
University of Twente

Graduation assignment
master Industrial Engineering & Management

Production and Logistics Management

Improving retailers’ service level:
incorporating the order line size distribution

and preventing unsellable stock levels

Author: Supervisors:
J.M. (Thijs) Veldhuizen Dr. M.C. (Matthieu) van der Heijden

Dr. ir. A. (Ahmad) al Hanbali

ir. J. (Jan) van Oostrum

17 May 2017





This page is left blank intentionally.





Management summary

This research project has been carried out at the University of Twente, in cooperation with Slimstock, the
European market leader in inventory optimization. Currently, there is a considerable potential of keeping useless
inventory which will hardly deplete, as the probability of a customer wanting this amount - e.g. three mugs -
is very low. These different order line sizes are not accounted for in the standard (R,s,nQ) inventory model we
research. This leads to the frequent occurrence of “left-over” inventory being above the reorder level, at which
a replenishment order is triggered. Data from retail client Company X are used to tackle the following problem
statement:

“An unknown but significant large set of retailers’ SKUs reaches an unsellable low inventory level, leading to
under-performances regarding their volume fill rates.”
93.59% of the SKUs sold by company X, have a specific order line distribution, for which a minimum number
of stocks on shelf - chosen by the planner - is applied, in addition to further automatic calculations. Thus, we
formulate the research goal:

“to improve the inventory policies by determining more suitable reorder points, ultimately leading to more SKUs
with typical order line sizes meeting their target service level.”
Relevant methods from literature for calculating safety stock include among others target fill rate (percentage of
demand directly met from stock) approaches, that assume demand during a period of time to be normal distributed.
Next, the compound Poisson distribution is used. Finally, we research methods (we call the literature-based
approach the “Add undershoot”-method) including undershoot (difference of the inventory position and the reorder
point when ordering).

A theoretical standard model that resembles one of the inventory models of Slim4 - Slimstock’s software package
for demand forecasting and inventory optimization - is compared with methods from literature and own-derived
heuristics. In the final experiment we test the standard approach, the literature-based methods, and three own-
derived safety stock calculations. These last methods directly incorporate the empirical distribution for the order
line size. By doing so, we aim to set safety stock in such a way at least one extra customer can be served from
stock right before replenishment. Ultimately, this would abolish the aforementioned useless inventory. These
heuristics - the “Overwrite”-, “Max”- and “First moment β∗”-method - are based on the expected undershoot
(either overwriting the standard safety stock, or taking the maximum of the undershoot and the standard safety
stock), and the in-service order line size (an order line size the retailer wants to able to sell). The latter comprises
the SKU’s first moment - the average - of the order line size multiplied by the SKU’s target fill rate and the
customer arrival rate, making an amount per order line that the company wants to sell from average stock. We
test the methods using a dataset from Company X, containing both multi-modal (MM) order line size SKUs and
unimodal (UM) order line size SKUs.

We developed a classification scheme, based on the five most often occurring order line sizes, through which
multi-modal order line size SKUs and unimodal order line size SKUs can be identified. E.g.: the former would have
gaps in frequencies for succeeding order line sizes like ‘3’ and ‘7’, and for the latter would hold: the bigger the order
line size, the lower its frequency of occurrence. This characteristic is used by calculating the ‘distances’ between
ranks of successive order line sizes. Currently (assuming lost sales) in our own model, 75.68% of the multi-modal
SKU do not meet their target fill rate on shop-level, versus 63.58% of the other type of SKUs. Note: in the latter
case there are three SKUs showing unrealistically bad performance.

We measured performance through volume fill rate and average stock on hand, and we differentiate between
lost sales and full back-ordering configurations. The compound Poisson method performs best for multi-modal
order line size SKUs, as with this method the average volume fill rate increases with 8.31%-point, against 47.12%
more stock on hand, resulting in 84.79% of the SKUs meeting their target fill rate. The “Add undershoot”-method
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performs best for unimodal order line size SKUs, as the average volume fill rate increases with 1.98%-point, against
13.16% more stock on hand, resulting in 71.97% of the SKUs meeting their target fill rate. Other methods are
denoted in Table 1, and in Figure 1 we depict the differences in performance in a graphical way. Here we see
that, when desiring higher volume fill rates, multi-modal order line size SKUs can best handled with a compound
Poisson method, and unimodal order line size SKUs show a slight improvement when adding undershoot.

Standard “Add undershoot” Compound Poisson “Overwrite” “Max” “First moment β∗”
MM SKUs Lost sales 67.61% (9.15) 78.47% (10.89) 84.79% (12.66) 66.93% (9.17) 71.48% (9.79) 80.12% (12.22)

Back-ordering 67.61% (9.15) 78.51% (10.89) 84.90% (12.68) 66.81% (9.13) 71.67% (9.78) 80.07% (12.22)

UM SKUs Lost sales 64.15% (22.31) 71.97% (25.07) 64.95% (18.72) 50.46% (16.03) 65.07% (22.55) 55.38% (17.94)

Back-ordering 64.52% (22.38) 72.24% (25.13) 64.67% (18.72) 50.69% (16.02) 65.07% (22.59) 55.75% (17.90)

Table 1: Percentages of SKUs meeting their target fill rates, and between brackets the average stock levels.

In Table 1 we underlined the best performing (mainly in terms of effectiveness) alternative heuristics. We also
ran a sensitivity analysis, which led to the conclusion that unimodal order line size SKUs’s volume fill rates could
also be improved (on average 94.94%) by increasing their target fill rates to 99%. This yields lower stock levels (on
average 22.78) than the “Add undershoot” method, and no new heuristic should be implemented. Hence, based
on our experiment, we propose the following recommendations for Slimstock:

• Introduce the classification scheme, and analyse first results for other retail clients’ data, for verification and
fine-tuning of the method;

• Implement the “compound Poisson”-method for multi-modal order line size SKUs in Slim4. This method
works better, especially for SKUs with relative high median order line sizes, less than 30 customers per
year, and small chances of selling per one or two items. 8.31%-point more demand and 6.19%-point more
customers can be served, against 47.12% more stock.

• Do not alter the inventory model for unimodal order line size SKUs yet. Although in “Add undershoot”
method the undershoot is correctly considered, leading to less occurrences of ‘useless inventory’, we can also
improve this type of SKU’s performance by increasing the standard model’s target fill rate. As this is more
convenient for implementing, we recommend to further research the “Add undershoot” method. This could
lead to 1.98%-point more demand and 1.49%-point more customers to be served, against 13.16% more stock.

• Our recommendations touch upon the core of an inventory model, so we recommend a long-term pilot, to
research the impact of aspects such as trends, seasonality, and promotion.

Figure 1: The 22 multi-modal and 16 unimodal order line size SKUs and their performance for the two best-performing
methods and the standard approach. The clouds represent the weighted average performance of each method.
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Glossary

• Client: Customer of Slimstock that uses Slim4 for its inventory optimization and ordering process.

• Customer: End-consumer of Slimstock’s clients.

• In-service order line size: The SKU’s average order line size multiplied by the SKU’s target fill
rate, making an amount per order that the company wants to sell from stock (meaning ’in-service).

• Order Line Fill Rate: We distinguish between Target Fill Rate and Observed Fill Rate. A tar-
get order line fill rate is an input parameter indicating the fraction of order lines that should be
immediately fulfilled from stock. This equals the fraction of total orders that can be satisfied from
inventory without shortages (Larsen & Thorstenson, 2008). Observed fill rates on the other hand
are performance indicators resulting from experiments, and ideally they should be greater than or
equal to target fill rates.

• Volume Fill Rate: Again, we distinguish between Target Fill Rate and Observed Fill Rate. A target
volume fill rate is an input parameter indicating the fraction of demand that should be immediately
fulfilled from stock. This equals a regular volume fill rate, defined as the fraction of total demand
that can be satisfied from inventory without shortages (Silver, Pyke, & Thomas, 2017).

• Multi-modal order line size: A demand pattern that - on order line level - has more than one
local maximum in its order line size distribution plot.

• Order line: Part of a customer’s order at a client’s shop, consisting of one Stock Keeping Unit
(SKU), and information about the amount in which it is sold.

• Replenishment order: An order that is placed at the client’s supplier for the corresponding SKU.
When we use ‘order’ or ‘order line’ we mean the customer order (line), which represents demand
from the customer, and we explicitly state ‘replenishment order’ when we mean an order to replenish
the client’s inventory.

• Shop: A client’s location where both inventory is held, and sales take place.

• Stock Keeping Unit: An SKU represents a single, specific product (for example: a mug, with
article code 1234) from a client, for which inventory is held.
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Chapter 1

Introduction

The first step of this thesis is to define the exact problem that has to be solved. For this we need a
brief background on the company of research, and an introduction in its challenges. We introduce the
need for research, our definition of the problem, and we formulate corresponding research questions, each
accompanied by a brief methodology. Next, the scope is defined, where the boundaries of our research are
set, and we conclude this chapter with a reading guide, addressing how the report is structured.

1.1 Background Slimstock

Founded in 1993, Slimstock has become the market leader in inventory optimization, with more than 650
clients all over the world. Its main software package, named Slim4, contains forecasting, demand planning,
and inventory management, helping their clients (customers of Slimstock that use Slim4) to get the right
inventory to the right place at the right time. Besides software solutions, Slimstock also offers project-
based support and professional services, including coaching, analyses, and interim professional support.
Slimstock can offer assistance to help reduce inventory while at the same time increasing the service
level, thereby increasing efficiency and generating insights for the planners and management. So turnover
increases, while costs decrease for Slimstocks clients. The company is organized in several departments, of
which the most important for this scholar is Development, as we work on improving the software package,
which is the responsibility of this department.

1.2 Introduction assignment

This research is conducted as part of the graduation project for the master’s programme Industrial En-
gineering and Management (specialization: Production and Logistics Management) at the University of
Twente. The project’s duration was eight months, and it took place at Slimstock’s head office in Deventer,
where we use one of the inventory models from Slimstock’s software package Slim4 as a starting point.
This package is capable of optimizing both single stock point inventories and multi-echelon inventories.
Its inventory model is based on a universal (R, s, nQ) policy from which parameters can be set as such
that each of the four configurations from Table 1.1 can be obtained.

Periodic review Continuous review

Fixed order quantity (R,s,Q) (s,Q)
Order-up-to-level (R,s,S) (s,S)

Table 1.1: All possible inventory model configurations within Slim4

Slim4 aims to fulfil the Target Volume Fill Rate (fraction of demand that should be immediately fulfilled
from stock), accounting for either back-orders or lost sales in case of insufficient inventory. These settings
are configured during the implementation stage, and can manually be altered by the client’s key users
(Slim4-developer, 2016a). Some Stock Keeping Units (SKUs; a single, specific product from a client, for
which inventory is held) of Slimstocks clients are very often demanded in certain amounts, such as mugs.
For example, customers (end-consumers of Slimstock’s clients) buy one mug as replacement for a broken
one, or because they did not buy enough mugs in the first place, and they buy two, four, or six mugs when

1



Page 2 Chapter 1 Introduction

they go for a new series of dining equipment like plates, cutlery and mugs. One hardly ever buys three or
seven mugs. An example of this pattern is depicted in Figures 1.1a for a low-budget mug and 1.1b for a
breakfast plate.

(a) A low-budget mug clearly show that most orders
are of even-numbered sizes

(b) A breakfast plate clearly shows a gap in order
line sizes 3-5, and an inflate in order line size 2

Figure 1.1: Exemplary multi-modal order line size SKUs

These order line (part of a customer’s order at a client’s shop) sizes are not explicitly accounted for
in the demand characteristics or reorder parameters within the inventory model. Replenishment order
(an order that is placed at the client’s supplier for the corresponding SKU) advices are - among others
- determined based on the target volume fill rate (β∗). Stock is not be replenished if only three mugs -
which sounds intuitively reasonable - are on stock, in case the reorder point is below three. Yet, when a
customer willing to buy four mugs - yielding an observed volume fill rate of 75% - will not accept three
mugs. When configured as such, sales are lost. This could be improved by adopting new methods that
take into account order line size distributions of SKUs for which these certain order line sizes are relevant.
Finally, as the true demand is unobservable in most lost sales environments, Slimstock uses a ready rate(α)
performance measure: fraction of time during which the stock on hand is above zero. Although this is an
intuitive measure, it can be misleading, due to the fact that the inventory level is likely to be unsellable
(in case it is three in this example), despite having a very high ready rate.

1.3 Need for research

The research topics of multi-modal (demand pattern that has more than one local maximum) order line
demand probability distributions (in our examples having peaks at even amounts of mugs, or at 2 or 6
breakfast plates), and implementations of order line size distributions in inventory control systems are
both found in scientific literature. Several papers combine the research of order (line) size probability
distributions and inventory modelling, and there is a great urge in the industries for it (Slim4-developer,
2016a).

To give empirical urgency to our topic of research, we conducted an illustrative brief analysis on the
demand patterns of different types of laminate (strictly speaking, we assumed that sales are equal to true
demand) for one-and-a-half year. We did this together with an expert panel consisting of the external
supervisor and a colleague. First of all, only products having had more than five orders are considered,
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which was regarded to smallest sample size in order to draw significant conclusions. The laminate SKUs
are roughly split into two categories, slow-moving SKUs with a low amount of small sized order lines, and
fast-moving SKUs that are sold both often and in larger quantities. We aim to find out how many SKUs
show a gap in their order line size figure, as shown in Figure 1.1a or Figure 1.1b. This would suggest a
multi-modal demand distribution, and it would function as proof of the existence of this pattern on a large
scale, making it interesting for research within this thesis. Ultimately, recognizing this pattern could lead
to an improvement of the reorder configuration and the realized service level. This standard classification
method has a rather rough approach, only functioning to provide general insights on the size of potential
improvement.

Based on this brief, 1-shop laminate analysis (see Appendix A for our approach), we can conclude
that 31 out of 69 SKUs that were sold for more than five times showed a potential multi-modal order
line size distribution, and thereby are interesting for further research. This equals 44.93% of the SKUs
that were reviewed. Although we admit that this is a quick and dirty method, we think this result
is expandable to other SKUs within our focus as it classifies both slow-movers and fast-movers from a
retailer company. Since the expert panel played a big role in verifying these results, which is not possible
in real-life scales, it would be very interesting to further do research on classifying these SKUs through this
thesis. Demand forecasts - and thereby replenishment order advices - for multi-modal order line size SKUs
ought to improve as a result of incorporating the order line size distribution, instead of only looking at the
demand during lead time. Figure 1.2 illustrates this issue, with the bold line representing the inventory
level, with the dashed black line the inventory position, and the box-plot indicating that there is only
variability in determining the total expected demand during the review period. The red box indicates the
amount of time in which customers demanding the in-service order line size (the SKU’s average order line
size multiplied by the SKU’s target fill rate, making an amount per order that the company wants to sell
from stock) cannot be served, thus the inventory level is ‘useless’. In the new situation, demand is forecast
on customer arrival rate level and on order line size level, as depicted through the box-plots. Reorder
parameters here account for the order line distribution. Note: in the new situation one occasional extra
customer demanding the median order line size can be served, depicted by the grey box-plot, although we
later expand this assumption to the expected number of customers yet to be served within the planning
horizon. We chose the median, as this is a clear measure for often occurring order line sizes, taking in
mind that a non-integer average makes no sense in terms of frequently sold order line sizes.

Hence, all order and customer-related information is known, but only expected demand during lead
time, and average demand and average number of orders is used when calculating the demand forecasts,
all is averaged out. In general terms, we would like to separate these customers arrival and order line
size dimensions, by incorporating the transaction data that is already available, see Figure 1.2b. As we
discussed earlier, around 44.93% of the SKUs within our preliminary dataset are indicated to have an
median order line size (indicated by the vertical box plots in Figure 1.2b). So, this is a highly relevant
future scenario.

1.4 Problem definition

After thorough discussions with my supervisor at Slimstock, we conclude on two main streams of challenges
(Slim4-developer, 2016a). We have depicted these in Figure 1.3, and further address them below.

Core issue: A number of SKUs sold by retailers are showing under-performance on Key Performance
Indicators (KPIs) like observed volume fill rate - an often-used objective for retailers. Hence, when there
are only three mugs left, above a reorder point of two, there is an unsellable amount of stock, but Slim4 does
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(a) Old situation only considering total demand during
lead time

(b) Desired situation including order line information

Figure 1.2: Comparison of old and new situation of handling inventory

not yet replenish. We estimated earlier in Section 1.2 that around 45% may show potential for improvement
in terms of fill rate, as a result of having typical order line sizes. The direction for improvement lies in
the replenishment of these SKUs. The optimal replenishment policy is hard to calculate, since there are
also customers who like to buy only one mug (e.g. if one of his/her mugs is damaged), which results in a
multi-modal order line size distribution. This makes often used distributions like the Poisson or Normal
distribution not applicable, as they cannot account for multi-modal distributions.

1.a: Slimstocks clients have difficulty identifying the SKUs this ‘multi-modal demand’ effect applies
to, as it is still up to the planner’s experience whether or not a SKU has often-occurring order line sizes.
They do not have information about which SKUs are usually (i.e.: how often?) sold in certain quantities
(i.e.: in what quantity?).

1.b: The knowledge gap in 1a exists due to a lack of validated decision rules, through which an inventory
model would be able to automatically classify SKUs.

1.c: After conducting a preliminary literature search for topics like compound Poisson processes with
empirical compounding distributions, and service levels, we can conclude that there are only few papers
that combine the classification of SKUs based on their particular demand distributions with a service-level
approach for improving their performance within inventory modelling software. Nevertheless, there are
plenty of papers on the separate topics, so the main challenge lies in combining and applying the right
papers.

2.a: Performance is calculated based on sales that in reality take place, instead of the true demand.
Next, lost sales are in general not reported to the shop resulting in unobservable lost sales. If three mugs
are on stock, replenishment would possibly not take place, and selling is not be possible if a customer
demands four mugs. When the reorder point lies below a certain median order line size, stock on hand
turns useless as there are hardly customers who are willing to buy the amount that is on stock.

2.b: Data on order line sizes are available yet unused, see Figure 1.2a. We need to consider the order
line size distribution, instead of just the demand during the lead time and review period.

Hence, the problem is two-fold, and should be tackled as such. Before adjusting the reordering policy,
one needs to be able to automatically identify the relevant SKUs or SKU groups. On the other hand, solely
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1.c - There is only few

scientific, easily

implementable literature on

implementing multi-modal

demand SKUs in inventory

models

1.b - The general

(R,s,nQ) model

lacks an automated

classification of

multi-modal

demand SKUs

1.a - It is not

exactly known

which SKUs

should be classified

as ‘multi-modal’

demand SKUs
Core problem - Some

unknown ‘multi-modal’

demand SKUs do not

meet their target fill rate2.b - Information about

order line sizes (true

demand) is not considered

when generating

replenishment orders

2.a - The standard model

assumes sales to reflect

demand, yet true demand is

likely to follow a specific order

line size distribution

Figure 1.3: Problem cluster for multi-modal order line size SKUs

identifying the relevant SKUs would make no sense, both research-wise and for practical use. Therefore,
the core problem with its root problems 1 and 2 should be tackled in this sequence. Henceforth, we can
conclude with the following problem statement:

“An unknown but significant large set of retailers’ SKUs reaches an unsellable low inventory level,
leading to under-performances regarding their volume fill rates.”

To this extent we formulate the research goal as:

“to improve the inventory policies by determining more suitable reorder points, ultimately leading to
more SKUs with typical order line sizes meeting their target service level.”

1.5 Research questions

As a result of the earlier introduced need for research and our problem statement, we can develop research
questions. These research questions comprise sub questions, and we discuss these one per chapter, as
follows:

1. How does the current way of generating order policies using a (R,s,nQ) model at Slimstock look like?

a. How do the standard methods as used within Slim4 work?

b. How big are the opportunities for improvement of handling multi-modal order line size SKUs?

c. Under which circumstances are these opportunities highly relevant?

d. What are Slimstock’s requirements the solution should adhere to?

For the first research question we combine the insights obtained from working with Slim4 (more
in-depth knowledge is gained during a training week), with brief, informal meetings with the stake-
holders at Slimstock. My daily supervisor and his colleagues are the main source of knowledge in
this part. Furthermore, cases from a client are used, based on the scope as described in Section 1.6.
Analyses in following chapters are partly based on the insights we gain by zooming into a (R,s,nQ)
model.
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2. What can we learn from literature about optimization of multi-modal order line size SKUs inventory?

a. How can we identify multi-modal order line size SKUs the best way?

b. How can we incorporate the ‘multi-modal order line size effect’ into inventory management?

For our literature research we start by a brief review on the specific type of inventory model we
investigate. Next, we need to transform historical sales data into true demand, taking into account
unobservable lost sales. The demand distribution should be modelled in an effective way, for which
we search interesting literature. Finally, we address research on different methods for replenishment
ordering policies within inventory models, taking into account the order line size distribution.

3. How can the inventory management at best incorporate multi-modal order line demand?

a. What are the different possibilities, and which alternative performs best?

b. How can the inventory model be validated and verified?

c. Which SKUs are classified and how is this done?

At research question 3, we construct a compact inventory model, which can be configured in all
scenarios as found in the standard methods, literature, and possibly own derivations. This model
is validated and verified throughout the whole process, and here we describe which measures were
taken to ensure a valid model.

4. Which heuristic performs best on both the products classified and not classified as ‘multi-modal
order line size SKUs’?

a. Which data are needed and how do we gather them?

b. Which of the methods and heuristics for generating ordering policies performs best?

The fourth research question contains an experiment, using the developed inventory model. We link
the need for data to the data available, and we select the classified SKUs for our experiment. Finally,
the experiment is designed and conducted, and results on performance are obtained. We conclude
by analysing the results.

Hence, the deliverable of this master’s assignment consists of several parts: knowledge on classifying
SKUs on their order line size distribution and how to implement this at best; an Excel model that
supports this piece of knowledge; and finally a brief elaboration on recommendations about the
implementation of the results in an inventory management and forecasting system like Slim4.

1.6 Research scope

For our research we limit ourselves to the following characteristics for various reasons. The assumptions
are denoted in arbitrary order. Note: assumptions regarding the analysis are specified in Section 4.1, and
model assumptions for running the experiment are provided in Section 5.2.

• Business to Consumer retailers: the problem of a multi-modal order line size distribution mainly
arises at retailers in all kinds of markets such as non-food retail. Moreover, we work with data from
a retailer from this market. These chains also tend to have an online web shop. Yet, as these web
shops’ inventories operate in a very different way (supply and demand are often aggregated for a
complete country), we leave online web shops out of this research.
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• First Come First Serve: in a physical shop (client’s location where both inventory is held, and
sales take place) customers arrive with varying demand during the day, and they are typically served
First Come First Serve. There is (hardly) no prioritizing possible between customers.

• Purchase to Stock: Inventory management systems are able to handle both stocked (Purchase to
Stock) and non-stocked (Purchase to Order) items. As we investigate an inventory issue, it speaks
for itself that we focus on stocked items.

• Positive demand: on transaction level negative demand occurs in case of SKUs being returned to
the shop. For now we assume the customer demand to be independent from the number of returns,
so we abolish all the negative order line sizes. Finally, there are no order lines of zero items, so we
restrict ourselves to purely positive demand.

• Single stock point: in this thesis we focus on performance on the ‘shop-side’ of a supply chain, abol-
ishing for example Distribution Centres (DC) and lateral shipments. Hence, stock is only considered
when it is in the shop or in the pipeline to the shop.

1.7 Reading guide

The remainder of this thesis is structured as follows. In Chapter 2 we investigate how the standard
situation looks like, setting a base line for improvement for later chapters. We touch upon the technical
details of the (R,s,nQ) model, and we set requirements for the solution. We conclude by answering
research question 1 and its sub questions. We begin Chapter 3 by providing the theoretical perspective of
the research. We start with literature on transforming sales to demand, followed by modelling the demand
distribution. Next topic is the classification of SKUs based on their demand distribution, and we conclude
by literature on implications of these classes and demand distributions on inventory models. Thereby we
answer research question 2 and its sub questions. In Chapter 4 and 5 we make the core analyses of this
research and answer research question 3 and 4 respectively, and their sub questions. We develop different
models both safety stock and reorder point calculations, validate our approach, and we run an experiment.
In this experiment, we test the different methods on a dataset, and analyse the results in Section 5.7. In
Conclusions and recommendations we present the conclusions on the research questions, and we propose
managerial recommendations, both concerning with the solution to be implemented itself, and how this
should be done. In the final chapter of this thesis - Discussion and future research - we discuss this thesis
process-wise, and we present topics for future research.





Chapter 2

Current situation

For the first research question we combine the insights obtained from working with Slim4, with brief,
informal meetings with its stakeholders at Slimstock. My daily supervisor and his colleagues are the main
source of knowledge in this part. In the first section of this chapter we discuss Slim4’s inventory model and
we provide calculations for the two main parameters of this configuration: safety stock and the reorder
point. Furthermore, cases from a client are used, based on the scope as described in 1.6, and some SKUs
are zoomed into. In order to compare later performance, we set a baseline performance using standard
methods. Finally, we detail out requirements our solution should adhere to, and finish the chapter with
conclusions on the standard state of Slim4. The literature research gives a follow-up on the outcome of
this chapter, and analyses in later chapters are partly based on the insights we gain by zooming into the
(R,s,nQ) model. Throughout chapter Current situation we answer the following research question and sub
questions:

1. How does the standard way of generating order policies using a (R,s,nQ) model at Slimstock look
like?

a. How do the standard methods as used within Slim4 work?

b. How big are the opportunities for improvement of handling multi-modal order line size SKUs?

c. Under which circumstances are these opportunities highly relevant?

d. What are Slimstock’s requirements the solution should adhere to?

2.1 Current standard inventory model

We focus on the inventory policy (R,s,nQ). In this policy, which best suits the scope as defined in Section
1.6, Slim4 is capable of dynamically calculating reorder parameters and generating replenishment orders.
These parameters include the safety stock (ss) and the reorder point (s).

At the beginning of review period (R), the model compares the standard inventory position (IP), which
equals the stock on hand plus pipeline inventory minus unfulfilled back-orders, with the reorder point. If
this inventory position is smaller than or equal to the reorder point, the model generates a replenishment
order advice. The replenishment order quantity that should at least be covered, i.e. the reorder point
minus the inventory position right before ordering, consists of the safety stock and the expected demand
[E(D)] during the cover period (lead time(L) + review period), abbreviated by E(DL+R). The safety stock
depends on the standard deviation of demand during the cover period σ(DL+R) and the safety factor k,
which results from a target volume fill rate β∗, set by the client. The replenishment order quantity is
transformed into a replenishment order advice, which consists of a number of batches with a minimum
order size. Namely, when placing a replenishment order in Slim4, this has to be at least of the size of
the replenishment minimum order quantity (e.g.: a full pallet). In case a bigger replenishment order is
required in order to exceed the reorder point, n batches of the size of the replenishment incremental order
quantity(e.g. a box) can be added to the total order quantity. Both are often equal and based on supplier
contracts and/or profitability analyses (Slim4-developer, 2016a).
Slim4 is also capable of computing the replenishment order quantity based on the Economic Order Quantity
(EOQ) and incorporating price discounts and logistic quantities (pallet, full truckloads, etcetera), instead
of the difference between the reorder point and inventory position. However, we leave this out of our scope

9
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for research, as we focus on inventory control with service level constraints. In Chapter 4 we develop
our own mathematical inventory model, which is based on literature, yet it closely resembles a heavily
simplified model of Slim4, as described above. Note: as this is a strongly abstracted version of Slim4,
this does not reflect Slim4’s true performance, but it follows a similar pattern. Hence, we do not research
Slim4 itself, but we propose recommendations regarding this (R,s,nQ) model for Slimstock, which can in
the end be implemented in Slim4.

2.1.1 Demand classes

Slim4 currently classifies SKUs based on their historical sales per period of time - not on transaction level.
This research’s opportunities for improvement occur in all of the demand classes, although we expect the
most issues to rise in slow-moving SKUs with irregular-sized order lines. Little demand generally leads
to few replenishments, making it more critical to order the right amount of SKUs at the supplier at the
right moment (i.e.: the right inventory position). Furthermore, multi-modal order line size SKUs by their
nature are demanded in non-unit and not strictly successively occurring order line sizes.

Slim4 divides SKUs in several demand classes, reaching from fast-moving SKUs to slow-moving SKUs,
and everything in between. This is done based on the number of orders containing the SKU in a cer-
tain amount of time. Slimstock sets the threshold for fast-moving SKUs on at least 26 order lines per
year (Slim4-developer, 2016a). These demand classes are automatically updated when the demand level
changes. Demand is forecast while also taking into account trends, promotions, seasonal patterns, and
exponential smoothing, if necessary.

2.1.2 Fast-moving SKUs

Our standard (R,s,nQ) model’s method for determining safety stock for smooth demand (fast-moving
and stationary) is the fill-rate safety stock determination. This equation accounts for either lost sales
(Equation 2.1) or back-ordering (Equation 2.2) in case of insufficient inventory. This method incorporates
the normal loss function as widely described in literature (Winston, 2003). Next, it ignores undershoot (the
difference of the inventory position at the moment of ordering and the reorder point), since it employs the
aforementioned batch replenishment quantity for exceeding the reorder point after replenishment. Later
in Chapter 5, we research the effect the incorporation of undershoot has on the model’s performance.

NL

(
s− E(DL+R)

σ(DL+R)

)
=

(
1− β∗

β∗

)
· Q

σ(DL+R)
(2.1)

and

NL

(
s− E(DL+R)

σ(DL+R)

)
= (1− β∗) · Q

σ(DL+R)
(2.2)

Let β∗ be the target volume fill rate, Qr be the replenishment lot size: max(R ∗ E(D),MOQ), and
σ(DL+R) = σD ·

√
L+R. The standard normal loss function restricts us to, as the name already reveals,

modelling the demand during the cover period with the normal distribution. The standard normal loss
function NL(k) for safety factor k is given in Equation 2.3.

NL(k) = φ(k)− k · (1− Φ(k)) (2.3)

In Equation 2.3 we define φ(k) as the probability density function of the standard normal distribution,
and Φ(k) as its cumulative density function. Safety stock is calculated by Equation 2.4.

ss = k · σ(DL+R) (2.4)



Chapter 2 Current situation Page 11

Consequently, the reorder point as used in the (R,s,nQ) model is denoted in Equation 2.5.

Reorder point = ss+ E(DL+R) (2.5)

2.1.3 Slow-moving SKUs

Slow-moving SKUs generally have a small number (26 order lines annually) of order lines to base a demand
distribution on, which furthermore leads to the standard deviation of demand during a certain period being
unknown. In order to deal with these characteristics, a specific heuristic is developed by Slimstock (Slim4-
developer, 2016b). Next, there are also demand classes within Slim4 that work with discrete probability
distributions like the Poisson distribution - in accordance with literature such as Silver, Pyke and Thomas
(2017), which are not within the scope of this research. In our simplified model we do not differentiate
between fast-moving and slow-moving SKUs. This furthermore has the advantage of equal comparisons,
and further programming issues are avoided. For both fast-moving and slow-moving SKUs, the order line
size distribution is clearly not included in the inventory model, as mentioned in Section 1.4.

2.2 Case study

For the analysis on the standard performance of the (R,s,nQ) model, we perform a case study in which
we zoom in on how a client of Slim4 currently deals with the multi-modal order line size SKUs. To this
extent we include the company whose data we also use in our experiment. This client is a big non-food
retailing client of Slimstock, which we further refer to as company X. This company has more than 550
physical shops and 5,000 SKUs. Their partnership with Slimstock originates from 2009, and currently this
client uses Slim4 for their distribution centre, web shop and partly for their shops. In the near future all
of their shops will follow. We also use the data from a subset of the most-selling shops - that already use
Slim4 - of this company in our data analysis in Chapter 4.

Company X has raised the issue we are tackling in this thesis. They regard to the issue from a very
practical point of view, having much experience in non-food retail markets. In order to stay connected
with this practical vision on the issue raised in Chapter 1, we investigate the standard performance of
among others the multi-modal order line size SKUs. This is done through several meetings with company
X’s consultant/developer at Slimstock (Slim4-developer, 2016c) and a small test using a small dataset and
inventory model.

Company X sells many SKUs that they know to have a multi-modal median order line size. They stick
to this exact formulation of knowing, as it is currently not possible within the inventory model to automate
the incorporation of this information. Company X currently resolves this issue by ensuring their stock
on hand level to be at least a representative amount they want to show on the shelf, through a so called
insurance inventory. Three different types of insurance inventory are used by company X at this moment:
maximum of the calculated safety stock and insurance inventory (i.e.: not letting the proposed safety stock
getting below the manually set insurance inventory level), overwriting safety stock, and overwriting the
reorder point; the latter two speak for themselves. Company X uses insurance inventory for 93.59% of
their SKU-shop combinations (a SKU-shop combination represents the record of SKU x at shop y), making
this issue highly relevant for company X.

For the insurance inventory policy of company X: as this is a manually inserted value, it results in
potentially bad performance. The client’s inventory planner manually estimates - solely based on his own
experience of previous sales and his/her preference on what amount looks nice on shelf - this insurance
inventory level per product group. There are no calculations involved. In addition, the lack of automatically
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taking into account order line sizes, decreases the quality of demand forecasting, and consequently it
results in worse performance. By Slimstock this is measured in more out-of-stock situations than desirable
(although their own norm is not specified, company X expects an improvement) due to an insufficient
stock level. Furthermore, the range of SKUs having insurance inventory is limited by the knowledge of
the planner, and not purely data-driven. Henceforth, SKUs that might by multi-modal are ought not
have insurance inventory, if the planner does not know about its multi-modal nature. Finally, manually
calculating this insurance stock is time-consuming and therefore for large clients already a problem on its
own.

Hence, there are opportunities for improvement of the inventory model as used by Slim4, in order
to make it fit standard practice of SKUs that are frequently sold in the same quantities. Finally, when
insurance inventory settings are ‘freed’ from usage as extra buffer stock for multi-modal order line size
SKUs, these insurance stocks can be used again for the purpose they originally serve, making sure a
user-controlled number of products is on shelf in order to show the product to the customer.

2.3 Performance standard mdoel

We tested a small dataset (the same we use for the final experiment) from company X, for which we first
elaborate on the standard baseline performance. Results are presented in Table C3 in Appendix C.

2.3.1 Observed volume fill rate

Recall that this method includes a target fill rate approach for the safety stock, and by adding the expected
demand during the lead time plus review period, the reorder point is calculated. As we see in Table 2.1,
the problem of the standard method arises in both types of SKU. In Table C1 in Appendix C we provide
information on the mentioned SKUs. However, both types of SKUs are very different in terms of median
order line size, number of orders per period of time. But most of all, both types of SKUs differ in their
nature, since the multi-modal order line size SKUs are very often demanded in particular order line sizes,
whereas unimodal order line size SKUs lack this property. Henceforth, they need different strategies for
improvement. Multi-modal order line size SKUs show an under-performance of on average 10.30%-point
and 10.35%-point for lost sales and back-ordering respectively.
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Lost sales Back-ordering

SKU β∗
Number of
order lines β β − β∗ β β − β∗

MM SKU 1 98.03% 6.73 91.71% -6.32% 91.80% -6.22%
MM SKU 2 96.17% 2.68 97.51% 1.34% 97.51% 1.34%
MM SKU 3 96.94% 1.78 94.12% -2.82% 94.12% -2.82%
MM SKU 4 97.77% 7.06 86.22% -11.54% 86.83% -10.94%
MM SKU 5 96.98% 5.79 88.52% -8.46% 87.88% -9.09%
MM SKU 6 95.96% 3.63 94.77% -1.19% 94.53% -1.43%
MM SKU 7 97.04% 4.83 90.04% -6.99% 89.96% -7.07%
MM SKU 8 97.12% 3.62 86.52% -10.60% 87.40% -9.73%
MM SKU 9 97.94% 9.99 94.57% -3.37% 95.63% -2.31%
MM SKU 10 96.78% 3.58 92.26% -4.52% 90.65% -6.13%
MM SKU 11 97.87% 3.61 89.93% -7.94% 90.76% -7.11%
MM SKU 12 97.48% 3.60 84.05% -13.43% 84.55% -12.93%
MM SKU 13 96.59% 2.90 79.10% -17.49% 79.21% -17.39%
MM SKU 14 96.93% 3.74 91.19% -5.74% 90.90% -6.02%
MM SKU 15 96.62% 3.40 80.21% -16.41% 78.64% -17.98%
MM SKU 16 98.17% 5.75 81.72% -16.45% 81.18% -16.99%
MM SKU 17 97.35% 4.95 79.14% -18.21% 80.77% -16.58%
MM SKU 18 97.70% 3.56 81.16% -16.54% 79.11% -18.59%
MM SKU 19 98.78% 12.97 90.18% -8.60% 89.66% -9.12%
MM SKU 20 97.22% 3.70 77.68% -19.53% 78.68% -18.53%
MM SKU 21 97.48% 3.15 78.99% -18.48% 79.73% -17.75%
MM SKU 22 97.19% 2.21 83.89% -13.30% 82.82% -14.37%
Avg. MM 97.28% 4.69 86.98% -10.30% 86.92% -10.35%
UM SKU 23 98.66% 17.26 93.02% -5.64% 94.56% -4.10%
UM SKU 24 99.00% 75.30 76.45% -22.55% 77.42% -21.58%
UM SKU 25 98.33% 10.87 94.11% -4.22% 93.87% -4.45%
UM SKU 26 98.59% 53.32 97.55% -1.04% 97.63% -0.96%
UM SKU 27 98.98% 40.62 95.47% -3.51% 96.09% -2.90%
UM SKU 28 98.96% 35.48 92.45% -6.51% 92.42% -6.54%
UM SKU 29 97.61% 11.80 96.60% -1.01% 96.49% -1.12%
UM SKU 30 98.07% 58.96 87.42% -10.66% 87.52% -10.55%
UM SKU 31 98.88% 64.72 82.22% -16.66% 82.71% -16.17%
UM SKU 32 98.78% 22.68 94.68% -4.11% 94.64% -4.14%
UM SKU 33 97.54% 42.44 94.34% -3.20% 94.87% -2.67%
UM SKU 34 97.95% 40.98 95.19% -2.76% 95.08% -2.87%
UM SKU 35 96.57% 3.30 90.89% -5.68% 91.75% -4.82%
UM SKU 36 98.97% 50.73 94.54% -4.44% 94.75% -4.22%
UM SKU 37 98.94% 24.34 94.92% -4.02% 95.20% -3.75%
UM SKU 38 98.23% 13.33 98.29% 0.06% 98.19% -0.04%
Avg. UM 98.38% 35.38 92.38% -6.00% 92.70% -5.68%
Difference 97.83% -86.74% 89.68% -8.15% 89.81% -8.02%
Avg. total -1.12% 20.04 -5.85% 71.82% -6.23% 82.27%

Table 2.1: Differences between target and volume fill rates per SKU
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Unimodal order line size SKUs on the contrary under-perform on average 6.00%-point and 5.68%-point
for the two out-of-stock settings. Thus, under-performance occurs in both types of SKUs, but the standard
model performs worst on multi-modal order line size SKUs. Concluding - when also considering the SKU
information from Table C1 -, compared to unimodal order line size SKUs, multi-modal order line size
SKUs from the first category:

• are ordered at the supplier in MOQ/IOQs (for retailers, MOQ and IOQ are equal in practice) that are
on average 51.69% smaller. Only 22.73% of the multi-modal order line size SKUs have a MOQ/IOQ
larger than 6, compared to none of the unimodal order line size SKUs having a MOQ/IOQ less than
10;

• have a median order line size that is on average 2 times bigger. Only two of the unimodal order line
size SKUs have a median order line size bigger than 1;

• were 86.74% less often sold (number of order lines of the SKU) during the performance measurement
part. Only one of the multi-modal order line size SKUs has an average number of orders during four
months of more than 10, and only one of the unimodal order line size SKUs has an average number
of orders during four months of less than 10;

• were given target fill rates that were on average 1.12% lower. Note: average target fill rates for
multi-modal order line size SKUs is still very high, namely 97.28%;

• have lower cumulative probabilities for the first two order line sizes 1 and 2, which follows directly
from their classification scheme. P(X ≤ 1) and P(X ≤ 2) amount 26.26% and 57.70% on average
for multi-modal order line size SKUs, whereas these values equal 56.33% and 81.43% respectively for
unimodal order line size SKUs.

Based on this comparison, we can conclude that the multi-modal order line size SKUs are characterized
through being ordered at the supplier in small batches (here in at most packs of six), have high median
order line sizes (here on average 2.50), and are slow-moving (here with not more than 30 customer orders
per year). The small batches make sense due to the fact that the standard methods tend to overshoot
more for larger MOQ/IOQ, resulting in higher service level in general. Next, the high median order line
sizes lies in the very nature of these products, customers demand relative constant, high amounts of this
SKU. The number of orders is a result of the fact that inventory control - in terms of attaining a specified
service level - is more critical for slow-movers, as there are not much opportunities for replenishment, as
there are few moments of demand.

2.3.2 Zooming in

We now dive into some SKUs that function as example for the issue we are facing, in order to gain more
insights on the size of potential improvement. We present three SKUs, each having a different order line
size distribution, and descriptive statistics and input parameters for the underlying statistical distributions.
The other SKUs from our dataset containing roughly follow one of these three SKUs patters. Next to the
categories mentioned below, there is a fourth category, which we regard to as not interesting, in which
the order line size distribution is highly compact centred around one particular order line size. As this
category would provide hardly no difference with standard lead time demand calculations, this category
is not interesting in our research. Moreover, a SKU’s heavily centred order line size distribution would
provide no more information than regular average order line size and customer arrival rate or even lead
time demand characteristics.
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We test two out-out-stock assumptions, namely lost sales and full back-ordering, and use corresponding
formulae. The first SKU is a low-budget mug, with an average target fill rate of 98.03% and an average
observed volume fill rate of 91.71% for lost sales and 91.80% for back-ordering, of which the order line size
distribution is depicted in Figure 2.1a.

(a) Figure of multi-modal demand mug (b) Figure of multi-modal demand breakfast plate

Figure 2.1: Multi-modal order line size figures
In Figure 2.1a, we can clearly distinguish between even and odd order sizes, both follow a very smooth

pattern, and the even order sizes having the biggest right hand side. However, combined they construct
a multi-modal distribution. This roughly implies that the empirical probability of having an order line of
six mugs, is a bit bigger than an order line of one mug, and considerably bigger than order line sizes of all
other order sizes except two and four.

Next, we focus on breakfast plates (which come from a series of dining room equipment, although we
do not research multi-item relations), of which the order line size distribution is depicted in Figure 2.1b.
This specific SKU resembles another sign of multi-modality, which surely cannot be modelled through a
single probability distribution. Having a large gap in the order line sizes between 3-5, it can be stated that
inventory levels of 4 and 5 are useless, as they are insufficient for order lines of size 6, and they can fulfil
2 order lines of size 2 and 0 or 1 order line of size 1 respectively, which is quite an overkill in this setting.
The target volume fill rate of this SKU amount 96.62%, and its observed volume fill rates measure are
80.21% and 78.64% for lost sales and back-ordering respectively. Thus, some multi-modal order line size
SKUs perform extremely worse than desired through the standard methods.

Finally, we describe a third branch, for which we take the example of a certain cutlery tray, of which
the order line size distribution is depicted in Figure 2.2.

Figure 2.2: Order line size figure of unimodal order
line cutlery tray

The majority of SKUs sold by retail companies com-
prises SKUs that are most often sold per one, and
only sometimes order line sizes of more than 1 occur
(other solely occurring order line sizes are also possible
of course). Furthermore, the order line size distribution
is (approximately) monotonically decreasing, meaning
p(X = x) ≥ p(X = x + 1), with x being an arbitrary
order size. In general, this pattern is unimodal. We take
this type of SKU in account during the remainder of our
research, as we want to know how they perform under
other heuristics. The target volume fill rate of this SKU
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amounts 98.33%, and its observed volume fill rates equal 94.11% and 93.87% respectively.

2.4 Conditions for implementation

Next, we investigate under which circumstances, given the scope in Section 1.6, the improvements are most
relevant. We restrict ourselves to non-technical, quality-related requirements, as technical requirements are
irrelevant for the scope this research (Slim4-developer, 2016b). In other words, we do not take into account
the computation time, this is something Slimstock should look into when implementing our solution.
Furthermore, it is important that the user-friendliness of Slim4 is not damaged by implementing our
solution (Slim4-developer, 2016b).

The most important condition for implementation is as effective as it is intuitive, namely that the
proposed solution should at least improve Slim4’s performance on handling inventory for all SKUs. Two
things are important here, that its performance should not be worse, and preferably it should be improved,
although there is no a priori improvement threshold. We quantify performance as the percentage with
which the volume fill rate is improved, the average stock is altered (as much as decrease as possible, or
the smallest increase), and the order line fill rate as third KPI (fraction of order lines that should be
immediately fulfilled from stock). Second aspect is that this condition holds for all SKUs for which the
client holds stock and places replenishment orders. For example, an improvement for 95% of the SKUs
affected, and a decrease of performance for the other 5% of the SKUs, is not a preferable solution, although
future inspection of separate under-performing SKUs is possible in the future.

2.5 Conclusions

Now that we have dived into Slim4 and the current way of working with this standard inventory manage-
ment system, we can answer the sub questions and the research question:

a. How do the standard methods as used within Slim4 work?
Slim4 has many different configurations and methods for calculating safety stock and setting reorder
points. We focus on the general (R,s,nQ) model, and we use its calculations for both fast-moving and
slow-moving SKUs through the normal distribution. Out-of-stock situation can either be handled as
lost sales or as back-ordering.

b. How big are the opportunities for improvement of handling multi-modal order line size SKUs?
In our preliminary problem size analysis of Section 1.3, we found that around 45% are potentially
multi-modal. This group has a potential of 8.31%-point or 8.42%-point higher volume fill rates for
lost sales and back-ordering respectively, lie in breaking total demand per period of time into a
customer arrival rate and an order line size component.

c. Under which circumstances are these opportunities highly relevant?
We found that most issues with standard methods often arise in SKUs that are ordered at the
supplier in small batches (for company X in at most packs of six), have high median order line sizes
(for company X on average approximately 2.5), are slow-moving (for company X with not more than
30 customer orders per year), have small probabilities of selling less than 1 or 2 item(s) per order
line, and in general have slightly lower target fill rates.

d. What are Slimstock’s requirements the solution should adhere to?
The following requirements for the solution are set:
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a. The observed volume fill rate should have the highest volume fill rate, with the smallest increase
(or highest decrease) of observed average stock;

b. The under [a.] mentioned improvement should hold for as most SKUs as possible;

c. The user-friendliness of Slim4 is not damaged.
Now that we have answered the three sub questions of research question 1, it is time to conclude on what
the standard situation within a (R,s,nQ) model looks like.

How does the current way of generating order policies using a (R,s,nQ) model at Slimstock look like?
Slim4 takes into account both the total demand during a period of time, and the customer arrival rate,
but no information on order line size is included. However, a large number of SKUs have such a specific
order line distribution, hence it would be interesting to include this element into the inventory model.

This brings the following implications for our literature review. We look for a solution that yields
improvement for as many SKUs as possible, this should also be reflected in the literature review. Order
line sizes can follow a quite specific, irregular path, which might be well fitted through regular probability
distributions, so we need to look for creative ways to deal with the typical order line size distributions.
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Literature

We start by a brief review on the specific type of inventory model we investigate. Next, we need to
transform historical sales data into true demand, taking into account the lost sales. In addition, we need
scientific literature on possibilities for accounting for empirically-modelled order line size distributions,
through a set of heuristics for calculating safety stock and the reorder point. We conclude this chapter
by combining the two themes of true customer demand, and methods to implement these issues in an
inventory model, and we briefly elaborate on performance measurement and sensitivity analyses. This
literature review is concluded by answering the research questions below:

2. What can we learn from literature about optimization of multi-modal order line size SKUs inventory?

a. How can we identify multi-modal order line size SKUs the best way?

b. How can we incorporate the ‘multi-modal order line size effect’ into inventory management?

3.1 Transforming sales into demand

As lost sales are unobserved, we have to deal with so called censored data. In practice this yields in worse
performance as sales data on big orders miss as these are likely to be lost due to stock-out. Assuming sales
to equal true demand could lead to insufficient inventory levels.

There are however some methods to deal with these censored data. One way is to enrich the right
hand side of the order line size distribution (assuming type II censoring, (Johnson, Kemp, & Kotz, 2005)),
with a theoretical distribution. To this extent, the exponential distribution is employed (Bratley, Fox, &
Schrage, 1986), as well as the Weibull distribution (Bisi, Dada, & Tokdar, 2011) - a practical spreadsheet
for Weibull right hand side enrichment was also found -, and the geometric distribution (Axsäter, 2006).
Next, two authors discuss a method in which they transform sales into demand through an empirical sales
distribution (Lau & Lau, 1996). They assume that when inventory is zero after an order took place, the
true demand must be greater than or equal to the sales quantity. Furthermore, they only assume larger
order sizes (right hand side) to be censored. As we do not have access to inventory level data, nor is it
valid in our setting to only accommodate for larger order sizes, we do not go further into this line of work.

3.2 Order line size modelling

In order to further characterize the demand distribution, we investigate manners to analyse this demand
distribution. We highlight some of the various methods, coming from different fields of research (some
from pure statics, or biology). As we mentioned in Section 1.3, a main issue of our research is to go from a
general lead time demand perspective to a division of the demand process into the estimation of demand
frequency and order line size functions, like in Equation 3.1 (coming from compound Poisson distribution
theory).

E(Demand during lead time) = E(Number of customer arrivals during lead time) · E(Order line size)

E(DL) = E(λL) · E(X)

(3.1)

19
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The empirical reasons are provided in Section 1.3, but also research underlines this, e.g. it works better
than applying a regular exponential smoothing procedure (Willemain, Smart, Shockor, & DeSautels, 1994).

3.2.1 Compound Poisson process

There are two main possibilities for divisions, both comprise modelling the demand process as stochastic
process, either as discrete Bernoulli process, or Poisson process. The differences between both stochastic
processes are given in Table 3.1.

Bernoulli process Poisson Process
Arrival time Discrete Continuous
Customer arrival rate p per trial λ per unit of time
Inter-arrival time Geometric Exponential
Distribution of number of arrivals Binomial Poisson

Table 3.1: Differences between Bernoulli process and Poisson process

The fact that the latter is more often used within inventory management research, see Table 3.2, is a
advantage for finding literature, and it serves as verification for using this process. Although transaction
data is aggregated on day level (that is, the exact time of a transaction is unknown), we expect that
this does not violate the continuous exponential distribution for inter-arrival time. Moreover, inter-arrival
time between customers arriving at the shop for buying a certain SKU can still be regarded memoryless,
enabling the exponential distribution. Thus, it is convenient to prefer this over the Bernoulli process.

“Inventory” AND (management OR control) AND “Poisson process” 255 hits Scopus, 9-3-2017
“Inventory” AND (management OR control) AND “Bernoulli process” 3 hits Scopus, 9-3-2017

Table 3.2: Search queries comparison

As the Poisson process can constitute a compound Poisson distribution, we consider modelling the
demand as combination of two parts, namely an arrival process of customers, and the order line size on
the other hand. This has implications for the rest of our literature research, as we focus on modelling the
order line size distribution.

3.2.2 General order line size distributions

order line sizes of fast-moving SKUs can be modelled with a continuous probability distribution - such
as the Normal distribution (Croston, 1972) or lognormal (Willemain et al., 1994) - yet they should be
approximated by discrete probability distributions as well. Other authors however found that order line size
can also be well modelled by discrete distributions like the geometric distribution, or its generalization, the
negative binomial distribution (Hadley & Whitin, 1963), (Johnston, Boylan, & Shale, 2003). In addition,
we consider the empirical distribution for the order line size, as this would very intuitively forecast the
typical multi-modal historical pattern as demand forecast. However, there is a big drawback connected to
the empirical distribution: order line sizes that by coincidence did not occur in the past sales, can never
occur in the future forecast, as their relative frequency is set to zero. More generally, as relative frequencies
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also remain the same for the forecast, this way of modelling is quite static, which is a potential problem for
reorder policies. Rare order line sizes that by coincidence occurred in the past time, are thereby directly
incorporated in the forecast, potentially leading to bad performance compared to a theoretical distribution
(Law, 2015). This mainly is relevant for SKUs with rather few historic sales and/or a multi-modal demand
pattern, as the more continuous demand pattern are all right with empirical order line size distributions,
as they are already smooth. Nevertheless, the empirical distribution being extremely understandable and
accurate for stable order line sizes (with which we deal with, as multi-modal SKUs like mugs are always
sold through roughly the same order line size distribution), yields a big advantage. Henceforth, we include
it in our further analysis.

3.2.3 Package Poisson distribution

We can also regard to the order line size as constant packages, e.g.: when demand occurs, it always
equals 4 items (Friend, 1960). This package Poisson distribution yielded “satisfying results” compared
to separate Poisson distribution (for slow-moving SKUs), Normal distribution (for fast-moving SKUs),
stuttering Poisson distribution (for lumpy SKUs) - in which the arrival process of demand is Poisson-
distributed, and order line size is geometric-distributed, and a stuttering Poisson distribution with Normal-
distributed order line sizes (Vereecke & Verstraeten, 1994). This package Poisson distribution could be
useful as replacement for a set of different probability distributions, as these authors also state that
problems arise when SKUs change from classes, as their demand probability distribution changes.

3.2.4 Hurdle, zero-inflated, and zero-truncated distribution

Another possibility for modelling order line size within a Poisson process, involves hurdle, zero-inflated
and/or zero-truncated probability distributions. First of all, both hurdle and zero-inflated models increase
the probability of having a ‘zero’ in a dataset, yet, they differ in the origin from this zero. A zero-
inflated model is a mixture distribution comprising a zero-generating function, and a regular Poisson or
Negative binomial counting distribution. In Section 3.2.5, we discuss mixture distributions in more detail.
Henceforth, zeros can come from both the only-zero and regular distribution (Hu, Pavlicova, & Nunes,
2011). A hurdle distribution on the other hand is a piecewise function, consisting of a zero-generating
function and a zero-truncated distribution (i.e. a distribution that cannot generate zeros). Hence, all
zeroes are coming from one source. A great example is given by Hu, Pavlicova & Nunes (2011), about a
cocaine survey, in which a secondary result is the number of cigarettes that were smoked in the last month.
If one is considered a smoker, it is by its nature impossible to smoke zero cigarettes, and vice versa.

“zero-inflated” AND (”Poisson” OR “Negative binomial”) 1,369 hits Scopus, 20-12-2016
“general inflated” AND (”Poisson” OR “Negative binomial”) 8 hits Scopus, 20-12-2016

Table 3.3: Search queries comparison

As can be seen in Table 3.3, it is safe to assume more research is done about zero-inflation. Following the
big amount of order line sizes of 1, see figures A2, and A3, and A1, it would be interesting to investigate
the performance of a zero-inflated (transform all order line size by subtracting exactly 1, in order to
yield the well-studied zero-inflation) probability distribution. As the Poisson distribution is known for its
equal mean and variance, this is not the best distribution for our demand data. The negative binomial
distribution, has a variance-to-mean ratio of 1/p (with p being the probability of success), thereby always
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being larger than 1. This makes the negative binomial distribution attractive for modelling demand for
retailing applications, which tend to have high variability (Agrawal & Smith, 1996). One final advantage
of the negative binomial distribution is its extendibility to the geometric distribution - in fact, the negative
binomial distribution is a generalization of the geometric distribution - and the Poisson distribution, as
approximation. Furthermore, it is related to the Binomial, Beta, and Gamma distribution (Cook, 2017).

3.2.5 Mixture models

A more elaborated way of modelling our sales (which we assume to equal future demand as mentioned
earlier) through a demand distribution, is by using finite mixture models. This would lead to a mixture of
probability distributions, combined through some mixture weights. A very complete overview of this topic
is given by Lindsay (1995), in which mixture models are described as follows: “The mixture model arises
when one samples from a population that consists of several homogeneous sub-populations, which we call
the components of the population”(Lindsay, 1995). This also applies to our research, as the multi-modal
demand distribution is caused by strictly differing reasons to buy a specific amount (either for replacing one
broken mug, or replacing all dining equipment), resulting in sub-populations. The difficulty in this finite
(stands for a finite number of components) is finding a satisfying amount of components (i.e.: identifying
the different sub-populations). Modelling too many components usually over-fits the data, resulting in too
high order line size forecasts, and it is hardly intuitive if the order line size distribution is modelled with
a mixture consisting of a large number of models (Xu & Chen, 2015). Considering too few on the other
hand could lead to a poor description of the underlying model (Figueiredo & Jain, 2002).

Trade-off within order selection

Xu and Chen(2015) state that this process of selecting the right number of components (i.e.: order selection)
can be seen as a “trade-off between the model complexity and the goodness of fit”. Furthermore, the
number of modes does not necessarily equal the number of models within a mixture distributions (Chen
& Khalili, 2009). We later return to the specific topic of multi-modality.

Different methods for order selection

Henceforth, order selection is a topic for research on its own. Figueiredo and Jain (2002) give a great
overview of both deterministic criteria, including several Bayesian and information criteria, and stochastic
criteria, including Markov Chain Monte Carlo methods and Cross-validation. For these Markov chains,
the following actions are possible (Richardson & Green, 1997):

a. updating the weights w;

b. updating the parameters;

c. updating the allocation z;

d. updating the hyperparameter β;

e. splitting one mixture component into two, or combining two into one;

f. the birth or death of an empty component.

Xu and Chen (2015) furthermore give an overview of even more methods, namely distance measure-based
approaches and hypothesis testing-based approaches. Often, focus is put on two very popular information
criteria, namely the Akaike Information Criterion (Akaike, 1973)) and Bayesian Information Criterion
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(Schwarz, 1978). In addition, we highlight a recently developed penalized likelihood approach called that
is combination of the modified likelihood (Chen & Kalbfleisch, 1996), and the variable selection method
called Smoothly Clipped Absolute Deviation [SCAD] (Fan & Li, 2001), resulting in a Mixture SCAD
(MSCAD). The latter is compared by Chen and Kahili (2008) with most of the briefly mentioned other
criteria, and found to yield better performance. To be more precise: it converged to the right number of
Poisson distributions within the mixture, both more often and with fewer iterations than AIC and BIC
- and several other aforementioned approaches (Chen & Khalili, 2009). Unfortunately, this article is not
quite known to colleague-researchers, as depicted by 196 views on its journal - the Journal of the American
Statistical Association - and 22 citation on Scopus (dated 20-12-2016). Furthermore, no implementation
in any software package can be found, nor a pseudo-code algorithm, making it difficult to re-create this
algorithm within the scope of our research.

Parameter estimation of mixture distribution

Once an adequate order selection method is selected, this can be implemented in the Expectation Maxi-
mization(EM) algorithm. This is a widely-known, powerful, two-step algorithm which originates from the
problem of unobserved data (Dempster, Laird, & Rubin, 1977). Through finding the Maximum Likelihood
Estimate (MLE), it seeks a correction, which can also be considered as a mixture of data-generating prob-
ability distributions. Implementations for mixing probability distributions are found in both archaic tools,
Java applets, and data mining tools.

3.2.6 Other methods

Finally, other methods for modelling demand distribution include the following:

• Batch Markov Arrival Process(BMAP): a point process characterized by Markov-modulated batch
arrivals of random size. This makes it a generalization of many processes, including the Markovian
arrival process (MAP), the Poisson process, and the Markov-modulated Poisson process (Cordeiro
& Kharoufeh, 2010). These authors provide a very extensive overview of these processes, in which
they for example elaborate that the assumption of exponentially-distributed inter-arrival times is
dropped in BMAP, and by its nature it enables the possibility of having differing batch sizes - hence,
we do not need a compounding order line size distribution any more. Finally, both EM-algorithms
and estimations are known (Breuer, 2002), (Breuer & Kume, 2010), and (Lucantoni, 1991).

• Kernel density estimation: a non-parametric way of modelling data, through a specific kernel. Com-
bining these kernels, each with a bandwidth of values it should model, resembles the empirical data.
A possible probability distribution is the Normal distribution, yet other models are also possible,
along with all other geometrically based kernels (Tsybakov, 2008).

3.3 Classification of multi-modal order line size distribution

We now return to the topic of multi-modality. Modes can be discovered through so called Gaussian mixture
model-based parametric bump hunting methodologies (Mukhopadhyay, 2017). The author also provides a
description of the algorithm developed for discovering modes within a dataset, by the name of “LPMode”.
Unfortunately, to the best of our knowledge, there is no public implementation available. In addition,
demand would be assumed to be normally distributed, which is a too limiting restriction for our research.
Also, no other classification schemes that really incorporate the order line size distribution were found.
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3.4 Inventory management: setting safety stock and reorder point

As mentioned in Section 3.2 and in Section 3.2.2 in specific, we model demand either in conventional
methods like normal or compound Poisson, or as compound Poisson process with a certain arrival rate of
the customers, and compounding empirical distribution for the order line size. Henceforth, we look for
methods to incorporate these demand distributions in inventory models, in order to improve performance of
the multi-modal order line size SKUs. For this research we stick to the restrictions as set in 1.6. This model
is better known in scientific literature as a single-echelon, periodic-review, batched order quantity model
with constant lead times and service level constraints, in a purchase-to-stock environment. Focus is put
on the lost-sales variant, in case of insufficient stock, although we also test performance for back-ordering
and a hybrid own-developed policy.

We provide a brief recall from Section 2.1. Products in our (R,s,nQ) model are handled per piece,
taking into account seasonal and promotional effects (yet we focus on stationary demand in our analysis),
and a First Come First Serve allocation rule for customers is employed. Demand is assumed to be strictly
positive, as negative demand implies SKUs being returned to the shop, and zero demand is not recorded for
it is no transaction. Thus, non-positive demand is not included in setting reorder parameters or generating
replenishment orders. Furthermore, the assumption of being in a retail business-to-consumer segment of
the market is included.

Literature mainly focusses on back-ordering systems, as they are easier to analyse, and mainly used
by the industry (Bijvank & Vis, 2011). For a great overview of literature working with the back-ordering
assumption we refer to (Williams & Tokar, 2008). In addition we refer for inventory modelling in general
to books such as Axsäter (2006); Silver, Pyke, and Thomas (2017); and Winston (2003).

3.4.1 Safety stock calculation

We address a number of different methods for calculating safety stock and reorder point, in a service-level,
periodic review situation. We identify Type I and Type II service measures, respectively the cycle service
level and fill rate (Nahmias, 1993). For all formulae it holds that the demand distribution is assumed to be
known, so we consider averages and standard deviations of demand during a period, instead of forecasting
errors.

Cycle service level

The first method exploits the cycle service level, which is defined as the “probability of having no stock-
out within a replenishment cycle” (Silver et al., 2017). Winston provides a standard equation, assuming
normal demand during the cover period, not differing between back-ordering or lost sales, see equations
3.2 and 3.3.

P (E(DL+R) ≤ s) = P

(
E(DL+R)− µ
σ(DL+R)

≤ s− µ
σ(DL+R)

)
= Φ(z) = α (3.2)

Safety stock = z · σ(DL+R) (3.3)

Let α be the target cycle service level, E(DL+R) = E(D) · (L+R), σ(DL+R) = σ(D) ·
√
L+R, and Φ the

inverse cumulative standard normal distribution. This method works with the (R,s,Q) model, although it
is also easily transformed into its continuous review counterpart.
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Target volume fill rate

The next equation comprises a target volume fill rate, as defined in the glossary. Demand during cover
period is assumed to be normal again, the function differs per out-of-stock setting, Equation 3.4 for the
lost sales case, and Equation 3.5 for the back-ordering case.

NL

(
s− E(DL+R)

σ(DL+R)

)
=

(
1− β∗

β∗

)
· Q

σ(DL+R)
(3.4)

NL

(
s− E(DL+R)

σ(DL+R)

)
= (1− β∗) · Q

σ(DL+R)
(3.5)

Let β∗ be the target volume fill rate, and Qr be the replenishment lot size: max(R ∗ E(D),MOQ) (van
Donselaar & Broekmeulen, 2013). The standard normal loss function restricts us to, as the name already
reveals, modelling the demand during the cover period with the normal distribution. The standard normal
loss function NL(k) for safety factor k is given in Equation 3.6.

NL(k) = φ(k)− k · (1− Φ(k)) (3.6)

Safety stock is then calculated by Equation 3.7.

Safety stock = k · σ(DL+R) (3.7)

This method works with the (R,s,Q) model, although it is also easily transformed into its continuous
review counterpart.

Approximation Tijms and Groenevelt

The third method incorporating either the normal distribution or Gamma distribution (the latter is not
incorporated in our research) for demand during the cover period we have found in literature for deter-
mining the safety stock is coming from renewal theory (Tijms & Groenevelt, 1984), including the same

back-ordering to lost sales transition of 1− β∗ to
1− β∗

β∗
as in Section 3.4.1. This method works with the

(R,s,S) model, and we transform S-s into Q, for our (R,s,nQ) model, hence limiting to a (R,s,Q) model.
See Equation 3.8 for the back-ordering case, and Equation 3.9 for the lost sales case.

Ju(k) =
1

σ2
(DL+R)

[
2 · (1− β∗) · E(DL+R) ·

[
S − s+

σ2
DR

+ E(DR)2

2 · E(DR)

]]
(3.8)

Ju(k) =
1

σ2
(DL+R)

[
2 · (1− β∗)

β∗
· E(DL+R) ·

[
S − s+

σ2
DR

+ E(DR)2

2 · E(DR)

]]
(3.9)

Assumptions for using this formula are smooth demand, a target volume fill rate of at least 90%, the
review period should not be too small compared to the lead time. Finally, the normal distribution is only
reasonable when the coefficient of variation of demand during the cover period (CVDL+R

) does not exceed
0.5. In case the CVDL+R

does exceed 0.5, modelling demand with a Gamma distribution (not further taken
into account in this thesis) is more appropriate due to a big variability leading to a high probability of
negative demand with the normal distribution (Silver et al., 2017). The Ju(k) is another special function
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from the standard normal distribution (like the normal loss table), originating from the seminal book by
Hadley and Whitin (1963). We provide the formula in Equation 3.10, with safety factor k.

Ju(k) = (1 + k2) · [1− Φ(k)]− k · φ(k) (3.10)

Yet, it can also be approximated by a rational function as provided by Tijms and Groenevelt (1984).
As this approximation has an maximum expected error smaller than 2.3 x 10−4, for -4 ≤ k ≤ 4, and it
runs faster than looking up k-values in a table, we employ these rational functions, which are depicted in
Equation 3.11.

k =
a0 + a1z + a2z

2 + a3z
3

b0 + b1z + b2z2 + b3z3
(3.11)

, with z, a0, a1, a2, a3, b0, b1, b2, b3 obtained through:
for 0 ≤ Ju(k) ≤ 0.5

z =
√
ln(1/Ju(k)2)

a0 = −4.18884136× 10−1 b0 = 1
a1 = −2.5546970× 10−1 b1 = 2.1340807× 10−1

a2 = −5.1891032× 10−1 b2 = 4.4399342× 10−2

a3 = 0 b3 = −2.6397875× 10−3

for Ju(k) > 0.5

z = Ju(k)
a0 = 1.1259464 b0 = 1
a1 = −1.3190021 b1 = 2.8367383
a2 = −1.8096435 b2 = 6.5593780× 10−1

a3 = −1.1650097× 10−1 b3 = 8.2204352× 10−3

Note: we took the newer, and thereby more accurate rational function of Silver, Pyke, Thomas (2017),
hence the earlier mentioned maximum error rate is even smaller. The safety stock ss ultimately is given
in Equation 3.12.

Safety stock = k · σ(DL+R) (3.12)

Expected service levels with compound Poisson demand

Another method of calculating safety stock is by modelling our demand as compound Poisson distribution.
The most realistic configuration for our needs is having the demand process modelled as compound Poisson
process, henceforth with Poisson number of customers per time interval, e.g. during the cover period,
and the order line size distribution used as compounding distribution. Axsäter (2006) provides a very
tractable method for determining safety stocks through both volume fill rate and ready rate constraints
for continuous review (s,Q) models with back-ordering. The continuous review model can be extended
to a periodic review model, by adding the review period to the lead time when modelling demand. This
model works with partial back-ordering, so when we introduce this method in a lost sales environment,
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we must keep in mind that the real performance might deviate a bit. Furthermore, since we assume that
only complete order lines are delivered, the resulting reorder points might be too low compared to a full
back-ordering model. Due to time restrictions of our project, we refrained from adjusting this model to a
full back-ordering setting. However, we propose a direction for further research on this adjustment. We
derive reorder point from calculations in the same manner as described in Equation 3.26.

The equations are as provided in equations 3.13, and 3.14. The first two equation provides us the
probability of the stock on hand being j, with order line sizes k.

P (SoH = j) =
1

Q

s+Q∑
x=max{s+1,j}

P (E(DL) = x− j) j ≤ s+Q (3.13)

We transform this equation to a periodic review (R,s,nQ) model by replacing E(DL) with E(DL+R).
By doing so, we let go the assumption that the inventory position is uniformly distributed over [s+1;s+Q]
as proposed by Axsäter. Next step is to incorporate a service level constraint, and thereby setting the
reorder point equal to the first reorder point for which the expected volume fill rate exceeds the target
volume fill rate, see Equation 3.14.

E(β) =

∞∑
x=1

∞∑
j=1

min(j, x) · fx · P (SoH = j)

∞∑
x=1

x · fx
(3.14)

In Equation 3.14, E(β) is the expected volume fill rate, which should exceed the target volume fill
rate β∗, min(j, x) being the delivered quantity, fk the probability of order line size x, and P (SoH = j)
as denoted in Equation 3.13. As stock on hand level j in practice can never be larger than reorder point
s + replenishment order quantity MOQ (although ignoring undershoot due to non-unit order line sizes,
and in our case multiple batch of IOQ + 1· MOQ can occur), the summation in practice stops at s + Q,
P (SoH = j) already converges to zero before j = s+Q. Furthermore, we propose a transformation into a
full back-ordering model, as follows: replace the partial delivery element min(j, x) by a full delivery (and
thereby full back-ordering/lost sales) if-then structure:
if x > j

then 0

else x
This leads to Equation 3.15:

E(β)′ =

∞∑
x=1

∞∑
j=1

x · fx · P (SoH = j)

∞∑
x=1

x · fx
, for x ≤ j

E(β)′′ =

∞∑
x=1

∞∑
j=1

0 · fx · P (SoH = j)

∞∑
x=1

x · fx
, for x > j

(3.15)

We reformulate Equation 3.15 into Equation 3.16, and combine these in Equation 3.17. In addition, we
reintroduce the upper-bound (replacing the infinity in the summation) for inventory level j of s+Q, as
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earlier mentioned.E(β)′ =
s+Q∑
j=1

P (SoH = j) , for x ≤ j

E(β)′′ = 0 , for x > j

(3.16)

E(β) = E(β)′ + E(β)′′ (3.17)

Including undershoot

As mentioned in Section 2.1.1, in the standard methods the undershoot is ignored, as it is in for example
the compound Poisson method of Section 3.4.1. However, we could incorporate this in our model. This
undershoot effect comprises of two components caused by two aspects: the order line size distribution and
the time until the next review moment, the latter obviously only occurs in periodic review settings, which
we work with (Hill, 1988). Hence, for this method we assume the (R,s,Q) model. For the expected values
of undershoot of a SKU, we used the formula from Hill (1988). We distinguish between undershoot due
to the order line size distribution UnderX (Eqs. 3.18 and 3.19), and due to the time until the next review
moment UnderW (Eqs. 3.20 and 3.21). We introduce random variable X for the order line size, and N for
the number of customers during a review interval respectively.

E(UnderX) =
E(X2)

2 · E(X)
− 1

2
(3.18)

var(UnderX) =
E(X3)

3 · E(X)
− (E(X2))2

(2 · E(X))2
− 1

12
(3.19)

E(UnderW ) = E(X) · (E(N2)− E(N))

2 · E(N)
(3.20)

var(UnderW ) = E(X2) · (E(N2)− E(N))

2 · E(N)
+

(E(X))2

12 · E(N)
·
[
4 ·E(N3)− 6 ·E(N2)− 3 · (E(N2))2

E(N)
+ 5 ·E(N)

]
(3.21)

When independence between both components is assumed, these two components are to be combined in
equations 3.22 and 3.23. Although Hill gives no reasoning whether this assumption on independence, for
our multi-modal order line size SKUs this is rather reasonable, as both dimensions are not connected in
whatever way, i.e. the number of items a customer buys is not related to the time until the next inventory
review moment. For these SKUs customer want a specific number of items, not one less or one more.

E(Undertotal) = E(UnderX) + E(UnderW ) (3.22)

and
var(Undertotal) = var(UnderX) + var(UnderW ) (3.23)

In accordance with Hill (1988) we add the expected undershoot to the standard safety stock calculation.
Next, we incorporate the variance of the undershoot components in the variance of the demand during
the cover period. Furthermore, it includes the order line size distribution, through its first three moments,
making it likely to provide different results for multi-modal order line size SKUs and unimodal order
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line size SKUs. Formally, we define for this “Add undershoot”-method the safety stock and the altered
standard deviation of demand during the cover period - denoted by an accent - in equations 3.24 and 3.25.

Safety stock = standard method + E(Undertotal) (3.24)

and
σ′(DL+R) =

√
σ2
(DL+R) + var(Undertotal) (3.25)

Power approximations Nenes et al.

Finally, we address a method of determining the safety stock through finding its base stock level. This
method resembles the power approximation method proposed in 1979 (Ehrhardt, 1979). This heuristic
provides predetermined power approximations for setting the base stock level S, given a review period
and lead time, only needing the demand during the cover period (Nenes, Panagiotidou, & Tagaras, 2010),
inferences on variance follow from the corresponding distribution and are thereby included in the power
approximation. Hence, this method assumes a (R,s,S) method, which we transform into a (R,s,Q) model.
Nenes’ power approximations assume demand during cover period either to be Gamma distributed or
approximated through a ‘package Poisson’ distribution - we discuss the latter in Section 3.2.3, as follows
for R=L=1:
safety stock = [3.403 · E(DL+R)−MOQ] · E(DL+R) for β∗ = 0.80
safety stock = [4.275 · E(DL+R)−MOQ] · E(DL+R) for β∗ = 0.90
safety stock = [5.509 · E(DL+R)−MOQ] · E(DL+R) for β∗ = 0.95
safety stock = [7.670 · E(DL+R)−MOQ] · E(DL+R) for β∗ = 0.99

Hence, base stock levels are transformed into reorder points by subtracting the minimal replenishment
order quantity. Next, we subtract the expect demand during the cover period from the newly derived
reorder point in order to find the safety stock, see Equation 3.26.

3.4.2 Reorder point calculation

To the best of our knowledge, there is one well-known method for setting the reorder point to be found
in literature, which entails a general, straight-forward combination of the safety stock, and the expected
demand during the cover period. This reorder point determination is widely described in literature, such
as Silver, Pyke, Thomas (2017), we provide Equation 3.26.

Reorder point = E(DL+R) + safety stock (3.26)

Safety stock is calculated using the cycle service level, target fill rate, the method of Tijms and Groen-
evelt, or any other method. Hence, this is a distribution-independent method, as long as a closed-form
expression of the expected value of the distribution for demand during the cover period exists.
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3.5 Conclusions

We finalize this chapter by first answering the sub questions, and we conclude with our research question
for our literature study. Implications for next chapters are given.

a. How can we identify multi-modal order line size SKUs the best way?
To the best of our knowledge there is hardly any research done on identifying modes within order
line size distribution, except for mixture models. We prefer the empirical distribution (see Section
3.2.2), over a mixture of theoretical distributions, and for mixing the empirical distribution would
make no sense. Hence, we need to develop our own method for classifying SKUs on their order line
size distribution.

b. How can we incorporate the ‘multi-modal order line size effect’ into inventory management?
The most important heuristics from literature for incorporating the ‘multi-modal order line size effect’
from SKUs classified as such, focus on incorporating the order line size distribution into safety stock
and reorder points. Safety stock calculations are divided into either a direct service level method,
an approximation by Tijms & Groenevelt, Poisson-based method, including undershoot, and a base
stock level approximative method. The reorder point calculation methods involves a distribution-free
method.

Finally, it is time to answer the research question:
What can we learn from literature about optimization of multi-modal order line size SKUs inventory?
Sales can be transformed into true demand by enriching data with theoretical distributions. However,
this is not preferable, as we do not have access to daily inventory level data, nor is it valid in our setting
to only accommodate for larger order line sizes and not on other unobserved lost sales. So, we assume
demand to equal sales. The demand process can, as mentioned in the last paragraph of Section 3.2.1, at
best be modelled via a compound Poisson process, therein focussing on the order line size distribution,
which can be some mixture of zero-truncated, one-inflated, universal negative binomial distributions, or a
single empirical distribution. Several heuristics exist for computing safety stocks.

The next step is to compare the standard methods (see Section 2.1) with literature-based methods
(see Section 3.4), and own-derived heuristics that do include the empirical order line size distribution. We
introduce these heuristics in Section 4.5. The literature-based methods mainly assume demand during the
cover period to be normally, Gamma or compound-Poisson distributed. Our methods on the contrary fur-
ther employ the compound Poisson process, with an empirical order line size distribution as compounding
function for the compound Poisson distribution.
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Inventory model

Based on the model description as provided in Section 2.1, we develop our inventory model in the
following way. At first we provide our assumptions, and we describe our notation. Next, we determine the
parameters and describe our different heuristics, and the verification and validation steps are discussed.
With a small dataset we determine the best performing methods. Finally, in Chapter 5 we test our
inventory model for a dataset from the company as described in Section 2.2. To this extent, we split
transaction data into an initialization period for setting inventory parameters, and a testing stage in which
performance of the methods is measured. We also develop a heuristic for the reorder point calculation, but
it shows bad results, more details can be found in Appendix D. In this chapter we answer the corresponding
research questions:

3. How can the inventory management at best incorporate multi-modal order line demand?

a. What are the different possibilities, and which alternative performs best?

b. How can the inventory model be validated and verified?

c. Which SKUs are classified and how is this done?

4.1 Model assumptions

We start constructing our inventory model by setting the following model assumptions:

• Single-item: each item is handled on its own. Hence, there are no relations and dependencies
between items, and we continue with this single-item characteristic. Products’ demand distributions
are assumed to be mutually independent.

• Service level constraints: within scientific papers there are two objectives possible for optimiza-
tion, either cost-based, or with service-level constraints. We focus on the latter, as this is mostly
used in this retail environment. To be more precise, our models strive to achieve a target volume fill
rate β∗, with a as few average stock on hand as possible.

• Full lost sales, conditional back-ordering, full back-ordering: in case there is not enough
inventory to fulfil a customer’s complete order line, our model is capable of running three scenarios:
the customer leaves the shop resulting in a lost sale, the customer places a back-order and receives
his/her SKU when the SKU is replenished, or an intermediate option.
In this intermediate option, the so called conditional back-ordering, the customer places this back-
order if and only if he/she orders at least a threshold number of items or - in case of multi-modal
order line size SKUs - 1 item of this SKU (as necessary replacement for example). In descending
order of being realistic within our market of research, our own-developed conditional back-ordering
setting (i.e. the in-between form) comes first, second is the lost sales setting, and least realistic is
full back-ordering. For example, one does not return to a retailer to pick up the back-order for a
homogeneous, one-at-a-time SKU like a bottle of soap. Instead, one simply goes to another retailer
nearby. However, if he/she needs an extraordinary amount, say 10, bottles of soap, we hypothesize
that he/she is likely to wait a small amount of time for the back-order to arrive (the rest of the
review time + lead time).
Hence, we set a back-order threshold for order line sizes that are bigger than BO-factor times the

31
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average order line size. BO-factor equals a constant related to the extent to which customers are
eager to back-order their demand because they are aware of the fact that they order a large amount
of items. For multi-modal order line size SKUs we also account for replacement orders of order
line size ‘1’, by back-ordering order lines from these sizes. This is logical, for example as customers
wanting their specific mug (of which they already have 3 non-broken mugs at home) being back-
ordered, because they want this mug specific. It is a management decision whether to use lost sales
or conditional back-ordering, where possible we used the right formula for either back-ordering or
lost sales. We have developed the conditional back-ordering setting ourselves. Furthermore, it uses
the lost sales formulae, as most of the orders (except for the ones with order line sizes more than
a certain factor times the average order line size, or an order line size of ‘1’) are lost in case of
insufficient stock. Note: in the back-ordering case, we included a successfully delivered back-order
in the observed fill rates. We expect that this increases the back-ordering’s case performances only
slightly, compared to the lost sales case.

• Periodic review: as most of Slimstocks clients make use of a periodic review model, especially in
the environment of non-food retailers, it is logical to work with periodic review models.

• Constant lead times: retailers are stocked by their distribution centre in a tight delivering scheme,
resulting in near-constant lead times. Hence, we model with deterministic, constant lead times.

• Seasonality and promotion: SKUs like garden chairs most probably have a strong seasonality
effect, as they are hardly sold during the winter, and there are big peaks in sales during spring
and summer. This effect should be accounted for. We start by leaving these - seasonality-affected
- SKU-shop combinations out of our analysis. We hypothesize, based on the specific attribute of
our ‘issue SKUs’ being most often demanded in certain order line sizes, that only the arrival rate
of customers might change as a result of seasons. That is, more people still buy four garden chairs,
and not five, and therefore we assume customer arrival rate and the order line size distribution to
be independent. The same goes for promotions, which can be seen as ad hoc seasons.

• Pre-emptive back-orders: back-orders are ordered at the supplier at the beginning of the next
review period, and replenished after exactly one lead time. Right after their delivery, the back-
ordered SKUs are picked up by the back-ordering customers, before the regular demand of that day
is fulfilled. Back-orders always trigger a replenishment order.

• Stationary demand: we focus on stationary demand per day and per week, since non-stationary
demand results in all kinds of exceptions and ad hoc decisions to be implemented. This is due to the
lack of business rules and exception-based control like there are in more complex systems.

• No insurance inventory: in the standard situation clients set an insurance inventory in order to
ensure to have a safety stock of some manually set level. This setting, entailing three configuration
influencing the safety stock (either having a minimum level of the insurance inventory and safety
stock or overwriting the calculated safety stock) or the reorder point (by overwriting this reorder
point), is not taken into account in our model, as we want to get rid of this way of dealing with
multi-modal demand SKUs.

4.2 Notation

In this section we introduce the notation, parameters, and variables which we use in our model.
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4.2.1 Indices and input

We introduce the following indices:

• c for the cth customer ∈ C of a specific SKU i at a shop j on day d of review period t;

• d for the dth day of review period t, d: 1, 2, 3, 4, 5, 6, or 7, corresponding with the weekdays starting
on Monday;

• i for the SKU i ∈ I;

• j for the shop j ∈ J;

• k for the order line size k ∈ K;

• t = mR for the mth review period with m ∈ M and t− be the last review period of the initialization
period;

Next, we gather input as in Table 4.1, based on Section 2.1 and Section 2.2.

Parameter Symbol Source
(Replenishment) Minimum Order Quantity MOQi,j Product information SKUs
(Replenishment) Incremental Order Quantity IOQi,j Product information SKUs
Target volume fill rate β∗ β∗i,j Product information SKUs
BO-factor BO-factori Product information SKUs
Sold order line SOLc,d,t,i,j Transaction data

Table 4.1: Input and notation

Henceforth, we need two types of data: transaction data, containing at least the transaction data, SKU
ID, and order line size; and information on the SKUs, such as the associated target service level, and the
minimal and incremental order quantity (towards suppliers). We return to the gathering of data in Section
E.

4.2.2 Parameters

The upcoming category consists of the inventory parameters which are pre-calculated once the aforemen-
tioned data is loaded, see Table 4.2. We restrict the general terms mean of demand during a period and
standard deviation of demand during a period to weekly, for programming purposes. Furthermore, for the
weekly demand standard deviation, we can employ the population standard deviation when we aggregate
per SKU on all shops, as we have full information. Formally, for |C| ≤ 1 we average on a all J shops
selling SKU i. For the specific SKU-shop combination in which more than one order took place in the
initialization period, we are restricted to using the sample standard deviation, since we take a sample
(both time-wise and shop-wise). We hypothesize that the multi-modal order line size SKUs only show
sales of quantities that customers would have wanted. I.e.: when a customer’s true demand is four chairs,
he/she is most unlikely to buy three chairs when there three chairs on stock. He/she either leaves the shop
(lost sales) or places a back-order. As these lost sales are still unobservable, we have censored sales data
in that sense, but we take the gap between sales and true demand as a result of unobservable lost sales
for granted. Furthermore, we did not find methods in literature to transform this censored sales into true
demand that would be easily implemented for our specific demand process. Thus, we choose to use sales
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directly as input for our demand. In Table 4.2, let back-order (BO) threshold be the average order line
size of this SKU-shop combination multiplied by the general BO factor which is the same for all products,
and strictly bigger than 1. In the conditional back-ordering setting, this order line size and all order line
sizes above this one, are not taken into account when determining the weekly demand, since we want to
back-order these order line sizes anyway.

Parameter Symbol Formula

Mean of weekly demand E(D)i,j
1

t−
·
t−∑
t=1

7∑
d=1

∞∑
c=1

SOLc,d,i,j,t , SOLc,d,i,j,t < BOthreshold,i

Aggregated mean
of weekly demand E(D)i

1

J
·
J∑
j=1

[ 1

t−
·
t−∑
t=1

7∑
d=1

∞∑
c=1

SOLc,d,i,j,t

]
Standard deviation
of weekly demand σDi,j stdev.s(

7∑
d=1

SOLc,d,i,j,t)

Aggregated standard
deviation of weekly demand σDi

1

J
·
J∑
j=1

[
stdev.p

(
7∑
d=1

SOLc,d,i,j,t

)]
Mean of demand

during cover period E(DL+R)i,j E(Di,j)· (L+R)

Standard deviation of
demand during cover period σ(DL+R)i,j σDi,j

·
√
L+R

Replenishment lot size Qri,j

max[R ∗ E(Di,j),MOQi,j ]
(van Donselaar & Broekmeulen, 2013)

Aggregated in-service
order line size E(X)i

1

J
·
J∑
j=1

β∗i,j ·
[ ∞∑
k=1

k · p(SOLc,d,i,j,t = k)
]

for t:1,...,t−,∀d, c

BO-threshold BOi BO-factori ·
[ ∞∑
k=1

k · p(SOLc,d,i,j,t = k)
]

for t:1,...,t−,∀d, c

Table 4.2: Inventory parameters and their notation

In Table 4.2, let x ∈ N be an arbitrary order line size. Note: the BO-threshold does not depend on j,
since we define it on SKU-level.

4.2.3 Variables

The next category consists of the inventory variables, calculated per week and day as denoted in Table
4.3. These variables generate the replenishment order advices. Next, as we assume in Section 4.1, sales
are completely lost or back-ordered when there is not sufficient inventory available to fulfil the entire
order line. Recall that back-orders have priority over regular orders (see Section 4.1 as well). Both two
aforementioned aspects result in the calculation for stock on hand, which is calculated each day after each
customer that is either served or not (resulting in either a back-order or lost sales). Since back-orders
always trigger (larger) replenishment order if the inventory position is below the reorder point before the
reviewing moment, and the replenishment arrives first thing in the morning, the stock on hand can never
be below zero. On order is equal to the sum of the not yet delivered replenishment orders, and thereby
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equal to the amount that is to be delivered at the next moment of delivery. In Chapter 5 we elaborate on
the assumption to set the review period equal to the lead time, both lasting one week, which is handy for
example for these expressions to develop. As we deal with a rather typical version of a (R,s,nQ) model, in
which n batches of Q (the incremental order quantity) are ordered if and only if at least the minimal order
quantity is ordered at the supplier as well. For this reason, we introduce an auxiliary variable to determine
whether or not we should order the minimal order quantity or nothing at all: Ordering MOQ. In case
the inventory position is at or above the reorder point, no order is placed, so this variable remains zero.
Next, we calculate the number of batches of IOQ we need, if we order any at all (hence, determining the
maximum of 0 and n). Finally, we generate the replenishment order quantity, composed of the minimum
order quantity and n times the incremental order quantity. Let Backorders be the set of orders that were
back-ordered, and dxe ensures rounding up to next integer, with x ∈ R.

Variable
Symbol

for each tuple (i,j,t) Formula

Stock on Hand SoHd

SoHd−1,i,j,t − backordersi,j,t−L + IOOi,j,t
−min[E(Di,j,t), SoHd−1,i,j,t] , for t > 0

Ordering MOQ OMOQ

{
0 , IP7,i,j,t−L ≥ si,j ,∀t ∈ T
MOQi,j , IP7,i,j,t−L < si,j ,∀t ∈ T

Number of IOQs n

{
0 , IP7,i,j,t−L ≥ si,j , ∀t ∈ T

max

(
0,

⌈
(si,j − IP7,i,j,t−L)−MOQi,j

IOQi,j

⌉)
, IP7,i,j,t−L < si,j , ∀t ∈ T

Replenishment
order quantity OQ OMOQi,j,t + ni,j,tIOQi,j

On order IOO
t∑

t=t−L
OQi,j,t , for t > 0

Inventory position IPd SoHd,i,j,t + IOOi,j,t - backordersi,j,t−L

Table 4.3: Inventory variables and their notation

All-in-all, the sequence of events is as follows:

1. A replenishment order for next period is generated;

2. A replenishment order is delivered;

3. Back-orders - if any - are picked-up by the back-ordering customers;

4. Regular customers of this day arrive and buy SKUs;

5. The process continues at [1.].

4.3 Demand distribution

As described in Section 2.1.1, Slim4 already classifies SKUs based on their demand during a certain period
of time. Within our own heuristics, we distinguish between three different probability distributions. First
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of all we can model demand during the cover period with the normal distribution, which is often suitable
for fast-moving SKUs (Silver et al., 2017). Next, we introduce the compound Poisson distribution, which
suits slow-moving SKUs (demand of less than 10 items - so not customers - during the cover period), and
we explain why the empirical distribution represents the order line size distribution. Finally, we develop
heuristics that directly employ the first moment of the empirical probability distribution for order line
size of each SKU-shop combination, since the standard methods (see Section 2.1) nor the methods from
literature (see Section 3.4, only the Poisson methods indirectly use the order line size distribution) can
directly include an empirical order line size distribution.

4.4 Classification SKUs

In order to develop insights on performance differences, we classify SKUs from our dataset on multi-modal
order line size vs. unimodal order line size. We have refined our method from Section 1.3, in order to
generate a more accurate, intuitive distinction. We found our method by comparing difference between
three artificial, very different example SKUs, let’s call them SKU X, SKU Y, and SKU Z, with order line
size probabilities as denoted in Table 4.4.

Order line size x 1 2 3 4 5 6 7 8 9 10
p(X = x) 0.4 0.3 0.2 0.075 0 0.025 0 0 0 0
p(Y = x) 0.05 0.3 0.05 0.2 0.1 0.2 0 0 0 0.1
p(Z = x) 0 0.5 0 0.4 0.1 0 0 0 0 0

Table 4.4: Three exemplary SKUs

Obviously, SKU X has an approximate monotonically decreasing probability distribution, whereas SKU
Y’s probability distribution shows several modes on p(Y = 2), p(Y = 4), p(Y = 5), and p(Y = 10). Thus,
the fact that the order line sizes are almost completely well ordered in a descending order of probability
for SKU X, compared to the SKU Y’s and SKU Z’s order line sizes being not ordered at all, is interesting.
If we order SKU Y and Z in an descending on the probability, we obtain Tables 4.5 and 4.6.

Order line size x 2 4 6 5 10 1 3 7 8 9
p(Y = x) 0.3 0.2 0.2 0.1 0.1 0.5 0.5 0 0 0

Table 4.5: SKU Y’s order line sizes ordered in descending order on probability

Now we see that the sequence of order line sizes for SKU Y are not succeeding at all. Only two of
the nine transitions (7 to 8, and 8 to 9) are successors and these all have 0 probability, and one of the
nine transitions (6 to 5) is preceding. For SKU Z, 5 out of 9 transitions are succeeding and correspond to
p(Z = x) = 0 (in total 7 order line sizes had zero probability). Since probabilities of zero are clearly no
modes, we should restrict ourselves to a certain amount of most occurring order line sizes. When looking
at the data, we found that looking at the 5 most often occurring order line sizes satisfied. Hence, when
looking at the 5 most-often occurring order line sizes - so, four transitions - we found that for SKU Y
three out of four transitions were not succeeding or preceding each other, a 75% score. For SKU Z this
percentage amounts 75% as well. For SKU X, the correct top-5 order should be 1, 2, 3, 4 , 6, and thus the
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Order line size x 2 4 5 1 3 6 7 8 9 10
p(Y = x) 0.5 0.4 0.1 0 0 0 0 0 0 0

Table 4.6: SKU Z’s order line sizes ordered in descending order on probability

percentage of not-succeeding order line sizes is 25%. Hence, for these artificial SKUs we found that SKUs
with a percentage of at least 75% are multi-modal. This small example sounds intuitive and effective, and
when testing it with larger datasets it still provided accurate results, and we found a percentage (δ∗) of
50% to resemble classifications from our time-consuming expert panel approach from appendix A, which
are considered accurate. So, formally, we define the following classification scheme, for each SKU:

0. Initialization: set threshold δ∗;

1. Put the order line sizes in descending order on their empirical probability P (X = x). If two order
line sizes have equal probabilities, the lowest order line size is ranked first;

2. Calculate the absolute differences δx,x+1 between the ranks of the top-5 order line sizes. Henceforth,
monotonically decreasing distributions generate mainly 1s;

3. Calculate the δ% percentage of differences δx,x+1 being bigger than 1, for x : 1, 2, 3, 4;

4. If δ% is greater than or equal to threshold δ∗, this SKU is classified as multi-modal.

We illustrate our method by classifying the SKU from an arbitrary SKU, as follows in Table 4.7.

Ranked order
line size x 2 1 4 6 3 5 8 9 24 7

Frequency 53 37 14 11 4 3 3 1 1 0

δx,x+1 1 3 2 3 n/a

Table 4.7: Own-derived classification example

Table 4.7 shows that three out of four δx,x+1 are bigger than 1, leading to a δ% = 3/4 = 75%. This
exceeds the threshold, i.e.: δ% ≥ δ∗, hence we classify this product as multi-modal.

4.5 Heuristics for safety stock

We now discuss three different heuristics for determining the safety stock, incorporating the order line size
distribution. We have derived these heuristics ourselves.The first two heuristics are based on the insight
that Slimstock currently does not explicitly take the undershoot into account in the configuration of our
research, the (R,s,nQ) model. Slimstock argues that this is not necessary since enough batches of IOQ (and
the initial minimum order quantity) are ordered to exceed the order level, whereas undershoot generally is
a problem if only an amount of Q can be ordered (Slim4-developer, 2016a). Yet, it is still very well possible
that the stock on hand level drops below the reorder point with an arbitrary amount, which especially is
the case with multi-modal order line size SKUs. This undershoot could result in the problematic ‘useless
inventory’ we aim to abolish. Hence, if we incorporate this undershoot, we would expect better results for
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multi-modal order line size SKUs. Next to the literature-based method from Section 3.4.1, we introduce
two more undershoot-related heuristics, and one target fill rate method.

4.5.1 “Overwrite”-method

In this method we overwrite the safety stock level with the expected undershoot. In the standard (R,s,nQ)
model undershoot is not included at all, so we suspect safety stocks to be overestimated when directly
adding the expected undershoot, as in the “Add undershoot” method. Therefore we expect this method
to perform reasonable, although we are not sure whether this performs well for unimodal order line size
SKUs. Since this type of SKUs in general is fast-moving, the safety stocks are underestimated

4.5.2 “Max”-method

The second heuristic takes the maximum of the safety stock as calculated by the standard methods of the
(R,s,nQ) model - thus without incorporating the undershoot - and the expected undershoot. We do this
in order to construct a hybrid between the standard method, which we presume to work fine for unimodal
order line size SKUs, and the undershoot method which we presume to work fine for multi-modal order
line size SKUs. In order to prevent the earlier mentioned underestimation of the safety stock, we take the
maximum between both. Formally, we define Equation 4.1.

Safety stock = max[standard method, E(Undertotal)] (4.1)

4.5.3 “First moment β∗”-method

The final heuristic performs a multiplication between the average order line size and the volume fill rate,
resembling the in-service order line size. Thus, we obtain Equation 4.2. This “First moment β∗”-method
has the advantage that it works with target volume fill rate constraints, and as such it generates lower
order advices for SKUs with lower target fill rates. Moreover, in our heuristic we are fine with not serving
1-β∗ of the demand, by constructing a strictly lower ‘expected’ order line size than in a regular average
order line size. Finally, in order to be able to serve the expected number of customers during the cover
period, we multiply with λL+R. We differentiate between instances in which we aggregate (by taking the
average) on shop-level in case of 1 or less orders within the initialization period.

Safety stock = λL+R · β∗ ·
[ ∞∑
k=1

k · p(SOL = k

]
(4.2)

The “First moment β∗” for the aggregated example in Section 4.3 would come down to:

Safety stock = 1.10 · 96.86% ·
[ ∞∑
k=1

k · p(SOL = k

]
(4.3)

Thus, 1.10 · 96.86% · [1 · 29.13% + 2 · 41.73% + 3 · 3.15% + 4 · 11.02% + 5 · 2.36% + 6 · 8.66% + 7 · 0.00% + 8 ·
2.36% + 10 · 0.79% + 24 · 0.79% = 2.76] = 1.10 · 0.9686 · 2.76 = 2.94.
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4.6 Performance measurement

We need to measure performance of our inventory model. In accordance with the ‘conditions for implemen-
tations’ as stated in Section 2.4, we do not incorporate measures like computation time or programming
effort. We focus on quality-related measures, and we exclude the results from the initialization period, as
these data were used for setting the inventory parameters. We list our main KPIs in Table 4.8.

Description Symbol for each tuple (i,j) Formula

Observed stock on hand SoH
1

M − t−
M∑

t=t−+1

SoHi,j,t

Observed volume fill rate β 1− Unmet demand

Total demand

Observed order line fill rate γ 1− Unmet customers

Total # customers

Table 4.8: Key Performance Indicators and their notation

Recall that M equals the maximum number of review periods as stated in Section 4.2.1. As we evaluate
a service-level inventory model, the observed volume fill rate should be greater than or equal to the target
fill rate. If this condition is met, we strive to find the lowest average stock on hand, as this is a main
objective for inventory control in general. Next, if there is no difference on the first two KPIs we employ
the observed order line fill rate, a final important KPI for retailers.

4.7 Validation and verification

As our model is an abstraction of reality, it of utmost importance to validate the model with reality and
to verify that the model indeed functions as described, and programming is done correctly. We exploit the
book of Averill Law (2015) as starting point for this matter.Validation continuously took place, for frequent
brief meetings took place with developers and the consultant for company X, all of whom can be regarded
to as subject-matter experts due to long experience in both inventory modelling, both from a practical and
theoretical point of view. Furthermore, mainly in the early stages of modelling, our inventory model was
constantly checked with a compact dataset of Slim4 that contained no exceptions, trends, seasonality or
other complex details.

Furthermore about validation, the author’s own experience in university courses and intuition was
exploited. Next to this collection of high quality information (Law, 2015), we kept a written assumption
document, and several structured walkthroughs with the supervisor and other colleagues at Slimstock took
place.

Regarding verification of our model, we have started compact with a snapshot-like inventory model,
and kept adding features. Effort was put in testing whether or not earlier created features were harmed by
new ones. In addition, the model was tested for all kinds of settings, with for example reorder points set
hard at zero, or incredibly high initial inventories. This was a test for robustness, and adaptations were
made to make our model capable of handling a large parameter space.

Next, we introduce some kind of warm-up period. The sales data from the initialization period were
used for setting the inventory parameters, which were used for calculating the inventory variables for
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the remaining months. Performance was only measured for these remaining months. Furthermore, we
only used SKUs that showed a stationary weekly demand pattern. Whether or not the weeks within the
initialization period were suitable (i.e. was likely to be from the same population or not), was tested
through a independent samples t-Test on the weekly demand of the first eight weeks versus the weeks used
for performance measurement. Significance level α was as usual set on 5%, and of we used the methods
for unequal sample sizes (8 weeks versus 18 weeks) and unequal variances (we do not know the variance
beforehand, so we need to incorporate the possibility they differ). It turned out that of our initial dataset,
containing all kinds of both types of SKUs, we could erase 15.65% of our transactions from 5.82% of our
SKU-shop combinations, due to being non-stationary.

4.8 Conclusions

We finalize this chapter by first answering the sub questions, and we conclude with our research question
for our inventory model. Implications for next the chapter are given.

a. What are the different possibilities, and which alternative performs best?
Next to the standard and literature-based methods, we can incorporate the empirical order line
size distribution by regarding to the demand process as compound Poisson process, via own-derived
equations. Three heuristics for the safety stock are discussed, and we include a different reorder
point heuristic in Appendix D that works with the customer arrival rate and the order line size
distribution. Demand during the cover period can be modelled as normal, or compound Poisson,
implying to use methods from literature. We cannot determine which method performs best a priori.
We provided the Key Performance Indicators through which we can differentiate.

b. How can the inventory model be validated and verified?
Several ways for both validating and verifying our model were used. Most methods come down to
either discussing with my external supervisor, my own thoughts, comparing with numerical results
from Slim4 itself, or by explicitly checking on assumptions we have made. Most took place in a
natural way, as a result of several years of practising modelling during university courses.

c. Which SKUs are classified and how is this done?
We have derived our own method of classifying, since using an expert panel as suggested in appendix
A would be too time-expensive and potentially inconsistent. Furthermore, in literature there were
no classification methods found that focussed on the order line size distribution, see Section 3.3. We
based our classification method on (and validated with) earlier methods with an expert panel. This
leads to the classification of mainly SKU groups like cutlery and dining room equipment as they
show a multi-modal order line size distribution.

We conclude with our answer to this chapter’s research question:
How can the inventory management at best incorporate multi-modal order line demand?
We have obtained three heuristics: “Overwrite”-, “Max”-, and the “First moment β∗”-method, for di-
rectly incorporating the empirical order line size distribution, alongside for example a compound Poisson
distribution from literature (see Section 3.4.1), that indirectly comprises the empirical order line size dis-
tribution. Next, we measure performance mainly in terms of volume fill rate and average stock on hand,
followed by the observed order line fill rate. In order to determine which of the aforementioned methods
works best, in Chapter 5 we should construct a experiment with historical sales data.
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Experiment

Now that we have developed an inventory model, we can construct our experiment. We start by
gathering the right data, thereby selecting the right SKUs for testing. Next, we provide the experimental
design, addressing all relevant experimental parameters. Finally, we discuss some final aspects and set-up
a preliminary experiment in order to filter out some bad-performing heuristics. In Section 5.7 we analyse
the experiment’s results. Through this experiment, we want to find the best-performing methods and
heuristics for generating ordering policies. In this chapter we answer the research questions:

4. Which heuristic performs best on both the products classified and not classified as ‘multi-modal
order line size SKUs’?

a. Which data are needed and how do we gather them?

b. Which of the methods and heuristics for generating ordering policies performs best?

First, we address some aspects related to our experiment like the variables at hand, data exclusion, the
SKUs we select, and our programming efforts. Finally, we select the most promising methods through a
small experiment we run before our final experiment.

5.1 Selection and classification of SKUs

For each SKU one has the choice whether to hold inventory or not, many reasons exist for either choice.
Non-stocked items are ordered at the supplier only in case demand occurs (analogue to Make-to-Order
environments), and no inventory is held. As this is of no interest for our inventory model, we restrict
ourselves to stocked items (analogue to Make-to-Stock). Second, we needed stationary demand, so we
performed t-Tests on all SKU-shop combinations, as described in Section 4.7. And third, we exclude SKU-
shop combinations with more than 15 customers per day, as with such a high customer arrival rate, it is
expected to have no use to look at order line size distributions. Furthermore, this last limitation provided
much programming convenience. For an elaboration on the data gathering, we refer to Appendix E.

Our specific SKUs coming from company X are selected based on their likeliness to have a potential
for improvement. This particular attribute, of having a multi-modal order line size distribution, led to the
following conclusions: (a) the order line size distribution is modelled with its empirical distribution, as it
showed very differing and hardly-tractable patterns, and (b) the entire ordering process can be regarded
to as compound Poisson process. Finally, we decided to also model the arrival of customers empirically,
by loading the sales data in our model, as if it were future demand. See Table C1 in appendix C for the
selected SKUs and some SKU information. Finally, in general the cumulative probabilities of order line
sizes of up to 1 or 2, are low for multi-modal order line size SKUs, and higher for unimodal order line size
SKUs.

5.2 Experimental design

In order to find the best-performing method for dealing with multi-modal order line size SKUs and with
unimodal order line size SKUs, we conduct an experiment, in which we construct three variables and
differing number of levels per variable. To be precise, each scenario comprises one level of each of the

41
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[I.] Out-of-stock [II.] Safety stock [III.] Reorder point
A. Full back-ordering sect.4.1 A. Standard (β∗) Eq. 2.4, sect. 2.1 Standard Eq.2.5, sect. 2.1

B. Conditional back-
ordering sect.4.1 B. Cycle Service Level Eq. 3.3, sect. 3.4.1

C. Lost sales sect.4.1 C. Tijms approximation Eqs.3.8 & 3.9, sect.3.4.1

D. Compound Poisson β∗ Eq.3.14, sect.3.4.1

E. Power Approximations Sect.3.4.1

F. “Add undershoot”-method Eqs. 3.22 & 3.23 Sect.3.4.1

G. “Overwrite”-method Sect. 4.5.1

H. “Max”-method Eq. 4.1, sect.4.5.2

I. “First moment β∗”-method Eq. 4.2, Sect.4.5.3

Table 5.1: All scenarios for running experiments

three columns (variables) from Table 5.1. Note: setting III.B means the in-service order line size times the
expected number of customers during the cover period. For example scenario 1 consists of I.A, II.A, and
III, i.e.: Full back-ordering with standard (R,s,nQ) model like settings for calculation of the safety stock
and the reorder point. Henceforth, we construct 3 (Variable I) · 9 (Variable II) · 1 (Scenario III.A) = 27
scenarios. Next, we need to initialize parameters. First one is the BO factor. We test with the value 3,
as this value yielded highly realistic values of for example 12 mugs or 18 cake forks. We do not vary this
factor, as it would double our experiment size.
For our model, we chose to have equal review periods and lead times, both lasting one week. Placing
replenishment orders takes place on Monday morning before receiving new SKUs or selling anything, and
replenishment arrives on the next Monday morning before opening the shop, and henceforth is available
on Monday. This setting is chosen as it makes programming more convenient, and it is within reasonable
scales for retail environments. In reality review periods and lead times are slightly shorter, most often
each day or twice a week (Slim4-developer, 2016a).

The six months of planning horizon start with the ‘initialization period’, of which performance is not
taken into account. The initial stock on hand, i.e.: at the beginning of our experiment, per SKU on shop-
level, is set equal to the average stock: safety stock +

Qr

2
, with Qr defined in Table 4.2, in accordance with

Silver, Pyke, Thomas (2017). Next, the initial stock on order, the amount that could have been ordered
at the supplier before our inventory model would even start, is initialized as zero.

5.3 Data exclusion

Finally, we excluded the transactions from Table 5.2, as they are regarded extreme outliers (all fall outside
95%-confidence intervals around the average order line size), which seriously disturb performance. These
extreme big order lines would normally be back-ordered, complete separate from the ‘regular’ demand
process.
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SKU Order line size (# items)
MM SKU 1 21, 30, 40, 100, 204
MM SKU 4 36
MM SKU 5 30
MM SKU 9 24, 30
MM SKU 13 50
MM SKU 14 24
MM SKU 19 24, 30, 40
UM SKU 23 25, 26, 30, 35, 40, 50
UM SKU 25 60
UM SKU 26 25, 29, 40
UM SKU 27 24, 29
UM SKU 28 24, 30, 39
UM SKU 29 24
UM SKU 32 24
UM SKU 33 25
UM SKU 34 24
UM SKU 36 26, 30

Table 5.2: Transactions containing these order line sizes were excluded from the experiment

5.4 Programming

We have written a Visual Basic for Applications(VBA) code in Microsoft Excel, included in appendix B,
through which we were able to calculate performance on experiment levels as follows: SKU-shop combi-
nation, back-ordering versus conditional back-ordering versus lost sales, heuristics for safety stock. These
results were analysed based on their score on the first three KPIs, namely the observed volume fill rate
(as high as possible), average stock on hand (as low as possible), and the observed order line fill rate (as
high as possible). Their relative difference compared to the base line of both safety stock and reorder
point calculations from the standard approach, were calculated per out-of-stock setting, and averaged
on SKU-level. Finally, in order to determine the robustness, we calculated standard deviations between
performances on SKU-shop level.

5.5 Selecting most promising methods

In order to select the best methods for our final experiments, we now start by discussing the assumptions
of Tijms & Groenevelt’s approximation. All assumptions are evaluated per SKU-shop combination, and
when one of the assumptions was not attained, the method was not performed. The first assumption
that requires demand to be smooth, is covered as we focus on stationary SKUs. The second assumption
- of setting a lower bound to the target fill rate of 90% - results in this heuristic not being calculated for
SKU-shop combinations for which the target volume fill rate is below 90%, which occurred in 0.20% of the
SKU-shop combinations. The third assumption, which prescribes that the review period should not be
too small compared to the lead time - in general holds, as we set the review period equal to the lead time
in our experiment. Finally, the fourth assumption, involving the coefficient of variation (CVDL+R

), which
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should not exceed 0.5, depends per SKU-shop combination. In 51.39% of the SKU-shop combinations,
the normality assumption did not hold. In Appendix F, we have made an attempt to transform the k
determination of the Ju(k) part from Equation 3.10, into an approximation of the Gamma distribution,
thereby avoiding the evaluation of incomplete gamma integrals (Tijms & Groenevelt, 1984). We did not
succeed in this, hence, we abolished this method from further evaluation.

Next, we decided to abolish the literature method involving the cycle service level. This method is not
capable of incorporating an order line size, hence an improvement is not expected, and it would not solve
the problem of not incorporating order line sizes. On the contrary for example, the compound Poisson
approach directly incorporates the order line size distribution.

Finally, we have performed a first test involving a limited amount of both multi-modal and unimodal
order line size SKUs. This led to the conclusion that Nenes’ approximations perform considerably worse
than all other methods, so we do not include this method in our final experiment.

5.6 Differences between out-of-stock configurations

As we currently have three configurations for out-of-stock occurrences (full lost sales, conditional back-
ordering, and full back-ordering), we first want to know the differences between the impacts on performance
each out-of-stock configuration has. Data can be found in appendix C in Table C2. Moreover, in case the
conditional back-ordering does not clearly differs from either lost sales or full back-ordering, it would only
slow our experiment. We have tested the performance of the three out-of-stock configurations for the 38
SKUs of company X, for the standard method. To this extent we calculated the absolute differences between
the three out-of-stock configurations for each of the three KPIs (stock on hand, volume fill rate, order line
fill rate). In case one of the three KPIs differed among the two compared out-of-stock configurations, this
SKU-shop combination was marked as Difference between out-of-stock configuration 1 and 2. It turned
out that in 68.66% of the SKU-shop combinations, the full lost sales and full back-ordering setting did not
differ (again, for standard methods, which do incorporate a different equation for each setting, see Section

2.1). As these equations (see Equation 3.4 and 2.2) resemble for large fill rates

[
(1− β∗)
β∗

β∗→1−−−−→ (1−β∗)
]
,

and in our dataset target fill rates are generally high (on average 97.83%), it makes perfectly sense that
both settings do not differ at all in many cases.

In respectively 81.84% and 71.35% of the SKU-shop combinations, there was no difference between
full lost sales and conditional back-ordering, and full back-ordering and conditional back-ordering. As
confirmation of the assumption made in Section 4.1, we expected conditional back-ordering to perform
more like lost sales than like full back-ordering, since formulae of lost sales were applied for the widest
range of order line sizes. This is confirmed by these results, conditional back-ordering yielded rather similar
results. As a result of this similarity, we think it is not an interesting configuration for further research
within our scope. Hence, in the remainder of our research, we do not include the conditional back-ordering
configuration. Concluding, we run our experiment with the design as denoted in Table 5.3.

5.7 Results

After cutting the methods down, we have run the experiment using company X’s dataset containing 38
SKUs, of which 22 are classified multi-modal order line size SKUs. We run the experiment for both lost
sales and full back-ordering, for the standard methods, compound Poisson methods for target fill rate, and
our heuristics, resulting in 2·6=12 scenarios per SKU-shop combination. For each SKU-shop combination,
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[I.] Out-of-stock [II.] Safety stock [III.] Reorder point
A. Full back-ordering sect.4.1 A. Standard (β∗) Eq. 2.4, sect. 2.1 Standard Eq.2.5, sect. 2.1

B. Lost sales sect.4.1 B. Compound Poisson β∗ Eq.3.14, sect.3.4.1

C. “Add undershoot”-method Eqs. 3.22 & 3.23 Sect.3.4.1

D. “Overwrite”-method Sect. 4.5.1

E. “Max”-method Eq. 4.1, sect.4.5.2

F. “First moment β∗”-method Eq. 4.2, Sect.4.5.3

Table 5.3: All scenarios for the final experiment

we calculate each method’s relative difference with the standard (target fill rate) approach. Stock on
hand differences are calculated as relative difference compared to the baseline, whereas for observed fill
rates absolute differences- so, %-points - are calculated, since relative difference between two percentages
is not very intuitive. Next, these SKU-shop combinations are averaged on SKU-level, resulting in relative
performance per heuristics per SKU, compared to their standard (R,s,nQ) model-baseline. Ideally, we
look for heuristics with the highest increase on average observed volume fill rate and the smallest relative
increase of average observed stock on hand. We start with the literature-based methods, followed by our
own-derived heuristics, and conclude by making a comparison between the methods.

We discuss the results in this hierarchy: 1. Heuristics, 2. Type of SKU, 3. Out-of-stock configuration.
Hence, we first discuss the first method’s multi-modal SKUs’ performance given lost sales, continue with
its back-ordering case performance, and - after discussing all intermediate results - conclude with the last
method’s unimodal order line size SKUs’ performance given back-ordering.

5.7.1 Means for comparing methods

First, we found that the order line fill rate hardly differed from the corresponding volume fill rate. There-
fore, we focus on the volume fill rate, as this is a more frequently used measure. In accordance with the
objective of Slimstock, we strive to reach the volume fill rate, against the smallest increase of stock as
possible. The straightforward performance ratio of relative difference in stock on hand divided by absolute
difference in volume fill rate provides a reasonable insight per heuristic, for both directions of increase and
decrease of stock on hand and fill rate. For example, a value of ‘3’ means that for 1%-point increase of
volume fill rate, the stock on hand rises with 3.00%. We want this measure to be as small as possible,
maybe even to be negative (meaning both less stock on hand and a higher volume fill rate). In case the
volume fill rate decreased or did not change at all, we excluded this performance ratio, as we it would
result in errors (0 in denominator), or in false positive results. Since a decrease of both stock on hand
and volume fill rate would result in a division of two negative numbers, this ratio becomes positive, yet it
reflects something no stock-keeping company would want. Therefore, we set SKUs with a lower volume fill
rate than the standard approach arbitrarily large and grey out results for both out-of-stock configurations
(in order to keep equal comparisons) in the result tables. SKUs with equal volume fill rates are set ‘n/a’,
yet they are incorporated in the calculation of the average performance ratio. Furthermore, we are aware
of the non-linear relationship between target fill rate and stock levels for normal demand, as depicted in
Figure 5.1. As we have no direct insights on the nature of the relationship between observed fill rate and
stock on hand levels for our heuristics, we just assume linearity, thereby justifying our performance ratio.
Moreover, the relationship generally shows good resemblance with linearity for lower (target) fill rates,
which is relevant since many heuristics have to improve a volume fill rate that is in general within the
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Figure 5.1: Non-linear relationship between target fill rate and stock level, with a blue-dotted line showing the linear
part of the figure

linear part of the figure, that ranges approximately up to 94% (see the dashed line in Figure 5.1). So, for
these lower fill rates the performance ratio predicts a linear increasing/decreasing stock on hand (yet a
smaller increase than the exact performance ratio, since this also includes the non-linear, high fill rates).
But for the higher fill rates stock on hand would increase by far more than the performance ratio times
the increase of target fill rate. The difference between the lost sales and back-ordering setting is due to
the slight adjustment for lost sales, as addressed in Section 3.4.1. Note: the slight bump for the lost sales
line around 84%-87%, is most likely due to the batch size of IOQ, which is directly involved in the target
fill rate calculations.

Finally, next to this efficiency indicator, we measure the effectiveness. To this extent, we compute the
percentage of SKU-shop combinations for which the observed volume fill rate meets the target fill rate.

5.7.2 Performance literature methods

We now discuss the results of the literature methods of our final experiments, namely the “Add undershoot”-
method for undershoot, and the target fill rate compound Poisson methods. Data are to be found in Tables
C4 and C8 in Appendix C.

“Add undershoot”-method

Averaged on SKU-level, we have calculated relative differences of the stock on hand levels, absolute differ-
ences on observed volume fill rates, and their corresponding performance ratios, compared to the standard
baseline performance, as denoted in Table 2.1 in Section 2.3. These differences are denoted in Table 5.4.

Multi-modal order line size SKUs
In the lost sales case, the “Add undershoot”-method performs rather bad compared to the standard meth-
ods: on average the observed volume fill rate increases with 5.06%-point, against a price of 21.39% more
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stock on hand, yielding a performance ratio of 4.22. In case of back-ordering, this method performs similar,
with 5.02%-point more observed volume fill rate and 21.19% more stock on hand, yielding a ratio of 4.22.

Unimodal order line size SKUs
For unimodal order line size SKUs and lost sales on the other hand, on average, it results in 1.98%-point
more volume fill rate, against 13.16% more stock on hand, yielding a ratio of 6.66. When full back-
ordering is assumed, observed volume fill rate increases with 1.76%-point, and stock on hand rises with
13.08%-point, resulting in a ratio of 7.42.

“Add undershoot”-method Compound Poisson method
Lost sales Back-ordering Lost sales Back-ordering

SKU SoH β Ratio SoH β Ratio SoH β Ratio SoH β Ratio
MM SKU 1 20.30% 2.71% 7.50 21.41% 2.23% 9.58 5.47% 2.74% 1.99 6.10% 2.64% 2.31
MM SKU 2 15.63% 1.16% 13.46 15.39% 1.16% 13.25 18.38% 1.10% 16.66 17.85% 1.10% 16.18
MM SKU 3 26.14% 3.48% 7.51 26.12% 3.48% 7.51 61.81% 5.88% 10.51 61.85% 5.88% 10.52
MM SKU 4 21.67% 6.49% 3.34 19.26% 5.89% 3.27 16.20% 7.38% 2.20 13.72% 6.43% 2.13
MM SKU 5 13.72% 3.72% 3.69 15.10% 4.18% 3.62 36.64% 9.80% 3.74 38.94% 10.43% 3.73
MM SKU 6 13.71% 1.42% 9.63 11.89% 1.42% 8.35 37.42% 1.85% 20.22 35.71% 2.87% 12.46
MM SKU 7 23.88% 3.66% 6.52 20.43% 4.50% 4.54 45.01% 6.73% 6.68 41.04% 7.15% 5.74
MM SKU 8 21.36% 5.57% 3.84 22.93% 5.33% 4.30 63.41% 11.31% 5.60 65.05% 10.91% 5.96
MM SKU 9 2.90% 0.80% 3.61 3.00% 0.45% 6.65 4.87% 0.86% 5.65 4.87% 0.41% 11.94
MM SKU 10 21.85% 1.51% 14.50 22.24% 2.59% 8.59 53.12% 5.19% 10.24 53.62% 6.80% 7.89
MM SKU 11 25.31% 4.66% 5.43 25.91% 4.19% 6.18 50.07% 9.31% 5.38 50.18% 7.69% 6.52
MM SKU 12 33.99% 6.69% 5.08 32.52% 5.70% 5.71 59.75% 10.87% 5.50 59.12% 10.54% 5.61
MM SKU 13 26.12% 10.58% 2.47 25.37% 9.87% 2.57 58.80% 16.78% 3.50 58.35% 16.54% 3.53
MM SKU 14 17.71% 5.06% 3.50 19.27% 5.04% 3.82 114.54% 8.81% 13.00 120.57% 9.10% 13.26
MM SKU 15 27.70% 6.74% 4.11 27.77% 7.58% 3.67 62.16% 12.63% 4.92 63.65% 15.19% 4.19
MM SKU 16 26.91% 7.79% 3.46 27.00% 7.55% 3.58 42.33% 12.34% 3.43 41.97% 12.59% 3.33
MM SKU 17 22.53% 9.06% 2.49 20.26% 7.55% 2.68 25.47% 9.11% 2.80 23.20% 7.34% 3.16
MM SKU 18 29.10% 8.97% 3.24 30.24% 10.58% 2.86 75.45% 15.83% 4.77 77.55% 17.88% 4.34
MM SKU 19 23.06% 4.14% 5.57 23.12% 4.77% 4.85 10.06% 2.70% 3.72 10.11% 3.41% 2.97
MM SKU 20 16.10% 7.51% 2.14 14.39% 6.09% 2.36 53.03% 12.10% 4.38 52.54% 10.58% 4.97
MM SKU 21 21.99% 6.04% 3.64 22.71% 5.58% 4.07 45.02% 7.15% 6.30 45.56% 6.41% 7.11
MM SKU 22 18.86% 3.66% 5.16 19.73% 4.64% 4.25 97.61% 12.30% 7.94 105.78% 13.37% 7.91
Avg. MM 21.39% 5.06% 4.22 21.19% 5.02% 4.22 47.12% 8.31% 5.67 47.61% 8.42% 5.65
UM SKU 23 15.59% 3.50% 4.45 15.06% 1.96% 7.67 6.11% 3.80% 1.61 6.06% 2.26% 2.68
UM SKU 24 22.58% 5.31% 4.25 21.07% 4.52% 4.66 2.08% 2.82% 0.74 0.64% 2.06% 0.31
UM SKU 25 10.84% 1.28% 8.49 11.59% 2.38% 4.87 4.19% 3.04% 1.38 3.84% 2.76% 1.40
UM SKU 26 14.38% 0.38% 37.84 14.57% 0.43% 33.76 -27.44% -0.46% 59.21 -27.52% -0.77% 35.84
UM SKU 27 15.62% 1.33% 11.78 15.94% 1.47% 10.85 8.82% 3.24% 2.72 8.85% 2.43% 3.64
UM SKU 28 12.23% 1.51% 8.11 11.93% 1.21% 9.88 22.74% 4.66% 4.88 23.55% 4.79% 4.92
UM SKU 29 7.88% 0.42% 18.98 8.18% 0.38% 21.78 8.98% 1.73% 5.18 9.23% 1.75% 5.28
UM SKU 30 11.46% 3.20% 3.58 11.36% 3.28% 3.46 -19.96% -5.96% 3.35 -23.30% -7.53% 3.09
UM SKU 31 12.90% 2.49% 5.19 14.25% 2.53% 5.64 -12.50% -0.09% 145.49 -8.13% -0.83% 9.79
UM SKU 32 11.67% 1.11% 10.53 10.74% 0.83% 13.01 9.58% 2.69% 3.56 9.27% 2.60% 3.57
UM SKU 33 9.96% 1.38% 7.24 9.57% 1.12% 8.52 -57.12% -13.79% 4.14 -56.73% -14.41% 3.94
UM SKU 34 10.30% 2.25% 4.58 10.43% 2.48% 4.20 -52.19% -12.03% 4.34 -53.00% -12.57% 4.22
UM SKU 35 15.72% 3.68% 4.27 15.57% 2.29% 6.79 25.26% 4.78% 5.28 24.70% 3.99% 6.19
UM SKU 36 16.36% 1.70% 9.60 16.62% 1.66% 10.03 5.81% 2.01% 2.90 5.71% 1.80% 3.16
UM SKU 37 16.86% 1.98% 8.51 15.99% 1.41% 11.31 8.87% 3.02% 2.94 8.28% 2.71% 3.06
UM SKU 38 6.23% 0.13% 47.81 6.33% 0.23% 28.02 6.53% 0.48% 13.67 6.79% 0.57% 11.85
Avg. UM 13.16% 1.98% 6.66 13.08% 1.76% 7.42 9.91% 2.93% 4.08 9.72% 2.52% 4.19
Difference 62.51% 156.18% -55.34% 62.02% 184.84% -54.16% 375.68% 183.17% 66.26% 389.77% 234.24% 58.25%
Avg. total 17.27% 3.52% 4.91 17.13% 3.39% 5.06 28.51% 5.62% 5.07 28.66% 5.47% 5.24

Table 5.4: Relative differences of stock levels and absolute differences of observed volume fill rates through the “Add
undershoot”- and “Compound Poisson”-method, compared with the standard method. Results that yield a decrease
of volume fill rate are greyed out and not included in the averaged results.
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Target fill rate compound Poisson method

Multi-modal order line size SKUs
In the lost sales case, the compound Poisson method performs very well, but rather inefficient, compared
to the standard methods: on average the observed volume fill rate increases with 8.31%-point, against a
high price of 47.12% more stock on hand, yielding a performance ratio of 5.67. In case of back-ordering,
this method performs similar with 8.42%-point more observed volume fill rate and 47.61% more stock on
hand, yielding a ratio of 5.65.

Unimodal order line size SKUs
For unimodal order line size SKUs and lost sales on the other hand, on average, this method results in
2.93%-point more volume fill rate, against 9.91% more stock on hand, yielding a ratio of 4.08. When full
back-ordering is assumed, observed volume fill rate increases with 2.52%-point, and stock on hand rises
with 9.72%-point, resulting in a ratio of 4.19. However, SKUs 26, 30, 31, 33, and 34 were not incorporated,
since they perform worse than the standard situation. Three out of five (UM SKU 30, 33, and 34) perform
even considerable worse. Hence, following from Section 2.4, condition [a.] is met, but [b.] is unmet. Thus,
this method is not recommendable for unimodal order line size SKUs. An explanation that the target fill
rate compound Poisson method (using the empirical distribution for the order line size distribution) works
well for multi-modal order line size SKUs, but performs unstable and worse for unimodal order line size
SKUs, is that the first category roughly has only few order lines per period of time, compared to the latter.
So, in general (no clear quantified boundaries could be found) holds: the bigger the number of orders per
period of time, the bigger the resemblance with the standard method. Since the standard method assumes
normal demand, this similarity is logical, since a compound Poisson distribution can be well approximated
by a normal distribution for large demand (Axsäter, 2006).

5.7.3 Performance own heuristics

Finally, we analyse the performance of our own derived “Overwrite”, “Max” and “First moment β∗”-
methods, and we proceed in this order. Data are to be found in tables C5, C6, C7 in appendix C.
Again, averaged on SKU-level, we have calculated relative differences of the stock on hand levels, absolute
differences on observed volume fill rates, and their corresponding performance ratios, compared to the
standard baseline performance, as denoted in Table 2.1 in Section 2.3. These differences are denoted in
Table 5.5.

“Overwrite”-method

Multi-modal order line size SKUs
The “Overwrite”-method performs very unstable, for only 36.36% of the SKUs provided a positive result
on the difference of the volume fill rate compared to the standard methods. However, on average, SKUs
3, 6, 7, 8, 14, 18, 20, and 21 yield an average of 3.26%-point more volume fill rate, against on average
10.16% more stock on hand for lost sales, yielding a ratio of 3.74. In the back-ordering setting, these
values amount 3.11%-point, 10.07% and 5.81 respectively. Yet, since this occurs in only 36.36% of the
multi-modal SKUs, this is a very unstable method for this type of SKU.



Chapter 5 Experiment Page 49

Unimodal order line size SKUs
This method acts even more unstable for unimodal order line size SKUs, with only UM SKU 23 having
an increase in volume fill rate compared to the standard situation. Thus, this method is completely non-
applicable for this type of SKU. Since only 1 SKU is considered in the average, the average differences and
performance ratios are arbitrary.

“Overwrite”-method “Max”-method “First moment β∗”-method
Lost sales Back-ordering Lost sales Back-ordering Lost sales Back-ordering

SKU SoH β Ratio SoH β Ratio SoH β Ratio SoH β Ratio SoH β Ratio SoH β Ratio
MM SKU 1 -12.97% -3.99% 3.25 -13.39% -3.77% 3.55 1.11% -0.33% -3.33 1.75% 0.00% n/a 28.47% 3.55% 8.01 28.46% 3.80% 7.48
MM SKU 2 11.35% -2.03% -5.58 10.83% -2.56% -4.24 12.50% -0.46% -26.90 12.28% -0.46% -26.44 42.83% 0.06% n/a 42.53% 0.06% n/a
MM SKU 3 17.58% 3.48% 5.05 16.99% 2.95% 5.76 18.14% 3.48% 5.21 18.23% 2.95% 6.18 73.23% 4.95% 14.78 73.23% 4.95% 14.78
MM SKU 4 -12.70% -1.20% 10.54 -15.40% -4.13% 3.73 1.31% 0.66% 1.97 0.62% 0.66% 0.94 16.72% 5.10% 3.28 13.26% 2.74% 4.84
MM SKU 5 -9.15% 0.69% -13.33 -8.77% 0.01% n/a 2.53% 1.85% 1.37 3.14% 1.72% 1.83 0.01% 3.75% 0.00 0.55% 3.07% 0.18
MM SKU 6 6.45% -0.21% -30.54 5.27% 0.31% 17.29 9.88% 1.42% 6.94 8.85% 1.42% 6.21 47.68% 2.33% 20.46 46.53% 3.09% 15.07
MM SKU 7 -4.96% -0.59% 8.42 -8.64% -0.68% 12.76 4.73% -0.40% -11.70 1.02% 0.55% 1.86 31.79% 4.57% 6.96 28.33% 4.55% 6.23
MM SKU 8 -1.83% -0.30% 6.07 -1.70% 0.42% -4.03 5.25% 1.61% 3.27 6.12% 1.85% 3.32 35.17% 8.85% 3.98 36.19% 7.46% 4.85
MM SKU 9 2.51% 0.43% 5.80 2.41% 0.15% 15.69 2.54% 0.43% 5.87 2.47% 0.15% 16.13 12.26% 1.56% 7.86 12.07% 0.84% 14.39
MM SKU 10 -2.74% -1.00% 2.73 -2.73% -0.76% 3.58 4.65% 1.10% 4.22 4.65% 1.10% 4.22 22.51% 1.47% 15.29 22.12% 3.36% 6.58
MM SKU 11 2.36% 0.22% 10.55 2.21% -0.04% -55.87 9.16% 2.15% 4.26 8.94% 1.65% 5.41 59.58% 6.08% 9.80 59.45% 5.24% 11.34
MM SKU 12 -13.22% -2.91% 4.54 -13.49% -3.63% 3.72 3.02% 2.26% 1.33 3.23% 1.89% 1.70 41.72% 8.30% 5.03 41.20% 8.87% 4.65
MM SKU 13 15.05% 7.86% 1.91 13.83% 6.88% 2.01 19.41% 8.77% 2.21 18.29% 8.14% 2.25 38.20% 13.11% 2.91 36.45% 13.00% 2.80
MM SKU 14 -4.65% -1.51% 3.08 -3.79% -1.41% 2.68 0.24% 0.90% 0.27 1.28% 0.95% 1.35 22.95% 4.64% 4.95 26.26% 4.89% 5.38
MM SKU 15 11.49% 0.62% 18.48 13.96% 3.13% 4.46 17.47% 3.57% 4.89 18.29% 4.11% 4.45 43.29% 8.34% 5.19 44.52% 10.48% 4.25
MM SKU 16 -6.78% -2.34% 2.89 -7.22% -1.46% 4.96 3.43% 0.88% 3.88 3.04% 1.55% 1.96 12.64% 6.67% 1.90 12.81% 6.99% 1.83
MM SKU 17 -3.93% 0.76% -5.17 -6.16% -0.85% 7.22 4.34% 2.92% 1.49 3.07% 2.22% 1.38 39.00% 8.89% 4.39 37.69% 6.29% 5.99
MM SKU 18 -4.58% 0.13% -35.14 -5.25% -0.09% 56.49 3.72% 0.97% 3.82 4.22% 0.75% 5.62 60.79% 13.62% 4.46 63.23% 15.67% 4.03
MM SKU 19 -28.00% -11.25% 2.49 -28.16% -11.38% 2.47 0.11% 0.05% 2.41 -0.11% 0.51% -0.21 -12.30% -4.14% 2.97 -12.76% -4.12% 3.10
MM SKU 20 10.82% 6.60% 1.64 8.81% 5.18% 1.70 13.00% 6.92% 1.88 11.18% 5.50% 2.03 63.10% 14.03% 4.50 61.20% 12.74% 4.80
MM SKU 21 14.81% 2.93% 5.06 14.34% 2.11% 6.79 16.73% 4.61% 3.63 16.88% 3.79% 4.45 41.80% 6.87% 6.08 42.33% 6.13% 6.90
MM SKU 22 18.18% 3.45% 5.27 19.00% 4.43% 4.28 18.50% 3.66% 5.06 19.35% 4.64% 4.17 79.57% 11.99% 6.64 85.58% 13.15% 6.51
Avg. MM 10.16% 3.26% 3.74 10.07% 3.11% 5.81 8.08% 2.54% 3.37 7.99% 2.40% 3.86 38.73% 6.60% 6.82 38.76% 6.54% 6.64
UM SKU 23 -6.61% 2.66% -2.49 -7.85% 1.03% -7.62 3.53% 3.09% 1.14 1.72% 1.51% 1.14 -8.82% 1.87% -4.70 -10.46% 0.24% -43.02
UM SKU 24 -26.52% -7.10% 3.74 -27.86% -7.31% 3.81 0.00% 0.00% n/a 0.00% 0.00% n/a 10.77% 3.35% 3.21 9.90% 1.82% 5.44
UM SKU 25 -10.56% -1.76% 6.01 -12.15% -1.40% 8.70 -0.24% -0.65% 0.37 -0.30% -0.22% 1.37 -7.60% -1.09% 7.00 -9.21% -1.25% 7.36
UM SKU 26 -37.95% -2.57% 14.79 -37.53% -2.63% 14.27 0.00% 0.00% n/a 0.00% 0.00% n/a -27.19% -1.18% 23.04 -26.85% -1.20% 22.39
UM SKU 27 -10.07% -0.50% 20.18 -10.63% -0.79% 13.50 0.16% 0.02% 6.69 0.29% 0.02% 11.76 -6.12% -0.19% 33.06 -6.38% -0.22% 29.05
UM SKU 28 -17.09% -3.00% 5.69 -17.93% -3.19% 5.63 0.63% 0.11% 5.96 0.71% 0.00% n/a -9.79% -1.84% 5.32 -11.07% -2.17% 5.10
UM SKU 29 2.92% -0.34% -8.49 3.12% -0.47% -6.69 5.14% 0.33% 15.53 5.25% 0.26% 20.15 4.65% -0.25% -18.51 5.04% -0.34% -14.81
UM SKU 30 -19.00% -5.55% 3.43 -22.48% -7.73% 2.91 0.96% 0.53% 1.81 0.42% 0.46% 0.90 -9.08% -2.88% 3.15 -11.15% -4.40% 2.54
UM SKU 31 -28.40% -7.69% 3.69 -26.22% -7.96% 3.29 0.00% 0.00% n/a 0.00% 0.00% n/a -17.77% -5.44% 3.27 -16.61% -5.92% 2.81
UM SKU 32 -14.95% -2.77% 5.39 -16.05% -2.89% 5.55 0.13% 0.00% n/a 0.26% 0.00% n/a -10.50% -1.87% 5.63 -12.16% -1.91% 6.38
UM SKU 33 -60.04% -16.43% 3.65 -59.20% -16.26% 3.64 0.00% 0.00% n/a 0.00% 0.00% n/a -53.42% -12.94% 4.13 -53.73% -13.14% 4.09
UM SKU 34 -58.27% -16.07% 3.63 -57.47% -15.89% 3.62 0.00% 0.00% n/a 0.00% 0.00% n/a -52.22% -13.07% 4.00 -51.92% -12.59% 4.12
UM SKU 35 6.54% 0.79% 8.27 6.01% -0.26% -23.22 7.78% 1.50% 5.17 7.42% 0.46% 16.30 50.18% 6.65% 7.54 49.97% 5.79% 8.63
UM SKU 36 -20.91% -2.98% 7.01 -20.68% -3.15% 6.57 0.28% 0.03% 7.97 0.23% 0.03% 7.76 -11.08% -1.15% 9.66 -10.56% -1.10% 9.62
UM SKU 37 -23.43% -2.76% 8.49 -24.38% -2.36% 10.33 0.00% 0.00% n/a 0.00% 0.00% n/a -0.09% 0.28% -0.33 -0.83% 0.43% -1.95
UM SKU 38 -0.18% -0.06% 2.89 -0.33% -0.11% 3.08 1.99% 0.01% 294.56 2.01% -0.04% -53.58 0.44% -0.53% -0.83 0.13% -0.49% -0.26
Avg. UM -0.03% 1.72% 2.89 -0.92% 0.39% -15.42 1.33% 0.40% 6.32 1.16% 0.20% 9.67 13.01% 3.04% 1.43 12.14% 2.07% -7.72
Difference -253.84% 22.59% -250.29% -228.28% 201.55% -176,29% 507.35% 531.79% -46.75% 586.20% 1122.33% -60.03% 197.67% 117.36% 376.43% 219.18% 216.00% -186.02%
Avg. total 1.78% 2.96% 0.60 1.11% 2.07% 0.54 4.70% 1.47% 3.20 4.58% 1.30% 3.53 25.87% 4.82% 5.37 25.45% 4.31% 5.91

Table 5.5: Relative differences of stock levels and absolute differences of observed volume fill rates through the
“Overwrite”-, “Max”- and “First moment β∗”-method, compared with the standard method. Results that yield a
decrease of volume fill rate are greyed out and not included in the averaged results.

“Max”-method

Multi-modal order line size SKUs
Next heuristic we have measured is the “Max”-method. In the lost sales case, the “Max”-method performs
very similar compared to the standard methods. This was expected, since in this method we take the
maximum of the safety stock from the standard approach, and the undershoot. To be precise, 89.39% of
the multi-modal order line size SKUs and 86.21% of the unimodal order line size SKUs provided equal
safety stocks and thereby equal results as the standard methods. This fractions are obtained from the
lost sales case, for back-ordering these amounts are 89.50% and 86.40%. Only MM SKU 1 and MM SKU
2 are skipped due to under-performance of the volume fill rate compared to the standard method. For
lost sales, on average the observed volume fill rate increases with 2.54%-point, against the small price of
8.08% more stock on hand, yielding a performance ratio of 3.37. In the back-ordering setting, these values
amount 2.40%-point, 7.99% and 3.86 respectively. All in all, this method is stable but very conservative.
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It does not provide enough increase of volume fill rate.

Unimodal order line size SKUs
For unimodal order line size SKUs on the other hand, on average and provided lost sales, this method
yields 0.40%-point more volume fill rate, against 1.33% more stock on hand, yielding a ratio of 6.32. For
the back-ordering setting, these values amount 0.20%-point, 1.16% and 9.67.

“First moment β∗”-method

Multi-modal order line size SKUs
Finally, we have measured the “First moment β∗”-method. In the lost sales case, the “First moment β∗”-
method performs rather ‘amplified’ compared to the standard methods. By this we mean that in general
this method yields rather much more volume fill rate, but also extremely much more stock on hand. This
amplification is stronger for multi-modal order line size SKUs - having rather high median order line sizes
- than for unimodal order line size SKUs. For lost sales, on average the observed volume fill rate increases
with 6.60%-point, against the high price of 38.73% more stock on hand, yielding a performance ratio of
6.82. In the back-ordering setting, these values amount 6.54%-point, 38.76% and 6.64 respectively. 9.10%
of the SKUs have a lower volume fill rate than the standard method, which seems reasonable well.

Unimodal order line size SKUs
For unimodal order line size SKUs on the other hand, on average and provided lost sales, this method
yields 3.04%-point more volume fill rate, against 13.01% more stock on hand, yielding a ratio of 1.43. For
the back-ordering setting, these values amount 2.07%-point, 12.14% and -7.72. Next, 75% of the SKUs
have a lower volume fill rate than the standard method, which is very unstable. Thus, this method is
completely non-applicable for this type of SKU.

5.7.4 Comparison result

Now that we have analysed the performance of all heuristics, we can compare and clarify them. First of
all, we make a listing based on the effectiveness of the method, compared to the baseline. To this extent
we make an ordered listing, based on the earlier introduced performance ratio. We take into account that
we rather want higher service levels against higher stock on hands than vice versa. Furthermore, methods
that were found to be too unstable (we took 10% as maximum for the percentage of SKUs that resulted
in a lower volume fill rate than in the standard approach), are greyed out again. See Table 5.6. We
were surprised by the fact that compound Poisson appears to be rather inefficient, since it ought be an
appropriate model for slow-moving, non-unit order line size SKUs. Next, it is clear that the unimodal
order line size SKUs hardly have potential for improvement through a different heuristic. This can also be
a result of the fact that this type of SKU is not the main topic of this research, thus we did not attempt
to improve this type in the first place. Next, we expected “Max”-method to perform rather efficient, as
this acts as hybrid with the standard model, hence this would only increase the stock on hand slightly.
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Lost sales Back-ordering
Rank MM (ratio) UM (ratio) MM (ratio) UM (ratio)
1. “Max” (3.37) “Max” (6.32) “Max” (3.86) “Max” (9.67)
2. “Add undershoot” (5.45) “Add undershoot” (12.20) “Add undershoot”” (5.29) “Add undershoot” (11.53)
3. Compound Poisson (6.78) “First moment β∗” (1.43) Compound Poisson (6.62) Compound Poisson (4.19)
4. “First moment β∗” (6.82) Compound Poisson (4.08) “First moment β∗” (6.64) “First moment β∗” (-7.72)
5. “Overwrite” (3.74) “Overwrite” (n/a) “Overwrite” (5.81) “Overwrite” (n/a)

Table 5.6: Ranking of heuristics per out-of-stock setting. Methods that yield a decrease of volume fill rate for a
significant number of SKUs, are greyed out and not included in the averaged results. Overwrite is not applicable
for unimodal order line size SKUs, since only 1 SKU yields an improvement, hence basing the average on one
observation.

Next to this efficiency ratios, we want to regard the percentage of SKU-shop combinations that for
which the input target fill rate was met. This gives the overall effectiveness performance of a heuristic, see
Table 5.7.

Standard “Add undershoot”
Compound
Poisson “Overwrite” “Max” “First moment β∗”

MM SKUs Lost sales 67.61% 78.47% 84.79% 66.93% 71.48% 80.12%
Back-ordering 67.61% 78.51% 84.90% 66.81% 71.67% 80.07%

UM SKUs Lost sales 64.15% 71.97% 64.95% 50.46% 65.07% 55.38%
Back-ordering 64.52% 72.24% 64.67% 50.69% 65.07% 55.75%

Table 5.7: Comparison of different methods on the percentage of SKU-shop combinations per type of SKU for
which target fill rate is attained

We underlined the highest value per type of SKU and out-of-stock configuration. Thus, when imple-
menting the compound Poisson approach for multi-modal order line size SKUs for lost sales, the observed

volume fill rates would be met in
84.79%− 67.61%

67.61
= 25.41% more of the SKU-shop combinations. For

back-ordering, this would be 25.57%. When implementing the “Add undershoot”-method for unimodal
order line size SKUs for lost sales, the observed volume fill rates would be met in 12.19% more of the
SKU-shop combinations, and given back-ordering this would be 11.97%. We were astonished by the poor
performance in the standard model, even more underlining the power a more sophisticated model such as
Slim4 - which would show better results. Next, the “Overwrite”-method performs poorly as well. This was
to be expected, since it makes a rather arbitrary application of undershoot in the safety stock calculations.
As expected, this approach leads to an underestimation of the safety stock for unimodal order line size
SKUs (see Table 5.9), thereby leading to poor performance.

Next, we take a look at the implications for average stock on hand and reorder points. First, see Table
5.8 for the average stock on hand levels per type of SKU and out-of-stock configuration.

Standard “Add undershoot”
Compound
Poisson “Overwrite” “Max” “First moment β∗”

MM SKUs Lost sales 9.15 10.89 12.66 9.17 9.79 12.22
Back-ordering 9.15 10.89 12.68 9.13 9.78 12.22

UM SKUs Lost sales 22.31 25.07 18.72 16.03 22.55 17.94
Back-ordering 22.38 25.13 18.72 16.02 22.59 17.90

Table 5.8: Comparison of different methods on the average stock on hand per type of SKU

In Table 5.8, we see that the stock on hand levels would increase when implementing the compound
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Poisson and “Add undershoot”-method. The latter yields a rather small increase of stock on hand. This
is logical, since undershoot generally is only small. Furthermore, for unimodal order line size SKUs, some
having near-pure Poisson demand (i.e. larger probabilities of order line sizes of 1), the compound Poisson
method yields less stock on hand. As we see in Table 5.7, its performance is also low for this type of
SKUs. This makes sense, since compounding the order line size distribution for near-pure Poisson leads
to a normal Poisson distribution. This does not perform well for slow-moving SKUs, as we also see in our
experiment, which thereby follows general inventory theory (Silver et al., 2017). Next, we compare the
average safety stocks, see Table 5.9.

Standard “Add undershoot”
Compound
Poisson “Overwrite” “Max” “First moment β∗”

MM SKUs Lost sales 1.87 3.66 5.61 1.79 2.49 5.04
Back-ordering 1.89 3.68 ”” ”” 2.50 ””

UM SKUs Lost sales 9.60 12.48 5.81 2.87 9.85 5.02
Back-ordering 9.65 12.52 ”” ”” 9.89 ””

Table 5.9: Comparison of different methods on the average safety stock per type of SKU

In Table 5.9 we see that safety stocks from methods compound Poisson, “Overwrite”, and “First
moment β∗” are indeed equal for both out-of-stock configurations. This functions as verification, for we
did not differ for both settings in these methods. It is clear to see that safety stocks are underestimated
in the standard model, for both types of SKUs.

5.7.5 Sensitivity analysis standard model

Other methods generally yield a higher service level, against higher stock on hand. A different method to
increase the fill rate would therefore be to keep increasing the target service level, until the ‘true’ target
fill rate is reached. In this way there would be no reason to alter the inventory model. Therefore, we
conducted a sensitivity analysis on five target service levels using the standard model. The five levels are
80%, 90%, 95%, 98%, and 99%. Through this brief analysis we are able to compare current performance
from the standard model with alternative approaches. The results can be found in Table 5.10. Note: we
restricted ourselves to the lost sales case, since there is no significant difference in case of full back-ordering.

We see in Table 5.10 that how much one would increase the target service level for multi-modal order
line size SKUs in the standard model, observed volume fill rates such as in alternative methods like the
compound Poisson method, are never achieved. Moreover, the highest average observed volume fill rate
for multi-modal order line size SKUs amounts 91.76%, whereas compound Poisson yields an average of
95.29%. For unimodal on the other hand, we see that when the target fill rates are all set on 99%, an
average observed volume fill rate of 94.94% is achieved. This greatly resembles the average observed volume
fill rate of the “Add undershoot” - given lost sales - of 94.36%, which requires an average stock of 25.07.
When simply setting the target fill rate equal to 99%, one would achieve very similar volume fill rates
as when incorporating the undershoot effect, yet against less stock on hand of 22.78. Thus, although the
“Add undershoot” method outperforms the current standard model, this standard model might be tricked
into yielding better result. We stick to the aforementioned method as ‘best’ methods, but we include this
analysis in our conclusions and recommendations.
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β∗: 80% β∗: 90% β∗: 95% β∗: 98% β∗: 99%
SKU SoH VFR SoH VFR SoH VFR SoH VFR SoH VFR
MM SKU 1 10.06 83.46% 10.64 85.91% 12.69 88.97% 14.05 91.18% 15.19 93.34%
MM SKU 2 12.45 97.44% 12.55 97.97% 12.84 97.97% 13.27 99.48% 14.21 99.54%
MM SKU 3 12.89 94.33% 13.11 94.33% 13.18 95.46% 13.06 93.61% 14.10 94.34%
MM SKU 4 4.79 77.80% 5.01 79.90% 5.85 85.58% 6.72 88.11% 7.37 92.00%
MM SKU 5 4.83 89.48% 5.10 89.71% 5.46 91.30% 6.35 92.99% 6.90 95.61%
MM SKU 6 5.39 92.93% 5.45 92.63% 5.64 94.08% 6.66 97.50% 6.79 97.76%
MM SKU 7 5.16 83.47% 5.42 83.88% 5.98 88.87% 6.95 92.44% 7.76 94.18%
MM SKU 8 5.39 82.06% 5.64 82.63% 6.09 85.99% 6.88 89.48% 7.25 90.07%
MM SKU 9 33.85 96.48% 33.85 96.48% 33.85 96.48% 33.90 96.66% 34.18 97.22%
MM SKU 10 5.00 78.58% 5.32 81.99% 6.40 87.46% 7.54 93.86% 7.96 95.20%
MM SKU 11 9.91 83.05% 10.30 84.71% 10.99 86.59% 12.72 89.74% 13.37 91.74%
MM SKU 12 3.81 66.95% 4.73 76.01% 5.28 81.33% 6.26 88.38% 7.00 89.19%
MM SKU 13 5.75 78.56% 5.92 79.34% 6.14 79.63% 7.23 84.40% 7.24 85.41%
MM SKU 14 4.72 80.59% 4.95 82.46% 6.14 87.61% 6.94 92.57% 7.46 92.92%
MM SKU 15 5.12 80.52% 5.31 80.52% 5.45 80.52% 6.49 88.74% 6.65 89.65%
MM SKU 16 5.09 64.07% 5.37 68.13% 6.14 75.93% 7.23 82.53% 7.75 84.30%
MM SKU 17 4.92 74.31% 5.13 76.12% 5.49 79.01% 6.55 85.61% 7.08 89.21%
MM SKU 18 5.06 63.49% 5.43 65.63% 6.62 73.55% 7.60 80.82% 8.14 83.93%
MM SKU 19 5.28 69.92% 6.58 78.64% 7.60 83.74% 9.09 89.87% 9.89 92.12%
MM SKU 20 5.54 82.98% 5.59 83.34% 5.77 84.15% 5.88 85.73% 6.55 89.38%
MM SKU 21 5.35 81.19% 5.41 81.19% 5.58 81.33% 6.62 91.11% 6.67 91.11%
MM SKU 22 4.24 86.95% 4.24 86.95% 4.26 86.95% 4.26 86.95% 4.99 90.58%
Avg. MM 7.48 81.30% 7.78 83.11% 8.34 86.02% 9.19 90.08% 9.75 91.76%
UM SKU 23 21.39 95.02% 21.46 95.24% 23.07 95.60% 26.15 96.03% 28.18 96.28%
UM SKU 24 7.57 69.84% 9.13 72.63% 10.72 75.39% 12.69 79.28% 13.84 81.74%
UM SKU 25 7.77 92.35% 7.94 92.42% 8.44 93.27% 9.68 95.47% 10.27 96.32%
UM SKU 26 18.42 94.29% 22.60 95.33% 26.40 96.65% 30.59 97.92% 33.45 98.18%
UM SKU 27 18.63 96.60% 18.97 96.69% 20.23 97.24% 22.77 97.91% 24.41 98.12%
UM SKU 28 7.50 90.51% 7.75 90.97% 8.55 92.57% 9.73 95.27% 10.47 96.34%
UM SKU 29 26.33 97.80% 26.44 97.80% 26.62 97.84% 27.20 98.14% 28.32 98.34%
UM SKU 30 17.69 79.82% 18.62 81.55% 20.59 84.82% 23.59 88.99% 25.50 90.49%
UM SKU 31 8.36 75.15% 9.09 77.04% 10.42 80.20% 12.15 83.13% 13.46 85.99%
UM SKU 32 7.34 91.18% 7.45 91.24% 8.08 93.23% 9.27 95.96% 9.95 96.64%
UM SKU 33 30.26 83.78% 38.29 90.56% 45.16 93.29% 52.96 95.04% 58.18 96.00%
UM SKU 34 29.60 84.53% 37.70 90.16% 44.35 92.90% 51.77 96.33% 57.27 97.47%
UM SKU 35 9.27 91.15% 9.38 91.38% 9.58 91.70% 10.15 94.79% 10.92 94.81%
UM SKU 36 8.91 88.68% 9.64 90.11% 10.78 92.58% 12.45 94.73% 13.70 96.10%
UM SKU 37 8.28 90.26% 9.09 91.32% 10.45 93.50% 12.15 95.86% 13.32 96.86%
UM SKU 38 18.30 96.97% 18.30 96.97% 18.47 97.10% 19.31 98.88% 20.00 99.33%
Avg. UM 15.35 88.62% 17.32 90.09% 18.87 91.74% 21.41 93.98% 22.78 94.94%
Difference -51.26% -8.26% -55.11% -7.74% -55.81% -6.24% -57.07% -4.15% -57.21% -3.34%
Avg. total 11.42 84.96% 13.44 86.60% 13.60 88.88% 15.30 92.03% 16.63 93.35%

Table 5.10: Stock levels and volume fill rate per β∗, through the standard model, for lost sales .
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(a) A toy SKU, showing better performance for the “Add
undershoot”-method due to a more accurate estimation
of the safety stock

(b) A tea glass SKU, showing better performance for the
compound Poisson method due to a more accurate esti-
mation of the safety stock

Figure 5.2: Inventory positions of an arbitrary multi-modal and unimodal order line size SKU for four weeks, given lost
sales. The bars depict sales that are lost due to insufficient inventory

5.7.6 Inferences best methods

Now that we have selected the two best performing methods, namely “Add undershoot” for unimodal order
line size SKUs and target fill rate compound Poisson for multi-modal order line size SKUs, we provide
some inferences using these methods. First, in Figures 5.2a and 5.2b we see the differences between the
standard method, and the “Add undershoot”-method and compound Poisson method respectively.

In Figure 5.3 we depicted the transitions of relative performance per SKU, when implementing their
new heuristic. We depict a weighted (using the total demand of the SKU) centre of gravity per SKU as
cloud, since this is a more visually attractive measure than depicting an average. For the multi-modal order
line size SKUs it is clear to see that many SKUs currently under-perform, while they would perform very
well under the compound Poisson approach. Even so, one could argue that they over-perform, although
we would only suggest this if a significant number of SKUs would on average reach 100% observed volume
fill rate. Next, for the unimodal order line size SKUs, we see a more conservative improvement, and most
SKUs perform around their target under the “Add undershoot”-method. We also added the results from
the 99% target fill rate from the sensitivity analysis, as comparison. We see that this ‘tweaked’ standard
method performs worse that the compound Poisson for multi-modal order line sizes SKUs. In addition,
for unimodal order line size SKUs, performance in terms of observed volume fill rate is very similar.

Next, when we look at figure Figure 5.4 - where we depicted the stock on hand level of the new method
compared to the stock on hand level of the standard method - we see that the compound Poisson method’s
stock on hand levels for multi-modal order line size SKUs is not similar to the ones using the standard
method. Differences are very big and varying, especially for low stock on hand levels. For unimodal order
line size SKUs on the other hand, the “Add undershoot”-method (as the name already suggests) adds - a
reasonable amount of - stock compared to the standard situation. This effect gets larger for larger baseline
stock on hand levels.



Chapter 5 Experiment Page 55

Figure 5.3: The observed volume fill rates for the compound Poisson and “Add undershoot”-method set out against
the SKUs’ target volume fill rates

Figure 5.4: The observed stock on hand levels for the compound Poisson and “Add undershoot”-method set out
against the SKUs’ baseline stock on hand levels

Finally, we refer to Figure 5.5, where we clearly see the difference in performance between the three
methods at hand. Multi-modal order line sizes SKUs perform best on volume fill rate when modelling
them with the compound Poisson distribution, with slightly more stock on hand. On the other hand, the
“Add undershoot”-method has a relatively smaller increase of volume fill rate, and needs more stock on
hand. For unimodal order line size SKUs, we see that the compound Poisson method needs less stock
hand but also gets somewhat more unstable (many SKUs’ volume fill rates improve, yet the average is
lower, compared to the standard method). The “Add undershoot”-method provides more performance
with regards to volume fill rate, but the stock on hand also increases considerably.
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Figure 5.5: The 22 multi-modal and 16 unimodal order line size SKUs and their performance for the two best-
performing methods and the standard approach. The clouds represent the centre of gravity of the performance of
each method.

5.8 Conclusions

We now answer the sub research questions, and the main research question for our experiment:

a. Which data are needed and how do we gather them?
We need the following information about SKU-shop combinations: SKU code, shop identifier, replen-
ishment minimum order quantity, replenishment incremental order quantity, target volume fill rate.
Next, we need point-of-sales data, also taking place on SKU-shop level, which is gathered through
digital shopping receipts: SKU code, shop identifier, sold quantity, and transaction date. Data is
gathered through connections with the SQL-database of the companies of research.

b. Which of the methods and heuristics for generating ordering policies performs best?
We found clear distinctions between the two types of SKUs for most heuristics. Multi-modal order
line size SKUs’ inventories can at best be managed by using a target fill rate compound Poisson
distribution. When doing so, the order line size distribution is incorporated as compounding dis-
tribution. This method provides an average observed volume fill rate that is 8.31%-point higher
than currently, with 47.12% more stock on hand. For the other type of SKUs, the unimodal order
line size SKUs, we found the “Add undershoot”-method to perform best. Hence, by incorporating
the expected undershoot due to the order line size distribution and the review frequency, we can
increase the observed volume fill rate by 1.98%-point, with 13.16% more stock on hand. Yet, since
we can also adjust the standard approach to have extremely high target fill rates of 99%, which yields
very similar results. So, we would not recommend to implement this method yet, since it yields no
significant improvement compared to “stretching” the current way of working.

Finally, we conclude this chapter by answering the main research question of the experiment:
Which heuristic performs best on both the products classified and not classified as ‘multi-modal order

line size SKUs’?
As discussed when answering this chapter’s research question [c.], there is no heuristic that performs best
on both classifications. But as it is very well possible to clearly classify SKUs through our classification
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method, there is no need any more for a “one size fits all’ method for both types of SKUs. The SKUs
of which the order line size distribution is classified as unimodal, ought to stay at the standard methods
using a target fill rate constraint, and in addition they should incorporate the undershoot effect, as pilot
for further testing. For the other class, the multi-modal order line size SKUs, the compound Poisson
distribution should be used for modelling demand and handling inventory.





Conclusions and recommendations

We conclude our research by briefly summing up the conclusions on the research questions. Next, we
formulate recommendations on implementing our solution.

Conclusions

1. How can the inventory management at best incorporate multi-modal order line demand?
Slim4 works with demand classes that take into account both the total demand during a period of time,
and the customer arrival rate, no information on order line size is included. Yet, a large number of SKUs
have such a specific order line distribution, hence it would be interesting to include this element into the
inventory model. Currently, 67.61% of the multi-modal order line size SKUs from our dataset reach their
target fill rate (for lost sales, for back-ordering this amounts 67.61% as well). The other type of SKU
performs slightly worse on average (though there are three SKUs responsible for a big drop of average
volume fill rate), with 64.15% and 64.52% of the SKUs meeting their target volume fill rate.

Hence, breaking the standard thinking of demand as total demand per period of time into a customer
arrival rate and an order line size component seems interesting. By incorporating new inventory policies
we attempt to serve more demand, as the stock on hand should never drop to a useless level: the amount
of items that no customer wants to buy (for example three mugs). We found that the most issues with
standard methods often arise in SKUs that are ordered at the supplier in small batches (for company X in
at most packs of six), have high median order line sizes (for company X on average approximately 2.5), are
slow-moving (for company X with not more than 30 customer orders per year), have small probabilities of
selling less than 1 or 2 item(s) per order line, and in general have slightly lower target fill rates.

2. What can we learn from literature about optimization of multi-modal order line size SKUs inventory?
Sales can be transformed into true demand by enriching data with theoretical distributions, or through
an empirical distribution. However, this is not preferable, as we do not have access to daily inventory
level data, nor is it valid in our setting to only accommodate for larger order line sizes and not on other
unobserved lost sales. So, we assume demand to equal sales. The demand process can at best be modelled
via a compound Poisson process, therein focussing on the order line size distribution. We prefer to develop
our own method for classifying SKUs based on their empirical distribution.

To the best of our knowledge there is hardly any research done on identifying modes within order
line size distribution, except for mixture models. As we prefer the empirical distribution over a mixture
of theoretical distributions, and for mixing the empirical distribution would make no sense, we feel the
urge to develop our own method for classifying SKUs on their order line size distribution. Thus, we
answer research question 2a by stating that we prefer to develop our own method for classifying SKUs
based on their empirical distribution. The most important heuristics from literature for incorporating
the ‘multi-modal order line size effect’ from SKUs classified as such, focus on incorporating the order
line size distribution into safety stock and reorder points. Safety stock determinations are divided into
either a direct service level method, an approximation, Poisson-based method, including undershoot, and a
base stock level approximative method. The reorder point calculation methods include a distribution-free
method.

59
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3. How can the inventory management at best incorporate multi-modal order line demand?
We have obtained three heuristics: the “Overwrite”-, “Max”-, and “First moment β∗”-method, for di-
rectly incorporating the empirical order line size distribution. These heuristics are based on the expected
undershoot, or a target fill rate altered first moment. Second, we incorporate for example a compound
Poisson method from literature, that indirectly comprises the empirical order line size distribution. Next,
we measure performance mainly in terms of volume fill rate and average stock on hand, followed by the
observed order line fill rate. Yet, we cannot determine which method performs best a priori, so we need
to test the methods.

4. Which heuristic performs best on both the products classified and not classified as ‘multi-modal order
line size SKUs’?
We have derived our own method of classifying, which we based on (and validated with) earlier methods
with an expert panel. This leads to the classification of mainly SKU groups like cutlery and dining room
equipment as they show a multi-modal order line size distribution. We have abolished our heuristic for
setting the reorder point, and we have narrowed down to heuristics for safety stocks. Distinctions between
the two types of SKUs are clear for most heuristics. Multi-modal order line size SKUs’ inventories can at
best be managed by using a target fill rate compound Poisson distribution. When doing so, the order line
size distribution is incorporated as compounding distribution. This method provides an average observed
volume fill rate that is 8.31%-point higher than currently, with 47.12% more stock on hand. When back-
ordering is assumed, these values are 8.42%-point and 47.61%. For the other type of SKUs, the unimodal
order line size SKUs, we found the “Add undershoot”-method to perform best. Hence, by incorporating
the expected undershoot due to the order line size distribution and the review frequency, we can increase
the observed volume fill rate by 1.98%-point, with 13.16% more stock on hand. Again, for back-ordering,
these values amount 1.76%-point and 13.08%. However, if we set the target fill rates equal to 99% in the
standard model, we obtain similar observed fill rates, making it uncertain whether this “Add undershoot”
truly is better than the standard approach. There is no heuristic that performs best on both classifications.
But as we clearly classify the SKUs, there is no need any more for a ‘one size fits all’ method for both
types of SKUs.

Recommendations

We propose recommendations for implementation of our solution for Slimstock. Where possible we provide
practical and managerial implications.

First, the classification scheme as we have developed in Section 5.1 should be implemented as such.
The standard exact configuration of looking at the five most occurring order line sizes could be extended
for SKUs being sold in many distinct order line sizes. In addition, the threshold should be re-established
when including more modes. Henceforth, the first results for other retail clients’ data should be useful for
further verification and fine-tuning of the scheme. As two classes are comprises we recommended to add
one boolean attribute to each SKU, with 0 for unimodal order line size SKUs, and 1 for multi-modal order
line size SKUs. Classification itself is already implemented in Microsoft Excel, but it can rather easily be
done in the SQL-databases as well.

Next, SKUs with multi-modal demand should be modelled through a compound Poisson distribution.
This distribution incorporates the specific order lines, and works well for SKUs that do not sell often.
Consequently, inventory should be held based on a target fill rate constraint, just like the standard situation.
Currently, this method involves a cumbersome calculation implemented in Microsoft Excel. We propose to
stick to these calculations, and implement them in Slim4, as transferring from and to Excel is no option.
No extra data is required, since we remain at target fill rates and data on order line sizes is already present.
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Furthermore, we do not propose to implement the “Add undershoot”-method for unimodal order line
size SKUs yet. Although in this way the undershoot is correctly considered, thereby leading to less
occurrences of ‘useless inventory’, and increasing the volume fill rate, the difference with the standard
model is not significant. By simply increasing the target fill rates to 99% we obtain similar results, which
diminishes the added value of a new, to be implemented, heuristic. Since our focus was not on this type
of SKU, more practical research should be conducted on improving this method, since we acknowledge
its theoretical added value. We ran our experiment with constant review periods, which impacts the
undershoot review frequency component. Its sensitivity for other lengths of review periods should be
found, before implementing this component of the undershoot. Next, it would be interesting to start with
adding two attributes, namely the expected undershoot due to the order line size distribution and its
variance. In the meantime, we advice not to change the safety stock determination for unimodal order line
size SKUs.

Finally, our recommendations touch upon the core of an inventory model, namely demand modelling
and replenishment order advice generation. Therefore, it is of utmost importance that a long-term pilot
is executed. During this period the impact of aspects such as trends, seasonality, and promotion, on the
“Add undershoot”- and compound Poisson method should be researched. We propose to execute a pilot
among both existing and new clients, and to run it parallel to the standard Slim4 implementation. The
volume fill rate and average stock level for multi-modal order line size SKUs (assuming sales are lost in
case of insufficient stock on hand), should on average be around 8%-point higher and 45-50% higher for
our solution. For unimodal order line size SKUs this range should be 2%-point and 13%.





Discussion and future research

Now that we have completed our research it is time to critically reflect on the project and to provide
directions for future research. We present two main topics for discussion and eight directions for future
research.

Discussion

First of all we have tested the different methods within our inventory model with empiric data. Data was
limited, as we had six months of transactions. However, more history would simply mean more accuracy
in results. This could also have been accomplished by implementing a theoretical probability distribution
for the demand process, as long-term simulation is then a possibility. Another possibility was to abolish
the SKU-shop combinations having less than a threshold transactions within the six months. Namely,
small numbers of transactions led to trivial performances. For example, if two out of four transactions
coincidentally have rarely-occurring sizes and insufficient stock levels, fill rates are only 50%. On the other
hand, if only one transaction takes place, which is successful, the fill rate equals 100%. Yet, performance
is only based on one successful instance.

Next, we had some difficulties in programming our Excel spreadsheet in the right way to quickly
run through the experiment. One could imagine that loading 64,393 transactions for 2,888 SKU-shop
combinations, running through 12 configurations for controlling inventory, and measuring performance,
gets quite cumbersome in Excel. Yet, due the limited period of time, and the lack of a good alternative,
programming in Excel was the best option. Nevertheless, we are confident that Slimstock can follow-up
our recommendations in their software, which is not based on Excel nor VBA-code.

Future research

Next, there have been some topics we stumbled upon during our project that are worth researching in
the future. First of all, it would be interesting to gather data on the true demand distribution of the
multi-modal order line size SKUs. It is a possibility to consult customers either during the point of sale
(e.g.: “Was this the right amount of items, or did you want to buy more items of this SKU or any other
SKU?”), or when customers leave the shop empty-handed (e.g.: “Did you observe insufficient inventory
of the SKU of your interest?”). This would greatly contribute to insights on a ‘truly expected’ order line
size, and how much inventory should be minimally kept (the safety stock).

Furthermore, in accordance with the aforementioned direction for future research, it would also be
possible to transform historic sales into demand in a more theoretic way. If correct censor rates could
be obtained, the censored data (i.e.: lost sales are unobservable in the transaction data as they are not
registered) could be directly used if transformed correctly. We suggest that both small order line sizes
(customers only wanting one single mug tend to leave the shops without wanting to back-order) and big
order line sizes are censored.

A retailer should think about the balance between stock level and (volume) fill rate. As we have seen,
multi-modal order line size SKUs can show higher volume fill rates through different heuristics. Roughly
speaking, these heuristics yield different service levels against different increased stock levels. The degree
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to which a retailer would want to increase the SKU’s stock level, should be further researched, as this
would effect the definition of ‘best’ heuristic.

We chose to leave the mixture modelling topic for modelling customer demand. We still believe it
would be an interesting way for being able to find a theoretical distribution for demand. Yet, methods
should be developed to find a method to adequately fit each SKU to a mixture distributions automatically.
Furthermore, implications for the inventory model when using for example a mixture of negative binomial
distributions for the order line size demand distribution should be researched. Hence, which assumptions
for calculating safety stock are still valid, or perhaps new methods for calculating safety stock should be
derived.

Next, in our research we assumed that the order line size distribution would not be impacted by trends
or seasons. More research however would be needed to find out if this order line size distribution indeed
does not differ significantly. Furthermore, the (long-term) effects of promotion on the order line size
distribution is an interesting extension for our findings. In this same line of reasoning, we hypothesize that
attributes like the physical location (in the city centre or outside the city with big parking lots) influences
the order line size distribution. Therefore, this could be taken into account when constructing an inventory
policy for this location.

Furthermore, we took one of the aspects of an inventory model very static: the moment of ordering
and replenishment. Namely, both the review period and lead time were set deterministically, and both are
equal to one week. This however influences the inventory model, and it would be interesting to research
what the influence of releasing this assumption would mean for our heuristics for incorporating the order
line size distribution.

It could be interesting to evaluate other values for the BO-factor as well, e.g. values 1.1 (everything
right above the average order line size is back-ordered), and 7 (in this setting the BO threshold already
reach ‘business-to-business order lines’ of for example 21 plates). This range of states for parameter BO
would provide interesting insights on the impact of this conditional back-ordering setting. This contributes
to the effectiveness of the conditional back-ordering setting, which is currently not very effective.

Finally, more research can be done in developing a decision support system for environments in which
customers cannot pick their items from shelf but are helped by the shop instead. In such settings, it would
be interesting to help decisions like serving a big order line, given a certain order line size distribution, the
standard stock on hand, and the remaining expected demand until replenishment.
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Appendices

A Analysis problem size

First we investigate the slow-movers, by postulating that if SKUs have a multi-modal order demand
pattern, then their most frequently sold order line sizes should have a reasonable big discrepancy between
their median and mean. To this end we investigated the six most frequently sold order line sizes per SKU,
in order to get a representative view on the top-selling order line sizes. As metric for dispersion we needed
a ratio variable without unit, in order to compare the SKUs of varying order line sizes. We took the ratio
of median divided by mean as measure, since a value close to 1 would suggest a smoothly distributed
order pattern. Henceforth, SKUs having a median/mean-ratio substantially lower or higher than 1, were
classified as ‘interesting for further research’. All SKUs were visually checked through figures like Figure
A1, acting as confirmation of our classification.

Figure A1: Order line size figure of slow-moving SKU with non-smoothly distributed order line sizes, clearly
multi-modal

Secondly, we investigated the fast-movers. When looking at the figures of the fast-movers, roughly two
subcategories were seen by a panel of experts (my external supervisor and his colleague), namely SKUs
whose order line sizes resembled a (combination of) Poisson-distributed pattern(s) (see Figure A2 for a
presumably uni-modal Poisson-mixture example) and patterns that resembled an approximative straight
line (see Figure A3 for presumably multi-modal example due to big discrepancies with a linear trend).
This led to a categorization based on the skewness of all the sales data of the SKUs (not just its top-6
order line sizes). In agreement with this panel of experts, we found that all SKUs skewed 1,75 or less -
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so, hardly skewed - roughly resemble a straight line, and on the other hand all SKUs skewed more than
1,75 roughly resemble a Poisson distribution. This value of 1,75 was empirically found by looking at the
figures, and all SKUs with a skewness close to 1,75 were manually classified. Finally, all SKUs from these
two subcategories were manually reviewed by the panel of experts, and when either a big discrepancy with
the trend line (in case of the ‘straight line’-category) or a graphically well-visible second (and consequently
third, or even fourth) maximum (in case of the Poisson distribution) was seen, we classified the SKU as
‘interesting for further research’.

Figure A2: Order line size figure of fast-moving SKU, presumably a simple mixture distribution

Figure A3: Order line size figure of fast-moving SKU, presumably approximately monotonically decreasing



B VBA code for experiment

VBA code as implemented in Chapter 5 is found in Figure B1.

Figure B1: VBA code as implemented in our experiment
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C Numerical results

SKU Category MOQ/IOQ Median X
#order
lines

Total demand
(items) β∗ P(X ≤ 1) P(X ≤ 2)

MM SKU 1 Kitchen equipment 12 4 6.73 3,062 98.03% 12.40% 39.53%
MM SKU 2 Cutlery 12 3 2.68 506 96.17% 24.75% 56.44%
MM SKU 3 Cutlery 12 5 1.78 707 96.94% 19.63% 34.58%
MM SKU 4 Kitchen equipment 6 2 7.06 1,938 97.77% 18.85% 44.26%
MM SKU 5 Kitchen equipment 6 1 5.79 1,185 96.98% 24.14% 50.00%
MM SKU 6 Kitchen equipment 6 2 3.63 713 95.96% 29.13% 70.87%
MM SKU 7 Kitchen equipment 6 2 4.83 1,259 97.04% 27.06% 64.71%
MM SKU 8 Kitchen equipment 6 2 3.62 1,066 97.12% 18.10% 48.57%
MM SKU 9 Kitchen equipment 36 2 9.99 2,703 97.94% 27.38% 60.71%
MM SKU 10 Kitchen equipment 6 2 3.58 1,064 96.78% 20.00% 40.00%
MM SKU 11 Kitchen equipment 12 5 3.61 2,011 97.87% 16.21% 53.12%
MM SKU 12 Kitchen equipment 4 3 3.60 1,480 97.48% 28.21% 48.72%
MM SKU 13 Kitchen equipment 6 2 2.90 855 96.59% 30.19% 79.25%
MM SKU 14 Kitchen equipment 6 2 3.74 1,127 96.93% 10.00% 50.00%
MM SKU 15 Kitchen equipment 6 2 3.40 1,095 96.62% 22.22% 66.67%
MM SKU 16 Kitchen equipment 6 2 5.75 1,808 98.17% 12.50% 25.00%
MM SKU 17 Kitchen equipment 6 2 4.95 1,241 97.35% 34.43% 69.81%
MM SKU 18 Kitchen equipment 6 4 3.56 1,450 97.70% 55.61% 86.22%
MM SKU 19 Kitchen equipment 6 2 12.97 4,843 98.78% 48.28% 85.06%
MM SKU 20 Kitchen equipment 6 2 3.70 1,036 97.22% 30.33% 71.31%
MM SKU 21 Kitchen equipment 6 2 3.15 529 97.48% 28.28% 60.61%
MM SKU 22 Kitchen equipment 4 2 2.21 432 97.19% 40.00% 64.00%
Average multi-modal order line size SKUs 8.27 2.50 4.69 1,460 97.28% 26.26% 57.70%
UM SKU 23 Others 36 1 17.26 2,399 98.66% 48.76% 75.48%
UM SKU 24 Others 12 2 75.30 9,238 99.00% 46.45% 79.04%
UM SKU 25 Others 12 1 10.87 2,478 98.33% 52.07% 80.18%
UM SKU 26 Others 12 1 53.32 8,618 98.59% 58.07% 83.26%
UM UM SKU 27 Others 30 1 40.62 7,212 98.98% 56.05% 83.77%
UM SKU 28 Others 12 1 35.48 4,791 98.96% 87.24% 95.81%
UM SKU 29 Others 24 1 11.80 2,466 97.61% 44.92% 73.31%
UM SKU 30 Others 24 1 58.96 11,329 98.07% 52.01% 79.93%
UM SKU 31 Others 12 1 64.72 2,714 98.88% 80.08% 93.68%
UM SKU 32 Others 12 1 22.68 3,622 98.78% 70.19% 89.72%
UM SKU 33 Others 12 1 42.44 10,243 97.54% 52.11% 79.83%
UM SKU 34 Others 12 1 40.98 9,121 97.95% 49.15% 76.06%
UM SKU 35 Others 10 3 3.30 976 96.57% 27.78% 52.78%
UM SKU 36 Others 12 1 50.73 7,911 98.97% 73.64% 92.99%
UM SKU 37 Others 12 2 24.34 6,085 98.94% 41.58% 82.46%
UM SKU 38 Others 30 1 13.33 2,623 98.23% 61.18% 84.65%
Average unimodal order line size SKUs 17.13 1.25 35.38 5,739 98.38% 56.33% 81.43%
Differences between averages -51.69% 45.45% -86.74% -1.12% -74.57% 41.29% 69.57%
Average - total 12.70 2.45 20.04 3,599 97.83% -53.38% -29.14%

Table C1: SKUs of research with their static data
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Lost sales Conditional back-ordering Full back-ordering
SKU SoH β γ SoH β γ SoH β γ
MM SKU 1 14.53 91.71% 94.71% 14.85 95.54% 96.13% 14.52 91.80% 94.87%
MM SKU 2 13.10 97.51% 98.88% 13.11 97.51% 98.88% 13.13 97.51% 98.88%
MM SKU 3 13.35 94.12% 95.38% 13.33 94.12% 95.38% 13.39 94.12% 95.38%
MM SKU 4 6.73 86.22% 90.13% 6.71 87.49% 90.08% 6.86 86.83% 91.47%
MM SKU 5 6.11 88.52% 92.81% 6.09 88.39% 92.47% 6.02 87.88% 92.56%
MM SKU 6 6.03 94.77% 95.47% 6.05 94.85% 95.47% 6.08 94.53% 95.35%
MM SKU 7 6.72 90.04% 93.18% 6.70 91.33% 93.19% 6.94 89.96% 92.96%
MM SKU 8 6.83 86.52% 92.60% 6.75 86.76% 92.60% 6.75 87.40% 93.06%
MM SKU 9 34.15 94.57% 95.98% 34.29 95.94% 96.46% 34.33 95.63% 97.00%
MM SKU 10 7.01 92.26% 94.58% 7.01 93.24% 94.58% 6.98 90.65% 93.76%
MM SKU 11 12.83 89.93% 91.46% 12.68 90.52% 90.93% 12.81 90.76% 92.48%
MM SKU 12 6.19 84.05% 88.24% 6.19 85.34% 87.85% 6.22 84.55% 89.31%
MM SKU 13 6.67 79.10% 85.51% 6.68 80.29% 85.69% 6.73 79.21% 86.14%
MM SKU 14 6.80 91.19% 93.02% 6.77 91.39% 93.02% 6.61 90.90% 92.94%
MM SKU 15 6.17 80.21% 87.83% 6.19 82.71% 88.15% 6.17 78.64% 86.77%
MM SKU 16 7.42 81.72% 88.95% 7.41 81.75% 89.21% 7.44 81.18% 89.01%
MM SKU 17 6.41 79.14% 84.59% 6.38 80.93% 84.30% 6.50 80.77% 86.35%
MM SKU 18 7.67 81.16% 87.17% 7.66 81.16% 87.17% 7.54 79.11% 85.65%
MM SKU 19 9.72 90.18% 93.07% 9.71 92.02% 93.19% 9.72 89.66% 92.67%
MM SKU 20 5.92 77.68% 82.92% 5.90 81.76% 82.25% 5.97 78.68% 84.04%
MM SKU 21 6.36 78.99% 85.97% 6.31 80.18% 85.35% 6.34 79.73% 86.29%
MM SKU 22 4.48 83.89% 87.79% 4.37 83.55% 87.30% 4.30 82.82% 87.90%
Avg. MM 9.15 86.98% 90.92% 9.14 88.04% 90.89% 9.15 86.92% 91.13%
UM SKU 23 27.48 93.02% 96.47% 26.81 96.18% 96.89% 27.86 94.56% 97.05%
UM SKU 24 13.84 76.45% 81.52% 13.89 89.55% 82.04% 14.12 77.42% 81.90%
UM SKU 25 10.02 94.11% 95.68% 10.00 95.93% 95.22% 10.01 93.87% 95.78%
UM SKU 26 33.03 97.55% 98.20% 32.98 98.69% 98.22% 33.07 97.63% 98.24%
UM SKU 27 24.39 95.47% 97.62% 24.37 96.35% 97.66% 24.39 96.09% 97.79%
UM SKU 28 10.42 92.45% 95.39% 10.42 93.59% 95.40% 10.41 92.42% 95.27%
UM SKU 29 27.57 96.60% 97.49% 27.49 97.66% 97.63% 27.41 96.49% 97.55%
UM SKU 30 24.46 87.42% 89.21% 24.44 93.51% 89.73% 24.51 87.52% 89.37%
UM SKU 31 13.27 82.22% 84.61% 13.14 91.40% 84.81% 13.20 82.71% 85.45%
UM SKU 32 9.89 94.68% 96.78% 9.88 95.96% 96.57% 9.90 94.64% 96.89%
UM SKU 33 53.04 94.34% 94.71% 53.12 97.54% 94.95% 53.54 94.87% 95.26%
UM SKU 34 52.98 95.19% 96.54% 53.10 97.41% 96.62% 53.10 95.08% 96.63%
UM SKU 35 9.97 90.89% 93.35% 9.97 91.84% 93.35% 9.97 91.75% 94.06%
UM SKU 36 13.65 94.54% 95.86% 13.62 97.31% 95.70% 13.65 94.75% 95.96%
UM SKU 37 13.24 94.92% 96.90% 13.19 96.47% 97.04% 13.29 95.20% 97.13%
UM SKU 38 19.69 98.29% 98.79% 19.66 98.44% 98.90% 19.61 98.19% 98.79%
Avg. UM 22.31 92.38% 94.32% 22.25 95.49% 94.42% 22.38 92.70% 94.57%
Difference -59.01% -5.85% -3.60% -58.92% -7.81% -3.74% -59.10% -6.23% -3.64%
Avg. total 15.73 89.68% 92.62% 15.70 91.76% 92.66% 15.76 89.81% 92.85%

Table C2: Comparison performance standard method for all three out-of-stock configurations
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Lost sales Full back-ordering
SKU SoH β γ ss s SoH β γ ss s
MM SKU 1 14.53 91.71% 94.71% 5.21 9.50 14.52 91.80% 94.87% 5.18 9.41
MM SKU 2 13.10 97.51% 98.88% 0.78 2.27 13.13 97.51% 98.88% 0.79 2.29
MM SKU 3 13.35 94.12% 95.38% 0.75 1.83 13.39 94.12% 95.38% 0.76 1.83
MM SKU 4 6.73 86.22% 90.13% 2.43 4.53 6.86 86.83% 91.47% 2.46 4.86
MM SKU 5 6.11 88.52% 92.81% 1.49 3.36 6.02 87.88% 92.56% 1.51 3.40
MM SKU 6 6.03 94.77% 95.47% 0.53 1.81 6.08 94.53% 95.35% 0.56 1.86
MM SKU 7 6.72 90.04% 93.18% 1.90 3.81 6.94 89.96% 92.96% 1.93 3.83
MM SKU 8 6.83 86.52% 92.60% 1.58 3.28 6.75 87.40% 93.06% 1.61 3.28
MM SKU 9 34.15 94.57% 95.98% 0.22 1.41 34.33 95.63% 97.00% 0.22 1.42
MM SKU 10 7.01 92.26% 94.58% 2.07 3.85 6.98 90.65% 93.76% 2.11 3.86
MM SKU 11 12.83 89.93% 91.46% 3.06 5.34 12.81 90.76% 92.48% 3.09 5.36
MM SKU 12 6.19 84.05% 88.24% 3.07 5.08 6.22 84.55% 89.31% 3.10 5.21
MM SKU 13 6.67 79.10% 85.51% 1.11 2.41 6.73 79.21% 86.14% 1.14 2.44
MM SKU 14 6.80 91.19% 93.02% 1.65 3.44 6.61 90.90% 92.94% 1.69 3.46
MM SKU 15 6.17 80.21% 87.83% 1.16 2.34 6.17 78.64% 86.77% 1.18 2.38
MM SKU 16 7.42 81.72% 88.95% 2.55 4.58 7.44 81.18% 89.01% 2.56 4.59
MM SKU 17 6.41 79.14% 84.59% 1.52 2.91 6.50 80.77% 86.35% 1.55 3.20
MM SKU 18 7.67 81.16% 87.17% 2.70 4.67 7.54 79.11% 85.65% 2.72 4.69
MM SKU 19 9.72 90.18% 93.07% 5.59 9.97 9.72 89.66% 92.67% 5.61 10.00
MM SKU 20 5.92 77.68% 82.92% 0.58 1.47 5.97 78.68% 84.04% 0.59 1.51
MM SKU 21 6.36 78.99% 85.97% 1.01 2.18 6.34 79.73% 86.29% 1.04 2.18
MM SKU 22 4.48 83.89% 87.79% 0.26 1.03 4.30 82.82% 87.90% 0.27 1.03
Avg. MM 9.15 86.98% 90.92% 1.87 3.68 9.15 86.92% 91.13% 1.89 3.73
UM SKU 23 27.48 93.02% 96.47% 6.35 13.03 27.86 94.56% 97.05% 6.37 13.05
UM SKU 24 13.84 76.45% 81.52% 8.31 18.47 14.12 77.42% 81.90% 8.33 18.53
UM SKU 25 10.02 94.11% 95.68% 2.44 5.23 10.01 93.87% 95.78% 2.45 5.28
UM SKU 26 33.03 97.55% 98.20% 17.38 33.93 33.07 97.63% 98.24% 17.47 34.04
UM SKU 27 24.39 95.47% 97.62% 6.53 16.27 24.39 96.09% 97.79% 6.55 16.32
UM SKU 28 10.42 92.45% 95.39% 3.34 7.96 10.41 92.42% 95.27% 3.35 7.98
UM SKU 29 27.57 96.60% 97.49% 1.48 4.56 27.41 96.49% 97.55% 1.50 4.56
UM SKU 30 24.46 87.42% 89.21% 9.35 18.87 24.51 87.52% 89.37% 9.42 18.94
UM SKU 31 13.27 82.22% 84.61% 6.08 12.84 13.20 82.71% 85.45% 6.10 12.84
UM SKU 32 9.89 94.68% 96.78% 2.86 6.62 9.90 94.64% 96.89% 2.87 6.63
UM SKU 33 53.04 94.34% 94.71% 38.33 55.01 53.54 94.87% 95.26% 38.56 55.30
UM SKU 34 52.98 95.19% 96.54% 38.14 55.28 53.10 95.08% 96.63% 38.31 55.44
UM SKU 35 9.97 90.89% 93.35% 0.76 2.23 9.97 91.75% 94.06% 0.77 2.24
UM SKU 36 13.65 94.54% 95.86% 5.48 13.60 13.65 94.75% 95.96% 5.49 13.61
UM SKU 37 13.24 94.92% 96.90% 5.39 11.28 13.29 95.20% 97.13% 5.41 11.28
UM SKU 38 19.69 98.29% 98.79% 1.40 4.33 19.61 98.19% 98.79% 1.41 4.36
Avg. UM 22.31 92.38% 94.32% 9.60 17.47 22.38 92.70% 94.57% 9.65 17.52
Difference -59.01% -5.85% -3.60% -80.47% -78.91% -59.10% -6.23% -3.64% -80.36% -78.71%
Avg. total 15.73 89.68% 92.62% 5.74 10.58 15.76 89.81% 92.85% 5.77 10.63

Table C3: Performance of standard method
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Lost sales Full back-ordering
SKU SoH β γ ss s SoH β γ ss s
MM SKU 1 17.48 94.42% 96.54% 8.21 12.35 17.62 94.04% 96.26% 8.25 12.37
MM SKU 2 15.15 98.67% 99.09% 2.54 4.12 15.15 98.67% 99.09% 2.56 4.12
MM SKU 3 16.84 97.60% 98.55% 4.22 5.44 16.89 97.60% 98.55% 4.23 5.44
MM SKU 4 8.19 92.71% 95.29% 3.85 6.15 8.18 92.73% 95.34% 3.87 6.17
MM SKU 5 6.95 92.24% 95.00% 2.40 4.20 6.93 92.06% 94.94% 2.42 4.23
MM SKU 6 6.85 96.19% 97.18% 1.34 2.59 6.80 95.95% 97.06% 1.37 2.59
MM SKU 7 8.32 93.71% 95.25% 3.32 5.07 8.35 94.46% 95.93% 3.35 5.08
MM SKU 8 8.29 92.09% 95.62% 3.15 4.80 8.29 92.72% 96.08% 3.18 4.80
MM SKU 9 35.14 95.37% 96.90% 1.50 2.48 35.36 96.08% 97.56% 1.51 2.48
MM SKU 10 8.54 93.77% 96.63% 3.81 5.70 8.53 93.24% 96.19% 3.85 5.74
MM SKU 11 16.08 94.59% 96.39% 6.29 8.83 16.13 94.96% 96.30% 6.31 8.83
MM SKU 12 8.30 90.74% 93.68% 5.18 7.32 8.24 90.25% 93.44% 5.21 7.32
MM SKU 13 8.41 89.69% 93.26% 2.83 4.19 8.43 89.08% 92.85% 2.86 4.19
MM SKU 14 8.00 96.24% 96.64% 3.16 4.74 7.89 95.95% 96.49% 3.20 4.76
MM SKU 15 7.88 86.95% 92.18% 2.73 4.30 7.88 86.22% 91.79% 2.75 4.32
MM SKU 16 9.42 89.51% 93.68% 4.66 6.67 9.45 88.73% 93.29% 4.68 6.67
MM SKU 17 7.85 88.21% 92.47% 2.86 4.35 7.81 88.32% 92.53% 2.90 4.40
MM SKU 18 9.90 90.14% 93.02% 5.12 6.99 9.83 89.69% 92.61% 5.14 6.99
MM SKU 19 11.96 94.33% 95.97% 8.08 12.36 11.96 94.42% 96.26% 8.10 12.36
MM SKU 20 6.87 85.19% 89.44% 1.53 2.52 6.83 84.77% 89.19% 1.54 2.52
MM SKU 21 7.76 85.03% 90.76% 2.53 3.68 7.77 85.30% 91.48% 2.55 3.68
MM SKU 22 5.32 87.55% 90.98% 1.26 2.03 5.15 87.46% 91.91% 1.26 2.03
Avg. MM 10.89 92.04% 94.75% 3.66 5.49 10.89 91.94% 94.78% 3.68 5.50
UM SKU 23 31.76 96.52% 98.31% 10.43 17.11 32.05 96.52% 98.31% 10.45 17.16
UM SKU 24 16.97 81.76% 85.47% 11.60 21.87 17.09 81.94% 85.47% 11.62 21.87
UM SKU 25 11.11 95.38% 96.82% 3.70 6.60 11.18 96.25% 97.32% 3.72 6.60
UM SKU 26 37.77 97.93% 98.39% 22.42 38.96 37.89 98.06% 98.44% 22.51 39.07
UM SKU 27 28.20 96.80% 98.47% 10.14 19.93 28.27 97.55% 98.73% 10.17 19.95
UM SKU 28 11.69 93.96% 96.53% 4.73 9.26 11.65 93.63% 96.21% 4.75 9.26
UM SKU 29 29.75 97.01% 98.04% 3.91 6.78 29.65 96.86% 97.99% 3.92 6.80
UM SKU 30 27.26 90.62% 92.03% 12.70 22.13 27.30 90.80% 92.12% 12.77 22.23
UM SKU 31 14.98 84.71% 86.68% 8.11 14.92 15.08 85.24% 87.27% 8.13 14.92
UM SKU 32 11.05 95.79% 97.51% 4.16 7.84 10.96 95.47% 97.36% 4.17 7.85
UM SKU 33 58.33 95.71% 95.98% 43.55 60.28 58.66 95.99% 96.23% 43.78 60.52
UM SKU 34 58.44 97.43% 98.13% 43.70 60.79 58.64 97.56% 98.33% 43.87 61.08
UM SKU 35 11.54 94.57% 96.32% 2.25 3.46 11.53 94.05% 96.06% 2.26 3.47
UM SKU 36 15.88 96.24% 96.99% 7.90 15.96 15.91 96.41% 97.26% 7.91 15.99
UM SKU 37 15.48 96.90% 98.26% 7.53 13.40 15.41 96.61% 98.05% 7.55 13.43
UM SKU 38 20.92 98.42% 98.98% 2.80 5.67 20.85 98.42% 98.98% 2.81 5.68
Avg. UM 25.07 94.36% 95.81% 12.48 20.31 25.13 94.46% 95.88% 12.52 20.37
Difference -56.57% -2.46% -1.10% -70.65% -72.95% -56.69% -2.67% -1.15% -70.58% -72.97%
Avg. total 17.98 93.20% 95.28% 8.07 12.90 18.01 93.20% 95.33% 8.10 12.94

Table C4: Performance of “Add undershoot”-method
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Lost sales Full back-ordering
SKU SoH β γ ss s SoH β γ ss s
MM SKU 1 12.65 87.72% 92.21% 3.07 7.08 12.57 88.04% 92.43% 3.07 7.08
MM SKU 2 14.59 95.48% 97.19% 1.76 3.46 14.55 94.96% 96.92% 1.76 3.46
MM SKU 3 15.69 97.60% 98.55% 3.45 4.37 15.67 97.07% 98.09% 3.45 4.37
MM SKU 4 5.88 85.02% 89.38% 1.41 3.60 5.80 82.70% 88.32% 1.41 3.60
MM SKU 5 5.55 89.20% 92.26% 0.91 2.56 5.49 87.90% 91.41% 0.91 2.56
MM SKU 6 6.42 94.56% 96.18% 0.81 2.17 6.40 94.83% 96.23% 0.81 2.17
MM SKU 7 6.39 89.46% 92.76% 1.42 3.46 6.34 89.29% 93.09% 1.42 3.46
MM SKU 8 6.70 86.22% 91.34% 1.57 3.38 6.63 87.82% 92.54% 1.57 3.38
MM SKU 9 35.00 95.00% 96.47% 1.28 2.28 35.16 95.78% 97.25% 1.28 2.28
MM SKU 10 6.81 91.26% 93.65% 1.74 3.53 6.79 89.89% 92.97% 1.74 3.53
MM SKU 11 13.13 90.15% 92.81% 3.22 5.75 13.10 90.73% 93.44% 3.22 5.75
MM SKU 12 5.37 81.13% 86.89% 2.11 4.34 5.38 80.92% 86.97% 2.11 4.35
MM SKU 13 7.67 86.96% 91.56% 1.72 3.37 7.66 86.09% 91.32% 1.72 3.37
MM SKU 14 6.48 89.67% 92.12% 1.51 3.30 6.36 89.49% 91.96% 1.51 3.30
MM SKU 15 6.88 80.83% 87.44% 1.57 3.24 7.03 81.77% 88.47% 1.57 3.24
MM SKU 16 6.92 79.38% 86.72% 2.11 3.81 6.91 79.73% 87.12% 2.11 3.81
MM SKU 17 6.16 79.90% 85.62% 1.33 2.54 6.10 79.92% 85.93% 1.33 2.55
MM SKU 18 7.32 81.29% 87.44% 2.41 4.57 7.15 79.02% 85.60% 2.41 4.57
MM SKU 19 7.00 78.93% 84.43% 2.48 6.75 6.98 78.28% 84.48% 2.48 6.75
MM SKU 20 6.56 84.28% 88.36% 0.95 2.16 6.49 83.86% 88.11% 0.95 2.16
MM SKU 21 7.30 81.92% 89.64% 1.52 3.10 7.24 81.84% 89.73% 1.52 3.10
MM SKU 22 5.29 87.34% 90.66% 0.99 2.00 5.12 87.25% 91.58% 0.99 2.00
Avg. MM 9.17 86.97% 91.08% 1.79 3.67 9.13 86.69% 91.09% 1.79 3.67
UM SKU 23 25.66 95.68% 96.84% 4.08 10.76 25.67 95.59% 96.60% 4.08 10.76
UM SKU 24 10.17 69.36% 74.79% 3.28 13.57 10.19 70.11% 76.25% 3.28 13.57
UM SKU 25 8.96 92.35% 93.92% 1.26 4.16 8.80 92.48% 94.40% 1.26 4.16
UM SKU 26 20.49 94.99% 96.32% 5.03 21.59 20.66 95.00% 96.49% 5.03 21.59
UM SKU 27 21.93 94.97% 97.20% 3.61 13.42 21.80 95.30% 97.52% 3.61 13.42
UM SKU 28 8.64 89.45% 92.36% 1.39 5.99 8.54 89.24% 92.16% 1.39 5.99
UM SKU 29 28.38 96.26% 97.66% 2.43 5.35 28.27 96.02% 97.58% 2.43 5.35
UM SKU 30 19.81 81.87% 84.15% 3.35 12.89 19.00 79.79% 82.96% 3.35 12.89
UM SKU 31 9.50 74.54% 77.45% 2.03 8.76 9.74 74.75% 77.43% 2.03 8.76
UM SKU 32 8.41 91.90% 94.34% 1.31 5.05 8.31 91.75% 94.58% 1.31 5.05
UM SKU 33 21.20 77.91% 79.37% 5.15 21.63 21.85 78.61% 80.97% 5.15 21.63
UM SKU 34 22.11 79.12% 82.62% 5.57 22.77 22.59 79.19% 82.83% 5.57 22.77
UM SKU 35 10.62 91.68% 94.35% 1.49 2.50 10.57 91.49% 94.32% 1.49 2.50
UM SKU 36 10.80 91.56% 92.93% 2.42 10.60 10.82 91.60% 93.14% 2.42 10.60
UM SKU 37 10.14 92.16% 94.73% 2.14 8.02 10.05 92.84% 95.03% 2.14 8.02
UM SKU 38 19.65 98.22% 98.82% 1.40 4.39 19.55 98.08% 98.71% 1.40 4.39
Avg. UM 16.03 88.25% 90.49% 2.87 10.72 16.02 88.24% 90.68% 2.87 10.72
Difference -42.79% -1.45% 0.65% -37.70% -65.72% -43.01% -1.76% 0.45% -37.70% -65.71%
Avg. total 12.60 87.61% 90.78% 2.33 7.20 12.58 87.46% 90.89% 2.33 7.20

Table C5: Performance of “Overwrite”-method
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Lost sales Full back-ordering
SKU SoH β γ ss s SoH β γ ss s
MM SKU 1 14.69 91.38% 94.45% 5.43 9.61 14.77 91.80% 94.87% 5.45 9.64
MM SKU 2 14.74 97.05% 98.27% 1.98 3.68 14.74 97.05% 98.27% 1.99 3.68
MM SKU 3 15.77 97.60% 98.55% 3.64 4.57 15.83 97.07% 98.09% 3.64 4.57
MM SKU 4 6.82 86.89% 90.52% 2.49 4.57 6.90 87.50% 91.85% 2.51 4.88
MM SKU 5 6.27 90.37% 93.62% 1.59 3.37 6.21 89.60% 93.46% 1.61 3.40
MM SKU 6 6.62 96.19% 97.18% 1.01 2.37 6.62 95.95% 97.06% 1.01 2.40
MM SKU 7 7.04 89.64% 92.91% 2.13 4.13 7.01 90.52% 93.67% 2.15 4.16
MM SKU 8 7.19 88.13% 93.34% 2.12 3.91 7.16 89.24% 93.98% 2.13 3.91
MM SKU 9 35.01 95.00% 96.47% 1.31 2.29 35.18 95.78% 97.25% 1.31 2.29
MM SKU 10 7.33 93.36% 95.47% 2.35 4.18 7.30 91.75% 94.65% 2.38 4.20
MM SKU 11 14.01 92.08% 93.91% 4.12 6.64 13.96 92.42% 94.40% 4.13 6.66
MM SKU 12 6.38 86.31% 90.11% 3.20 5.29 6.42 86.44% 90.79% 3.23 5.43
MM SKU 13 7.96 87.87% 92.02% 2.08 3.72 7.96 87.35% 92.07% 2.09 3.74
MM SKU 14 6.82 92.09% 93.56% 1.91 3.69 6.70 91.85% 93.48% 1.92 3.71
MM SKU 15 7.25 83.78% 89.39% 1.87 3.53 7.30 82.75% 88.78% 1.88 3.53
MM SKU 16 7.67 82.60% 89.48% 3.03 4.70 7.67 82.73% 89.69% 3.03 4.72
MM SKU 17 6.69 82.06% 87.27% 1.88 3.18 6.70 83.00% 87.99% 1.90 3.22
MM SKU 18 7.95 82.14% 87.96% 3.22 5.34 7.86 79.86% 86.13% 3.23 5.36
MM SKU 19 9.73 90.23% 93.17% 5.60 9.98 9.71 90.16% 92.98% 5.62 10.01
MM SKU 20 6.69 84.60% 88.77% 1.13 2.33 6.64 84.18% 88.52% 1.13 2.35
MM SKU 21 7.42 83.60% 90.14% 1.69 3.28 7.40 83.52% 90.23% 1.70 3.28
MM SKU 22 5.31 87.55% 90.98% 1.01 2.02 5.13 87.46% 91.91% 1.01 2.02
Avg. MM 9.79 89.11% 92.62% 2.49 4.38 9.78 89.00% 92.73% 2.50 4.42
UM SKU 23 28.45 96.11% 97.64% 6.80 13.50 28.34 96.07% 97.57% 6.82 13.53
UM SKU 24 13.84 76.45% 81.52% 8.31 18.47 14.12 77.42% 81.90% 8.33 18.53
UM SKU 25 10.00 93.45% 95.23% 2.49 5.28 9.98 93.65% 95.73% 2.50 5.33
UM SKU 26 33.03 97.55% 98.20% 17.38 33.93 33.07 97.63% 98.24% 17.47 34.04
UM SKU 27 24.43 95.50% 97.62% 6.63 16.33 24.46 96.11% 97.79% 6.65 16.38
UM SKU 28 10.48 92.56% 95.53% 3.42 8.04 10.49 92.42% 95.27% 3.43 8.05
UM SKU 29 28.99 96.93% 97.92% 3.05 5.99 28.85 96.75% 97.85% 3.06 5.99
UM SKU 30 24.70 87.95% 89.79% 9.57 19.11 24.62 87.98% 89.86% 9.60 19.12
UM SKU 31 13.27 82.22% 84.61% 6.08 12.84 13.20 82.71% 85.45% 6.10 12.84
UM SKU 32 9.90 94.68% 96.78% 2.88 6.65 9.92 94.64% 96.89% 2.89 6.66
UM SKU 33 53.04 94.34% 94.71% 38.34 55.01 53.54 94.87% 95.26% 38.56 55.30
UM SKU 34 52.98 95.19% 96.54% 38.14 55.28 53.10 95.08% 96.63% 38.31 55.44
UM SKU 35 10.75 92.40% 94.71% 1.70 2.71 10.71 92.21% 94.68% 1.71 2.73
UM SKU 36 13.69 94.57% 95.90% 5.52 13.64 13.68 94.78% 95.98% 5.54 13.65
UM SKU 37 13.24 94.92% 96.90% 5.39 11.28 13.29 95.20% 97.13% 5.41 11.28
UM SKU 38 20.08 98.29% 99.01% 1.86 4.84 20.00 98.15% 98.90% 1.86 4.84
Avg. UM 22.55 92.70% 94.54% 9.85 17.68 22.59 92.85% 94.70% 9.89 17.73
Difference -56.60% -3.86% -2.03% -74.70% -75.22% -56.70% -4.15% -2.07% -74.71% -75.09%
Avg. total 16.17 90.90% 93.58% 6.17 11.03 16.18 90.93% 93.71% 6.20 11.07

Table C6: Performance of “Max”-method
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Lost sales Full back-ordering
SKU SoH β γ ss s SoH β γ ss s
MM SKU 1 18.67 95.26% 97.20% 9.38 13.33 18.65 95.61% 97.28% 9.38 13.33
MM SKU 2 18.72 97.57% 98.61% 6.33 7.66 18.72 97.57% 98.61% 6.33 7.66
MM SKU 3 23.12 99.07% 99.38% 10.87 11.83 23.20 99.07% 99.38% 10.87 11.83
MM SKU 4 7.86 91.32% 94.46% 3.36 5.65 7.77 89.57% 93.18% 3.36 5.65
MM SKU 5 6.12 92.26% 94.71% 1.64 3.43 6.05 90.96% 93.66% 1.64 3.43
MM SKU 6 8.90 97.10% 98.18% 3.88 4.69 8.91 97.62% 98.35% 3.88 4.69
MM SKU 7 8.86 94.61% 96.65% 3.82 5.61 8.90 94.51% 96.56% 3.82 5.61
MM SKU 8 9.23 95.37% 97.15% 3.94 5.51 9.19 94.86% 96.95% 3.94 5.51
MM SKU 9 38.33 96.13% 97.86% 4.09 4.82 38.48 96.47% 97.99% 4.09 4.82
MM SKU 10 8.58 93.73% 95.85% 3.75 5.39 8.52 94.01% 96.09% 3.75 5.39
MM SKU 11 20.47 96.01% 97.03% 10.76 12.87 20.43 96.01% 97.03% 10.76 12.87
MM SKU 12 8.77 92.34% 95.23% 5.60 7.49 8.78 93.41% 95.66% 5.60 7.49
MM SKU 13 9.21 92.21% 95.95% 3.79 5.01 9.18 92.21% 95.95% 3.79 5.01
MM SKU 14 8.36 95.82% 96.76% 3.52 5.24 8.35 95.79% 96.81% 3.52 5.24
MM SKU 15 8.84 88.55% 93.43% 3.87 5.59 8.92 89.12% 93.76% 3.87 5.59
MM SKU 16 8.36 88.39% 92.03% 3.76 5.75 8.40 88.17% 92.16% 3.76 5.75
MM SKU 17 8.91 88.03% 91.95% 3.92 5.50 8.94 87.07% 91.51% 3.92 5.50
MM SKU 18 12.33 94.78% 96.57% 7.84 9.59 12.31 94.78% 96.57% 7.84 9.59
MM SKU 19 8.52 86.05% 90.49% 4.42 8.60 8.48 85.54% 90.07% 4.42 8.60
MM SKU 20 9.65 91.71% 93.76% 4.13 4.77 9.62 91.43% 93.51% 4.13 4.77
MM SKU 21 9.02 85.86% 91.84% 4.14 4.88 9.02 85.86% 91.84% 4.14 4.88
MM SKU 22 8.04 95.88% 96.80% 3.97 4.97 7.98 95.97% 96.85% 3.97 4.97
Avg. MM 12.22 93.09% 95.54% 5.04 6.74 12.22 92.98% 95.44% 5.04 6.74
UM SKU 23 25.05 94.90% 97.07% 3.38 9.89 24.94 94.80% 96.82% 3.38 9.89
UM SKU 24 15.33 79.80% 83.86% 10.19 20.17 15.52 79.25% 83.50% 10.19 20.17
UM SKU 25 9.26 93.02% 94.79% 1.54 4.29 9.09 92.62% 95.04% 1.54 4.29
UM SKU 26 24.05 96.37% 97.36% 8.70 25.21 24.19 96.43% 97.36% 8.70 25.21
UM SKU 27 22.90 95.29% 97.73% 4.94 14.67 22.83 95.87% 97.92% 4.94 14.67
UM SKU 28 9.40 90.62% 93.97% 2.19 6.78 9.26 90.25% 93.53% 2.19 6.78
UM SKU 29 28.86 96.35% 97.88% 3.00 5.86 28.79 96.15% 97.83% 3.00 5.86
UM SKU 30 22.24 84.54% 86.81% 6.14 15.47 21.78 83.12% 85.71% 6.14 15.47
UM SKU 31 10.91 76.79% 79.46% 3.62 10.28 11.00 76.79% 79.79% 3.62 10.28
UM SKU 32 8.85 92.81% 95.06% 1.79 5.44 8.69 92.74% 95.20% 1.79 5.44
UM SKU 33 24.70 81.40% 82.66% 8.61 25.03 24.77 81.72% 83.09% 8.61 25.03
UM SKU 34 25.31 82.12% 84.78% 9.13 26.28 25.53 82.49% 84.87% 9.13 26.28
UM SKU 35 14.97 97.54% 99.15% 5.92 7.64 14.96 97.54% 99.15% 5.92 7.64
UM SKU 36 12.14 93.39% 94.58% 4.00 12.06 12.21 93.65% 95.04% 4.00 12.06
UM SKU 37 13.23 95.20% 97.26% 5.60 11.22 13.18 95.62% 97.53% 5.60 11.22
UM SKU 38 19.78 97.75% 98.32% 1.63 4.46 19.64 97.70% 98.28% 1.63 4.46
Avg. UM 17.94 90.49% 92.55% 5.02 12.80 17.90 90.42% 92.54% 5.02 12.80
Difference -31.86% 2.87% 3.24% 0.23% -47.36% -31.74% 2.83% 3.14% 0.23% -47.36%
Avg. total 15.08 91.79% 94.04% 5.03 9.77 15.06 91.70% 93.99% 5.03 9.77

Table C7: Performance of “First moment β∗”-method
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Lost sales Full back-ordering
SKU SoH β γ ss s SoH β γ ss s
MM SKU 1 15.33 94.45% 96.33% 6.21 10.15 15.40 94.44% 96.38% 6.21 10.15
MM SKU 2 15.51 98.62% 99.42% 3.33 4.46 15.48 98.62% 99.42% 3.33 4.46
MM SKU 3 21.60 100.00% 100.00% 9.43 10.28 21.67 100.00% 100.00% 9.43 10.28
MM SKU 4 7.82 93.60% 96.05% 3.67 5.70 7.80 93.26% 95.55% 3.67 5.70
MM SKU 5 8.35 98.32% 98.82% 4.00 5.52 8.36 98.32% 98.82% 4.00 5.52
MM SKU 6 8.28 96.62% 98.08% 2.51 3.34 8.25 97.40% 98.32% 2.51 3.34
MM SKU 7 9.74 96.78% 98.32% 5.08 6.59 9.78 97.11% 98.61% 5.08 6.59
MM SKU 8 11.16 97.84% 98.81% 6.26 7.54 11.13 98.31% 98.99% 6.26 7.54
MM SKU 9 35.81 95.43% 97.18% 1.56 2.33 36.00 96.03% 97.70% 1.56 2.33
MM SKU 10 10.73 97.45% 98.41% 6.04 7.56 10.72 97.45% 98.41% 6.04 7.56
MM SKU 11 19.25 99.24% 99.14% 9.67 11.78 19.24 98.46% 98.47% 9.67 11.78
MM SKU 12 9.89 94.92% 97.03% 6.83 8.64 9.89 95.09% 97.00% 6.83 8.64
MM SKU 13 10.59 95.89% 97.76% 5.38 6.39 10.65 95.75% 97.76% 5.38 6.39
MM SKU 14 14.59 100.00% 100.00% 10.11 11.52 14.59 100.00% 100.00% 10.11 11.52
MM SKU 15 10.01 92.84% 96.22% 5.33 6.43 10.10 93.84% 96.87% 5.33 6.43
MM SKU 16 10.56 94.06% 96.73% 6.05 7.74 10.57 93.78% 96.64% 6.05 7.74
MM SKU 17 8.04 88.25% 92.65% 3.28 4.51 8.00 88.12% 92.26% 3.28 4.51
MM SKU 18 13.46 96.99% 98.05% 9.08 10.60 13.40 96.99% 98.05% 9.08 10.60
MM SKU 19 10.69 92.89% 95.22% 6.76 11.05 10.70 93.07% 95.49% 6.76 11.05
MM SKU 20 9.06 89.78% 92.93% 3.65 4.22 9.11 89.26% 92.75% 3.65 4.22
MM SKU 21 9.22 86.14% 91.84% 4.46 5.18 9.22 86.14% 91.84% 4.46 5.18
MM SKU 22 8.85 96.19% 97.39% 4.75 5.02 8.85 96.19% 97.39% 4.75 5.02
Avg. MM 12.66 95.29% 97.11% 5.61 7.12 12.68 95.35% 97.12% 5.61 7.12
UM SKU 23 29.16 96.82% 98.52% 7.83 14.47 29.54 96.82% 98.52% 7.83 14.47
UM SKU 24 14.13 79.27% 82.91% 8.29 18.51 14.21 79.48% 83.26% 8.29 18.51
UM SKU 25 10.44 97.15% 97.67% 2.82 5.69 10.40 96.63% 97.30% 2.82 5.69
UM SKU 26 23.96 97.09% 97.92% 8.36 24.89 23.97 96.86% 97.75% 8.36 24.89
UM SKU 27 26.54 98.71% 99.20% 8.74 18.38 26.54 98.52% 99.16% 8.74 18.38
UM SKU 28 12.79 97.12% 98.45% 5.94 10.48 12.86 97.21% 98.47% 5.94 10.48
UM SKU 29 30.05 98.33% 98.62% 4.42 7.20 29.94 98.24% 98.61% 4.42 7.20
UM SKU 30 19.58 81.46% 83.83% 3.15 12.42 18.80 79.99% 82.98% 3.15 12.42
UM SKU 31 11.61 82.14% 84.11% 5.24 11.80 12.12 81.88% 84.62% 5.24 11.80
UM SKU 32 10.84 97.37% 98.49% 3.91 7.61 10.81 97.24% 98.37% 3.91 7.61
UM SKU 33 22.74 80.55% 82.01% 6.75 23.09 23.17 80.45% 82.27% 6.75 23.09
UM SKU 34 25.33 83.15% 86.09% 8.33 25.54 24.95 82.50% 85.31% 8.33 25.54
UM SKU 35 12.49 95.67% 97.68% 3.38 4.36 12.44 95.74% 97.74% 3.38 4.36
UM SKU 36 14.44 96.54% 97.49% 6.38 14.49 14.43 96.55% 97.48% 6.38 14.49
UM SKU 37 14.42 97.94% 99.13% 6.59 12.50 14.39 97.90% 99.09% 6.59 12.50
UM SKU 38 20.97 98.76% 99.36% 2.82 5.77 20.94 98.76% 99.36% 2.82 5.77
Avg. UM 18.72 92.38% 93.84% 5.81 13.58 18.72 92.17% 93.77% 5.81 13.58
Difference -32.36% 3.14% 3.48% -3.44% -47.59% -32.28% 3.44% 3.58% -3.44% -47.59%
Avg. total 15.69 93.83% 95.48% 5.71 10.35 15.70 93.76% 95.45% 5.71 10.35

Table C8: Performance of target fill rate compound Poisson method



D Method for reorder point

We focus on the determination of expected demand during the cover period, and we simply add the safety
stock to establish a reorder point. Instead of averaging all demand and customers as is standard practice
within a (R,s,nQ) model in order to determine the expected demand during the cover period, we can
incorporate our in-service order line size. If multiplied by the rounded customer arrival rate during the
cover period, we establish our measure for expected demand during the cover period:

s = safety stock +

[
λL+R · E(X)

]
Let λL+R be the arrival rate for customers during the cover period. Since safety stocks calculated through
literature-based methods of Tijms & Groenevelt, Nenes, and the compound Poisson method, are a direct
result of subtracting the corresponding expected demand during the cover period from the reorder point,
we only combine our own heuristics for safety stock with this heuristic for the reorder point.

It appeared that our heuristics for setting the reorder point performs extremely worse on average stock
on hand. Relative to the standard methods, even the ‘best’ III.B. method ssA (an obsolete heuristic)
resulted in an average stock on hand that was at least 82% higher. Hence, we see no point in further
investigating this second reorder point determination. This method was already arguable in itself, since
reorder point by its definition solely consists of the safety stock and the expected demand during the lead
time (and review period).

E Data gathering

In accordance with the qualitative description as provided in Section 2.1 and our analysis in Chapter
4, we develop a framework for measuring performance of the standard (R,s,nQ) methods, literature-
based methods, and our own heuristics. Data are gathered from two main datasets of company X, the
ArticleInfo table and Transactions table. The ArticleInfo table contains the SKUs sold by company
X, through attributes like among others the SKU code, shop identifier, replenishment minimum order
quantity, replenishment incremental order quantity, the target volume fill rate. The Transactions table on
the other hand contains all the sales transactions made by customers of company X, one could say this is
the digital equivalence of a shopping receipt. This table includes among others the transaction number,
SKU code, sold quantity, and the transaction date.

The data from the ArticleInfo table functions as input parameters for inventory calculations. The
sales data from the Transactions table are loaded into the framework, and used to evaluate the distinct
methods, see Section 5.2. Evaluation of performance is done on each SKU code, hence on each SKU-shop,
as stock-keeping and sales take place on shop level.

For the setting of inventory control parameters we divide the half year of data into two parts. We
work with 38 SKUs, sold in 94 shops, and accounting for 64,393 transactions. The first eights weeks,
from now on to be called initialization period are used for calculating the sample mean X̄ and sample
standard deviation s of the weekly demand, the customer arrival rate, and the in-service order line size.
This initialization period is sufficient, as we focus on SKUs that show a stationary demand pattern -
tested trough a t-Test - which we discuss in more detail in Section 5.1. In case of one or no orders at all
of the specific SKU-shop combination took place during this initialization period - which would result in
a meaningless mean and standard deviation - the average and standard deviation of the weekly demand
for the SKU is averaged on all shops selling this SKU. In this case, we exploit the population standard
deviation, as we observe the full population.
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F Gamma approximation Tijms & Groenevelt

In order to transform the k determination of the Ju(k) part from Equation 3.10, into an approximation
of the Gamma distribution, we employed Equation Appendices.1 for 0.5 < CVDL+R

≤ 1/
√

2, based on the

mixture of two Erlang distributions Ek−1 and Ek with k =
⌈ 1

CVDL+R

⌉
and k ≥ 2 (Tijms & Groenevelt,

1984).

k(x) = p · bk−1 · xk−2

(k − 2)!
· e−b·x + (1− p) · bk · xk−1

(k − 1)!
· e−b·x, x ≥ 0 (Appendices.1)

where

p =
1

1 + CV 2
DL+R

·
[
k ·CV 2

DL+R
−
√
k · (1 + CV 2

DL+R
)− k2 · CV 2

DL+R

]
and b =

k − p
E(DL+R)

(Appendices.2)

Next, we employed Equation Appendices.3 for CVDL+R
> 1/

√
2 (Tijms & Groenevelt, 1984), using the

hyper-exponential distribution.

k(x) = p · b1 · e−b1·x + (1− p) · b2 · e−b2·x, x ≥ 0 (Appendices.3)

where

b1,2 =
2

E(DL+R)
± 2

E(DL+R)
·

√√√√√CV 2
DL+R

− 1

2
1 + CV 2

DL+R

and p =
b1 · (b2 · E(DL+R)− 1)

b2 − b1
(Appendices.4)

Unfortunately, Equations Appendices.1 and Appendices.3 led to bad results around the threshold for the
coefficient of variation of 1/

√
2. For 1/

√
2 < CVDL+R

≤ 1 the p of Equation Appendices.3 got negative (as
also stated by the authors), making no sense in any more.

Next, we did not manage to get the method for CVDL+R
≤ 1/

√
2 to yield results (k-factors were found

to be negative, which makes no sense). As 18.51% of the SKU-shop combinations of research show a
CVDL+R

≤ 1, for which we did not find a working method using Gamma distribution, nor may we apply
the normal distribution - which is only valid for CVDL+R

< 0.5 or even CVDL+R
< 0.33 (Silver et al., 2017).

Hence, a rather large bit (18.51%) of the SKU-shop combinations cannot be calculated using the normal
or Gamma distribution. Thus, we exclude this approach - the only one left assuming normal or Gamma
demand - from further exploration in the final experiment.






