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Abstract

With the amount of conceptual literature on 2-person social dilemmas, this thesis takes the neces-

sary step of creating an algorithm that is able to compute what has been modeled. That is: dynamic

2-state, 2-player, 2-action stochastic competitive games with allowances for frequency-dependent

transition probabilities and frequency-dependent stage payoffs. To demonstrate its usage, I em-

ploy a ‘Commons’-type social dilemma where 2 players compete over a renewable common-pool

resource. In this example, both the transition probabilities and stage payoffs possess frequency-

dependencies that are linear. Note that adherence to such a limitation is not necessary for the stage

payoffs, but may be for the transition probabilities.

Results in both the repeated game model and the two stochastic models are in line with

results found in prior studies. That is, frequency-dependent stage payoffs cause a reduction in the

value of the payoffs available as the reward set heads south-west in R2. More noteworthy, results in

the stochastic models with frequency-dependent stage payoffs show that frequency-dependent trans-

ition probabilities have significant reduction effects on the probability of obtaining a higher payoff

for either player. The reward sets in both situations increase in size by stretching toward the origin,

compared to the frequency-independent stage payoffs reward sets. This increase is compensated in

part through a narrowing of the set’s shape inR2 space which results in smaller differences between

both players when one gains more than the other.

Keywords RepeatedGames, Stochastic Games, LimitingAverageRewards, Frequency-Dependent

Transition Probabilities, Frequency-Dependent Stage Payoffs
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1. Introduction

Van Lange, Joireman, Parks and Van Dijk (2013) define social dilemmas as

...situations in which a non-cooperative course of action is (at times) tempting

for each individual in that it yields superior (often short-term) outcomes for self, and

if all pursue this non-cooperative course of action, all are (often in the longer-term)

worse off than if all had cooperated.

From such a definition, one can conclude that social dilemmas can be either momentary or dynamic.

The dynamic element contains both short term and long term outcomes.

To better understand the significance of these differentiations, I will explain one of the

most common examples of a social dilemma: The Prisoner’s Dilemma. In this scenario, two pris-

oners must decide whether or not to rat each other out to the police in order to receive a reduced

sentence handed down by the judicial system. More specifically, each prisoner (arbitrary labels ‘A’

and ‘B’) is aware that if A rats out B, A receives a reduced sentence for his (her) cooperation with

the judicial system, while B receives the largest sentence possible. If both A and B rat each other

out, reduced sentences are give to each. But such a reduction is trivial when compared to the time

added on due to the other’s betrayal.

In game theoretic terms this reduced sentenced is called the payoff and the choices of

whether to cooperate with the police or not are the actions. The prisoners (usually two, but can be

more) are called players. The entire situation is referred to as a game.

For the Prisoner’s Dilemma game, each player has a dominant action: to rat the other out.
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Because if one rats the other out, whilst the other does not, the defector gets a significantly reduced

sentence. But if they both defect, they both get harsh sentences. This pair of harsh sentences is the

Nash equilibrium as they correspond to each player’s dominant action choice. However, there is

also the option of their both remaining silent. This gives a smaller sentence to each which is not

the dominant action, but it is still better than the Nash equilibrium. This idea is considered through

Pareto optimality. Hans Peters (2008) defines:

A pair of strategies is Pareto optimal if there is no other pair such that the as-

sociated payoffs are at least as good for both players and strictly better for at least

one player.

This makes the Nash equilibrium Pareto inferior, and the choice of remaining silent is Pareto su-

perior.

When considering the time element, first assume that both prisoners cooperate and remain

silent. If this is a finitely repeating game (say the situation happens 5 times), then on the fifth play,

both players will feel inclined to rat the other out, as the situation will never again repeat itself thus

incurring the wrath of the other. So for the fifth iteration, the dominant action is played. However,

as both players suspect the other of this at the fourth repetition, they use this earlier opportunity

to defect. This way of thinking can occur at every prior repetition till the first time the situation

occurs, resulting in the outcome that for all repetitions, prisoners ‘in cahoots’ will feel inclined to

betray the other.

Interestingly enough, this may not be the case if the game repeats infinitely. From the

logic above, if the end point is never met, the prisoners have no option in which to rat the other out

without incurring the punishment of the other in the subsequent repetition. Using the notation for

repetitions as t = 1, 2, . . . , we see that in some instances, the prisoners will rat each other out early

in the game: when t is close to 1. In other instances, t may indeed be large, but the point at which

the cooperation between the two falls apart will eventually make prior outcomes insignificant. For

example, if the point at which the prisoners decide to rat each other out is t′ = 1 mil, all the

cooperative outcomes prior to t′ are trivial when faced with the Nash equilibrium result for every

t from t′ to∞. Thus, long term considerations can prove an interesting means of studying social

dilemmas.

Another interesting type of social dilemma is that which is described by Levhari and
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Mirman (1980) and more recently by Joosten (2007): fishery wars. In fishery wars, there is a

large renewable common-pool resource from which all the fishermen obtain their catch. This is

an example of a ‘Commons’-type dilemma like that described by Hardin (1968). For fisheries,

the renewable common-pool resource is the oceans, seas and lakes. Short term gain here results

from ‘fish as much as you want’ actions and can have a devastating effect on the long term possible

payoffs because the resource is not given sufficient time to replenish.

1.1 Game Theory in Social Dilemmas

A unique perspective on these types of scenarios was developed by Brenner and Witt (2003) and

by Joosten, Brenner and Witt (2003). By making adjustments to repeated games, they were able

to derive a method by which the past actions of the players influence the payoffs they can receive

now. This puts a rather realistic slant to the social dilemma concept. Obviously, many situations

in society tend to repeat themselves (these repetitions are called stages), and the actions performed

by the players are most likely influenced by the number of times the situation has occurred in the

past, and what the outcomes had been. Joosten et al. (2003) coined the name ‘frequency-dependent

(FD)-games’. This enhances the idea that it is the frequency with which past stage payoffs have

been achieved that can affect the current stage payoff, as opposed to situations in which the current

stage payoff is uninfluenced by what has happened in the past.

Later on, a new study added further realism to the study of social dilemmas: a stochastic

game model by Joosten and Meijboom (2010). Stochastic games consider situations in which the

possible payoffs available, changes. Each set of payoffs, and the actions through which they are

achieved, is referred to as a state, making a stochastic game a multi-state game. The changing from

one state to another is dictated by a transition probability matrix.

Joosten and Meijboom (2010) developed their own algorithm which considered how

frequency-dependent transition probabilities would affect games with frequency-independent stage

payoffs. The algorithm placed particular emphasis on the effects produced in temporarily absorbing

states. With no focus on absorbing states, my thesis examines communicating states only. Unlike

absorbing states, communicating states are those in which the probability of leaving a particular

state or of remaining in a particular state is never zero at any time t (for more on communicating

states, see Chapter 4 in Ross (2010)). Obtaining the necessary frequency-dependent rewards to fit
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their model cost Joosten and Meijboom significant processing time especially in what I refer to as

their ‘Type III’ model (see Table 1.1); a point that will be elaborated on in the Conclusion, after my

algorithm has been explained.

Mahohoma (2014) considered stochastic games with frequency-independent transition

probabilities, yet the stage payoffs are frequency-dependent. To avoid confusion, it seems appro-

priate to summarise previous research in this area in a table: Table 1.1.

Game Type Type I Type II Type III

States* 1 ≥ 2 ≥ 2

Play Repeated Stochastic Stochastic

Payoff, θ 1) θ0 1) θ0 1) θ0
2) θ(x) 2) θ(x) 2) θ(x)

Trans. Prob. n/a p0 p(x)

Table 1.1: A Table of Games. θ(x) and p(x) represent the dependency on the history of

play of the payoff and transition probability respectively. Literature has been rigourous

enough to encompass 2+ player models. For simplicity in model-building, this thesis

is restricted to 2-player games.

There1 , using my notation one can see that Joosten et al. (2003) did work in Type I [θ(x)]

games. Mahohoma’s work (2014) was in Type II [θ(x), p0] games, with Joosten and Meijboom

(2010) in Type III [θ0, p(x)] games. In this Master thesis I take the next step in model development:

Type III [θ(x), p(x)] games.

1.2 Thesis Aim and Paper Organisation

The aim of this thesis is to create a model that can commute multiple reward sets of a 2-player,

2-action, 2-state stochastic game with communicating states and frequency-dependent transition

probability and/or frequency-dependent stage payoffs. As a step-by-step approach is taken in the

1Note that this table is a work in progress. The initial understanding of what differentiated a repeated game from a

stochastic game has since changed: repeated is a type of stochastic, and not separate as shown in the table. However,

as the table still allows for an understanding of the work performed, it will remain with alterations given in the Further

Developments section of this thesis.
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algorithm’s development, a by-product of this aim will be the development of, not just one, but a

set of Matlab© algorithms that encompasses all the computations and methodology noted in Table

1.1.

With these thoughts in mind, this paper is organised as follows: the methodology is de-

veloped in Section 2. This is followed by Section 3: Results and Discussion. The final part of the

main part of this thesis writeup is Section 4 which presents ideas on future work and brings all

thoughts together in a conclusion. The appendix section contains the .m algorithms developed.





2. Methodology

In a single-play competitive game, there is only one instance in which the players decide their action

choices (an ‘action pair’ for a 2-player game like the one studied here). This single instance results

in a single payoff to each player. As stated in the introduction, a repeated game contains multiple

instances called stages where the players choose their actions. These stages follow discrete time

step t = 1, 2, · · · , T , with each stage having its own stage payoff. In this section I explain the

relationships among stage payoffs, rewards and reward sets, the frequency matrix and the transition

probabilities in repeated and stochastic games, as generated by the algorithm.

2.1 Necessary Conditions

In order to employ the methodology employed in Joosten et al. (2003), there are a few requirements

that must be explained.

2.1.1 Jointly-Convergent Pure Strategies

On pure strategies. If at stage t, a player’s action is chosen with 100% probability, it is called a

pure action. A set of a player’s pure actions is a pure strategy. That is, at every stage of the play, in

every state of the game, the player uses one of the available actions with probability 1.

On jointly-convergent strategies. A matrix of frequencies corresponding to the matrix of payoffs
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(see Fig. 2.1) is written as

Xt =

xt1 xt2

xt3 xt4

 (2.1)

For example, for a game with 1000 repetitions having taken place, players choices have set the game

play in the upper left element 100 times, the lower left elements 3 times, the upper right element

for 850 times and 47 times in the lower right element is described by:

X1000 =

 100
1000

850
1000

3
1000

47
1000

 , (2.2)

so that for this game,

X1000 =

0.100 0.850

0.003 0.047

 . (2.3)

The condition of Eq. (2.4) becomes obvious:

4∑
i=1

xti = 1 (2.4)

The t here labels all the times the payoff corresponding to that position in the payoffmatrix

was obtained up till time t. Additionally, the t superscript indicates that for every stage, there exists

a different value for xti. For example, if after only 100 iterations of the game just described,

X100 =

0.00 0.90

0.02 0.08

 (2.5)

then we see that X100 6= X1000. In general X t may not necessarily be equal to X t+1. When a

strategy is said to converge, each of these four values converges to a certain four numbers for every

t in the long run (i.e., for T →∞). Joosten et al. (2010) formalise this from the perspective of the

players’ strategies.

If π represents the strategy used by player 1 (e.g. $\pi=$ action 1, action , 2 action 2, action

1, for a four stage game) and σ represents the strategy used by player 2, we can say the following:

A strategy pair (π, σ) is jointly convergent if

∀ε>0∀i lim sup
t→∞

Prπ,σ[|xti − xi| ≥ ε] = 0 (2.6)
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Prπ,σ represent the probability associated with the strategies of both players. ‘lim sup’ is the limit

superior with any ε > 0. Eq. (2.6) allows for the following matrix definition:xt1 xt2

xt3 xt4

 (T→∞)−−−−→

x1 x2

x3 x4

 (2.7)

where
∑4

i=1 xi = 1.

2.1.2 Long Run Average Reward

There are various ways of evaluating the scenario in which T → ∞ in repeated and stochastic

games. A simple one would be to add up all the stage payoffs. Here, like in Joosten et al. (2003), I

use the long run average reward:

ϑk(π, σ) = lim inf
T→∞

1

T

T∑
t=1

ϑkt (π, σ) (2.8)

where (π, σ) represent the strategies of players and ϑkt (...) is the expected payoff at stage t to players

k = 1, 2. ‘lim inf’ is the limit inferior. We use the ‘lim inf’ as the average need not exist.

2.2 Repeated Games

2.2.1 Payoff Matrix and Frequency-Dependent Rewards

The setup for a 2-player, 2-action repeated game is shown in Fig. 2.1. The payoff per stage of the

Figure 2.1: A Competitive Game

game is a choice of one of the elements of the matrix in Fig. 2.1 dictated by the actions of both
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players at that stage. The average reward until stage t in a 2-player game with jointly converging

strategies is provided by a combination of the stage payoffs and the stage frequencies ofXt when t

is large:

θt[pl1, pl2] = xt1(a1, b1) + xt2(a2, b2) + xt3(a3, b3) + xt4(a4, b4)

=
4∑
i=1

xti · θi (2.9)

where θi = (ai, bi) and plt1 refers to the average payoff for Player 1. If we set limits as t→ 0, we get

Eq. 2.8 The superscript on θ means that after t iterations, there is a set of rewards that the players

have obtained for that game. This reward set can be used to make a reward space in R2.

In order to ensure that the code is functional, the algorithm is tested using

Θ =

θ1 θ2

θ3 θ4

 =

16, 16 14, 28

28, 14 24, 24

 (2.10)

Like the Prisoner’s Dilemma, the lower right value is the Nash equilibrium. However, unlike the

Prisoner’s Dilemma, this value is Pareto superior to (‘dominates’) the upper left value which is

now its Pareto inferior. The Pareto superior value represents ‘abuse’ of a hypothetical renewable

common-pool resource. That is, the resource cannot sustain such a large number being removed

consistently over time. On the other hand, the Pareto inferior value in the upper left of the matrix

does allow for a renewability of the resource. In this manner, Eq. (2.10) models a ‘Commons’

dilemma. We can consider the Pareto inferior to be the long term ‘best for both’ (BB) payoff pair,

and the Pareto superior to be the short term BB payoff pair.

2.2.2 Frequency-Dependent (FD) Payoffs

Obtaining any of these payoffs before current time t, affect the common-pool total. This aspect is

considered through a frequency-dependent function. FD function, for short. Section 2 of Joosten

(2016) builds a methodology explaining how the FD is formulated. With the FD, the payoff is

seen as a fractional value of the reward in Eq. 2.9. Mainly,

Payoff = FD · θt[pl1, pl2] (2.11)

For the purposes of algorithm building, I use a simple linearly decreasing function of the

form:

FD = 1− γ1(γ2(x2) + γ3(x3))− γ4(x4) (2.12)
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The absence of x1 in the formula emphasises the idea that an ecologically-friendly ap-

proach to fishing should not affect the stock; γ4 > γ1 ∈ [0, 1] because both players abusing the

resource simultaneously is more harmful to the fish stock than individual abuse. The restrictions

on γ2 and γ3 are that

1. they are both non-negative, and

2. (γ2x2 + γ3x3) < γ−11

γ2 6= γ3 represent situations in which there is only one abuser who does more damage to the fish

stock than the other when the other is the lone abuser.

For the Type I games produced here, let

FDI = 1− 1

4
(x2 + 2x3)−

2x4
3

(2.13)

The subscript represents the game type to which the FD function is applied.

2.3 Stochastic Games

Stochastic games contain multiple states (payoff matrices) and a transition probability matrix, that

determines which of these states the play will move from stage (t) to stage (t + 1). This makes a

repeated game a stochastic game with a transition probability of 1 that the stage (t+ 1) remains in

the current state.

2.3.1 Multiple States

As Table 1.1 showed, the Type II and Type III games studied here have at least two states each.

Joosten and Meijboom (2010) refer to these as High and Low states. For this study, High corres-

ponds to S1 - the situation in which renewability of the resource can occur; and Low corresponds

to S2 - the situation in which renewability of the resource is not given sufficient time to replenish

itself.

To test the algorithm, these values were used:

ΘS1 =

16, 16 14, 28

28, 14 24, 24

 ΘS2 =

4.0, 4.0 3.5, 7.0

7.0, 3.5 6.0, 6.0

 (2.14)

The repeated game mentioned earlier can be made by setting the probability of moving to S2 as

zero for all t.
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2.3.2 Transition Probability Matrix

The transition probability matrix determines with what probability the play will move from one

state to another (or the same state) for the next stage. For a 2-state system, each matrix contains

elements that read as:

(probability of moving to S1 at t+ 1 , probability of moving to S2 at t+ 1)

where both values sum to 1.

The numerical example used here is:

pS1
0 =

0.8, 0.2 0.7, 0.3

0.7, 0.3 0.6, 0.4

 pS2
0 =

0.5, 0.5 0.40, 0.60

0.4, 0.6 0.15, 0.85

 (2.15)

where the subscript (0) represents a transition probability that is independent of the frequencies

(non-FD).

For ease of use, the matrices are re-written as a single vector containing only the probab-

ilities of transitioning to S1 at t+ 1 for the algorithm.

p0 =
[
0.8 0.7 0.7 0.6 0.5 0.4 0.4 0.15

]
(2.16)

2.3.3 Frequency-Dependent Stage Payoffs in Stochastic Games

Multiple-states means more x values are required. For a 2-state, 2-action, 2-player system where

t→∞,
8∑
i=1

xti = 1 (2.17)

resulting in two matricesX∞1 andX∞2 , where the subscripts refer to the state which they represent.

As shown in Eq. (2.18), the frequency vector is an element of the 7-dimensional space ∆7.

xt ∈ ∆7 = {x ∈ R8|xi ≥ 0 for all i = 1, . . . , 8 and
8∑
i=1

xi = 1} (2.18)

For a 2-player game, this frequency point is projected onto a 2-D plane. This results in some

interesting plots, as will be seen in the results.

The FD function corresponding to the example being described here should also include

these additional x-terms. Again, I use a simple linear function, this time a version specific for Type

II and Type III games. Let:

FD = 1− γ1(γ2(x2) + γ3(x3))− γ4(x4)− γ5(γ6(x6) + γ7(x7))− γ8(x8) (2.19)
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Along with the restrictions as stated for Eq. 2.12, x5 is not present as it does not affect the resource,

and γ4 < γ8 and γ1 < γ5. This latter restriction is due to the fact that abuse in state 2 is worse than

abuse in state 1 because state 2 contains less of the resource than state 1.

For the algorithm, I employ the following example, based on Eq. 2.19:

FDII,III = 1− 1

4
(x2 + x3)−

x4
3
− 1

2
(x6 + x7)−

2x8
3

(2.20)

2.4 Computing Type II and Type III Games

To recap, there are three types of games (I, II, III). The first contains a single matrix (state), the

other two contain two matrices (in my example, but can contain more) of possible payoffs for 2

players who each have two action choices that can be played at time t. There is an average reward

corresponding to each pair of actions. Using an FD- function on the average reward at time t, one

can obtain the payoff specific to that time, given the history of play up to time t.

The next step: how to determine what the history of play was? That is, what are the

elements of matrix X∞?

2.4.1 Random Sampling

I obtain values for theX∞ matrices via the β-distribution. A β-distribution is a distribution which

contains all possible values of an unknown probability. As interesting things tend to happen with

the smallest probability, it may prove most interesting to use the least likely probabilities (that is,

those close to 0 and 1). Additionally, focusing on the least likely values, will provide a broad range

of reward set values the quickest (faster than the uniform distribution). To do this, the variables for

the β-distribution are set to 1
2
. This increases the likelihood of choosing values close to the edges

of the distribution (Fig. (2.2)). A distribution of this type is referred to as a U-shaped Distribution.

2.4.2 Random Sampling and the Transition Probability

A constraint to these randomly chosen x values is that they must fulfill the flow equation.
4∑
i=1

xi(1− pi) =
8∑
i=5

xipi (2.21)

where i refers to the vector’s element number. If the flow equation holds, the system’s states can be

classified as communicating in the long run. Thus,
∑4

i=1 xi(1− pi) 6= 0 and
∑8

i=5 xipi 6= 0, which
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Figure 2.2: The U-shaped β-distribution is made

when both α and β are set to one half.

results in either state 1 or state 2 (respectively) being an absorbing state.

In order to perform this calculation, usage of an intermediate vector y and a dummy

variable Q are required to obtain the necessary degree of freedom. The values that fit the Eq.

(2.21) are stored in the vector x∗. For S1:

yi =
xi∑4
j=1 xj

i = {1, 2, 3, 4} (2.22)

and for S2

yi =
xi∑8
j=5 xj

i = {5, 6, 7, 8} (2.23)

y is related to x∗ via:

x∗ =
[
Qy1 Qy2 Qy3 Qy4 (1−Q)y5 (1−Q)y6 (1−Q)y7 (1−Q)y8

]
(2.24)

Using Eq.s (2.23) and (2.22), Eq. (2.21) in terms of y gives

Q
4∑
i=1

yi(1− pi) = (1−Q)
8∑
i=5

yipi (2.25a)

Q =

∑8
i=5 yipi∑4

i=1 yi(1− pi) +
∑8

i=5 yipi
(2.25b)

Once Q is determined (and by extension, 1−Q), it is a simple matter of utilizing Eq. (2.24) once

again, to solve for x∗.
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This way, one can see that I move from the randomly (β-distribution) chosen values of

X∞ to an intermediate matrix y, to solving for Q, and finally obtaining the corrected X∞ matrix

that transitions from S1 to S2 and back: x∗ = x(y,Q).

In the case (of 2+ states), Eq. (2.25b) generalises to a system of linear equations.

2.4.3 Frequency-dependent Transition Probability

The addition of frequency-dependence on the transition probability matrix requires a bit more re-

finement to the steps previously presented. Now there is an additional complexity that,

p(x) = p0 −
[
x · A

]
(2.26)

where the 8x8 matrix A should contain non-negative values and
[
x · A

]
< p0.

The example of A used is:

A =



0 0 0 0 0 0 0 0

.35 .30 .30 .25 .20 .15 .15 .05

.35 .30 .30 .25 .20 .15 .15 .05

.70 .60 .60 .50 .40 .30 .30 .10

0 0 0 0 0 0 0 0

.35 .30 .30 .25 .20 .15 .15 .05

.35 .30 .30 .25 .20 .15 .15 .05

.70 .60 .60 .50 .40 .30 .30 .10



(2.27)

Note that the 1st and 5th rows in Eq. (2.27) correspond to eco-friendly playing strategies: xt1 and

xt5. As an example of how Eq. 2.26 works, if

x =
[
0.175 0.025 0.025 0.175 0.450.025 0.1 0.025

]
, (2.28)
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then, for the first entry of the 1x8 array x∗.A:

[
0.175 0.025 0.025 0.175 0.450.025 0.1 0.025

]
∗



0 · · ·

0.35 · · ·

0.35 · · ·

0.70 · · ·

0 · · ·

.35 · · ·

.35 · · ·

.10 · · ·



= [0.2012 · · · ] (2.29)

Given Eq. 2.16, Eq. 2.26 becomes

p(x) =
[
0.59875 0.5275 0.5275 0.45625 0.385 0.31375 0.31375 0.0925

]
(2.30)

However, Eq. 2.28 corresponds to p0, so that p(x) may well correspond to another x. Thus, a

re-calculation of x is required.

The entire process flows as follows: I first choose a random set of numbers for the Xt
1 and

Xt
2 matrices keeping Eq. (2.17) in mind. I then use these matrices to obtain both the intermediate y

vector as well as p(x). y and p(x) are used to solve for Q (or vector of Q in the general case). This

leads to x∗.

Figure 2.3: A flowchart showing the beginning of the iterative process involved in solv-

ing for x∗ in Type 3 games. y is kept constant throughout.
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Figure 2.4: A flowchart showing the equations used to begin the iterative process. x

comes from the random sampling described in Section 2.4.1.

This process is repeated again and again (as seen in Fig. 2.3, with corresponding equations

in Fig. 2.4) resulting in a vector of values: Q = [Q1, Q2, . . . , Qn−1, Qn] where n is the iteration

number of the ‘Q’-loop. These values exhibit linear convergence and so the loop continues until

there is a trivial difference between Qn+1 and Qn, calculated via basic subtraction.

To make the algorithm faster, I increase the speed of the convergence of this sequence

through the use of the ‘Aitken’s ∆2 method’ (Equation 2.14 in Burden and Faires (2010)) which

here takes the form,

Qcheck = Qn −
(Qn+1 −Qn)2

Qn+2 − 2Qn+1 +Qn

(2.31)

The condition I use to stop the iterations is

(Qcheck
m+1 −Qcheck

m ) < 1.0× 10−8 (2.32)

Note that from Eq. (2.31),m 6= n since n must reach n = 3 before Qcheck
m=1 can be found.

Thus, instead of subtracting every subsequent Q, I instead use Eq. (2.31) which determ-

ines significant differences much sooner and for smaller levels of precision.
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Standard Subtraction to the 10−6 Aitken’s Method to the 10−8

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8





Qcheck
1

Qcheck
2

Qcheck
3


Table 2.1: Method for Determining the ‘true’ Q. In this example (based on initial calculation done

by hand), subsequent differences in Q to precision 10−8 are zero by m = 3 using the Aitken’s

method, but not so till n = 8 using standard subtraction to precision 10−6.



3. Results & Discussion

3.1 Type I Games

In addition to providing the foundation for the development of the algorithm, Type I games provide

an interesting insight into the effects of the frequency matrix on dynamic competitive games.

Figure 3.1: A line plot for a Type I Game with non-FD stage payoffs.

The line plot (as seen in Fig. 3.1 for example) was created to give as clear an idea as possible as

to the shape of the reward set in R2. It was made by setting 2 out of the 4 elements of x values in

Eq. (2.9) to zero. For example, if x1 = x2 = 0, and random values of x3 and x4 are made using a
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Figure 3.2: A scatter plot for a Type I Game with non-FD stage payoffs.

β−distribution, I obtain the line connecting (28, 14) to (24, 24). That is,

θt[pl1, pl2] = 0× (16, 16) + 0× (14, 28) + xt3 × (28, 14) + xt4 × (24, 24) (3.1)

for all t = {1 · · · , T} In cases of the line plot TL = 20, 000. For the scatter plots, TS = 50, 000.

TL 6= TS for the simple reason that, with so many zero values created when generating a line plot,

the extra 30, 000 add nothing new to these images.

The scatter plot version of Fig. 3.1 is seen in Fig. 3.2. Through it, one is able to visualise

that for random samples of X∞ when t is large, there are higher concentrations of rewards closer

to the midpoint of the lines provided in the line plot.

Type I FD Game

The plot in Fig. 3.3 is particularly insightful. By manipulating FD1, we can see how the reward set

shifts as the rewards it represents becomes increasingly influenced by FDI . I did this by inserting

a dummy variable α ∈ [0, 1] into Eq. (2.12) such that:

FDI = 1− α

4
(x2 + 2x3)−

2α

3
x4 (3.2)

By increasing the α through 5 runs of the algorithm (i.e. 5 different games), I create 5 different sets

of rewards, each with its own visual characteristics. As the only xi that remains unaffected is x1,

we see that (16,16) remains fixed for all 5 games.
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Figure 3.3: Line plots of 5 Type I games indicating the change in reward sets from

one game to the next. As the effect of the FDI function on the reward sets increase

from game to game, the reward space folds over so that the maximum upper right point

becomes the lowest, lower left point. This is done by increasing the value of α in Eq.

(3.2). The extremes α = 0 and α = 1 are shown in Fig. 3.4.

Figure 3.4: The scatter plots compare the reward set of a Type I non-FD game (north-

east in red) and the reward set of a Type I FD game (south-west in blue)

In terms of the Pareto points, clearly the larger values (north east in the plot) become

steadily less and less obtainable as a result of player resource-abuse. These larger values are near

the short term (Pareto superior) payoff point. As the full weight of FDI comes into play, the reward
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set itself folds over on the long term (Pareto inferior) point (16, 16) so that it becomes the maximum

point in the final run of the algorithm where α = 1. In Fig. 3.3 we see this as (24, 24) reduces,

becoming (4, 4).

Thus within this setup, one can say that with constant abuse of a common-pool resource

over time, the Pareto superior point reduces in value till it becomes the Pareto inferior point. This

new Pareto inferior point is still larger than the new Pareto superior point which has become even

smaller.

Note that Fig. 3.4 is in keeping with a linear-reducing shift of the rewards as seen in Fig.

1 of Joosten et al. (2003).

3.2 Type II Games

Recall that Type II games are those in which there are two states that possess frequency-dependent

payoffs and frequency-independent transition probabilities: Type II parameters are [θ(x), p0].

Figure 3.5: The (red) line plot to the north-east is that of the Type II non-FD game. The

blue line plot to the south-west is the Type II FD game. The dots indicate the location

of the stage payoffs of S1 and S2.

Manipulating the number of zero elements as described earlier allows for the visualization

of different aspects of the reward set. In Fig. 3.5, two elements in X∞i and 1 element in X∞j

(i = 1, 2 , j = 1, 2 , i 6= j) is used consecutively. For Fig. 3.6 and Fig. 3.7, two elements in both
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X∞1 andX∞2 are set to zero.

Figure 3.6: Here is a filled 2D version of the reward set when the stage payoffs are

non-FD. Two x values in each state’s frequency matrix are set to zero here. The dots

indicate the location of the stage payoffs of S1 and S2.

Figure 3.7: Here is an entire reward set when the stage payoffs are FD. Two x values

in each state’s frequency matrix are set to zero here. The dots indicate the location of

the stage payoffs of S1 and S2.

In this example, unlike its Type 1 counterpart, the reward set for Type II games do not fold

over on a point, but instead seems to shifts downward. During this shift, the set becomes elongated
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(a) 1000 iterations (b) 2500 iterations

Figure 3.8: Type II Game. Cropped images of scatter plots of reward sets for (left)

1000 iterations and (right) 2500 iterations atop the line plots of the Type II non-FD

reward space. The area of highest concentration is close to the north-east face of the

reward set.

and retains some of its lower-valued non-FD reward pairs.

By changing the number of iterations in a game, as in Figures 3.8 and 3.9, the areas of

highest concentration (highest probability ’best for both’ points) can be determined. For the non-FD

version, it lies around (14, 14). For the FD version it lies lower, around (10, 10).

It should also be noted that this area of highest concentration forms around a central region

where the majority of the outlines intersect. As this inner region stretches during the transition from

non-FD to FD, so too does the highest concentration of ‘best for both’ points.

In both FD and non-FD cases, both players seem to have equally likely chances of gain-

ing a better payoff than their opponent.

To summarise, the effect of FDII,III in Type II games is such that:

1. it reduces the probability of higher (closer to S1) rewards,

2. it also reduces the amount by which a player can best their opponent,

3. it increases the volatility of the rewards 2.

3.3 Type III Games

Type III games are those in which there are two states that possess both frequency-dependent pay-

offs and transition probabilities: Type II parameters are [θ(x), p(x)]. The setup for obtaining the

2Volatility is defined as ‘the measure of the uncertainty about the rewards provided by the resource’ (Section 14.4

in Hull (2012)).
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(a) 1000 iterations (b) 2500 iterations

Figure 3.9: Type II Game. Cropped images of scatter plot of reward sets for (left) 1000

iterations and (right) 2500 iterations atop the line plots of the Type II FD reward space.

The area of highest concentration is around the centre of the reward set.

variations in plots for Type III games is the same as that described for Type II games.

Figure 3.10: The broader line plot to the upper right (red) is the reward set for the

non-FD game. The lower left (and narrower) line plot (blue) is the reward set for the

FD game.

In this example, for Type 3 games, the frequency-dependency transition probability func-

tion p(x) has resulted in a situation vaguely similar to the Type I model where the non-FD and FD

reward sets noticeably share a ‘best for both’ point. Unlike with the Type I, however, and similar

to the Type II, the set does not fold over from this point but elongates the non-FD from it to form

the FD reward set. A visual determination puts this point around (14, 14). Thus the lowest ‘best

for both’ point in S1 becomes the highest ‘best for both’ point for the Type III game; with its lowest
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‘best for both’ point going well below the lowest ‘best for both’ point of S2.

Figure 3.11: Here is an entire reward set when the stage payoffs are non-FD. Two

x values in each state’s frequency matrix are set to zero here. The dots indicate the

location of the stage payoffs of S1 and S2.

On examining the regions of highest concentration, one can see from Fig 3.13 and Fig.

3.14 that the FD version has increased chances of lower rewards; much more so that its Type II

counterpart. This seems to correspond with the elongation of the region of highest concentration

south-westward. This means that the central region of the reward set in a Type III game is signific-

antly affected by a frequency-dependence on the transition probability.

(a) 1000 iterations (b) 2500 iterations

Figure 3.13: Type III Game. Cropped images of scatter plots of reward sets for (left)

1000 iterations and (right) 2500 iterations atop the line plots of the Type III non-FD

reward set. The area of highest concentration is around the centre the reward set,

extending rather broadly but with some emphasis south west.
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Figure 3.12: Here is an entire reward set when the stage payoffs are FD. Two x values

in each state’s frequency matrix are set to zero here. The dots indicate the location of

the stage payoffs of S1 and S2.

(a) 1000 iterations (b) 2500 iterations

Figure 3.14: Type III Game. Cropped images of scatter plots of reward sets for (left)

1000 iterations and (right) 2500 iterations atop the line plots of the Type 3 FD reward

set. The area of highest concentration is in the bottom third of the set and extends both

to the south-west and to the north east.

To summarise, in the example of Type III games modeled here,

1. FD and p(x) reduces the amount by which a player can best their opponent,

2. p(x) further increases the volatility of the rewards compared to (FD, p0) as seen in the Type

II games, but

3. possesses the same ‘best for both’ maximum for both the FD and non-FD stage reward ver-

sions.



Page 28 Chapter 3. Results & Discussion

4. Most importantly, the combination of FDII,III and p(x) significantly reduces the probability

of higher (closer to S1) rewards,



4. Conclusion

I have created a set of algorithms that allows for the representation of large sets of jointly-convergent

pure strategy rewards for a large variety of stochastic games (with a repeated game being considered

a special type of stochastic game). The .m files are provided in the Appendix of this document.

Using Eq. (2.9) I calculate reward pairs for multiple stages. It is possible to plot these reward pairs

in R2 to visualise a game’s reward set.

With the use of an FD function, it is possible to differentiate between stage rewards that

are affected by the frequency with which past actions have occurred, and those that are not so

affected. It is also possible to differentiate between games in which the probability of moving from

one state to another is dependent on the frequency of past actions and those that are not, through

the use of a frequency-dependent transition probability function.

The model developed here is geared toward 2-player, 2-action, 2-state stochastic games.

Aside from these specifications, it is actually quite broad, able to handle any type of FD function

and possibly non-linear p(x) functions as well. The use of the FD is entirely optional and the user

can not only manipulate whether or not the stage rewards (or transition probabilities) are frequency-

dependent, but can also consider the intermediate levels where these rewards (probabilities) vary

in the degree to which they are affected.

The example used to ensure the code’s functionality was the fishery war which is a ‘Com-

mons’-type social dilemma. Here, the two players are encouraged toward actions that will harm

them in the long term, as they gain in the short term. Results for Type 1 games show that the region
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of highest rewards lie in the centre of the reward set’s diagrammatic form. When the FD function

is reduced linearly, the reward set folds over so that the Pareto inferior ‘best of both’ point of the

initial reward space becomes the new Pareto superior ‘best of both’ point in the final reward set.

Results for Type II and Type III games were similar in most respects. FD stage payoffs

shifted the reward set to lower values, and reduced the difference in rewards in stages where a

player obtained a reward higher than the opposing player. As frequency dependency increases the

‘length’ of the reward set, there is a corresponding increase in the volatility of the rewards that can

be obtained.

The one major area of difference between the Type II and Type III games was the re-

positioning of the region of highest concentration that sat lower in the reward set’s diagrammatic

interpretation of the Type III model than that of the Type II, regardless of FDII,III . Thus we can

conclude that an FD transition probability is a significant factor in the probability of obtaining

higher rewards.

Also, the Type III (FD) game shared a short term (Pareto superior) point with that of the

Type III (non-FD) game.

4.1 Further Developments

Together with my supervisor, Reinoud Joosten, we are in the process of publishing the findings

made in the Type III FD games, with new ideas still developing.

One major consideration throughout this project has been the classification of the differ-

ent types of games. Recent discussions have led to the idea that, if repeated games are a type of

stochastic game, then Table 1.1 contains an error in the ‘Play’ row where ‘repeated’ was considered

as a separate class from ‘stochastic’. This led to the idea of Action-Independent Transition prob-

ability matrices (A.I.T.), where the transition probability matrices in Eq. (2.15) are instead of a

general form,

pS1
0 =

ω, (1− ω) ω, (1− ω)

ω, (1− ω) ω, (1− ω)

 pS2
0 =

ρ, (1− ρ) ρ, (1− ρ)

ρ, (1− ρ) ρ, (1− ρ)

 (4.1)

where 0 ≤ ω, ρ ≤ 1. This way, no matter the action pair, the transition probabilities per state

remain unchanged.

Calculation of Q here is trivial. We only need solve for Q in an equation similar to Eq.
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(2.25b):

Q(1− ω) = ρ(1−Q) (4.2a)

Q =
ρ

1− ω + ρ
(4.2b)

This need only be done once for the entire game as Q here is constant.

So we see that with the concept of AIT, unlike what was stated in the Methodology: a

Type I game can exist with multiple reachable states.

4.2 Future Work

It is important to recognise that the results in the example may not necessarily hold for all types of

social dilemma. What I can say is that because one can model any type of social dilemma using

this code, the following additions may be of academic interest:

1. Compiling all .m files into a single code with input options for the user.

2. A three-player model will allow interesting visualizations of the rewards.

3. Any of the following:

(a) changing the type of social dilemma, Komorita and Parks (1996) give an in depth look

into a few of the more well-known social dilemmas),

(b) changing the quality of the FD functions (FD1 and FD2,3) or transition probability

p(x) function, to a non-linear (though still continuous) function, or to more involved

continuous linear functions like Henry Hamburger’s ‘Give Some’ games (see p. 12 in

Komorita and Parks (1996)),

(c) alter the frequency matrices to reflect specific strategies.

4. Creating a three-state system of S1, S2 and S3. (with linear algebra, this should make moving

to multi-state modeling much easier).

5. Parallel computing iterations t = 1, ..., T can increase speed.

6. Consider the effects of temporarily absorbing states.

4.3 Final Thoughts

It would be remiss of me if I do not emphasise two salient points. Firstly, the code demonstrates

the non-trivial effects of achieving short term gains at the cost of those in the long term. The
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visualization of rewards, allowed through the algorithm I have created, presents a clear picture of

the effects of abusing common-pool systems. I leave it as a project for the interested reader to add

his or her functions to give realistic considerations of scenarios in which long term goals lead from

low states to high ones: a much more positive spin than the scenario presented in this thesis.

Secondly, in the introduction I mentioned the efficiency of the Joosten and Meijboom

(2010) Type III [θ0, p(x)] game. My focus on communicating states (states that will never have

transition probabilities equal to 0), has allowed me to develop a much more efficient algorithm to

model social dilemmas than that of Joosten and Meijboom. As shown in the Future Work section,

it is possible to adapt the code to consider absorbing states. However, whether or not the increase

in processing time (as the algorithm searches for appropriate x values to fit a unique flow equation)

will be proportional to the increase experienced by Joosten and Meijboom remains to be seen, but

seems unlikely.

Overall, it is my belief that this code can form the basis for modeling social dilemmas

that are either simple or extremely complex and can also consider all variations in between.
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A Algorithm 1: Type 1 Game

1 %Type 1 Game

2 %(0<= a lpha <=1) .

3 c l e a r

4 %−−−[1] The p ayo f f v e c t o r s

5 A1 = [16 14 28 2 4 ] ' ;

6 B1 = [16 28 14 2 4 ] ' ;

7 %−−−[2] s t a g e l e v e l and s t o r a g e

8 T=100000;

9 Payo f f1 = z e r o s (T , 1 ) ;

10 Payo f f2 = z e r o s (T , 1 ) ;

11 x = z e r o s ( 4 , 1 ) ;

12 r = z e r o s ( 4 , 1 ) ;

13 prompt = 'What i s a l p h a ? ' ;

14 a l ph a = i n p u t ( prompt ) ;

15 f o r v =1:T

16 %−−−[3] Frequency v e c t o r x ( s c a t t e r )

17 f o r i = 1 :4

18 r ( i ) = b e t a r n d ( 0 . 5 , 0 . 5 ) ;

19 end

20 Norm_val = sum ( r ) ;

21 f o r i = 1 :4

22 x ( i ) = r ( i ) / Norm_val ;

23 end

24 %%%∗∗∗∗

25 %−−−[3] Frequency v e c t o r x ( o u t l i n e )

26 %f o r i = 1 : 2 ;

27 % r ( i ) = b e t a r n d ( 0 . 5 , 0 . 5 ) ;

28 %end

29 %Norm_val = sum ( r ) ;

30 %f o r i = 1 :2

31 % x_a ( i ) = r ( i ) / Norm_val ;

32 %end

33 %x_b = [ x_a ( 1 ) x_a ( 2 ) 0 0 ] ' ;

34 %x = x_b ( randperm ( l e n g t h ( x_b ) ) ) ; %randomi s e s x_b

35 %%∗∗∗∗

36 %−−−[4] L i n e a r p a yo f f f u n c t i o n
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37 FD = 1−a l ph a ∗0 . 25∗ ( x ( 2 ) + 2∗x ( 3 ) )−a l ph a ∗ ( 2 / 3 ) ∗x ( 4 ) ;

38 %−−−[5] S t age p ayo f f v e c t o r s

39 V_p1 = x . ∗A1 ;

40 V_p2 = x . ∗B1 ;

41 Payo f f1 ( v ) =FD∗sum (V_p1 ) ;

42 Payo f f2 ( v ) =FD∗sum (V_p2 ) ;

43 end

44 %−−−[6] p l o t

45 f i g u r e ( 1 )

46 p l o t ( Payof f1 , Payof f2 , ' ∗ r ' , ' Marke rS ize ' , 1 )

47 x l a b e l ( ' P l a y e r 1 ' )

48 a x i s ( [ 5 30 5 30 ] )

49 y l a b e l ( ' P l a y e r 2 ' )

50 t i t l e ( [ ' Reward Space . T= ' num2s t r (T ) ' i t e r a t i o n s . ' ] )

B Algorithm 2: Type 2 Game

1 %2− s t a t e s t o c h a s t i c game wi th p0 . c o n s t p a yo f f ( a l p h a =0) , FD−payo f f ( a l p h a =1) .

2 c l e a r

3 %−−−[1] The p ayo f f v e c t o r s and p0

4 A1 = [16 14 28 24 4 3 . 5 7 6 ] ' ; %v e c t o r

5 B1 = [16 28 14 24 4 7 3 . 5 6 ] ' ; %v e c t o r

6 p = [ 0 . 8 0 . 7 0 . 7 0 . 6 0 . 5 0 . 4 0 . 4 0 . 1 5 ] ' ; %v e c t o r

7 %p i s t h e p r o b a b i l i t y o f moving t o S1

8

9 %−−−[2] s t a g e l e v e l and s t o r a g e

10 T = 50000 ; %1000000;

11 x = z e r o s ( 8 , 1 ) ;

12 x_a = z e r o s ( 8 , 1 ) ;

13 x s t a r = z e r o s ( 8 , 1 ) ;

14 r = z e r o s ( 8 , 1 ) ;

15 y = z e r o s ( 8 , 1 ) ;

16 yp = z e r o s ( 4 , 1 ) ;

17 yp_no t = z e r o s ( 4 , 1 ) ;

18 v_p1 = z e r o s ( 8 , 1 ) ;
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19 v_p2 = z e r o s ( 8 , 1 ) ;

20 payo f f_p1 = z e r o s (T , 1 ) ;

21 payo f f_p2 = z e r o s (T , 1 ) ;

22

23 prompt = 'What i s a l p h a ? ' ;

24 a l ph a = i n p u t ( prompt ) ;

25

26 f o r t = 1 :T

27 %−−−[3] Frequency v e c t o r x ( s c a t t e r )

28 f o r i = 1 :8

29 r ( i ) = b e t a r n d ( 0 . 5 , 0 . 5 ) ;

30 end

31

32 f o r i = 1 :8

33 x ( i ) = r ( i ) / sum ( r ) ;

34 end

35 %%∗∗∗∗

36 %%−−−[3] Frequency v e c t o r x ( o u t l i n e )

37 %f o r i = 1 :3 %

38 % r ( i ) = b e t a r n d ( 0 . 5 , 0 . 5 ) ;

39 %end

40 %

41 %Norm_val = sum ( r ) ;

42 %

43 %f o r i = 1 :3 %

44 % x_a ( i ) = r ( i ) / Norm_val ;

45 %end

46 %

47 %x_b1 = [ x_a ( 1 ) x_a ( 3 ) 0 0 ] ' ;%

48 %x_b2 = [ x_a ( 2 ) 0 0 0 ] ' ;%

49 %

50 %x_c1 = x_b1 ( randperm ( l e n g t h ( x_b1 ) ) ) ; %%randomi s e s p o s i t i o n s o f x_b

51 %x_c2 = x_b2 ( randperm ( l e n g t h ( x_b2 ) ) ) ;

52 %

53 %f o r i =1:8

54 % i f i < 5

55 % x ( i ) = x_c1 ( i ) ;
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56 % e l s e

57 % x ( i ) = x_c2 ( i −4) ;

58 % end

59 %end

60 %%∗∗∗∗

61

62 %−−−[4] I n t e rm e d i a t e y v e c t o r and Q

63 f o r i =1:4

64 y ( i ) = x ( i ) / ( sum ( x ( 1 : 4 ) ) ) ;

65 end

66 f o r i =5:8

67 y ( i ) = x ( i ) / ( sum ( x ( 5 : 8 ) ) ) ;

68 end

69 f o r i = 1 :4

70 yp_no t ( i ) = y ( i ) ∗(1−p ( i ) ) ;

71 yp ( i ) = y ( i +4) ∗p ( i +4) ;

72 end

73 Q = sum ( yp ) / ( sum ( yp ) + sum ( yp_no t ) ) ;

74 Q_not = 1−Q;

75

76 %−−−[5] So l v i ng f o r x∗

77 f o r i = 1 :4

78 x s t a r ( i ) = Q∗y ( i ) ;

79 end

80 f o r i = 5 :8

81 x s t a r ( i ) = Q_not∗y ( i ) ;

82 end

83

84 %−−−[6] FD equ a t i o n

85 FD = 1− a l ph a ∗0 . 25∗ ( x s t a r ( 2 ) + x s t a r ( 3 ) ) ...

86 −0.5∗ a l ph a ∗( x s t a r ( 6 ) + x s t a r ( 7 ) ) − ( 1 / 3 ) ∗ a l ph a ∗ x s t a r ( 4 ) − (2 /3) ∗ a l ph a ∗

x s t a r ( 8 ) ;

87 f o r i = 1 :8

88 v_p1 ( i ) = x s t a r ( i ) ∗A1( i ) ;

89 v_p2 ( i ) = x s t a r ( i ) ∗B1 ( i ) ;

90 end

91
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92 %−−−[7] S t age p ayo f f v e c t o r

93 payo f f_p1 ( t ) = FD∗sum ( v_p1 ) ;

94 payo f f_p2 ( t ) = FD∗sum ( v_p2 ) ;

95 end

96

97 %−−−[8] p l o t

98 f i g u r e ( 1 )

99 s c a t t e r (A1 , B1 , ' f i l l e d ' )

100 ho ld on

101 p l o t ( payof f_p1 , payof f_p2 , ' o ' , ' Marke rS ize ' , 1 , ...

102 ' MarkerFaceColo r ' , ' r ' , ' MarkerEdgeColor ' , ' r ' )

103 x l a b e l ( ' P l a y e r 1 ' )

104 y l a b e l ( ' P l a y e r 2 ' )

105 t i t l e ( [ ' Type 2 Game Reward Space . T = ' num2s t r (T ) ' i t e r a t i o n s ' ] )

106 ho ld o f f

C Algorithm 3: Type 3 Game

1 c l e a r

2 %

3 A1 = [16 14 28 24 4 3 . 5 7 6 ] ' ;

4 B1 = [16 28 14 24 4 7 3 . 5 6 ] ' ;

5 p = [ 0 . 8 0 . 7 0 . 7 0 . 6 0 . 5 0 . 4 0 . 4 0 . 1 5 ] ;

6 x = z e r o s ( 1 , 8 ) ;

7 r = z e r o s ( 8 , 1 ) ;

8 y = z e r o s ( 8 , 1 ) ;

9 x s t a r = z e r o s ( 1 , 8 ) ;

10 x_a = z e r o s ( 8 , 1 ) ;

11 yp = z e r o s ( 4 , 1 ) ;

12 yp_no t = z e r o s ( 4 , 1 ) ;

13 v_p1 = z e r o s ( 1 , 8 ) ;

14 v_p2 = z e r o s ( 1 , 8 ) ;

15 T = 500000;

16 payo f f_p1 = z e r o s (T , 1 ) ;

17 payo f f_p2 = z e r o s (T , 1 ) ;
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18

19 matr ixA = [ 0 . 0 0 0 . 0 0 . 0 0 . 00 0 . 0 0 . 00 0 . 00 0 . 0 0 ;

20 0 .35 0 . 3 0 . 3 0 . 25 0 . 2 0 . 15 0 . 15 0 . 0 5 ;

21 0 .35 0 . 3 0 . 3 0 . 25 0 . 2 0 . 15 0 . 15 0 . 0 5 ;

22 0 .70 0 . 6 0 . 6 0 . 50 0 . 4 0 . 30 0 . 30 0 . 1 0 ;

23 0 .00 0 . 0 0 . 0 0 . 00 0 . 0 0 . 00 0 . 00 0 . 0 0 ;

24 0 .35 0 . 3 0 . 3 0 . 25 0 . 2 0 . 15 0 . 15 0 . 0 5 ;

25 0 .35 0 . 3 0 . 3 0 . 25 0 . 2 0 . 15 0 . 15 0 . 0 5 ;

26 0 .70 0 . 6 0 . 6 0 . 50 0 . 4 0 . 30 0 . 30 0 . 1 0 ] ;

27

28 prompt = 'What i s a l p h a ? ' ;

29 a l ph a = i n p u t ( prompt ) ;

30

31 f o r t = 1 :T

32

33 Q_checker

34

35 FD = 1− a l ph a ∗0 . 25∗ ( x s t a r ( 2 ) + x s t a r ( 3 ) ) −0.5∗ a l ph a ∗( x s t a r ( 6 ) + x s t a r ( 7 ) ) ...

36 − ( 1 / 3 ) ∗ a l ph a ∗ x s t a r ( 4 ) − (2 /3) ∗ a l ph a ∗ x s t a r ( 8 ) ;

37 f o r i = 1 :8

38 v_p1 ( i ) = x s t a r ( i ) ∗A1( i ) ;

39 v_p2 ( i ) = x s t a r ( i ) ∗B1 ( i ) ;

40 end

41 payo f f_p1 ( t ) = FD∗sum ( v_p1 ) ;

42 payo f f_p2 ( t ) = FD∗sum ( v_p2 ) ;

43 end

44

45 f i g u r e ( 1 )

46 s c a t t e r (A1 , B1 , ' f i l l e d ' )

47 ho ld on

48 p l o t ( payof f_p1 , payof f_p2 , ' o ' , ' Marke rS ize ' , 1 , ...

49 ' MarkerFaceColo r ' , [ 0 . 5 0 . 5 0 . 5 ] , ' MarkerEdgeColor ' , [ 0 . 5 0 . 5 0 . 5 ] )

50 x l a b e l ( ' P l a y e r 1 ' )

51 y l a b e l ( ' P l a y e r 2 ' )

52 t i t l e ( [ ' Type 3 FD Game Reward Space . T = ' num2s t r (T ) ' i t e r a t i o n s ' ] )

53 ho ld o f f
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D Algorithm 4: Q Checker

1 %loop t o match px and x ∗ . i n s e r t i n t ype 3 a l g o r i t hm

2 %−−−[1] Frequency v e c t o r x ( s c a t t e r )

3 % f o r i = 1 :8

4 % r ( i ) = b e t a r n d ( 0 . 5 , 0 . 5 ) ;

5 % end

6 % f o r i = 1 :8

7 % x ( i ) = r ( i ) / ( sum ( r ) ) ;

8 % end

9 % %−−−

10 %−−−[1] Frequency v e c t o r x ( o u t l i n e )

11 f o r i = 1 :3

12 r ( i ) = b e t a r n d ( 0 . 5 , 0 . 5 ) ;

13 end

14 Norm_val = sum ( r ) ;

15 f o r i = 1 :3 %

16 x_a ( i ) = r ( i ) / Norm_val ;

17 end

18 x_b1 = [ x_a ( 1 ) x_a ( 3 ) 0 0 ] ' ;%

19 x_b2 = [ x_a ( 2 ) 0 0 0 ] ' ;%

20 x_c1 = x_b1 ( randperm ( l e n g t h ( x_b1 ) ) ) ; %randomi s e s p o s i t i o n s o f x_b

21 x_c2 = x_b2 ( randperm ( l e n g t h ( x_b2 ) ) ) ;

22 f o r i =1:8

23 i f i < 5

24 x ( i ) = x_c1 ( i ) ;

25 e l s e

26 x ( i ) = x_c2 ( i −4) ;

27 end

28 end

29 % %−−−

30 %−−−[2] I n t e rm e d i a t e y v e c t o r , Q and x∗

31 f o r i = 1 :4

32 y ( i ) = x ( i ) / ( sum ( x ( 1 : 4 ) ) ) ;

33 end

34 f o r i =5:8

35 y ( i ) = x ( i ) / ( sum ( x ( 5 : 8 ) ) ) ;

36 end
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37 px = p − x∗matr ixA ;

38 f o r w = 1 :4

39 f o r i = 1 :4

40 yp ( i ) = y ( i +4) ∗px ( i +4) ;

41 yp_no t ( i ) = y ( i ) ∗(1−px ( i ) ) ;

42 end

43 Q =( sum ( yp ) ) / ( ( sum ( yp_no t ) ) + ( sum ( yp ) ) ) ;

44 Q_not = 1−Q;

45 Q_vec (w) = Q;

46 f o r i =1:4

47 x s t a r ( i ) = Q∗y ( i ) ;

48 end

49 f o r i = 5 :8

50 x s t a r ( i ) = Q_not∗y ( i ) ;

51 end

52 px = p − x s t a r ∗matr ixA ;

53 end

54 Q_check_1 = Q_vec ( 1 )− ( ( Q_vec ( 2 )−Q_vec ( 1 ) ) ^2 ) / ( Q_vec ( 3 )− 2∗Q_vec ( 2 ) + Q_vec ( 1 )

) ;

55 Q_check_2 = Q_vec ( 2 )− ( ( Q_vec ( 3 )−Q_vec ( 2 ) ) ^2 ) / ( Q_vec ( 4 ) − 2∗Q_vec ( 3 ) + Q_vec

( 2 ) ) ;

56 d i f f = Q_check_1 − Q_check_2 ;

57

58 wh i l e d i f f > abs (1 e−8)

59

60 Q_check_1 = Q_check_2 ;

61 f o r i = 1 :4

62 yp ( i ) = y ( i +4) ∗px ( i +4) ;

63 yp_no t ( i ) = y ( i ) ∗(1−px ( i ) ) ;

64 end

65 Q =( sum ( yp ) ) / ( ( sum ( yp_no t ) ) + ( sum ( yp ) ) ) ;

66 Q_not = 1−Q;

67 Q_vec (w+1) = Q;

68 f o r i =1:4

69 x s t a r ( i ) = Q∗y ( i ) ;

70 end

71 f o r i = 5 :8
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72 x s t a r ( i ) = Q_not∗y ( i ) ;

73 end

74 px = p − x s t a r ∗matr ixA ;

75 Q_check_2 = Q_vec (w−1)...

76 − ( ( Q_vec (w)−Q_vec (w−1) ) ^2 ) / ( Q_vec (w+1) − 2∗Q_vec (w) + Q_vec (w−1) ) ;

77 d i f f = Q_check_1 − Q_check_2 ;

78 w = w+1;

79 end


