfill an order line of a customer 
(completely). The reasons for not having enough stock are assigned to four different main categories, 
namely supply unreliability due to production, supply unreliability due to mainstream, forecast errors 
or other.  
 

Appendix A.2.1 Supply unreliability due to production 
A possible reason for having a shortage of products in the warehouse is that the supply was not 
sufficient due to some problems on the production site. Generally we categorize two types of problems 
here, capacity issues and component stock issues.  
 
Capacity 
When not having enough capacity at the production site, not all ordered products can be delivered to 
the warehouses, which leads to reduced safety stocks and can cause stock-outs. Capacity can be lower 
than usual for many reasons, e.g. machine downtime, operator breaks and maintenance.  
Also quality issues can lead to can cause lower capacity since products need to be reworked or even 
reproduced.  
The number of changeovers and the time needed for a changeover also influences the available 
capacity. If there is a product, which has a lot of different product types, then every time the factory 
wants to produce another type, the machine needs to be setup differently, which costs time. The 
factory therefore makes a production schedule to have the right parts for assembly done at the same 
time. But if workers do not follow the schedule, then not all parts for assembly are ready at the same 
time and the machine has to wait for the right parts, which reduces the throughput of the factory. 
Furthermore, the amount of scrap after a changeover also influences the setup time and therefore 
reduces capacity if a lot of changeovers are needed. But also the design of the machine influences the 
time needed for changeovers. Some machines can be more efficient than others, but the capacity of 
the production site is limited by the bottleneck machine.  
Another factor which reduces capacity is trial runs for new designs, which reserves some of the total 
capacity.  
Finally, increases in demand due to uncertainty can raise the need for more total capacity. It is not that 
easy to quickly raise capacity since most probably additional machines are needed which take long to 
design and implement. Therefore the limited capacity cannot always compete with an increase in 
demand. The company makes long-term forecasts to prevent this problem from happening and plan 
to increase production capacity in advance. Therefore, if this problem occurs due to not forecasted 
increase in demand or of the increase is forecasted later than it actually happens, the root cause for 
CSL-availability hits is partly production and partly forecast.  
 
Component availability 
When components for the products are not available or are not enough to meet all demand, then the 
production facility cannot produce all products, which are needed at the warehouses, which can lead 
to stock-outs.  
Component stock-outs can occur due to supplier unreliability especially for long lead time components 
and components with uncertain demand. A big amount of SKUs can lead to a need for a lot of different 
components. Due to the bullwhip-effect, which we describe in Chapter 3, demand for those 
components is even more uncertain than for the single SKUs. A sudden increase in demand for a SKU 
lead to a higher demand in components, which can lead to stock-outs of the components.  
Supply unreliability can also mean that something goes wrong when transporting the components, 
especially with long lead times, like traffic jams.  
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Finally, quality issues also lead to shortages in components. It can be that components need to be send 
back to the supplier to reproduce due to e.g. production mistakes or when components are damaged 
during transport.  
 

Appendix A.2.2 Supply unreliability due to mainstream 
Mainstream is a term used by Philips, which stands for transportation. We discuss here reasons for 
shortages in stock at the RDC due to issues in transportation. These are situations which happen after 
the products have left the factory. 
 
After finishing all production steps, the finished product enters the warehouse at the supplier, where 
it is made ready for shipping. However delays can already start here. When finished goods are not 
directly sent to the warehouse by the factory, which is called manufacturing delay, those products can 
miss the truck they should go on. Another root cause is that products can be waiting at the entrance 
of the warehouse to be checked in into the system due to operational delays or not enough warehouse 
capacity. Only when the product is checked in, shipment plans can be made for that product. When 
enough products lie in the warehouse to almost have a full truck load (FTL), then a truck is ordered to 
the warehouse to transport the products to the RDC. Sometimes, products need to wait quite long 
until a FTL for the RDC where they need to go is reached and therefore they can be too late at the RDC.  
 
When a truck for the product is ordered on time, there can also occur problems with the carrier. If the 
carrier does not have enough capacity or the route is planned inefficiently, then the product can arrive 
late at the RDC, which can cause stock-outs. These issues are called carrier service issues. Furthermore 
the carrier can also arrive delayed at the factory warehouse, but also at the RDC due to traffic. 
 
Sometimes it occurs that products are physically at the RDC, but not available for selling, which also 
leads to stock-outs in the system. This happens for example if the RDC has reached its capacity and 
cannot store more products. Some warehouses can rent additional storing space, but that is possibly 
not always immediately available or products need to be relocated to another storage area. But also 
simple late good receipts due to operational delays can cause late check-in in the RDC and cause 
temporary stock-out. 
 
Finally, there are some root causes, which can be categorized as other transporting issues. For 
example, if there are system issues e.g. when trying to check-in products at the goods receipt or when 
an incorrect shipping lead time is filled in the planning system. There can also be governmental issues 
e.g. at the border or force majeure like weather or strikes.  
 

Appendix A.2.3 Forecast errors 
The most common root cause for stock-outs is forecast errors. Forecast errors mainly come from either 
a not advanced enough forecasting method or demand uncertainty. Uncertainty in demand can have 
many reasons. We list the most common reasons for demand uncertainty for Philips.  
First of all, long replenishment lead time increase the chance of forecast errors, because the 
uncertainty in demand is higher how further in the future the demand has to be forecasted.  
Furthermore, the amount of SKUs of a certain product type influences the uncertainty in demand. A 
lot of different SKUs are much harder to forecast than just one.  
In addition to that, new introduced products are hard to forecast since there is no information except 
for demand planner experience on demand for that product at all. 
Sometimes there can be a sudden higher interest in a certain product if a similar product is unavailable 
or if a product is unavailable at the competitor. Additionally, when a product is unavailable and is 
backordered by the customer, it can change future demand behavior. It probably takes longer than 
planned before the customer places a next order, because he received his order too late, or even 
worse: the customer does not order at all. Moreover, outside factors like promotions of a product of 
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a competitor, holidays, fashion trends, media or events in the world can influence interest in certain 
kinds of products. 
Price fluctuations of products at Philips and at competitors also influence the order behavior of 
customers and therefore cause uncertainty in demand. 
Finally, marketing plans for phasing in and phasing out products influence the order behavior of 
customers. If a product is not available anymore, because it is phased out, customers are likely to order 
similar products. Likewise, if a new product just arrived on the market, customers could order the new 
product instead of the one they used to order. These shifts in order behavior cause uncertainty in 
demand.  
 

Appendix A.2.4 Other 
Finally, if none of the above is the root cause for a CSL-availability hit, a stock-out at the RDC can have 
other reasons like IT issues or unknown reasons. Another root cause for stock-outs is 
miscommunication between the demand planner and the customer, which is called customer 
collaboration issues and e.g. happens when customers do not share the right information or no 
information at all on demand, or between the demand planner and the supply planner about e.g. the 
urgency of receiving products.  
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Appendix A.3 Stakeholders 
The following table presents all stakeholders that were involved in the project. Stakeholders gave us 
descriptions of the supply chain, insights in root causes and ideas for solutions. We validated our 
assumptions for the simulation model with different stakeholders. The following table shows the job 
title and the workplace of each stakeholder and gives a short description of their responsibilities. 
 

Job title  Short Description Workplace 

Director Supply Chain 
Management 

Managing supply chain processes end-to-end Office 
Amsterdam 

S&OP Manager Improving business processes including S&OP  Production site 
product group A 

Supply Planner A Responsible for the supply planning at the in-house 
factory of product group A 

Production site 
product group A 

Supply Planner B Responsible for the supply planning and 
collaboration with the supplier of product group B 

Office Asia 

Supply Chain Engineer Project-based improvement processes in the supply 
chain 

Office 
Amsterdam 

Supply Chain 
Manager 

Direct responsibility for entire supply chain function, 
including planning, operational buying, shipping and 
transport, warehousing and execution. 

Production site 
product group A 

Supply Chain Engineer 
at Production Site 

Project-based improvement processes in the supply 
chain at the factory of product group A 

Production site 
product group A 

Supply Chain 
Manager Customer 
Collaboration 

Improving Global Customer Service Level Metric in 
Collaboration with Demand Planners 

Office 
Amsterdam 

Director Supply 
Planning 

Design, streamline and operate supply chain 
networks as well as manage operations 

Office Eindhoven 

Central Forecasting 
Manager 

Managing the Statistical Forecast process: Preparing 
inputs to statistical forecast, creating a baseline.  
Review, correct and improve statistical forecast 

Office Eindhoven 

Regional Distribution 
Centre Manager 

Managing all in- and outbound processes of the 
distribution center 

Distribution 
Center 

Senior Project 
Manager in Supply 
Chain 

Designing, Implementing & Improving Global 
Customer Service Level Metric 

Office France 

Global Inventory 
Manager  

Managing and reviewing inventories including safety 
stocks 

Office 
Amsterdam 

Shipping Coordinator Coordinating the shipping plan for outbound 
shipments from the factory 

Production site 
product group A 

Inventory planner 
procurement 

Managing inventory for production site product 
group A 

Production site 
product group A 

Demand planner Planning the demand for a specific region using 
customer information 

Office Germany 
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Appendix A.4 Detailed supply chain description product group A 
The products of product group A are produced in an in-house factory in Europe and are sold globally. 
The order process for the products is visualized in Figure 2.2. In week 1, the markets fill in the forecasts 
on Monday into a planning system. The demand planners make a high level production plan manually 
on Wednesday taking into consideration the production capacity and the prioritization wishes of the 
markets. The factory planner will confirm or adjust the plan on Thursday and the confirmed plan will 
be sent out to the markets on Friday. So the total planning lead time is one week. 
 
The production lead time is generally expected to be one week, however prioritization is possible to 
shorten the lead time. Products which are produced in the beginning of the week can be shipped 
earlier and therefore arrive earlier at the RDC. The rest of the products is produced during the rest of 
the week and is finished at the latest on Saturday at 6 am. Sometimes the factory cannot produce all 
orders during one week. Then the orders are backordered and immediately produced in the beginning 
of the next week. Some production activities can also be done in the weekend. The factory strives to 
finish at least 98% of the confirmed orders in one week and to confirm at least 95% of the orders each 
week. If there is not enough capacity to confirm all orders, then the supply planner decides which 
market gets less stock, depending on the stock levels at the markets. The supply planner then gives 
less priority to orders, which only intend to fill up the safety stock. 
 
After finishing production, the products arrive at the warehouse adjacent to the factory. Also other 
products produced in the factory arrive in that warehouse and are stored in racks. Preferably full truck 
loads are shipped and therefore products wait until there are enough products for a full truck load. A 
truck is sent out separately for each RDC, which means that a truck has only one destination and is not 
visiting multiple RDCs. The shipping planner reserves 24 hours for picking and packing and therefore 
tries to book a truck as soon as almost a full truck load is lying on the racks. The rest of the products 
which arrive in the meantime can directly be stored at the packing area. The transportation time varies 
between one to seven weeks depending on the distance of the factory to the RDC. See  
Table A.9.1 for a demonstration of the best case and worst case scenario for transportation to an RDC 
with one week transportation lead time. Notice that the best case lead time is two weeks and the 
worst case lead time is three weeks. The case study business assumes the worst case lead time as the 
total replenishment lead time. 
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Table A.9.1 Best and worst case lead time scenario 
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Appendix B Additional information on the simulation model 

Appendix B.1 Using the program for other SKUs and Markets 
The model described in the previous sections is developed at the example of two specific SKU and one 
specific market respectively. Let is discuss in this section, what changes would need to be made to the 
model if we choose another SKU to analyze.  
 
If we want to analyze the effect of lead time reduction on CSL-availability on a different SKU and/or in 
another market, we need to adjust the parameters for the lead time, safety stock. Also the demand 
structure can be different, which needs to be analyzed on the forehand and changed in the program. 
Furthermore, the pallet size and the production capacity varies for every SKU and also depends on the 
Market.  
 
The assumptions we made for the order handling and the warehouse of the market can also vary for 
different markets and need to be validated again. The assumptions about the replenishment lead time 
and the factory depend on the SKU and can also depend on the market and need to be validated again 
when changing the SKU or the market. 
 
Since the assumptions we make are very dependent on the type of SKU, market and supply chain, it is 
hard to generalize the model in such a way that is valid to be used for other SKUs and markets since 
the supply chain network of Philips is quite complex. Due to the time restriction for this project, we 
will therefore only analyze the lead time reduction effect and the effect of dual sourcing of the two 
SKUs. 
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Appendix B.2 Input distributions 
In order to specify random input data for the simulation, we first try to find a theoretical distribution 
which fits the given historical data. We present the procedure for the specific SKU from product group 
B delivered to one CO and for the SKU from product group A for one CO. For these estimations we use 
demand data from 2015 week 32 until 2016 week 32, which includes information on the date of 
delivery, the customer, the amount of products and the amount of products delivered on time for each 
order line. We asked stakeholders about information on weeks with promotion. This we could only get 
for the SKU of product group B. We filter out these weeks from the analysis. We want to model the 
total demand in our simulation, but we also need to know the number of order lines and the number 
of order lines, which are not fulfilled on time or in full in order to calculate the CSL-availability. 
Therefore, our approach is to find a distribution for the number of order lines per week and a 
distribution for the amount of products per order line. We assume that the number of order lines per 
week and the amount of products per order line are independent. 
 

Appendix B.3 Input distribution for the SKU of product group A 
In this section, we try to fit a distribution for the demand of SKU A. We follow the same approach as 
for SKU B. Table B.3.1. shows the demand data for SKU A. Also for this SKU, we see that the standard 
deviation of the total demand is half the size of the average demand. This is probably due to the high 
variation in the amount of products per order line, which is almost two times bigger than the average. 
Moreover, the amount of order lines is much smaller than for SKU B, but has a higher demand in total. 
The standard deviation of the amount of order lines per week is half the size of the average, which also 
leads to higher variations in the total demand.  
 
Table B.3.1 Demand statistics SKU A 

SKU A Data 

Average total demand per week 3736 

Std. dev. total demand per week  1997 

Average # order lines 20 

Std. dev. # order lines 10 

Average # products per order line 190 

Std. dev. # products per order line 344 

 
 

Appendix B.3.1 Number of order lines per week 
For estimating the demand, we need to estimate the number of order lines per week and the amount 
of products ordered on one order line. Let us first look at the distribution of the number of order lines. 
We have no information about promotions. So we try to find a distribution for the whole data set of 
53 data points. We start by measuring the location, variability and shape of the data. The average 
number of order lines per week is 20 with a standard deviation of 10, see Table B.9.2. The data is a 
little bit skewed to the left, but with a value of skewness of 0,8 almost symmetric. Likewise, the kurtosis 
is almost zero and lets us expect a normal shape. 
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Table B.9.2.1.1 Summary statistics #OL SKU A 

Number of order lines 

Mean 20 

Standard Deviation 10 

Kurtosis 0,2 

Skewness 0,8 

Minimum 5 

Maximum 47 

Count 53 

 
From the descriptive statistics of the data, we first assume a normal distribution despite the small 
skewness to the left. We try fitting a normal distribution with mean 20 and standard deviation 10. To 
test the goodness-of-fit visually, we look at the Q-Q plot of the fitted model distribution versus the real 
demand data. It can be seen, that the graph is almost a straight line except for low values and high 
values.  
 

 
 
We perform a chi-square test to test the goodness-of-fit of our hypothesized distribution. We follow 
the same steps as described in Appendix B.4.2. We again choose the amount of intervals to be 20. 
From the chi-square formula we get the value 28,9 which is a smaller value than the value from the 
table with a degree of freedom of 19 and a confidence interval of 95%, which is 30,1. Thereby, we 
conclude that we do not reject the null hypothesis, which states that the normal distribution is a good 
fit. Therefore, we use the normal distribution with mean 20 and standard deviation 10 for estimating 
the amount of order lines per week. In the model, we add the condition that the amount of order lines 
can never be below zero. 
 

Appendix B.3.2 Amount of products per order line 
Next we try to estimate the amount of products per order line. Let us look again at the summary 
statistics. The average amount of products per order line is 13 with a standard deviation of 65. The 
data is skewed to the left and spread out widely. This, we can read from the values of the skewness 
and kurtosis in the following table. 
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Table B.3.2.1. Summary statistics: Amount of products per order line for product group A 

Amount of products per order line 

Mean 190 

Standard Deviation 344 

Kurtosis 45 

Skewness 5 

Minimum 1 

Maximum 4920 

Count 1048 

 
For this data, we conclude that it is hard to find a theoretical distribution due to a high skewness and 
high kurtosis. We therefore will try to find an empirical distribution for the data. We will group the 
data in intervals, starting with small intervals and ending with bigger intervals and giving each interval 
a certain probability. See the empirical distribution in the following table. 
 

Value # observations for value Probability Cumulative probability 

12 208 0,1985 0,1985 

24 87 0,0830 0,2815 

36 61 0,0582 0,3397 

48 69 0,0658 0,4055 

60 48 0,0458 0,4513 

72 31 0,0296 0,4809 

84 27 0,0258 0,5067 

96 44 0,0420 0,5487 

108 36 0,0344 0,5830 

120 57 0,0544 0,6374 

132 41 0,0391 0,6765 

144 28 0,0267 0,7032 

156 12 0,0115 0,7147 

168 23 0,0219 0,7366 

180 20 0,0191 0,7557 

192 10 0,0095 0,7653 

204 8 0,0076 0,7729 

216 10 0,0095 0,7824 

228 7 0,0067 0,7891 

240 15 0,0143 0,8034 

252 6 0,0057 0,8092 

264 5 0,0048 0,8139 

276 1 0,0010 0,8149 

288 8 0,0076 0,8225 

300 19 0,0181 0,8406 

312 2 0,0019 0,8426 

324 5 0,0048 0,8473 

336 4 0,0038 0,8511 

348 5 0,0048 0,8559 
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360 10 0,0095 0,8655 

372 3 0,0029 0,8683 

384 6 0,0057 0,8740 

396 12 0,0115 0,8855 

408 4 0,0038 0,8893 

420 4 0,0038 0,8931 

432 7 0,0067 0,8998 

444 2 0,0019 0,9017 

456 2 0,0019 0,9036 

468 2 0,0019 0,9055 

480 7 0,0067 0,9122 

492 1 0,0010 0,9132 

504 7 0,0067 0,9198 

516 1 0,0010 0,9208 

540 2 0,0019 0,9227 

552 1 0,0010 0,9237 

564 4 0,0038 0,9275 

588 2 0,0019 0,9294 

600 10 0,0095 0,9389 

612 2 0,0019 0,9408 

648 2 0,0019 0,9427 

672 1 0,0010 0,9437 

696 1 0,0010 0,9447 

708 1 0,0010 0,9456 

720 5 0,0048 0,9504 

744 1 0,0010 0,9513 

792 2 0,0019 0,9532 

804 2 0,0019 0,9552 

816 1 0,0010 0,9561 

840 2 0,0019 0,9580 

852 1 0,0010 0,9590 

900 2 0,0019 0,9609 

984 2 0,0019 0,9628 

1080 2 0,0019 0,9647 

1104 1 0,0010 0,9656 

1128 1 0,0010 0,9666 

1200 13 0,0124 0,9790 

1248 1 0,0010 0,9800 

1272 1 0,0010 0,9809 

1356 1 0,0010 0,9819 

1440 1 0,0010 0,9828 

1452 1 0,0010 0,9838 

1488 1 0,0010 0,9847 

1632 1 0,0010 0,9857 

1656 1 0,0010 0,9866 
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1800 10 0,0095 0,9962 

1980 1 0,0010 0,9971 

2520 1 0,0010 0,9981 

2880 1 0,0010 0,9990 

4920 1 0,0010 1,0000 

 

Appendix B.3.3 Result of modeling 
We now model the distributions in the simulation model described in Chapter 5. We make a run of 
5000 weeks and compare the average demand and standard deviation of demand to the real data. We 
see the results in Table B.9.3. The number of order lines per week and the amount of products per 
order line are distributed as expected and very close to the summary statistics of the real data. 
However the standard deviation of the total demand deviates by 17% from the real standard deviation 
of the demand. From this, we can conclude that our assumption, that the number of order lines per 
week and the total amount of products per order line are independent, is not true. We expect some 
correlation in the data. In the next section, we test how the data is correlated. 

Table B.9.3 Input distribution validation SKU A 

SKU A Data Model output  Percentage of deviation 

Average total demand per week 3736 3839 3% 

Std. dev. total demand per week  1997 2333 17% 

Average # order lines 20 20 0% 

Std. dev. # order lines 10 10 0% 

Average # products per order line 190 189 -1% 

Std. dev. # products per order line 344 344 0% 

 

Appendix B.3.4 Correlation Analysis 
The results of modeling the demand suggest that there is correlation in the demand, which is not 
included in the model. Probably our first assumption that the number of order lines and the number 
of products per order line are independent is not true. It could be that if the number of order lines is 
high in a week, that a lot of small customers place order lines, which would result in a low average 
requested quantity per order line. We therefore test the correlation between the average requested 
quantity and the number of order lines, see Table B.9.4. We see that there is a slightly negative 
correlation between those two factors. This means that if the number of order lines are high, the 
number of products ordered per order line is probably low. This could be one reason for the standard 
variability of the model being higher than in reality.  
Furthermore, we see that the number of order lines is slightly correlated with the total demand, but 
the average requested quantity per order line is somewhat more positively correlated. The amount of 
order lines in the current week is slightly positively correlated with the amount of order lines in the 
previous week. Also the number of order lines from 2, 3 or 4 weeks before do have a positive 
correlation with the current.  
Furthermore, the correlation between the total demand of the current and previous week is almost 
not very high. The same holds for the average requested quantity. 
 
Table B.9.4 Correlation tests SKU A 

Correlation Tests Correlation 

Avg. Requested Quantity & #OL -0,39 

#OL & Total demand 0,34 

Avg. Requested Quantity &Total demand 0,66 

#OL & #OL previous week 0,26 

Total demand & previous week 0,14 
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Avg. Requested Quantity & previous week 0,09 

#OL & #OL 2 weeks before 0,47 

#OL & #OL 3 weeks before 0,25 

#OL & #OL 4 weeks before 0,41 

 
In addition to that, we split the data in months with 4 weeks and months with 5 weeks. For each month, 
we test if there is a significant difference between the weeks for different factors through ANOVA 
analysis. We look at differences between the weeks for the total demand and the number of order 
lines. The result of the ANOVA test lets us conclude that there is no significant difference between the 
weeks. That means that there is no week in which the demand is significantly higher or lower. 
Therefore we cannot conclude that customers wait with ordering until the last week of the month. We 
get the same result for the average requested quantity on an order line. This means that big and small 
customers place orders throughout the whole months.  
 
Due to the slightly negative correlation between the average requested quantity and the number of 
order lines, we try to model the empirical distribution differently. This is described in the next section. 
 

Appendix B.3.1 New empirical distribution for the amount of products per order line for 

product group A 
We split the demand in two sets, namely in weeks with the amount of order lines bigger than the 
average of 20 and in weeks with the amount of order lines smaller or equal to the average. The 
following table shows the characteristics of our first set. 
 

Amount of products per order line 

Mean 158 

Standard Deviation 321 

Kurtosis 86 

Skewness 8 

Minimum 2 

Maximum 4920 

Count 667 

 
For this data, we conclude that it still is hard to find a theoretical distribution due to a high skewness 
and high kurtosis, although the mean, standard deviation and skewness are lower those of the whole 
dataset. We therefore will try to find an empirical distribution for the data. We will group the data in 
intervals, starting with small intervals and ending with bigger intervals and giving each interval a certain 
probability. See the empirical distribution in the following table. 
 

Value # observations for value Probability Cumulative probability 

12 150 0,2249 0,2249 

24 59 0,0885 0,3133 

36 34 0,0510 0,3643 

48 49 0,0735 0,4378 

60 36 0,0540 0,4918 

72 19 0,0285 0,5202 

84 16 0,0240 0,5442 

96 31 0,0465 0,5907 

108 20 0,0300 0,6207 
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120 38 0,0570 0,6777 

132 20 0,0300 0,7076 

144 19 0,0285 0,7361 

156 7 0,0105 0,7466 

168 18 0,0270 0,7736 

180 15 0,0225 0,7961 

192 7 0,0105 0,8066 

204 8 0,0120 0,8186 

216 7 0,0105 0,8291 

228 3 0,0045 0,8336 

240 11 0,0165 0,8501 

252 5 0,0075 0,8576 

264 4 0,0060 0,8636 

276 1 0,0015 0,8651 

288 4 0,0060 0,8711 

300 9 0,0135 0,8846 

312 1 0,0015 0,8861 

324 1 0,0015 0,8876 

336 4 0,0060 0,8936 

348 3 0,0045 0,8981 

360 2 0,0030 0,9010 

372 1 0,0015 0,9025 

384 3 0,0045 0,9070 

396 5 0,0075 0,9145 

408 2 0,0030 0,9175 

420 3 0,0045 0,9220 

432 4 0,0060 0,9280 

468 1 0,0015 0,9295 

480 5 0,0075 0,9370 

492 1 0,0015 0,9385 

504 4 0,0060 0,9445 

516 1 0,0015 0,9460 

540 2 0,0030 0,9490 

564 3 0,0045 0,9535 

588 2 0,0030 0,9565 

600 2 0,0030 0,9595 

612 2 0,0030 0,9625 

648 1 0,0015 0,9640 

672 1 0,0015 0,9655 

696 1 0,0015 0,9670 

708 1 0,0015 0,9685 

720 1 0,0015 0,9700 

744 1 0,0015 0,9715 

816 1 0,0015 0,9730 

840 2 0,0030 0,9760 
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900 1 0,0015 0,9775 

1080 1 0,0015 0,9790 

1200 5 0,0075 0,9865 

1272 1 0,0015 0,9880 

1488 1 0,0015 0,9895 

1800 4 0,0060 0,9955 

1980 1 0,0015 0,9970 

2880 1 0,0015 0,9985 

4920 1 0,0015 1,0000 

 
The following table shows the characteristics of our second set, which includes weeks with a number 
of order lines of 20 or smaller. 
 

Amount of products per order line 

Mean 246 

Standard Deviation 376 

Kurtosis 9 

Skewness 3 

Minimum 1 

Maximum 2520 

Count 381 

 
For this data, we conclude that it still is hard to find a theoretical distribution due to a high skewness 
and high kurtosis, although the mean, kurtosis and skewness are lower those of the whole dataset. We 
therefore will try to find an empirical distribution for the data. We will group the data in intervals, 
starting with small intervals and ending with bigger intervals and giving each interval a certain 
probability. See the empirical distribution in the following table. 
 

Value # observations for value Probability Cumulative probability 

12 58 0,1522 0,1522 

24 28 0,0735 0,2257 

36 27 0,0709 0,2966 

48 20 0,0525 0,3491 

60 12 0,0315 0,3806 

72 12 0,0315 0,4121 

84 11 0,0289 0,4409 

96 13 0,0341 0,4751 

108 16 0,0420 0,5171 

120 19 0,0499 0,5669 

132 21 0,0551 0,6220 

144 9 0,0236 0,6457 

156 5 0,0131 0,6588 

168 5 0,0131 0,6719 

180 5 0,0131 0,6850 

192 3 0,0079 0,6929 

216 3 0,0079 0,7008 
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228 4 0,0105 0,7113 

240 4 0,0105 0,7218 

252 1 0,0026 0,7244 

264 1 0,0026 0,7270 

288 4 0,0105 0,7375 

300 10 0,0262 0,7638 

312 1 0,0026 0,7664 

324 4 0,0105 0,7769 

348 2 0,0052 0,7822 

360 8 0,0210 0,8031 

372 2 0,0052 0,8084 

384 3 0,0079 0,8163 

396 7 0,0184 0,8346 

408 2 0,0052 0,8399 

420 1 0,0026 0,8425 

432 3 0,0079 0,8504 

444 2 0,0052 0,8556 

456 2 0,0052 0,8609 

468 1 0,0026 0,8635 

480 2 0,0052 0,8688 

504 3 0,0079 0,8766 

552 1 0,0026 0,8793 

564 1 0,0026 0,8819 

600 8 0,0210 0,9029 

648 1 0,0026 0,9055 

720 4 0,0105 0,9160 

792 2 0,0052 0,9213 

804 2 0,0052 0,9265 

852 1 0,0026 0,9291 

900 1 0,0026 0,9318 

984 2 0,0052 0,9370 

1080 1 0,0026 0,9396 

1104 1 0,0026 0,9423 

1128 1 0,0026 0,9449 

1200 8 0,0210 0,9659 

1248 1 0,0026 0,9685 

1356 1 0,0026 0,9711 

1440 1 0,0026 0,9738 

1452 1 0,0026 0,9764 

1632 1 0,0026 0,9790 

1656 1 0,0026 0,9816 

1800 6 0,0157 0,9974 

2520 1 0,0026 1,0000 
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Appendix B.4 Input distribution for the SKU of product group B 
Let us start by trying to fit a theoretical distribution for the demand of the SKU of product group B. We 
first take a look at the average demand, the standard deviation of the demand, the average number 
of order lines per week, the standard deviation of the number of order lines per week, the average 
amount of products per order line and the standard deviation of the amount of products per order line 
in Table B.9.5. We see that the standard deviation of the total demand is almost half the size of the 
average demand. This is probably due to the high variation in the amount of products per order line, 
which is five times bigger than the average. A high variability in the amount of products on an order 
line can influence the CSL-availability. 
 
Table B.9.5 Demand data SKU B 

SKU B Data 

Average total demand per week 2512 

Std. dev. total demand per week  1235 

Average # order lines 190 

Std. dev. # order lines 31 

Average # products per order line 13 

Std. dev. # products per order line 65 

 

Appendix B.4.1 Number of order lines per week 
For estimating the demand, we need to estimate the number of order lines per week and the amount 
of products ordered on one order line. Let us first look at the distribution of the number of order lines. 
After filtering out the weeks with promotion, we have 44 weeks of data points left. We start by 
measuring the location, variability and shape of the data. The average number of order lines per week 
is 190 with a standard deviation of 31, see Table B.9.6. The data is almost symmetric due to the 
skewness being almost zero. Likewise, the kurtosis is almost zero and lets us expect a normal shape.  
 
Table B.9.6 Summary statistics #OL SKU B 

Number of order lines 

Mean 190 

Standard Deviation 31 

Kurtosis -0,5 

Skewness 0,2 

Minimum 131 

Maximum 249 

Count 44 

 
From the descriptive statistics of the data, we first assume a normal distribution. We try fitting a 
normal distribution with mean 190 and standard deviation 31. To test the goodness-of-fit visually, we 
look at the Q-Q plot of the fitted model distribution versus the real demand data. It can be seen, that 
the graph is almost a straight line, which lets us expect that the normal distribution fits well. 
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Moreover, we perform a chi-square test to test if the normal distribution fits the data well, described 
in Chapter 6.6.2 in (Law, 2007). The null hypothesis is that the normal distribution fits our data well. 

We use the formula for the test statistic  𝜒2 = ∑
(𝑁𝑗−𝑛𝑝𝑗)

2

𝑛𝑝𝑗

𝑘
𝑗=1 , where 𝑁𝑗  is the amount of observations 

which are in bin j, 𝑛 the total amount of observations,  𝑝𝑗  the expected proportion of the data which 

fall in the 𝑗𝑡ℎ interval and 𝑘 the amount of intervals, which we choose to be 20. From this formula we 
get the value 14,8 which is a smaller value than the value from the table with a degree of freedom of 
19 and a confidence interval of 95%, which is 30,1. Thereby, we conclude that we do not reject the null 
hypothesis, which states that the normal distribution is a good fit. Therefore, we use the normal 
distribution with mean 190 and standard deviation 31 for estimating the amount of order lines per 
week. In the model, we add the condition that the amount of order lines can never be below zero. 
 

Appendix B.4.2 Amount of products per order line 
Next we try to estimate the amount of products per order line. Let us look again at the summary 
statistics. The average amount of products per order line is 13 with a standard deviation of 65. The 
data is skewed to the left and spread out widely. This, we can read from the values of the skewness 
and kurtosis in Table B.9.7. 
 
Table B.9.7 Summary statistics amount of products per OL SKU B 

Amount of products per order line 

Mean 13 

Standard Deviation 65 

Kurtosis 221 

Skewness 13 

Minimum 1 

Maximum 1745 

Count 11004 

 
With this data, it is impossible to create a smooth histogram due to the high kurtosis and skewness. It 
is interesting to see that in 77% of the cases an amount of 3 products is ordered. The rest of the order 
sizes varies between 1 and 1745, which is quite a large range. We take a look at order patterns of 
different customers, to see if it is possible to divide the customers into groups and analyze the order 
pattern of the groups. One hypothesis we test is if bigger customers order less frequently, e.g. one 
order line per month at the end of the month. However, this seems not to be the case. We try to divide 

100

120

140

160

180

200

220

240

260

100 120 140 160 180 200 220 240 260

Q-Q plot
Demand data - Theoretical distribution (normal)



91 
 

customers up into different groups. However, we always remain with at least one customer group with 
a really large variation in order sizes. 
 
For this data, we conclude that it is hard to find a theoretical distribution due to a high skewness and 
high kurtosis. We therefore will try to find an empirical distribution for the data. We will group the 
data in intervals, starting with small intervals and ending with bigger intervals and giving each interval 
a certain probability. See the empirical distribution in the following table. 
 

Interval Weighted 
average # 
products 

(multiple of 3) 

# observations in 
interval 

Probability Cumulative 
probability 

[1,3] 3 8628 0,7841 0,7841 

[4,6] 6 1330 0,1209 0,9049 

[7,9] 9 121 0,0110 0,9159 

[10,12] 12 173 0,0157 0,9317 

[13,15] 15 30 0,0027 0,9344 

[16,18] 18 24 0,0022 0,9366 

[19,21] 21 19 0,0017 0,9383 

[22,24] 24 25 0,0023 0,9406 

[25,27] 27 9 0,0008 0,9414 

[28,30] 30 52 0,0047 0,9461 

[31,33] 33 1 0,0001 0,9462 

[34,36] 36 46 0,0042 0,9504 

[37,39] 39 0 0,0000 0,9504 

[39,42] 42 19 0,0017 0,9521 

[43,45] 45 36 0,0033 0,9554 

[46, 60] 51 63 0,0057 0,9611 

[61, 80] 75 48 0,0044 0,9655 

[81, 99] 90 70 0,0064 0,9718 

[100, 120] 108 63 0,0057 0,9776 

[121, 160] 144 61 0,0055 0,9831 

[161, 200] 180 35 0,0032 0,9863 

[201, 299] 255 61 0,0055 0,9918 

[300, 399] 330 25 0,0023 0,9941 

[400, 499] 438 23 0,0021 0,9962 

[500,  599] 555 11 0,0010 0,9972 

[600,  699] 642 11 0,0010 0,9982 

[700,  999] 828 10 0,0009 0,9991 

[1000, 1499] 1233 8 0,0007 0,9998 

[1500, 2000] 1671 2 0,0002 1,0000 

 

Appendix B.4.3 Result of modeling 
We now model the distributions in the simulation model described in Chapter 5. We make a run of 
5000 weeks and compare the average demand and standard deviation of demand to the real data. We 
see the results in Table B.9.8. The number of order lines per week and the amount of products per 
order line are distributed as expected and very close to the summary statistics of the real data. 
However the standard deviation of the total demand deviates by almost 20% from the real standard 
deviation of the demand. From this, we can conclude that our assumption, that the number of order 
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lines per week and the total amount of products per order line are independent, is not true. We expect 
some correlation in the data. In the next section, we test how the data is correlated. 
 
Table B.9.8 Input distribution validation SKU B 

SKU B Data Model output  Percentage of deviation 

Average total demand per week 2512 2537 1% 

Std. dev. total demand per week  1235 1005 -19% 

Average # order lines 190 190 0% 

Std. dev. # order lines 31 31 0% 

Average # products per order line 13 13 0% 

Std. dev. # products per order line 65 65 0% 

 

Appendix B.4.4 Correlation Analysis 
The results of modeling the demand suggest that there is correlation in the demand, which is not 
included in the model. Probably our first assumption that the number of order lines and the number 
of products per order line are independent is not true. It could be that if the number of order lines is 
high in a week, that a lot of small customers place order lines, which would result in a low average 
requested quantity per order line. We therefore test the correlation between the average requested 
quantity and the number of order lines, see Table B.9.9. We see that there is no correlation between 
those two factors. Furthermore, we see that the number of order lines is slightly correlated with the 
total demand, but the average requested quantity per order line is almost perfectly positively 
correlated. The amount of order lines in the current week is only slightly negatively correlated with the 
amount of order lines in the previous week. Also the number of order lines from 2, 3 or 4 weeks before 
do not have a strong correlation. Furthermore, the correlation between the total demand of the 
current and previous week is almost zero. The same holds for the average requested quantity. 
 
Table B.9.9 Correlation tests SKU B 

Correlation Tests Correlation 

Avg. Requested Quantity & #OL 0,00 

#OL & Total demand without promotions 0,32 

Avg. Requested Quantity &Total demand without promotions 0,94 

#OL & #OL previous week -0,28 

Total demand without promotion & previous week -0,05 

Avg. Requested Quantity & previous week -0,02 

#OL & #OL 2 weeks before -0,05 

#OL & #OL 3 weeks before -0,08 

#OL & #OL 4 weeks before 0,16 

 
In addition to that, we split the data in months with 4 weeks and months with 5 weeks. For each month, 
we test if there is a significant difference between the weeks for different factors through ANOVA 
analysis. We first change all data for weeks with promotion to the respective average. We look at 
differences between the weeks for the total demand and the number of order lines. The result of the 
ANOVA test lets us conclude that there is no significant difference between the weeks. That means 
that there is no week in which the demand is significantly higher or lower. Therefore we cannot 
conclude that customers wait with ordering until the last week of the month. We get the same result 
for the average requested quantity on an order line. This means that big and small customers place 
orders throughout the whole months. To be sure of this conclusion, we also test the differences 
between the weeks for the number of order lines below and above 100 products per order line. The 
test result still concludes no significant difference between the weeks. This lets us reject our hypothesis 
that big customers order once per month at the end or beginning of the month.  
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Because, we cannot find logical correlations in the demand it is hard to improve the input distributions 
of the demand. Using a theoretical and empirical distribution for a simulation is preferred to using the 
data directly, because it gives us the possibility to generate data which are similar to but not in the 
current data set. Therefore, we decide to use the theoretical and empirical distributions as demand 
input in the following. However, we want to know if using the demand data directly as input to the 
model, results in a output that is closer to reality. In the following table, we see that the demand data, 
which we call “Real demand”, gives even a higher output for a safety stock of two weeks. In practice, 
the CSL-availability is 82,7%. When reducing the safety stock by one week, the CSL-availability 
decreases by 17%. So we see that the real demand is quite sensitive to low stock situations. The reason 
that the modelled demand does not decrease that much in CSL-availability when decreasing the safety 
stock is that we exclude promotion data when generating the input parameters for the distribution 
functions.  
 

CSL-availabilty 2 weeks SS 1 week SS 

Real demand 99,2% 82,2% 

Modeled demand 97,3% 89,8% 

 1,9% -7,6% 

 

Appendix B.5 Sensitivity Analysis SKU A 
In the following tables, we show results for different settings for the forecast, lead time variability, 
capacity, the percentage of orders that are cancelled if stock is unavailable and different orders of 
serving customers for SKU A. The simulation run length is 5000 weeks. The initial inventory level is one 
week of safety stock and the first nine weeks have a replenishment size of the average demand. For 
this SKU, the maximum capacity is 10176 if not stated otherwise. We do the analysis for safety stock 
levels of one and two weeks of average demand.  
 

Forecasting Value 2 weeks SS 1 week SS 

-5% 3549 97,4% 94,4% 

-4% 3587 97,7% 94,9% 

-3% 3624 97,9% 95,5% 

-2% 3661 98,2% 95,6% 

-1% 3699 98,4% 96,0% 

0% 3736 98,5% 96,1% 

1% 3773 98,7% 96,5% 

2% 3811 98,8% 96,7% 

 
For the sensitivity analysis of the lead time variability in the next table, we assume that orders that 
cannot be fulfilled in the beginning of the week due to the lead time variability are not cancelled, 
because they can be delivered a few days later. 
 
 

Chance Late 20%  30%  

OL Affected 2 weeks SS 1 week SS 2 weeks SS 1 week SS 

0% 98,5% 96,1% 98,5% 96,1% 

5% 98,3% 95,6% 98,1% 95,7% 

10% 97,8% 95,1% 97,6% 94,8% 

15% 97,5% 94,2% 96,8% 93,2% 

20% 96,9% 93,7% 96,1% 91,9% 
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25% 96,6% 93,0% 95,1% 90,9% 

30% 96,0% 92,1% 94,1% 89,4% 

 
The following table is a sensitivity analysis of lead time variability with the assumption of 70% of 
cancellations also for orders in the beginning of the week, which could be delivered just a few days 
later. 
 

Chance Late 20%  30%  

OL Affected 2 weeks SS 1 week SS 2 weeks SS 1 week SS 

0% 98,5% 96,1% 98,5% 96,1% 

5% 98,4% 95,8% 98,1% 95,5% 

10% 97,9% 95,7% 97,7% 95,0% 

15% 97,8% 95,1% 97,1% 94,3% 

20% 97,2% 94,3% 96,4% 92,9% 

25% 97,1% 93,7% 96,0% 92,1% 

30% 96,7% 93,2% 95,2% 91,3% 

 

Percentage Capacity 2 weeks SS 1 week SS 

150% 15264 98,5% 96,1% 

125% 12720 98,5% 96,1% 

100% 10176 98,5% 96,1% 

75% 7632 98,5% 96,1% 

50% 5088 98,3% 96,1% 

25% 2544 66,8% 66,8% 

 

Cancellation 2 weeks SS 1 week SS 

0% 95,0% 86,1% 

10% 96,2% 89,1% 

20% 96,8% 91,0% 

30% 97,2% 92,6% 

40% 97,8% 93,5% 

50% 97,9% 94,6% 

60% 98,3% 95,6% 

70% 98,5% 96,1% 

80% 98,7% 96,7% 

90% 98,9% 97,2% 

100% 99,0% 97,6% 

 
 

Order 2 weeks SS 1 week SS 

FCFS 98,5% 96,1% 

Descending 96,3% 90,7% 

Ascending 99,5% 98,6% 
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Appendix B.6 Sensitivity Analysis SKU B 
In this part of the appendix, we show additional results of the sensitivity analysis that we perform in 
Chapter 5.4. Actual demand data is used as demand input for the simulation model as well as the 
modeled demand distributions. In the following tables, we show results for different settings for the 
forecast, lead time variability, capacity and different orders of serving customers for SKU B. The 
simulation run length is 5000 weeks. The initial inventory level is one week of safety stock and the first 
nine weeks have a replenishment size of the average demand. For this SKU, the maximum capacity is 
5040 if not stated otherwise. We do the analysis for safety stock levels of one and two weeks of average 
demand.  
 
 

  Real demand Modeled demand 

Percentage Forecast 2 weeks SS 1 week SS 2 weeks SS 1 week SS 

-5% 2640 91,8% 71,4% 94,3% 80,8% 

-4% 2668 93,1% 73,5% 95,1% 82,9% 

-3% 2696 94,6% 75,7% 95,8% 84,7% 

-2% 2723 96,2% 77,0% 96,3% 86,5% 

-1% 2751 97,9% 79,6% 96,8% 88,2% 

0% 2779 99,2% 82,2% 97,3% 89,8% 

1% 2807 99,9% 84,3% 97,6% 91,0% 

2% 2835 100,0% 87,6% 98,0% 92,2% 

 

Chance Late = 20% Real demand  Modeled demand 

OL Affected 2 weeks SS 1 week SS 2 weeks SS 1 week SS 

0% 99,2% 82,2% 97,3% 89,8% 

5% 99,1% 81,9% 97,2% 89,6% 

10% 99,0% 81,6% 97,2% 89,5% 

15% 99,0% 81,4% 97,2% 89,3% 

20% 98,9% 81,0% 97,1% 89,1% 

25% 98,8% 80,6% 97,0% 89,0% 

30% 98,6% 80,4% 97,0% 88,8% 

 
 
 

Chance Late = 30% Real demand  Modeled demand 

OL Affected 2 weeks SS 1 week SS 2 weeks SS 1 week SS 

0% 99,2% 82,2% 97,3% 89,8% 

5% 99,1% 81,8% 97,2% 89,6% 

10% 99,0% 81,4% 97,1% 89,3% 

15% 98,9% 80,8% 97,1% 89,1% 

20% 98,8% 80,5% 97,0% 88,8% 

25% 98,5% 79,9% 96,9% 88,5% 

30% 98,3% 79,4% 96,8% 88,2% 

 

  Real demand Modeled demand 

Percentage Capacity 2 weeks SS 1 week SS 2 weeks SS 1 week SS 
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121% 6120 99,2% 82,2% 97,3% 89,9% 

111% 5580 99,2% 82,2% 97,3% 89,9% 

100% 5040 99,2% 82,2% 97,3% 89,8% 

89% 4500 99,2% 82,2% 97,2% 89,6% 

79% 3960 99,2% 82,1% 97,0% 89,2% 

68% 3420 99,2% 78,4% 96,5% 87,9% 

57% 2880 84,4% 33,4% 93,8% 81,6% 

46% 2340 0,3% 0,2% 0,4% 0,4% 

 
 
 

 Real demand Modeled demand 

Order 2 weeks SS 1 week SS 2 weeks SS 1 week SS 

FCFS 99,2% 82,2% 97,3% 89,2% 

Descending 97,4% 77,3% 95,4% 83,0% 

Ascending 100,0% 93,4% 98,7% 94,1% 



97 
 

Appendix B.7 Flow chart  simulation inventory model 

Replenishment 
arrival

Demand Inventory 
evaluation

Calculate the number of order 
lines for this week

For every order line, calculate 
the number of products 

ordered

For every order line, 
decrement the inventory level 
by the amount of products of 

the current order line

Return

Calculate the order size to be 
replenished

Set the time when the order 
arrives

Return

Increment the inventory level 
with the order size of the 

current week

Return

Document all order lines and 
all hits

Initialize 
values and 

start 
simulation
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Appendix C Experiment design and results 

Appendix C.1 Warm-up period 
To determine the warm-up period, we use data created by the simulation model. The input for the 
demand is generated by the theoretical and empirical distributions that we developed in Appendix B.2. 
 
To identify the warm-up period, we use the method of Welch, which is described in Law (Law, 2007, 
p. 509). We choose to make 𝑛 = 5 replications which means that we simulate with 5 different initial 
seed values for the random function and we choose 𝑚 = 5000 which means that we simulate 5000 
weeks for each replication. We simulate these replications with the default settings for the 
replenishment lead time and safety stock, which is 9 and 2 respectively. 𝑌𝑗𝑖  is the 𝑖th observation from 

the 𝑗th replication, which means that for a given seed value 𝑗, 𝑌𝑗𝑖  is the average CSL-availability YTD of 

week 𝑖. The following formula shows how 𝑌𝑗𝑖  is calculated. 

 

𝑌𝑗𝑖 = 
∑ 𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑑 𝑂𝑇&𝐼𝐹 𝑖𝑛 𝑤𝑒𝑒𝑘 𝑘𝑖
𝑘=1

∑ 𝑂𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛 𝑤𝑒𝑒𝑘 𝑘𝑖
𝑘=1

 

 
 
In the Welch method, �̅�𝑖  is defined as �̅�𝑖 = (∑ 𝑌𝑗𝑖)/𝑛

𝑛
𝑗=1  for 𝑖 = 1,2,… ,𝑚. The following graph shows 

the moving average for �̅�𝑖 with different window sizes 𝑤, which are calculated by the following formula. 
 

�̅�𝑖(𝑤) =  

{
 
 

 
 ∑ �̅�𝑖+𝑠

𝑤
𝑠= −𝑤

2𝑤 + 1
        𝑖𝑓 𝑖 = 𝑤 + 1,… ,𝑚 − 𝑤

∑ �̅�𝑖+𝑠
𝑖−1
𝑠= −(𝑖−1)

2𝑖 − 1
                      𝑖𝑓 𝑖 = 1,… ,𝑤

 

 
The following graph shows the moving averages of the CSL-availability YTD for SKU B with different 
window sizes. 
 

 
 
It looks like the steady-state is reached at around 215. We choose the length of the warm-up period 
to be 300 to have a nice round number.  
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The following graph shows the moving averages of the CSL-availability YTD for SKU A with different 
window sizes. 
 

 
 
The steady-state in this graph is reach at around 300.  
 

Appendix C.2 Number of Replications per experiment 
For determining the number of replications needed for each experiment we follow the “sequential 
procedure (new replications are added one at a time) for obtaining an estimate of µ with a specified 
relative error that takes only as many replications as needed” (Law, 2007, p. 505). The mean value that 
we want to find is the mean CSL-availability YTD.  
The first step of the procedure is to make an initial number of replications. We start by making 5 
replications of simulation runs with a run length of 5000. We delete the initial warm-up period. We 
compute the mean CSL-availability YTD of each replication. Furthermore, we calculate the usual 
confidence interval half-length with the following formula: 
 

𝛿(𝑛, 𝛼) = 𝑡
𝑛−1,1−

𝛼
2
 √
𝑆2(𝑛)

𝑛
, 

with a confidence level 𝛼 = 0,05 and 𝑆2(𝑛) the sample variance. 

The last step is to check if 𝛿(𝑛, 𝛼) |𝑋(𝑛)|⁄  ≤ 𝛾´, where 𝛾´ =
𝛾

1+𝛾
 and 𝛾 = 0,05 is the relative error of 

the mean. If the check is positive, then we know the amount of replications needed. The confidence 
interval is then denoted by 

[𝑋(𝑛) − 𝛿(𝑛, 𝛼),  𝑋(𝑛) + 𝛿(𝑛, 𝛼)]. 

 
In the following tables, the number of replications needed for each experiment are listed. We choose 
the maximum of all replications needed for a better comparison between the experiments. The 
number of replications for SKU B is 4 and 2 for SKU A. 
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Experiment Replenishment 
Lead Time (in 
weeks) 

Safety stock 
(in weeks) 

Number of 
Replications needed 
(SKU B) 

Number of 
Replications needed 
(SKU A) 

1 9 2 3 2 

2 7 2 2 2 

3 5 2 2 2 

4 4 2 2 2 

5 3 2 2 2 

6 2 2 4 2 

7 9 1 4 2 

8 7 1 3 2 

9 5 1 3 2 

10 4 1 2 2 

11 3 1 2 2 

12 2 1 2 2 

 

Experiment Number of Replications 
needed (SKU B) 

Number of Replications needed 
(SKU A) 

13 2 2 

14 2 2 

15 2 2 

16 2 2 

17 2 2 

18 2 2 

19 2 2 

20 3 2 
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Appendix C.3 Results product group A 
Air freight 
 

2 weeks SS Sea Freight Air Freight Percentage 
change 

Absolute Value 

Sales        355.175,88 €         360.874,44 €    

Cost price all pallets -     128.310,00 €  -     130.143,00 €    

Cost price transport -          3.780,00 €  -          9.585,00 €    

Lost sales -          2.708,93 €  -             217,94 €  92%                       
2.490,98 €  

     

Absolute IGM        220.376,95 €         220.928,50 €  0,3%                          
551,54 €  

     

COGS -     132.090,00 €  -     139.728,00 €    

COGS per week -          2.641,80 €  -          2.794,56 €    

Lead time 10 4   

Net inventory value -       26.418,00 €  -       11.178,24 €    

     

WACC (6,7%) -       17.700,06 €  -          7.489,42 €  -58%                    
10.210,64 €  

     

Total        202.676,89 €         213.439,08 €  5,3%                    
10.762,18 €  

 

1 week SS Sea Freight Air Freight Percentage 
change 

Absolute Value 

Sales        346.370,88 €         355.847,04 €    

Cost price all pallets -     124.644,00 €  -     128.310,00 €    

Cost price transport -          3.672,00 €  -          9.450,00 €    

Lost sales -          6.411,31 €  -          2.393,39 €  -63%                       
4.017,92 €  

     

Absolute IGM        211.643,57 €         215.693,65 €  2%                       
4.050,08 €  

     

COGS -     128.316,00 €  -     137.760,00 €    

COGS per week -          2.566,32 €  -          2.755,20 €    

Lead time 9 3   

Net inventory value -       23.096,88 €  -          8.265,60 €    

     

WACC (6,7%) -       15.474,91 €  -          5.537,95 €  -64%                       
9.936,96 €  

     

Total        196.168,66 €         210.155,70 €  7,1%                    
13.987,04 €  
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Production line at production site North America 
 

2 weeks SS Sea Freight Production site 
budget 

Percentage 
change 

Absolute Value 

Sales        355.175,88 €     360.874,44 €    

Cost price all pallets -     128.310,00 €  - 130.143,00 €    

Cost price transport -          3.780,00 €  -      4.792,50 €    

Lost sales -          2.708,93 €  -          217,94 €  -100%            2.490,98 
€  

     

Absolute IGM        220.376,95 €     225.721,00 €  968,9%            5.344,04 
€  

     

COGS -     132.090,00 €  - 134.935,50 €    

COGS per week -          2.641,80 €  -      2.698,71 €    

Lead time 10 4   

Net inventory value -       26.418,00 €  -    10.794,84 €    

     

WACC (6,7%) -       17.700,06 €  -      7.232,54 €  103%          10.467,52 
€  

     

Total        202.676,89 €     218.488,45 €  146,9%          15.811,56 
€  

 
1 week SS Sea Freight Production site 

budget 
Percentage 
change 

Absolute Value 

Sales        346.370,88 €     355.847,04 €    

Cost price all pallets -     124.644,00 €  - 128.310,00 €    

Cost price transport -          3.672,00 €  -      1.890,00 €    

Lost sales -          6.411,31 €  -      2.393,39 €  -160% -          6.411,31 
€  

     

Absolute IGM        211.643,57 €     223.253,65 €  5412%        219.203,57 
€  

     

COGS -     128.316,00 €  - 130.200,00 €    

COGS per week -          2.566,32 €  -      2.604,00 €    

Lead time 9 3   

Net inventory value -       23.096,88 €  -      7.812,00 €    

     

WACC (6,7%) -       15.474,91 €  -      5.234,04 €  103%          10.240,87 
€  

     

Total        196.168,66 €     218.019,61 €  156,2%          21.850,95 
€  
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Appendix C.4 Results product group B 
Air freight 
 

2 weeks SS Sea Freight Air Freight Percentage 
change 

Absolute 
change 

Sales    3.678.675,98 €    3.678.675,98 €    

Cost price all pallets - 1.270.498,61 €  -1.272.489,50 €    

Cost price transport -       36.786,56 €  -    245.628,00 €    

Lost sales -       33.005,81 €  -      6.386,18 €  81%      26.619,64 €  

     

Absolute IGM  2.338.385,00 €    2.154.172,30 €  -8% - 184.212,70 €  

     

COGS - 1.307.285,17 €  -1.518.117,50 €    

COGS per week -       26.145,70 €  -      30.362,35 €    

Lead time 10 6   

Net inventory value -     261.457,03 €  -    182.174,10 €    

     

WACC (6,7%) -     175.176,21 €  -    122.056,65 €  30%      53.119,57 €  

     

Total    2.163.208,78 €    2.032.115,65 €  -6% - 131.093,13 €  

 
1 week SS Sea Freight Air Freight Percentage 

change 
Absolute 
change 

Sales    3.678.675,98 €    3.678.675,98 €    

Cost price all pallets - 1.270.503,28 €  -1.272.489,50 €    

Cost price transport -       36.786,69 €  -    245.628,00 €    

Lost sales -     141.948,25 €  -      60.588,20 €  -57%      81.360,05 €  

     

Absolute IGM    2.229.437,76 €    2.099.970,27 €  -6% - 129.467,49 €  

     

COGS - 1.307.289,97 €  -1.518.117,50 €    

COGS per week -       26.145,80 €  -      30.362,35 €    

Lead time 9 5   

Net inventory value -     235.312,19 €  -    151.811,75 €    

     

WACC (6,7%) -     157.659,17 €  -    101.713,87 €  -35%      55.945,30 €  

     

Total    2.071.778,59 €    1.998.256,40 €  -4% -   73.522,19 €  
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Late customization 
 

2 weeks SS Sea Freight Late 
customization 

Percentage 
change 

Absolute 
change 

Sales    3.678.675,98 €    3.678.675,98 €    

Cost price all pallets - 1.270.498,61 €  -1.340.557,39 €    

Cost price transport -       36.786,56 €  -      43.661,92 €    

Lost sales -       33.005,81 €  -            998,19 €  -97%    32.007,62 €  

     

Absolute IGM    2.338.385,00 €    2.293.458,48 €  -2% -  44.926,52 €  

COGS KM  -1.238.224,76 €    

COGS per week  -      24.764,50 €    

Lead time  10   

Subtotal  -    247.644,95 €    

     

COGS - 1.307.285,17 €  -1.384.219,31 €    

COGS per week -       26.145,70 €  -      27.684,39 €    

Lead time 10 4   

Subtotal -     261.457,03 €  -    110.737,54 €    

     

Net inventory value -     261.457,03 €  -    358.382,50 €    

     

WACC (6,7%) -     175.176,21 €  -    240.116,27 €  37% -  64.940,06 €  

     

Total    2.163.208,78 €    2.053.342,20 €  -5,1% - 109.866,58 €  

  

1 week SS Sea Freight Late 
customization 

Percentage 
change 

Absolute 
change 

Sales    3.678.675,98 €    3.678.675,98 €    

Cost price all pallets - 1.270.503,28 €  -1.340.557,39 €    

Cost price transport -       36.786,69 €  -      43.661,92 €    

Lost sales -     141.948,25 €  -      22.133,39 €  -84%  119.814,86 €  

     

Absolute IGM    2.229.437,76 €    2.272.323,28 €  2%    42.885,52 €  

COGS KM  -1.272.335,64 €    

COGS per week  -      25.446,71 €    

Lead time  10   

Subtotal  -    254.467,13 €    

     

COGS - 1.307.289,97 €  -1.384.219,31 €    

COGS per week -       26.145,80 €  -      27.684,39 €    

Lead time 9 3   

Subtotal -     235.312,19 €  -      83.053,16 €    

     

Net inventory value -     235.312,19 €  -    337.520,29 €    
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WACC (6,7%) -     157.659,17 €  -    226.138,59 €  43% -  68.479,42 €  

     

Total    2.071.778,59 €    2.046.184,69 €  -1,2% -  25.593,90 €  

  

Supplier in Europe 

2 weeks SS Sea Freight Supplier in 
Europe 

Percentage 
change 

Absolute 
change 

Sales    3.678.675,98 €     3.678.675,98 €    

Cost price all pallets - 1.270.498,61 €  - 1.372.234,18 €    

Cost price transport -       36.786,56 €  -       36.789,12 €    

Lost sales -       33.005,81 €  -         2.685,76 €  92%  30.320,06 €  

     

Absolute IGM  2.338.385,00 €     2.266.966,92 €  -3% -  71.418,07 €  

     

COGS - 1.307.285,17 €  - 1.409.023,30 €    

COGS per week -       26.145,70 €  -       28.180,47 €    

Lead time 10 5   

Net inventory value -     261.457,03 €  -     140.902,33 €    

     

WACC (6,7%) -     175.176,21 €  -       94.404,56 €  46% 80.771,65 €  

     

Total    2.163.208,78 €     2.172.562,36 €  0,4%       9.353,58 €  

 

1 week SS Sea Freight Supplier in 
Europe 

Percentage 
change 

Absolute 
change 

Sales    3.678.675,98 €     3.678.675,98 €    

Cost price all pallets - 1.270.503,28 €  - 1.448.469,41 €    

Cost price transport -       36.786,69 €  -       36.789,12 €    

Lost sales -     141.948,25 €  -       40.857,62 €  -71%    101.090,63 €  

     

Absolute IGM    2.229.437,76 €     2.152.559,83 €  -3% -   76.877,93 €  

     

COGS - 1.307.289,97 €  - 1.485.258,53 €    

COGS per week -       26.145,80 €  -       29.705,17 €    

Lead time 9 4   

Net inventory value -     235.312,19 €  -     118.820,68 €    

     

WACC (6,7%) -     157.659,17 €  -       79.609,86 €  -50%    78.049,31 €  

     

Total     2.072.949,97 €  0,1%       1.171,38 €  
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LT reduction at current supplier 

2 weeks SS Sea Freight LT reduction at 
current supplier 

Percentage 
change 

Absolute 
change 

Sales    3.678.675,98 €      3.678.675,98 €    

Cost price all pallets - 1.270.498,61 €  -   1.270.582,54 €    

Cost price transport -       36.786,56 €  -        36.788,99 €    

Lost sales -       33.005,81 €  -         21.524,27 €  35%     11.481,55 €  

     

Absolute IGM  2.338.385,00 €      2.349.780,19 €  0%     11.395,19 €  

     

COGS - 1.307.285,17 €  -        
1.307.371,52 €  

  

COGS per week -       26.145,70 €  -        26.147,43 €    

Lead time 10 5   

Net inventory value -     261.457,03 €  -      130.737,15 €    

     

WACC (6,7%) -     175.176,21 €  -         87.593,89 €  50%      87.582,32 €  

     

Total    2.163.208,78 €       2.262.186,30 €  4,6%     98.977,51 €  

 

1 week SS Sea Freight LT reduction at 
current supplier 

Percentage 
change 

Absolute 
change 

Sales    3.678.675,98 €       3.678.675,98 €    

Cost price all pallets - 1.270.503,28 €  -    1.270.582,54 €    

Cost price transport -       36.786,69 €  -         36.788,99 €    

Lost sales -     141.948,25 €  -       112.684,77 €  -21%      29.263,48 €  

     

Absolute IGM    2.229.437,76 €       2.258.619,68 €  1%      29.181,92 €  

     

COGS - 1.307.289,97 €  -   1.307.371,52 €    

COGS per week -       26.145,80 €  -         26.147,43 €    

Lead time 9 4   

Net inventory value -     235.312,19 €  -      104.589,72 €    

     

WACC (6,7%) -     157.659,17 €  -         70.075,11 €  -56%     87.584,06 €  

     

Total    2.071.778,59 €       2.188.544,57 €  5,6%   116.765,98 €  
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Best settings: Dual sourcing 

Z_r = 27962 Sea Freight Dual Sourcing Percentage 
change 

Absolute 
change 

Sales       3.678.675,98 €     3.678.675,98 €     

Cost price all pallets -    1.270.498,61 €  - 1.270.615,18 €     

Cost price sea transport -          36.786,56 €  -       34.595,51 €     

Cost price air transport                            -   €  -       14.629,50 €     

Lost sales -          33.005,81 €  -       13.872,06 €  58%      19.133,75 €  

       

Absolute IGM       2.338.385,00 €     2.344.963,74 €  0,3%        6.578,74 €  

COGS reg. -    1.307.285,17 €  - 1.319.840,18 €     

COGS reg. per week -          26.145,70 €  -       26.396,80 €     

Lead time (regular) 11 11    

Lead time (expedited)  6    

Percentage reg. Pallets  94%    

Percentage exp. Pallets  6%    

       

Net inventory value -        287.602,74 €  -     282.492,33 €     

       

WACC (6,7%) -        192.693,83 €  -     189.269,86 €  -2%        3.423,97 €  

       

Total       2.145.691,16 €     2.155.693,87 €  0,47%      10.002,71 €  

 

Z_r =25420 Sea Freight 
Dual Sourcing 

Percentage 
change 

Absolute 
change 

Sales       3.678.675,98 €     3.678.675,98 €     

Cost price all pallets -    1.270.503,28 €  - 1.270.615,18 €     

Cost price sea transport -          36.786,69 €  -       27.532,85 €     

Cost price air transport                            -   €  -       61.724,70 €     

Lost sales -        141.948,25 €  -       17.273,12 €  378%   24.675,13 €  

       

Absolute IGM       2.229.437,76 €     2.301.530,14 €  3,1%    72.092,38 €  

COGS -    1.307.289,97 €  - 1.359.872,72 €     

COGS per week -          26.145,80 €  -       27.197,45 €     

Lead time (regular) 10 10    

Lead time (expedited)   5   

Percentage reg. Pallets   75%   

Percentage exp. Pallets   25%   

       

Net inventory value -        261.457,99 €  -     237.752,94 €     

       

WACC (6,7%) -        175.176,86 €  -     159.294,47 €  -8%    15.882,39 €  

       

Total       2.054.260,91 €     2.142.235,67 €  4,10%    87.974,77 €  

 


