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“One problem in the field of statistics has been that everyone wants to be a theorist. Part of
this is envy - the real sciences are based on mathematical theory. In the universities for this
century, the glamor and prestige has been in mathematical models and theorems, no matter
how irrelevant. ”

L. Breiman
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Added value of machine learning in retail credit risk

by Derk GORTER

This thesis aims to pinpoint the added value of machine learning in the domain of
retail credit risk, where (logistic) regression approaches are most commonly used.
Credit data of the on-line peer to peer lending platform Lending Club is used to cre-
ate retail credit risk models with Logistic Regression, Random Forests, Neural Net-
works and Support Vector Machines. A level playing field is created for the models
by means of a single data transformation to keep the input of all models equal. This
level playing field is achieved by using Weight of Evidence to create a scaled data
set without outliers or missing values. The created retail credit risk models are eval-
uated in terms of modeling approach and in terms of model performance in order
to find added value. The research shows that the added value of the machine learn-
ing approach over the traditional (logistic) regression approach is present. Where
the machine learning algorithms can handle all variables and decide for themselves
how to model the relationships between the variables, the (logistic) regression ap-
proaches need careful selection of subsets of independent variables. This can be
valuable when in the future the amount of information available about loan appli-
cants is larger than there is time to address data issues like correlated variables. The
research has also found added value of machine learning in terms of model perfor-
mance. The Neural Networks and Random Forests produce more accurate results
than (logistic) regression. The Support Vector Machines however are not suitable for
retail credit risk predictions because the best predictions are made when models are
trained with large amounts of data which proved to be problematic for the Support
Vector Machines.
The results of this research depend on the Weight of Evidence transformation which
is shown to be sub optimal for the Random Forests and possibly the other machine
learning models. However while this transformation is suitable for Logistic Regres-
sion, the method is still outperformed by the Random Forests and Neural Networks.
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Chapter 1

Introduction

The first chapter introduces the research by describing the background and motiva-
tion for the research. The research questions are presented and the methods to find
answers to these questions are introduced.

1.1 Research background

The article Statistical Modeling: The Two Cultures (Breiman, 2001b) describes two op-
posing views of predictive modeling. One assumes that data is generated by an
existing stochastic process, the other is algorithmic modeling where the underlying
mechanism generating data is assumed to be unknown/unknowable. The first view
is an econometrics perspective and the second view is how data scientists approach
predictive modeling. The author argues that the first culture has led to irrelevant
theory and questionable scientific conclusions. The conclusions that are drawn from
statistical modeling are about the model that is inferred from the data, and not on the
real underlying process that generates the data. The primary concern of researchers
and practitioners in the algorithmic modeling culture is with producing accurate re-
sults in terms of performance on data that was not used during the fitting of the
models.
This research will compare common practice retail credit risk models, (logistic) re-
gression, with three most dominant machine learning algorithms: Random Forests,
Neural Networks and Support Vector Machines. Publicly available data from Lend-
ing Club will be used to create, validate and test the models. Lending Club is an
American peer to peer lending platform that makes borrower information and his-
torical loan performance publicly available. The company uses this information to
assign risk grades to loans, and they encourage investors to slice and dice the data
in order to find loan characteristics that they like and want to invest in. This en-
couragement has also attracted the attention of the scientific community. There are
numerous articles published that study the Lending Club data set. The studies that
incorporate machine learning, are concerned with minimizing defaults in order to
avoid these during the selection of loans to invest in. In this setting false positives
are much worse than false negatives. In other words a model recommending a loan
that defaults is much worse than not recommending a loan that does not default.
This results in models that are primarily good at finding the worst loans at the cost
of misclassifying good loans. These models can be misleading in terms of the actual
credit risk associated with an individual loan.
We will not take the side of the investor, but rather the side of a financial institu-
tion that needs to evaluate the credit risk of new loans. The fin-tech industry will
keep challenging large financial institutions with new ideas and algorithms that en-
able them to provide better and cheaper financial services. From a risk management
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perspective it is interesting to find out how good some of these algorithms are in con-
structing credit risk models on a large data set, however using these "black boxes"
might be far from being accepted from a regulatory point of view.
Not only fin tech, but also big tech (Google Facebook) companies are potential en-
trants to the financial industry. These companies have access to personal information
that could enable them to make highly accurate credit assessments. the financial in-
stitutions still have precious payment data of their clients, but to remain relevant in
their industry they need to explore the methods used by data scientists to provide
highly personalized and low cost financial services.

1.2 Research Questions

Machine learning and artificial intelligence have been changing our world over the
past two decades, computers are trained to learn behavior of people in order to pro-
vide them with good product suggestions. Computers can even be trained to drive
cars. As the learning algorithms become more sophisticated and advanced they are
applied in a wider range of fields. The retail credit risk domain is a field where arti-
ficial intelligence has great potential, however the use of "black box" models is hard
to explain in a regulatory context. Most credit risk models rely on a technique called
logistic regression, one of the most basic models available in a data science toolbox.
The question is, what do these newer and more advanced tools have to offer in the
field of retail credit risk. The main question that we will answer in this research is
formulated ad follows:

Where is the added value of machine learning in retail credit risk modeling?
To find added value, this research will focus on modeling approach and model
performance of machine learning and (logistic) regression. The following sub-
questions have been formulated to be able to answer the main question in a
structured way.

a) What are the current developments in retail credit risk?
Answering this subquestion will help us understand where room for im-
provement currently is.

b) Which machine learning algorithms are suitable for credit risk modeling?
Due to the huge amount of available models, it is necessary to select a few
models to investigate in more detail.

c) How does traditional modeling differ from machine learning modeling?
By creating the models, we can find possible added value in machine
learning approach over logistic regression.

d) How do different algorithms perform on credit risk prediction?
The last subquestion will be answered by evaluating model performance
on data that was kept locked away during the creation of the models.
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1.3 Methodology

The research methods will be structured as follows:

• Literature research
To develop a theoretical framework that will answer subquestions a and b. The
literature research will discus the following concepts.

– Retail credit risk current developments

– Machine Learning

∗ Brief general machine learning introduction
∗ Theory on the models that will be put in practice

– Data transformation

– Evaluation methods

• Data
Publicly available credit data from LendingClub.com will be stored in a SQL
database. To create a level playing field between models, a single data trans-
formation is used to create a data set that all algorithms can work with.

• Development of machine learning credit risk models
Different algorithms will be used, and for each algorithm different settings will
be tested. the best performing model of every algorithm on every credit risk
quantity is kept for evaluation.

• Assessing model performance
Different performance metrics will be evaluated for the developed models.
These performance metrics will be introduced in the next chapter.

1.4 Outline

In Chapter 2, the theoretical framework needed for the research, will described. In
Chapter 3 the data set will be introduced to help the reader understand what data is
available for our machine learning retail credit risk research and descriptive statistics
will be provided. In Chapter 4 we apply algorithms discussed in Chapter 2 and
develop machine learning credit scoring models. These models will be analyzed and
compared in chapter 5. In the last chapter, Chapter 6, the conclusions drawn from
the research will be presented and suggestions for further research will be discussed.
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Chapter 2

Theoretical Framework

The theoretical framework will first discuss the current developments in retail credit
risk and briefly explain more about retail credit risk. Then Machine learning and
the specific algorithms that will be used in the research are explained in more detail.
In the last part of the framework, data transformation and model evaluation will be
addressed.

2.1 Current industry developments

Four aspects of developments in retail lending will be discussed, to provide insight
in the relevant changes in the industry and for this research.

• Peer to peer lending

The rise of Peer to Peer lending, where borrowers and investors are matched
through an on-line platform, has been amplified by the financial crisis in 2008.
People were excited to have access to credit lines without the need of tradi-
tional financial institutions that caused the crisis (Mateescu, 2015). What most
people do not realize is that due to SEC regulations in the United States, the
peer to peer loans have to be issued by a bank. The bank grants the loans to
the borrowers and makes small securitized parts of the loans available to peer
to peer investors. Peer to peer lending companies are only the market place
where borrowers and investors can meet. These companies can charge a fee to
investors because they assess creditworthiness of the potential borrowers and
they make it easy for investors to find loans that match the investors’ preferred
characteristics.

• Big data

An often heard buzzword is big data, but is it relevant for retail lending credit
risk. The technological advances open doors to gather and store data that
would have been impossible not too long ago. To assess creditworthiness of
customers, models are created from historical data of consumer and loan char-
acteristics, the model can then translate information of a loan applicant to a
credit score. Having more and alternative data sources will give quantitative
financial specialists more information about sources of risk in loan applica-
tions. However when dealing with truly big data traditional retail credit risk
modeling might become problematic, if there are for instance more features
than we have time to evaluate individually.

• Consumer expectations

The consumer of today has high expectations, waiting for products or services
is considered a thing of the past and everything should be accessible on-line at
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the click of a button or through a convenient app on the smart-phone. When
the consumer of today is not willing to wait for tangible products, it is not hard
to imagine what is expected of intangible products like consumer credit. An-
other important factor is that consumers demand personalized products and
services, they do not like having to accept a few standard options. These ex-
pectations and demands put pressure on the acceptance process of consumer
credit and open the door for new technology in order to conform to the con-
sumer expectations and demands.

• Fintech

Financial technical startups pop up everywhere, which is problematic for the
traditional financial institutions. The Fintech companies are able to start their
business with state of the art technological equipment. They need less people
to provide the same service more efficiently. These companies thrive on new
technology and are passionate about using these technological developments
to create better or cheaper financial products. An example of such a company
is Advice Robo, they provide machine learning credit risk solutions to financial
institutions.

2.2 Retail Credit Risk

In the lending business, credit risk is the main concern of the lender. It is defined as
the risk of the situation where the borrowing counterparty fails to meet its financial
obligation to the lender, resulting in full or partial loss of the funds invested by the
lender. To compensate for these losses, lenders have to assess what loss is to be
expected on a loan and charge that directly to the borrowers.

FIGURE 2.1: Loss Curve (riskarticles.com, 2017)

The unexpected loss is a measure of what the potential losses can be in a very adverse
scenario, in this scenario much more borrowers fail to meet their obligations than
they on average would. In regulatory context the unexpected loss is of interest in
order to make sure a financial institution can survive a crisis.

2.2.1 Expected Loss

The expected loss (EL) is the product of the probability that a lender fails to meet its
obligations, the degree to which the lender is exposed to the borrowers’ failure and
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the amount that can not be recovered from the borrower. These three quantities are
called probability of default (PD), exposure at default (EAD) and loss given default
(LGD).

EL = PD ∗ EAD ∗ LGD

Probability of Default

The foundation for the method to estimate this quantity has been laid more than
half a century ago. It is called Logistic Regression and was first introduced in 1958
by David Cox. In the article he studies events with binary outcome dependent on
multiple independent variables (Cox, 1958). The technique is nowadays still widely
applied in the field of retail credit risk modeling. The method is about estimating
the coefficients β of the following formula:

log

(
F (x)

1− F (x)

)
= β0 +

n∑
i=1

βixi

The left hand side is the called logit function, where F (x) is the probability of default
as a function of risk driving variables x. The right hand side of the equation is a
linear combination of the different risk driving variables and their weights. In order
for such a model to be qualified as a good model, a lot of model assumptions have
to be satisfied.

Exposure At Default

For many products, the amount to which the bank or an investor is exposed in case of
a default is known with certainty. However when dealing with unsecured amortiz-
ing loans (Lending Club), the exposure is not known in advance. When the exposure
at time of default is uncertain, there is need for a model that estimates this quantity.
Compared to PD and LGD the EAD is lagging behind in both industry practice and
academic research (Qi, 2009). The most obvious model for amortizing loans would
be a linear combination of loan amount and time until maturity. This method cannot
be used in case the exposure at default must be estimated at loan application time.
In that case a regression model is the standard approach.

Loss Given Default

The hardest credit risk quantity to model is the loss given default. The main reason
for the difficulties in modeling loss given default is that default is not an absorbing
state. A defaulted loan can ’cure’, meaning that the borrower can repay the debt
after a time of not being able to meet the obligations agreed upon when the loan
was issued. When attempts to cure defaulted loans fail, lenders will try to recover as
much as they can from the defaulted borrower. The percentage that can be recovered
from the exposed amount is called the recovery rate (RR). It is common for recov-
ery rate distributions to have high probability densities concentrated around lower
and higher percentages, meaning that recovery attempts either have little effect or
recover almost all of the exposed amount. The part of the exposed amount that can
not be recovered is the loss given default, LGD = 1−RR.
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2.2.2 Charged Off loans

Because of the characteristics of the data set that we will introduce in Chapter 3, we
will be using slightly different quantities to come up with the expected loss. These
quantities are related to the event of a loan being charged off, this means that a
third party is hired for the recovery process. The quantities of interest are called
probability of charge off (PC), exposure at charge off (EAC) and loss given charge
off (LGC).

EL = PC ∗ EAC ∗ LGC

2.3 Machine Learning

Machine learning algorithms, also referred to as statistical learning algorithms, per-
forms tasks without being explicitly programmed. These algorithms can be sep-
arated in two forms, supervised and unsupervised machine learning. Supervised
machine learning algorithms learn to predict an outcome, the response, based on
the values of different features or variables. The data used to create a model with a
supervised learning algorithm is historical and thus contains known response val-
ues. In contrast, unsupervised machine learning algorithms are models applied to
data where there is no response value known. The performance of these models is
hard to evaluate, because there are no observations to test predictions on. Unsu-
pervised machine learning is used to learn relationships and find structure in data.
Figure 2.2 gives an overview of some of the different algorithms that are used in ma-
chine learning context. The figure is not an exhaustive list of available techniques,
but rather an example of how much is out there and that we need to narrow our
research down to a few algorithms.
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Algorithm

Clustering

k-Means

k-Medians

Expectation Maximisation (EM)

Hierarchical Clustering

Bayesian

Naive Bayes

Gaussian Naive Bayes

Multinomial Naive Bayes

Averaged One-Depen. Esti. (AODE)

Bayesian Belief Network (BBN)

Bayesian Network (BN)

Decision Tree

Classification and Regression Tree (CART)
Iterative Dichotomiser 3 (ID3)

C4.5 and C5.0

Chi-squared Auto.Inte. Det. (CHAID)

Decision Stump
M5

Conditional Decision Trees

Dimesionality Reduction

[Principal Component Analysis (PCA)

Principal Component Regression (PCR)

Partial Least Squares Regression(PLSR)

Sammon Mapping

Multidimensional Scaling (MDS)

Projection Pursuit

Linear Discriminant Analysis (LDA)

Mixture Discriminant Analysis (MDA)

Quadratic Discriminant Analysis (QDA)

Flexible Discriminant Analysis (FDA)

Regularisation

Ridge Regression

Least Abs. Shr. and Sel. Ope. (LASSO)
Elastic Net

Least-Angle Regression (LARS)

Algorithm

Deep Learning

Deep Boltzmann Machine (DBM)

Deep Belief Network (DBN)

Convolutional Neural Network (CNN)

Stacked Auto-Encoders

Ensamble

Boosting

Bootstrapped Aggregation (Bagging)

AdaBoost
Stacked Generalization (blending)

Gradient Boosting Machines (GBM)

Gradient Boosted Regr. Trees (GBRT)

Random Forest

Neural Networks

Perceptron

Back-Propagation

Hopfield Network

Radial Basis Function Net. (RBFN)

Insatnce Based

k-Nearest Neighbour(KNN)

Learning vector quantization(LVQ)

self-organised map

Locally Weighted Learning(LWL)

Rule system

Cubist
One Rule (OneR)

Zero Rule (ZeroR)
Rep.Inc.Pr2pro. Err. Red. (RIPPER)

Regression

Linear
Ordinary Least Squares

Logistic

Stepwise

Locally Esti.Scatt. Smoo.(LOESS)

Multi. Ada. Reg.Splines (MARS)

max marginSupport Vector Machines

FIGURE 2.2: Machine learning algorithm mind map (Brownlee, 2013)

2.3.1 Algorithm selection

In our brief overview of machine learning theory, we focus on supervised machine
learning algorithms. The data set, described in Chapter 3, that we use for machine
learning credit risk modeling contains the responses for the quantities that we are in-
terested in, therefore unsupervised learning would not be a sensible approach. Also
because we want to predict a probability outcome and continuous outcomes we need
to choose algorithms that are capable of handling classification as well as regression
problems. Three supervised learning algorithms are selected that represent different
machine learning streams.

• Random Forests
An ensemble approach combining many weak models into a strong model.

• Neural Networks
A structure resembling the brain, capable of learning complex relations in data.

• Support Vector Machines
Mapping data into higher dimensional space to make it linearly separable.
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These will be compared with the algorithm/technique that is currently most domi-
nant in retail credit risk modeling.

• (Logistic) Regression
Make predictions through a linear combination of input variables.

2.3.2 Random Forests

In this section, the Random Forest algorithm will be described. The building blocks
of a Random Forest are individual decision trees, in particular CART which stands
for Classification And Regression Trees (Breiman et al., 1984). These will be briefly ex-
plained, but we will not go into too much detail about the mechanics of individual
decision trees.

The Random Forest algorithm (Breiman, 2001a) is an ensemble method where mul-
tiple predictors are combined into a single strong predictor. During the construction
of a single tree in the forest, nodes are created to split observations, see figure 2.3 for
example. At each node a preset number of candidate features are chosen from all
features. The feature that can realize the best possible split is chosen from the subset
of features, this process is repeated until the desired terminal node size is reached.
Evaluating which feature realizes the best possible split can be performed with var-
ious methods, depending on the purpose of the tree (classification or regression),
these will be discussed in the next subsections.

Randomness in the forest of decision trees is the result of two processes:

• Every tree is grown with a bootstrapped sample form the training data, a boot-
strapped sample is a sample that is drawn with replacement from original data
and contains the same number of observations as the original data set.

• Split decisions in the trees are chosen by evaluating all available features on
their split performance. In terms of credit risk a good split would be separat-
ing all defaults from non-defaults. The random component is introduced by
drawing random subsets of the available feature set.

When the number of features to chose from (mTry) is the same as the total num-
ber of features available and thus disregarding the second element of randomness,
then we are essentially bagging. This technique significantly under performs Ran-
dom Forests due to individual tree similarity. On the other hand, when there are 100
features and mTry is one, individual trees become very complex and out of sample
model performance will be poor.

The terminal node size is another important parameter of a Random Forest, it is
sometimes referred to as the depth parameter. A smaller terminal node size accounts
for a more complex tree having more intermediate nodes, assuming that the number
of observations used to train the forest is kept the same. The number specified for
this parameter is the smallest node size that will be split by the algorithm.

It is important to realize that during the creation of a tree we start with all obser-
vations, and after a split we have two sets of observations. eventually we end up
with n sets containing less than m observations, where m is the maximum size of
the terminal nodes and n is the number of terminal nodes. When the tree is fully
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grown, the response is determined in every terminal node which can be a value, a
probability or a class. The prediction that a Random Forest makes is the aggregate
of all tree predictions in the forest. All trees in a Random Forest have equal weight.

To summarize, a short overview of the Random Forest training process:

1. Split data into training and test sets.

2. Bootstrap a sample with the size of the training set, the observations are drawn
with replacement.

3. Grow a tree for classification or regression using the bootstrapped sample.

4. Stop growing of the tree when minimal node size is reached .

5. Determine the response value in the terminal nodes.

6. Repeat steps 2 to 5 until the desired forest size is reached (number of trees in
the forest).

7. For out of sample testing or predicting on new data, drop an observation down
all trees in the forest, and aggregate the response values of the trees in the
forest.

Classification

The Random Forest algorithm for classification, predicts a class that is best associ-
ated with an observation. An overview of a simple classification tree is given below.
As described above such trees are combined into a forest and the predictions are
aggregated. In terms of credit risk, a binary classification tree would use historical
data to create trees that separate defaulted observations from non-defaulted obser-
vations.

x1 < 10

x1 < 5

x2 > 7

0/5 4/1

x8 < 1

0/3 5/2

xi < ai

xi < ai

xi < ai

2/0 1/5

xi < ai

1/0 2/5

xi < ai

xi < ai

1/2 6/1

xi < ai

1/4 3/0

FIGURE 2.3: Example of a binary classification tree
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The aggregation of individual tree predictions in a classification forest is done by
selecting the majority vote. In binary classification a new observation is dropped
down all trees, and either non-default or default is predicted depending on the ma-
jority vote. In Figure 2.3 the terminal nodes (rectangles) represent the distribution
default/non-default. An observation with x1 = 2 and x2 = 8 will end up in the
second terminal node from the left with default/non-default distribution 4/1, this
individual tree will predict the observation to default. The next step is the aggre-
gation where the class that is predicted by most trees in the forest is the final forest
prediction.

Probability Estimation

Probability estimation trees, so called PET’s are almost identical to classification
trees. The only difference is that the response value is a set of probabilities of an
observation belonging to a class. Individual trees contain probabilities in their ter-
minal nodes, if for example half of the observations in a terminal node belong to class
0 and the other half belongs to class 1, then the class probabilities in that terminal
node are 50% and 50%. The class probabilities predicted by a probability estimation
forest are the average class probabilities of all trees in the forest. According to (Mal-
ley et al., 2012) PET’s are consistent probability estimators when their classification
counterparts are consistent class predictors.

regression

Like a classification tree, a regression tree splits data into subsets until a certain depth
of the tree is reached. In this case the terminal node value is the average of the re-
sponse values in the terminal node. Figure 2.4 shows how this works. The figure
represents a regression problem with two independent variables and one response
variable. Every split is represented by a line in the scatter-plot, the rectangles are the
terminal nodes of the regression tree. Splits are chosen in such a way that the vari-
ance inside the child nodes is smallest. The values at the end of the tree correspond
with the values inside the rectangles, they are the average of the response variables.
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FIGURE 2.4: Regression Tree visualization (Charpentier, 2013)

The prediction of a regression forest is like a probability estimation forest, the aver-
age of all tree predictions.

Variable importance classification/probability estimation forests

After a Random Forest is trained, it is possible to plot the importance of the variables
used in the model. The method to evaluate the importance of a single variable is
to calculate the mean decrease Gini. The original paper about the Gini coefficient,
Variabilità e mutabilità (Gini, 1912), was intended to measure income equality of a
country. Today it is still used to measure inequality. A low Gini coefficient represents
more equality in a data set. Now if we think about the trees in a Random Forest,
every node contains a certain distribution of the response variable. After a split, the
child nodes should have a lower Gini coefficient, because the goal of the splits is to
make the class distributions in the child nodes as pure as possible, all observations
should have the same class. So the variable that was used to make the split has
decreased the Gini. If we calculate the decrease in Gini for all variables and all
trees in the forest, we can find the mean decrease Gini for every variable. The most
important variables for a forest are those that have the highest mean decrease Gini.

Variable importance regression forests

For regression forests it is also possible to assess the importance of the model vari-
ables, the measure used is mean decrease accuracy. The out of bag (OOB) observations,
these are the observations that are left out in the bootstrapping process, are used to
calculate this variable importance measure. After the creation of a tree, OOB sam-
ples are dropped down the tree, and the prediction accuracy is recorded (Friedman,
Hastie, and Tibshirani, 2001). Then the decrease in accuracy can be calculated for a
single variable by replacing the values of said variable with a random permutation
in the OOB data, resulting in a decrease in accuracy that is averaged over all trees.
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2.3.3 Neural Networks

Neural Networks consist of nodes and edges, they are inspired by neurons and
synapses of a brain. The synapses or edges transport information to the neurons
or nodes. The nodes in a Neural Network collect information from the synapses and
transform the information with an activation function. Eventually the information
will arrive at an output node, or multiple output nodes. These output nodes contain
the response that is predicted based on the input values.

For a simple Neural Network without hidden layers and a logistic activation func-
tion, we can calculate the output with the following formula:

y = f

(
w0 +

n∑
i=1

wi ∗Xi

)
In the formula, f represents the logistic transformation. As we can see this is the
same as a Logistic Regression, however Neural Networks become more interesting
when hidden layers are introduced. These layers allow for nonlinear combinations
and more complex relations in the data to be captured by the Neural Network. In
this research we will use "vanilla" Neural Networks (Friedman, Hastie, and Tib-
shirani, 2001), which are networks with one hidden layer and a logistic activation
function.
The ’extra’ nodes at the top of the network, which can be seen in Figure 2.5, contain
a constant input of one and are called bias nodes. These nodes can be seen as the
intercept term in Generalized Linear Models (GLM’s), the family where Logistic Re-
gression belongs to.

FIGURE 2.5: Example of a small Neural Network

This simple network has four input neurons, one hidden layer with four neurons
and one output neuron. The values on the edges in the network, are the weights
that the algorithm learns during the training of the network. Unlike in GLM’s it is
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not easy to observe how a change in one input variable is related to different output,
because the change in output can also be related to interaction terms in the network.

Backpropagation

At the beginning of the training of a Neural Network, the weights are chosen at ran-
dom. Then using the training data a forward pass through the network is executed
and the prediction error is calculated. Obviously this error should be minimized,
this is done by a number of iterations of forward and backward passes through the
network. A backward pass is calculating the derivative with respect to the error in
every point/weight of the network. Before a new iteration, all weights are updated
according to a beforehand specified learning rate and the derivatives. The training
of the network is finished when the weights have converged and the error does not
decrease anymore. A mathematical explanation of the backpropagation algorithm
can be found in the book; "Elements of statistical learning" (Friedman, Hastie, and
Tibshirani, 2001).

2.3.4 Support Vector Machines

Support Vector Machines, as introduced by Vladimir Vapnik in "The Nature of Sta-
tistical Learning Theory" 1995, also called large margin classifiers, try to find an op-
timal separating hyperplane to determine to which class an observation belongs.

classification

(A) Separating hyperplanes (B) Optimal separating hyperplane

FIGURE 2.6: separating hyperplanes (OpenCV, 2017)

The data in Figure 2.6 (A) can be separated in different ways, all of the green lines
separate the data perfectly, intuitively none of these hyperplanes feels like the best
classifier. In Figure 2.6 (B) we see the optimal classifier, in this case the margins
between observations and the hyperplane are largest, the shortest line from the ob-
servations on the margins to the hyperplane are called the support vectors, hence the
name Support Vector Machines. In this simple example the data can be separated, in
larger and more complex data sets this will be rare. To solve this problem, two steps
can be taken individually or both at the same time. A transformation can be applied
to attempt separating the data in a non linear feature space, and soft margins can
be applied. The non linear approach is called the kernel trick, different kernels are
available to find a feature space where data can be separated. The second option,
a soft margin, allows the model to leave observations in the margin or even at the
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wrong side of the hyperplane. Through introducing slack variables, a Support Vec-
tor Machine can have a soft margin.

The mathematical formulation of finding the maximum margin classifier is as fol-
lows:

max
βj ,εi

M

subject to :
p∑
j=1

β2j = 1,

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥M(1− εi),
εi ≥ 0,
n∑
i=1

εi ≤ C

The slack variables ε indicate if an observation was on the good side of the hyper-
plane, ε = 0 or on the wrong side of the hyperplane, ε > 1. Parameter C is a con-
straint on how big the slack variables can become. The problem formulation also
includes multiplying M with (1 − εi) which lowers the value of M when observa-
tions are on the wrong side. The yi represents the class label which can take a value
of −1 or 1. A more detailed explanation Support Vector Machine mathematics can
be found in the book; An introduction to statistical learning (James et al., 2013).

kernels

The examples in figures 2.6 and 2.8, are cases of Support Vector Machines with a lin-
ear kernel. Other kernels can be used used to map the input to a higher dimensional
space in which a linear solution can be found. Kernels have to satisfy Mercers the-
orem (Korotkov, 2011), we will not go into this theorem because it goes to deep for
the high level analysis of machine learning in this research. Figure 2.7 shows what
the goal of a kernel is.

FIGURE 2.7: Mapping input space to feature space (Raghava, 2006)
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The SVM optimization problem can be solved by using only the inner product of all
training observations. The inner product of two vectors a and b, denoted by 〈a, b〉,
in an n dimensional space is obtained by

∑n
i=1 aibi. Kernels are functions that trans-

form these inner products.

The available kernels are:

• Linear
K(a, b) = 〈a, b〉

• Polynomial
K(a, b) = (1 + 〈a, b〉)d

• Sigmoid
K(a, b) = tanh(γ〈a, b〉+ 1)

• Radial
K(a, b) = e−γ〈a,b〉

2

The influence regions of the sigmoid and radial kernels are controlled by parameter
γ, the polynomial kernel can be of different degrees d and the linear kernel is com-
puted with only the inner product of the vectors belonging to training observations.

Probability estimation

To obtain a probability estimate from the binary classification Support Vector Ma-
chine, a logistic model is fitted to the decision values (Meyer et al., 2017). With the
logistic model, the decision values can be transformed to probabilities between zero
and one.

Regression

Similar to classification the Support Vector Regression algorithm finds margins. The
big difference is that the observations should be inside the margins of the support
vectors. Figure 2.8 is an example of Support Vector Regression. The non support
vectors do not contribute anything to the model, the regression line is the result
from the choice of margin and the support vectors.

FIGURE 2.8: Support Vector Regression (Gilardi and Bengio, 2000)
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A big difference with ordinary least squares regression is that the support vector
method uses the shortest distance to the regression line/margins, where ordinary
least squares regression uses the vertical distance to find the line with the lowest
value of the sum of squared errors.

2.4 Data transformation

In most cases, raw data is unsuitable for modeling. The major issues that prevent
raw data to be used as input for models are:

• Missing values

• Non numeric variables

• Outliers

To overcome these problems, we have a few standard options. For instance replacing
missing values with the average of the non missing values, creating binary dummy
variables for a categorical field and disregarding observations that are outside a
number of standard deviations of the mean to make sure there are no unusually
low or high values that have high impact on the outcome of a model.

Another reason for a data transformation is that machine learning algorithms in
most cases benefit from having input that is on the same scale. With Logistic Regres-
sion for example scaled data makes the coefficients directly interpretable, a higher
coefficient translates to a higher importance of that variable in the model.

Generalized linear models (GLM) are linear regressions where a link function is used
to transform output to make sure it has the right characteristics (Nelder and Wed-
derburn, 1972). When probability is estimated, the output must be in the interval
[0, 1] to achieve this a logistic transformation is often used. Another option, in this
case, would be the probit transformation using the cumulative density function of a
standard normal distribution having some advantages when a normal prior distri-
bution is assumed.
When the logistic transformation is chosen, data can beforehand be transformed, by
means of Weight of Evidence (WOE). This method uses the following formula and
binned data to assign weightsBi in terms of the log odds ratio of the binary response
variable.

WOEi = log

(
P (Bi|Y = 1)

P (Bi|Y = 0)

)
After this transformation, all variables have the property that a higher WOE bin
value corresponds to a higher probability of Y = 1

The WOE method takes categorical data fields as a bin per level of a category and
missing values are handled as a separate level. The latter has the advantage that a
field, left blank, by a consumer can possibly hold more information than replacing
the blanks with the average value for that field.
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Simple WOE example with one categorical variable:

Home Status
OWN D
RENT D
OWN ND
RENT D
NA ND
NA D
OWN ND
RENT ND
OWN D
RENT ND
OWN ND
OWN ND
RENT D

TABLE 2.1: Observed
loan status of borrow-
ers with home infor-

mation

D ND WOE
OWN 2 4 -0.5390
RENT 3 2 0.5596
NA 1 1 0.1542

TABLE 2.2: Default fre-
quency per level and

corresponding WOE

In Table 2.1 we see borrowers that either
own or rent a home and two observations
have missing values indicated with NA.
The borrowers can be in default (D) or not
(ND). Table 2.2 shows the frequencies of
the three levels of the categorical variable
and their corresponding WOE values cal-
culated with the WOE formula.

In Logistic Regression, we try to find a linear combination of the variables on which
we use a logistic transformation to find a probability of belonging to class Y = 1.
Logistic Regression and Weight of Evidence are a strong combination because the
Weight of Evidence transforms variables to have a linear relationship with the logis-
tic function used in Logistic Regression. The Neural Networks that we use have lo-
gistic activation functions, therefore Weight of Evidence can also be beneficial. With
Support Vector Machines and Random Forests, we have less reason to believe that
Weight of Evidence is a good transformation. However for this research the creation
of a level playing field by choosing one data transformation for all models justifies
choosing the Weight of Evidence approach.

2.5 Evaluation Methods

Algorithms described in this chapter will be evaluated with the following methods:

• Probabilities
Binary classification probability estimates will be evaluated with the receiver
operating characteristic.

• Continuous quantities
These will be evaluated with Mean Squared Error and R squared. Expected
Loss predictions, which are continuous, are also evaluated in terms of ability
to capture observed losses.



20 Chapter 2. Theoretical Framework

2.5.1 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) is a tool to measure the discriminatory
power of a binary classification model. It is a plot of the true positive rate versus the
false positive rate of model predictions at different cut off values. The area under the
curve (AUC) of the ROC is often used to quantify discriminatory power of a model
in one number.

FIGURE 2.9: Receiver Operating Characteristic curves (BCBS, 2005)

Figure 2.9 shows three ROC ’curves’. The straight line starting from the origin is
the performance of a random model, the performance of a rating model and the
performance of a perfect model. Any rating model should operate between the per-
formance of a random model whereAUC = 0.5 and a perfect model whereAUC = 1

If model PD of an observation belonging to the defaulted population is denoted
PDD, and the PD of an observation belonging to the non-defaulted population,
PDND. Then the AUC can be interpreted as P (PDD > PDND) when from both
populations one observation is randomly drawn (BCBS, 2005).

2.5.2 Mean Squared Error

The Mean Squared Error (MSE) of predictions compared to actual outcomes in the
data set, calculated with the following formula:

MSE =
1

n

∑
(Ŷi − Yi)2

The errors (Ŷi − Yi) in the formula are the predicted minus the observed values.
When these are squared and divided by the total number of observations, we obtain
the MSE. A model with an MSE of zero is a perfect model because it always predicts
the actually observed values.
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2.5.3 R squared

The R2 is the amount of variance in a response variable that can be explained by the
model, calculated with the following formula:

R2 = 1−
∑

(ŷi − yi)2∑
(ȳ − yi)2

The top part in the fraction is the summed squared residual of predicted minus ob-
served values. The lower part of the fraction is the summed squared residual of
average observed values minus observed value. A perfect model can account for
all variance in the response variable and achieves an R2 of 1. A model which can
account for none of the variance in data achieves an R2 of 0.

2.5.4 Loss capture ratio

Here we rank the observations on risk prediction in descending order and plot the
corresponding observed losses. This method is visually similar to the ROC, the
curves are all starting in the origin and moving to (1,1). In this case we find the
number of observations as a percentage on the horizontal axis and on the vertical
axis we find the cumulative observed loss. An optimal model will rank all losses
in descending order of their severity, this will be a steep line rising to 100% of the
losses and from that point the optimal model will move to (1,1) parallel to the x axis.
A model that comes close to the described optimal line is desired. When a model
comes closer to the line from the origin to (1,1) it means that the model is not much
better than a random ranking of the observations.
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Chapter 3

Lending Club data set

In Chapter 3, the data set that is used in the research will be described. First we will
introduce Lending Club, the company that has made the data available, and then
we will discuss what data is available and how we will prepare and create different
data sets that will be used to create and analyze different credit risk models.

3.1 Company Profile

Lending club is an award winning peer to peer lending platform. One of its goals
is to change the lending industry by providing better rates than traditional finan-
cial institutions and by operating at much lower cost. Lending club is serving as
a platform where borrowers and investors find each other. Most of the borrowers
are individuals who want to finance other loans that have adverse rates, for a more
favorable rate through lending club. Figure 3.1 from the Lending Club website gives
a percentage overview of the most common loan purposes.

Reported loan purpose

FIGURE 3.1: Most common loan purposes as percentage of all loans
(LendingClub, 2016)

The figure shows that more than half of the loans issued by Lending Club are related
to other debt that the customers already have. To give an overview of the purposes
that borrowers can choose from, the purposes are listed on the next page.
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Credit card House Debt consolidation
Small business Educational Medical
Other Vacation Moving
Wedding Home improvement Major purchase
Car Renewable energy

The investors on the other side of the platform are people that want to have better
returns than they can find in more traditional investments like the stock market or
on deposit accounts.

"Don’t take our word for it. See for yourself. Our entire loan database is available to
download. Help yourself to our data, and slice and dice it anyway you want. Try that at
your favorite banking institution!"

-Lendingclub.com

They are encouraged, by Lending Club, to explore the data in order to find charac-
teristics of borrowers that suit their investment strategy. To help investors that do
not want to go through the extensive amount of data available, Lending Club pro-
vides risk grades per loan, which are also translated into interest rates on loans.

FIGURE 3.2: Lending Club grade mix over time (LendingClub, 2016)

FIGURE 3.3: Lending Club annualized net returns per risk grade
(LendingClub, 2016)
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There are seven risk grades and each grade has 5 sub grades resulting in 35 distinct
risk levels that can be assigned to a loan. In Figure 3.2 the distribution of grades
assigned to loans over the past years is provided, notice that around 70% of all loans
are in the top three risk grades, indicating that Lending Club accepts more rela-
tively safe borrowers than the riskier borrowers. Figure 3.3 gives an overview of
the adjusted net annualized returns per sub grade assigned by Lending Club. The
adjustment in this calculation is for expected future losses.

3.2 Data Set

The data used for this research was downloaded in September 2016. Lending Club
has made the data available in six comma separated value (.csv) files. Also a file
containing the complete payment history of all loans is available. Table 3.1 presents
the available loan data files:

File Loans
2007-2011_LoanStats3a 39,786
2012-2013_LoanStats3b 188,181
2014_LoanStats3c 235,629
2015_LoanStats3d 421,095
2016Q1_LoanStats_2016Q1 133,887
2016Q2_LoanStats_2016Q2 97,854
total 1,116,432

TABLE 3.1: Lending Club data files

The size of the different lending Club files shows the growth that the platform has
gone through since its origination. Currently more than 400 thousand loans are
funded every year making increasingly more data available for credit risk research.

Combining these files results in a database of 1,116,432 loans with 111 columns that
contain information about the loans. In this data set we observe loans with different
statuses, shown in Table 3.2:

loan_status observations percentage
Fully Paid 332,844 29.813%
Default 85 0.008%
Charged Off 78,627 7.043%
Current 673,327 60.311%
In Grace Period 9,792 0.877%
Late (16-30 days) 4,574 0.410%
Late (31-120 days) 17,183 1.539%
Total 1,116,432 100%

TABLE 3.2: Loan statuses in the Lending Club data

There are almost no loans labeled ’Default’ in the data, and more than half of the
loans have status ’Current’. We will proceed with loans that are either fully paid or
charged off. We are interested in supervised learning, therefore we only keep loans
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that have matured. Loans that are in grace period, late or in default reside in non
absorbing states, and are not taken into account. Would there have been a more
significant amount of defaults, then we could take them into account in predictive
modeling. This decision is a result of Lending Club’s policy to charge off loans very
fast in stead of managing a portfolio of defaulted loans for their investors.

The data set after removal of loans not in absorbing states is shown in Table 3.3:

loan_status observations percentage
Fully Paid 332,844 80.981%
Charged Off 78,627 19.109%
Total 411,471 100%

TABLE 3.3: Loan statuses of matured loans

The payment history data set contains valuable American credit information called
the FICO score, this score is a credit rating for consumers. Lending Club is currently
not providing the FICO score directly with the other loan information, they have
changed their open and transparent strategy by making it harder for investors and
researchers to obtain all data. On the contrary, Lending Club has also added data
fields in the past years, some at the request of the community. Coming back to the
FICO score, this data is added to the matured loan information data by joining on
loan id using an SQL database.

implications of disregarding non matured loans
By having two possible states of a loan, Fully Paid and Charged Off, we are dealing
in a different than usual manner with expected loss. We will model the Probabil-
ity of Charge Off (PC), Exposure at Charge Off (EAC) and Loss Given Charge Off
(LGC). The advantage that we get from this is that we do not need to deal with the
possibility that a default cures, as described in Section 2.2.1. The quantities EAC and
LGC will be modeled using only the charged off observations.

3.2.1 Descriptive statistics

Table 3.4 provides descriptive statistics of a small set of the numeric features of ma-
tured Lending Club loans that will be used in the models. A full list of descriptive
statistics for the numerical features can be found in Appendix C. The second column
of the table contains the number of observations on which the descriptive statistics
were calculated. For a lot of variables, this number is lower than the number of ob-
servations in our data set. This is mainly the result of Lending Club adding features
over time. The oldest data set available contains the variables that have 411471 ob-
servations present in Table 3.4. The models we use in Chapter 4 do not need to be
prepared to handle missing values, because we perform a weight of evidence trans-
formation on our data that will handle the missing values. A complete description
to understand the names of the more ambiguous variables is provided in Appendix
A.
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Variable name n mean sd min max range
loan_amnt 411,471 13,955.73 8,275.54 500.00 40,000.00 39,500.00
funded_amnt 411,471 13,929.23 8,261.56 500.00 40,000.00 39,500.00
funded_amnt_inv 411,471 13,868.81 8,273.50 0.00 40,000.00 40,000.00
term 411,471 41.60 10.15 36.00 60.00 24.00
annual_inc 411471 73623.27 62539.79 0.00 8,900,060.00 8,900,060.00
dti 411,471 17.19 17.70 0.00 9,999.00 9,999.00

TABLE 3.4: Descriptive statistics

The table shows a few interesting things. The first being that the amount funded
is not alway the same as the amount funded by investors, there are even loans that
have an amount invested by investors of zero. Lending Club sometimes also invests
in loans to get them funded resulting in this difference. Another curious thing is that
the data set includes observations of loans that are provided to individuals that have
no income and an individual with an annual income of 8.9 million. With a maximum
loan amount of 40 thousand it seems highly unlikely that someone earning multiple
millions per year takes out a loan for a few thousand dollars. These peculiarities are
smoothed away by the WOE transformation described in Section 2.4.

3.3 Credit Risk Evaluation

In the empirical analysis performed by (Emekter et al., 2015) the available data until
2011 is analyzed. On matured loans, a logistic regression is performed, to predict de-
faults. They found that the Lending Club credit grades (as dummy variables) were
the only significant variables. Thereby verifying that the lending Club sub grades
adequately predict credit risk, with the exception that the F grade was riskier than
the lower G grade. Their research reports 18.6% defaults in the set of matured loans,
this is close to the 19.1% from Table 3.3 that we observe in our more recent data set.

To provide a overview of the credit risk associated with investing in the different
Lending Club sub grades, we have calculated the historical averages of received
interest, Charge off rate, Exposure at charge off, loss given charge off and percentage
of principal lost. These can be found in Table 3.5.
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sub grade interest Charge off rate EAC LGC % of principal lost
A1 6.19% 2.89% 84.97% 91.90% 2.25%
A2 6.98% 4.52% 75.73% 91.96% 3.15%
A3 8.08% 5.54% 68.81% 92.45% 3.52%
A4 8.58% 7.01% 73.80% 92.22% 4.77%
A5 9.32% 8.54% 74.86% 92.64% 5.92%
B1 10.55% 9.56% 81.57% 92.41% 7.20%
B2 11.85% 10.50% 83.54% 92.19% 8.09%
B3 13.21% 12.21% 66.70% 92.59% 7.54%
B4 13.73% 13.52% 76.99% 92.18% 9.59%
B5 13.59% 15.52% 76.09% 92.26% 10.90%
C1 14.22% 17.35% 79.30% 92.48% 12.72%
C2 14.77% 18.95% 81.47% 92.57% 14.29%
C3 15.02% 21.13% 72.01% 92.33% 14.05%
C4 15.41% 22.96% 70.32% 92.15% 14.88%
C5 16.22% 24.13% 78.15% 92.29% 17.40%
D1 16.66% 25.72% 62.04% 92.81% 14.81%
D2 17.84% 26.95% 75.39% 92.17% 18.72%
D3 18.11% 27.31% 64.57% 92.31% 16.28%
D4 18.51% 30.07% 84.22% 92.09% 23.32%
D5 19.10% 30.95% 85.24% 91.80% 24.21%
E1 18.57% 33.40% 84.10% 91.76% 25.78%
E2 19.66% 35.26% 65.36% 92.13% 21.23%
E3 19.75% 36.52% 87.13% 92.63% 29.48%
E4 20.91% 37.98% 64.14% 92.24% 22.47%
E5 21.09% 39.15% 86.63% 91.44% 31.01%
F1 22.45% 38.42% 63.30% 94.19% 22.91%
F2 22.65% 41.53% 63.23% 92.40% 24.27%
F3 23.56% 42.97% 64.60% 92.80% 25.76%
F4 23.11% 45.33% 83.71% 92.43% 35.08%
F5 23.08% 46.98% 86.53% 92.10% 37.43%
G1 23.71% 46.02% 62.27% 92.88% 26.62%
G3 23.73% 48.75% 90.81% 91.95% 40.71%
G4 24.45% 40.37% 89.06% 92.53% 33.27%
G5 21.12% 49.69% 88.12% 92.07% 40.31%

TABLE 3.5: Overview of credit risk per Lending Club sub grade

The grades below C have a high average percentage of principal lost, However in
Figure 3.3 Lending club reports a return on investment which is about 7% for all
grades, except for the highest grade where the return on investment is 5.12% on av-
erage. These high losses can be covered by the interest rates because the interest
rates in the table are annualized rates and the total average interest earned is there-
fore higher than the average percentage of principal lost. Furthermore we see in
Table 3.5 that the charge off rates increase with the sub grades, the average exposure
at charge off fluctuates between 60% and 90% and that the loss given charge off is
quite stable across the different sub grades with an average of 92.3%. We can already
see that the impact of a Loss given charge off model over just taking the average will
be limited because most charged off loans will have a loss given charge off close to
92.3%.

3.3.1 Predictive power individual features

By looking at the density plots of charged off loans versus fully paid loans on every
variable, we can conclude that almost all features contain very little information
about the status of a loan. These plots are added in Appendix B. When the predictive
power of individual features is low and there are a lot of features, machine learning
is a promising approach. The algorithms are suitable for handling a large amount of
features and finding patterns that linear models cannot discover.
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3.4 Data preparation

Not all variables are eligible for the kind of predictive modeling that we aim to do,
as (Tsai, Ramiah, and Singh, 2014) describe in their lessons learned section. Some
of the variables in the data set are not known at application time, including these in
the models will allow the models to cheat by looking into the future. Therefore, the
following features are excluded:

loan status The response variable
out prncp The exposed amount at time of maturity, larger than

zero means charged off
out prncp inv Same as out prncp, however can be smaller when lending

club and other investors co financed the loan
total pymnt Payments received on the loan
total pymnt inv Proportion of payments received on the loan for investors
total rec int Received interest, not available at time of loan application
last pymnt d Payment data, not available at loan application
last pymnt amnt Payment data, not available at loan application
last credit pull d Last date that credit information was requested on the

borrower, not available at loan application

Features excluded for different reasons are:

id Identification number of loan, not useful for prediction
member id Identification number of member, not useful for prediction
int rate Directly linked to Lending Club risk prediction
installment Monthly amount to be paid, also linked to LC risk prediction
initial list status Was the loan intended for wholesale or fractional sale
grade Lending Club risk grade
sub grade Lending Club risk sub grade
emp title Name of the employer of a borrower, text field
issue d Date variable
pymnt plan Logical indicating if payment plan is arranged
policy code Was the loan publicly available, removed by lending club
url Link to loan listing on LC website, text field
desc Additional loan description, text field
title Name of the loan, text field
earliest cr line Date variable

To handle categorical data we can make dummy variables, unfortunately there are
a lot of categories and transforming all categorical variables to dummy variables
blows up the amount of variables in the data set. Alternatively the Weight of Evi-
dence method described in Chapter 2 is used. This method is also applied to numer-
ical data by binning the these variables. The R "information" package (Kim, 2016)
calculates the WOE scores. The transformation is applied after the data is split in
different sets for training a model, validating the model and later testing the model,
this will be motivated in Section 3.6. When the data is eventually transformed into
WOE scores we have to be careful with direct interpretation of the scores, because
a high score on a variable can be the result of correlation with another variable. In
short this means that conditional independence should be satisfied to draw conclu-
sions about the WOE score of a bin or category.



30 Chapter 3. Lending Club data set

3.4.1 Data Skewness

In classification problems its is generally accepted that balancing a data set is good
practice and will lead to better results. From Section 3.2 we know that the data is
80/20 percent skewed with respect to the fully paid and charged off loans. Keeping
the original distribution in the data will result in probability of charge off estimates
in line with historical data. Using a balanced set would imply that the historical dis-
tribution of fully paid and charged off loans is not representative of the new data,
and that charged off and fully repaid loans are equally likely. Secondly the imbal-
ance of 4:1 would only be problematic if there is little data available. Because the
distribution in the train and test data will be the same and there is enough data, the
data set is not balanced.

3.5 Adding features

At loan application, borrowers have the option to provide more details about their
loan request. They can provide the name of their employer and add additional de-
scription of loan purpose. An interesting feature to add might be a logical variable
indicating whether the employer name or additional description was provided.

provide emp name binary variable indicating whether the
employer name was provided

provide description binary variable indicating whether the
loan description was provided

diff fundinvfund when Lending Club invests in a loan to
make sure it gets funded, there is a
difference in the amount funded and the
amount funded by investors, see Section 3.2.1

issue month extracted from the issue date variable,
to be able to capture seasonality
influences in our models

To check if these features add predictive power, their distributions over the two loan
statuses are plotted in Figure 3.4. In the plots, status 0 corresponds to fully repaid
and status 1 to charged off.
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FIGURE 3.4: Distribution of new features over different loan statuses

Like the original features in the data set, they seem to have little predictive power
on their own. However the added features could prove to be valuable in nonlinear
models.

3.6 Creating data sets

For the development of all models we split the number of observations that we will
use into a train and validation set of 70% and 30%. These two sets will be created
from 400 thousand loans or a smaller subset of those 400 thousand loans. The 11471
loans that we have left are saved for testing the models in Chapter 5. The distribu-
tion of data over all sets is then 68% in the train set, 29% in the validation set and
3% in the test set. It might be expected that the validation and test data sets would
have the same amount of observations, in this research we will focus on training and
validating the models with large amounts of data and compare the models with the
performance on a smaller set. The size of the relatively small test set is however sub-
stantial enough to be used for comparing the different models. Every data set has
the same 87 variables available and has been randomly drawn from the total 411471
observations.

Using the Weight of evidence transformation, needs to be done carefully. If we
would transform all data and then separate it into train, validation and test sets,
the train set would contain information about the defaults in the entire population.
We need to split the data first, transform the train data and then, using the bins of
the train data WOE transformation, we transform the validation and test set.
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Chapter 4

Machine Learning Retail Credit
Risk models

In this chapter the test and validation data sets will be used to create models for
the probability of charge off, exposure at charge off and loss given charge off. The
expected loss will also be modeled directly besides modeling the separate quantities
of which the experted loss consists. The algorithms that were discussed in Chapter
2 will be used with the train and validation data that was described in Chapter 3.
Optimal models per quantity and algorithm are found by making models with the
train data under different parameter settings, and selecting the model with best per-
formance on the validation set. This approach prevents overfitting to the training
data by looking at performance of new data.

4.1 Probability of charge off

Four approaches to estimate class probabilities of a loan belonging to the charged off
loan status class will be discussed in the next sections, starting with traditional Lo-
gistic Regression and moving on to Random Forests, Neural Networks and Support
Vector Machines.

The baseline that we set for the models is to predict the average charge off rate ob-
served in the entire train set as a probability of charge off for the test observations.
which is 19.149%. The AUC of this model is 0.5, this corresponds to having a model
with zero predictive power.

4.1.1 Logistic Regression

The first step we take is creating a correlation matrix. This allows us to evaluate
what variables show correlation to the variable that we aim to predict. Variables
with a high positive or negative correlation to the target variable have high predic-
tive power, when correlation is zero, the variable will, in general, not add predictive
power to a regression model. The other maybe even more important reason for
checking the correlation matrix is that a Logistic Regression model which is a lin-
ear model assumes independence between the model variables. When variables are
correlated, assumptions and conclusions drawn from the fitted model might be mis-
leading.

First we deal with finding a reasonable amount of variables to include in the model.
By trying different target variable correlation thresholds. When the threshold is set
at 0.07 we have 20 variables left from which we can fit models. All possible models
with one, two, three, four and five variables are fitted to the data. The 21.699 models
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are then compared on Akaike Information Criterion (AIC) (Hu, 2007 ).

The AIC measures how good a model is, relative to another model created in the
same environment. Models are punished for having unnecessary complexity, which
is done with the following formula:

AIC = 2k − 2ln(L)

where k represents the number of estimated parameters and L represents the max-
imized value of model likelihood. The value of the AIC itself has no meaning, but
when we have models that are created in the same environment, we can select the
best model by picking the one with the lowest AIC.

Model 1 summary:

Deviance Residuals :
Min 1Q Median 3Q Max

−1.6710 −0.6811 −0.5370 −0.3555 2 .9054

C o e f f i c i e n t s :
. Est imate Std . Error z value Pr(>|z |)
( I n t e r c e p t ) −1.444171 0 .005093 −283.58 <2e−16 ∗∗∗
term 1.062204 0 .011838 89 .72 <2e−16 ∗∗∗
APPL_FICO_BAND 0.939969 0 .014545 64 .63 <2e−16 ∗∗∗
d t i 0 .673021 0 .016208 41 .52 <2e−16 ∗∗∗
zip_code 0 .851267 0 .021584 39 .44 <2e−16 ∗∗∗
annual_inc 0 .948192 0 .024528 38 .66 <2e−16 ∗∗∗

S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1

( Dispersion parameter f o r binomial family taken to be 1)

Null deviance : 273493 on 279999 degrees of freedom
Residual deviance : 253824 on 279994 degrees of freedom
AIC : 253836

Number of F i sher Scoring i t e r a t i o n s : 5

AUC: 0 .6802947

The selected model has five significant variables, meaning that the coefficients of the
variables in the model are significantly different from zero for which the hypothesis
was tested.
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Another approach to try, is to include all 20 previously selected variables in the
model, and remove insignificant variables until until the model with lowest AIC
is found. This method is called stepwise regression with backwards elimination.

Model 2 summary:

Deviance Residuals :
Min 1Q Median 3Q Max

−1.6425 −0.6818 −0.5272 −0.3404 2 .9740

C o e f f i c i e n t s :
. Est imate Std . Error z value Pr(>|z |)
( I n t e r c e p t ) −1.444828 0 .005126 −281.846 < 2e−16 ∗∗∗
term 1.028194 0 .012296 83 .617 < 2e−16 ∗∗∗
APPL_FICO_BAND 0.702271 0 .017536 40 .047 < 2e−16 ∗∗∗
d t i 0 .475499 0 .017889 26 .580 < 2e−16 ∗∗∗
bc_open_to_buy 0.814874 0 .054250 15 .021 < 2e−16 ∗∗∗
percent_bc_gt_75 0 .137116 0 .039355 3 .484 0 .000494 ∗∗∗
avg_cur_bal 0 .389631 0 .046667 8 .349 < 2e−16 ∗∗∗
zip_code 0 .848744 0 .021732 39 .055 < 2e−16 ∗∗∗
b c _ u t i l −0.516950 0 .050701 −10.196 < 2e−16 ∗∗∗
t o t _ c u r _ b a l −0.147237 0 .048624 −3.028 0 .002461 ∗∗
annual_inc 0 .941332 0 .028286 33 .279 < 2e−16 ∗∗∗
v e r i f i c a t i o n _ s t a t u s 0 .486283 0 .024300 20 .011 < 2e−16 ∗∗∗
acc_open_past_24mths 0 .504892 0 .032761 15 .412 < 2e−16 ∗∗∗
r e v o l _ u t i l 0 .305937 0 .036711 8 .334 < 2e−16 ∗∗∗
mort_acc 0 .539045 0 .032901 16 .384 < 2e−16 ∗∗∗
t o t a l _ b c _ l i m i t −0.689281 0 .058266 −11.830 < 2e−16 ∗∗∗
mo_s in_rcnt_ t l 0 .328387 0 .036420 9 .017 < 2e−16 ∗∗∗
num_actv_rev_tl −0.229393 0 .037312 −6.148 7 . 8 5 e−10 ∗∗∗
−−−
S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1

( Dispersion parameter f o r binomial family taken to be 1)

Null deviance : 273493 on 279999 degrees of freedom
Residual deviance : 251745 on 279982 degrees of freedom
AIC : 251781

Number of F i sher Scoring i t e r a t i o n s : 5

AUC: 0 .6910932

The second model has lower AIC and higher AUC, and is therefore, according to an
econometric perspective, a preferable model. The models were fitted with 280,000
observations, and the AUC was calculated on a validation set of 120,000 observa-
tions. This model is sensitive to the amount of data used. When the model is fitted
with 28,000 loans, the AUC on the validation set drops to 0.67 and four variable
coefficients have become statistically insignificant for the model.

4.1.2 Random Forest

For Random Forest models, we will use the Ranger package in R. The name of the
software package is derived from the words, RANdom forest GEneRator (Wright
and Ziegler, 2015). This package is superior mainly in terms of speed compared to
other Random Forest software. While we were concerned with the amount of in-
put variables in other models, that aspect is less important with Random Forests.
As explained in Section 2.3.2 a Random Forest can disregard unimportant variables
by randomly drawing a higher amount of candidate split variables. Also training
a Random Forest with all variables enables us to create a variable importance table
indicating what variables are most important for growing the trees in the Random
Forest. The variable importance in Table 4.1 shows the top ten most important vari-
ables for growing a probability of charge off Random Forest. The full variable im-
portance table is stated in Appendix D.
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variable importance variable importance
zip_code 416.0527 annual_inc 154.1063
APPL_FICO_BAND 213.8836 issue_month 149.6464
addr_state 198.6785 emp_length 145.0916
term 189.9088 revol_util 135.0623
dti 182.1208 total_acc 129.1624

TABLE 4.1: Random Forest probability of charge off top ten most im-
portant variables

We can see that there is a clear winner among the available variables, the zip code.
It is almost twice as important as the second most important variable. We will keep
it in the model in order to achieve high performance, however from an ethical point
of view the use of this variable is of course questionable.

A standard Random Forest creates five hundred trees, randomly selects the rounded
square root of the available variables as candidates for the splits and sets a minimal
node size of 10 in case of probability estimation. These settings and the amount of
data used to train the model have to be optimized in terms of area under the receiver
operating characteristic curve.

Adding more data to the model will, to a certain extent, improve the model but is
also expensive in computing time. Therefore we start with a reasonable amount of
data to get a sense of the behavior of the forest under different parameter settings.
When we have found good parameters, we will improve performance by adding
data. Ten thousand is a reasonable amount to create models, this corresponds to
4286 observations in the validation set in order to keep the 70/30 percent fractions in
tact. The standard Random Forest model achieves a performance on the validation
data of 0.65614 AUC. The performance on the training data is 0.99999 AUC. These
AUC’s correspond to the ROC plots in the figure below.
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FIGURE 4.1: Random Foret initial ROC performance on train and val-
idation data

To achieve higher performance on validation data we need to optimize the model to
generalize better. To make the model less complex we can change the depth param-
eter or we can increase the number of variables randomly chosen at each split.

Now we have to test different values of the training set size, the amount of variables
randomly selected for split criterion and the terminal node size and the number of
trees to put in the forest.

Min node size Train AUC Validation AUC
10 1 0.66078

100 0.93406 0.66289
200 0.85902 0.66321
300 0.82801 0.66249
400 0.81170 0.66178
500 0.78902 0.66028
600 0.78392 0.65840
700 0.78825 0.65886
800 0.78502 0.65899
900 0.76259 0.65732
1000 0.76621 0.65655

TABLE 4.2: Random Forest Train and validation performance on dif-
ferent values of minimal node size

From Table 4.2 we conclude that 2% of train set size is a good setting for the depth
parameter. The number of variables, to draw from all variables, as candidates to
make a split on will be tested on a range, close to the default setting, the rounded
square root of all variables.
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mTry Train AUC Validation AUC
2 0.84027 0.67326
3 0.85284 0.67431
4 0.85745 0.67335
5 0.85947 0.67149
6 0.86009 0.66958
7 0.86010 0.66678
8 0.85966 0.66534
9 0.85946 0.66370
10 0.85924 0.66140
11 0.85821 0.65908
12 0.85751 0.65789
13 0.85720 0.65729

TABLE 4.3: Random Forest Train and validation performance on
number of variables as split candidates (mTry)

In Table 4.3 we observe that lowering the amount of candidate variables increases
the AUC on the validation set. We stated earlier that a higher value allows for a less
complex forest and should reduce the difference between the performance on train
and validation data. The higher performance with a lower mTry, can be explained
by the fact that a high amount of candidates will will make the model choose the best
variable, in terms of train data, to make the split. Having less freedom in picking the
split variable makes the forest able to make better generalizations, which is reflected
in the performance on validation data.

Trees Train AUC Validation AUC
100 0.85925 0.67108
200 0.83736 0.67279
300 0.84939 0.67342
400 0.85422 0.67436
500 0.84715 0.67459
600 0.85472 0.67432
700 0.86040 0.67568
800 0.86279 0.67477
900 0.84281 0.67471

1000 0.84847 0.67463

TABLE 4.4: Random Forest Train and validation performance on
number of trees in the forest

Table 4.4 shows that the optimal size of the forest is 700 trees.

Final forest
Running the Random Forest on the entire train data set, with the parameters found
on the smaller set, an AUC of 0.7129 is achieved. Adding data to the forest produces
a substantial performance gain, because the larger set is a better representation of
the validation data. By repeating the parameter search, that was performed with
less data, on the larger data set, other parameters are found that produce an even
higher AUC. When a Random Forest is trained on 280,000 observations with 1,000
trees, mTry 7 and node size 1,000 we achieve the highest AUC which is 0.7231. From
this we can conclude that training a forest with more data needs re evaluation of the
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parameters.

For comparison, we also run a Random Forest without the weight of evidence trans-
formation, using the same model parameters, from re evaluation of the larger data
set forest. This model achieves an area under the receiver operating characteristic of
0.7247 on the validation data.

FIGURE 4.2: Random Forest ROC performance of final model using
original and WOE transformed data

Figure 4.2 shows that on the validation set, the model using original data performs
similar to the model using weight of evidence data. However the better perfor-
mance on the train set might indicate that there is more room for improvement for
the model using original data. The highest AUC achieved by the WOE based forest
is 0.7232. The original data model achieved a higher AUC of 0.7244.

4.1.3 Neural Network

Stuttgart Neural Network Simulator software for R (RSNNS) is used for our analysis
of Neural Network models. The parameters in this model that we have to optimize
for our data set are training set size and number of neurons in the hidden layer.

When we include all features and increase the number of neurons in the hidden
layer, we are gradually introducing more complexity into the model. With a small
amount of data, an over fit will be produced quickly without adding much neurons
in the hidden layer. This gradually adding of complexity will be done with 1, 10 and
100 percent of the data. The following plots and Table 4.5 represent the results of
this process.
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FIGURE 4.3:
1%Data

FIGURE 4.4:
10%Data

FIGURE 4.5:
100%Data

FIGURE 4.6: Neural Network Train and Validation AUC with differ-
ent data set sizes and numbers of hidden nodes

Data 2800/1200 28000/12000 280000/120000
nodes AUC train AUC Val AUC train AUC Val AUC train AUC Val
1 0.80102 0.59875 0.74096 0.69756 0.71916 0.71444
2 0.83398 0.61273 0.74603 0.69452 0.72227 0.71690
3 0.83925 0.60763 0.74782 0.69439 0.72250 0.71551
4 0.86734 0.61534 0.75262 0.68463 0.72605 0.71883
5 0.88974 0.59378 0.75375 0.68486 0.72708 0.71989
6 0.88953 0.55129 0.75977 0.69036 0.72722 0.71840
7 0.90359 0.57134 0.75739 0.67900 0.72863 0.71927
8 0.89578 0.58984 0.76244 0.67445 0.72917 0.71954
9 0.92039 0.56894 0.76077 0.67059 0.73108 0.72081
10 0.91013 0.58532 0.76672 0.65554 0.73146 0.72078
11 0.91424 0.57794 0.77265 0.66478 0.73050 0.71703
12 0.91745 0.57414 0.76937 0.65410 0.73247 0.71837
13 0.91761 0.59704 0.77937 0.66527 0.72890 0.71351
14 0.92848 0.57680 0.76568 0.65192 0.73365 0.71920
15 0.91170 0.61032 0.77747 0.63306 0.73246 0.71674

TABLE 4.5: Train and Validation AUC with different set sizes

The measure of complexity in the model needed for optimal performance on the
validation set increases with the size of the data set. In Table 4.5 we see that the
smallest train/validation set requires four hidden nodes achieving 0.62 AUC, with
six hidden nodes an optimal validation AUC of 0.69 is achieved in the medium data
set size. The Neural Network with 100 percent of the train data is able to achieve an
AUC of 0.72 with 9 hidden nodes.

The probability of charge off Neural Network is very sensitive to the amount of
data and the number of hidden nodes in the network. The best model is a Neural
Network with 87 input nodes, 9 hidden nodes and one output node, resulting in a
validation set AUC of 0.7208.

4.1.4 Support Vector Machines

Within the development of a Support Vector Machine suitable for predicting prob-
ability of charge off on the Lending Club data, we will try different settings on a
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small data set. Optimizing on more data proves to be very time consuming, because
the Support Vector Machine needs to perform calculations on every pair of observa-
tions, the amount of calculations grows very fast by adding data.

Support Vector Machines are said to be an excellent model choice when the data set
suffers from the dimensionality curse (having a lot of variables and relatively few
observations). Clearly with 87 variables and 400k observations, the Lending Club
data set does not suffer from this curse. Leading us to expecting inferior behavior of
Support Vector Machines, however they might be able to show good results when
trained with a small amount of observations.

Kernel Train AUC Val AUC
Linear 0.5842 0.5938
Polynomial 0.9485 0.6508
Sigmoid 0.6003 0.6038
Radial 0.9514 0.6706

TABLE 4.6: Performance of Support Vector Machines trained with
2800 observations

The Support Vector Machine with the radial basis function kernel performs best on
standard model settings, finding the optimal settings for this kernel is therefore most
promising.

Gamma controls how much influence support vectors have, when gamma is low
data points have a large influence region and this can lead to an under fit. High
gamma on the other hand limits the region of influence of the support vectors and
leads to over fitting to the training data. A gamma of 1/18 is found to be optimal for
the validation data set.

Training a Support Vector Machine with radial kernel and gamma 1/18 on 28000
observations, results in 0.9947 and 0.6506 AUC on the train and validation data re-
spectively.

Training the Support Vector Machine with 2800 observations takes 15 seconds, train-
ing the same model with 28000 observations costs 5644 seconds. The training time
of an SVM with radial basis function kernel on 280,000 observations is estimated to
be larger than 5644/15 = 376.27 times 1.5 hours, under the assumption that training
time grows linear with the data set size. This assumption gives us a lower bound of
roughly 564 hours, because in reality the training time grows much faster than linear
with the data set size.

4.2 Exposure At Charge off

The next quantities that we model with the machine learning algorithms are contin-
uous, they are modeled as a percentage of the total loan amount. The exposure at
charge off can be derived from the Lending Club data with the following formula:

Exposure At Charge Off = 1− total Principal Received

total Loan Amount
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As baseline for this model, we take the average of the train data and predict this for
the validation data. resulting in a mean squared error on the validation set of:

base MSE = 0.03955

The exposure at charge off must be modeled with data from charged off loans. The
same initial split of 280000/120000 is made. After splitting the data, the charged
off loans are selected resulting in 53618/22825 train/validation observations, which
approximately still is a 70/30 percent split.

4.2.1 Regression

Using stepwise regression, with backwards elimination that minimizes the AIC, we
find a model with 28 variables. intercorrelated variables were removed, the variable
of the correlated pair with highest correlation to the response variable is kept in
the initial regression model. The model mean squared error is 0.02778 with an R2 of
0.29770, these values were calculated using the validation data. The model summary
can be found in Appendix E.1.

4.2.2 Random Forest

From modeling the probability of charge off we know that parameters that show
good performance with a small subset of the data, are not the best parameters when
the forest is trained on a larger set. Therefore we do not start with a subset of the
charged off loans, but use all available observations for modeling. The most impor-
tant features for the Random Forest exposure at charge off model are shown in Table
4.7, note that the numbers are not comparable with the importance of the probabil-
ity of charge off forest. These numbers are related to the variance in the nodes, the
probability of charge off forest importance is related to the Gini in the nodes. The
complete variable importance table for the exposure at charge off is available in Ap-
pendix D.

variable importance variable importance
term 199.266 dti_joint 41.034
zip_code 65.897 dti 38.682
addr_state 52.330 emp_length 37.889
APPL_FICO_BAND 50.576 annual_inc 37.242
issue_month 47.069 revol_util 36.901

TABLE 4.7: Random Forest exposure at charge off top ten most im-
portant variables

Through a parameter search, presented in Table 4.8 we find the best parameters of
the forest to be a random drawing of 20 variables to try as split variables for each
split, nodes that contain more than 25 observations will be split and the forest of
regression trees will contain 1200 individual trees.



4.2. Exposure At Charge off 43

mTry Train MSE Val MSE nTree Train MSE Val MSE Node Size Train MSE Val MSE
20 0.004904 0.026622 1200 0.006075 0.026822 25 0.015001 0.026787
28 0.004725 0.026636 1400 0.006095 0.026841 40 0.018066 0.026790
30 0.004697 0.026642 1000 0.006077 0.026848 44 0.018649 0.026800
22 0.004846 0.026648 1100 0.006094 0.026849 22 0.014108 0.026806
24 0.004798 0.026653 1500 0.006073 0.026851 27 0.015521 0.026809
29 0.004714 0.026654 900 0.006085 0.026851 31 0.016440 0.026811
26 0.004759 0.026656 1000 0.006082 0.026855 43 0.018500 0.026813
23 0.004821 0.026664 1300 0.006069 0.026865 29 0.015998 0.026815
18 0.004975 0.026669 800 0.006079 0.026865 41 0.018214 0.026816
21 0.004874 0.026670 600 0.006088 0.026877 33 0.016858 0.026818

TABLE 4.8: Random Forest EAC model parameter search sorted on
validation performance

In the table there are parameters missing, the table only shows the top ten sorted
on validation MSE. Table D.5 in the appendix gives a complete overview of perfor-
mance on all parameters that were tested.

The exposure at charge off Random Forest model achieves 0.012972 train MSE and
0.026565 validation MSE. The R2 on the validation set is 0.328295. A Random Forest
with the unprocessed data results in a MSE on the validation set of 0.026509 with an
R2 of 0.329690.

4.2.3 Neural Network

We have noticed the same behavior with Neural Networks as with Random Forest
in the performance on the validation data under different data set sizes. Again we
will start with all available data and proceed to find the right amount of nodes to
put in the hidden layer. Figure 4.7 and Table 4.9 show the performance of networks
with different numbers of hidden nodes controlling the amount of complexity that
the network can include in the model.

FIGURE 4.7: Neural Network EAC MSE on train and validation data
vs number of hidden nodes



44 Chapter 4. Machine Learning Retail Credit Risk models

Nodes Train MSE Val MSE Nodes Train MSE Val MSE
1 0.027943 0.027614 11 0.027008 0.027109
2 0.027397 0.027208 12 0.026857 0.026999
3 0.027738 0.027580 13 0.026748 0.026850
4 0.027359 0.027240 14 0.027145 0.027145
5 0.027013 0.026903 15 0.026815 0.026929
6 0.027156 0.027089 16 0.026794 0.026889
7 0.027234 0.027179 17 0.026784 0.026888
8 0.027166 0.027157 18 0.026973 0.027186
9 0.026979 0.027070 19 0.027247 0.027481
10 0.026988 0.027084 20 0.026878 0.026999

TABLE 4.9: Neural Network EAC train and validation performance

The Neural Network with 13 nodes in the hidden layer results in the lowest mean
squared error on the validation set. The error is 0.02685 with an R2 of 0.3188852.

4.2.4 Support Vector Machines

As opposed to the other EAC models, we have to search the best SVM parameters
on a smaller set of charged off observations because searching parameters on the
larger set would take too much time. For this purpose, 10% of the available data is
used. The best performing kernel and parameter will then be applied to the large
data set, creating the final model that we will later compare with other algorithms
for modeling the exposure at charge off.

Kernel Train MSE Val MSE
Linear 0.02938 0.02720
Polynomial 0.02261 0.03053
Sigmoid 11.57833 10.51691
Radial 0.02191 0.02668

TABLE 4.10: Support Vector Machine EAC performance using differ-
ent kernels

The results in Table 4.10 come from standard parameters of the models. In case of
the polynomial kernel (degree 2), increasing or decreasing the degree makes perfor-
mance of the model worse. The linear kernel has no parameter to improve and the
sigmoid kernel is showing very bad performance on this data set. We continue with
the most promising model, the Support Vector Machine with the radial basis func-
tion kernel. The best gamma parameter in terms of MSE on the validation data set
is 1

350 .

On the large data set, the RBF Support Vector Machine achieves 0.02694668 MSE,
0.0271566 validation MSE and an R2 of 0.3133397 on the validation set.

4.3 Loss Given Charge off

The baseline for this quantity is a mean squared error of 0.00870. This represents the
error obtained when predicting the average of the train set for every validation set
observation, and calculating the errors.
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recovery rate =
recoveries− collection recovery fee

exposure

loss given charge off = 1− recovery rate

base MSE = 0.00870

For modeling the loss given charge off we use only charged off loans like we did in
the previous section.

4.3.1 Regression

From the 87 variables we keep 37 that are not highly correlated to each other. The
variables that were thrown out were less correlated to the response variable than the
variables that are kept in the model. From the 37 variables we remove the insignif-
icant ones one by one minimizing the AIC. The model with the lowest AIC has 25
variables included, the model summary is added in Appendix E.2 This results in an
MSE of 0.008262 and and R2 of 0.049975 on the validation set.

4.3.2 Random Forest

The same approach as for the Exposure at charge off Random Forest is taken for the
Loss Given Charge Off Random Forest. The response variable is now the propor-
tion off exposure that is not recovered. The variables in Table 4.11 are the variables
that contribute the most to reducing variance inside the nodes, the complete table is
stated in Appendix D.

variable importance variable importance
zip_code 18.49764 dti 10.23981
addr_state 15.15434 annual_inc 9.981299
APPL_FICO_BAND 14.62438 total_acc 9.893213
issue_month 11.66216 revol_util 9.749394
emp_length 10.38577 revol_bal 9.078406

TABLE 4.11: Random Forest Loss Given Charge off top ten most im-
portant variables

In Table 4.12 the top parameters of a parameter search are presented. The entire
parameter search is specified in Table D.6 in the appendix.

mTry Train MSE Val MSE nTree Train MSE Val MSE Node Size Train MSE Val MSE
9 0.002287 0.008203 1400 0.002290 0.008198 49 0.006367 0.008176
8 0.002406 0.008203 1200 0.002284 0.008199 47 0.006301 0.008177
11 0.002110 0.008208 600 0.002301 0.008200 48 0.006333 0.008177
10 0.002192 0.008209 1100 0.002289 0.008201 37 0.005884 0.008179
5 0.003042 0.008209 1300 0.002286 0.008201 44 0.006185 0.008179
7 0.002597 0.008209 900 0.002298 0.008202 42 0.006105 0.008180
14 0.001975 0.008210 1500 0.002289 0.008202 50 0.006401 0.008180
6 0.002802 0.008211 1000 0.002283 0.008206 39 0.005973 0.008180
13 0.001997 0.008212 800 0.002292 0.008206 36 0.005820 0.008180
3 0.004258 0.008215 500 0.002296 0.008207 41 0.006071 0.008181

TABLE 4.12: Random Forest Loss Given Charge off model parameter
search sorted on validation MSE performance
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A Random Forest with minimal node size 49, mtry 9 and 1400 trees is chosen as final
model. This model achieves 0.00817 validation MSE with an R2 of 0.05989. When
we use the unprocessed data, the Random Forest achieves 0.00817 validation MSE
with an R2 of 0.06015.

4.3.3 Neural Network

The Loss Given Charge Off Network is unable to find a fit. There is a model that
we can evaluate, however by looking at Figure 4.8, we see that the error on the
validation set is always lower than the error on the train set. This can be interpreted
as the validation observations being closer to their mean than the train observations.
In that case a model that does almost nothing, which is confirmed by the low R2,
can perform better on the test set than on the train set.

FIGURE 4.8: Neural Network LGC MSE on train and validation data
vs number of hidden nodes

Nodes Train MSE Test MSE Nodes Train MSE Test MSE
1 0.008831 0.008282 16 0.008747 0.008288
2 0.008913 0.008369 17 0.008738 0.008266
3 0.009082 0.008574 18 0.008795 0.008343
4 0.008943 0.008470 19 0.008819 0.008342
5 0.009075 0.008584 20 0.008711 0.008277
6 0.008850 0.008356 21 0.008768 0.008271
7 0.008845 0.008371 22 0.008807 0.008317
8 0.008809 0.008319 23 0.008854 0.008350
9 0.008872 0.008376 24 0.008755 0.008284
10 0.008742 0.008283 25 0.008783 0.008337
11 0.008869 0.008387 26 0.008728 0.008281
12 0.008841 0.008398 27 0.008767 0.008277
13 0.008793 0.008315 28 0.008738 0.008240
14 0.008837 0.008382 29 0.008729 0.008288
15 0.008751 0.008285 30 0.008739 0.008265

TABLE 4.13: Neural Network LGC train and validation performance
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28 nodes in the hidden layer of the network gives the best performance. A MSE of
0.00824 and R2 of 0.04550 are achieved with the single layer Neural Network.

4.3.4 Support Vector Machines

Table 4.14 is created by training and validating Support Vector Machines with dif-
ferent kernels on 10% of the available train and validation data sets.

Kernel Train MSE Val MSE
Linear 0.00923 0.00900
Polynomial 0.00657 0.00927
Sigmoid 2.51055 2.27503
Radial 0.00713 0.00892

TABLE 4.14: Support Vector Machine LGC performance using differ-
ent kernels

The values in the table are calculated with the standard parameters of the models.
In case of the polynomial kernel, decreasing the degree to two, makes performance
of the model slightly better. However this is still not close to the performance of the
radial basis function kernel.

The best gamma for the RBF kernel is 1
600 , a gamma that is this low leads to high

influence regions of the potential support vectors. This would in general result in
an under fit, however it is the best parameter on the validation data. Running this
model on the large data set results in a validation MSE 0.00898 and R2 -0.03267.
This model shows good performance in terms of MSE, yet the negative R2 contra-
dicts good performance. A negative R2 means that this model does worse that the
baseline average prediction, which has an MSE of 0.00870.

4.4 Expected Loss

By dropping the assumption that PD EAD LGD or in our case PC, EAC and LGC
are independent, it is no longer acceptable to just multiply these quantities in order
to come up with the expected loss. In this section we will use the algorithms predict
the expected loss of loans directly. Because we do not condition on the status of a
loan, which was done with EAC and LGC, we use all available data for the expected
loss models.

The average loss of principal across the train data is 13.219%, if we predict this for
all validation observations, the mean squared error that we find is 0.08149.

4.4.1 Regression

After removing correlated variables, a stepwise regression model with backwards
elimination is created. The resulting model, summarized in Table E.3, with lowest
AIC consists of 33 independent variables and performance on the validation data in
terms of MSE is 0.07276 and the R2 is 0.10712.
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4.4.2 Random Forest

The expected loss Random Forest, identifies variables in Table 4.15 as most impor-
tant in the tree growing process. The complete variable importance table for the
Random Forest expected loss model is available in Appendix D.

variable importance variable importance
zip_code 916.0333 issue_month 501.9930
term 812.2799 annual_inc 484.9612
APPL_FICO_BAND 683.3494 emp_length 465.9498
addr_state 637.8747 revol_util 433.4505
dti 570.3449 total_acc 426.7132

TABLE 4.15: Random Forest Expected Loss top ten most important
variables

Because the size of the train set is larger, we take steps of 10 in the search for the best
minimal node size. Memory limitations prevented the training of forests larger than
900 trees.

mTry Train MSE Val MSE nTree Train MSE Val MSE Node Size Train MSE Val MSE
8 0.017405 0.071639 800 0.016767 0.071558 40 0.047228 0.071421
12 0.015657 0.071672 700 0.016786 0.071606 60 0.052848 0.071429
11 0.015946 0.071673 900 0.016749 0.071618 50 0.050439 0.071432
10 0.016312 0.071674 500 0.016789 0.071632 80 0.056276 0.071457
9 0.016790 0.071681 600 0.016771 0.071650 70 0.054765 0.071470
13 0.015410 0.071683 400 0.016831 0.071712 30 0.042813 0.071472
7 0.018226 0.071705 300 0.016831 0.071720 90 0.057576 0.071481
14 0.015239 0.071718 200 0.016878 0.071881 20 0.036165 0.071483
6 0.019430 0.071727 100 0.017119 0.072140 100 0.058661 0.071497
15 0.015056 0.071764 10 0.025125 0.071579

TABLE 4.16: Random Forest Expected Loss model parameter search
sorted on validation MSE performance

The best performing parameters, shown in Table 4.16, are a minimal node size of 40,
mTry 8 and 800 trees. This Random Forest achieves 0.071451 validation MSE and an
R2 of 0.123163. Using the original data a Random Forest with the same parameters
obtains a MSE of 0.071419 and an R2 of 0.123556.

4.4.3 Neural Network

For Expected loss, the Neural Network model shows normal behavior in Figure 4.9.
The train error is lower than the validation error, and by gradually adding complex-
ity in the model, we first see an under fit, then the minimum of the validation error
and after that more divergence between the validation and train error.
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FIGURE 4.9: Neural Network EL MSE on train and validation data vs
number of hidden nodes

Nodes Train MSE Val MSE Nodes Train MSE Val MSE
1 0.071397 0.071959 16 0.069788 0.070959
2 0.071133 0.071794 17 0.069737 0.071009
3 0.070748 0.071341 18 0.069742 0.071008
4 0.070489 0.071187 19 0.069582 0.070872
5 0.070384 0.071204 20 0.069674 0.071034
6 0.070296 0.071132 21 0.069667 0.070947
7 0.070175 0.071010 22 0.069703 0.071117
8 0.070202 0.071183 23 0.069656 0.071012
9 0.069980 0.070991 24 0.069569 0.070945
10 0.070030 0.071140 25 0.069857 0.071243
11 0.069844 0.070947 26 0.069604 0.070958
12 0.069846 0.071031 27 0.069574 0.070870
13 0.069855 0.071017 28 0.069517 0.070989
14 0.069898 0.071084 29 0.070074 0.071402
15 0.069701 0.070968 30 0.069569 0.071056

TABLE 4.17: Neural Network EL train and validation performance

The best Neural Network for expected loss is a network with 27 nodes in the hidden
layer of the network. This model achieves 0.070939 validation MSE and an R2 of
0.129425.

4.4.4 Support Vector Machines

From modeling the probability of charge off we know that the amount of data is
too large to handle for an SVM with the available resources. We also know that the
radial kernel performs best for all other quantities modeled with SVM’s. When we
apply this kernel on a sample of 1% of the data set, we find an optimal gamma of 1

16 .
The final model is trained with 10% of the data set. The model predictions on the
validation data set have a mean squared error of 0.078713 and an R2 of 0.019796.





51

Chapter 5

Model Analysis

Chapter 5 will evaluate and compare both the model approach and the model perfor-
mance of (logistic) regression and the machine learning algorithms Random Forests,
Neural Networks and Support Vector Machines. The model approach differences
are addressed first, this will contribute to answering subquestion c. The next and
also last subquestion about added value of machine learning in terms of model per-
formance will be analyzed on prediction accuracy and on calibration

5.1 Modeling approach

The differences in approach between the regression and machine learning models
that we have experienced in this research will be discussed in this section. Because
the focus of this research has been to compare models in a fair way by using the same
transformation, we can only evaluate what had to be done different after gathering
data, selecting data and transforming the data.

• (Logistic) Regression
During the modeling of probability of charge off with Logistic Regression and
the continuous quantities with regression, we had to carefully select variables
to include in the models. With the main concern that correlated variables
produce unreliable models due to the independence assumption of regression
models. The next step was to choose from the correlated variables which one
to keep in the model. trying all possible combinations and subsets of combi-
nations of uncorrelated variables was not possible because of the number of
available variables. Our approach was to keep the variables with the highest
correlation to the quantity that the model should predict. This step has led to
a loss of potentially informative variables. Our following step was to use the
AIC in order to select the best model from all created regression models. This
is an often used statistical method to select the best regression model, it can
easily be misused when it is used to compare models that are created in dif-
ferent data environments. When the AIC is used in a correct manner, it shows
which model has the best trade off between complexity and performance. The
model with the lowest AIC value is then selected as the final model.

• Machine learning algorithms
The approach used with the machine learning algorithms was to first experi-
ment with a relatively small amount of data, before training the algorithms on
large amounts of data. This was needed, because training machine learning
algorithms on large amounts of data can be a time consuming process. After
taking this approach with modeling the probability of charge off, we found
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that parameters that work well on a small data set are not the best parame-
ters when more data is used. For the Support Vector Machines however we
still had to apply the initial approach, because finding optimal parameters on
large data sets is too time consuming. Parameters for the other models cre-
ated during this research were searched using the largest available data sets.
The optimal parameters are the parameters that perform best when the models
make predictions on new data. we have seen in Chapter 4 that machine learn-
ing algorithms are in most cases able to create models that fit very good to the
training data set but that the same model can perform very poor on new data.
When the parameters that produce optimal out of sample results are found,
we are finished and have a final model.

The machine learning approach saves time in the early stages of modeling, because
there is no independence assumption that requires carefully disregarding parts of
the data set. During the selection of the best parameters for a machine learning
model, a lot of time is consumed when large data sets are used to train the models.
Stepwise regression is a faster approach in finding the optimal model. On the other
hand, a thorough approach in finding the optimal regression model would be to try
all possible combinations of model variables. This becomes problematic with the
amount of variables used in this research. Another difference between regression
and machine learning is that the model selection based on AIC is using the model
likelihood on training data. The machine learning models are selected by looking at
performance on data that was not used during the training of the model.

A big advantage of the Random Forest algorithm is that it did not require the trans-
formation of data to a scaled and numeric data set. The algorithm is even insensi-
tive to outliers present in the data, where the regression and other machine learn-
ing approaches can suffer from the presence of such outliers in data sets. Another
strong point of the Random Forest models is the ability to show what variables are
the most important during the training of the Random Forest. When scaled data is
used, regression model coefficients also show what variable contributes the most to
the prediction of the model. Neural Networks and Support Vector Machines do not
have such simple and intuitive ways of showing what variables are important for
the credit risk predictions.

5.2 Model performance

For performance analysis, we have kept 11471 observations locked away, that we
will now use to compare the different models. The validation data used in the pre-
vious chapter has been used to choose the best parameters, and is not suitable for
comparing and analyzing the models. The chosen model parameters are optimal for
the validation data and the models might have bias towards the particularities of
this data. In this section, performance of the models will be evaluated on data that
has not been used in any stage during the creation of the models.

5.2.1 Probability of Charge Off model

The probability of charge off models will be compared on ROC performance and we
will compare how good the models are at assigning high probabilities of charge off
to actually charged off loans. Figure 5.1 and Table 5.1 show the receiver operating
characteristic curves and the area under that curve respectively.
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FIGURE 5.1: Probability of Charge off model ROC performance on
test data

Model AUC
Baseline 0.5
Logistic Regression 0.68366
Random Forest 0.71782
Neural Network 0.71747
Support Vector Machine* 0.64942

TABLE 5.1: Probability of Charge off model performance

First of all we notice that the Random Forest and the Neural Network clearly out-
perform the other models, secondly these two models are very close both in terms
of ROC curve shape and AUC value. From these two models the probability that
the Random Forest has assigned a higher probability of charge off to an observation
of the charged off population when compared to an observation of the fully paid
population is 0.035% higher.

The Random Forest on original data achieves 0.72053 AUC on the test data, with the
settings that were optimal for the Weight of Evidence forest on the validation data.
In Section 4.1.2 we have seen that the gap between train and validation ROC is larger
for not transformed data than for the transformed data. This performance loss comes
from restricting the Random Forest in its own decision making through binned data.

*Due to the computational expensiveness, the Support Vector Machine has not been
run with the same data set size as was used with the other models.
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When the probability of charge off predictions for 11471 test observations of all mod-
els are ordered on predicted probability of charge off, we can evaluate how much of
the safe and risky loans, according to the models, were actually a good or bad in-
vestment. Tables 5.2 and 5.3 show the number of charged off loans in the thousand
riskiest and safest loans respectively.

model amount percentage
LR 482 42.023%
RF 530 46.207%
NN 537 46.818%

SVM 461 40.192%

TABLE 5.2: Number of charged off loans in the 10% riskiest predicted
loans

model amount percentage
LR 65 5.667%
RF 50 4.359%
NN 52 4.534%

SVM 110 9.590%

TABLE 5.3: Number of charged off loans in the 10% safest predicted
loans

These tables show in a more intuitive way how good models are at concentrating
possibly bad loans in the high probabilities of charge off and possibly good loans in
the low probabilities of charge off. We already know that the Random Forest and
Neural Network out perform Logistic Regression and the Support Vector Machine.
These tables show however, that a Neural Network is slightly better at concentrating
actually charged off loans in the high probability region and that a Random Forest
is slightly better at concentrating loans that were fully repaid in the low probability
of charge off region.

5.2.2 EAC and LGC models

The exposure and loss given charge off are modeled as a percentage of the total loan
amount. Their performance on the test data set is evaluated by comparing mean
square error and R2 values.

Exposure At Charge off

Table 5.4 summarizes the performance results of the models that predict the expo-
sure at charge ff of a loan.
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Model MSE R2

Baseline 0.03894
Regression 0.02746 0.29447
Random Forest 0.02644 0.32084
Neural Network 0.02666 0.31522
Support Vector Machine 0.02674 0.31312

TABLE 5.4: EAC model performance

The mean squared errors for the machine learning models are all lower than the
mean squared error of the regression model. This is also reflected in the R2 that the
models achieve. The lowest mean square error and highest R2 is achieved by the
Random Forest model. When the data that was not transformed is used the Random
Forest model achieves 0.02628 MSE and an R2 of 0.32485.

Loss Given Charge off

Table 5.5 summarizes the performance results of the models that predict the loss
given charge off of a loan.

Model MSE R2

Baseline 0.00980
Regression 0.00933 0.04751
Random Forest 0.00931 0.04895
Neural Network 0.00968 0.01183
Support Vector Machine 0.01028 -0.04989

TABLE 5.5: LGC model performance

The models perform slightly better than the baseline average prediction, except for
Support Vector Machine that performs worse than the average prediction and is able
to achieve a negative R2. The Random Forest again performs best, however in this
case the runner up is not the Neural Network but regression. The forest with origi-
nal data achieved a mean squared error of 0.00927 and an R2 of 0.05258.

From theR2 squared values we can conclude that the models for this quantity hardly
have any predictive power because the amount of variance in the test data that can
be explained by the models is very small. Recall that in Chapter 3 Table 3.5 shows
that across all Lending Club sub grades the loss given charge off’s are between
91.44% and 94.19%. The expectation that a predictive model would have very lit-
tle power is confirmed by the low R2 values and mean square errors close to the
baseline mean square error which is small in absolute sense.

Weight of Evidence use in EAC LGC models

The used method transforms data to represent the log odds ratio of charge off. Valu-
able information may be lost because the model response variable is different from
the response used in the transformation. However the variables that contain in-
formation about the log odds ratio of charged off loans and fully repaid loans are
valuable, to some degree, for predicting other responses. When we examine the dif-
ferences in performance of the WOE and original data Random Forests, we see that
there are no huge differences and they are consistent with the minor performance
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gain of the probability of charge off Random Forests that predict the same response
as used for the Weight of Evidence transformation.

5.2.3 Expected Loss models

Two approaches for predicting the expected loss will be evaluated, the first is where
we multiply the individual components of expected loss and the second is where we
predicted the losses to be expected at once, modeling observed loss as a response
value.

For every algorithm we have multiplied the predictions of its probability of charge
off, exposure at charge off and loss given charge off. Together with the observed
losses the model performance is evaluated, which is represented in Table 5.6.

Model MSE R2

Baseline 0.08145
(Logistic) Regression 0.07351 0.09751
Random Forest 0.07151 0.12200
Neural Network 0.07119 0.12601
Support Vector Machine 0.07527 0.07589

TABLE 5.6: EL from separate PC, EAC and LGC model predictions

When the models are used to predict the expected losses without first modeling
the separate components of expected loss, the performance reported in Table 5.7 is
achieved.

Model MSE R2

Baseline 0.08145
Regression 0.07279 0.10626
Random Forest 0.07147 0.12255
Neural Network 0.07029 0.13697
Support Vector Machine 0.07929 0.02648

TABLE 5.7: Individual EL model performance

If we compare the two expected loss approaches, we see that except for Support Vec-
tor Machines, the models perform better when expected loss is modeled directly. The
reason that Support Vector Machines perform better in the separate model setting is
that the support vector models for exposure at charge off and loss given charge off
were trained with the same amount of data as the other exposure and charge off
models. The Support Vector Machine could not be trained with all data for the prob-
ability of charge off and the expected loss models. So for the separate model case
the SVM is in disadvantage only with modeling the probability of charge off. For
the expected loss in one model the Support Vector Machine is in disadvantage for
the entire loss prediction. In both approaches the Neural Network models outper-
form the other models and the Random Forest comes close to the Neural Network
performance.

Loss capture evaluation

To evaluate how good the models can capture losses, the expected losses predicted
by the models are sorted and plotted against the observed losses. Figure 5.2 shows
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the ability to capture losses of the separate model EL approach and Figure 5.3 shows
the same for the individual EL models.

FIGURE 5.2: Loss capture plot separate models

FIGURE 5.3: Loss capture plot individual models

The areas under the curves in figures 5.2 and 5.3 indicate how good a model can
capture losses, an area of 0.5 indicates that a model does nothing. An optimal model
(OPT in the figures), ordering all the losses from largest to smallest, would look like
the aquamarine line. This line shows that roughly 19% of the loans in the test set
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have been charged off and resulted in a loss, after that point the loss captured by the
perfect model is 100% and it becomes a straight line parallel to the x axis.

Model Separate Individual
Baseline 0.70088 0.70088
Optimal model 0.94033 0.94033
Regression 0.76078 0.76890
Random Forest 0.77345 0.77330
Neural Network 0.77506 0.77884
Support Vector Machine 0.74969 0.72859

TABLE 5.8: Loss capture AUC

The Neural Network performs best in concentrating the actual losses in the loans
that have higher expected losses. The single model approach slightly outperforms
the expected loss performance from creating separate models for the probability of
charge off, exposure at charge off and loss given charge off. In case of the regression
model, the individual model also slightly outperforms the loss capture abilities of
the separate model approaches. In case of the Random Forests and Support Vector
Machines the predictions form separate components are better in capturing losses
with high expected loss predictions. The baseline model in figures 5.2 and 5.3 repre-
sents a ranking of the loans on loan amount, it is able to achieve an area under the
loss capture curve a lot higher than 0.5. This means that the loan amount can be seen
as an important risk driver in the Lending Club data.

Calibration

In the previous sections we have analyzed how accurate the models are at individual
loan level and how good the models are at assigning a high loss expectation to loans
that have actually ben charged off. In this section we will let the models put the loans
in five buckets ranging from highest expected loss (bucket 1) to lowest expected loss
(bucket 5). In these buckets the total predicted loss is compared with the actual loss
of all loans in the bucket. The figures 5.4 and 5.5 show the difference between the
two as a percentage of the actual loss in the bucket, a positive bar in the figures
indicate that the model expected more loss than what was actually observed and
a negative bar indicates the opposite. When bars are small and close to zero, the
model has predicted a loss in the bucket close to the actual sum of losses observed
in the bucket.
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Separate models approach

FIGURE 5.4: Percentage difference between predicted and actual
losses in risk buckets of expected loss through separate models ap-

proach

In the separate model approach, Logistic Regression combined with standard re-
gression and the Support Vector Machine models predict bucket losses closest to
their actual values. Furthermore Neural Network models underestimate the losses
in all buckets and the Random Forest models underestimate the losses in the most
risky bucket while overestimating the losses in the other buckets.

Individual model approach

FIGURE 5.5: Percentage difference between predicted and actual
losses in risk buckets of expected loss through individual model ap-

proach

The more direct single model approach for expected loss has enabled the Neural
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Network to make better calibrated expected loss predictions. The Random Forest
shows the same pattern of under and over estimation of losses as the separate model
Random Forests, with a less severe underestimation of the losses in the most risky
bucket. What we can also see is that the Regression approach is not able to make
better calibrated predictions when the expected loss is directly modeled and that the
Support Vector Machine model has very poor calibration also note that the predicted
loss of the least risky bucket is more than 75% less than the actual losses of the loans
in that bucket.
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Chapter 6

Conclusions and
Recommendations

This research investigated two possible sources of the added value of machine learn-
ing in retail credit risk. The first source being the modeling approach of traditional
credit risk modeling versus the approach of machine learning algorithms. The sec-
ond source of possible added value was evaluated by comparing model perfor-
mance. After the conclusions about added value of machine learning in retail credit
risk are discussed, the recommendations regarding future research will be discussed.

Conclusions

• Added value in modeling approach
The added value of machine learning in terms of modeling approach is that in
retail credit risk it can cope with an important development, the availability of
large amounts of information on loan applicants. When there are more features
then we can evaluate, it becomes hard to find the most suitable subset for a
traditional retail credit risk model and to take care of correlated variables. The
strong point of machine learning is that the algorithms used in this research
can handle a very large amount of variables and that we can let the algorithms
decide what features are important and how the combinations of these should
be translated into predictions. Other added value that should be taken from
the machine learning approach is that model selection based on data that was
not used during the training or fitting stage puts the focus on what is actu-
ally important, the prediction quality on new observations. The traditional
retail credit risk approach used in this research selects the best model with the
Akaike Information Criterion, this measure does not evaluate the performance
on new data.
One specific model can add a lot of value in modeling approach. The Random
Forest model does not need transformed or scaled data and is not sensitive to
outliers. This can save a lot of time in the process of creating a retail credit
risk model. The Random Forest algorithm can also be used to identify what
features are important for risk prediction, the identified features could then be
used in other models.

• Added value in model performance
We have shown that the added value in retail credit risk, of machine learning
over traditional credit scoring, in terms of performance is present. We have
first created a level playing field by making the same information available to
all models by means of Weight of Evidence transformation, and putting the
same observations in the train, validation and test data. Of the investigated
models both Random Forests and Neural Networks show better performance
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than (logistic) regression. The two algorithms outscore Logistic Regression
in terms of ROC AUC for probability of charge off prediction. The Neural
Networks and Random forests have lower prediction errors and can account
for a higher amount of variance in the predicted variable on the continuous
quantities exposure at charge off and the expected loss in one model. For the
loss given charge off predictions, none of the models show good performance
because variance in that variable is already very low. The Neural Network
was unable to find a fit and did not perform better than the regression model.
The Support Vector Machine even achieved a negative R2 on loss given charge
off prediction, the Random Forest however performed slightly better than the
regression model. When we look at calibration instead of accuracy, we see
that the separate Logistic Regression and regression models combined into an
expected loss prediction show better performance than the machine learning
models. However the best calibrated model is the Neural Network that di-
rectly models the expected loss. This model is also the most accurate of the
machine learning models. The Support Vector Machine models were not able
to show good results because the data set was too large and the models cre-
ated with smaller data sets could not come close to the performance of the
other models.

To put these performance results into perspective we have to address the fact that
the Weight of Evidence data transformation has not been beneficial for the Random
Forests and possibly also for the other machine learning algorithms. Because the
Random Forests did not require a data transformation we were able to also show
the results of the model with original data in Chapter 4. These results show that the
Random Forests without transformed data consistently outperform the WOE Ran-
dom Forests. We suspect that the main reason for this is that binning the numerical
data has given the models less freedom in making their own decisions.
The Weight of Evidence method was used to create a level playing field, in Chapter
2 we discussed why this method was most suitable for Logistic Regression, yet Lo-
gistic Regression is outperformed on WOE transformed data by the Random Forests
and Neural Networks which strengthens our conclusion about the presence of added
value in terms of performance in retail credit risk.

Recommendations for future reseach

• The next step in machine learning research on retail credit risk data such as the
Lending Club data would be to evaluate the added value of online learning
algorithms. These algorithms are constantly updated when new data becomes
available. This would be valuable because when models adjust themselves,
there is no need to invest in creating new models when a lot of new data is
available or macro economic circumstances have changed.

• In this reseach we have used Neural Networks with one hidden layer. When
more hidden layers are added the algorithm is called Deep Learning. It will
be interesting to see if this method can perform better because of its ability to
create more complex models.

• We have used the Weight of Evidence transformation in combination with Lo-
gistic Regression, Random Forests, Neural Networks and Support Vector Ma-
chines. A possible direction for further research is to evaluate the impact on
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performance when data transformations with other link functions such as the
probit instead of the logit from Weight of Evidence are used.
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Appendix A

Variable description

Name Description
acc_now_delinq The number of accounts on which the borrower is

now delinquent.
acc_open_past_24mths Number of trades opened in past 24 months.
addr_state The state provided by the borrower in the loan ap-

plication
all_util Balance to credit limit on all trades
annual_inc The self-reported annual income provided by the

borrower during registration.
annual_inc_joint The combined self-reported annual income pro-

vided by the co-borrowers during registration
application_type Indicates whether the loan is an individual appli-

cation or a joint application with two co-borrowers
avg_cur_bal Average current balance of all accounts
bc_open_to_buy Total open to buy on revolving bankcards.
bc_util Ratio of total current balance to high credit/credit

limit for all bankcard accounts.
chargeoff_within_12_mths Number of charge-offs within 12 months
collection_recovery_fee post charge off collection fee
collections_12_mths_ex_med Number of collections in 12 months excluding

medical collections
delinq_2yrs The number of 30+ days past-due incidences of

delinquency in the borrower’s credit file for the
past 2 years

delinq_amnt The past-due amount owed for the accounts on
which the borrower is now delinquent.

desc Loan description provided by the borrower
dti A ratio calculated using the borrower’s total

monthly debt payments on the total debt obli-
gations, excluding mortgage and the requested
LC loan, divided by the borrower’s self-reported
monthly income.

dti_joint A ratio calculated using the co-borrowers’ to-
tal monthly payments on the total debt obliga-
tions, excluding mortgages and the requested LC
loan, divided by the co-borrowers’ combined self-
reported monthly income
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Name Description
earliest_cr_line The month the borrower’s earliest reported credit

line was opened
emp_length Employment length in years. Possible values are

between 0 and 10 where 0 means less than one year
and 10 means ten or more years.

emp_title The job title supplied by the Borrower when ap-
plying for the loan.

fico_range_high The upper boundary range the borrower’s FICO at
loan origination belongs to.

fico_range_low The lower boundary range the borrower’s FICO at
loan origination belongs to.

funded_amnt The total amount committed to that loan at that
point in time.

funded_amnt_inv The total amount committed by investors for that
loan at that point in time.

grade LC assigned loan grade
home_ownership The home ownership status provided by the bor-

rower during registration. Our values are: RENT,
OWN, MORTGAGE, OTHER.

id A unique LC assigned ID for the loan listing.
il_util Ratio of total current balance to high credit/credit

limit on all install acct
initial_list_status The initial listing status of the loan. Possible values

are – W, F
inq_fi Number of personal finance inquiries
inq_last_12m Number of credit inquiries in past 12 months
inq_last_6mths The number of inquiries in past 6 months (exclud-

ing auto and mortgage inquiries)
installment The monthly payment owed by the borrower if the

loan originates.
int_rate Interest Rate on the loan
issue_d The month which the loan was funded
last_credit_pull_d The most recent month LC pulled credit for this

loan
last_fico_range_high The upper boundary range the borrower’s last

FICO pulled belongs to.
last_fico_range_low The lower boundary range the borrower’s last

FICO pulled belongs to.
last_pymnt_amnt Last total payment amount received
last_pymnt_d Last month payment was received
loan_amnt The listed amount of the loan applied for by the

borrower. If at some point in time, the credit de-
partment reduces the loan amount, then it will be
reflected in this value.

loan_status Current status of the loan
max_bal_bc Maximum current balance owed on all revolving

accounts
member_id A unique LC assigned Id for the borrower mem-

ber.
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Name Description
mo_sin_old_il_acct Months since oldest bank installment account

opened
mo_sin_old_rev_tl_op Months since oldest revolving account opened
mo_sin_rcnt_rev_tl_op Months since most recent revolving account

opened
mo_sin_rcnt_tl Months since most recent account opened
mort_acc Number of mortgage accounts.
mths_since_last_delinq The number of months since the borrower’s last

delinquency.
mths_since_last_major_derog Months since most recent 90-day or worse rating
mths_since_last_record The number of months since the last public record.
mths_since_rcnt_il Months since most recent installment accounts

opened
mths_since_recent_bc Months since most recent bankcard account

opened.
mths_since_recent_bc_dlq Months since most recent bankcard delinquency
mths_since_recent_inq Months since most recent inquiry.
mths_since_recent_revol_delinq Months since most recent revolving delinquency.
next_pymnt_d Next scheduled payment date
num_accts_ever_120_pd Number of accounts ever 120 or more days past

due
num_actv_bc_tl Number of currently active bankcard accounts
num_actv_rev_tl Number of currently active revolving trades
num_bc_sats Number of satisfactory bankcard accounts
num_bc_tl Number of bankcard accounts
num_il_tl Number of installment accounts
num_op_rev_tl Number of open revolving accounts
num_rev_accts Number of revolving accounts
num_rev_tl_bal_gt_0 Number of revolving trades with balance >0
num_sats Number of satisfactory accounts
num_tl_120dpd_2m Number of accounts currently 120 days past due

(updated in past 2 months)
num_tl_30dpd Number of accounts currently 30 days past due

(updated in past 2 months)
num_tl_90g_dpd_24m Number of accounts 90 or more days past due in

last 24 months
num_tl_op_past_12m Number of accounts opened in past 12 months
open_acc The number of open credit lines in the borrower’s

credit file.
open_acc_6m Number of open trades in last 6 months
open_il_12m Number of installment accounts opened in past 12

months
open_il_24m Number of installment accounts opened in past 24

months
open_il_6m Number of currently active installment trades
open_rv_12m Number of revolving trades opened in past 12

months
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Name Description
open_rv_24m Number of revolving trades opened in past 24

months
out_prncp Remaining outstanding principal for total amount

funded
out_prncp_inv Remaining outstanding principal for portion of to-

tal amount funded by investors
pct_tl_nvr_dlq Percent of trades never delinquent
percent_bc_gt_75 Percentage of all bankcard accounts >75% of limit.
policy_code publicly available policy_code=1 new products

not publicly available policy_code=2
pub_rec Number of derogatory public records
pub_rec_bankruptcies Number of public record bankruptcies
purpose A category provided by the borrower for the loan

request.
pymnt_plan Indicates if a payment plan has been put in place

for the loan
recoveries post charge off gross recovery
revol_bal Total credit revolving balance
revol_util Revolving line utilization rate, or the amount of

credit the borrower is using relative to all available
revolving credit.

sub_grade LC assigned loan subgrade
tax_liens Number of tax liens
term The number of payments on the loan. Values are

in months and can be either 36 or 60.
title The loan title provided by the borrower
tot_coll_amt Total collection amounts ever owed
tot_cur_bal Total current balance of all accounts
tot_hi_cred_lim Total high credit/credit limit
total_acc The total number of credit lines currently in the

borrower’s credit file
total_bal_ex_mort Total credit balance excluding mortgage
total_bal_il Total current balance of all installment accounts
total_bc_limit Total bankcard high credit/credit limit
total_cu_tl Number of finance trades
total_il_high_credit_limit Total installment high credit/credit limit
total_pymnt Payments received to date for total amount funded
total_pymnt_inv Payments received to date for portion of total

amount funded by investors
total_rec_int Interest received to date
total_rec_late_fee Late fees received to date
total_rec_prncp Principal received to date
total_rev_hi_lim Total revolving high credit/credit limit
url URL for the LC page with listing data.
verification_status Indicates if income was verified by LC, not veri-

fied, or if the income source was verified
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Name Description
verified_status_joint Indicates if the co-borrowers’ joint income was

verified by LC, not verified, or if the income source
was verified

zip_code The first 3 numbers of the zip code provided by
the borrower in the loan application.
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Appendix B

Univariate plots of variables

FIGURE B.1: Density plots of numeric features over Loan statuses 1
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FIGURE B.2: Density plots of numeric features over Loan statuses 2

FIGURE B.3: Density plots of numeric features over Loan statuses 3
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FIGURE B.4: Density plots of numeric features over Loan statuses 4

FIGURE B.5: Density plots of numeric features over Loan statuses 5
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FIGURE B.6: Density plots of numeric features over Loan statuses 6

FIGURE B.7: Density plots of numeric features over Loan statuses 7
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FIGURE B.8: Density plots of numeric features over Loan statuses 8

FIGURE B.9: Density plots WOE transformed non numeric features
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Appendix C

Descriptive statistics

Variable name n mean sd min max range
loan_amnt 411471 13955.73 8275.54 500.00 40000.00 39500.00
funded_amnt 411471 13929.23 8261.56 500.00 40000.00 39500.00
funded_amnt_inv 411471 13868.81 8273.50 0.00 40000.00 40000.00
term 411471 41.60 10.15 36.00 60.00 24.00
annual_inc 411471 73623.27 62539.79 0.00 8900060.00 8900060.00
dti 411471 17.19 17.70 0.00 9999.00 9999.00
delinq_2yrs 411471 0.27 0.79 0.00 29.00 29.00
inq_last_6mths 411471 0.80 1.04 0.00 8.00 8.00
mths_since_last_delinq 411471 16.06 22.85 0.00 176.00 176.00
mths_since_last_record 411471 10.39 27.87 0.00 129.00 129.00
open_acc 411471 11.21 5.06 0.00 76.00 76.00
pub_rec 411471 0.17 0.49 0.00 54.00 54.00
revol_bal 411471 15698.30 20495.36 0.00 2568995.00 2568995.00
revol_util 411471 0.54 0.25 0.00 8.92 8.92
total_acc 411471 25.30 11.84 2.00 151.00 149.00
collections_12_mths_ex_med 411471 0.01 0.11 0.00 6.00 6.00
mths_since_last_major_derog 372392 10.53 21.61 0.00 176.00 176.00
annual_inc_joint 104720 235.57 5595.28 0.00 320000.00 320000.00
dti_joint 104720 0.04 0.87 0.00 45.39 45.39
acc_now_delinq 411471 0.00 0.07 0.00 6.00 6.00
tot_coll_amt 372392 191.00 15100.50 0.00 9152545.00 9152545.00
tot_cur_bal 372392 129297.51 152265.07 0.00 8000078.00 8000078.00
open_acc_6m 104720 0.18 0.68 0.00 15.00 15.00
open_il_6m 104720 0.41 1.49 0.00 31.00 31.00
open_il_12m 104720 0.14 0.56 0.00 20.00 20.00
open_il_24m 104720 0.29 1.02 0.00 26.00 26.00
mths_since_rcnt_il 104720 2.52 10.90 0.00 255.00 255.00
total_bal_il 104720 5420.23 20792.86 0.00 796104.00 796104.00
il_util 104720 9.38 25.78 0.00 233.80 233.80
open_rv_12m 104720 0.23 0.85 0.00 28.00 28.00
open_rv_24m 104720 0.48 1.57 0.00 39.00 39.00
max_bal_bc 104720 844.07 3010.62 0.00 135471.00 135471.00
all_util 104720 8.55 22.20 0.00 156.90 156.90
total_rev_hi_lim 372392 28499.73 34865.71 0.00 9999999.00 9999999.00
inq_fi 104720 0.17 0.76 0.00 19.00 19.00
total_cu_tl 104720 0.28 1.42 0.00 44.00 44.00
inq_last_12m 104720 0.39 1.42 0.00 32.00 32.00
acc_open_past_24mths 372392 4.50 3.07 0.00 47.00 47.00
avg_cur_bal 372392 12623.40 16126.44 0.00 958084.00 958084.00
bc_open_to_buy 372392 8659.47 13848.54 0.00 497445.00 497445.00
bc_util 372392 61.22 29.22 0.00 339.60 339.60
chargeoff_within_12_mths 411471 0.01 0.10 0.00 7.00 7.00
delinq_amnt 411471 10.06 603.05 0.00 76735.00 76735.00
mo_sin_old_il_acct 372392 112.40 61.36 0.00 724.00 724.00
mo_sin_old_rev_tl_op 372392 165.65 97.56 0.00 842.00 842.00
mo_sin_rcnt_rev_tl_op 372392 11.73 15.06 0.00 372.00 372.00
mo_sin_rcnt_tl 372392 7.22 8.50 0.00 197.00 197.00
mort_acc 372392 1.78 2.16 0.00 34.00 34.00
mths_since_recent_bc 372392 22.75 28.66 0.00 554.00 554.00
mths_since_recent_bc_dlq 372392 9.42 20.29 0.00 176.00 176.00
mths_since_recent_inq 372392 5.85 5.82 0.00 25.00 25.00
mths_since_recent_revol_delinq 372392 11.98 21.40 0.00 176.00 176.00
num_accts_ever_120_pd 372392 0.42 1.15 0.00 30.00 30.00
num_actv_bc_tl 372392 3.36 2.25 0.00 30.00 30.00
num_actv_rev_tl 372392 5.20 3.30 0.00 44.00 44.00
num_bc_sats 372392 4.48 2.83 0.00 57.00 57.00
num_bc_tl 372392 8.14 5.26 0.00 68.00 68.00
num_il_tl 372392 7.85 7.27 0.00 117.00 117.00
num_op_rev_tl 372392 7.64 4.61 0.00 62.00 62.00
num_rev_accts 372392 14.20 8.66 0.00 105.00 105.00
num_rev_tl_bal_gt_0 372392 5.18 3.26 0.00 42.00 42.00
num_sats 372392 10.97 5.49 0.00 76.00 76.00
num_tl_120dpd_2m 372392 0.00 0.03 0.00 6.00 6.00
num_tl_30dpd 372392 0.00 0.06 0.00 4.00 4.00
num_tl_90g_dpd_24m 372392 0.08 0.45 0.00 24.00 24.00
num_tl_op_past_12m 372392 2.00 1.79 0.00 30.00 30.00
pct_tl_nvr_dlq 372392 88.00 25.62 0.00 100.00 100.00
percent_bc_gt_75 372392 47.83 35.71 0.00 100.00 100.00
pub_rec_bankruptcies 411471 0.12 0.35 0.00 8.00 8.00
tax_liens 411471 0.03 0.28 0.00 53.00 53.00
tot_hi_cred_lim 372392 157113.92 170744.90 0.00 9999999.00 9999999.00
total_bal_ex_mort 372392 45538.67 44009.70 0.00 2644442.00 2644442.00
total_bc_limit 372392 19799.51 19912.65 0.00 684000.00 684000.00
total_il_high_credit_limit 372392 35822.85 39913.37 0.00 2101913.00 2101913.00

TABLE C.1: Descriptive statistics numerical features
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Appendix D

Random Forest tables

D.1 Variable importance tables

variable importance variable importance
zip_code 416.0527 pct_tl_nvr_dlq 72.68818
APPL_FICO_BAND 213.8836 mths_since_last_delinq 69.57616
addr_state 198.6785 verification_status 66.31102
term 189.9088 inq_last_6mths 65.08286
dti 182.1208 home_ownership 53.16906
annual_inc 154.1063 mths_since_recent_revol_delinq 48.92448
issue_month 149.6464 mths_since_recent_bc_dlq 35.36306
emp_length 145.0916 mths_since_last_major_derog 33.79451
revol_util 135.0623 provide_emp_name 27.87751
total_acc 129.1624 provide_description 25.82997
revol_bal 126.3247 delinq_2yrs 25.00288
bc_open_to_buy 122.2202 diff_fundinvfund 23.8988
mo_sin_old_rev_tl_op 121.8768 tot_coll_amt 22.63836
mths_since_recent_bc 119.0326 mths_since_last_record 22.03393
open_acc 116.7769 pub_rec 21.49708
acc_open_past_24mths 115.7891 pub_rec_bankruptcies 20.14926
total_bc_limit 115.6248 num_accts_ever_120_pd 20.1041
mo_sin_rcnt_tl 112.8249 num_tl_90g_dpd_24m 15.449
bc_util 112.5346 open_il_6m 13.77864
loan_amnt 110.2717 inq_last_12m 12.17467
total_bal_ex_mort 110.1267 mths_since_rcnt_il 11.77917
funded_amnt_inv 109.5812 open_il_24m 11.57781
mo_sin_old_il_acct 108.9638 tax_liens 11.07577
num_il_tl 107.7144 open_rv_12m 11.046
funded_amnt 107.4092 all_util 10.88538
num_bc_tl 106.4846 open_rv_24m 10.55284
avg_cur_bal 105.1786 open_acc_6m 10.13919
num_rev_accts 103.9505 total_bal_il 10.06603
mths_since_recent_inq 103.9079 max_bal_bc 9.765999
total_rev_hi_lim 103.0678 il_util 9.610966
purpose 102.5834 open_il_12m 8.919297
total_il_high_credit_limit 102.3717 total_cu_tl 8.828741
tot_hi_cred_lim 101.9106 inq_fi 8.789708
mo_sin_rcnt_rev_tl_op 99.6896 collections_12_mths_ex_med 7.701438
tot_cur_bal 98.93337 annual_inc_joint 6.778249
num_op_rev_tl 97.86907 dti_joint 6.705896
num_sats 94.27645 chargeoff_within_12_mths 4.499796
percent_bc_gt_75 94.08768 acc_now_delinq 3.919005
num_bc_sats 88.0053 delinq_amnt 2.878546
num_rev_tl_bal_gt_0 84.83888 num_tl_30dpd 2.633626
num_actv_rev_tl 79.8271 num_tl_120dpd_2m 1.942961
num_actv_bc_tl 79.36425 application_type 0.421416
num_tl_op_past_12m 76.27444 verification_status_joint 0.14047
mort_acc 75.74549

TABLE D.1: Probability of charge off variable importance
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variable importance variable importance
term 199.2662 num_actv_bc_tl 20.97415
zip_code 65.89727 num_tl_op_past_12m 20.88428
addr_state 52.3297 tot_hi_cred_lim 20.74125
APPL_FICO_BAND 50.57595 tot_cur_bal 20.13232
issue_month 47.06942 pct_tl_nvr_dlq 19.64586
dti_joint 41.03402 mths_since_last_delinq 19.3337
dti 38.68175 mths_since_rcnt_il 18.90417
emp_length 37.88869 open_il_12m 18.2383
annual_inc 37.24195 inq_last_6mths 18.13466
revol_util 36.90088 num_rev_tl_bal_gt_0 17.91419
funded_amnt_inv 35.97178 num_actv_rev_tl 17.39459
revol_bal 35.61127 mort_acc 16.23404
total_acc 35.48848 open_acc_6m 15.129
annual_inc_joint 34.92662 open_il_6m 14.96836
funded_amnt 34.67011 open_rv_12m 14.5295
loan_amnt 34.62611 home_ownership 13.89173
open_acc 32.96589 mths_since_recent_revol_delinq 12.38545
provide_description 30.7782 open_rv_24m 11.82992
purpose 30.43788 total_bal_il 11.37669
acc_open_past_24mths 29.39274 il_util 10.93223
mths_since_recent_bc 28.64063 all_util 10.42608
total_cu_tl 27.92167 open_il_24m 10.34534
total_bal_ex_mort 27.29522 diff_fundinvfund 9.669767
num_rev_accts 27.0079 inq_last_12m 7.241365
verification_status 26.91651 mths_since_recent_bc_dlq 7.241035
bc_util 26.4554 delinq_2yrs 7.098423
bc_open_to_buy 26.27865 mths_since_last_major_derog 6.878035
total_il_high_credit_limit 26.16477 provide_emp_name 6.463225
mths_since_recent_inq 26.07824 pub_rec 5.329956
total_bc_limit 25.93653 mths_since_last_record 4.848371
max_bal_bc 25.8287 pub_rec_bankruptcies 4.719065
mo_sin_old_rev_tl_op 24.74024 num_accts_ever_120_pd 4.694024
inq_fi 24.2641 tot_coll_amt 4.205073
num_bc_tl 23.51386 num_tl_90g_dpd_24m 2.668991
mo_sin_rcnt_tl 23.50506 tax_liens 1.58807
mo_sin_old_il_acct 23.38268 num_tl_30dpd 0.734865
num_bc_sats 23.15826 chargeoff_within_12_mths 0.660458
num_il_tl 23.12197 collections_12_mths_ex_med 0.657291
num_sats 22.6349 num_tl_120dpd_2m 0.594869
mo_sin_rcnt_rev_tl_op 22.39799 acc_now_delinq 0.308156
num_op_rev_tl 22.29945 delinq_amnt 0.229225
avg_cur_bal 21.81986 application_type 0.042107
total_rev_hi_lim 21.11762 verification_status_joint 0.025409
percent_bc_gt_75 21.07295

TABLE D.2: Exposure at charge off variable importance
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variable importance variable importance
zip_code 18.49764 mort_acc 4.787256
addr_state 15.15434 verification_status 4.645845
APPL_FICO_BAND 14.62438 inq_last_6mths 4.320916
issue_month 11.66216 mths_since_recent_revol_delinq 3.672717
emp_length 10.38577 home_ownership 3.312881
dti 10.23981 dti_joint 2.519129
annual_inc 9.981299 term 2.326144
total_acc 9.893213 annual_inc_joint 2.322649
revol_util 9.749394 mths_since_last_major_derog 2.181642
revol_bal 9.078406 diff_fundinvfund 2.151665
open_acc 8.787862 mths_since_recent_bc_dlq 2.150908
purpose 8.324032 provide_description 2.14102
funded_amnt_inv 8.213143 delinq_2yrs 2.005189
funded_amnt 8.152653 total_cu_tl 1.960205
loan_amnt 8.033118 inq_fi 1.684803
mths_since_recent_bc 7.837823 max_bal_bc 1.609992
mo_sin_old_rev_tl_op 7.766882 open_il_12m 1.35622
bc_open_to_buy 7.586278 num_accts_ever_120_pd 1.35557
acc_open_past_24mths 7.502536 tot_coll_amt 1.29598
num_il_tl 7.479329 provide_emp_name 1.254603
total_bal_ex_mort 7.440958 mths_since_rcnt_il 1.237673
total_bc_limit 7.363676 open_rv_12m 1.153826
mo_sin_old_il_acct 7.359374 pub_rec 1.124605
bc_util 7.147224 mths_since_last_record 1.099333
mo_sin_rcnt_tl 7.073907 open_acc_6m 1.091891
mo_sin_rcnt_rev_tl_op 7.028258 open_il_6m 1.062046
mths_since_recent_inq 7.016301 pub_rec_bankruptcies 1.01377
total_il_high_credit_limit 6.927685 total_bal_il 0.994093
num_bc_tl 6.871056 open_rv_24m 0.948439
num_rev_accts 6.702889 il_util 0.853376
avg_cur_bal 6.662601 num_tl_90g_dpd_24m 0.810522
total_rev_hi_lim 6.605021 open_il_24m 0.76465
num_sats 6.268026 all_util 0.705427
tot_cur_bal 6.166549 inq_last_12m 0.558222
num_op_rev_tl 6.160504 tax_liens 0.557964
tot_hi_cred_lim 6.08958 collections_12_mths_ex_med 0.440338
num_bc_sats 6.014124 chargeoff_within_12_mths 0.18467
percent_bc_gt_75 5.416034 num_tl_30dpd 0.175659
mths_since_last_delinq 5.291957 acc_now_delinq 0.136739
num_actv_bc_tl 5.242819 delinq_amnt 0.089371
pct_tl_nvr_dlq 5.066502 num_tl_120dpd_2m 0.058406
num_rev_tl_bal_gt_0 4.851899 verification_status_joint 0.002298
num_tl_op_past_12m 4.817282 application_type 0.002084
num_actv_rev_tl 4.813762

TABLE D.3: Loss given charge off variable importance
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variable importance variable importance
zip_code 916.0333 mort_acc 242.5059
term 812.2799 verification_status 222.2125
APPL_FICO_BAND 683.3494 mths_since_last_delinq 222.0033
addr_state 637.8747 inq_last_6mths 211.1864
dti 570.3449 home_ownership 178.5671
issue_month 501.993 mths_since_recent_revol_delinq 163.0127
annual_inc 484.9612 mths_since_last_major_derog 107.6556
emp_length 465.9498 mths_since_recent_bc_dlq 105.1092
revol_util 433.4505 diff_fundinvfund 86.32809
total_acc 426.7132 delinq_2yrs 84.75175
revol_bal 397.8141 provide_description 73.80763
mo_sin_old_rev_tl_op 397.35 provide_emp_name 71.788
mths_since_recent_bc 392.926 num_accts_ever_120_pd 71.04579
bc_open_to_buy 386.3735 tot_coll_amt 70.01921
total_bc_limit 374.3714 pub_rec 69.24323
acc_open_past_24mths 374.3121 mths_since_last_record 63.17175
mo_sin_old_il_acct 372.8039 pub_rec_bankruptcies 60.86615
bc_util 364.8361 open_il_6m 55.91736
mo_sin_rcnt_tl 361.8429 num_tl_90g_dpd_24m 49.87108
open_acc 360.2241 mths_since_rcnt_il 41.74651
num_il_tl 355.1622 open_il_24m 40.89717
purpose 354.4437 tax_liens 37.96746
mths_since_recent_inq 351.8612 max_bal_bc 37.79164
mo_sin_rcnt_rev_tl_op 347.8252 inq_last_12m 35.89624
num_bc_tl 347.637 open_rv_12m 33.14875
num_rev_accts 343.7577 open_rv_24m 30.58348
total_bal_ex_mort 341.7942 all_util 30.24407
funded_amnt_inv 337.901 total_bal_il 26.8169
total_il_high_credit_limit 335.0306 total_cu_tl 25.61331
total_rev_hi_lim 331.8602 collections_12_mths_ex_med 24.89331
avg_cur_bal 331.1542 il_util 24.66721
funded_amnt 325.9214 inq_fi 22.39208
loan_amnt 324.2537 open_il_12m 22.30479
num_op_rev_tl 307.5146 open_acc_6m 21.6947
tot_hi_cred_lim 306.494 chargeoff_within_12_mths 16.30801
num_sats 305.7567 annual_inc_joint 13.14243
tot_cur_bal 293.5892 dti_joint 11.83248
num_bc_sats 293.2566 acc_now_delinq 10.77922
percent_bc_gt_75 291.7332 num_tl_30dpd 8.846227
num_actv_bc_tl 262.9294 delinq_amnt 8.68876
num_rev_tl_bal_gt_0 260.1725 application_type 3.622313
num_actv_rev_tl 258.197 num_tl_120dpd_2m 2.848019
num_tl_op_past_12m 249.8079 verification_status_joint 1.083168
pct_tl_nvr_dlq 245.1415

TABLE D.4: Expected Loss variable importance
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D.2 Parameter search tables

mTry Train MSE Test MSE nTree Train MSE Test MSE Node Size Train MSE Test MSE
20 0.004904 0.026622 1200 0.006075 0.026822 25 0.015001 0.026787
28 0.004725 0.026636 1400 0.006095 0.026841 40 0.018066 0.02679
30 0.004697 0.026642 1000 0.006077 0.026848 44 0.018649 0.0268
22 0.004846 0.026648 1100 0.006094 0.026849 22 0.014108 0.026806
24 0.004798 0.026653 1500 0.006073 0.026851 27 0.015521 0.026809
29 0.004714 0.026654 900 0.006085 0.026851 31 0.01644 0.026811
26 0.004759 0.026656 1000 0.006082 0.026855 43 0.0185 0.026813
23 0.004821 0.026664 1300 0.006069 0.026865 29 0.015998 0.026815
18 0.004975 0.026669 800 0.006079 0.026865 41 0.018214 0.026816
21 0.004874 0.02667 600 0.006088 0.026877 33 0.016858 0.026818
27 0.004739 0.02667 500 0.006091 0.026882 38 0.017738 0.026818
25 0.004782 0.02667 400 0.006086 0.026882 46 0.018916 0.02682
15 0.00513 0.026701 700 0.006094 0.026891 34 0.017053 0.02682
19 0.004942 0.026704 300 0.006151 0.026957 35 0.017218 0.02682
17 0.005029 0.026706 200 0.006145 0.02696 28 0.015766 0.026822
16 0.005071 0.026721 100 0.006225 0.027043 24 0.01473 0.026825
14 0.00521 0.026745 49 0.019277 0.026827
12 0.005425 0.026757 23 0.014437 0.026829
13 0.005292 0.026781 36 0.017393 0.026829
11 0.005598 0.026819 12 0.010114 0.026832
10 0.005798 0.02684 30 0.016247 0.026833
9 0.006115 0.026842 42 0.018351 0.026834
8 0.006507 0.026931 16 0.011951 0.026834
7 0.007112 0.027056 21 0.013816 0.026835
6 0.007947 0.027193 32 0.016666 0.026835
5 0.00911 0.027388 39 0.017933 0.026837
4 0.01091 0.027638 48 0.019152 0.026838
3 0.014203 0.028092 50 0.019386 0.026838
2 0.021247 0.029222 37 0.017593 0.026839
1 0.029936 0.031233 19 0.013112 0.02684

47 0.019034 0.026842
26 0.015272 0.026845
13 0.010625 0.026846
45 0.018783 0.026849
20 0.013484 0.026852
14 0.011076 0.026854
18 0.012752 0.026857
7 0.007291 0.026859
8 0.007874 0.02686
15 0.01156 0.026863
17 0.012376 0.026864
10 0.009058 0.026864
6 0.006735 0.026868
11 0.009585 0.026868
3 0.004983 0.026873
5 0.006088 0.026874
9 0.008493 0.026876
2 0.004548 0.026885
4 0.005504 0.026886
1 0.004291 0.026909

TABLE D.5: Random Forest EAC parameter search
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mTry Train MSE Test MSE nTree Train MSE Test MSE Node Size Train MSE Test MSE
9 0.002287 0.008203 1400 0.00229 0.008198 49 0.006367 0.008176
8 0.002406 0.008203 1200 0.002284 0.008199 47 0.006301 0.008177
11 0.00211 0.008208 600 0.002301 0.0082 48 0.006333 0.008177
10 0.002192 0.008209 1100 0.002289 0.008201 37 0.005884 0.008179
5 0.003042 0.008209 1300 0.002286 0.008201 44 0.006185 0.008179
7 0.002597 0.008209 900 0.002298 0.008202 42 0.006105 0.00818
14 0.001975 0.00821 1500 0.002289 0.008202 50 0.006401 0.00818
6 0.002802 0.008211 1000 0.002283 0.008206 39 0.005973 0.00818
13 0.001997 0.008212 800 0.002292 0.008206 36 0.00582 0.00818
3 0.004258 0.008215 500 0.002296 0.008207 41 0.006071 0.008181
15 0.001951 0.008215 700 0.002299 0.008208 46 0.006267 0.008183
4 0.003439 0.008215 400 0.002295 0.008216 35 0.005788 0.008183
12 0.00206 0.008217 300 0.002299 0.008228 43 0.006145 0.008183
19 0.001876 0.00822 200 0.002323 0.008245 45 0.006223 0.008184
16 0.001922 0.008221 100 0.002369 0.008276 38 0.005922 0.008184
18 0.001885 0.008223 34 0.005721 0.008185
20 0.001861 0.008224 31 0.005553 0.008185
23 0.001832 0.008225 40 0.006012 0.008186
22 0.001832 0.008225 23 0.004955 0.008186
2 0.006026 0.008226 24 0.005043 0.008187
27 0.001791 0.008226 28 0.005342 0.008187
30 0.001785 0.008227 33 0.005665 0.008188
25 0.001809 0.008231 32 0.00562 0.008188
24 0.001827 0.008232 30 0.005485 0.008189
21 0.001848 0.008232 27 0.005274 0.008189
28 0.001797 0.008233 26 0.005204 0.008189
17 0.001902 0.008235 19 0.004576 0.008189
29 0.001782 0.008237 20 0.004673 0.00819
26 0.001802 0.008237 25 0.005127 0.00819
1 0.008248 0.008268 16 0.004216 0.008192

22 0.004868 0.008192
29 0.00542 0.008193
15 0.004095 0.008194
21 0.004777 0.008195
13 0.003796 0.008195
17 0.004338 0.008196
14 0.003956 0.008197
18 0.004459 0.008197
12 0.003653 0.008198
3 0.001809 0.008201
5 0.002309 0.008202
11 0.003494 0.008202
8 0.002946 0.008202
9 0.003162 0.008203
2 0.001608 0.008206
10 0.003316 0.008208
6 0.002515 0.008214
1 0.001448 0.008214
4 0.00207 0.008215
7 0.002739 0.008217

TABLE D.6: Random Forest LGC parameter search
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mTry Train MSE Test MSE nTree Train MSE Test MSE Node Size Train MSE Test MSE
8 0.017405 0.071639 800 0.016767 0.071558 40 0.047228 0.071421
12 0.015657 0.071672 700 0.016786 0.071606 60 0.052848 0.071429
11 0.015946 0.071673 900 0.016749 0.071618 50 0.050439 0.071432
10 0.016312 0.071674 500 0.016789 0.071632 80 0.056276 0.071457
9 0.01679 0.071681 600 0.016771 0.07165 70 0.054765 0.07147
13 0.01541 0.071683 400 0.016831 0.071712 30 0.042813 0.071472
7 0.018226 0.071705 300 0.016831 0.07172 90 0.057576 0.071481
14 0.015239 0.071718 200 0.016878 0.071881 20 0.036165 0.071483
6 0.01943 0.071727 100 0.017119 0.07214 100 0.058661 0.071497
15 0.015056 0.071764 10 0.025125 0.071579
16 0.014928 0.071769 1 0.010428 0.071679
17 0.014787 0.07179
18 0.014678 0.07182
19 0.014579 0.07183
20 0.014482 0.071863
21 0.014416 0.071869
5 0.021052 0.071875
23 0.014271 0.071876
22 0.014327 0.071896
26 0.01408 0.071919
24 0.014211 0.071923
25 0.014124 0.071927
30 0.013887 0.07199
29 0.013953 0.071995
27 0.01404 0.071997
28 0.013984 0.072023
4 0.023801 0.072085
3 0.029893 0.072432
2 0.045883 0.073427
1 0.071821 0.076389

TABLE D.7: Random Forest EL parameter search
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Appendix E

Regression models

E.1 Exposure at charge off model

Cal l :
lm ( formula = model . formula , data = lending_df . t r a i n )

Residuals :
Min 1Q Median 3Q Max

−0.94687 −0.07897 0 .01446 0 .10844 0 .48947

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) 0 .7242840 0 .0007728 937 .279 < 2e−16 ∗∗∗
a n n u a l _ i n c _ j o i n t 0 .8359876 0 .0129599 64 .506 < 2e−16 ∗∗∗
term 0.1577588 0 .0017261 91 .397 < 2e−16 ∗∗∗
provide_descr ip t ion 0 .1850767 0 .0071985 25 .710 < 2e−16 ∗∗∗
i n q _ f i −0.0871134 0 .0072945 −11.942 < 2e−16 ∗∗∗
num_tl_op_past_12m 0.0705302 0 .0049749 14 .177 < 2e−16 ∗∗∗
p c t _ t l _ n v r _ d l q 0 .0726385 0 .0125420 5 .792 7 . 0 1 e−09 ∗∗∗
v e r i f i c a t i o n _ s t a t u s 0 .0207171 0 .0036557 5 .667 1 . 4 6 e−08 ∗∗∗
d t i 0 .0201118 0 .0024972 8 .054 8 . 2 0 e−16 ∗∗∗
mo_sin_old_rev_tl_op 0.0222098 0 .0067232 3 .303 0 .000956 ∗∗∗
b c _ u t i l 0 .0280603 0 .0048157 5 .827 5 . 6 8 e−09 ∗∗∗
APPL_FICO_BAND 0.0253607 0 .0027022 9 .385 < 2e−16 ∗∗∗
open_acc −0.1914179 0 .0154775 −12.368 < 2e−16 ∗∗∗
diff_fundinvfund 0.0825648 0 .0377456 2 .187 0 .028718 ∗
t o t a l _ r e v _ h i _ l i m −0.0253267 0 .0065202 −3.884 0 .000103 ∗∗∗
purpose 0 .0507640 0 .0046483 10 .921 < 2e−16 ∗∗∗
mort_acc −0.0123231 0 .0051692 −2.384 0 .017131 ∗
pub_rec −0.0330247 0 .0208108 −1.587 0 .112540
collect ions_12_mths_ex_med 0.0347500 0 .0189359 1 .835 0 .066490 .
de l inq_2yrs 0 .0633387 0 .0190398 3 .327 0 .000880 ∗∗∗
acc_now_delinq 0 .1066618 0 .0398983 2 .673 0 .007512 ∗∗
inq_last_6mths 0 .0579230 0 .0052041 11 .130 < 2e−16 ∗∗∗
issue_month −0.0380450 0 .0192951 −1.972 0 .048644 ∗
m t h s _ s i n c e _ l a s t _ d e l i n q −0.1129974 0 .0380246 −2.972 0 .002963 ∗∗
home_ownership 0 .0312624 0 .0055828 5 .600 2 . 1 6 e−08 ∗∗∗
a p p l i c a t i o n _ t y p e −0.9537059 0 .0585578 −16.287 < 2e−16 ∗∗∗
r e v o l _ u t i l −0.0253932 0 .0052688 −4.820 1 . 4 4 e−06 ∗∗∗
r e v o l _ b a l −0.1362097 0 .0179903 −7.571 3 . 7 5 e−14 ∗∗∗
t a x _ l i e n s 0 .0283604 0 .0191226 1 .483 0 .138060
−−−
S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1

Residual standard e r r o r : 0 .1677 on 53589 degrees of freedom
Mult iple R−squared : 0 . 3 0 1 , Adjusted R−squared : 0 .3006
F−s t a t i s t i c : 824 on 28 and 53589 DF, p−value : < 2 . 2 e−16

E.2 Loss given charge off model

Cal l :
lm ( formula = model . formula , data = lending_df . t r a i n )

Residuals :
Min 1Q Median 3Q Max

−1.14511 −0.05507 0 .02669 0 .07467 0 .12208

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) 0 .9214995 0 .0004348 2119 .129 < 2e−16 ∗∗∗
a n n u a l _ i n c _ j o i n t 0 .2786326 0 .0071892 38 .757 < 2e−16 ∗∗∗
i n q _ f i −0.0372416 0 .0040751 −9.139 < 2e−16 ∗∗∗
provide_descr ip t ion 0 .0181347 0 .0039330 4 .611 4 . 0 2 e−06 ∗∗∗
emp_length 0 .0223883 0 .0034351 6 .517 7 . 2 2 e−11 ∗∗∗
annual_inc 0 .0268224 0 .0023547 11 .391 < 2e−16 ∗∗∗
pub_rec 0 .0598971 0 .0108261 5 .533 3 . 1 7 e−08 ∗∗∗
num_actv_rev_tl 0 .0116188 0 .0031861 3 .647 0 .000266 ∗∗∗
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open_acc 0 .0256366 0 .0095325 2 .689 0 .007161 ∗∗
home_ownership 0 .0090113 0 .0027162 3 .318 0 .000909 ∗∗∗
term 0.0033165 0 .0010414 3 .185 0 .001451 ∗∗
r e v o l _ b a l 0 .0504230 0 .0101864 4 .950 7 . 4 4 e−07 ∗∗∗
zip_code 0 .0058918 0 .0020570 2 .864 0 .004182 ∗∗
chargeoff_within_12_mths 0 .1552672 0 .0825920 1 .880 0 .060123 .
addr_s ta te −0.0094133 0 .0037984 −2.478 0 .013206 ∗
loan_amnt 0 .0077600 0 .0033403 2 .323 0 .020176 ∗
mths_s ince_recent_ inq −0.0173259 0 .0035959 −4.818 1 . 4 5 e−06 ∗∗∗
APPL_FICO_BAND −0.0070402 0 .0015094 −4.664 3 . 1 0 e−06 ∗∗∗
t o t a l _ r e v _ h i _ l i m −0.0100160 0 .0035482 −2.823 0 .004762 ∗∗
mo_sin_old_rev_tl_op −0.0098088 0 .0035167 −2.789 0 .005286 ∗∗
m t h s _ s i n c e _ l a s t _ d e l i n q 0 .0396446 0 .0210217 1 .886 0 .059315 .
a p p l i c a t i o n _ t y p e −0.3605040 0 .0327670 −11.002 < 2e−16 ∗∗∗
purpose −0.0047549 0 .0026027 −1.827 0 .067718 .
b c _ u t i l −0.0053021 0 .0026235 −2.021 0 .043281 ∗
del inq_2yrs −0.0336035 0 .0104379 −3.219 0 .001286 ∗∗
r e v o l _ u t i l 0 .0055931 0 .0029067 1 .924 0 .054330 .
−−−
S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1

Residual standard e r r o r : 0 .09391 on 53592 degrees of freedom
Mult iple R−squared : 0 . 0 4 9 2 5 , Adjusted R−squared : 0 .04881
F−s t a t i s t i c : 111 on 25 and 53592 DF, p−value : < 2 . 2 e−16

E.3 Expected loss model

Cal l :
lm ( formula = model . formula , data = lending_df . t r a i n )

Residuals :
Min 1Q Median 3Q Max

−0.47666 −0.15750 −0.08716 0 .00406 1 .07571

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) 0 .1536446 0 .0005219 294 .392 < 2e−16 ∗∗∗
term 0.1407186 0 .0014662 95 .972 < 2e−16 ∗∗∗
APPL_FICO_BAND 0.0420352 0 .0017083 24 .606 < 2e−16 ∗∗∗
d t i 0 .0681909 0 .0019808 34 .427 < 2e−16 ∗∗∗
acc_open_past_24mths 0 .0959395 0 .0032484 29 .535 < 2e−16 ∗∗∗
bc_open_to_buy 0.0374914 0 .0027229 13 .769 < 2e−16 ∗∗∗
v e r i f i c a t i o n _ s t a t u s 0 .0251846 0 .0024169 10 .420 < 2e−16 ∗∗∗
avg_cur_bal 0 .0299705 0 .0029582 10 .131 < 2e−16 ∗∗∗
percent_bc_gt_75 0 .0218862 0 .0031988 6 .842 7 . 8 3 e−12 ∗∗∗
zip_code 0 .0839619 0 .0021642 38 .795 < 2e−16 ∗∗∗
open_il_6m 0.0810967 0 .0025149 32 .246 < 2e−16 ∗∗∗
a n n u a l _ i n c _ j o i n t 0 .1148578 0 .0073231 15 .684 < 2e−16 ∗∗∗
funded_amnt_inv 0 .0940734 0 .0042193 22 .296 < 2e−16 ∗∗∗
mort_acc 0 .0199904 0 .0037314 5 .357 8 . 4 5 e−08 ∗∗∗
provide_descr ip t ion 0 .0545386 0 .0047399 11 .506 < 2e−16 ∗∗∗
r e v o l _ u t i l 0 .0134155 0 .0035458 3 .784 0 .000155 ∗∗∗
annual_inc 0 .0746671 0 .0031185 23 .943 < 2e−16 ∗∗∗
mths_s ince_recent_ inq −0.0398438 0 .0054887 −7.259 3 . 9 0 e−13 ∗∗∗
t o t a l _ i l _ h i g h _ c r e d i t _ l i m i t −0.0818550 0 .0064209 −12.748 < 2e−16 ∗∗∗
purpose 0 .0735547 0 .0032650 22 .528 < 2e−16 ∗∗∗
home_ownership 0 .0723832 0 .0040628 17 .816 < 2e−16 ∗∗∗
inq_last_6mths 0 .1196836 0 .0043318 27 .629 < 2e−16 ∗∗∗
emp_length 0 .1044092 0 .0049609 21 .046 < 2e−16 ∗∗∗
open_acc 0 .0457575 0 .0130370 3 .510 0 .000448 ∗∗∗
del inq_2yrs 0 .1623778 0 .0140729 11 .538 < 2e−16 ∗∗∗
pub_rec −0.0887399 0 .0151692 −5.850 4 . 9 2 e−09 ∗∗∗
t a x _ l i e n s 0 .1120335 0 .0147313 7 .605 2 . 8 5 e−14 ∗∗∗
collect ions_12_mths_ex_med 0.0696793 0 .0152081 4 .582 4 . 6 1 e−06 ∗∗∗
issue_month 0 .0221908 0 .0134287 1 .652 0 .098435 .
t o t a l _ a c c 0 .2693868 0 .0117234 22 .978 < 2e−16 ∗∗∗
diff_fundinvfund −0.0921930 0 .0263684 −3.496 0 .000472 ∗∗∗
r e v o l _ b a l −0.1524011 0 .0122638 −12.427 < 2e−16 ∗∗∗
acc_now_delinq 0 .0607842 0 .0311270 1 .953 0 .050847 .
m t h s _ s i n c e _ l a s t _ d e l i n q −0.1473465 0 .0279382 −5.274 1 . 3 4 e−07 ∗∗∗
−−−
S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1

Residual standard e r r o r : 0 .269 on 279966 degrees of freedom
Mult iple R−squared : 0 . 1 1 1 5 , Adjusted R−squared : 0 .1114
F−s t a t i s t i c : 1065 on 33 and 279966 DF, p−value : < 2 . 2 e−16
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