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Abstract 
At the end of primary education in the Netherlands, it has to be decided what level of secondary school 

the primary school students will attend. The initial advice for the level of secondary education that is 

most suitable for a pupil is given by the school. Next to that, all pupils take a test, which offers an 

independent advice on the most suitable level of secondary education. One of those tests is the Centrale 

Eindtoets, which is developed by Stichting Cito under the direction of the College voor Toetsen en 

Examens. This test provides two measures. Firstly, it classifies pupils into categories, which are linked 

to the levels of secondary education in the Netherlands, based on their performance on a test. Secondly, 

it offers an estimate of a pupil’s ability in the form of a standardized score. Accurate classification in 

this test is important, because misclassifications can lead to pupils attending a level of secondary 

education that is too high or too low compared to their ability. 

The test is currently administered in a linear format, which implies that all pupils respond to the 

same items, regardless of their ability. Therefore, it is likely that pupils have to respond to items that are 

too easy or too hard relative to their ability. Responding to items that are too easy results in a lack of 

challenge, while responding to items that are too hard results in frustration. Both emotions can 

negatively impact a pupil’s performance on the test. Secondly, items that are too easy or too hard relative 

to a pupil’s ability provide less than optimal information about the ability of the pupil. This is because 

specific test items provide optimal information about a pupil’s ability on a small range of the ability 

scale, which implies that an item selection with a mismatch in item difficulty for a particular pupil results 

in suboptimal information about that pupil’s ability.  

For low measurement precision, it is more likely that two (or more) adjacent school advices are 

within the pupil’s ability confidence interval and thus the probability for misclassification is higher.  

To increase classification accuracy on a test, there are two common approaches: increasing the 

amount of items that measure optimally around the cut-off point between two classification categories, 

or increasing the amount of items on a test. Both options are impractical in this case: test items have 

already been carefully chosen as to optimize the amount of test information available around the cut-off 

points between the classification categories, and the test already takes three mornings. Another option 

is to make use of adaptive testing, in which the pupils receive test items based on their performance on 

the test. Currently, an adaptive, multistage, version of the Centrale Eindtoets is under development. This 

version of the Centrale Eindtoets consists of three stages. In the first stage, it presents all pupils an initial 

block of items, or module, to gather an initial set of responses. Based on the responses on the first stage, 

pupils are routed to one of three modules with different difficulty levels based on their ability. After the 

second stage, the pupil is again routed to one of three modules, based on the performance on the first 

and second stage. As the items are adapted to the pupil’s estimated ability, it becomes possible to 

administer items that provide more information in the range of classification categories to which a pupil 

will likely belong. Therefore, measurement precision can be increased by opting for adaptive testing 

instead of linear testing. 

Although the advantages of the multistage the Centrale Eindtoets over a linear variant are 

evident from the literature, it is unknown to what extent the choice of the test design influences the 

measurement precision and the classification accuracy of the test. 

In that light, a simulation study was performed with two configurations of the multistage version 

of the Centrale Eindtoets, and one configuration of the linear version of the Centrale Eindtoets. The two 

variants of the multistage version of the Centrale Eindtoets differ with respect to the placement of the 

test items across the three different stages of the test. With the results of this simulation study, the linear 

and multistage version of the Centrale Eindtoets are compared with respect to the precision of the ability 

estimates and classification accuracy. Furthermore, the influence of different classification methods on 

classification accuracy is investigated. Lastly, the influence of different module designs on the precision 

of the ability estimates and classification accuracy is examined. 

The results show that a multistage version of the Centrale Eindtoets outperforms the linear 

version of the Centrale Eindtoets on both measurement precision and classification accuracy. 

Furthermore, “the sum of the estimated probability on all items” classification method consistently 

provides the highest classification accuracy, regardless of the test variant. Finally, the second variant of 

the multistage the Centrale Eindtoets outperforms the first variant of the multistage the Centrale 

Eindtoets, both in terms of measurement precision and classification accuracy. 



 

 

Based on the results from this study, one can conclude that the multistage the Centrale Eindtoets 

will indeed be an improvement compared with a linear the Centrale Eindtoets. Keeping in mind the 

limitations of the study, and the fact that the test design in the present study does not conform to all 

requirements of the 2018 version of the multistage the Centrale Eindtoets, it can be stated that adaptive 

testing will indeed be an improvement over the current linear way of testing. 
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Like in many countries, the Dutch educational system consists of three levels: primary, 

secondary and tertiary education. Primary education is intended for all pupils between four and twelve 

years old, and is compulsory from the age of five (EP-Nuffic, 2015). After primary education, pupils 

can choose from three main levels of secondary education: pre-vocational secondary education (vmbo), 

general secondary education (havo), and pre-university education (vwo). Vmbo is further divided into 

vmbo-bb, vmbo-kb, and vmbo-gt. Secondary education lasts between four and six years, depending on 

the selected level. The initial advice for the level of secondary education that is most suitable for a 

pupil’s ability is given by the school. Next to that, schools are obliged to let their pupils take a test at 

the end of primary education. This test is known as the final test for primary education. Based on a 

pupil’s performance on this test, the pupil receives an independent advice on the most suitable level of 

secondary education. Three different tests are available to the schools (Rijksoverheid, 2016). The first 

test is offered by the College voor Toetsen en Examens (CvTE), who offers the test on behalf of the 

Dutch government. The other two tests are offered by private organizations, who offer the test with 

approval from the Dutch government. 

The final test for Dutch primary education that is offered on behalf of the Dutch government is 

known as the Centrale Eindtoets, which is developed by Stichting Cito under the direction of CvTE. The 

test is administered in three mornings. In the test, the pupils are assessed on their knowledge of 

mathematics, reading, language skills, and optionally environmental studies. At the end of the Centrale 

Eindtoets, pupils are classified into one of eight overlapping levels, based on their performance on this 

test: (1) vmbo-bb, (2) vmbo-bb/kb, (3) vmbo-kb, (4) vmbo-gt, (5) vmbo-gt/havo, (6) havo, (7) 

havo/vwo, or (8) vwo. The classification decision forms the basis for the independent advice on the most 

suitable level of secondary education. Next to that, the Centrale Eindtoets provides pupils with an 

estimate of their ability, in the form of a scale score, ranging from 501 to 550. Therefore, in the Centrale 

Eindtoets, classification accuracy and a precise measurement of the pupils’ abilities, or measurement 

precision, are very important. 

As in all tests, both classification accuracy and measurement precision in the Centrale Eindtoets 

can never be perfect. Measurement precision and classification accuracy are both linked to the concept 

of test information. Test information is defined as the amount of information that the items on a test 

provide for the estimation of a pupil’s ability. As the Centrale Eindtoets is currently administered in a 

linear format, not all items provide much information for the estimation of a pupil’s ability. This is due 

to the fact that, in a linear test, every pupil responds to the same items, regardless of the ability of the 

pupil. This implies that it is likely that a pupil has to respond to items that are too easy or too hard. There 

are at least two negative consequences.  

Firstly, having to respond to items that are too easy results in a lack of challenge, while having 

to respond to items that are too hard results in frustration. Both emotions can have a negative effect on 

a pupil’s performance on a test (Linacre, 2000). Secondly, specific test items provide optimal 

information on a small range of the ability scale and thus also provide optimal information for a small 

proportion of all pupils. This implies that items that are too easy or too hard relative to a pupil’s ability 

provide less than optimal information about the ability of the pupil. Optimal information about a pupil's 

ability estimate is obtained when the item difficulty matches the pupil's ability. This leads to a smaller 

measurement error, as well as higher measurement precision. From a measurement perspective it is 

desirable to let pupil's respond to many items with a lot of information and few items with less 

information, to obtain a precise estimate of the pupil's ability. When high measurement precision is not 

obtained, it is more likely that two (or more) adjacent school advices are within the pupil’s confidence 

interval and thus the probability for misclassification is higher. In other words: a reduced measurement 

precision results in less accurate classification decisions.  

Classification accuracy is important in this test because a misclassification may lead to an advice 

for a lower or higher level of education than most appropriate for the pupil’s ability. When the advice is 

incorrect, a pupil might be advised a level of secondary education that this suboptimal for his or her 

ability.  

Test information, which is a sum of item information, is positively related to measurement 

precision: the more test information is available from the items a pupil has responded to, the more 

precise a measurement is, and the more precise the ability estimate will be. Test information is also 

positively related to classification accuracy. When classifying a pupil at the end of the test, an incorrect 

classification decision leads to one of two possible outcomes. The first possible outcome is a false 
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positive. This error occurs when the pupil’s ability estimate lies above a cut-off point for a certain 

classification level, while the pupil’s true ability is below this cut-off point. This pupil will be 

erroneously classified as having an ability above the cut-off point. The second possible outcome, a false 

negative, occurs when the pupil’s ability estimate falls below a cut-off point for a certain classification 

level, while the pupil’s true ability is above this cut-off point. This pupil will be erroneously classified 

as having an ability below the cut-off point.  

To increase the amount of test information around a cut-off point, there are two common 

options. Firstly, increasing the amount of items that measure around this cut-off point (Hambleton, 

Swaminathan, & Rogers, 1991). Secondly, selecting items that are better at distinguishing between 

pupils that have an ability close to this cut-off point (Hambleton et al., 1991). However, in the case of 

the Centrale Eindtoets, both ways to increase test information are not realistic. Firstly, as the Centrale 

Eindtoets is administered over the course of three mornings, it is impractical to prolong the test. 

Although increasing the amount of test items generally increases test information, having too many 

items on a test will lead to pupil fatigue. When pupil fatigue is a factor, one does not just measure the 

test construct, but also how well pupils deal with fatigue. This is called construct-irrelevant variance 

(Huff & Sireci, 2005), and it can decrease the measurement precision of a test. Secondly, the goal of the 

Centrale Eindtoets is both to classify pupils into the classification levels that correspond with the most 

appropriate level of secondary education for these pupils, and to provide pupils with an estimation of 

their ability. Because of this two-fold goal of the Centrale Eindtoets, the items on the Centrale Eindtoets 

need to be (a) good at distinguishing between pupils that have an ability close to the cut-off points in 

the test, and (b) good at distinguishing between pupils with different abilities in general. 

Currently, Stichting Cito is developing an adaptive version of the Centrale Eindtoets under the 

direction of CvTE. This version presents all pupils an initial block of items, or module, to gather an 

initial set of responses. Based on the previous responses, pupils are routed to one of three modules, 

which differ in difficulty, that best suits their ability. After this second module, the pupils’ ability 

estimates are updated, and another module most suitable for their ability is presented. This form of 

testing is known as multistage testing. As the items to which a pupil responds are tailored to the pupil’s 

ability, the measurement precision is increased. Moreover, pupils are less like to receive items that are 

too easy or too hard for their ability. Consequently, the test will challenge the pupils, while reducing 

frustration.  

Measurement precision is important in the Centrale Eindtoets, because the cut-off points for the 

classification levels are close together. In a test with a limited number of classification levels that lie far 

apart, measurement precision is less important for accurate classification decisions. Even when the 

ability estimate of a pupil is somewhat higher or lower than it should be due to measurement error, this 

is unlikely to influence the final classification decision for that pupil. However, in a test like the Centrale 

Eindtoets, in which the cut-off points for the classification levels are close together, measurement error 

is of greater influence. In these kinds of tests, measurement error is more likely to result in a 

misclassification. This concept is illustrated in Figure 1.  

In this figure, it is illustrated what the effect is of moving from a test with two classification 

levels to test with four classification levels. As can be seen in the figure, the higher the amount of 

classification levels, the higher the measurement precision should be to avoid misclassifications. 

In the current linear the Centrale Eindtoets, measurement precision is held back by the fact that 

the classification cut-off points are distributed along a broad range of abilities. Imagine one wants to 

increase the measurement precision for one classification cut-off point. This can be achieved by 

replacing some existing items in the test with new items that are more discriminatory around this 

classification cut-off point. However, doing so would decrease the measurement precision for the other 

classification points. Therefore, this approach is not viable. The same procedure would be possible with 

adaptive testing. Given an estimation of the ability level of a pupil, it can be determined in which range 

of classification levels the pupil will likely belong. This pupil can then receive items that are more 

discriminatory around these classification points. Thus it can be said that measurement precision can be 

increased by opting for adaptive testing instead of linear testing. 

Although the advantages of a multistage the Centrale Eindtoets over a linear variant are 

evident from the literature, it is unknown to what extent the choice of the test design influences the 

measurement precision and the classification accuracy of the test. As Verschoor and Eggen (2014) 

state, the decisions made when developing a multistage test are interdependent. Moreover, an optimal  
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Figure 1. Comparison of a test with two classification levels and a test with four classification levels on 

the size of the area in which measurement error does not cause misclassification 

 

way to construct multistage tests has not yet been established (Verschoor & Eggen, 2014). As creating 

a multistage test design from scratch is a complex task, this will not be done in the present study. Instead, 

the design of this simulation study will be based on the design for adaptive version of the Centrale 

Eindtoets in 2018. The test contains the domains reading, mathematics, language skills, vocabulary and 

writing. The first three domains are tested in an adaptive way. The last two domains are tested in a linear 

way. 

This means that all pupils have to respond to the same items, regardless of their ability. It must be noted 

that the test domain vocabulary will not be present in the Centrale Eindtoets 2018, but is included in the 

present study to facilitate a comparison with the current version of the Centrale Eindtoets, which 

contains this test domain. As will be discussed in theoretical framework, there are several options for 

the composition of the modules. In this study, two possible compositions will be used. 

The present study can contribute to the knowledge base on multistage testing (MST) by 

investigating what the optimal test design is for this specific adaptive multi-category classification test. 

Therefore, the goal of this research is to investigate the effect of several configurations of the multistage 

and linear versions of the Centrale Eindtoets on measurement precision and classification accuracy. This 

comparative research will be performed by means of a simulation study. 

The present study will be discussed in several chapters. Firstly, in chapter one, a theoretical 

framework describes the knowledge base for the remainder of thesis. The second chapter details the 

methodology employed in the present study. The third chapter presents the results of the simulation 

study. Finally, the last chapter provides a conclusion and discussion. 

1 Theoretical Framework 
This chapter lays theoretical foundation for this study. In the present study, a comparison was 

made between several configurations of the multistage and linear versions of the Centrale Eindtoets. In 

order to make this comparison, a psychometrical theory is needed. Specifically, a theory is needed that 
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makes it possible to make comparisons at item level, without limiting your conclusion to one specific 

population. This is because the different versions of the Centrale Eindtoets do not share the same items. 

Furthermore, the measures linked to this theory should be independent of a specific test. This makes it 

possible to the generalise conclusions of this study to similar tests. Therefore, this chapter introduces 

item response theory (IRT). In IRT, the item properties are specified independently of the specific test 

in which they are contained. Furthermore, item properties are specified independently of the population 

that has taken the test. As such, IRT makes it possible to compare different test designs independently 

of the population and the specific test items.  

IRT consists of a large collection of models. Four of those models will be presented in the first 

part of this chapter. Secondly, the assumptions underlying those models are discussed. Thirdly, the item 

information function, which aids in determining how suitable an item is for the intended population of 

the test, is introduced. Fourthly, ability estimation makes it possible to estimate a pupil’s ability from 

his or her responses to a test’s items. Ability estimation is discussed in section 1.4. Fifthly, for this ability 

estimation process, the item parameters must be known. When this is not the case, the ability and item 

parameters both have to be estimated, as discussed in section 1.5. Sixthly, two types of adaptive testing 

– computerized adaptive testing (CAT) and MST – will be discussed. Seventhly, MSTs can be designed 

with different specifications depending on the purpose of test they facilitate. Some considerations that 

are made when designing a MST are discussed in section 1.7. The chapter ends by discussing 

classification methods, which are used to classify pupils after the test. 

1.1 IRT Models 
As stated in the introduction to this chapter, IRT consists of a large collection of models, which 

specify the relation between the probability of correctly answering an item, the ability of the pupil, and 

the item’s properties (Hambleton et al., 1991). This relationship is captured in a formula known as the 

item characteristic curve (ICC). The models typically differ with respect to assumptions about item 

parameters. Four of these models will be discussed: the Rasch model, the two-parameter logistic model, 

the three-parameter logistic model, and the one-parameter logistic model. 

1.1.1 The Rasch Model 

In the Rasch model, the probability that a pupil with ability 𝜃 responds to an item i correctly is 

defined as (Hambleton et al., 1991): 
 

Pi(𝑈𝑖 = 1|𝜃) = 𝑃𝑖(θ) =
𝑒(𝜃−𝑏𝑖)

1 + 𝑒(𝜃−𝑏𝑖)
𝑖 = 1, 2, … , 𝑛, (1.1) 

where n is the number of test items, 𝑈𝑖  is the response of a pupil to item i, and 𝑏𝑖  is the difficulty 

parameter. For more than one item, the ICCs for this model manifest themselves as parallel S-shaped 

curves with values between 0 and 1. The probability to answer an item correctly increases with an 

increase in the ability of the pupil, and decreases with an increase in the difficulty parameter. An 

example of four ICCs for items of varying difficulty can be seen in Figure 1.1. In this figure, item 3 has 

the lowest value for 𝑏𝑖 (i.e. is the easiest to answer correctly), while item 2 has the highest value for 𝑏𝑖 

(i.e. is the hardest to answer correctly).  

An attractive property of this model is the fact that the sum score is a sufficient statistic for a 

pupil’s ability (H. G. Fischer, 1995). In other words, the sum score provides all information that is 

required to estimate a pupil’s ability. This is in contrast to more complex IRT models, for which the 

sum score does not correspond to distinct abilities. 

1.1.2 The two-parameter logistic model 

A limitation of the Rasch model is the assumption that items are equally discriminating: each 

item is equally effective in distinguishing among different abilities. However, this assumption does not 

always hold. To model items that are not equally discriminating, the two-parameter logistic model is 

used. This model is similar to the Rasch model, with the addition of the item discrimination parameter 

a: 
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Figure 1.1. ICCs for four items with different difficulty parameters. Adapted from Fundamentals of 

Item Response Theory (p. 14), by R.K. Hambleton et. al., 1991, California: SAGE Publications, Inc. 
 

𝑃𝑖(𝜃) =
𝑒𝑎𝑖(𝜃−𝑏𝑖)

1 + 𝑒𝑎𝑖(𝜃−𝑏𝑖)
𝑖 = 1, 2, … , 𝑛. (1.2) 

In this model, the parameter ai specifies the steepness of the slope of the ICC at the point where 𝑃(𝜃) =
0.5 for item i. Items with a steeper slope have a higher discriminatory power than items with a less steep 

slope (Hambleton et al., 1991). Figure 1.2 shows four ICCs for items with different difficulty and 

discrimination parameters. In this figure item 2 has the least discriminatory power, while item 3 has the 

most discriminatory power. 

1.1.3 The three-parameter logistic model 

The three-parameter logistic model extends the two-parameter logistic model with the pseudo-

chance-level parameter c. This extension facilitates a nonzero lower asymptote in the ICC. This 

asymptote is used to represent less able pupils, who answer selected-response items, such as multiple-

choice items, correctly through guessing. The model is defined as: 
 

𝑃𝑖(𝜃) = ci + (i − ci)
𝑒𝑎𝑖(𝜃−𝑏𝑖)

1 + 𝑒𝑎𝑖(𝜃−𝑏𝑖)
𝑖 = 1, 2, … , 𝑛, (1.3) 

(Hambleton et al., 1991). Figure 1.3 shows the ICCs for six typical items modelled under the three-

parameter logistic model. It can be observed that item 3 has a lower asymptote of 0.25, which indicates 

that pupils with an ability below -0.5 have a 25% chance of answering the item correctly. In contrast, 

less able pupils have no chance of answering items 1, 2, and 4 correctly. 

1.1.4 The one-parameter logistic model 

When the Rasch model is used to model the items in a test, but goodness-of-fit statistics show that this 

model does not fit, there are three choices: either the pupils who cause the poor goodness-of-fit are 

removed from the sample, the items that show a poor goodness-of-fit are removed from the test, or a 

different model is chosen (Verhelst & Glas, 1995). All options must be considered carefully. Firstly, 

when removing pupils from the sample, the generalizability of the results might be comprised. Secondly, 

when removing the items that are poorly modelled under Rasch, content validity might be compromised. 

Thirdly, when choosing a different model, some of the attractive properties of the Rasch model, like the 

sum score as sufficient statistic, might be lost. In order to retain the sum score as sufficient statistic like 

in the Rasch model, while gaining the flexibility of the two-parameter logistic model, the one-parameter 

logistic model (OPLM) can be used (Verhelst, Glas, & Verstralen, 1995).  

As the sum score is a sufficient statistic for a pupil’s ability in this model, it can be used as a 

representation of the ability of a pupil. With a process known as imputing, the difference in 

discriminatory power between items can be taken into account (Verhelst & Glas, 1995). In the case of  
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Figure 1.2. Two-parameter ICCs for four typical items. Adapted from Fundamentals of Item Response 

Theory (p. 16), by R.K. Hambleton et. al., 1991, California: SAGE Publications, Inc. 

 

 
Figure 1.3. Three-parameter ICCs for six typical items. Adapted from Fundamentals of Item Response 

Theory (p. 18), by R.K. Hambleton et. al., 1991, California: SAGE Publications, Inc. 

 

the OPLM this implies that the discrimination parameter is imputed. Using either regression analysis or 

a two parameter logistic model, the most suitable value for the discrimination parameter can be found. 

If the latter is used, the discrimination parameter is rounded towards its nearest integer value. The OPLM 

is then estimated with the discrimination parameters fixed to the rounded values. This property makes 

it possible to model items that are not equally effective in distinguishing among different abilities, unlike 

the Rasch model. 

1.2 Model Assumptions 
Recall that IRT models describe the relation between item properties and pupil’s performance 

using an ICC. In order to model this relation assumptions are made. It must be noted that when these 

assumptions are not met, the validity of the IRT estimates might be compromised. Four assumptions 

underlying the models described above – unidimensionality, local independence, monotonicity, and 

parameter invariance – will be explained in the next sections. 
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1.2.1 Unidimensionality 

In IRT, it is assumed that the test’s items measure a predefined set of underlying abilities 

(Hambleton & Swaminathan, 1985). The most widely used models assume that only one ability is 

measured by the test items, which is referred to as unidimensionality (Hambleton et al., 1991). As 

Hambleton et al. (1991) state, a model can never be unidimensional in a strict sense, because factors 

like test anxiety and motivation influence performance on a test. However, the assumption holds when 

there is a clear dominant factor that explains test performance (Hambleton et al., 1991). Other models 

assume multiple factors are measured by the test’s items, but those fall outside of the scope of the present 

study. 

1.2.2 Local independence 

According to Hambleton et al. (1991), local independence means that, given the same ability, 

the pupils’ responses to any set of items are statistically independent. In other words, the pupils’ 

responses are only dependent on their ability. Local independence is defined as:  
 

𝑃(𝑈1, 𝑈2, … , 𝑈𝑛|𝜃) =  ∏ 𝑃(𝑈𝑖|𝜃)

𝑛

𝑖=1

. (1.4) 

However, local dependence only holds when the abilities that the test items measure have been 

correctly defined. For example, if an item on an English test contains a clue to the answer, the ability to 

detect the clue is being tested next to the pupil’s proficiency in English (Hambleton et al., 1991). 

1.2.3 Monotonicity 

The ICC, which describes the probability of responding correctly to an item, is a monotone 

increasing function of the ability. In other words, the higher the ability of a pupil, the higher the 

probability that this pupil answers the item correctly. This property does not hold when there is a 

negative relation between ability and the probability of answering an item correctly, or the ICC for an 

item is not continuous. 

 

1.2.4 Parameter invariance 

Item and ability parameters are invariant: parameters that characterize an item are not dependent 

on the ability distribution of the pupils. In other words, item parameters do not change from one group 

of pupils to another (Hambleton & Jones, 1993). This assumption makes it possible to estimate item 

parameters that will hold regardless of the group of pupils taking the test. When items in a test do not 

adhere to this assumption one speaks of differential item functioning (DIF). DIF occurs when pupils 

with the same ability, but from different populations, have a different probability of correctly responding 

to an item (Hambleton et al., 1991). One method to detect DIF is hypothesis testing, in which the null 

hypothesis states that the item parameters for one item are equal in two different groups (Hambleton et 

al., 1991). 

1.3 Information 
In test construction, the item information function is used to determine how informative an item 

is, with regards to ability estimation, for the intended population. Specifically, this function describes 

how much information is provided by the item at a given ability (Hambleton et al., 1991). In this case, 

information is defined as “the contribution items make to ability estimation at points along the ability 

continuum” (Hambleton et al., 1991, pp. 91-92). Item information for item i is defined as: 
 

𝐼𝑖(𝜃) =
[𝑃𝑖

′(𝜃)]2

𝑃𝑖(𝜃)𝑄𝑖(𝜃)
 , (1.5) 

where 𝑄𝑖(𝜃) = 1 - 𝑃𝑖(𝜃). 

In Table 1.1, the item parameters of five test items are given. Figure 1.4 shows the item 

information functions of these five test items. In this figure, items 1 and 3 have the highest discrimination 

parameters, and as such, they provide the most information and have the steepest slopes of all item 

information functions in the graph. However, whether these items should be selected for a test depends 

on the expected ability of the intended population. For example, if one expects the intended population  
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Table 1.1  

 

Item Parameters for Five Typical Test Items 

  Item Parameter 

Test Item  ai bi ci 

     1  1.80 1.00 0.00 

2  1.80 1.00 0.25 

3  1.80 -1.50 0.00 

4  1.20 -0.50 0.10 

5  0.40 0.50 0.15 

Note. Adapted from Fundamentals of Item Response Theory (p. 18), by R.K. Hambleton et. al., 1991, 

California: SAGE Publications, Inc. Copyright 1991 by SAGE Publications, Inc. 

 

 

 
Figure 1.4. Item information functions for five typical test items. Adapted from Fundamentals of Item 

Response Theory (p. 93), by R.K. Hambleton et. al., 1991, California: SAGE Publications, Inc. 

 

to have an ability around 0, items 1 and 3 would not be the first choice despite their high discrimination 

parameters, because item 4 provides more information around this point. Items 2 and 5 are unlikely to 

be selected for a test at all, because they do not provide a lot of information at any point on the ability 

scale. To find out how informative a test is at a certain ability, one sums the item information functions, 

at that ability, for all items in the test: 
 

 𝐼(𝜃) = ∑ 𝐼𝑖(𝜃),

𝑛

𝑖=1

 (1.6) 

(Hambleton et al., 1991). Equation 1.6 shows that the items independently contribute to the information 

a test provides. This makes it possible to construct a test from individual items, with a target for the test 

information in mind. For example, in a test for classification purposes, one usually aims to provide the 

most test information around the classification cut-off points. The amount of information that a test 

provides at a certain ability is inversely related to the precision of the ability estimate at that point: 
 

 𝑆𝐸(�̂�) ≈
1

√𝐼(�̂�)

, 
(1.7) 
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where SE is the standard error of estimation (Hambleton et al., 1991). In other words, the more test 

information a test provides, the higher the measurement precision. 

1.4 Ability Estimation 
To estimate a pupil’s ability based on his or her responses on the test items, ability estimation 

methods are used. One of the methods to estimate the pupil’s ability is maximum likelihood estimation. 

This procedure for the estimation of the pupil’s ability assumes that the item parameters for the test are 

known. Maximum likelihood estimation is in a sense analogous to how a medical doctor uses the clinical 

inferences process to diagnose the disease of a patient (Jehangir, 2005). In the clinical inference process, 

the symptoms of the patient are used to find a diagnosis that has the highest likelihood of being true, 

given those symptoms. Much in the same way, maximum likelihood estimation uses the responses of a 

pupil to find the ability that has the highest likelihood of being true, given those responses.  

Given the item parameters, and the pupil’s responses, the likelihood of observing those 

responses under the IRT model for each ability is determined. The ability that has the highest likelihood, 

given the responses of the pupil, is defined as the maximum likelihood estimate of the ability for that 

pupil (Hambleton et al., 1991). The relation between the item parameters, the responses of a pupil on 

the items, and the underlying ability is formalized in the likelihood function: 
 

𝐿(𝒖|𝜃) =  ∏ 𝑃𝑗
𝑢𝑖𝑄𝑗

1−𝑢𝑖

𝑛

𝑖=1

, (1.8) 

where 𝑢𝑖 is the observed response to item i and u the vector of responses. 

The likelihood function (see equation 1.8) is usually converted to a logarithmic function. To 

indicate the fact that this conversion has been performed, the name log-likelihood function is used. The 

conversion changes the likelihood function from a product function to a sum function, which is less 

computationally expensive, and improves the scaling (Hambleton et al., 1991).  

An example of the log-likelihood function for pupils of various abilities can be seen in Figure 

1.5. As this figure shows, each pupil has only one maximum for the likelihood function, at which point 

the slope of the line becomes zero. Unfortunately, it is not possible to set the derivative of the likelihood 

function to zero, and solve this equation. This is because there is no solution for this equation. Therefore, 

an iterative mathematical search procedure must be used to find a pupil’s ability estimate. One example 

of such an iterative search method is the Newton-Raphson procedure (Segall, 1996). Using this approach 

the corresponding ability can be estimated for almost all response patterns. 

When performing ability estimation, it is of interest how precise these ability estimates are. One 

measure of ability estimate precision is the root mean square error (RMSE; Willmott & Matsuura, 2005). 

In contrast with the SE, which specifies the error of estimation for one particular ability, the RMSE is a 

measure of ability estimate precision over the whole ability range. The RMSE is defined as: 
 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑗 − 𝜃𝑗)

2

𝑚

𝑚

𝑗=1

, (1.9) 

where 𝜃 is the estimated ability for pupil j, and m is the number of pupils who take the test. The 

RMSE can only be calculated when the true ability of the pupils is known. Therefore, this measure is 

only relevant for simulation studies, and cannot be used in real life tests. 

1.5 Item Parameter Estimation 
In the previous section, the procedure for the estimation of the ability of a pupil was described. 

In this procedure, it is assumed that the parameters of the items the pupil has responded to are already 

available. However, this will not always be the case. When the item parameters are not yet available, 

both the ability of the pupil and the parameters of the items have to be estimated.  

During estimation there is no unique solution. In order to eliminate this problem, an arbitrary 

scale for the ability values and item difficulty values must be chosen. A common choice is to assume a 

standard normal distribution for (a) the ability of all pupils, or (b) the item difficulty  
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Figure 1.5. Log-likelihood functions for three pupils. Adapted from Fundamentals of Item Response 

Theory (p. 36), by R.K. Hambleton et. al., 1991, California: SAGE Publications, Inc. 

 

(Hambleton et al., 1991). Once a scale has been fixed for the ability values or the item difficulty values, 

it is no longer possible to obtain multiple solutions, and the estimation procedure can begin. In order to 

perform item parameter estimation, there are at least three common ML methods: joint maximum 

likelihood, marginal maximum likelihood, and conditional maximum likelihood. In the first method, the 

ability and item parameters are estimated simultaneously (Hambleton et al., 1991). However, the results 

obtained using this procedure are inconsistent, as this procedure might converge towards incorrect 

values (Ghosh, 1995). In the second method, the ability parameters are first integrated out, after which 

the item parameters are estimated (Hambleton et al., 1991).  To accomplish this, the assumption is made 

that the ability parameters are sampled from a larger distribution (Johnson, 2007). With the item 

parameters known, the ability parameters are estimated (Hambleton et al., 1991). The last method treats 

the ability parameters of the pupils as given. To accomplish this, the IRT model is separated into a 

conditional part, which only depends on the item parameters, and a part for the sufficient statistics 

(Eggen, 2000). As such, this method can only be used for the Rasch or OPLM model. Of the three 

models, only marginal maximum likelihood can currently be used for multistage testing. For more 

information on those three models, the reader is referred to literature (e.g. Baker & Kim, 2004). 

1.6 Adaptive Testing 
The precision of the pupil’s estimated ability can be increased compared to linear testing by 

opting for adaptive testing. In adaptive testing, the item selection is adapted based on the responses of 

the pupil. Two types of adaptive testing – CAT and MST – are discussed. 

1.6.1 Computerized adaptive testing 

The earliest application of adaptive testing can be traced back to the work of Binet on 

intelligence testing in early 1900s (Weiss, 1985). However, using adaptive testing was hardly feasible 

until the advent of more powerful computers (Hambleton et al., 1991). Since the 1990s CAT has been a 

popular test administration model (Becker & Bergstrom, 2013). With a tailored selection of items the 

pupil’s ability can be estimated more precisely than with a linear test, given the same test length, without 

the need to increase the amount of items on the test (Wainer, Kaplan, & Lewis, 1992, in Yan, von Davier, 

& Lewis, 2014). 

In CAT the pupil’s previous responses determine the selection of each following item. The 

pupil’s ability is estimated after every response using all previous responses. Using this estimate, the 

item contributing most to a more precise measurement, given the test constraints, is selected. A common 

test constraint is the fact that enough items to adequately assess each tested construct are presented. This 

item selection procedure ensures that the test is tailored to the pupil, and items that are too easy or too 

hard for the pupil according to the estimated ability are not presented (Becker & Bergstrom, 2013). 
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CAT will not be investigated in this comparative simulation study. Three important reasons for 

this decision are the need for a large pre-test sample, content inspectability, and cost of item 

construction. Firstly, the need for a large pre-test sample. Before a test can be used, it has to be pretested. 

In the case of the CAT, it can only be tested on Dutch primary school pupils, as this is the target group 

of the test. Furthermore, as a CAT contains a large number of items due to its adaptive nature, a large 

sample of pupils is required for this pre-test. However, it is hard to recruit large amounts of pupils for 

this pretest in the Netherlands. Secondly, CATs are constructed on-the-fly, with a specific combination 

of test items for each individual pupil. As this process leads to many possible test variants, it is virtually 

impossible to inspect the content specifications of every test variant (Kim, Chung, Park, & Dodd, 2013). 

However, one of the requirements of the Centrale Eindtoets is the fact that its content must be 

inspectable by CvTE. Furthermore, the Centrale Eindtoets has a complex set of content specifications. 

To formulate all these content specifications as constraints in the item selection procedure of a CAT 

would be meticulous task. Lastly, CAT requires a larger item bank than MST. Increasing the size of the 

item bank leads to an increase in item development efforts, and therefore increases the required amount 

of pupils in the pre-test. 

1.6.2 Multistage testing 

An alternative to CAT is MST. At the start of an MST, a pupil is administered an initial module, 

known as the routing test, which is used to estimate the pupil’s proficiency (Yan et al., 2014). After this 

routing test, the pupil is presented a module that contributes most to a precise measurement, given the 

pupil’s performance so far. For tests consisting of multiple consecutive modules, information on the 

pupil’s proficiency is updated after each module, using all previous responses, after which the most 

appropriate next module is selected. 

An example of a MST consisting of multiple consecutive modules can be seen in Figure 1.6. In 

this example, the pupil is first presented with a routing test. After responding to the items in the routing 

test, the pupil’s performance so far is determined, and the module in stage two that is most suitable, 

based some criterion, is selected. This criterion depends on the purpose of the test. In the selected stage 

three module, the process is repeated: the pupil responds to the module’s items, after which a proficiency 

estimate is obtained, and the appropriate stage 3 module is selected. 

As each module has a fixed item set, each module can be constructed to cover all predetermined 

content specifications, while retaining the adaptive property. However, given the same item pool, pupils’ 

ability estimates from a MST are slightly less precise than from a CAT (Hambleton & Xing, 2006, in 

Yan et al., 2014). 

1.7 MST Design 
When designing a MST, the number of stages, modules, and items have to be considered 

(Veldkamp, 2014). The choices will influence the characteristics of the test. The exact settings depend 

on the purpose of the test and the desired measurement precision (Veldkamp, 2014). For example, if the 

purpose of the test is ability testing, the MST design should facilitate a high estimation accuracy for a 

range of abilities (Yan et al., 2014).  By contrast, tests for classification purposes should focus more on 

measurement accuracy near the cut-off points for the classification levels (Yan et al., 2014). The design 

decisions for the number of stages, module design, and routing are discussed. 

1.7.1 Number of stages 

In deciding on the number of stages in an MST, a trade-off is made between simplicity and 

flexibility. In an MST with only two stages, the complexity of test assembly is the lower than in MSTs 

with more stages. However, there is a higher likelihood of routing error, as there is only routing point 

(Yan et al., 2014). Especially for pupils with abilities near the cut-off points, routing errors are likely. 

One way to guard against routing error is to create an overlap between modules, or to increase the 

amount of stages (Weiss & Betz, 1974). Opting for more stages gives more flexibility in tailoring the 

test to pupils’ abilities. However, it also increases the complexity of test assembly and test analyses, 

while not necessarily increasing measurement precision of the test (Luecht & Nungester, 1998).  
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Figure 1.6. Example of a three stage MST with three modules in the second and third stage. 

1.7.2 Module design 

Similar to deciding on the number of stages, the decision of the number of modules in an MST 

is a trade-off between simplicity and flexibility. When dealing with fixed-length modules, a maximum 

of four modules per stage is desirable (Armstrong, Jones, Koppel, & Pashley, 2004). Several factors 

need to be taken into account when designing a module, such as the range of difficulty parameters and  

range of discrimination parameters for the items in the module (Yan et al., 2014). Especially the 

characteristics of the routing test have a major influence on the measurement precision of the whole test. 

According to Kim and Plake (1993), the characteristics of the first stage module highly influence the 

measurement precision of the whole test. Furthermore, Kim and Plake (1993) found that increasing the 

length of the first stage module has the largest effect in reducing ability estimation errors. 

1.7.3 Routing 

There are many methods that can be used to decide how to route a pupil to the next module in 

a MST. Two possible ways to make routing decisions are (a) selecting the path that provides the most 

information for the pupil, given the pupil’s current ability estimate, and (b) using the sum score up until 

that point to select the best path. When the IRT model under which the test items are modeled does not 

imply the unweighted sum score as a sufficient statistic, some information is lost when opting for 

(weighted) sum score routing. However, Luecht and Nungester (1998) demonstrated that sum score 

routing is probably sufficiently accurate for path selection purposes. Furthermore, by opting for sum 

score routing, the module selection routines that the test delivery software has to support are simplified 

(Luecht, Brumfield, & Breithaupt, 2006). 

To perform routing in an MST, routing cut-off points have to be determined. Two ways to 

determine those routing cut-off points are (a) the maximum information method, and (b) the defined 

population intervals method (Luecht et al., 2006). In the first method, the test information function is 

used, after each stage, to determine the next module. In this process, for each possible module the 

amount of provided information, given a pupil’s current ability estimate, is calculated. The module that 

contains the items that provide the most information for the pupil is selected. In the second method, it 

is predetermined which proportions of pupils in the population are required to take each route. For 

example, take a MST design with one module in the first stage, and two modules in second stage. In this 

design, the pupils are split into two groups by performance. The lowest performing group will be routed 

to the first module in the second stage, while the highest performing group will be routed to the second 

module in the second stage.  

1.8 Classification methods 
Tests can be broadly categorized as tests for ability estimation purposes, and tests for 

classification purposes. In tests for ability estimation purposes, the resulting measure of the test is the 

estimated ability of the pupils. However, in tests for classification purposes, the result of the test is the 

appropriate category for each pupil. To make this classification decision, classification methods are 
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used. The accuracy of the resulting classification decisions are measured with the proportion of correct 

decisions (PCD). The PCD is calculated by dividing the amount of correct classification decisions by 

the total amount of pupils participating in the test. Three classification methods relevant to this study – 

the sequential probability ratio test (SPRT), the sum of the probability of correct responses on all items, 

and the estimated ability classification method using the Rasch model – are discussed.  

1.8.1 The sequential probability ratio test 

The SPRT was originally developed by Wald (1973). In tests with only two classification levels, 

such as pass or fail tests, an ability cutoff point 𝜃𝑐 is placed between the two levels, with an indifference 

region around this point. The indifference region controls for uncertainty in the classification decision, 

caused by measurement error, for pupils with an ability close to the cutoff point (Eggen, 1999). 

Hypotheses are formulated at the lower and upper end of the indifference region: 
 

𝐻0: �̂� < 𝜃𝑐 − 𝜕, (1.10) 

 

𝐻1: �̂� > 𝜃𝑐 + 𝜕, (1.11) 

where 𝜕 signifies half the size of the indifference region. Type I and Type II errors are acceptable when: 
 

𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) ≤ 𝛼, (1.12) 

 

𝑃(𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒) ≤ 𝛽, (1.13) 

with small constants for the rate of type I error 𝛼 and the rate of type II error 𝛽. The SPRT (Wald, 1973) 

can be used to test this, with the ratio between the values of the likelihood function (see equation 1.8) 

under both hypotheses as the test statistic (Eggen, 1999): 
 

𝐿𝑅(𝒖) =
𝐿(𝜃𝑐 + 𝜕|𝒖)

𝐿(𝜃𝑐 − 𝜕|𝒖)
. (1.14) 

The following rules are used to make a classification decision (Eggen, 1999):  

Ability below 𝜃𝑐  𝐿𝑅(𝒖) ≤ 𝛽/(1 − 𝛼), (1.15) 

Ability above 𝜃𝑐  𝐿𝑅(𝒖) ≥
1 − 𝛽

𝛼
. (1.16) 

If the above rules do not lead to a classification decision, the pupil is classified as having an ability 

above the cut-off point when the log of the likelihood ratio is larger than the midpoint of the log of the 

interval 𝛽/(1 − 𝛼)  <  𝐿𝑅(𝒖) <  (1 − 𝛽)/𝛼. When the log-likelihood ratio is smaller than this midpoint, 

the pupil is classified as having an ability below the cut-off point. 

This procedure can be generalized to cases with multiple classification categories and multiple 

test dimensions. To do so, the likelihood ratio in equation 1.14 is expanded so all dimensions and all 

items in the test are included (van Groen, 2014): 
 

𝐿𝑅(𝒖) = ∏
𝐿(𝜃𝑐,𝑗 + 𝜕|𝒖𝒋)

𝐿(𝜃𝑐,𝑗 − 𝜕|𝒖𝒋)

𝑘

𝑗=1

, 𝑗 = 1, … , 𝑘, (1.17) 

where 𝜃𝑐,𝑗  is the classification cut-off point for dimension j, and 𝒖𝒋  the vector of responses for the 

dimension j. It is assumed that all dimensions share the same value for 𝜕. The classification cut-off 
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points, which separate adjacent classification categories, have to be determined for each dimension 

covered by the test.  

1.8.2 Sum of the probability of correct responses on all items 

A pupil can also be classified using the sum of the probabilities of correct responses on all items  

 

in the item bank: 
 

∑ 𝑃𝑖(�̂�), 𝑓𝑜𝑟 𝑖 ∈ 𝑉𝑎𝑙𝑙 , (1.18) 

where 𝑉𝑎𝑙𝑙 is the set of items in the MST. The outcome of equation 1.18 can be compared to the pre-

specified cut-off points in order to make a classification decision. These cut-off points are determined 

by defining the minimal required total sum score across all domains covered by the test, for each 

classification level. In practical terms, this sum score represents which share of the items on the test 

should be answered correctly for a pupil to be classified into a certain classification level. 

1.8.3 Estimated ability classification method using the Rasch model 

After a test has been completed, the ability of a pupil can be estimated using maximum 

likelihood estimation, as described in section 1.4. However, in the Centrale Eindtoets, multiple abilities 

are tested. In the case of a multivariate ability distribution, the ability of a pupil cannot easily be 

expressed in a single measure. This is because the different abilities are not measured on the same scale. 

As an alternative, the items for all domains in the test are put into one item bank. The item parameters 

for this item bank are estimated under the Rasch model. The item parameters under the Rasch model are 

then used to estimate the ability of the pupils. The resulting ability estimates are used for classification 

purposes by defining an ability interval for each category. Pupils are classified in the category 

corresponding with the ability interval that contains the estimated ability. 

To obtain these ability intervals, it has to be determined which ability interval belongs to which 

classification level. To do so, a criterion has to be defined regarding the ability in each classification 

level. One example of such a criterion is a sum score. By using the sum score as a criterion, the 

classification cut-off points from the classification method described under 1.8.2 can be used. To do so, 

the minimal required sum score for each level are obtained from the method described under 1.8.2. 

Secondly, the ability estimates corresponding to those sum scores are obtained. These ability estimates 

serve as the cut-off points for each classification level. 

2 Methodology 
In this study, the multistage and linear versions of the Centrale Eindtoets were compared with 

respect to the precision of the ability estimates and classification accuracy. Furthermore, the effects of 

three classification methods and two module designs were investigated. Specifically, the following 

research questions were answered: 

1. How do the linear and multistage version of the Centrale Eindtoets compare with respect to 

the precision of the ability estimates? 

2. How do the linear and multistage version of the Centrale Eindtoets compare with respect to 

classification accuracy? 

3. What is the influence of different classification methods on the classification accuracy of 

the linear and multistage version of the Centrale Eindtoets? 

4. What is the influence of different module designs on the precision of the ability estimates 

and the classification accuracy of the linear and multistage version of the Centrale 

Eindtoets? 

2.1 Research Design 
In order to answer the four research questions above, several versions of the Centrale Eindtoets 

have to be administered to respondents. The respondents’ responses are used to estimate their abilities 
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and make classification decisions with different classification methods. The resulting data is used for 

four separate analyses in order to answer the research questions of this study: (1) a comparison between 

the linear and multistage version of the Centrale Eindtoets with respect to the precision of the ability 

estimates, (2) a comparison between the linear and multistage version of the Centrale Eindtoets with 

respect to the classification accuracy, (3) the influence of different classification methods on the 

classification accuracy of the linear and multistate versions of the Centrale Eindtoets, and (4) the 

influence of different module designs on the precision of the ability estimates and the classification 

accuracy of the linear and multistage versions of the Centrale Eindtoets. To perform these steps, a 

traditional research design (i.e., Campbell & Stanley, 1963) is not applicable for three reasons.  

Firstly, to provide results that are stable across reruns of this study, an amount of respondents 

comparable to the number of respondents on the current version of the Centrale Eindtoets (about 

150,000) would be required. For example, these respondents might participate in a study that randomly 

assigns them to one of the proposed new variants of the Centrale Eindtoets. Such a study cannot easily 

be performed without implementing the new test variants in the actual test administration. Because of 

the uncertainty about the test quality of different configurations of the MST, it is unwise to implement 

these new test variants in a high stakes testing situation. Secondly, the current test administration system 

is not yet suitable for the MST that is the subject of this study, as the results of this and other studies 

have to provide more information about the optimal design of the system. Thirdly, a traditional research 

design does not lend itself well for an iterative process of testing a design and adapting the MST based 

on the results. Given the aforementioned reasons, a simulation study was performed. 

This study is based on the following procedure. Firstly, using a sample of existing response data 

and the known item parameters from the Centrale Eindtoets 2015, the multivariate ability distribution 

for the different subjects of the Centrale Eindtoets 2015 was estimated. The ability distribution was then 

used as a starting point for the generation of ability parameters for the simulees in the simulated tests. 

Furthermore, using this ability distribution, item parameters were generated that fit the specifications of 

this test design. Secondly, the simulees´ responses to all items in the simulated tests were generated.  

To determine the response of a simulee to each item, the probability that the simulee correctly 

responds to an item is calculated based on the OPLM. This probability is compared to a randomly 

generated value from a uniform distribution between zero and one. If this randomly generated value is 

higher than the probability that the simulee correctly responds to an item, the item is marked as answered 

correctly (1) for this simulee. If this randomly generated value is lower than the probability that the 

simulee correctly responds to an item, the item is marked as answered incorrectly (0) for this simulee. 

Lastly, the precision of the ability estimates and the accuracy of the classification decisions was 

determined for both versions of the Centrale Eindtoets. For a more detailed description of the output 

measures of this simulation, the reader is referred to section 2.4.8. The procedure was repeated for three 

different classification methods and two different module designs, as explained in the data analysis 

section. 

With the research design as described above, the four analyses that are part of this study will be 

performed. In the following sections, the methodology for all four analyses will be detailed as a whole. 

When there is a difference in methodology between the analyses, those differences will be made explicit. 

2.2 Respondents 
In the present study, there was no sampling performed in the traditional sense. Instead, this study 

used existing data from the response file from the Centrale Eindtoets 2015, modeled under OPLM, as 

input for the simulation study. To ensure ethical integrity, the responses in the file cannot be traced back 

to individual respondents. From this file, the distribution of the ability parameters of the respondents 

was obtained given the calibrated item parameters. This ability distribution will be used to generate the 

abilities of the simulees. The procedure used to generate simulees is discussed below. 

2.2.1 Simulee generation 

To obtain realistic values for the ability parameters in the simulation study, the response data 

from all pupils (N = 149,158) of the paper-and-pencil edition of the Basis and Niveau versions of the 

Centrale Eindtoets 2015 were selected. The response data consists of a score set for each pupil. Each set 

consists of a series of zeros and ones for each simulee, representing an incorrect and a correct answer to 

an item, respectively. From these response data, the multivariate normal distribution of the pupils was 
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obtained. Table 2.1 shows the standard deviations and the means for the ability distribution. The ability 

parameters of the simulees were drawn from this observed multivariate distribution. The simulee sample 

contains 100,000 simulees, obtained by simple random sampling. This sample size was chosen, because 

preliminary tests showed that this sample size allows one simulation run to be completed in one and a 

half hours, while providing stable simulation results. 

2.3 Instrumentation and Procedure 
The simulation test in this study was based on the proposal, as available at the start of the study 

for the design of the multistage version of the Centrale Eindtoets and the response data from the linear 

versions of the Centrale Eindtoets 2015 (CvTE, 2015). The item pool consisted of items for five subjects: 

reading, language skills, mathematics, vocabulary, and writing. Table 2.2 shows the proposal for 2018 

for the amount of items per subject administered in each part of the simulation test. 

2.3.1 MST design 

The design of the multistage test is based on the current proposal for the 2018 version of the 

multistage the Centrale Eindtoets, consisting of three stages, as illustrated in Figure 2.1. Three subjects 

(i.e., reading, language skills, and mathematics) are tested in an adaptive way, with an initial stage in 

part one, after which pupils are routed to a second stage module depending on their performance. The 

three modules in stage two and three are targeted at the percentile scores in the population of 1-25 

(module 1), 26-60 (module 2), and 61-100 (module 3), respectively. The students’ performance in stage 

one and two determines to which stage three module they are routed. It should be noted that routing 

occurs per subject: for example, a simulee can be routed to the module corresponding with percentile 

score 1-25 for mathematics and the module corresponding with percentile score 25-60 for reading. The 

last two subjects (i.e., vocabulary and writing) are tested in a linear way, with each pupil receiving the 

same set of items regardless of their performance. 

In the proposal for the 2018 version of the multistage the Centrale Eindtoets, there are different 

targets for p-values per module. In this context, the p-value for an item indicates the probability that, 

given the average ability of a (sub)population, the response to this item is correct. The p-value targets 

have been defined to ensure that the average difficulty of the items in this test adhere to a predefined 

standard.  

For the subjects that are tested in an adaptive way, the target p-value for stage one is .70 for the 

total population of simulees. For stage two and three of these subjects, the target p-value is linked to the 

average ability of the target simulee group of each module. In these stages, the p-value for the target 

simulee group in each module is .60. For the subjects that are tested in a linear way, as well as the linear 

version of the test, all items have a target p-value of .70 for the total population of simulees. 

2.3.2 Standard score classification 

As stated in the problem statement, the Centrale Eindtoets offers advice on the most appropriate 

level of Dutch secondary education for the pupil. To do so, the Centrale Eindtoets classifies pupils into 

one of eight categories corresponding to five levels in Dutch secondary education and three intermediate 

categories, which are a mix of two adjacent levels of education. The levels are, from low to high ability: 

(1) vmbo-bb, (2) vmbo-bb/kb, (3) vmbo-kb, (4) vmbo-gt, (5) vmbo-gt/havo, (6) havo, (7) havo/vwo, (8) 

vwo. 

To classify simulees into one of the eight categories, the pupils’ sum scores on the items of the 

Centrale Eindtoets 2015 are calculated for each subject. Secondly, these sum scores are added to each 

other. Using these sum scores, a standard score is calculated with the following formula: 
 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑢𝑚 𝑠𝑐𝑜𝑟𝑒 ∗ 𝐴∗ + 𝐵∗. (2.1) 

The formula uses two constants A* and B* to make sure that students with the same performance that 

take the test in year X and year X+1 will get the same standard score. The constants are determined 

annually using a statistical procedure called equating. In 2015, A*=0.3338 and B*=482.23. The standard 

score ranges corresponding to each classification level are shown in Table 2.3. For this study, the 

standard score ranges of 2016 are used. The the Centrale Eindtoets 2015 made use of overlapping  
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Table 2.1 

 

Means and Standard Deviations of the Multivariate Ability Distribution of the Centrale Eindtoets 

2015 

Subject M SD 

Reading 0.4800 0.2670 

Vocabulary 0.4740 0.3350 

Writing 0.4600 0.2680 

Language skills 0.4740 0.3020 

Mathematics 0.3600 0.2750 

 

Table 2.2 

 

Proposed Amount of Items per Test Domain and Test Part for the Simulation Study 

Subject Part 1 Part 2 Part 3 

Reading 15 15 15 

Vocabulary 10 5 5 

Writing 10 5 5 

Language skills 16 17 17 

Mathematics 25 30 30 

 

 
Figure 2.1. Module structure for the multistage variant of the test with target p-values 

 

standard score ranges, which would make it impossible to classify all pupils into a distinct classification 

level. 
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Table 2.3 

 

Classification Categories and the Corresponding Standard Score Ranges from the Centrale Eindtoets 

2016 

Classification Category  Lowest Standard Score Highest Standard Score 

Vmbo-bb  501 518 

Vmbo-bb/kb  519 525 

Vmbo-kb  526 528 

Vmbo-gt  529 532 

Vmbo-gt/havo  533 536 

Havo  537 539 

Havo/vwo  540 544 

Vwo  545 550 

 

2.4 Method of Data Analysis 
The proposal for the multistage version of the Centrale Eindtoets 2018 as outlined above serves 

as the blueprint for the simulated tests. Two variants of the test were created by changing in which stage 

the items with the highest discrimination parameters are used. By doing so, it could be determined at 

what stage in this multistage test highly discriminatory items should be placed to obtain the most precise 

ability estimate. Furthermore, a linear variant of the test was created. This was done to facilitate a 

comparison between a multistage version of the Centrale Eindtoets and a linear version of the Centrale 

Eindtoets. In summary, there are three test variants: 

(a) the multistage test variant with the highly discriminatory items in stage two and three, 

(b) the multistage test variant with the highly discriminatory items in stage one, and  

(c) the linear test variant. 

To make the results across the three test variants comparable, all variants should share the same 

item bank per subject. In this case, an item bank is defined as a collection of test items with known item 

parameters. The most obvious way to create the item bank for this study would be to select the required 

amount of the items from the Centrale Eindtoets 2015. The items from the Centrale Eindtoets 2015, 

after all, form the basis of this study. For each test variant, the items in the item bank would then have 

to be divided in such a way that the target p-values, as described in section 2.3.1, are met. In practice, 

however, it was not possible to use this approach while conforming to the target p-values. 

Another way to create the item bank for the simulated tests would be to generate item parameters 

in such a way that they conform to the target p-values. However, it would be undesirable that these items 

are unrelated to the existing the Centrale Eindtoets 2015 items. Using unrelated items makes it difficult 

to generalize the results of this study to the Centrale Eindtoets. 

To solve this problem, a combination of these two item bank creation methods was used. In this 

procedure, the item bank was created by first preparing the item selection for the first test variant. This 

item bank formed the basis of the item selection for the second and third test variant. The procedure for 

the creation of the item bank is described in section 2.4.1. Furthermore, the procedure to make an item 

selection from this item bank for the second and third test variant is described in section 2.4.3. 

For all three test variants, the item selection for the subjects that are tested in a linear way (i.e. 

writing and vocabulary) is the same. Therefore, the item selection procedure for these two subject is 

discussed separately in section 2.4.4. 

2.4.1 Item bank creation 

To relate the items in the simulated tests to the existing the Centrale Eindtoets 2015 items, the 

required amount of discrimination parameters were randomly sampled from the discrimination 

parameters of the existing the Centrale Eindtoets 2015 items. This sampling procedure was performed 

for each test domain that was tested in an adaptive way (i.e., reading, mathematics and language skills). 

Furthermore, the location parameters for the test items were randomly generated. In this process, the 
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average p-value for each module in stage two and three was taken into account. In each module, the 

average p-value for the target population (i.e., the subpopulation of the pupils that is intended to go to a 

specific module) of that particular module should be 0.65. Afterwards, the discrimination parameters 

and location parameters were paired to form the item parameters for the items. The resulting item bank 

was used as a base for the item selection in the first, second, and third test variant. 

2.4.2 Item selection for the first test variant 

To divide the selected items over the stages in such a way that the target p-values were met for 

the first test variant, a three step procedure was used. To explain this procedure, the following symbols 

are used: 

𝑛𝑠𝑡𝑎𝑔𝑒 𝑥 number of items in stage x, where x = 1..3 

𝑁 total number of available items for one test domain 

 

The procedure is illustrated in Figure 2.2. Note that more advanced, automated item selection methods 

are available for use with IRT. These items selection methods, also known as optimal test design, use 

mathematical optimization algorithms to select the items that best contribute to features such as 

measurement precision and content balance (Oakland, 1995, p. 100). However, optimal test design falls 

outside the scope of this study. The item selection procedure that was performed for the first test variant 

is as follows: 

1. The generated pairs of item parameters were ordered by discrimination parameters, from low 

to high. 

2. From these ordered items, items 1 until and including 𝑛𝑠𝑡𝑎𝑔𝑒 1 were selected for stage one. 

3. From these ordered items, items 𝑛𝑠𝑡𝑎𝑔𝑒 1 + 1 until and including 𝑛𝑠𝑡𝑎𝑔𝑒 2 were selected, and 

ordered by location parameters. These items were divided over the three modules of stage 

two. In this way, the items with the lowest location parameters end up in module one, and 

the items with the highest location parameters end up in the module three. 

4. The remaining items  𝑁 − 𝑛𝑠𝑡𝑎𝑔𝑒 3  until and including item N were ordered by location 

parameters, and assigned to the three modules of stage three, analogous to the previous step. 

The item generation procedure outlined in this section was repeated several times to arrive at the 

optimal item selection for the first test variant. Repetition was required because the prerequisites for the 

item generation procedure resulted in a lower chance to attain the desired average p-value. Firstly,  

for reading, the procedure was repeated 1600 times. Secondly, for mathematics, the procedure was 

repeated 600 times. Thirdly, for language skills, the procedure was repeated 3500 times. The amount of 

repetitions that were required to reach the desired average p-values were dissimilar, because of the 

difference in the amount of available test items for each test domain. For example, in the domain 

mathematics there are 30 items available in each second stage module, while language skills contains 

only 17 items in each second stage module. The p-values of the item selections, which were attained in 

this way, for each subject, are presented in Table 2.4. 

2.4.3 Item selection for the second and third test variant 

For the second and third test variant, the item bank, as described in section 2.4.1, was used as a 

starting point for the item selection. To arrive at the item selection for the second and third variant, either 

a different order for the items in the item bank was used, or a subset of the items in the item bank was 

selected. For the second test variant, the item selection was obtained by reordering the items in the item 

bank. This procedure is illustrated in Figure 2.3. The procedure was performed as follows: 

1. The item parameters from the item bank are ordered by discrimination parameters, from high 

to low. 

2. From these reordered items, items 1 until and including 𝑛𝑠𝑡𝑎𝑔𝑒 1 were selected for stage one. 

3. From the remaining items, items 𝑛𝑠𝑡𝑎𝑔𝑒 1 + 1 until and including N were selected, and ordered 

by location parameters. For stage two, the odd items were selected, and for stage three, the even 

items were selected.  

In this way, the items with the lowest location parameters ended up in module one of stage two and 

three, and the items with the highest location parameters ended up in module three of the stage two and  
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Figure 2.2. Overview of the steps taken in item bank creation 

 

 

Table 2.4 

 

The Average p-value per Module for the Test Variant with Highly Discriminatory Items in Stage Two 

and Three 

Subject  Stage 1 
Stage 2 

Module 1 

Stage 2 

Module 2 

Stage 2 

Module 3 

Stage 3 

Module 1 

Stage 3 

Module 2 

Stage 3 

Module 3 

Reading  0.6899 0.6070 0.5895 0.5970 0.5751 0.6216 0.6293 

Mathematics  0.6818 0.6346 0.6096 0.5882 0.5848 0.5944 0.6301 

Language Skills  0.7059 0.5803 0.6075 0.5947 0.6375 0.5914 0.6254 

Note. The p-values in the stage two and three modules are for the intended target population of those 

modules. 

 

 

Figure 2.3. Overview of the item selection procedure for the second test variant 

 

three. The p-values of the item selections, which were obtained in this way, for each subject, are 

presented in Table 2.5. 
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For the third test variant, a subset of the items in the item bank was selected. In stage one, the same 

items as in stage one of the item bank were selected. For stage two and three, ideally a random sample 

from the items in stage two and three of the item bank would have been obtained. However, a sample 

of items obtained in this way resulted in p-values that were too low. Therefore, another method was 

used to select the items for stage two and three from the item bank. The sample of the required amount 

of items was instead taken from the first two modules of stage two and three from the item bank. This 

procedure was repeated 100 times for each subject in order to end up with items with average p-values 

that come closest to the desired p-values. The p-values of the item selections, which were attained in 

this way, for each subject, are presented in Table 2.6. 

 

2.4.4 Item selection for vocabulary and writing 

In all variants of the test, there were two subjects (i.e., vocabulary and writing) that were tested in a 

linear way. As such, the item selection for these two subjects was shared across test variants. In order 

to select the items for these two subjects, a stratified proportional random sample of the required amount 

of items was taken from all items that are available for the subject. The strata were (a) items from the 

Basis version of the Centrale Eindtoets and (b) items from the Niveau version of the Centrale Eindtoets. 

For each subject, fifteen items from the Basis version and five items from the Niveau version were 

selected. By using these proportions, items with an average p-value close to the desired value of 

𝑝𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0.70 were obtained. The p-values that were attained in this manner are presented in 

Table 2.7. 

2.4.5 Routing procedure 

Routing in the multistage version occurs after the first stage and after the second stage. In the current 

test design there are four routing points, as shown in Figure 2.4. In this figure, the letter R followed by 

a number represents a routing point. In the simulated tests, routing is performed by calculating the 

unweighted sum score of the items that have been answered up to that point, and selecting the path that 

provides the most information, given this unweighted sum score. As there are several paths a simulee 

can take through the MST, not every simulee responds to the same items. As such, sum scores are not 

comparable across simulees. Furthermore, the item information formula, as presented in section 1.3, 

takes the ability of the simulee, and not the sum score, as an argument. Therefore, a list with the 

following information per routing point had to be generated: 

(a) the routing point from which a routing decision is made,  

(b) all possible unweighted sum scores for this routing point, 

(c) ability estimates corresponding with those unweighted sum scores, and 

(d) the optimal paths given the ability estimates in (c). 

This list contains each point in the MST from which a routing decision is made. To generate 

this list, every routing point for each domain was determined. Afterwards, the following procedure was 

performed for each routing point: 

1. The item parameters of the items up until the routing point were collected. 

2. Using these item parameters, for each possible unweighted sum score, the corresponding 

ability was estimated. 

3. The ability estimates were used to determine which path through the test provides the most 

information for each possible unweighted sum score. When determining the best path after 

stage one, the routing decision after stage two was also considered. This is because the 

purpose of routing after stage one is not to select the optimal stage two module, but to find 

the path through the test that provides the most accurate ability estimate for the simulee at 

the end of the test. Therefore, the path through stage two and three with the most 

information for the ability estimate after stage one is chosen. When determining the best 

path after stage two, the path is selected that leads to the stage three module that provides 

the most information based on the ability estimate after stage one and two.  

This procedure results in a list of unweighted sum scores and optimal path combinations, for 

each routing point, per subject. Because the items that are presented until each routing point differ across 

the multistage test variants, two versions of the list had to be generated. The first version of the list was  
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Table 2.5 

 

The Average p-value per Module for the Test Variant with Highly Discriminatory Items in Stage One 

Subject  Stage 1 
Stage 2 

Module 1 

Stage 2 

Module 2 

Stage 2 

Module 3 

Stage 3 

Module 1 

Stage 3 

Module 2 

Stage 3 

Module 3 

Reading  0.7440 0.5983 0.5958 0.6081 0.5782 0.5821 0.6067 

Mathematics  0.6662 0.6363 0.6127 0.5974 0.6197 0.6130 0.5994 

Language Skills  0.64027 0.6348 0.6169 0.6312 0.6341 0.6233 0.6329 

Note. The p-values in the stage two and three modules are for the intended target population of those 

modules. 

 

Table 2.6 

 

The Average p-value per Stage for the Linear Variant of the Test 

Subject  Stage 1 Stage 2 Stage 3 

Reading  0.6895 0.6986 0.7050 

Mathematics  0.6818 0.7090 0.6966 

Language Skills  0.7058 0.6969 0.7036 

 

Table 2.7 

 

The Average p-Value per Stage for the Total Population of Simulees, for the Subjects That Are 

Tested in a Linear Way 

Subject  Stage 1 Stage 2 Stage 3 

Vocabulary  0.6884 0.7220 0.7027 

Writing  0.7086 0.7022 0.7176 

 

 

Figure 2.4.  Overview of each point in the MST where are routing decision is made. 

The routing points are denoted by R, followed by a number. 

 

used for the test variant with high discrimination parameters in stage one, and the second version was 

used for the test variant with high discrimination parameters in stage two and three. 
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2.4.6 Classification methods 

For the third analysis in the present study, in which the influence of different classification 

methods on the classification accuracy is investigated, three methods to make this classification decision 

were used: the sequential probability ratio test (SPRT), the simulee’s ability estimated after the test 

under the Rasch model, and the summed probabilities of correct responses on all items in the MST given 

the simulee’s estimated ability. These methods are described in more detail in theoretical framework, 

under section 1.8. For the other analyses in the present study, only true classification is used, as described 

in section 2.4.7.  

Each classification method needs its own set of classification cut-off points to perform the 

classification into one of the eight categories. The procedures to calculate these cut-off points are 

described. For the first method, the SPRT, the cut-off points had to be determined for all five subjects 

in the simulated tests. Furthermore, values for α, β, and δ had to be determined. After comparing several 

values for α, β, and δ on the resulting amount of forced decisions and the resulting PCD, it was decided 

to use both α=β=0.05 and α = β = 0.1 for classification with SPRT for all test domains. Regarding the 

indifference region,  𝛿 = 0.09 ∙ 𝑠𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑎𝑙𝑒  was used for the test domains reading, mathematics, 

language skills, and writing, while 𝛿 = 0.015 was used for the test domain vocabulary. For information 

on how the settings of the SPRT were determined, the reader is referred to appendix A. 

For the second method, the summed probabilities of correct responses on all items in the MST 

method, the ability cut-off points of the SPRT are used as a starting point. For each ability cut-off point, 

the corresponding expected score on all items in the MST is calculated for each test domain. Lastly, 

these sum scores per test domain are summed: 

∑ = ∑ +
𝑟𝑒𝑎𝑑𝑖𝑛𝑔

∑ +
𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠

∑ +
𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑠𝑘𝑖𝑙𝑙𝑠

∑ +
𝑤𝑟𝑖𝑡𝑖𝑛𝑔

∑
𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦𝑠𝑢𝑚 𝑠𝑐𝑜𝑟𝑒𝑠

 

This process results in the cut-off points for this method. 

For the third classification method, which uses the simulee’s ability estimated after the test with 

the Rasch model, the items in the MST first have to be modeled under the Rasch model. In order to do 

so, a response set for 100.000 simulees was generated using the observed multivariate ability distribution 

of the Centrale Eindtoets 2015 and the item parameters of the simulated test.  

Using this response set, the item parameters of the items from the MST are estimated with 

Rasch. With the same response set, and the Rasch item parameters, the distribution of the abilities of the 

population is calculated. In practical terms, modelling the items from the MST under Rasch means that 

one is no longer looking at the ability of a pupil on each individual test domain. Instead, one is looking 

at the ability of the pupil on the whole MST. Thirdly, the item parameters and the mean and standard 

deviation of the ability distribution are used to calculate the ability for each sum score. Finally, the 

abilities corresponding with the second classification method’s sum score cut-off points are selected as 

cut-off points for this method. 

2.4.7 True classification 

To determine whether the correct classification decisions were made in the simulated tests, a 

benchmark for the classifications is needed. In the present study, this benchmark was based on the 

classification method that is used in the Centrale Eindtoets test administration. This classification 

method, known as the standard score classification method, is described in section 2.3.2. The standard 

score classification method is used in the first, second and fourth analysis in the present study. In the 

third analysis, it serves as an upper limit for the classification methods as described in section 2.4.5. 

2.4.8 Simulation results 

The simulation will provide two results: a) the root mean square error (RMSE) of the pupil’s 

abilities (a measure of the precision of the ability estimates that the simulation produces, see equation 

1.9), and b) the proportion of correct decisions (PCD) for the classifications (a measure for the accuracy 

of the classification decisions). A correct classification is made when the classification decision from a 

classification method is equal to the classification decision that is made by the true classification method. 

A variant of the PCD was calculated, based on overlapping educational levels. Table 2.3 shows 

all possible classification levels in the Centrale Eindtoets. However, there is overlap between some of 

the classification levels in this table. For example, an advice for Havo is both in the sixth and seventh 
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classification level. Therefore, it could be argued that a pupil who is classified as Havo, with a true 

classification of Havo/vwo, is in fact not incorrectly classified. With this rationale in mind, the second 

variant of the PCD only counts classifications as a misclassification, when the classification level that a 

pupil was assigned to does not contain the pupil’s true school advice. Table 2.8 presents the 

classification levels with overlap. 
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Table 2.8 

 

Classification Levels with Overlap 

Classification Level  Has overlap with 

Vmbo-bb  Vmbo-bb/kb 

Vmbo-bb/kb  Vmbo-bb and Vmbo-kb 

Vmbo-kb  Vmbo-bb/kb 

Vmbo-gt  Vmbo-gt/havo 

Vmbo-gt/havo  Vmbo-gt and Havo 

Havo  Vmbo-gt/havo and Havo/vwo 

Havo/vwo  Havo and Vwo 

Vwo  Havo/vwo 

3 Results 
In this study, the linear and multistage version of the Centrale Eindtoets were compared. 

Specifically, four test variants were compared:  

 a variant in which simulees respond to all items of the multistage version, 

 a variant of the multistage version with highly discriminatory items in the second and third 

stage (MST variant 1), 

 a variant of the multistage version with highly discriminatory items in the first stage (MST 

variant 2), 

 a linear test variant. 

With these four test variants, four analyses were performed. Firstly, a comparison was made 

between the multistage test variants and the linear test variant on precision of the ability estimates. 

Secondly, the differences between the multistage test variants and the linear test variant in terms of 

classification accuracy were examined. Furthermore, the effects of four different classification methods 

on classification accuracy of the linear and multistage variants were studied. Lastly, the influence of the 

different composition of the two multistage test variants on the precision of the ability estimates and the 

classification accuracy were compared. The results of these four analyses are discussed in the sections 

3.1, 3.2, 3.3 and 3.4. The discussion of the results is presented in section 3.5. 

3.1 Precision of the Ability Estimates 
The first question in this study was how the linear and multistage version of the Centrale 

Eindtoets compare on precision of the ability estimates. In order to answer this question, the RMSE was 

calculated for each test domain in each test variant. The results of this comparison are presented in Table 

3.1. In this comparison, the test variant with all items from the multistage test is the benchmark test. The 

RMSEs for writing and vocabulary are identical across all test variants, because all variants shared the 

same test items for these two domains. For the domains reading, mathematics, and language skills, the 

multistage test variants produced the best RMSE values. In other words, the best measurement precision 

is achieved with the multistage test variants. 

3.2 Classification Accuracy 
The second question in this study was how the linear and multistage version of the Centrale Eindtoets 

compare on classification accuracy. In order to answer this question, the PCD was calculated for each  
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Table 3.1 

 

RMSEs for the Four Test Variants, per Domain 

  RMSE 

Subject  All Items MST Variant 1 MST Variant 2 Linear 

      
Reading (45 items)  0.0835 0.0997 0.0954 0.1134 

Mathematics (85 items)  0.0644 0.0730 0.0711 0.0905 

Language Skills (50 items)  0.0797 0.0944 0.0894 0.1060 

Writing (20 items)  0.2197 0.2197 0.2197 0.2197 

Vocabulary (20 items)  0.2048 0.2048 0.2048 0.2048 

 

test variant using the standard score classification method. The result of this comparison is presented in 

Table 3.2. 

The test variant with all items from the multistage test is the benchmark test in this comparison. 

When comparing the other three test variants, the multistage test variants have a higher PCD than the 

linear test variant. In other words, the multistage test variants produced the best classification accuracy. 

As the classification categories in the Centrale Eindtoets overlap, it could be argued that the 

PCD, as presented in Table 3.2, does not represent the actual amount of correct decisions. Instead, one 

could argue that a classification decision is only a misclassification when the level of secondary 

education that a pupil should be assigned to is not contained in the classification category for this pupil. 

For example, when a pupil should be assigned to the Havo classification category, but is classified as 

Havo/Vwo, it could be argued that the classification decision is still correct. The reader is referred to 

section 2.4.8 for a description of how the classification categories based on overlapping educational 

levels are composed. The results of the comparison between the linear and multistage version of the 

Centrale Eindtoets, without the overlapping classification categories, is shown in Table 3.3. In this table, 

the same overall trend as in Table 3.2 can be observed. Again, the multistage test variants produced the 

best classification accuracy.  

3.3 Influence of the Classification Method 
The third question in this study pertains to the effects of four different classification methods 

on classification accuracy of the linear and multistage version of the Centrale Eindtoets. In order to 

answer this question, the PCD was calculated for each test variant using all classification methods: (a) 

the standard score classification method, (b) the sum of the estimated probability on all items 

classification method, (c) the Rasch classification method, and (d) the SPRT. For the SPRT, two 

different settings were used: (a) α = β = 0.1, and (b) α = β = 0.05. In both cases, the δ for each test 

domain was 0.09, multiplied by the standard deviation of the ability distribution of the test domain. This 

results in a value for δ that is on the same scale as the ability distribution of the test domain. 

An exception was made for vocabulary, as this setting for δ would have resulted in overlapping 

indifference regions. Therefore, the δ for vocabulary was set to 0.015. For the exact configuration of the 

indifference regions, the reader is referred to Appendix A. The results of this comparison is presented 

in the second section of Table 3.4. The full classification tables, which contain the PCD per classification 

category for each test variant, can be found in Appendix B.  

In order to answer the third question in this study, it is more intuitive to look at the proportion 

of incorrect decisions (PID), which is the inverse of the PCD. For an ideal test, one wants zero incorrect 

classification decisions, or a PID of 0. In this comparison, the test variant with all items of the multistage 

test is the benchmark. Regardless of the test variant, the sum of the estimated probability on all items 

classification method consistently had the lowest PID. However, when looking at the PCD per 

classification category, this finding no longer holds, as shown in Appendix B. In this table, it is shown 

that, in each classification category, a different classification method results in the highest PCD. In sum, 

the highest overall classification accuracy was obtained with the sum of the estimated probability on all 

items method. However, when looking at the highest classification accuracy per classification category, 

no classification method consistently produced the best results. As in section 3.2, the PID for this 

research question was also calculated without the overlapping classification categories. The results of 
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Table 3.2 

 

PCD for Each Test Variant, Using the Standard Score Classification Method 

All Items MST Variant 1 MST Variant 2 Linear 

    0.7428 0.7109 0.7210 0.6855 

 

Table 3.3 

 

PCD Without Overlapping Classification Categories, for Each Test Variant, Using the Standard Score 

Classification Method 

All Items MST Variant 1 MST Variant 2 Linear 

    
0.9606 0.9527 0.9550 0.9452 

 

the comparison between the four classification methods, without the overlapping classification 

categories, is shown in the third section of Table 3.4. In this table, the same overall trend as in the second 

section of Table 3.4 can be observed. Again, the highest overall classification accuracy was obtained 

with the sum of the estimated probability on all items method. 

3.4 Influence of the MST Design 
The last question that was answered is this study pertains to the influence of two different 

module designs on the precision of the ability estimates and the classification accuracy of the multistage 

version of the Centrale Eindtoets. In order to answer this question, the PCD was calculated for the two 

multistage test variants, using the standard score classification method, and the RMSE was calculated 

for each test domain in the two multistage test variants.   

The comparison in terms of the precision of the ability estimates is presented in Table 3.5. The 

RMSEs for writing and vocabulary are identical across the two test variants, because all test variants 

shared the same test items for these two domains. For the domains reading, mathematics, and language 

skills, the RMSE values for the second multistage variant are lower than for the first multistage variant. 

In other words, better measurement precision is achieved in the multistage test variant with the highly 

discriminatory items in the first stage for the domains reading, mathematics, and language skills. 

The comparison between the two multistage test variants in terms of classification accuracy is 

presented in Table 3.6. When looking at the classification accuracy, the second multistage variant has a 

higher PCD than the first multistage variant. In other words, higher classification accuracy is achieved 

in the multistage test variant with the highly discriminatory items in the first stage. 

As in section 3.2, the PCD for this research question was also calculated without the overlapping 

classification categories. The results of the comparison between the two multistage test variant, without 

the overlapping classification categories, are shown in Table 3.7. When the PCD without overlapping 

classification categories is considered, the highest classification accuracy was again obtained with the 

second multistage test variant. 

3.5 Discussion of the Results 
The main goal of this study was to investigate the difference between the multistage and linear 

version of the Centrale Eindtoets in terms of measurement precision and classification accuracy. 

Secondly, the effect of different classification methods on classification accuracy was studied. Lastly, 

the influence of different module design on the measurement precision and classification accuracy of 

the multistage the Centrale Eindtoets was examined. The results from this study show that a multistage 

version of the Centrale Eindtoets outperforms the linear version of the Centrale Eindtoets on both 

measurement precision and classification accuracy. Furthermore, the sum of the estimated probability 

on all items classification method consistently provides the highest classification accuracy, regardless 

of the test variant. Finally, the second variant of the multistage test – with highly discriminatory items 

in the first stage – outperforms the first variant of the multistage test, both in terms of measurement 

precision and classification accuracy. 



 

 28 

Table 3.4 

 

PCD for Each Test Variant, Using All Classification Methods 

  PCD 

Classification Method  All Items MST Variant 1 MST Variant 2 Linear 

      
Standard Score  0.7428 0.7109 0.7210 0.6855 

Sum of the Estimated  

Probability on All Items 
 0.7266 0.6937 0.7014 0.6630 

Rasch  0.7238 0.6862 0.6973 0.6502 

SPRT (α = β = 0.1)  0.7158 0.6805 0.6946 0.6528 

SPRT (α = β = 0.05)  0.7158 0.6530 0.6808 0.5707 

  

Proportion Incorrect Decisions With Overlapping Classification 

Categories 

Classification Method  All Items MST Variant 1 MST Variant 2 Linear 

      

Standard Score  0.2178 0.2418 0.234 0.2597 

Sum of the Estimated  

Probability on All Items 
 0.2338 0.2577 0.2531 0.2803 

Rasch  0.2362 0.2643 0.2543 0.2911 

SPRT (α = β = 0.1)  0.2421 0.2673 0.2576 0.283 

SPRT (α = β = 0.05)  0.2421 0.2789 0.2633 0.3212 

  

Proportion Incorrect Decisions Without Overlapping Classification 

Categories 

Classification Method  All Items MST Variant 1 MST Variant 2 Linear 

      

Standard Score  0.0394 0.0473 0.045 0.0548 

Sum of the Estimated  

Probability on All Items 
 0.0396 0.0486 0.0455 0.0567 

Rasch  0.04 0.0495 0.0484 0.0587 

SPRT (α = β = 0.1)  0.0421 0.0522 0.0478 0.0642 

SPRT (α = β = 0.05)  0.0421 0.0681 0.0559 0.1081 

  

 

Table 3.5 

 

RMSEs for the Two Multistage Test Variants, per Domain 

  RMSE 

Domain  MST Variant 1 MST Variant 2 

    
Reading (45 items)  0.0997 0.0954 

Mathematics (85 items)  0.0730 0.0711 

Language Skills (50 items)  0.0944 0.0894 

Writing (20 items)  0.2197 0.2197 

Vocabulary (20 items)  0.2048 0.2048 

 

Table 3.6 

 

PCD for the Two Multistage Test Variants, with the Standard Score Classification Method 

MST Variant 1 MST Variant 2 

  
0.7109 0.7210 



 

 29 

 

Table 3.7 

 

PCD Without Overlapping Classification Categories, for the Two Multistage Test Variants, with the 

Standard Score Classification Method 

MST Variant 1 MST Variant 2 

  
0.9527 0.9550 

4 Conclusion 
At the end of the primary school, pupils take a test that provides them with an independent 

advice on the level of secondary education that is most suitable for their ability. An example of such a 

test is the Centrale Eindtoets. The the Centrale Eindtoets classifies pupils into one of eight partly 

overlapping levels that correspond with the Dutch levels of secondary education. This classification is 

dependent on the pupils’ performance on the test. Furthermore, the Centrale Eindtoets provides pupils 

with a score representing their ability. To meet these requirements, the Centrale Eindtoets should 

achieve high classification accuracy and give precise ability estimates. As the Centrale Eindtoets is 

currently administered in a linear format, and thus every pupil has to respond to the same items, pupils 

are likely to respond to items that are either too easy or too difficult. These items will contribute less 

than optimal to a precise measurement of their ability. This reduced measurement precision increases 

the chance of misclassifications, especially for pupils with an ability near a classification cut-off point. 

Currently, Stichting Cito is developing an adaptive version of the Centrale Eindtoets. One of 

the advantages of this adaptive the Centrale Eindtoets is an increase in measurement precision. In this 

version of the Centrale Eindtoets, pupils first receive a block of items to obtain an initial estimate of 

their ability. Based on this initial ability estimate, pupils are routed to one of three blocks of items that 

best suits their ability. After this second block of items, the pupil’s ability estimates are updated, and 

the final block of items most suitable for their ability is presented. This type of testing is called 

multistage testing. Although the advantage of multistage testing over linear testing is described in 

literature, choose to the exact amount of influence the test design has on the measurement precision and 

the classification accuracy of the Centrale Eindtoets was unknown. Therefore, the aim of the study was 

to compare the multistage and linear version of the Centrale Eindtoets on measurement precision and 

classification accuracy. The influence of different configurations for the multistage test on measurement 

precision and classification accuracy was also investigated. Lastly, the effect of three classification 

methods on classification accuracy was compared. 

In order to test the different version of the Centrale Eindtoets with a representative sample size, 

the different versions must be put into the actual test administration. However, this procedure is 

unethical, as there could be a difference in measurement precision and classification accuracy between 

the different versions. As a result, some pupils might be put at a disadvantage when they are not assigned 

to the best version. Therefore, a simulation study was used to make a comparison between the different 

version of the Centrale Eindtoets. The ability parameters in this study were based on the ability 

distribution of the five test domains of the Centrale Eindtoets 2015: reading, mathematics, language 

skills, writing and vocabulary. The items parameters in this study were generated to adhere to the 

specifications for the adaptive the Centrale Eindtoets 2018, which will be a multistage test. Two variants 

of the multistage test were developed. In the first version, the highly discriminatory items were placed 

in the first stage of the multistage test. In the second version, the highly discriminatory items were place 

in the second and third stage of the multistage test. Secondly, a linear variant of the test was developed 

based on a selection of items from the multistage test. This linear variant enabled the comparison 

between the multistage and linear version of the Centrale Eindtoets. Lastly, a test variant in which pupils 

respond to all items in the multistage test was developed. This variant provides information on the 

maximum amount of improvement that can be made by using the items from the multistage test, when 

compared to the linear test. To determine the precision of the ability estimates in the test, the RMSE per 

test domain was calculated for each test variant. Furthermore, the classification accuracy was measured 

with the proportion of correct classification decisions. To make these classification decisions, three 
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classification methods were used: (a) the sequential probability ratio test, (b) the estimated ability 

classification method using the Rasch model, and (c) the sum of probabilities on all items in the test 

method. 

The results from this study show that the multistage versions of the Centrale Eindtoets 

outperforms the linear version of the Centrale Eindtoets on both measurement precision and 

classification accuracy. For example, when looking at measurement precision for the mathematics 

domain across the test variants, the RMSE of the linear variant is 0.0905, while the RMSE of the first 

and second MST variant is 0.0730 and 0.0711, respectively. This finding is in line with research stating 

that multistage tests have greater measurement accuracy than linear tests at the same test length (e.g. 

Yan et al., 2014). In terms of classification accuracy, the PCD for the linear the Centrale Eindtoets is 

0.6855, compared to 0.7109 and 0.7210 for the first and second MST variant. Again, this finding is in 

line with research, which states that opting for multistage testing over linear testing leads to an increase 

in the amount of information available for measurement, which in turn decreases the error associated 

with classification decisions (Weissman, 2014). 

Furthermore, the sum of the estimated probability on all items classification method consistently 

provides the highest classification accuracy, regardless of the test variant. For example, when comparing 

the different classification methods for the first variant of the MST, the sum method has a PCD of 

0.6937, compared to a PCD of 0.6862, 0.6805 and 0.6530 for the Rasch method, the SPRT with α = β 

= 0.1, and the SPRT with α = β = 0.05, respectively.  

The fact that the sum method outperforms the Rasch method can be explained by the fact that, 

for the Rasch classification method, the test items were modeled under Rasch. By contrast, under Rasch 

the discrimination parameter cannot be specified. As such, modeling the test items under Rasch causes 

a loss of information, which explains why the sum method outperforms the Rasch method. 

Next to that, the fact that the SPRT produces the least favorable PCD out of all classification 

methods used in this study can be explained by the specific classification requirements for the Centrale 

Eindtoets. Firstly, pupils are classified into one of eight categories, which results in classification cut-

off points that are located close together. For classification with the SPRT this is less than ideal, as it 

limits the maximum size of the indifference region. This limitation can in turn lead to a high amount of 

forced decisions, which negatively affects the classification accuracy. Secondly, as the Centrale 

Eindtoets contains multiple test domains, classification with the SPRT requires a separate set of cut-off 

points for each test domain. This makes it much harder to configure the cut-off points for the highest 

possible classification accuracy, when compared to classification methods that only require one set of 

cut-off points for all test domains. Thirdly, as the SPRT for multiple domains originally used a 

multidimensional IRT model, its classification accuracy is limited here by the use of multiple 

unidimensional models. 

The difference in PCD between the two settings of the SPRT can be explained by the fact that 

the decreasing the value for α increases the amount of forced decisions from 82.29% to 85.70% for this 

particular case. As a result, the SPRT with α = β = 0.1 provides a higher classification accuracy than the 

SPRT with α = β = 0.05. 

Finally, the second variant of the multistage test – with highly discriminatory items in the first 

stage – outperforms the first variant of the multistage test, both in terms of measurement precision and 

classification accuracy. For example, when comparing the RMSE for the mathematics domain across 

the MST test variants, the RMSE of the first variant is 0.0730, while the RMSE of the second variant is 

0.0711. This confirms the importance of the characteristics of the first stage for the measurement 

precision of the whole test, as stated by Kim and Plake (1993). In terms of classification accuracy, the 

PCD for the first MST variant is 0.7109, compared to 0.7210 for the second MST variant.  

4.1 Limitations 
Based on the results from the study, one can conclude that the adaptive the Centrale Eindtoets 

in 2018 will indeed be an improvement, when compared with a linear the Centrale Eindtoets. However, 

this does not mean that the adaptive the Centrale Eindtoets is indeed better than the current linear the 

Centrale Eindtoets. The present study is based on simplified case, in which not all specifications of the 

final adaptive the Centrale Eindtoets are taken into account. On the other hand, the present study was 

performed with a representative amount of simulees, which inspires confidence in the results presented 

in the study. There are some limitations to this study. 
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Firstly, in the current test design, there are eight classification categories. As shown in the results 

section, having a high amount of classification categories negatively affects classification accuracy. 

When the amount of classification categories is reduced to, for example, five levels, as is the case with 

the classification categories without overlapping categories, classification accuracy goes up. Therefore, 

the high amount of classification categories in present test design is a limitation in the study.  

As a result of the high amount of classification categories, the cut-off points separating the 

classification categories are very close together. In case of classification using the SPRT method, this 

causes over 75% of the classification decisions to be forced. The exact percentage of forced 

classification decisions for each test variant is presented in Table 4.1. When forcing a classification 

decision using the SPRT method, the method does not adhere to the predefined rates of type I and type 

II error that are seen as acceptable. In practical terms, adhering to the predefined rates of type I and type 

II error would mean that the response data from the MST can be used to provide the majority of the 

pupils with an advice on the level of secondary school they should attend, with reasonable certainty. As 

a result, the amount of misclassifications will be higher than what is deemed acceptable. This is also a 

possible explanation for the fact that the SPRT performs the worst out of all of classification methods. 

Again, this is another indicator that the high amount of classification categories is a limitation of the 

present test design. 

Secondly, instead of using existing, actual test items, parameters for the items in the item bank 

of the present test design were generated. This was done to construct items with P-values that are suitable 

for the test design used in the present study. However, in constructing the new items, not all requirements 

that will be present in the test design of the Centrale Eindtoets 2018 were considered (see next 

paragraph). If the P-values in the present study are not the same as in the final adaptive the Centrale 

Eindtoets because of these in a more strict requirements, the classification accuracy in the final adaptive 

the Centrale Eindtoets might differ from the present study. Furthermore, the actual test items that formed 

the basis of the generated items in this study have not been designed with an MST in mind. Therefore, 

classification accuracy might be improved by using items from the test version of the Centrale Eindtoets 

2018, which have been designed with an MST in mind. Therefore, working with virtual test items might 

be a limitation of this study. 

Thirdly, one of the goals in designing the adaptive version of the Centrale Eindtoets is to 

maximize the measurement precision of the test. When looking at the kinds of adaptive testing that are 

available, CAT offers the highest level of measurement precision, because CAT tests are the most 

adaptable to the ability of the pupil (Jodoin, Zenisky, & Hambleton, 2006). In this regard, it is a 

limitation of this study, and in the design of the adaptive version of the Centrale Eindtoets, that MST 

was chosen over CAT. On the other hand, MSTs offers some advantages over CATs. For example, in 

MST tests it is possible for pupils to go back to an item in order to change the answer, given the item 

exists in the current module (Jodoin et al., 2006). By contrast, this behaviour would not be possible in 

CAT, because changing the answer of a previous question might change the selection of the next 

questions, thereby invalidating some answers that have already been given. In short, opting for MST 

over CAT means a compromise in measurement precision in return for a more practical test taking 

procedure. Future research might investigate how big this compromise is. 

Lastly, maximum likelihood estimation was used in the present study to estimate the ability of the 

simulees at the end of the simulated tests. However, it is known that the ability estimates as estimated 

by maximum likelihood estimation contain bias to the order 𝑛−1. This bias can be reduced to the order  

𝑛−2 by opting for weighted maximum likelihood estimation (Warm, 1989). Another disadvantage of 

maximum likelihood estimation is the fact that this method is unable to estimate abilities when all items 

are answered correct or incorrect. When these extreme ability estimations are used in the calculation of 

the RMSE, the resulting value will be overstated. In the present study, this problem was solved by 

omitting simulees with a zero or maximum score for a test domain, when calculating the RMSE. This 

results in an RMSE value that is more representative of the measurement precision capabilities of the 

test version under study. To overcome this limitation, an ability estimation method that is capable of 

estimating abilities at the extreme ends of the range should be employed. Suggestions for such an ability 

estimation method are the weighted likelihood method. 
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Table 4.1 

 

Percentage of Forced Classification Decisions per SPRT Variant, for each of the Test Variants 

  PCD 

Classification Method   All Items  MST Variant 1  MST Variant 2  Linear 

      
SPRT (α = β = 0.1)  76.87% 82.29% 81.98% 86.24% 

SPRT (α = β = 0.05)  83.10% 85.70% 85.27% 90.08% 

4.2 Directions for future research 
The results of the present study gives rise to new questions for future research. Firstly, the MST design 

as employed in the present study will not be used for the adaptive version of the Centrale Eindtoets from 

2020 onwards. The present MST design contains one module in the first stage, followed by two stages 

with three modules each. However, the adaptive the Centrale Eindtoets from 2020 onwards will contain 

either (a) three modules in stage two, and five modules in stage three, or (b) five modules in stage two, 

and five modules in stage three. With this in mind, the influence of a test design, with more modules, 

on the measurement precision and classification accuracy could be investigated. 

Secondly, one of the reasons for switching to digital testing is the fact that new, more authentic 

item formats, which can be scored automatically, can be used. However, those new item formats are not 

part of the present study. Therefore, the influence of this new item formats could be investigated. 

Thirdly, the present study considers only one module in first stage. One of the reasons for 

switching to an adaptive the Centrale Eindtoets is the fact that this way of testing is more suitable for 

pupils who attend special education then the future one-level linear the Centrale Eindtoets. However, 

having only one module in the first stage might not be optimal for this target population. This is because 

the items in the first stage might be too difficult for this population. Therefore, the effects of having two 

modules in the first stage on the precision of the ability estimates of this population can form the basis 

of a new research topic.  

Fourthly, the test domains vocabulary and writing have a RMSE value that is meaningfully 

higher than for a test domains reading, mathematics, and language skills. As such, these two test domains 

might have a negative impact on the precision of the ability estimates in this study, which could 

negatively affect classification accuracy. Furthermore, it can be investigated whether the current number 

of items for vocabulary and writing is sufficient. A higher number of items might improve the 

classification accuracy and measurement precision 

Fifthly, the current the Centrale Eindtoets optionally contains the test domain environmental 

studies. However, this test domain is not considered in the present study because this test domain does 

not contribute go off to future research to the standard score. Therefore, it is of interest to investigate 

what the optimal test design is for an adaptive version of the Centrale Eindtoets that includes the test 

domain environmental studies.  

Sixthly, in the present study, most classification methods classify pupils on the basis of a single 

score. When converting the pupils scores on the individual test domains into a single score, some 

information is lost. Therefore, future research could investigate alternative classification methods that 

do not have this problem. 

Seventhly, the effects of the routing configuration that was chosen in the current study could be 

further investigated. It is of interest to look into the effects of the routing configuration on the utilization 

of the paths between the stages, as well as its effect on measurement precision and classification 

accuracy. For example, in this study, it was decided to route pupils based on certain target p-values, 

without considering if this would result in the optimal routing in terms of measurement precision and 

classification accuracy. Furthermore, recall that routing decisions are based on the unweighted sum 

score of the items that have been answered up to that point by a pupil, as described in section 2.4.5. The 

results of this study show that placing the highly discriminatory items in the first stage of the test yields 

higher the measurement precision and classification accuracy, compared to placement of the highly 

discriminatory items in the second and third stage of the test. This indicates that opting for a routing 

configuration in which routing decisions are based on the weighted sum score might be more optimal. 
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Lastly, the present study makes use of unidimensional IRT. When using unidimensional IRT, 

ability estimates for different test domains are independent. Conversely, when using multidimensional 

IRT , updating the ability estimate for one test domain influences the ability estimates the other test 

domains (Segall, 1996). This process could result in more accurate ability estimates. Therefore, the 

influence of modelling the items in the present study under multidimensional IRT could be investigated. 
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Appendices 

Appendix A: SPRT Settings 
For the first method, the SPRT, the cut-off points had to be determined for all five subjects in 

the simulated tests. To determine the cut-off points, response data from the Centrale Eindtoets 2015, 

containing the ability and the classification of each pupil, were used as a starting point. Firstly, the 

medians of the abilities belonging to each classification category were determined for every domain. 

Secondly, the midpoint of each two adjacent medians was determined, as illustrated in Figure A.1. To 

calculate the cut-off point between two categories, the median of the abilities in the first category – 

M1 in the figure – and the median of the abilities in the second category – M2 in the figure – is 

determined. Afterwards, the midpoint between these medians is selected as the cut-off point between 

two categories for the domain. 

Next to the cut-off points, values for α, β, and δ have to be determined. Recall that in the 

SPRT, one works with the ratio between two likelihood functions as a test statistic. In this test statistic, 

one has to set an indifference region, δ, that is appropriate for the cut-off points under review. Setting 

an indifference region that is too narrow increases the chance of misclassifications, while an 

indifference region that is too broad increases the chance of forced decisions. Forced decisions can in 

turn lead to misclassifications. Additionally, when δ is too high, the indifference regions between the 

cut-off points will overlap, which causes unexpected results. 

First, the value for δ was determined. δ should be related to the ability scale of each test 

domain. In order to achieve this, several methods exist. One of these methods is to determine a base 

value for δ, and to multiply this value by the standard deviation of the ability scale. The standard 

deviations for the ability scales of the five test domains are shown in Table A.1. In the case of this 

particular multistage test, a value of 𝛿𝑏𝑎𝑠𝑒=0.09 resulted in indifference regions that are not too broad 

for most test domains. For test domains reading, mathematics, language skills, and writing, this 

resulted in indifference regions without overlap. However, for the test domain vocabulary, this resulted 

in a small overlap between indifference regions. To solve this, a fixed value of 𝛿𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦=0.015 was 

chosen for vocabulary. 

The process described above resulted in the values of δ as presented in Figure A.2. After 

having determined the maximum value for 𝛿𝑏𝑎𝑠𝑒 and 𝛿𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦, two additional, more strict values 

for 𝛿𝑏𝑎𝑠𝑒, 0.06 and 0.03, were also considered.  

To arrive at the final values for α and β, two requirements were considered. First of all, for simplicity 

sake, it was decided to select α symmetrical value for α and β. Secondly, in literature, the values 0.05 

and 0.1 are commonly used. With these requirements in mind, both values were selected for α and β. 

The process of determining α, β, and δ resulted in 9 possible combinations for the final settings of the 

SPRT. In order to select the final value for α, β, and δ, SPRT classification was performed with all 

possible combinations. For this comparison the multistage test variant with the highly discriminatory 

items in stage two and three was used. The results were compared on PCD and the amount of forced 

decisions. The result of this comparison can be found in Table A.2. As can be seen in table, making δ 

smaller causes an increase in the amount of forced decisions, while it decreases the PCD. For example, 

at δ=0.09 and α=β=0.1, the amount of forced decisions is 82288, and the PCD is 0.6805. By contrast, 

at δ=0.03 and α=β=0.1, the amount of forced decisions is 95365, and the PCD is 0.3006. Furthermore, 

it can be seen that decreasing α=β from 0.1 to 0.05 has the same effect, but to a small extent. For 

example, at δ=0.09 and α=β=0.1, the amount of forced decisions is 82288, and the PCD is 0.6805. By 

contrast, at δ=0.09 and α=β=0.05, the amount of forced decisions is 85697, and the PCD is 0.6530. 

For the final version of the SPRT, it was decided to pick a 𝛿𝑏𝑎𝑠𝑒 of 0.09, as this yielded the highest 

PCD, and lowest amount of forced decisions. Furthermore, the SPRT was run with both α=β=0.1 and 

α=β=0.05, to see what the effect of the two different settings was on the PCD and the amount of forced 

decisions for the different variants of the test. 
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Figure A.1. Illustration of the procedure to determine the cut-off point between to classification 

categories. A M followed by a number denotes the median of the corresponding classification level. 

 

Table A.1 

 

PCD and the Amount of Forced Decisions for Different Values of 𝛿𝑏𝑎𝑠𝑒, α and β 

𝛿𝑏𝑎𝑠𝑒 αa PCD Forced Decisionsb 

0.09 0.1 0.6805 82288 

0.09 0.05 0.6530 85697 

0.06 0.1 0.6309 86918 

0.06 0.05 0.4979 90879 

0.03 0.1 0.3006 95365 

0.03 0.05 0.2245 98085 

0.09 0.1 0.6805 82288 

0.09 0.05 0.6530 85697 

0.06 0.1 0.6309 86918 

Note. 𝛿𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 is 0.015 for every entry. The SPRT procedure was performed with the first test 

variant, in which the highly discriminatory items were placed in stages two and three. 

aα and β are symmetrical. 
bForced decisions out of 100,000 classification decisions. 

Table A.2 

 

SDs of the Ability Scales for the Five Test Domains in the Simulation Study 

Test domain (Abbreviation)  SD 

Reading (LEZ)  0.2670 

Mathematics (REK)  0.3350 

Language skills (TAV)  0.2680 

Writing (SCH)  0.3020 

Vocabulary (WST)  0.2750 
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Figure A.2. Overview of the indifference regions around the classification cutoff points in all test 

domains, for the SPRT classification method  
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Appendix B: Proportional Classification Decisions Tables per Test Variant 

for Three Classification Methods 
 

Table B.1  

 

Proportional Classification Decisions per classification category for the Standard Score classification 

method. 

 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 

All Items 

Cat. 1 0.0986 0.0097 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0109 0.0856 0.0139 0.0009 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0000 0.0156 0.0342 0.0164 0.0003 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0014 0.0182 0.0685 0.0206 0.0003 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0003 0.0222 0.0828 0.0213 0.0008 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0003 0.0224 0.0629 0.0220 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0007 0.0223 0.1435 0.0198 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0171 0.1666 

MST Variant 1 

Cat. 1 0.0974 0.0109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0128 0.0815 0.0152 0.0017 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0000 0.0174 0.0308 0.0176 0.0007 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0026 0.0197 0.0640 0.0222 0.0005 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0010 0.0251 0.0768 0.0231 0.0014 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0005 0.0263 0.0573 0.0235 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0017 0.0254 0.1390 0.0203 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0196 0.1642 

MST Variant 2 

Cat. 1 0.0980 0.0103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0122 0.0830 0.0146 0.0014 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0000 0.0170 0.0313 0.0176 0.0005 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0020 0.0195 0.0649 0.0221 0.0005 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0005 0.0242 0.0790 0.0224 0.0012 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0005 0.0241 0.0598 0.0232 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0013 0.0245 0.1402 0.0203 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0190 0.1648 

Linear 

Cat. 1 0.0967 0.0117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0146 0.0787 0.0155 0.0024 0.0001 0.0000 0.0000 0.0000 

Cat. 3 0.0000 0.0190 0.0287 0.0177 0.0010 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0039 0.0208 0.0595 0.0236 0.0011 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0016 0.0263 0.0729 0.0241 0.0025 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0011 0.0279 0.0528 0.0258 0.0001 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0024 0.0263 0.1337 0.0240 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0210 0.1627 

Note. The correct decisions are bolded 
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Table B.2 

 

Proportional Classification Decisions per classification category for the Sum of the Estimated  

Probability on All Items method. 

 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 

All Items 

Cat. 1 0.1074 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0383 0.0576 0.0150 0.0004 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0002 0.0141 0.0396 0.0124 0.0002 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0011 0.0236 0.0641 0.0199 0.0003 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0005 0.0221 0.0780 0.0263 0.0004 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0002 0.0173 0.0743 0.0158 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0004 0.0290 0.1407 0.0162 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0188 0.1649 

MST Variant 1 

Cat. 1 0.1065 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0391 0.0543 0.0165 0.0013 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0006 0.0154 0.0359 0.0138 0.0007 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0024 0.0249 0.0585 0.0225 0.0008 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0014 0.0243 0.0720 0.0287 0.0009 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0006 0.0209 0.0683 0.0177 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0011 0.0320 0.1357 0.0176 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0212 0.1626 

MST Variant 2 

Cat. 1 0.1067 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0393 0.0545 0.0167 0.0008 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0003 0.0154 0.0363 0.0139 0.0005 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0017 0.0246 0.0600 0.0221 0.0007 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0009 0.0239 0.0733 0.0286 0.0007 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0005 0.0194 0.0706 0.0171 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0009 0.0314 0.1367 0.0175 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0203 0.1635 

Linear 

Cat. 1 0.1061 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0408 0.0511 0.0175 0.0018 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0010 0.0173 0.0321 0.0150 0.0011 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0036 0.0257 0.0542 0.0239 0.0016 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0021 0.0259 0.0669 0.0308 0.0016 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0010 0.0226 0.0626 0.0213 0.0001 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0019 0.0333 0.1290 0.0221 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0226 0.1611 

Note. The correct decisions are bolded. 
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Table B.3 

 

Proportional Classification Decisions per classification category for Rasch classification method. 

 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 

All Items 

Cat. 1 0.1047 0.0037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0241 0.0612 0.0250 0.0010 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0000 0.0078 0.0422 0.0160 0.0005 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0005 0.0202 0.0637 0.0242 0.0004 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0003 0.0193 0.0799 0.0274 0.0004 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0001 0.0182 0.0731 0.0163 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0005 0.0301 0.1482 0.0076 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0327 0.1511 

MST Variant 1 

Cat. 1 0.1013 0.0069 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0213 0.0583 0.0293 0.0023 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0002 0.0084 0.0385 0.0183 0.0011 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0011 0.0213 0.0598 0.0259 0.0009 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0010 0.0234 0.0750 0.0270 0.0009 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0005 0.0247 0.0644 0.0180 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0018 0.0343 0.1420 0.0083 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0370 0.1467 

MST Variant 2 

Cat. 1 0.1047 0.0036 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0300 0.0567 0.0230 0.0015 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0002 0.0114 0.0389 0.0151 0.0008 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0012 0.0247 0.0575 0.0247 0.0009 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0010 0.0228 0.0736 0.0287 0.0012 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0005 0.0206 0.0635 0.0229 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0011 0.0269 0.1444 0.0139 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 0.1581 

Linear 

Cat. 1 0.0974 0.0105 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0178 0.0549 0.0349 0.0035 0.0002 0.0000 0.0000 0.0000 

Cat. 3 0.0002 0.0078 0.0377 0.0187 0.0022 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0013 0.0232 0.0524 0.0306 0.0016 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0020 0.0220 0.0724 0.0290 0.0018 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0009 0.0268 0.0595 0.0204 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0027 0.0377 0.1386 0.0074 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0463 0.1373 

Note. The correct decisions are bolded. 
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Table B.4 

 

Proportional Classification Decisions per classification category for the SPRT classification method, 

with settings α = β = 0.1. 

 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 

All Items 

Cat. 1 0.1055 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0283 0.0609 0.0211 0.0009 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0001 0.0106 0.0409 0.0145 0.0004 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0006 0.0229 0.0633 0.0217 0.0005 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0006 0.0229 0.0767 0.0266 0.0006 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0003 0.0200 0.0710 0.0164 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0007 0.0317 0.1431 0.0109 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0292 0.1545 

MST Variant 1 

Cat. 1 0.1048 0.0035 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0319 0.0558 0.0218 0.0016 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0003 0.0127 0.0376 0.0150 0.0009 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0017 0.0258 0.0573 0.0229 0.0013 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0016 0.0263 0.0679 0.0299 0.0017 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0008 0.0223 0.0634 0.0211 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0014 0.0315 0.1388 0.0146 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0287 0.1550 

MST Variant 2 

Cat. 1 0.1050 0.0033 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0291 0.0589 0.0219 0.0013 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0001 0.0121 0.0386 0.0150 0.0007 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0012 0.0247 0.0595 0.0227 0.0010 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0010 0.0247 0.0719 0.0284 0.0013 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0006 0.0212 0.0663 0.0196 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0011 0.0320 0.1399 0.0134 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0293 0.1545 

Linear 

Cat. 1 0.1038 0.0045 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0310 0.0604 0.0189 0.0009 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0004 0.0175 0.0379 0.0102 0.0005 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0035 0.0368 0.0533 0.0148 0.0006 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0044 0.0379 0.0625 0.0217 0.0008 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0026 0.0314 0.0602 0.0134 0.0001 

Cat. 7 0.0000 0.0000 0.0000 0.0001 0.0032 0.0462 0.1223 0.0146 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0310 0.1525 

Note. The correct decisions are bolded. 
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Table B.5 

 

Proportional Classification Decisions per classification category for the SPRT classification method, with 

settings α = β = 0.05. 

 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 

All Items 

Cat. 1 0.1055 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0283 0.0609 0.0211 0.0009 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0001 0.0106 0.0409 0.0145 0.0004 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0006 0.0229 0.0633 0.0217 0.0005 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0006 0.0229 0.0767 0.0266 0.0006 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0003 0.0200 0.0710 0.0164 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0007 0.0317 0.1431 0.0109 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0292 0.1545 

MST Variant 1 

Cat. 1 0.1048 0.0035 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0319 0.0648 0.0140 0.0004 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0003 0.0221 0.0362 0.0077 0.0003 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0042 0.0424 0.0511 0.0109 0.0004 0.0000 0.0000 

Cat. 5 0.0000 0.0001 0.0049 0.0439 0.0609 0.0170 0.0006 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0031 0.0346 0.0578 0.0121 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0001 0.0036 0.0456 0.1224 0.0146 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0287 0.1550 

MST Variant 2 

Cat. 1 0.1050 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0291 0.0635 0.0182 0.0004 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0001 0.0158 0.0415 0.0089 0.0002 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0019 0.0369 0.0566 0.0132 0.0005 0.0000 0.0000 

Cat. 5 0.0000 0.0000 0.0026 0.0382 0.0655 0.0202 0.0008 0.0000 

Cat. 6 0.0000 0.0000 0.0000 0.0015 0.0286 0.0627 0.0148 0.0000 

Cat. 7 0.0000 0.0000 0.0000 0.0000 0.0021 0.0394 0.1315 0.0134 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0293 0.1545 

Linear 

Cat. 1 0.1038 0.0045 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cat. 2 0.0310 0.0725 0.0076 0.0002 0.0000 0.0000 0.0000 0.0000 

Cat. 3 0.0004 0.0333 0.0292 0.0035 0.0001 0.0000 0.0000 0.0000 

Cat. 4 0.0000 0.0111 0.0548 0.0379 0.0051 0.0001 0.0000 0.0000 

Cat. 5 0.0000 0.0003 0.0139 0.0574 0.0479 0.0076 0.0001 0.0000 

Cat. 6 0.0000 0.0000 0.0003 0.0098 0.0505 0.0434 0.0037 0.0001 

Cat. 7 0.0000 0.0000 0.0000 0.0005 0.0117 0.0760 0.0835 0.0146 

Cat. 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0299 0.1525 

Note. The correct decisions are bolded. 
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