
R E A L - T I M E R A S T E R I Z AT I O N O N T H E S TA R B U R S T M P S O C

oğuz meteer

Computer Architecture for Embedded Systems
EWI

University of Twente

April 2017 – version 1.0

Supervising committee:

Prof.dr.ir. M.J.G. Bekooij
Ir. J. Scholten

G. Kuiper, MSc.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

[May 31, 2017 at 16:05 – classicthesis version 1.0]

A B S T R A C T

Formally proving real-time behavior of commercial graphics cards is
difficult due to their closed nature and high complexity. This thesis
researches the viability of developing a real-time graphics architec-
ture on the Starburst Multi-Processor System on Chip (MPSoC) plat-
form. Multiple graphics architectures are evaluated, and one is se-
lected that fits the platform and allows real-time behavior. Based on
the chosen architecture, a reference system that runs fully in software
is implemented and analyzed. Also a hardware accelerated system
is designed and built to remove bottlenecks of the reference system.
The real-time behavior and performance, as well as the scalability of
the hardware accelerated system are analyzed.

iii

[May 31, 2017 at 16:05 – classicthesis version 1.0]

[May 31, 2017 at 16:05 – classicthesis version 1.0]

A C K N O W L E D G M E N T S

First, I would like to thank my supervisor Marco Bekooij, for giving
me the opportunity to combine what I love doing in my master thesis
project, namely hardware and graphics. He also gave me the right
insight which led me to trying different approaches to solve some
of the challenges, and supported me when faced some health issues
during my research.

I would also like to thank Cecill, for giving me the idea to pick
a graphics related topic for my thesis, and sharing his ideas with
me. And a special thanks is in order for my neighbor, Viktorio, for
sticking with me throughout my research, and for letting me use the
Bulgarian side of the whiteboard.

But the biggest thanks go to my family, who supported me through-
out my years of studying. Especially my parents did everything they
possibly could to make sure that I could pursue my quest for knowl-
edge. I truly am proud and blessed to have such amazing parents.

v

[May 31, 2017 at 16:05 – classicthesis version 1.0]

[May 31, 2017 at 16:05 – classicthesis version 1.0]

C O N T E N T S

1 introduction 1

1.1 Background 1

1.2 Problem Description 2

1.3 Contributions 3

1.4 Thesis Outline 3

2 the graphics rendering pipeline 5

2.1 The Graphics Rendering Pipeline 5

2.2 Architecture 5

2.3 Application 7

2.4 Geometry 8

2.4.1 Model & View Transform 9

2.4.2 Vertex Shading 9

2.4.3 Projection 10

2.4.4 Culling and Clipping 12

2.4.5 Screen Mapping 13

2.5 Rasterizer 13

2.5.1 Triangle Setup 13

2.5.2 Triangle Traversal 16

2.5.3 Pixel Shading 18

2.5.4 Merging 18

2.6 Graphics Architectures 19

2.6.1 Sort-first 21

2.6.2 Sort-middle 21

2.6.3 Sort-last fragment 22

2.6.4 Sort-last image 22

2.7 Architecture Choice and Rationale 22

2.7.1 Traversal Method 23

2.7.2 Architecture 24

2.8 Designing A Real-Time Graphics Architecture With Re-
producible Results 25

3 system overview 31

3.1 The Starburst MPSoC 31

3.1.1 Processor Tiles 31

3.1.2 Accelerator Tiles 31

3.1.3 Gateway Tiles 32

3.1.4 Dual-Ring Interconnect 32

3.2 FPGA Platform 33

3.3 Reference Architecture 33

3.4 Rasterization Hardware 33

3.4.1 Proposed Architecture 34

3.4.2 Geometry Stage 34

3.4.3 Sorting Stage 35

vii

[May 31, 2017 at 16:05 – classicthesis version 1.0]

viii contents

3.4.4 Rasterizer Stage 36

4 implementation 37

4.1 Reference System 37

4.2 Accelerators 38

4.2.1 Geometry Accelerator 38

4.2.2 Tile Rasterizer Accelerator 42

4.3 Hardware Accelerated System 43

4.4 Reproducible Architecture 44

5 results & evaluation 45

5.1 Performance Evaluation 45

5.1.1 Reference System 47

5.1.2 Hardware Accelerated System 47

5.2 Hardware Costs 51

5.2.1 Geometry Accelerator 53

5.2.2 Rasterizer Accelerator 53

6 conclusion 55

6.1 Future Work 56

6.2 Reflection 58

bibliography 69

[May 31, 2017 at 16:05 – classicthesis version 1.0]

1
I N T R O D U C T I O N

1.1 background

Hardware for accelerating the rendering of 3D graphics has been
around for many years. Advancements in technology and cheaper
components made it possible to make 3D graphics accessible to use in
regular personal computers. Graphics accelerators have since evolved
and with each iteration, they became faster, more capable and pro-
grammable, and contain more and faster memory. As a result, this
paved the way to achieve rendering more realistic looking graphics
in order to immerse users in 3D worlds.

Graphics accelerators are developed being optimized for best aver-
age case performance, employing more tricks and complexity, which
need to be taken into account as performance of graphics accelera-
tors heavily depend on how they are used. This makes them difficult
to classify as real-time systems. When playing a game or viewing or
modeling highly complex 3D models, the consequences of potentially
dropping frames temporarily might be experienced as annoying, but
they are not disastrous. While it might seem that real-time accelera-
tion of graphics, from a real-time systems view point, is not a neces-
sity, there are however domains where it is required or at least would
be beneficial.

One example is Virtual Reality (VR) applications. Just as graphics
accelerators made it possible to render immersive 3D worlds at in-
teractive frame rates, VR headsets can be seen as another tool to
increasing the level of immersion by making users feel as if they
really are within a fictitious 3D world. However, a prominent issue
that early prototypes of VR headsets had, is that they caused motion
sickness for some users [34]. Among the mentioned causes was low
head-tracking rate, leading to a noticeable delay between moving the
head and seeing the results, and low precision head-tracking. While
manufacturers claim to have solved these problems, it doesn’t change
the fact that the brain is sensitive to inconsistencies between head
movement and visual perception, and thus can lead to motion sick-
ness for some users [34]. But high precision head-tracking and fast
update rates are only a part of the chain, and VR headsets would
greatly benefit having graphics accelerators that guarantee having a
low and consistent latency, and a fast and consistent rendering rate.
This is where a graphics accelerator that is formally proven to pro-
vide real-time guarantees given certain requirements comes into play,
as current graphics accelerators cannot give such guarantees.

1

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2 introduction

Augmented Reality is another example, for instance in military ap-
plications. Military vehicles equipped with various types of camera
sensors combined with algorithms to create a 3D model of an area
or target, can be a valuable tool for soldiers of the future. A practi-
cal example of this are pilots of fighter jets flying at night, where the
human eye is incapable of seeing. They could wear a headset with
a transparent screen that overlays a 3D model of a potential target,
giving them another tool in dangerous situations. Real-time guaran-
tees regarding a consistent rendering performance is an important
requirement in such systems.

1.2 problem description

Our goal is to design and implement a real-time rasterization algo-
rithm on the Starburst platform, so naturally the following research
question is defined:

Is the Starburst architecture suitable for implementing a real-time rasteri-
zation algorithm? If not, which hardware and/or software components need
to be incorporated to make it suitable?

To answer this question, we first need to understand what obstacles
there are to creating a such a system from a hardware and software
perspective. After discovering which bottlenecks there are and where
they are located, solutions to alleviate them have to be researched.
This involves evaluating the balance in the usage of hardware and
software that give higher, more predictable, and more consistent per-
formance, and more flexibility respectively. We therefore define the
following objectives for this thesis:

1. Research and evaluate various graphics architectures —

a) Determine which architecture is the most suited to evalu-
ate its real-time characteristics;

b) Identify any obstacles that make it difficult to evaluate
those characteristics.

2. As a reference, implement a software rasterizer on the Starburst
MPSoC —

a) Evaluate the performance and real-time characteristics of
the software rasterizer implementation;

b) Identify bottlenecks in the implementation that prevent us
being able to give real-time guarantees.

3. Realize an embedded system that performs real-time triangle
rasterization on the Starburst MPSoC —

a) Develop efficient accelerators that lessen or remove previ-
ously identified bottlenecks in the software rasterizer im-
plementation;

[May 31, 2017 at 16:05 – classicthesis version 1.0]

1.3 contributions 3

b) Evaluate the performance and real-time characteristics of
the system.

c) Identify any bottlenecks that still remain in the system.

We consider a design and implementation suitable if we can suc-
cessfully determine the worst-case performance and if we can guar-
antee that the system performance will never fall below the previ-
ously determined performance figures. The performance of graphics
architectures is usually quantified as the amount of Frames Per Sec-
ond (FPS). But since the goal is to have a low latency between the input
(such as head movement in a VR application) and the rendered result,
the execution time of each frame also has an upper bound and we
cannot use the average of the amount of frames rendered per second.

1.3 contributions

The main contributions of this thesis are given below:

1. We evaluate different graphics hardware architectures and algo-
rithms that best enable us to reason about them from a real-time
systems perspective. (Chapter 2)

2. We reason that the approach of designing a real-time graphics
architecture using the Worst-Case Execution Time (WCET) could
yield a vastly under-utilized implementation. (Chapter 2)

3. We show that it is not possible to give temporal guarantees
based on the real-time systems methodology.

4. We show that it is possible to create a reproducible system: a sys-
tem that for any specific input, it will have almost the same temporal
behavior for each subsequent execution. This enables us to still give
real-time guarantees under the assumption that the inputs are
known. (Chapter 2)

5. We implement a triangle rasterization algorithm with repro-
ducible results on Starburst, a real-time system for streaming
applications. (Chapter 4)

1.4 thesis outline

This chapter has introduced the topic and research questions, and
describes the organization of this report.

Chapter 2 first gives a brief history of graphics accelerators, and
then describes the graphics rendering pipeline. Furthermore, several
rasterization algorithms and graphics architectures are given, followed
by which algorithm and architecture is chosen to implement a real-
time graphics rasterizer suitable for implementation on our platform.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

4 introduction

Chapter 3 gives an overview of the platform on which the project
is implemented on, and continues with describing the proposed ar-
chitecture.

In chapter 4, implementation details of the chosen architecture are
described.

In chapter 5, the results are presented and the implementation is
evaluated. Finally, in chapter 6, we answer the research questions,
discuss future work, and conclude this thesis.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2
T H E G R A P H I C S R E N D E R I N G P I P E L I N E

In this chapter, the conceptual stages of the graphics rendering pipeline
is explained, followed by various rasterization algorithms and graph-
ics architectures. A rationale for choosing a specific algorithm and
architecture is given, and finally we explain why using just the WCET

to design a real-time graphics architecture can lead to vastly under-
utilized hardware.

2.1 the graphics rendering pipeline

The graphics rendering pipeline takes three-dimensional objects or
models forming a 3D environment, textures, light sources, and shad-
ing equations, and uses it to create a two-dimensional image as seen
through a virtual camera. This process is called rendering, and there
are several rendering methods that solve the shading equations in a
different way, depending on the required results and available per-
formance. All methods use a virtual camera and screen, that is the
viewport into the 3D environment which displays the resulting 2D
image. An example scene is illustrated in Figure 1.

The most often used rendering method employed in computers,
gaming consoles, and mobile devices, is rasterization. It takes rendering
primitives such as points, lines, and polygons, applies several transfor-
mations on them, rasterizes them on a 2D image, and shades each
pixel of the visible polygons. Rasterization will be explained in more
detail in the next section.

Ray tracing is another rendering method that is most often used in
movies and game cinematics. The name of this method comes from
the fact that each pixel is shaded by tracing a ray from the camera,
through the virtual screen, bouncing off of the 3D objects until it hits
a light source. The results usually are very realistic as ray tracing
mostly resembles how our eyes see objects. Because of this, physical
phenomena such as reflections and refraction basically come for free
with ray tracing, whereas with rasterization, this requires tricks and
workarounds to achieve. The downside of this method however, is
that in general, it requires more performance compared to rasteriza-
tion.

2.2 architecture

An often used method of increasing the throughput of a system is
pipelining, where a large task is divided into several stages, and all

5

[May 31, 2017 at 16:05 – classicthesis version 1.0]

6 the graphics rendering pipeline

Figure 1: Displayed in the left image is an example of a scene with sev-
eral 3D models, a light source, and a virtual camera. The camera
position is de tip of the pyramid, the light blue plane in the pyra-
mid is the near plane or image plane, which is the virtual screen or
viewport into the world. The gray volume represents the viewing
frustum or the volume in which models are visible. In the right im-
age, the same scene is shown projected onto the virtual screen as
seen through the virtual camera. The cube and the monkey head
models cast shadows onto the torus and cone models respectively,
and the the torus partially falls outside the viewing frustum, and
is therefore clipped.

stages execute in parallel, consuming the output of the previous stage.
While pipelining does not change the latency, i.e. the amount time
needed for an input to be processed, it could potentially give a speedup
in throughput proportional to the amount of stages. However, to
achieve this speedup, the pipeline is required to be full at all times,
meaning that most, if not all stages should be utilized. Since pipelin-
ing is inherently serial, this also means that the throughput of a
pipelined system is determined by its slowest stage.

The throughput of the graphics rendering pipeline, also called the
rendering speed, is the amount of new images the system can pro-
vide, and is usually expressed in frames per second (fps) and in Hertz.
However, more important is the variance in rendering speed (REF) as
it negatively impacts how humans perceive animations. For example,
a system which outputs frames consistently in 33 ms (30 Hz) is usu-
ally perceived as more pleasant than a system which outputs frames
with an average of 16.6 ms (60 Hz), but often has frames that take
much longer to render.

Another way to potentially increase the performance of a system
is parallelization, where a single task is broken up into multiple parts
which are processed at the same time. As we will see in the remain-
der of this chapter, rendering and rasterization is an embarrassingly
parallel process, which is why modern graphics hardware exploit this
fact as much as possible.

From a high-level viewpoint, the graphics rendering pipeline can
be divided into three conceptual stages: application, geometry, and raster-
izer, and is shown in Figure 2. These conceptual stages often consist

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.3 application 7

Figure 2: The conceptual stages of the graphics rendering pipeline. Each
stage can have pipelined internal stages, as shown beneath the con-
ceptual stages. Some internal stages can also contain parallelized
stages.

of multiple, pipelined and parallel internal stages called functional
stages.

2.3 application

The rendering process starts at the application stage, and is tasked
with setting up and providing the necessary data to the rest of pipeline.
It is usually divided into at least two sub-stages: user application and
graphics library. The user application creates a virtual world and a
3D scene to be rendered by setting up the coordinate system and
a virtual camera, loading 3D models consisting of rendering primi-
tives, placing these models in the world, loading materials associated
with models, and setting up light sources and shading equations that
determine how models should be lit. High-level optimizations can
also be implemented in this stage such as hierarchical view frustum
culling (REF). Other tasks not directly related to rendering that the
user application stage can fulfill range from handling user input to
performing physics calculations.

When graphics accelerators first entered the market, they all re-
quired different ways of setting up the hardware, which made it dif-
ficult to write portable software that runs on different hardware. To
provide an abstract way of utilizing graphics accelerators, graphics li-
braries were developed, where user applications talk to a standardized
Application Programming Interface (API). Hardware vendors provide
an implementation of these graphics libraries, which generate batches
of commands for the hardware to perform the necessary graphics op-
erations.

Graphics hardware is heavily pipelined and massively parallel, and
its efficiency therefore depends of the level of utilization of the stages.
Because of this, graphics libraries aim to generate large batches of
commands in order to increase hardware utilization. Some modern
graphics hardware even support multiple command streams and asyn-
chronous computing [1].

[May 31, 2017 at 16:05 – classicthesis version 1.0]

8 the graphics rendering pipeline

Figure 3: A 3D model risiding in model space can be transformed to world
space using the model transform. On the left is a cube in the coor-
dinate system of the model and on the right is the same model but
translated in the z axis, and scaled in the x- and y-axis.

2.4 geometry

Rendering a 3D scene as seen from a virtual camera requires that
models need to be positioned, oriented, and scaled correctly, and the
light sources should light up the models as needed. In order to do
so, the rendering primitives received from the application stage need
to be processed, which is what the geometry stage is responsible
for. This stage applies per-vertex and per-polygon operations on the
received rendering primitives in order to prepare for the rasterizer
stage.

The application stage delivers geometry in the form of rendering
primitives such as points, lines, and polygons. We will assume that
only polygons will be processed by the pipeline as it is the more in-
volved case. Although we refer to polygons, the actual used polygon
type is the triangle because they have several nice properties that sim-
plify rasterization:

• It is the simplest polygon that defines a planar surface (i.e. it has
2D characteristics), and all other polygons can be constructed
using triangles. This gives finer control when defining geome-
try.

• A triangle is a simple polygon, which means that cannot inter-
sect with itself.

• It is also a convex polygon, meaning that no line between its
vertices will be outside the triangle.

These properties simplify determining if a point lies inside a trian-
gle, and interpolation of vertex properties over the surface, enabling
efficient hardware implementations. Please see section ?? for more
information on why these properties simplify rasterization.

The vertices of the rendering primitives are represented using 4D
homogeneous coordinates [35] which have the usual x, y, and z compo-
nents, and a fourth, w component which is normally set to 1. When

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.4 geometry 9

this w component equals 1, the x, y, and z components of homoge-
neous coordinates correspond to an equivalent, regular 3D vector. Us-
ing this representation allows the use of 4x4 matrices and enables a
uniform way of applying transformations to vertices.

The geometry stage generally consists of the following functional
stages which will be explained below: model and view transform,
vertex shading, projection, culling and clipping, and screen mapping.

2.4.1 Model & View Transform

3D models are usually created or modeled in 3D modeling software,
where it resides in its own coordinate space called model space. In
model space, the vertices of the model are relative to origin of the
coordinate system of the modeling software. To place a model in
the world, its vertices and normals need to be transformed so that
it will reside in world space or world coordinates. This transformation
that transforms objects in model space to world space is called the
model transform, and is often expressed in the form of a 4x4 matrix.
This model matrix combines rotation around each axis, scaling, and
translation, and because homogeneous coordinates are used, all of
these operations can be done with one vector-matrix multiplication.
Each model can be assigned a unique model matrix so that every
model can be positioned, oriented and scaled individually. Figure 3

illustrates the effects of the model transform.
The virtual camera resides in the same world space, and has a po-

sition and a direction vector. As an optimization that makes clipping
and screen mapping easier, another transform called the view trans-
form is applied to the geometry. The effect of this transform is that
all models are translated and rotated as if the camera is placed in the
origin, with its direction vector is pointing in the positive or negative
z-axis (depending on the graphics library). When the view transform
is applied to models, they go from world space to camera space or eye
space. Figure 4 shows an example of the view transform.

2.4.2 Vertex Shading

The way a model looks is not just determined by its shape, but also
by its physical properties that affect how the model responds to light.
Determining this response is called shading, and it involves materi-
als and shading equations. A material is a collection of properties that
characterize its response to a light source, and shading equations ma-
terialize these properties. There are many shading equations ranging
from just calculating the color and intensity of a material, to also tak-
ing reflection, refraction, specular components, etc. into account.

To achieve realistic results, it is often necessary to evaluate the shad-
ing equations per pixel in the pixel shader stage. Since it is done per

[May 31, 2017 at 16:05 – classicthesis version 1.0]

10 the graphics rendering pipeline

Figure 4: An example scene where four models and the virtual camera are
transformed from world space to eye space using the view trans-
form. The viewing frustum determines the volume in which mod-
els are visible, and is bound by the near and far planes. The near
plane or image plane is the virtual screen on which the models in
the viewing frustum are projected. In this case, all models except
for the star intersect with the viewing frustum, and are therefore
(partially) visible.

pixel or fragment, it is also called per-pixel lighting. In order to do per-
pixel lighting, some setup has to be done per vertex and per polygon,
which is the responsibility of the vertex shading stage. Depending
on the shading equations and the desired result, the vertex shading
stage can output data per vertex to help with shading, such as colors,
normal vector, texture coordinates, etc. This output is then read by
the rasterizer stage and interpolated over the surface of the polygon
made up by those vertices.

2.4.3 Projection

The projection stage applies a projection transform, which projects visi-
ble models in the viewing volume onto the image plane. This projec-
tion is done in two steps:

• Vertices are transformed from eye space to clip space using the
projection matrix. In this space clipping is performed which will
be explained in the next section.

• Perspective division is performed. As noted before, 4D homo-
geneous coordinates correspond to 3D coordinates when the w
component equals one, so this step divides all components of
the 4D vertices by their w component.

The result of these operations is that the viewing volume is trans-
formed into a unit cube called the canonical view volume, and the mod-
els inside are now in NDC space. Depending on the implementation
and used graphics library, the size of the unit cube can vary but is
usually (2,2,1) or (2,2,2).

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.4 geometry 11

Figure 5: Application of projection transform and perspective division. Top
image shows orthographic projection and bottom image shows
perspective projection. In both cases, the models are transformed
from eye space to NDC space.

Figure 6: A scene rendered with orthographic projection on the left and with
perspective projection on the right.

Two of the most often used projection methods are orthographic and
perspective projection, illustrated in Figure 6.

Orthographic projection uses a rectangular viewing volume, and
its associated 4x4 projection transform matrix consists only of transla-
tion and scaling, making it an affine transformation. Therefore, when
transforming the viewing volume to a unit cube, the near and far
planes of the volume are scaled equally. Orthographic projection sim-
ply disregards the depth or z component, which means that the pro-
jected size of a model is not influenced by the distance between that
model and the image plane. Because parallel lines remain parallel af-
ter orthographic projection, it is also called parallel projection. See top
image of Figure 5 for an example.

Contrary to orthographic projection, with perspective projection,
models farther away from the image plane appear smaller than those
that are closer, and parallel lines can converge at the horizon. This is
because perspective projection uses a frustum as the viewing volume,
meaning the projection transform compresses the far plane and ex-
pands the near plane, transforming the models accordingly. Bottom
image of Figure 5 illustrates this.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

12 the graphics rendering pipeline

Figure 7: Example of three culling techniques: back-face, frustum, and oc-
clusion, where culled primitives are represented by dashed lines.
(Illustration inspired by [11])

2.4.4 Culling and Clipping

From a performance standpoint, it is desirable to only render models
that are fully or partially visible, in order to limit performing unneces-
sary processing. Culling is the process of eliminating rendering prim-
itives that are not visible at all. Commonly used culling techniques
are:

• Back-face culling where back-facing polygons, whose normal vec-
tor points away from the camera, are eliminated.

• View frustum culling which removes entire models that fall out-
side the viewing frustum.

• Occlusion culling where models are removed that cannot be seen
because they are entirely behind other models.

All of these culling techniques can be performed in the different
transformation stages, and are therefore implementation dependent.
Some techniques can be evaluated more easily in a specific space.
For example, back-face culling is easy to perform in eye space as it
only involves checking the dot product of the polygon normal and
the camera direction vector which is simply (0,0,1,0) or (0,0,-1,0) de-
pending on the implementation. View frustum culling on the other
hand involves checking models against the six planes of the viewing
frustum in eye space, but in clip space, an easier Axis-Aligned Bound-
ing Box (AABB) check can be performed. Several culling examples are
illustrated in Figure 7.

Clipping is the process of removing parts of rendering primitives
that fall outside the region of interest. In the case of computer graph-
ics, the vertices of triangles that intersect with the image plane or
viewport are moved to the intersection points. If necessary, new ver-
tices and thus triangles are added in order to preserve the same sur-
face area that the intersecting part of the original triangle had. See
Figure 8 for an example of clipping.

Clipping is an important operation to perform, as it prevents arti-
facts that can be caused when vertices with negative w components

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.5 rasterizer 13

Figure 8: Triangles that partly fall outside the viewport are clipped against
its borders. In this process, new vertices can be introduced as is
the case for the right triangle.

are rasterized [26]. This can occur when vertices that lie behind the
camera are transformed by the view matrix, which can create edges
that "pass through infinity" and appear in front of the camera [32].

2.4.5 Screen Mapping

The final stage takes care of screen mapping where the unit cube is
transformed to map to the screen that will display the rendered result.
The w component of all vertices is 1 after perspective division and is
dropped. The x- and y-coordinates are translated and scaled to match
the resolution of the screen or window, which does not affect the
z-coordinate (i.e. depth value). These values are then passed to the
rasterizer stage. Models are transformed from NDC space to screen
space with this final transform, and an overview of all transforms
including screen mapping is given in Figure 9.

2.5 rasterizer

The rasterizer stage takes the transformed and projected vertices of
all potentially visible models, and maps it to a raster of pixels that is
the screen. This mapping process is called rasterization, and uses the
vertices and vertex shading data from the previous stage to determine
the color of each pixel that is occupied by models. The rasterizer stage
is also responsible for solving the visibility problem, where the order
to draw models is determined per pixel. It usually consists of the
following functional stages which will be explained below: triangle
setup, triangle traversal, pixel shading, and merging.

2.5.1 Triangle Setup

The triangle setup stage prepares per-triangle information necessary
to be able to perform point-in-triangle checks necessary for the next
stage. These checks are performed using edge functions, and before ex-
plaining their use, the choice of using triangles needs to be reiterated
and explained in more detail.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

14 the graphics rendering pipeline

Figure 9: An overview of the transformations applied to a triangle in the
geometry stage.

Triangles are polygons consisting of three vertices (v0, v1, v2) and
edges (e01, e12, e20) between (v0, v1), (v1, v2), and (v2, v0) respectively.
In the case of graphics rendering, the vertices coming from the geome-
try stage are three-dimensional, but the z-coordinates are not needed
for performing point-in-triangle checks, therefore we view the ver-
tices here as two-dimensional.

The order of these vertices determine the winding order or orien-
tation of a triangle, which is clockwise or counterclockwise. Having
defined an orientation allows us to view the edges of a triangle as
directed edges. They are simple polygons, which means that they are
not self-intersecting, and they define a planar surface meaning they
have two-dimensional characteristics. Because of these properties, tri-
angles divide a plane into a finite interior region and an infinite exte-
rior region.

Edge functions are used to determine if a point lies on the "left"
or "right" side of a line. They are implicit, affine equations of the
form ax+ by+ c = 0, and given our definition of a triangle, we can
describe the edge function through vertices v0 and v1 (i.e. for e01) as:

E(x,y) = (v1x−v0x)(y−v0y)−(v1y−v0y)(x−v0x) = ax+by+c (1)

Equation 1 that can also be written as in the form:

E(x,y) = ax+ by+ c = n · (x,y) + c (2)

A visual representation of the edge function is given in Figure 10.
Using Equation 1, we can describe edge functions for each of the

three edges:

E01(x,y) = (v1x − v0x)(y− v0y) − (v1y − v0y)(x− v0x)

E12(x,y) = (v2x − v1x)(y− v1y) − (v2y − v1y)(y− v1x)

E20(x,y) = (v0x − v2x)(y− v2y) − (v0y − v2y)(y− v2x) (3)

When we rearrange the terms a bit we get:

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.5 rasterizer 15

Figure 10: The edge function E(x,y) = 0 going through vertices v0 and v1 is
shown as a dashed line. The normal vector comes from the edge
function as defined in Equation 2. The edge function projects
points onto the normal vector, and as an example two points are
shown (p0 and p1). The projection of p0 yields a positive value
shown as the green line, and the value for projecting p1 is neg-
ative as shown by the red line. Positive values (area above the
dashed line) are on the "left" side of the edge e01 and negative
values are on the "right" side and are not a part of the triangle.

Figure 11: On the left: a triangle consisting of three vertices and edges as
they are received from the geometry stage. For each edge, the
"left" and "right" sides are shown with "+" and "-" signs and dif-
ferent colors. The yellow color marks the interior region of the tri-
angle. On the right: the same triangle rasterized on a 16x8 raster
of pixels. The dots in the center of the cells are the positions that
are used for the point-in-triangle tests.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

16 the graphics rendering pipeline

E01(x,y) = (v0y − v1y)x+ (v1x − v0x)y+ (v0xv1y − v0yv1x)

E12(x,y) = (v1y − v2y)x+ (v2x − v1x)y+ (v1xv2y − v1yv2x)

E20(x,y) = (v2y − v0y)x+ (v0x − v2x)y+ (v2xv0y − v2yv0x) (4)

Because the vertices do not change within the rendering pipeline,
we can consider them as constants that we can give them names (only
constants for E01 are given here for brevity):

A01 = v0y − v1y

B01 = v1x − v0x

C01 = v0xv1y − v0yv1x (5)

We can now rewrite Equation 4 as:

E01(x,y) = A01x+B01y+C01

E12(x,y) = A12x+B12y+C12

E20(x,y) = A20x+B20y+C20 (6)

Since edge functions are affine functions, the following holds true:

E01(x+ 1,y) − E01(x,y) = A01

E01(x,y+ 1) − E01(x,y) = B01 (7)

This means that checking the pixel on the right of the current one
requires adding A01, and checking the pixel below requires adding
B01 (in the case of edge e01). What the triangle setup stage therefore
does is calculate these per-triangle constants, so that the edge func-
tions do not have to be fully evaluated for every single pixel, enabling
very efficient implementations.

2.5.2 Triangle Traversal

The triangle traversal stage performs the actual rasterization process,
and determines how to look for candidate pixels in order to perform
point-in-triangle tests. When a pixel inside the triangle is found, its
visibility also needs to be checked, i.e. if it is occluded by other tri-
angles or not. Triangle traversal is dependent on the implementation,
and several of these rasterization methods will be explained below.
More thorough and detailed explainations can be found in [5] and
[37].

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.5 rasterizer 17

Figure 12: Bounding box traversal visits all pixels within the bounding of
the triangle.

2.5.2.1 Bounding Box Traversal

The bounding box traversal is of the simplest traversal methods. It in-
volves calculating the bounding box of a triangle and then evaluating
the edge function for every single pixel inside it in any order, one
pixel at a time. Although trivial to implement, its downside is it is po-
tentially very inefficient as there might be many pixels that lie outside
a triangle that will still be evaluated. See Figure 12 for an example.

2.5.2.2 Backtrack Traversal

A slightly more complex but also more efficient method is backtrack
traversal that was used in older mobile hardware [48]. Traversal starts
with the pixel occupied by the topmost vertex and processes pixels
per scanline from left to right and top to bottom. When the pixel is
outside to the right of the triangle, traversal jumps to the pixel below,
and traverses to the left until the pixel is outside to the left of the
triangle. This backtracking is done in order to find the starting point.
During the backtracking step, no visibility checks are performed. This
process is repeated until there are no more pixels to process within
the bounding box.

2.5.2.3 Zigzag Traversal

An ever more efficient method is a variant of backtrack traversal is
the zigzag traversal method described in [35] and [7]. As the name
suggests, it traverses the pixels inside a triangle in a zigzag manner,
instead of just during backwards traversal.

2.5.2.4 Tiled Traversal

Tiled traversal is a more expensive method of finding pixels inside a
triangle, but also more efficient, since it visits every pixel inside a tile
all at once. This is possible because determining whether a pixel lies
inside a triangle can be performed independently of all other pixels,
making it embarrassingly parallel.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

18 the graphics rendering pipeline

Figure 13: Two cubes are shown. The cube on the left has no texture, and
the cube on the right is textured with the brick texture shown on
the left.

Aside the performance increase of processing all pixels of a tile
at once, tiled traversal also has the benefit of requiring less memory
bandwidth. Since each tile can be processed independently, a tile can
have its own small, on-chip memory for storing frame and depth
buffers, requiring less round trips to the slower main memory. When
all triangles that fall in a tile are processed, the content of the local
buffers can be written to the actual frame and depth buffers.

Another benefit of tiled traversal is that memory accesses are more
efficient. The other methods described above can access memory in
irregular patterns depending on the position and shape of triangles.
With tiled traversal, all pixels (or a regular pattern of pixels such as a
row) are accessed in regular manner.

2.5.3 Pixel Shading

The pixel shading stage calculates per-pixel values using interpolated
triangle data from the triangle setup stage. The minimum output of
the this stage is per-pixel, or fragment colors, but it can have addi-
tional outputs that can be used in subsequent pixel shading passes.
Modern GPUs have several fully programmable stages including the
pixel shading stage, making it possible to implement various lighting
equations and apply textures to achieve results ranging from photo
realistic to cartoony. Figure 13 shows an example of texture mapping.

2.5.4 Merging

The output of the entire graphics pipeline is an image, which is a 2D
array of colors called the frame buffer. The merging stage is responsible
for composing this image, by merging fragments that come from the
pixel shading stage with the color values currently stored in the frame
buffer.

In almost all modern GPUs, the merging stage also solves the vis-
ibility problem, where objects closer to the camera should be drawn
over objects that lie farther away. Traditionally, this problem was

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.6 graphics architectures 19

Geometry
stage

Rasterizer
stage

Application ...

G

G

...

R

R

Display

Figure 14: A general, parallel graphics processing architecture. Blocks
marked G and R are geometry and rasterizer units respectively.
(Illustration after Möller et al. [6])

solved in the application stage, using space partitioning and front-
to-back sorting algorithms such as BSP trees [3], [27], [23], [22], and
k-d trees [41].

Modern GPUs most often solve the visibility problem by using the
Z-buffer [10], which is a 2D array of depth values for each fragment.
During traversal, whenever a fragment inside the triangle is found,
a depth lookup for that fragment is performed. If the depth of the
fragment is closer to the camera than the retrieved value, then its color
is written to the frame buffer. Being a trivial solution that works on a
per fragment level, the added benefit is that no complex partitioning
and sorting algorithms are needed.

The merging stage can also perform various blending operations
such as alpha blending, where each fragment has an associated alpha
value indicating how opaque or transparent it is. Using the Z-buffer,
fully opaque fragments can be rendered in any order, but this is not
the case with partially transparent fragments. They have to rendered
in a back-to-front fashion after all opaque fragments have been ren-
dered.

2.6 graphics architectures

Now that a general overview of the graphics rendering pipeline is
given, we will discuss graphics architectures. Because each render-
ing primitive can be processed separately in the geometry stage, and
the same applies to fragments in rasterizer stage, it makes sense that
graphics architectures exploit the parallel nature of the rendering pro-
cess. Figure 14 shows a general, parallel graphics processing archi-
tecture, where the geometry and rasterizer stages contain multiple
processing units marked G and R respectively.

The idea is that multiple rendering primitives are processed in par-
allel, and that the partial results are merged into the final image. The
application stage acts as a source of rendering primitives that are dis-

[May 31, 2017 at 16:05 – classicthesis version 1.0]

20 the graphics rendering pipeline

G
e
o
m
e
tr
y

R
a
st
e
ri
ze

r

Application

SORT

GG G

FGFG FG

FMFM FM

Display

Application

GG G

SORT

FGFG FG

FMFM FM

Display

Application

GG G

FGFG FG

SORT

FMFM FM

Display

Application

GG G

FGFG FG

FMFM FM

Display

Figure 15: Four parallel graphics architectures, from left to right are sort-
first, sort-middle, sort-last fragment, and sort-last image. The geome-
try stage consists of multiple blocks marked G that are geometry
units. The rasterizer stage comprises of FG and FM blocks which
are fragment generation and fragment merging respectively. (Illustra-
tion after Möller et al. [6] and Eldridge et al. [19])

tributed to the geometry units, which perform the geometry stage op-
erations (transformation, vertex shading, etc.) on the primitives and
then either cull them or send them to the rasterizer units. The raster-
izer units then perform the rasterizer stage operations (triangle setup
and traversal, shading, etc.), and finally the partial results of these
processing units are merged into the final image.

Processing primitives in a parallel fashion introduces a couple of
issues stemming from the fact that the locations and sizes of primi-
tives on screen are arbitrary and are not known a priori. One issue is
that primitives need to be sorted to determine which rasterizer units
should render them [30]. This can be seen as sorting primitives to the
screen [45].

Another issue is even work distribution of primitives and frag-
ments to make efficient use of the hardware. A scene containing a
few primitives that are close to the camera, i.e. cover a large part of
the screen, can be computationally more expensive to render than
many primitives that are far away or not in front of the camera.

Various parallel architectures dealing with these issues are pre-
sented in [30] and [19], and shown in Figure 15. These architectures
are sort-first, sort-middle, sort-last fragment, and sort-last image. They
differ in where the sorting takes place in the pipeline, and in all ar-
chitectures the rasterizer stage is seperated into fragment generation
(FG) and fragment merging (FM) units. We explain these architectures
below.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.6 graphics architectures 21

2.6.1 Sort-first

The idea of the sort-first architecture is to sort primitives before the
geometry stage. The screen is divided into disjoint regions, and prim-
itives that fall into that region are handled by a full geometry and
rasterizer pipeline. The sorting step involves performing just enough
calculations to determine which regions or tiles a primitive falls into,
usually by computing the screen-space bounding box of the primi-
tive.

With sort-first, fragments can sometimes fall into regions of the
wrong rasterizer units (because of the empty part of the bounding
box for example), so they have to be either sent to another raster-
izer, or to another pipeline. Both require interconnects, leading to
increased hardware complexity. In the latter case, duplicate geometry
computations need to be performed.

This architecture is of the least explored for single machine usage
[30][31], and mostly sees usage in multi-screen setups where each
screen is driven by a standalone system [40].

2.6.2 Sort-middle

In sort-middle architectures, the sorting happens between the geome-
try and rasterizer stages, when the primitives have been transformed
into screen-space. On older hardware, geometry and rasterizer units
were separate pieces of hardware, so it feels natural to sort the results
of the previous pipeline stage before distributing the results to the
next stage. After all primitives have been processed by the geometry
units, the sorting step determines to which rasterizer(s) each primi-
tive should be sent to. As with sort-first architectures, each rasterizer
pipeline is responsible for its tile(s).

The benefits compared to sort-first are that there are no potentially
duplicate geometry computations, and it is easier to load balance the
geometry units because primitives can be arbitrarily assigned to them.
One downside of this architecture is that the sorting step limits the
primitive processing rate of the system, because it can only commence
after all primitives have been processed before broadcasting them to
the next stage. The impact depends on the tile size, and the right
granularity has to be chosen find a balance between performance and
hardware cost.

Being well researched [24][4][13], the sort-middle architecture has
been used in both older and modern hardware, ranging from desktop
computers [42] and gaming consoles [47][28] to embedded devices
[43][2][36][17].

[May 31, 2017 at 16:05 – classicthesis version 1.0]

22 the graphics rendering pipeline

2.6.3 Sort-last fragment

The sort-last fragment architecture sorts processed fragments between
the fragment generation and fragment merging units. The difference
with sort-first and sort-middle architectures is that each primitive is
fully processed by a single pipeline up until the FM unit, so there is
no overlap with multiple rasterizer units and therefore no duplicate
computations. Another added benefit is that there is no communi-
cation overhead in the form of broadcasting primitives to multiple
rasterizer units compared to sort-first and sort-middle architectures.
Once an FG unit is done processing, the resulting fragments are sent
to FM units that merge fragments that fall into their region. This sort-
ing step requires a simpler broadcasting method that in sort-middle
architectures, as each fragment can only fall in one region and there-
fore only one FM unit has to merge it.

The downside of this architecture is that it can be difficult to load
balance fragment generation work [18]. This can for example happen
when a few large primitives are submitted to the same FG unit, which
then needs to perform more work compared to FG units that process
more primitives that however have a smaller area. Several examples
of the sort-last fragment architecture are the PLAYSTATION®3 [6],
the Evans & Sutherland Freedom 3000 [21], and the Kubota Denali
[16].

2.6.4 Sort-last image

The sort-last image architecture performs the sorting step after the the
rasterizer stage (FG and FM). It can be seen as multiple, independent
pipelines that render the fragments that have been assigned to them
into seperate, independent frame and depth buffers. The sorting step
then composes the final image using these frame and depth buffers.
Sorting is being performed last in order to scale and achieve higher
performance, and this gives this architecture the the property that the
order of fragments are not preserved.

Just like with the sort-last fragment architecture, a fragment is
fully processed by a single pipeline, and therefore this architecture
also inhibits the load-balancing problem. An additional downside is
the vast amount of communication necessary to merge multiple full-
size frame and depth buffers, though Roth and Reiners proposed an
optimization [38]. One example of such an architecture is PixelFlow
[20][29].

2.7 architecture choice and rationale

Designing real-time rasterization hardware requires that we are able
to analyze it such that real-time guarantees can be given. Often, more

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.7 architecture choice and rationale 23

elaborate designs have a higher average performance or throughput,
but require more effort to analyze because they use complex hard-
ware whose performance characteristics are hard to reason about. Ex-
amples are caches and DRAM memory controllers, and although we
cannot always avoid using such hardware, we strive to minimize the
use of such hardware.

As explained in Section 2.2, the performance of a system could be
increased by the use of pipelining and parallelization. Older graph-
ics hardware mostly focused on pipelining, such as the Geforce 3

GPU, consisting of hundreds of pipeline stages [RTS3]. More mod-
ern hardware exploit the fact that rendering and rasterization can be
performed in parallel, as can be seen by the high core count of even
low-end graphics hardware. The pipelined graphics architecture as
described in this chapter results in a multiprocessing system. Such
systems usually have two problems that were partly mentioned in
Section 2.6: load balancing and communication [12]. While the choice of
which architecture to use has an impact on the potential maximum
performance of a system, it can also determine the minimum perfor-
mance which is important in the case of real-time systems.

The restriction of minimizing hardware complexity aids in making
the design easier and less costly to analyze it, but the worst-case per-
formance must also meet the minimum requirements for the design
to be viable. As with many designs, a trade-off between performance
and complexity has to be made. In our case, any architecture that
minimizes off-chip memory accesses is preferred, but a low variance
in execution time is at least as important, and demonstrates the afore-
mentioned trade-off which balances consistent performance and an
analyzable architecture.

2.7.1 Traversal Method

Of all the traversal methods, tiled traversal is preferred because the
rasterizer stage only uses local memory in the form of block RAM
until the final result is written to the frame buffer. Reading and writ-
ing intermediate results therefore have consistent access times, easing
analysis. We can also limit the amount of primitives each tile can pro-
cess, which puts an upper bound on the execution time. Given that
primitives are only rasterized by a fixed function stage, the WCET is
trivial to compute. By changing the size of the tile, we can also change
the amount of pixels that are processed in parallel. This gives us a
trade-off between performance and hardware cost, without compro-
mising the ease of analysis. Compared to the other traversal methods,
tiled traversal does not suffer from the complexity of tracking the
traversal position and direction, and has more consistent and poten-
tially higher performance, depending on the tile size.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

24 the graphics rendering pipeline

2.7.2 Architecture

For all graphics architectures, we put an upper limit on the amount of
primitives to be rendered each frame, and we assume that each part
of the pipeline has to fully process each primitive as this represents
the worst-case scenario.

The sort-first architecture is the simplest of the four that we de-
scribed, but because of its simplicity, it can lead to duplicate com-
putations and requires interconnects between rasterizers or pipelines.
This make analyzing the minimum performance of the system harder
as it can be difficult to predict when and how often these duplicate
computations and communication between pipelines have to be per-
formed.

Sort-middle architectures somewhat retain the simplicity of sort-
first architectures but offer more consistent performance. As primi-
tives can be processed by any geometry units, there are no duplicate
computations and no interconnects between pipelines are required.
This improves load balancing and ease of analysis of the geometry
processing part of the system. Because primitives can fall into arbi-
trary tiles, storing processed primitive data requires random memory
accesses and potentially complex hardware for broadcasting primi-
tive data to multiple rasterizer pipelines. While this analysis more
difficult, we can make it easier by putting an upper limit on how
many fragments each rasterizer pipeline may process, which also
puts an upper bound on the number of memory accesses. Since the
tiled traversal method is preferred and the rasterization step is well
defined, it is easy to determine the WCET for fixed hardware imple-
mentations.

Both sort-last architecture variations offer higher potential perfor-
mance and scalability. They also do not perform duplicate computa-
tions, and the sorting step involves less complex hardware compared
to that in sort-middle architectures. One major disadvantage is that
they suffer from load balancing problems as mentioned before. Be-
cause primitives can appear anywhere on screen and can have an
arbitrary size, it makes it difficult to predict how much work every
rasterizer pipeline will have to perform and consequently what the
minimum performance is.

We believe that of all architectures, the sort-middle architecture of-
fers the most consistent performance and is the easiest to analyze. It
is therefore the preferred graphics architecture for developing a real-
time rasterizer.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.8 designing a real-time graphics architecture with reproducible results 25

WCETµ

Execution Time

F
re
q
u
en

cy

Figure 16: Distribution of execution times of a real-time system.

2.8 designing a real-time graphics architecture with

reproducible results

Real-time systems are systems that give guarantees about temporal
behavior such as maximum latency and minimum throughput. This
is done by creating an abstract model of the system and analyzing
it for all possible inputs. The difference between real-time and non
real-time systems is that in real-time systems, the emphasis lies on
predictability and not on attaining high average case performance.
The most important aspect to determine is the WCET as it defines the
upper bound and dictates what the real-time aspects such as latency
and throughput will be. Complex systems with sophisticated inter-
connects and multiple levels of caches are difficult to analyze, mak-
ing it hard to argue about their real-time performance as the WCET of
such systems are difficult to determine.

A typical task in a real-time system could have execution time dis-
tribution similar to Figure 16, where it is guaranteed that the execu-
tion time of the task will never exceed the WCET. The execution time
usually does not depend on what the data is, and the variance of the
distribution is often caused due to unpredictability of for example
shared resources, caches, and DRAM. Building a real-time system
therefore involves designing an architecture that increases the pre-
dictability by minimizing complexity to a level where it can still be
analyzed.

Unlike typical real-time systems, graphics systems have the prop-
erty that the workload of the different stages does depend on what the
input is. Also the workload of the stages are not directly correlated.
Two examples that demonstrate this are illustrated in Figure 17. In the
first example, a complex model is rasterized. Because the model has a

[May 31, 2017 at 16:05 – classicthesis version 1.0]

26 the graphics rendering pipeline

Geometry Sorting Rasterization

Geometry Sorting Rasterization

Figure 17: Examples of two different scenes and their influence on the work-
load of the geometry, sorting, and rasterization stages. Dragon
model courtesy of Stanford University.

large number of primitives, the geometry stage has a high workload.
Since the model is located far from the camera, it occupies a small
portion of the image plane. Thus a few tiles will have primitives as-
signed to them and therefore the workload of the sorting stage is low.
Consequently the rasterization stage also has a low workload since
only a few tiles will have to be rasterized.

The second example consists of a single primitive being rendered.
Naturally the geometry stage will have a low workload. However,
because the primitive is placed so close to the camera, it will occupy
the entire image plane. Therefore it has to be assigned to all tiles
resulting in a high workload of the sorting stage. The rasterizer will
also have a high workload because it needs to rasterize every pixel of
every tile.

The execution time of the stages being weakly correlated has sev-
eral consequences. Camera position and direction have a great influ-
ence on the workload, and the set of all camera positions and direc-
tions is virtually infinite in size, and only limited by the precision of
the hardware. Also, there are a varying amount of models in differ-
ent locations and orientations. Due to the infinite amount of ways to
model a 3D world and place a camera in it, it is very difficult to pre-
dict the execution time and latency, and consequently to determine
the WCET of such a system for all possible inputs with sufficient pre-
cision. The execution time distribution will be more similar to Figure
18, where we can see that the distribution has a high variance due to
the unpredictability of the workload. Another consequence is that it
is also difficult and impractical to create a model of the system for all
possible inputs, as well as to analyze it. Therefore it is not possible to
design a real-time system based on the real-time systems methodol-
ogy, preventing us from giving temporal performance guarantees at
design time.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.8 designing a real-time graphics architecture with reproducible results 27

WCETµ

Execution Time

F
re
q
u
en
cy

Figure 18: Distribution of execution times of a computer graphics applica-
tion.

However, real-time systems are not the only type of systems that
can give temporal performance guarantees. Another class of systems
that can give the same are reproducible systems:

A system that for any specific input will have almost the same temporal
behavior for each subsequent execution.

In other words, if we give the system a fixed input and measure
the execution times of its parts, we will always get almost the same
execution time. Tasks in a reproducible system have an execution time
distribution similar to Figure 19, where the distribution is almost a
single line. This implicitly means that the upper and lower bound of
the execution times are almost equal, and that also the latency of a
reproducible system is almost the same.

A reproducible system has several advantages:

1. An accurate model of the system is not required to give tempo-
ral performance guarantees.

2. Due to the upper and lower bounds being almost equal, it is
not required to measure performance sufficiently many times to
construct a distribution of execution times, latency, and through-
put. What we measure is always very close to upper and lower
bound.

3. The temporal performance is consistent. This is useful in sys-
tems where a fixed latency is required. An example would be
airbags in cars, where having a variable latency between a crash
and deployment of airbags could cause fatal injuries. Another
example is performing remote surgery, where a fixed latency
can help a surgeon anticipate the result of his/her next move-
ment.

With this reproducibility property, we can then test inputs that we
assume will have a high execution time. Since we know that there is

[May 31, 2017 at 16:05 – classicthesis version 1.0]

28 the graphics rendering pipeline

WCETµ

Execution Time

F
re
q
u
en

cy

Figure 19: Distribution of execution times of a system with reproducible re-
sults.

Input
A

B

B

A
Output

Figure 20: Example of a reproducible system. A and B are tasks with fixed
execution times. Both paths from input to output have the same
latency.

a very low variance in execution, we can guarantee that if the perfor-
mance requirements are met, then they will also be met in future runs
when the same input and hardware is used. Therefore we can still im-
plement an architecture that gives temporal performance guarantees,
under the condition that the set of inputs is known beforehand.

A perfect reproducible system is a system that has no non-deterministic
parts, and the execution time distribution of its parts would be a sin-
gle line. In practice, there are many systems that have sources of non-
determinism like caches and shared resources such as DDR memory.
A system can be classified as a reproducible system if it meets the fol-
lowing criterion: For every specific input to the system, the total execution
time for all paths that the input data can take through the system should be
almost the same. A trivial example of this is illustrated in Figure 20,
where A and B are tasks with fixed execution times. No matter which
path the input takes, the latency between the input and output will
always be the same. If the tasks have similar execution time distri-
butions like in Figure 19, then the latency of that system will not be
fixed, but will have an upper and lower bound that almost the same.

In the case of graphics applications, building a reproducible sys-
tem might not seem useful as we want interactivity and not a fixed
3D world and camera. However, due to the consistent temporal be-
havior, we can test inputs for which we assume that they will have

[May 31, 2017 at 16:05 – classicthesis version 1.0]

2.8 designing a real-time graphics architecture with reproducible results 29

a high workload, and simply measure the execution time of the in-
dividual functional units of the system. We can then add up these
numbers and acquire the latency of the system for that input. If we
test the difficult cases, then we know that other inputs will have a
lower workload and therefore a lower latency. This means that the
latency for the set of inputs for a user application is not fixed.

What we want from our system is a fixed frame rate of N FPS. This
gives an average frame time (total execution time to process a single
frame) of 1

N . In the system that we will design, the frame time and
latency are equal, because we synchronize the system to the frame
time. Therefore we do not allow processing the geometry for the next
frame before the current frame is done processing. The latency not
being fixed for the set of inputs is not a problem, as long as the max-
imum latency of difficult cases does not exceed the frame time. This
means that a graphics system that is reproducible can give us a fixed
frame rate with consistent frame times, and therefore the temporal
guarantees that we want.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

[May 31, 2017 at 16:05 – classicthesis version 1.0]

3
S Y S T E M O V E RV I E W

This chapter gives an overview of the Starburst MPSoC system on
which the real-time hardware rasterization algorithm has been imple-
mented, discusses several graphics architectures, and describes the
proposed architecture.

3.1 the starburst mpsoc

Computer
Architecture for
Embedded Systems

Starburst is a configurable, heterogeneous MPSoC developed by the
CAES research group at the University of Twente. It is a tile based ar-
chitecture, consisting of processor, gateway, and accelerator tiles con-
nected to each other via a dual-ring interconnect. Starburst is used as
a research platform for the development and analysis of multi-core,
real-time, deterministic, streaming applications. Currently, it is imple-
mented on the Xilinx ML-605 and VC-707 Field Programmable Gate
Array (FPGA) platforms. An example Starburst architecture is given in
Figure 21.

3.1.1 Processor Tiles

An overview of a processor tile is given in Figure 22. This tile consists
of a RISC Microblaze processor, a timer used for interrupts, some
local memory for a bootloader, scratchpad memory and FIFO mem-
ory for receiving and sending data from and to accelerator tiles or
other processor tiles respectively. Software based C-FIFO communi-
cation [25] is used between all types of tiles. Each processor runs He-
lix OS, a real-time operating system developed for Starburst [39] that
is POSIX compliant, and supports multi-threading using a real-time
budget scheduler [44].

3.1.2 Accelerator Tiles

Accelerator tiles allow the use of dedicated logic for more efficient
processing of streams such as CORDICs, FIR filters, etc. Some exam-
ples that use accelerators are a PAL decoder [15] where an accelerator
is used for AM demodulation, and a Bluetooth Low Energy Long
Range (BLR) receiver [46], where the RF front end, FIR filter, quadra-
ture demodulator, and frame detector are implemented as accelera-
tors. Figure 22 illustrates the general architecture of an accelerator.

31

[May 31, 2017 at 16:05 – classicthesis version 1.0]

32 system overview

Figure 21: Example architecture overview with all tile types.

3.1.3 Gateway Tiles

To reduce hardware resource usage, accelerators can be shared be-
tween processor tiles. Gateway tiles are used to save and restore the
state of shared accelerators as described in [14]. They consist of entry
and exit gateway tiles that are placed before and after the accelerators
that are shared respectively. Entry gateway tiles are the same as pro-
cessor tiles with an added Direct Memory Access (DMA) peripheral
on the AXI4-Lite bus, and exit gateway tiles are similar to accelerator
tiles, where the accelerator itself is replaced with a DMA peripheral.

3.1.4 Dual-Ring Interconnect

Tiles are connected to a unidirectional, guaranteed-throughput dual-
ring interconnect [15] that functions like a shift register. Each tile con-
nects to the ring using a network interface that has a unique id, and
each register on the ring is assigned a unique ring slot. Every clock
cycle, the data and ring slots are shifted one hop. A tile can place
data on the ring whenever a ring slot matches the id of the network
interface, which is very similar to a Time-division Multiplexing (TDM)
system. However, tiles can also send data even if the ring slot does not
match their id as long as they do not overwrite data or interrupt the
flow of data of other tiles. Therefore a much higher bandwidth can

[May 31, 2017 at 16:05 – classicthesis version 1.0]

3.2 fpga platform 33

dual-ring interconnect

C-FIFO
Memory

BRAM

L
M
B

µBlaze

AXI4-Lite Bus

Timer
IRQ

R
in
g
F
IF
O

Processor Tile

dual-ring interconnect

Accelerator

Accelerator Tile

Figure 22: Overview of processor and accelerator tiles.

be achieved by clever placement of tiles on the ring, such as placing
sending and receiving tiles right next to each other.

The current implementation is an improved version, where the con-
figuration of accelerators is done over the ring itself, rather than using
a separate configuration bus connected to gateway tiles. This enables
the ability for any tile to configure any accelerator in the system.

3.2 fpga platform

The Xilinx VC-707 FPGA platform is used for our implementation.
It consists of a Virtex 7 FPGA and has many peripherals, including
1 GB of DDR3 RAM, Ethernet, HDMI output, GPIO, FMC connectors,
etc. For video output, a resolution of 800x600 at 60 Hz was chosen.

3.3 reference architecture

The reference architecture consists of a single processor tile and no
accelerator tiles. All the pipelines of the rasterization algorithm are
fully implemented in software and run on the single processor. An
implementation with multiple processor tiles that each run a single
pipeline stage or a full, separate pipeline can also be realized but due
to timing constraints, we have chosen to implement the most trivial
setup that can execute the rasterization algorithm.

3.4 rasterization hardware

This section gives an overview of the proposed architecture and accel-
erators, and describes how everything is integrated into the Starburst

[May 31, 2017 at 16:05 – classicthesis version 1.0]

34 system overview

Dual-Ring Interconnect

PT0 GP0

AXI Interconnect

Mem HDMI UART ...

GP1 TI0 TI1

Tile Memory

TR0 TR1

Figure 23: The proposed architecture.

plaform. Accelerators are placed on the ring in such a way that the
connection between tiles has as much bandwidth as possible.

3.4.1 Proposed Architecture

The hardware accelerated rasterization architecture consists of a pro-
cessor tile (PT), one or more geometry processors (GP), an equal
amount of tile intersection accelerators (TI), and one or more tile ras-
terizers (TR). Implementations can be configured and scaled accord-
ingly depending on the requirements such as frame rate, number of
primitives, etc. Figure 23 shows a high-level overview of our architec-
ture.

3.4.2 Geometry Stage

The geometry processor (GP) is the sole accelerator that handles the
tasks of the geometry stage. A list of all vertices is streamed to geom-
etry processors, which transform each vertex using the model, view,
and projection matrices. Primitives that are back-facing or that fall
outside the viewing frustum are discarded. Finally, it converts the fi-
nal results from single-precision floating point values to fixed-point
because the rest of the algorithm doesn’t need floating point values.
It is also cheaper to use fixed-point values from a hardware resource
usage perspective. Parallelism in this stage can be achieved by simply
placing more geometry processors back to back on the ring.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

3.4 rasterization hardware 35

3.4.3 Sorting Stage

As parallelism is heavily exploitable in graphics architectures, we
would ideally want to be able to scale every part of the graphics
pipeline including the sorting step. With geometry processors we can
simply add more to the ring, but this is not as trivial in the sorting
stage. Sorting involves determining which primitives overlap with
which tiles and storing this information in a list for each tile. Mul-
tiple accelerators need to access these lists meaning that the mem-
ory where they are stored is a shared resource. Therefore a safe and
concurrent method of access is required to exploit parallelism in the
sorting stage, including atomic read-modify-write transactions. To do
this, the sorting stage consists of three components: tile intersection ac-
celerators, a shared tile memory IP block, and a binary tree interconnect
that connects the accelerators to the tile memory. These three compo-
nents are shows in 23 and will be described in more detail below.

3.4.3.1 Tile Intersection Accelerator

Tile intersection accelerators (TI) perform the sorting step between
the geometry and rasterizer pipeline stages of sort-middle architec-
tures as described in Section 2.6.2. They receive processed primitives
by geometry accelerators, determine which screen tiles intersect with
each received primitive, and distribute primitives among tile rasteriz-
ers. There is a one to one mapping between geometry processors and
tile intersection accelerators as it does not require an interconnect be-
tween them, simplifying the design. The tile memory IP block is used
as temporary storage and is shared between all tile intersection accel-
erators.

3.4.3.2 Tile Memory

The tile memory IP block manages access to memory that stores three
sets of data:

• Primitive list - Primitive data received from geometry accelera-
tors.

• Tile list - A list per tile that consists of indices of primitives that
intersect with the tile.

• Tile counter - A counter per tile that counts how many primitive
indices are stored in the tile list.

Using indices conserves memory usage because the primitive data
is not duplicated. When all sets of tiles have been determined, the list
of indices is traversed linearly, and the primitive data associated with
them is sent to the tile rasterizers.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

36 system overview

Triangle List

Rasterizer

Depth buffer

Frame buffer

Ring AXI4

Triangle Setup

Figure 24: Simplified overview of the tile rasterizer.

3.4.3.3 Binary Tree Interconnect

In our architecture, a binary tree topology is used to connect tile in-
tersection accelerators to the tile memory IP block. Internal nodes
arbitrate read/write accesses using simple valid/ready handshaking
similar to the AXI bus specification, and additional signals are used
to ensure that transactions are atomic.

Using a binary tree for concurrent access has the benefit that data
accesses are inherently serial due to the nature of the topology. An-
other benefit is that the path length of the leaves and the root grows
logarithmically when adding more leaves, and aids in the scalability
of the architecture.

3.4.4 Rasterizer Stage

The tile rasterizer (TR) is responsible for rasterizing a list of triangles
for a given tile. This accelerator has three memories: triangle memory
containing a list of primitive data, a local depth buffer, and a local
frame buffer. Each accelerator is first configured by setting which tile
of the frame buffer it will rasterize.

Rasterization begins by first clearing the frame and depth buffers,
and performing triangle setup where the A01, A12, A20, B01, B12,
and B20 constants as well as the edge functions of Equation 6 are cal-
culated. Then, each primitive is rasterized row by row, outputting the
result to both the frame and depth buffers. When the rasterization of a
tile is finished, the result is written to the global frame buffer residing
in DDR RAM using the AXI4 bus. The tile position of the accelerator
that is set during configuration is used to calculate the frame buffer
address that corresponds with the tile. The HDMI peripheral IP uses
a DMA to efficiently transfer the final image from DDR RAM to the
onboard HDMI transmitter chip. Figure 24 shows the innards of this
accelerator.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

4
I M P L E M E N TAT I O N

In this chapter we describe the implementation of the reference sys-
tem, the hardware accelerators, and the hardware accelerated system.
We also explain why our architecture can be classified as a repro-
ducible system.

4.1 reference system

The reference system implements all the algorithms in software using
one processor tile only. The application starts by allocating memory
for the two frame buffers, the depth buffer, and tile buffer, followed by
initializing the HDMI transmitter peripheral to enable double buffer-
ing using the allocated frame buffers. The output resolution is set to
800 by 600 pixels. Then, the view and projection matrices are initial-
ized using the resolution and aspect ratio. To be able to manipulate
the camera while the application is running, the GPIO peripheral that
reads the five buttons on the boards is initialized. The last step con-
sists of loading a 3D model consisting of just vertices and indices, and
initializing the model matrix.

After initialization is done, the main loop starts. First, the state of
the buttons is read which control the camera position and rotation.
If a button was pressed, a new view matrix is calculated. Then the
current frame buffer and depth buffer is cleared. Indices of the model
are read and used to find the vertices that belong to that primitive,
which are then used to perform the calculations of the geometry stage
as described in Section 2.4.

After processing a primitive it is also immediately sorted by first
calculating its bounding box and determining with which tiles the
bounding box intersects. The index of the primitive is stored in the
tile list section of the tile buffer, and the tile counter value that holds
the number of primitives per list is increased by one.

When all primitives have passed the geometry and sorting stages,
the rasterization stage loops over all tiles by reading the tile counter
values. Then all primitives within tiles that have primitives in them
are rasterized as described in Section 2.5. Finally, after looping over
all tiles, a command is issued to the HDMI peripheral to flip the frame
buffers so that the result of the rasterizer stage is made visible.

37

[May 31, 2017 at 16:05 – classicthesis version 1.0]

38 implementation

v0xyzw

v1xyzw

v2xyzw

matmul4x4 s

MVP

V1MVP

V0MVP

V2MVP

div3

z/w
y/w
x/w

recp

1/w

screenspace V1

V0

V2

edgeFunction areaTwice

d0

d1

d2

fp to q8 24 D1

D0

D2

matmul4x4 s

MV

sub3

xyz V1 − V0

V2 − V0

cross TN norm3

TN = (V1xyz − V0xyz)× (V2xyz − V0xyz)

TN matmul3x3 TN ·MV

V0 ·MV

dot3

Result < 0◦?

Output
Result

Discard

Yes
No

Figure 25: Internal overview of the geometry accelerator. Light blue nodes
on the left are the three input vertices, green nodes are intermedi-
ate values, and orange nodes are the seven output words. Yellow
and red nodes are IP blocks. Yellow blocks are shared resources
and are used in multiple steps whereas red blocks are not.

4.2 accelerators

The detailed implementation of the accelerators are described below.
All accelerators have configuration parameters that need to be set
before they can be used.

4.2.1 Geometry Accelerator

The geometry accelerator performs the operations (with the exception
of clipping) previously illustrated in Figure 9, transforming vertices
of models defined in model space to screen space, which can then be
rasterized by a primitive rasterizer. Figure 25 gives an overview of
the individual components that the geometry accelerator comprises
of.

Per primitive, three vertices consisting of four components each,
are streamed to the geometry accelerator over the ring (light blue
nodes in Figure 25). The input format is the single-precision, 32-bit
floating-point format, as this is common in the computer graphics
industry. To facilitate the usage of floating point values in logic, the
Floating-Point Operator IP from Xilinx [49] is used. All IP blocks use
simple valid-ready communication signals to synchronize data transfer
between them.

The geometry accelerator has four configuration parameters that
can be set: Model-View (MV) matrix, Model-View-Projection (MVP)
matrix, and viewport width and height, all specified as floating point
numbers. Both matrices are set to the identity matrix during reset,
and the viewport width and height are 800 and 600 respectively, as
this is the resolution used in our setup.

If a triangle is not discarded due to back-face culling, the geometry
accelerator outputs the following seven, 32-bit words (orange nodes
in Figure 25):

[May 31, 2017 at 16:05 – classicthesis version 1.0]

4.2 accelerators 39

• The x- and y-coordinates of the three vertices in screen space.
Each pair of coordinates is a concatenation of two 16 bit signed
integers (3 words).

• 1
2·A , 1 over twice the triangle area, using the Q8.24 fixed-point
format (1 word).

• The view space depth of the three vertices, also using the Q8.24

fixed-point format (3 words).

4.2.1.1 Vector-Matrix Multiplication

First, the vertices are transformed from model space to clip space by mul-
tiplying the vertices with the MVP matrix. This is performed by the
matmul4x4_s block, which accepts streaming data. Looking at Equa-
tion 8 that shows vector-matrix multiplication, we can see that the
four rows of the result are simply a summation of partial products.
For example, when only vx is available, the partial products vxm11,
vxm12, vxm13, and vxm14 can be calculated.

(
vx vy vz vw

)
·

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 =

vx ·m11 + vy ·m21 + vz ·m31 + vw ·m41

vx ·m12 + vy ·m22 + vz ·m32 + vw ·m42

vx ·m13 + vy ·m23 + vz ·m33 + vw ·m43

vx ·m14 + vy ·m24 + vz ·m34 + vw ·m44

(8)

The method of streaming in data and calculating partial results has
several benefits. The first benefit is that less logic is required. The
dual-ring interconnect can only transfer one word of data per clock
cycle, therefore only one vertex component is available at the input.
For each vertex component, one partial result for each of the four
rows can be calculated, requiring four multipliers and adders. Calcu-
lating the full result in one go would require 16 multipliers and 12

adders.
The second benefit is the inherent pipelining, which enables run-

ning at higher clock frequencies. Figure 26 shows the how the par-
tial results are calculated in a pipelined fashion. Every clock cycle,
at most four multiplications and four additions are performed, and
the final result is obtained in six clock cycles. Calculating the result
when all vertex components are available would have to happen in
at most two clock cycles, if the result should be obtained in six clock
cycles. This would require a longer combinatorial path, lowering the
potential clock frequency that this block could run at.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

40 implementation

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

valid in

data in X vx vy vz vw X

mul result 1 X vxm11 vym21 vzm13 vwm41 X

mul result 2 X vxm12 vym22 vzm23 vwm42 X

mul result 3 X vxm13 vym23 vzm33 vwm43 X

mul result 4 X vxm14 vym24 vzm34 vwm44 X

add result 1 X r112 r1123 r11234 X

add result 2 X r212 r2123 r21234 X

add result 3 X r312 r3123 r31234 X

add result 4 X r412 r4123 r41234 X

valid out

Figure 26: Pipelining of partial results in the matmul4x4_s IP. rnm is the cu-
mulative result of the m partial products of row n.

The third benefit is that streaming requires less memory to store
intermediate results. The four components of a vertex do not have
to be stored before processing them, but also requires less memory
for storing intermediate results. In the matmul4x4_s block, only four
words of memory is required to store the results of the adders, and
consequently, the final result.

After multiplying the three vertices with the MVP matrix, the results
Vn ·MVP are fed to the div3 and recp blocks. Thew component of the
results contain the view space depth of the vertices of which we want
the reciprocal. That is calculated by the recp block and the results are
processed by the fp_to_q8_24 block which converts the floating point
input to the Q8.24 fixed-point format.

Additionally, the perspective divide is also performed for each ver-
tex Vn ·MVP using the div3 block, which divides the x, y, and z com-
ponents by the w component. After this division, the vertices are now
in NDC space. The screenspace block transforms the vertices to screen
space by scaling and translating the x and y components to match the
viewport resolution that is stored in the configuration memory of the
accelerator. It also drops the z and w components, and converts the x
and y components into 16 bit signed integer formats.

The last calculation involves obtaining the reciprocal of twice the
triangle area. First, twice the area of the triangle is calcuated by the
edge_function block, giving us the result in 32 bit signed integer
format. Next, the int_to_fp block converts the result into the single-

[May 31, 2017 at 16:05 – classicthesis version 1.0]

4.2 accelerators 41

precision format, which is used by the recp block to obtain the recip-
rocal. Finally, the fp_to_q8_24 block converts the result into the Q8.24

fixed-point format. The int_to_fp block is not shown in Figure 25 for
brevity.

4.2.1.2 Back-face Culling

Back-face culling is performed by checking if the normal of the trian-
gle is pointing towards the camera. This can be done in three steps
(illustrated in the bottom path of Figure 25):

• Define a (normalized) vector with its base at the camera origin,
pointing to one of the vertices.

• Calculate the (normalized) normal vector of the triangle.

• Check if the angle between the two vectors lies between 90° and
270° i.e. if the dot product is negative.

Performing these steps is the easiest in view space, where the first
step is to simply multiply v0 with the MV matrix to obtain v0 ·MV .
This multiplication is also performed by another instantiation of mat-
mul4x4_s and is performed in parallel with the calculation of v0 ·
MVP described above.

Calculating the normal vector of the triangle involves determin-
ing two edges e10 = v1 − v0 and e20 = v2 − v0, then performing a
cross product to obtain the normal vector in model space Nmodel =

e10 × e20. Finally, Nmodel is multiplied with the MV matrix using the
matmul3x3 IP, resulting in the normal vector in view space Nview =

Nmodel ·MV .
matmul3x3 performs a vector-matrix multiplication by dropping

vw, implicitly setting it to 0. In homogeneous coordinates, a value of
1 or 0 for the w component represents point in space or a direction
vector respectively. Since the normal vector is a direction, the fourth
row and column of the MV matrix would be multiplied by zero, and
therefore matmul3x3 only uses the upper left 3x3 matrix of the MV

matrix. This block calculates partial results just like matmul4x4_s ex-
cept it is non-streaming, and stores Nobj temporarily.

The last step is to check if Nview points towards the camera. This
is done by using the dot3 block to calculate the dot product using on
both vectors and checking if the result is negative. If it is, then the
triangle is front-facing and the accelerator continues with the other
operations it needs to perform. When the dot product is positive, the
accelerator drops the triangle and starts processing a new triangle. A
simple optimization to check if the result is negative is to check if bit
31 of the result is set, as negative numbers in both two’s complement
integers and floating point numbers set bit 31.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

42 implementation

axi4Master AXI4

Rasterizer Accelerator

V0

V1

V2

areaRecp
D0

D1

D2

triangleMem triangleSetup e0
e1
e2

areaRecp
A01

A12

A20

B01

B12

B20

D0

D1

D2

rasterizerCore

rasterizerCore

rasterizerCore

rasterizerCore

rasterizerCore

rasterizerCore

rasterizerCore

rasterizerCore

rasterizerTop

depthBuffer

frameBuffer

Figure 27: Internal overview of the rasterizer accelerator.

Optionally, both vertices can be normalized before performing the
dot product. For simply performing back-face culling this is not neces-
sary, but if lighting calculations need to be performed, then normal-
izing the normal vector is required. The geometry accelerator does
normalize both vectors using the norm3 block.

4.2.2 Tile Rasterizer Accelerator

The tile rasterizer accelerator stores received primitive data for up to
a fixed amount of triangles (16 in our implementation), performs a
precalculation on the triangle data and rasterizes them, and finally
writes the result to the frame buffer residing in off-chip DDR3 mem-
ory. An overview of the accelerator is given in Figure 27. Aside from
functional blocks there are also two memory blocks used as local
frame and depth buffers.

The triangleMem block stores the received triangle data in block
RAM. Whenever the maximum amount of triangles are received, or
when a predefined bit pattern is received to indicate that the last tri-
angle is being received, then the accelerator enables the rest of the
IP blocks. The rasterizerTop block then requests the first triangle so
that it can rasterize it. But in order to do this, some intermediate data
needs to be calculated such as the A and B constants of Equation 5,
as well as the edge functions E01, E12, E20 of Equation 6. This is cal-
culated in the triangleSetup block that sits between the triangleMem
and rasterizerTop blocks.

The rasterizerTop block drives eight rasterizerCore blocks that are
each responsible for rasterizing a single column of pixels. Each core
starts by first clearing the frame and depth buffers before using them.
The state machine of each core is setup such that it takes the same
amount of clock cycles whether it has to rasterize or not in order to
simplify the synchronization between all eight cores and the rasteriz-
erTop block.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

4.3 hardware accelerated system 43

When all primitives have been processed, the rasterizerTop block
signals the axi4Master block to start writing the local frame buffer to
the frame buffer stored in off-chip DRAM. Each pixel is represented
as 32 bits, and they are written per row, meaning that the width of the
data channel of the AXI4 port is 256 bits wide. We take advantage of
the capabilities of the AXI interconnect peripheral provided by Xilinx
to split the data into smaller chunks that the DDR memory controller
can process.

The address of tile location in the frame buffer is calculated using
several configuration words in the accelerator. They consist of base
address of the frame buffer, number of tiles in the x and y direction,
the size of each tile, and the current tile coordinate. After writing the
local frame buffer to DDR memory, the cores are reset and they clear
the local frame and depth buffers again.

4.3 hardware accelerated system

The hardware accelerated system is shown in Figure 28. It consists
of two processor tiles (PT0 and PT1), a geometry accelerator (GM)
and a tile rasterizer accelerator (TR). Although the critical parts of
the tile intersection accelerator were implemented, it was not in a
state that allowed us to integrate it into the system due to a lack
of time. Therefore the second processor tile uses the same sorting
implementation as in the reference system.

In a Starburst system, each processor tile can write to any location
in the C-FIFO memory of other processor tiles. However, accelerators
simply receive data from the ring and send data to the ring without
using any addressing. The network interface in accelerator tiles need
to be configured so that the network interfaces know where the data
comes from and where it needs to go. Processor tiles that receive
data from accelerators do so through a network interface with a FIFO
connected to the FSL bus of the Microblaze processor.

When the application starts, PT0 performs the same initialization
as in the reference system. Additionally, it defines how data should
flow (PT0, GM, PT1, TR) in the system by configuring the network
interfaces of both accelerators. PT0 also starts a thread on PT1 that
executes a function that sorts incoming primitive data from GM, and
utilizes TR to rasterize the sorted primitives.

When data from GM arrives at PT1, the processor reads the data
through the FSL link which is a blocking process. While the maxi-
mum amount of primitives that is sent to GM is known, PT1 might
not read that many words as some primitives could be culled. This is
circumvented by writing a special data word before sending the last
primitive data to GM, which then outputs the same special data word
to indicate that the last primitive was processed. When PT1 reads this,
it can then starts to configure and use TR. The same method is also

[May 31, 2017 at 16:05 – classicthesis version 1.0]

44 implementation

used in TR. After all tiles have been processed, PT1 swaps the front
and back frame buffers so that the HDMI peripheral displays the final
rasterized result. Then it signals PT0 to start another iteration of its
main loop by reading the button state, updating the view matrix and
sending primitive data to GM again.

4.4 reproducible architecture

As a refresher, we repeat the criterion for a system to be classified as
a reproducible system:

For every specific input to the system, the total execution time for all paths
that the input data can take through the system should be almost the same.

The accelerators that we have implemented have fixed hardware
that have the same execution time regardless of what the input is.
Also, almost all communication goes through the dual-ring intercon-
nect that has a guaranteed minimum throughput and maximum la-
tency. In the topology that we use, all tiles on the ring can place a
word of data on the ring every clock cycle, and no data streams in-
terrupt each other. The only shared resource in the system is DDR
memory, which is written to by the tile rasterizer accelerator, and
read from by the HDMI transmitter peripheral. This is one of two
non-deterministic parts of the system, with processors with caches
being the second. Compared to the workload of the rasterization al-
gorithm, we predict that the influence on execution times of the rest
of the system will not be significant enough that it would violate our
requirements. Therefore we are confident that our architecture is a
system that has the reproducibility property.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

5
R E S U LT S & E VA L U AT I O N

In this chapter, we begin the evaluation of our system by discussing
the results concerning the execution time of the entire system and
individual components. Due to the accelerators in the hardware ac-
celerated system not working properly, we do not have results for
the hardware accelerated system as a whole. However, we do have
performance figures for the separate accelerators, which are used to
extrapolate them and give a theoretical evaluation of the hardware
accelerated system. Finally, we give an overview of the hardware and
area costs and discuss the results.

5.1 performance evaluation

In this section, the performance of both the reference and the hard-
ware implementations will be discussed. The Microblaze processor
in the processor tiles in both the reference and hardware accelerated
implementations use the following configuration:

• Version: 8.50c

• Instruction cache: 64 KiB

• Instruction cache line size: 8 words

• Data cache: 64 KiB

• Data cache line size: 8 words

All processor and accelerator tiles, the dual-ring interconnect, and
all AXI buses run at 100 MHz, and the DDR3 memory controller runs
at 400 MHz. The output resolution is 800x600 32 bits per pixel. Both
implementations are tested with two 3D models:

• A flat square consisting of 4 vertices and 6 indices. It is primarily
used for testing the throughput of the rasterizer stage as it has
a low geometry processing workload.

• A model of a monkey named Suzanne used in Blender, an open
source 3D graphics and animation application. It consists of 507

vertices, 2904 indices, and 968 faces, and is used as a real-world
example.

With these two models, maxmimum execution times were mea-
sured for each of the three main parts of the graphics pipeline: geom-
etry, sorting, and rasterization. The models were rendered at several

45

[May 31, 2017 at 16:05 – classicthesis version 1.0]

Number of

pixels drawn

Percentage of

frame buffer

Clearing

(uS)

Geometry

(uS/primitive)

Sorting

(uS)

Rasterization

(#cycles/pixel)

Total

(min/max uS)

13225 (115x115)

18225 (135x135)

25921 (161x161)

40401 (201x201)

71289 (267x267)

160801 (401x401)

480000 (800x600)

2.76%

3.80%

5.40%

8.42%

14.85%

33.50%

100%

33749 113 (56.5)

557

680

951

1391

2366

5104

14759

31307 (237)

40954 (225)

59970 (231)

86562 (214)

150040 (210)

331075 (206)

976361 (203)

65550 / 65702

75323 / 75457

91667 / 94902

121674 / 121825

186066 / 186229

369809 / 370030

1018871 / 1019024

Table 1: Maximum execution times of each stage when rendering a simple plane model consisting of two triangles.

Number of

pixels drawn

Percentage of

frame buffer

Clearing

(uS)

Geometry

(uS/primitive)

Sorting

(uS)

Rasterization

(#cycles/pixel)

Total

(min/max uS)

49163

70763

110223

194327

360840

10.24%

14.74%

22.96%

40.48%

75.18%

33774 32816 (33.9)

10048

11478

13771

18618

346318

160306 (326)

212137 (300)

311404 (283)

527190 (271)

2177047 (603)

227234 / 236870

289060 / 290078

390560 / 391379

610682 / 611540

2587084 / 2587828

Table 2: Maximum execution times of each stage when rendering the monkey model consisting of two triangles.

[M
ay

3
1,

2
0

1
7

at
1

6:
0

5
–
c
l
a
s
s
i
c
t
h
e
s
i
s

version
1.

0
]

5.1 performance evaluation 47

depths starting from far away up until the entire screen was covered.
The results were obtained by rendering 1000 frames and measuring
the maximum execution time.

5.1.1 Reference System

Tables 1 and 2 show the maximum execution times of the reference
system for the plane and monkey models respectively. Looking at the
results of the plane model, we can clearly see that the rasterization
parts has the highest execution time by far. Sorting primitives takes
longer when more tiles have primitives assigned to them as expected.
Processing geometry also depends on the amount of primitives, rang-
ing from 113µs to 32 816µs for the plane and monkey model respec-
tively. The reason why the number of microseconds per primitive is
lower when rendering the monkey model is because a set of primi-
tives are culled, while that is not the case for the plane model.

While we do see a low variance in the total execution time of the
system, giving real-time guarantees is difficult because of several fac-
tors. The memory controller is a black box, so cannot create a model
of it to verify its real-time properties. The same applies to the Mi-
croblaze processors as well, which hinders giving proofs about their
behavior. In this particular instance the processors process data with
consistent execution times most likely because the caches are large
enough.

However once the implementation is expanded to run multiple
threads, then the processors can show unpredictable performance re-
sults as we witnessed while testing. Helix OS, which has a real-time
budget scheduler to support multi-threading and runs on each pro-
cessor, is configured to display various statistics every minute by de-
fault. These statistics are sent to the UART peripheral which has a
FIFO which can hold up to 16 characters. This is not large enough to
hold all the characters of the statistics and therefore the processor has
to wait until the FIFO buffer is emptied. This of course is very slow
compared to the clock frequency of the processor since the UART out-
puts at 115200 baud, and the processor runs at 100 MHz. During dis-
playing the statistics, the execution time of the application increases
by about 10 milliseconds, but only affects frame buffer clears and
rasterization times. This is as expected as the second thread does not
yield and uses its full budget when output when outputting statistics,
degrading the performance of the rendering application.

5.1.2 Hardware Accelerated System

The hardware accelerated system consists of two processor tiles, one
geometry processor, and one tile rasterizer as illustrated in Figure 28.
Each accelerator has several counters to measure the amount of clock

[May 31, 2017 at 16:05 – classicthesis version 1.0]

48 results & evaluation

Dual-Ring Interconnect

AXI Interconnect

UART

Mem HDMI

PT0 GP0 TI0

Tile Memory

TR0

Figure 28: High-level overview of the implemented hardware accelerated
system.

cycles it takes to receive data over the ring and to process that data.
The rasterizer accelerator has an additional counter that counts the
clock cycles it takes to write the local frame buffer to DDR memory.
The counters store their values in configuration memory, which can
then be accessed over the ring.

Unfortunately, because the accelerators did not work in the fully
implemented hardware accelerated system, we could not measure its
performance. This is due to the Xilinx tools not dealing well with the
two-process method we used for all hardware that we built. However,
we do have performance results of the accelerators when they were
tested individually. During the development process, each accelerator
was tested and evaluated separately in order to verify if they were
working correctly.

While the geometry accelerator occasionally gave partially incor-
rect results, the rasterizer accelerator worked correctly. It is when
both of them were used to build the hardware accelerated system
that they stopped working. Synthesis results show that each acceler-
ator has one bit of a state register that is driven by a combinatorial
signal. This explains why the geometry accelerator would output in-
correct results in a non-deterministic fashion.

Because we have performance figures of the isolated accelerators,
and all tiles communicate over the dual-ring interconnect which is
formally proven to have hard real-time behavior, we can still reason
about the characteristics of the hardware accelerated system.

The process of sending data from a processor tile to an accelerator
tile is common to both accelerators and are therefore described in this
section. Writing to an accelerator happens through the AXI4-Lite bus

[May 31, 2017 at 16:05 – classicthesis version 1.0]

5.1 performance evaluation 49

on the Microblaze processor. It is connected to an AXI4 interconnect
peripheral in shared access mode and no registering is used. Since
the processor is the only master on the bus, the interconnect does not
add any latency to the processing of placing data on the dual-ring
interconnect. The network interface IP with built-in FIFO does add a
fixed latency and we have measured a minimum throughput of one
word per 12 clock cycles but is usually between 9 and 10 clock cycles.

5.1.2.1 Geometry Processor

The geometry accelerator receives 12 words of data per primitive,
which means that it takes at most 12 · 12 = 144 clock cycles for the
processor to send it to the accelerator. Using a DMA would enable the
processor to send a word each clock cycle resulting in 12 clock cycles
per primitive. It calculates whether the current primitive should be
culled while at the same time, it also transforms the primitive from
model space to screen space. If the primitive is not culled, then it
outputs seven words of data, one word per clock cycle.

Determining whether a primitive is back-facing and thus to be
culled happens in 9 clock cycles, but the accelerator fully processes
the primitive before checking if it should be culled or not. This was
done to simplify the design, but could be modified to immediately
stop processing after 9 clock cycles. Fully processing and outputting
a primitive takes 33 clock cycles. This results in:

144+ 33

100× 106 · 1× 106 = 1.77µs (9)

without using a DMA. This gives a maximum throughput of ap-
proximately 564971 primitives per second. The plane model consists
of two primitives and would take 2 · 1.77µs = 3.54µs to compute,
and the monkey model consisting of 968 primitives would take 968 ·
1.77µs = 1713.36µs. Compared to the reference system, this results
in a speedup of approximately 31 and 19 times for the plane and
monkey model respectively.

If a DMA would be used, then it would take:

12+ 33

100× 106 · 1× 106 = 0.47µs (10)

to process a single primitive. This gives a speedup of approximately
120 and 72 times compared to the reference system when processing
the plane and monkey model respectively.

5.1.2.2 Tile Rasterizer

The tile rasterization accelerator receives seven words of data per
primitive with a maximum of 16 primitives. That gives a total of 112

[May 31, 2017 at 16:05 – classicthesis version 1.0]

50 results & evaluation

words that the accelerator can accept for each tile. If less primitives
fall within a tile, then a special data word is sent to let the accelerator
know that no more primitives will be sent and that it can start ras-
terization. The minimum throughput of a processor placing data on
the ring is one word per 12 clock cycles, which results in the worst
case of 1344 clock cycles. If a DMA would be used, then the full band-
width of the dual-ring interconnect could be used and it would take
at most 112 clock cycles to send the data, which is more than an order
of magnitude faster.

Since the rasterization process happens in fixed hardware, the amount
of clock cycles it takes is always the same. For each primitive, a prim-
itive setup has to be performed taking 6 clock cycles, and 8 rows of
8 pixels need to be rasterized, each row taking 3 clock cycles. This
brings the total to 30 clock cycles per primitive. For the first prim-
itive per tile, the local frame and depth buffers need to be cleared
as well which takes 9 clock cycles. The primitive setup is done in
parallel however, so the total is 33 clock cycles for the first primitive.
The maximum amount of cycles needed for 16 primitives is therefore
33+ (15 · 30) = 483.

Calculating how much clock cycles are needed to write the local
frame buffer contents to DDR memory is difficult since we cannot
create an accurate model of the memory controller due to its closed
nature. We therefore resort to measuring the maximum amount of
clock cycles on the actual hardware. It ranges from 150 to 350 clock
cycles, and therefore we take the maximum value as the WCET.

In the case of the plane model, we know that there can be at most
two primitives per tile, and when it covers the entire screen, we know
that all 7500 tiles have two primitives in them. Two primitives need
15 words (14 for the two primitives, and one to signal the accelerator
that it is the last primitive), which at most can take 15 ∗ 12 = 180

clock cycles to send to the accelerator. Rasterizing the two primitives
takes 33+ (1 · 30) = 63 clock cycles, and writing the result to DDR
memory takes 350, giving a total of 180+ 63+ 350 = 593 clock cycles.
Compared to lowest number of cycles per pixel in Table 1, processing
64 pixels would take approximately 64 · 203 = 12992 clock cycles on
the processor which makes the accelerator have a 12992

593 ≈ 21.9 times
lower execution time.

For the plane model, a frame takes just under one second to render
on a processor while on the accelerator it takes:

7500 · (180+ 63+ 350)
100× 106 · 1000 ≈ 44ms ≈ 22FPS (11)

This is without using a DMA. If a DMA would be used, then it
would take:

[May 31, 2017 at 16:05 – classicthesis version 1.0]

5.2 hardware costs 51

7500 · (15+ 63+ 350)
100× 106 · 1000 ≈ 32ms ≈ 31FPS (12)

Using the same approach, performance figures for the absolute
worst case (every tile has 16 primitives) can be calculated:

7500 · (1344+ 483+ 350)
100× 106 · 1000 ≈ 163ms ≈ 6FPS (13)

Again, this is without the use of a DMA. Using a DMA results in:

7500 · (112+ 483+ 350)
100× 106 · 1000 ≈ 71ms ≈ 14FPS (14)

These results are summarized in Table 3. We can see that not only
is the accelerator faster, but as long as it can be supplied with data
fast enough, it is guaranteed that the performance will not fall below
the calculated values due to the use of fixed hardware.

Using the rasterizer accelerator has another benefit in that it alle-
viates the need for clearing the screen before the rendering process.
If we simply send a special word to the accelerator to indicate that
there are no primitives to render, it will write its cleared local frame
buffer to DDR memory. Clearing the local frame buffer takes 9 clock
cycles, receiving the special word takes 12 clock cycles, and writing it
to DDR memory takes at most 350 clock cycles, meaning that it takes
at most:

7500 · (12+ 9+ 350
100× 106 · 1000 = 27.15ms (15)

to clear the frame buffer if nothing is to be rasterized. Compared to
the roughly 33.7 milliseconds it takes for the reference system clearing
the frame buffer, we can see that it is a bit faster. The main advantage
is that clearing the screen in the reference system is mandatory in or-
der to clear the result of the previous frame, whereas in the hardware
accelerated system it is part of the rasterization process. This means
that we save at least 33.7− 27.15 = 6.55ms when nothing is rendered,
and more when primitives are rendered.

5.2 hardware costs

As explained before, all implementations are done on the Xilinx VC707

evaluation board, that contains a Virtex-7 VX485T FPGA. Using Xil-
inx terminology, the relevant types of hardware resources that this
FPGA offers are:

• Slice register: a single bit flip-flop.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

52 results & evaluation

#primitives
Receive

from ring
Rasterization

Write to

DDR memory

Frame

time
FPS

2

2

16

16

180

15 (DMA)

1344

112 (DMA)

63

63

483

483

350

350

350

350

44

32

163

71

22

31

6

14

Table 3: Performance figures for the rasterizer accelerator. Receiving data
from the ring, rasterization, and writing data to DDR memory are in
number of clocks. Frame times are based on the accelerator running
at 100MHz, and are given in milliseconds.

Available
Reference System

(Used/%)

Hardware Accelerated

System (Used/%)

Slice Registers 607200 12912 / 2.13% 27210 / 4.48%

LUTs 303600 15305 / 5.04% 50550 / 16.65%

LUTRAM 130800 1421 / 1.09% 2120 / 1.62%

BRAM 1030 13 / 1.26% 41 / 3.98%

DSP48E1 2800 5 / 0.18% 362 / 12.93%

Table 4: Hardware resource usage of the reference system (software-only)
and hardware accelerated system (one geometry and rasterizer
unit).

• Lookup Table (LUT): a multi-functional building block that can be
used to implement logic, RAM, ROM, shift registers, etc.

• LUTRAM: a LUT that is used as RAM.

• Block RAM (BRAM): on-chip static RAM with a size of 36 kbit per
BRAM block. Can also be used as two separate 18 kbit RAMs.

• DSP48E1: an on-chip, dedicated Digital Signal Processor (DSP).

Table 4 shows the hardware resource usage of the reference system
and the hardware accelerated system. The reference system does not
use any accelerators and consists of one processor tile as described in
Section 3.1.1, whereas the hardware accelerated system uses two pro-
cessor tiles, and one geometry and rasterizer accelerator. We should
note that the amount of LUTs used include LUTRAM, so to find the
amount of LUTs used as logic, subtract the amount of LUTRAM from
the amount of LUTs.

Table 5 gives the breakdown of the hardware resource usage of the
accelerators. The rasterizer accelerator internally has multiple raster-
izer cores, and the resource usage of an individual core is also shown
in the same table. The first thing to notice is that the resource us-
age of the accelerators are higher than that of a single processor tile.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

5.2 hardware costs 53

Available
Geometry

Accelerator

(Used/%)

Rasterizer

Accelerator

(Used/%)

Rasterizer

Core (Used/%)

Slice Registers 607200 4913 / 0.81% 3921 / 0.65% 327 / 0.05%

LUTs 303600 21604 / 7.12% 6346 / 2.09% 387 / 0.13%

LUTRAM 130800 0 / 0% 0 / 0% 0 / 0%

BRAM 1030 0 / 0% 19 / 1.84% 0 / 0%

DSP48E1 2800 105 / 3.75% 247 / 8.82% 30 / 1.07%

Table 5: Hardware resource usage of the used accelerators.

There are two reasons for this. The first is that a processor executes
its instructions in a serial manner, whereas the implemented acceler-
ators process data in a parallel fashion by having multiple data paths.
The second reason is the consequence of a trade-off that was made,
favoring higher performance at the cost of increased resource usage.

5.2.1 Geometry Accelerator

The geometry accelerator performs several mathematical operations
using floating point arithmetic such matrix-vector multiplication, dot
product, normalization, division, addition, subtraction, finding the
reciprocal, and cross product. To map the vertices to screen space,
it also converts the floating point results to fixed point formats. The
amount of LUTs of the geometry accelerator is mostly used for screen
space mapping, followed by matrix-vector multiplications, where the
non-streaming one (Chapter 4.2.1.1) uses the most. The usage of DSPs
is similarly distributed among the internal hardware blocks. Slice reg-
ister usage is mostly for storing state and intermediate results.

Resource usage could be lowered by sharing some of the hardware
used for arithmetic. For example, there are three instances of the div3
IP block that simultaneously perform the homogeneous division oper-
ation. This could lowered to one instance and performing the division
in serial.

5.2.2 Rasterizer Accelerator

Even though we have chosen to use 8 rasterizer cores in the rasterizer
accelerator, the hardware resource usage is around three times less
than that of the geometry accelerator. This is because only integer
arithmetic is used so no expensive floating point operator hardware
is needed. Each rasterizer core implements the equations of Section
2.5.1 and requires a fair bit of arithmetic operations, explaining the
usage of 30 DSP blocks. The triangle setup IP performs a few operations

[May 31, 2017 at 16:05 – classicthesis version 1.0]

54 results & evaluation

that all rasterizer cores have in common, therefore using just 7 DSP

blocks.
Since tiles in our implementation are squares, and 8 cores are used,

each accelerator processes blocks of 8 by 8 pixels, requiring storage
for 64 color values and 64 depth values. Each data value is four bytes
in size so a total of 512 bytes worth of storage is needed. Storage is
also used for storing triangle data produced by the geometry accelera-
tor. Each triangle requires 7 words of data and in the implementation,
up to 16 triangles can be stored, requiring a total of 448 bytes.

The 19 BRAMs that are used can store up to 85.5 kB of data, of which
only 960 bytes are actually used. The frame and depth buffers use 8

and 4 BRAMs respectively, and the triangle memory uses 7. To explain
the reason why so many BRAMs are used, we need to look at the BRAM

primitive. Each BRAM primitive can have two 36 bit ports (32 bits data
and 4 bits parity) when used as a true dual-port memory, or one 72

bit port (64 bits data and 8 bits parity) when used as a single port
memory. Integer multiples of 32 bit data widths were used in our
implementation, so for single and dual-port memories, every 64 and
32 bits of data width will use one BRAM respectively.

The frame and depth buffers are 256 bits wide because of the 8

cores, and each core reading and writing 32 bit words. Even though
the frame and depth buffers have the same data width and memory
size, the discrepancy of the frame buffer using twice as many BRAMs
comes from it being implemented as a dual-ported memory. The sec-
ond port is connected to the AXI port of the accelerator. But since the
frame buffer is never accessed by the cores and the AXI port simulta-
neously, a multiplexer could be used to decrease the BRAM usage.

For triangle memory, 7 words of data are stored per triangle, result-
ing in a 224 bit data width, and therefore 7 BRAMs are used. By using
different settings, the synthesizer might come up with a more efficient
implementation that could result in much less BRAM usage by imple-
menting it using LUTRAM instead. With the current implementation
on the other hand, many more triangles per rasterizer accelerator can
be used without using more hardware.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

6
C O N C L U S I O N

The goal of this thesis was to design and implement a real-time tri-
angle rasterization algorithm, and for this reason, three objectives
were defined. The first was to research and evaluate various graph-
ics architectures, and determine which architecture is most suited to
reason about its real-time characteristics. Four major graphics archi-
tectures were evaluated and the sort-middle architecture was chosen
because the stages are loosely connected, no duplicate calculations
are performed, and the architecture is less complex due to not having
extra interconnects for sending data to other pipelines. This makes
reasoning about each separate stage easier than the other architec-
tures. However, the complexity is concentrated in the sorting stage, as
it requires atomic read-modify-write capabilities accessing tile mem-
ory when using multiple functional units in the sorting stage. Sev-
eral triangle traversal methods were evaluated and the tiled traver-
sal method was chosen because it has low complexity and exploits
the parallel nature of rasterization. This gives the flexibility to use
more hardware resources for higher performance without adding ad-
ditional complexity.

The second objective was to implement a reference software imple-
mentation of a tiled triangle rasterizer on the Starburst platform. Hav-
ing chosen to use the sort-middle architecture, we created a software
implementation of it, running the rasterization algorithm on a single
processor. This was a crucial objective because it gives us insight into
real-life performance and bottlenecks of the sort-middle architecture.
The performance of the reference implementation was evaluated, and
based on the results, the geometry and rasterization stages that are
the largest bottlenecks were selected to be replaced by accelerators.

The third objective was to design and implement an embedded
system that performs real-time triangle rasterization on the Starburst
platform. Based on the findings of the reference implementation, two
hardware accelerators were implemented and an embedded system
was realized. Unfortunately, we could not evaluate the final system
because the system would hang. Synthesis logs indicated that this is
due to a bug where a bit of a state register is driven by a combinato-
rial signal. This causes illegal state transitions in the state machines
of the accelerators which result in deadlocks. Thankfully we have
results from when the accelerators were tested separately during de-
velopment, and based on those results, a theoretical evaluation of the
hardware accelerated system was performed.

55

[May 31, 2017 at 16:05 – classicthesis version 1.0]

56 conclusion

With the results of this evaluation, we can now answer our research
question:

Is the Starburst architecture suitable for implementing a real-time rasteri-
zation algorithm? If not, which hardware and/or software components need
to be incorporated to make it suitable?

We have shown that it is very difficult and impractical to design
a real-time graphics architecture using the real-time systems method-
ology at design time. Due to the weak correlation of the workload
between the stages of the graphics pipeline, we cannot predict the
workload for all possible inputs. We provided a new classification of
systems that also give temporal performance guarantees called repro-
ducible systems. If we have a limited set of inputs that are known be-
forehand, we can implement a graphics architecture with reproducible
results. Strong guarantees can be given because of the use of fixed
hardware and a real-time ring interconnect. We can calculate exactly
how long it takes to transform a single primitive in the geometry
stage and how long it takes to rasterize a single tile. In Tables 1 and
2, we can see that in the reference implementation, the cost for ras-
terizing a single pixel changes based on the percentage of the screen
that is being covered by primitives. In the case of the monkey model,
the execution time per pixel increases significantly when the camera
zooms so much that the model covers most of the screen. These kinds
of outliers cannot occur when using accelerators, as they will always
provide very similar execution times in subsequent runs. With this,
we can state that the Starburst platform is suitable for implementing
a rasterization algorithm with temporal performance guarantees.

There is one important improvement that can be made however.
While we do have gateway entry tiles that are like processor tiles, but
with an additional DMA engine, there are no easy to use functions to
use the DMA in Helix OS. Also, these tiles are not yet an integral part
of the system generation scripts of Starburst, and requires additional
effort to get them up and running. Since we stated that developing a
real-time graphics architecture with reproducible results depends on
being able to generate and evaluate a system quickly, easy usage of a
DMA engine would help this process. We should be able to easily add
a DMA engine to any processor tile and use simple functions provided
by Helix OS to use it.

6.1 future work

As a first step, we would like to correctly implement both accelera-
tors, and compare the real-life performance and real-time properties
compared to our partly theoretical results. The next step would be to
implement a tile collision accelerator like it was described in Chapter
3. This would make it easier to determine the WCET since it would be
fixed hardware with deterministic performance.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

6.1 future work 57

DDR memory is a resource that is difficult to analyze at a lower
level, and it is shared between several components in the system,
making it a major point of non-determinism. The four components
that access DDR memory are both processors, the HDMI peripheral,
and the rasterizer accelerator. Taking into consideration that the in-
struction and data caches of the processors are large enough to rarely
access it, we can assume that their influence on the non-deterministic
performance is negligible. Interestingly, the rasterizer accelerator only
writes to memory, whereas the HDMI peripheral only reads from it,
they never access the same memory region, and the accesses are linear
and not random. To lessen the non-determinism of the system due to
sharing, it would be interesting to create a FMC daughter board with
two separate off-chip memories, which are accessed by the two com-
ponents in an alternating manner. The memory controllers for these
memories could be fairly trivial if SRAM were to be used. Even if
DDR memories that need refreshing logic were to be used, a naive
state machine in the memory controllers would be sufficient due to
the linear memory accesses by the two components.

As was mentioned in Section 5.1.2 of Chapter 5, transferring data
over the ring interconnect using a processor tile is very inefficient, and
a DMA could be used to increase the latency, throughput, and there-
fore the performance of the system. The Starburst platform already
has gateway entry tiles, which are similar to processor tiles, but con-
tain an additional DMA peripheral. This was not used however due
to them not being integrated well into the system generator flow.

Another example where performance could be increased is to use
double buffering in the rasterizer accelerator. While it is rendering,
another set of primitives could be stored in a second triangle memory
block, which could then be rasterized while the result of the previous
tile is being sent to memory over the Advanced Extensible Interface
4 (AXI4) port. Since only a fraction of the memory of the BRAM blocks
is used, double buffering would not actually increase the amount of
BRAM blocks. Allowing the multiple stages of the accelerator to be
run in parallel should only increase LUT usage minimally. By using
double buffering, the accelerator would be pipelined and achieve a
higher throughput, with a slight increase in hardware resource usage.

The current hardware accelerated system uses only one of each
accelerator, and we mentioned that the tile size of the rasterizer accel-
erator was chose somewhat arbitrarily. While its size can be increased
to process more pixels at a time and decrease the number of tiles, we
would like to scale the system up by adding more of each accelerator
to the system. Another angle that we would like to explore is to use
multiple rings where each ring implements a full graphics pipeline so
that the system more closely resembles the sort-middle architecture
of Figure 15.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

58 conclusion

An interesting step that lies further down the road is to implement
fully programmable pixel shaders in the rasterizer accelerator. Shaders
are small programs that run for each vertex (vertex shaders), primitive
(geometry shaders), and rasterized pixel (pixel shaders). This way the
system can also render instead of just rasterize. It would be an inter-
esting challenge to modify the accelerator in such a way that we can
give it a pixel shader, all while maintaining a guaranteed throughput
and making it simple to analyze. Such an implementation could have
multiple small and simple processors that run a pixel shader for each
pixel that passes the rasterization step. A good candidate for such a
processor is the J1, a small Forth CPU core [9]. Every instruction exe-
cutes in a single cycle, and given a Forth application, it is fairly easy
to determine how many clock cycles it takes to execute and reason
about its real-time performance.

6.2 reflection

This project started with my supervisor asking if the Starburst plat-
form could be ported from the ML605 board, which has a Virtex 6

FPGA to the VC707 board, which has a Virtex 7 FPGA. This was at-
tempted before by PhD students but was never a high priority. The
main issue porting Starburst is that the Processor Local Bus (PLB) is
used for connecting parts of the system together. Xilinx, the manu-
facturer of the FPGAs, discontinued the use of PLB for the 7-series
FPGAs and newer, and switched over to AXI4. This raised hardware
and software issues that needed to be addressed. Hardware wise, PLB

and AXI4 are incompatible, and therefore all PLB connected hardware
had to use AXI4 variants. Also, PLB is big-endian whereas AXI4 is little-
endian, meaning that some piece of hardware and software had to
be rewritten to accommodate this difference. There are many small
differences between the old platform and one that would use AXI4,
which led to a partial redesign of the platform.

Below is a list of things that needed to be modified and/or fixed in
order to port the hardware to the VC707 board:

• The old platform uses a binary tree structure called warpfield
to connect the Microblaze processors to the DDR memory con-
troller. This is replaced with just an AXI4 interconnect where the
processors and the memory controller are connected to as mas-
ters and slaves respectively. Although an initial implementation
of an AXI4 compatible warpfield component was previously im-
plemented but it did not work. It was deemed unnecessary to
fix it since it is difficult to model the real-time behavior of the
memory controller, and therefore it would not add much to the
ability to analyze the system.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

6.2 reflection 59

• The dual-ring interconnect network interface IP consists of two
parts, one that connects to the ring called dual ring acc, and one
that connects the Microblaze processor to dual ring acc called
plb2ring. A version of plb2ring with an AXI4 port called axi2ring
was implemented by a PhD student before, but it would occa-
sionally hang. As this is a crucial part of the platform, it was
debugged in simulation, and a timing error was found in the
AXI4 handshaking where the IP expected to receive more data
without the processor receiving an acknowledgement.

• A student created a new version of dual ring acc that allows con-
figuring accelerators over the ring instead of using a separate
configuration bus, and this is used in the new platform. While
using this IP initially meant a change of just a few lines in the
generator template, it turned out that it did not work correctly.
The master thesis of this student was used in order to get a
better understanding of the IP, and finding the bug took much
longer than anticipated. This was because of disparity between
the thesis and the implementation, which turned out to not to
work when accelerators were present on the ring.

• The ML605 board uses a DVI transmitter chip, whereas the
VC707 board uses an Analog Devices ADV711 HDMI transmit-
ter. Although Analog Devices released the HDL code to use this
chip, it was packaged for the Vivado toolchain, whereas the gen-
erator scripts for Starburst use the older ISE/XPS
toolchain. Although not difficult, many small changes were nec-
essary in creating an XPS pcore peripheral that can be used
by the ISE toolchain. However, the accompanying clock genera-
tor IP that they also released does not synthesize with the older
toolchain, while it does with Vivado. This IP is necessary to sup-
port multiple resolutions which use different pixel clocks. Since
this IP does synthesize with Vivado, it is most likely a toolchain
issue, and due to time limitations it was not pursued. Therefore
only the resolution of 800x600 is supported as it uses an easy to
generate 40 MHz pixel clock.

Software wise, several changes were necessary as well, and are
listed below:

• GCC had to be configured to generate little-endian libraries and
binaries. This involved adding a flag in a couple of makefile
scripts.

• The checksum code that loops over the memory where Helix OS
resides had to be modified to use little-endian byte ordering.

• The order of struct members that use bit fields had to be re-
versed, again due to endianness.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

60 conclusion

• Analog Devices released a library for the Microblaze processor
to use the ADV7511 HDMI transmitter chip, but when used,
it would hang in the initialization function because it waited
for a timer that is not present. Because they did not release
the source code, the solution was toreverse engineering their
library to find out which registers of the ADV7511 should be set
and which values should be used. This effort was documented,
and custom functions that correctly initialize the ADV7511 were
added to Helix OS.

Some general things that were done to lower the barrier to use the
Starburst platform for future students:

• Using accelerators is a big part of using the Starburst platform.
While there are multiple accelerators created by previous stu-
dents, they are large and complex. Understanding them requires
looking up the theses that describe them. There is one trivial ac-
celerator that just passes its input to its output, so there is a
gap in complexity between the accelerators. In order to address
this, two additional simple accelerators were created including
documentation and software examples: one that takes two in-
put words and outputs the summed value, and one that allows
configuring whether the two values should be summed or mul-
tiplied.

• Functions were added to Helix OS that simplify configuring
accelerators along with examples that demonstrate this process.

• A commented example application was written to demonstrate
how to use the HDMI peripheral.

There are also several changes that were attempted but were not
realized in the end:

• On the old platform, one processor connected to the board pe-
ripherals runs Linux while the rest runs Helix OS. A separate
version of GCC is used for compiling the kernel, and for the
new platform, the little-endian flag is used. Linux also requires
a DTS file which describes all the devices in the system, and to
generate it for the new platform, Xilinx provides a plugin for the
EDK tool that does just that. The problem is that when generat-
ing a DTS file for the new platform, and error about indexing
with the interrupt controller is given. This is a known bug in the
EDK tool, but since it is not maintained anymore, the bug will
not be fixed. The Vivado version of EDK was used, and while
it did generate a DTS file, the kernel would not boot because it
thinks there is too little memory in the system. A researcher at
NXP did build a working kernel, but getting it running on the

[May 31, 2017 at 16:05 – classicthesis version 1.0]

6.2 reflection 61

new platform as well as getting the userland applications such
as busybox to compile, was put on halt because it was taking
too much time to get it running.

• The binary tree interconnect for the tile intersection accelerator
was implemented and tested in simulation, but I set a deadline
for myself, and decided to spend the remaining time in trying to
fix the geometry and rasterizer accelerators as those the biggest
bottlenecks of the implementation.

My supervisor warned me not to spend too much time on port-
ing everything over, but since I continuously made progress in small
steps, I did not stop and ended up spending about 18 months on this
process. The porting process as well as the research for the thesis has
taken a lot of time, partially due to me working a part-time job, but
also because of bug filled tools, faulty hardware, long synthesis times,
and using a design methodology that is not supported and sensitive
to making errors. But I learned a lot and gained experience, so I do
not see this effort as a waste of time.

Looking back on the implementation of the accelerators, it was a
very deceptive process in the sense that during development, every-
thing worked and is still working fine in simulation. In the beginning,
even the actual hardware worked most of the time, and when some-
thing did not work, it was due to a bug in the rest of the hardware or
software. This makes sense as there were many subtle bugs that were
present during the porting process. After fixing all bugs that I came
across, it became apparent that the usage of the two-process method
led to accelerator implementations that would work occasionally.

I assumed that it was because of my accelerators. However more
often than not, it turned out to be a bug in the rest of the hardware or
software. This gave the false sense that the accelerators were working
correctly, and when an accelerator did not work, it was most likely
a bug caused by IP developed by others or by the porting process.
While this was the case a few times, in the end my implementation is
incorrect because I used a design methodology that is prone to gen-
erating incorrect results. Both accelerators did work when used in a
system where only one accelerator was present to test each acceler-
ator separately, but would sometimes give incorrect results or hang
the entire system. In the end, the ISE toolchain generated hardware
that has one latch in each accelerator and it is most likely due to an
incorrect use of the two-process methodology.

My recommendation for future students and users is to use the
newer Vivado toolchain for Starburst on the VC707 board. Also, do
not use the two-process design methodology as it makes is very easy
to create unwanted combinatorial logic. Using a higher-level HDL
such as CλaSH [8] and SpinalHDL [33] is also worth investigating to
simplify the development process. If the developed hardware inhibits

[May 31, 2017 at 16:05 – classicthesis version 1.0]

62 conclusion

non-deterministic behavior, then you most likely have a timing prob-
lem related to an inferred latch or incorrect combinatorial circuit. All
efforts should be focused on solving that issue, and tested on actual
hardware as simulations do not show non-deterministic behavior.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

A C R O N Y M S

AABB Axis-Aligned Bounding Box

API Application Programming Interface

AXI4 Advanced Extensible Interface 4

BLR Bluetooth Low Energy Long Range

BRAM Block RAM

DMA Direct Memory Access

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

FPS Frames Per Second

LUT Lookup Table

MPSoC Multi-Processor System on Chip

MV Model-View

MVP Model-View-Projection

NDC Normalized Device Coordinates

PLB Processor Local Bus

TDM Time-division Multiplexing

VR Virtual Reality

WCET Worst-Case Execution Time

63

[May 31, 2017 at 16:05 – classicthesis version 1.0]

L I S T O F F I G U R E S

Figure 1 Displayed in the left image is an example of a
scene with several 3D models, a light source,
and a virtual camera. The camera position is
de tip of the pyramid, the light blue plane in
the pyramid is the near plane or image plane,
which is the virtual screen or viewport into the
world. The gray volume represents the view-
ing frustum or the volume in which models
are visible. In the right image, the same scene
is shown projected onto the virtual screen as
seen through the virtual camera. The cube and
the monkey head models cast shadows onto
the torus and cone models respectively, and
the the torus partially falls outside the view-
ing frustum, and is therefore clipped. 6

Figure 2 The conceptual stages of the graphics render-
ing pipeline. Each stage can have pipelined in-
ternal stages, as shown beneath the conceptual
stages. Some internal stages can also contain
parallelized stages. 7

Figure 3 A 3D model risiding in model space can be
transformed to world space using the model
transform. On the left is a cube in the coordi-
nate system of the model and on the right is
the same model but translated in the z axis,
and scaled in the x- and y-axis. 8

Figure 4 An example scene where four models and the
virtual camera are transformed from world space
to eye space using the view transform. The
viewing frustum determines the volume in which
models are visible, and is bound by the near
and far planes. The near plane or image plane
is the virtual screen on which the models in the
viewing frustum are projected. In this case, all
models except for the star intersect with the
viewing frustum, and are therefore (partially)
visible. 10

64

[May 31, 2017 at 16:05 – classicthesis version 1.0]

List of Figures 65

Figure 5 Application of projection transform and per-
spective division. Top image shows orthographic
projection and bottom image shows perspec-
tive projection. In both cases, the models are
transformed from eye space to NDC space. 11

Figure 6 A scene rendered with orthographic projection
on the left and with perspective projection on
the right. 11

Figure 7 Example of three culling techniques: back-face,
frustum, and occlusion, where culled primi-
tives are represented by dashed lines. (Illustra-
tion inspired by [11]) 12

Figure 8 Triangles that partly fall outside the viewport
are clipped against its borders. In this process,
new vertices can be introduced as is the case
for the right triangle. 13

Figure 9 An overview of the transformations applied to
a triangle in the geometry stage. 14

Figure 10 The edge function E(x,y) = 0 going through
vertices v0 and v1 is shown as a dashed line.
The normal vector comes from the edge func-
tion as defined in Equation 2. The edge func-
tion projects points onto the normal vector, and
as an example two points are shown (p0 and
p1). The projection of p0 yields a positive value
shown as the green line, and the value for pro-
jecting p1 is negative as shown by the red line.
Positive values (area above the dashed line) are
on the "left" side of the edge e01 and negative
values are on the "right" side and are not a part
of the triangle. 15

Figure 11 On the left: a triangle consisting of three ver-
tices and edges as they are received from the
geometry stage. For each edge, the "left" and
"right" sides are shown with "+" and "-" signs
and different colors. The yellow color marks
the interior region of the triangle. On the right:
the same triangle rasterized on a 16x8 raster of
pixels. The dots in the center of the cells are the
positions that are used for the point-in-triangle
tests. 15

Figure 12 Bounding box traversal visits all pixels within
the bounding of the triangle. 17

[May 31, 2017 at 16:05 – classicthesis version 1.0]

66 List of Figures

Figure 13 Two cubes are shown. The cube on the left
has no texture, and the cube on the right is
textured with the brick texture shown on the
left. 18

Figure 14 A general, parallel graphics processing archi-
tecture. Blocks marked G and R are geometry
and rasterizer units respectively. (Illustration af-
ter Möller et al. [6]) 19

Figure 15 Four parallel graphics architectures, from left
to right are sort-first, sort-middle, sort-last frag-
ment, and sort-last image. The geometry stage
consists of multiple blocks marked G that are
geometry units. The rasterizer stage comprises
of FG and FM blocks which are fragment gener-
ation and fragment merging respectively. (Illus-
tration after Möller et al. [6] and Eldridge et al.
[19]) 20

Figure 16 Distribution of execution times of a real-time
system. 25

Figure 17 Examples of two different scenes and their in-
fluence on the workload of the geometry, sort-
ing, and rasterization stages. Dragon model cour-
tesy of Stanford University. 26

Figure 18 Distribution of execution times of a computer
graphics application. 27

Figure 19 Distribution of execution times of a system with
reproducible results. 28

Figure 20 Example of a reproducible system. A and B are
tasks with fixed execution times. Both paths
from input to output have the same latency. 28

Figure 21 Example architecture overview with all tile types. 32

Figure 22 Overview of processor and accelerator tiles. 33

Figure 23 The proposed architecture. 34

Figure 24 Simplified overview of the tile rasterizer. 36

Figure 25 Internal overview of the geometry accelerator.
Light blue nodes on the left are the three input
vertices, green nodes are intermediate values,
and orange nodes are the seven output words.
Yellow and red nodes are IP blocks. Yellow
blocks are shared resources and are used in
multiple steps whereas red blocks are not. 38

Figure 26 Pipelining of partial results in the matmul4x4_s
IP. rnm is the cumulative result of the m partial
products of row n. 40

Figure 27 Internal overview of the rasterizer accelerator. 42

[May 31, 2017 at 16:05 – classicthesis version 1.0]

List of Figures 67

Figure 28 High-level overview of the implemented hard-
ware accelerated system. 48

[May 31, 2017 at 16:05 – classicthesis version 1.0]

L I S T O F TA B L E S

Table 1 Maximum execution times of each stage when
rendering a simple plane model consisting of
two triangles. 46

Table 2 Maximum execution times of each stage when
rendering the monkey model consisting of two
triangles. 46

Table 3 Performance figures for the rasterizer accelera-
tor. Receiving data from the ring, rasterization,
and writing data to DDR memory are in num-
ber of clocks. Frame times are based on the
accelerator running at 100MHz, and are given
in milliseconds. 52

Table 4 Hardware resource usage of the reference sys-
tem (software-only) and hardware accelerated
system (one geometry and rasterizer unit). 52

Table 5 Hardware resource usage of the used acceler-
ators. 53

68

[May 31, 2017 at 16:05 – classicthesis version 1.0]

B I B L I O G R A P H Y

[1] AMD. AMD Graphics Cores Next (GCN) Architecture. Tech. rep.
2012. url: https://www.amd.com/Documents/GCN_Architecture_
whitepaper.pdf.

[2] ARM. Mali GPU OpenGL ES Application Development Guide - Mali
Development Strategy. url: http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.dui0363d/CJAEEJCF.html

(visited on 12/15/2016).

[3] Michael Abrash. Michael Abrash’s Graphics Programming Black
Book, with CD: The Complete Works of Graphics Master, Michael
Abrash. Coriolis group books, 1997.

[4] Kurt Akeley. “Reality Engine Graphics.” In: Proceedings of the
20th Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’93. Anaheim, CA: ACM, 1993, pp. 109–116.
isbn: 0-89791-601-8. doi: 10.1145/166117.166131. url: http:
//doi.acm.org/10.1145/166117.166131.

[5] Kurt Akeley and Tom Jermoluk. “High-performance Polygon
Rendering.” In: SIGGRAPH Comput. Graph. 22.4 (June 1988),
pp. 239–246. issn: 0097-8930. doi: 10.1145/378456.378516. url:
http://doi.acm.org/10.1145/378456.378516.

[6] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-
Time Rendering 3rd Edition. Natick, MA, USA: A. K. Peters, Ltd.,
2008, p. 1045. isbn: 987-1-56881-424-7.

[7] Tomas Akenine-Möller and Jacob Ström. “Graphics for the Masses:
A Hardware Rasterization Architecture for Mobile Phones.” In:
ACM Trans. Graph. 22.3 (July 2003), pp. 801–808. issn: 0730-0301.
doi: 10.1145/882262.882348. url: http://doi.acm.org/10.
1145/882262.882348.

[8] Christiaan Pieter Rudolf Baaij. “Digital circuits in CλaSH: func-
tional specifications and type-directed synthesis.” PhD thesis.
Enschede, 2015. url: http://doc.utwente.nl/93962/.

[9] James Bowman. “J1: a small Forth CPU Core for FPGAs.” In:
pp. 43–46. url: http://www.complang.tuwien.ac.at/anton/
euroforth/ef10/papers/bowman.pdf.

[10] Edwin Catmull. A subdivision algorithm for computer display of
curved surfaces. Tech. rep. DTIC Document, 1974.

69

[May 31, 2017 at 16:05 – classicthesis version 1.0]

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0363d/CJAEEJCF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0363d/CJAEEJCF.html
https://doi.org/10.1145/166117.166131
http://doi.acm.org/10.1145/166117.166131
http://doi.acm.org/10.1145/166117.166131
https://doi.org/10.1145/378456.378516
http://doi.acm.org/10.1145/378456.378516
https://doi.org/10.1145/882262.882348
http://doi.acm.org/10.1145/882262.882348
http://doi.acm.org/10.1145/882262.882348
http://doc.utwente.nl/93962/
http://www.complang.tuwien.ac.at/anton/euroforth/ef10/papers/bowman.pdf
http://www.complang.tuwien.ac.at/anton/euroforth/ef10/papers/bowman.pdf

70 Bibliography

[11] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand.
“A Survey of Visibility for Walkthrough Applications.” In: IEEE
Transactions on Visualization and Computer Graphics 9.3 (July 2003),
pp. 412–431. issn: 1077-2626. doi: 10.1109/TVCG.2003.1207447.
url: http://dx.doi.org/10.1109/TVCG.2003.1207447.

[12] Michael Cox, David Sprague, John Danskin, Rich Ehlers, Brian
Hook, Bill Lorensen, and Gary Tarolli. “Developing High-Performance
Graphics Applications for the PC Platform.” In: Course 29 notes
at SIGGRAPH 98. 1998.

[13] Michael F. Deering and Scott R. Nelson. “Leo: A System for
Cost Effective 3D Shaded Graphics.” In: Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’93. Anaheim, CA: ACM, 1993, pp. 101–108. isbn:
0-89791-601-8. doi: 10.1145/166117.166130. url: http://doi.
acm.org/10.1145/166117.166130.

[14] B. H. J. Dekens, M. J. G. Bekooij, and G. J. M. Smit. “Real-time
multiprocessor architecture for sharing stream processing ac-
celerators.” In: 22nd Reconfigurable Architectures Workshop (RAW
2015), Hyderabad, India. Hyderabad, India: IEEE Computer Soci-
ety, 2015, pp. 81–89.

[15] B. H. J. Dekens, P. Wilmanns, M. J. G. Bekooij, and G. J. M.
Smit. “Low-cost Guaranteed-Throughput dual-ring communi-
cation infrastructure for heterogeneous MPSoCs.” In: 2014 Con-
ference on Design and Architectures for Signal and Image Process-
ing (DASIP), Madrid, Spain. Madrid, Spain: ECSI Media, 2014,
pp. 157–164.

[16] Denali Technical Overview. Tech. rep. Kubota Pacific Computer
Inc., 1993.

[17] Jake Edge. An update on the freedreno graphics driver. 2015. url:
https://lwn.net/Articles/638908/ (visited on 12/16/2016).

[18] Matthew Eldridge. “Designing graphics architectures around
scalability and communication.” PhD thesis. STANFORD UNI-
VERSITY, 2001.

[19] Matthew Eldridge, Homan Igehy, and Pat Hanrahan. “Pomegranate:
A Fully Scalable Graphics Architecture.” In: Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’00. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 2000, pp. 443–454. isbn: 1-58113-208-5.
doi: 10.1145/344779.344981. url: http://dx.doi.org/10.
1145/344779.344981.

[20] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo
Lastra, Nick England, and Lee Westover. “PixelFlow: The Real-
ization.” In: Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS Workshop on Graphics Hardware. HWWS ’97. Los Angeles,

[May 31, 2017 at 16:05 – classicthesis version 1.0]

https://doi.org/10.1109/TVCG.2003.1207447
http://dx.doi.org/10.1109/TVCG.2003.1207447
https://doi.org/10.1145/166117.166130
http://doi.acm.org/10.1145/166117.166130
http://doi.acm.org/10.1145/166117.166130
https://lwn.net/Articles/638908/
https://doi.org/10.1145/344779.344981
http://dx.doi.org/10.1145/344779.344981
http://dx.doi.org/10.1145/344779.344981

Bibliography 71

California, USA: ACM, 1997, pp. 57–68. isbn: 0-89791-961-0.
doi: 10 . 1145 / 258694 . 258714. url: http : / / doi . acm . org /

10.1145/258694.258714.

[21] Freedom 3000 Technical Overview. Tech. rep. Evans & Sutherland
Computer Coorporation, 1992.

[22] Henry Fuchs, Gregory D Abram, and Eric D Grant. “Near real-
time shaded display of rigid objects.” In: ACM SIGGRAPH Com-
puter Graphics. Vol. 17. 3. ACM. 1983, pp. 65–72.

[23] Henry Fuchs, Zvi M Kedem, and Bruce F Naylor. “On visible
surface generation by a priori tree structures.” In: ACM Siggraph
Computer Graphics. Vol. 14. 3. ACM. 1980, pp. 124–133.

[24] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Gold-
feather, David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs,
and Laura Israel. “Pixel-planes 5: A Heterogeneous Multipro-
cessor Graphics System Using Processor-enhanced Memories.”
In: Proceedings of the 16th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’89. New York, NY, USA:
ACM, 1989, pp. 79–88. isbn: 0-89791-312-4. doi: 10.1145/74333.
74341. url: http://doi.acm.org/10.1145/74333.74341.

[25] Om Prakash Gangwal, André Nieuwland, and Paul Lippens.
“A scalable and flexible data synchronization scheme for em-
bedded HW-SW shared-memory systems.” In: System Synthe-
sis, 2001. Proceedings. The 14th International Symposium on. IEEE.
2001, pp. 1–6.

[26] Jonas Gomes, Luiz Velho, and Mario Costa Sousa. Computer
Graphics: Theory and Practice. 1st. Natick, MA, USA: A. K. Peters,
Ltd., 2012. isbn: 1568815808, 9781568815800.

[27] Dan Gordon and Shuhong Chen. “Front-to-back display of BSP
trees.” In: IEEE computer Graphics and Applications 11.5 (1991),
pp. 79–85.

[28] Jon Jordan. Develop 2011: PS Vita is the most developer friendly
hardware Sony has ever made. 2011. url: http://www.pocketgamer.
co.uk/r/Multiformat/PlayStation+Vita/news.asp?c=31682

(visited on 12/15/2016).

[29] Steven Molnar, John Eyles, and John Poulton. “PixelFlow: High-
speed Rendering Using Image Composition.” In: SIGGRAPH
Comput. Graph. 26.2 (July 1992), pp. 231–240. issn: 0097-8930.
doi: 10.1145/142920.134067. url: http://doi.acm.org/10.
1145/142920.134067.

[30] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs.
“A Sorting Classification of Parallel Rendering.” In: IEEE Com-
put. Graph. Appl. 14.4 (July 1994), pp. 23–32. issn: 0272-1716.
doi: 10.1109/38.291528. url: http://dx.doi.org/10.1109/38.
291528.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

https://doi.org/10.1145/258694.258714
http://doi.acm.org/10.1145/258694.258714
http://doi.acm.org/10.1145/258694.258714
https://doi.org/10.1145/74333.74341
https://doi.org/10.1145/74333.74341
http://doi.acm.org/10.1145/74333.74341
http://www.pocketgamer.co.uk/r/Multiformat/PlayStation+Vita/news.asp?c=31682
http://www.pocketgamer.co.uk/r/Multiformat/PlayStation+Vita/news.asp?c=31682
https://doi.org/10.1145/142920.134067
http://doi.acm.org/10.1145/142920.134067
http://doi.acm.org/10.1145/142920.134067
https://doi.org/10.1109/38.291528
http://dx.doi.org/10.1109/38.291528
http://dx.doi.org/10.1109/38.291528

72 Bibliography

[31] Carl Mueller. “The Sort-first Rendering Architecture for High-
performance Graphics.” In: Proceedings of the 1995 Symposium
on Interactive 3D Graphics. I3D ’95. Monterey, California, USA:
ACM, 1995, 75–ff. isbn: 0-89791-736-7. doi: 10.1145/199404.
199417. url: http://doi.acm.org/10.1145/199404.199417.

[32] Marc Olano and Trey Greer. “Triangle Scan Conversion Using
2D Homogeneous Coordinates.” In: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware. HWWS
’97. Los Angeles, California, USA: ACM, 1997, pp. 89–95. isbn:
0-89791-961-0. doi: 10.1145/258694.258723. url: http://doi.
acm.org/10.1145/258694.258723.

[33] Charles Papon. SpinalHDL. url: https://github.com/SpinalHDL/
SpinalHDL (visited on 04/11/2017).

[34] Stephanie Pappas. Why Does Virtual Reality Make Some People
Sick? 2016. url: http://www.livescience.com/54478-why-vr-
makes-you-sick.html (visited on 11/07/2016).

[35] Juan Pineda. “A Parallel Algorithm for Polygon Rasterization.”
In: Proceedings of the 15th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’88. New York, NY, USA:
ACM, 1988, pp. 17–20. isbn: 0-89791-275-6. doi: 10.1145/54852.
378457. url: http://doi.acm.org/10.1145/54852.378457.

[36] Qualcomm. The Rise of Mobile Gaming on Android - Qualcomm
Snapdragon Technology Leadership. Tech. rep. 2014. url: https:
//developer.qualcomm.com/qfile/27978/rise-of-mobile-

gaming.pdf.

[37] David F. Rogers. Procedural Elements for Computer Graphics (2Nd
Ed.) New York, NY, USA: McGraw-Hill, Inc., 1998. isbn: 0-07-
053548-5.

[38] Marcus Roth and Dirk Reiners. “Sorted Pipeline Image Com-
position.” In: Eurographics Symposium on Parallel Graphics and
Visualization. Ed. by Alan Heirich, Bruno Raffin, and Luis Paulo
dos Santos. The Eurographics Association, 2006. isbn: 3-905673-
40-1. doi: 10.2312/EGPGV/EGPGV06/119-126.

[39] Jochem Hendrik Rutgers. “Programming models for many-core
architectures: a co-design approach.” PhD thesis. Universiteit
Twente, 2014.

[40] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li,
and Jaswinder Pal Singh. “Load Balancing for Multi-projector
Rendering Systems.” In: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS Workshop on Graphics Hardware. HWWS ’99. Los
Angeles, California, USA: ACM, 1999, pp. 107–116. isbn: 1-58113-
170-4. doi: 10.1145/311534.311584. url: http://doi.acm.org/
10.1145/311534.311584.

[May 31, 2017 at 16:05 – classicthesis version 1.0]

https://doi.org/10.1145/199404.199417
https://doi.org/10.1145/199404.199417
http://doi.acm.org/10.1145/199404.199417
https://doi.org/10.1145/258694.258723
http://doi.acm.org/10.1145/258694.258723
http://doi.acm.org/10.1145/258694.258723
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
http://www.livescience.com/54478-why-vr-makes-you-sick.html
http://www.livescience.com/54478-why-vr-makes-you-sick.html
https://doi.org/10.1145/54852.378457
https://doi.org/10.1145/54852.378457
http://doi.acm.org/10.1145/54852.378457
https://developer.qualcomm.com/qfile/27978/rise-of-mobile-gaming.pdf
https://developer.qualcomm.com/qfile/27978/rise-of-mobile-gaming.pdf
https://developer.qualcomm.com/qfile/27978/rise-of-mobile-gaming.pdf
https://doi.org/10.2312/EGPGV/EGPGV06/119-126
https://doi.org/10.1145/311534.311584
http://doi.acm.org/10.1145/311534.311584
http://doi.acm.org/10.1145/311534.311584

Bibliography 73

[41] Hanan Samet. The design and analysis of spatial data structures.
Vol. 199. Addison-Wesley Reading, MA, 1990.

[42] Ryan Smith. Hidden Secrets: Investigation Shows That NVIDIA
GPUs Implement Tile Based Rasterization for Greater Efficiency. 2016.
url: http://www.anandtech.com/show/10536/nvidia-maxwell-
tile-rasterization-analysis (visited on 12/15/2016).

[43] Rys Sommefeldt. A look at the PowerVR graphics architecture: Tile-
based rendering. 2015. url: https://imgtec.com/blog/a-look-
at-the-powervr-graphics-architecture-tile-based-rendering/

(visited on 12/15/2016).

[44] Marcel Steine, Marco Bekooij, and Maarten Wiggers. “A Priority-
Based Budget Scheduler with Conservative Dataflow Model.”
In: Proceedings of the 12th Euromicro Conference on Digital System
Design, Architectures, Methods and Tools, DSD ’09. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2009, pp. 37–44. url:
http://doc.utwente.nl/69797/.

[45] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker.
“A Characterization of Ten Hidden-Surface Algorithms.” In: ACM
Comput. Surv. 6.1 (Mar. 1974), pp. 1–55. issn: 0360-0300. doi:
10.1145/356625.356626. url: http://doi.acm.org/10.1145/
356625.356626.

[46] D. van der Veer. Design of a GMSK Receiver Prototype on a Het-
erogeneous Real-time Multiprocessor Platform. 2016. url: http://
essay.utwente.nl/69320/.

[47] Matthew White. Sega Dreamcast Hardware Analysis. 2014. url:
https://thesolidstategamer.wordpress.com/2014/07/26/

sega-dreamcast-hardware-analysis/ (visited on 12/15/2016).

[48] Ramchan Woo, Sungdae Choi, Ju-Ho Sohn, Seong-Jun Song,
and Hoi-Jun Yoo. “A low power 3D rendering engine with two
texture units and 29Mb embedded DRAM for 3G multimedia
terminals.” In: Solid-State Circuits Conference, 2003. ESSCIRC ’03.
Proceedings of the 29th European. 2003, pp. 53–56. doi: 10.1109/
ESSCIRC.2003.1257070.

[49] Xilinx. Floating-Point Operator. url: https://www.xilinx.com/
products/intellectual-property/floating_pt.html (visited
on 11/02/2016).

[May 31, 2017 at 16:05 – classicthesis version 1.0]

http://www.anandtech.com/show/10536/nvidia-maxwell-tile-rasterization-analysis
http://www.anandtech.com/show/10536/nvidia-maxwell-tile-rasterization-analysis
https://imgtec.com/blog/a-look-at-the-powervr-graphics-architecture-tile-based-rendering/
https://imgtec.com/blog/a-look-at-the-powervr-graphics-architecture-tile-based-rendering/
http://doc.utwente.nl/69797/
https://doi.org/10.1145/356625.356626
http://doi.acm.org/10.1145/356625.356626
http://doi.acm.org/10.1145/356625.356626
http://essay.utwente.nl/69320/
http://essay.utwente.nl/69320/
https://thesolidstategamer.wordpress.com/2014/07/26/sega-dreamcast-hardware-analysis/
https://thesolidstategamer.wordpress.com/2014/07/26/sega-dreamcast-hardware-analysis/
https://doi.org/10.1109/ESSCIRC.2003.1257070
https://doi.org/10.1109/ESSCIRC.2003.1257070
https://www.xilinx.com/products/intellectual-property/floating_pt.html
https://www.xilinx.com/products/intellectual-property/floating_pt.html

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem Description
	1.3 Contributions
	1.4 Thesis Outline

	2 The Graphics Rendering Pipeline
	2.1 The Graphics Rendering Pipeline
	2.2 Architecture
	2.3 Application
	2.4 Geometry
	2.4.1 Model & View Transform
	2.4.2 Vertex Shading
	2.4.3 Projection
	2.4.4 Culling and Clipping
	2.4.5 Screen Mapping

	2.5 Rasterizer
	2.5.1 Triangle Setup
	2.5.2 Triangle Traversal
	2.5.3 Pixel Shading
	2.5.4 Merging

	2.6 Graphics Architectures
	2.6.1 Sort-first
	2.6.2 Sort-middle
	2.6.3 Sort-last fragment
	2.6.4 Sort-last image

	2.7 Architecture Choice and Rationale
	2.7.1 Traversal Method
	2.7.2 Architecture

	2.8 Designing A Real-Time Graphics Architecture With Reproducible Results

	3 System Overview
	3.1 The Starburst MPSoC
	3.1.1 Processor Tiles
	3.1.2 Accelerator Tiles
	3.1.3 Gateway Tiles
	3.1.4 Dual-Ring Interconnect

	3.2 FPGA Platform
	3.3 Reference Architecture
	3.4 Rasterization Hardware
	3.4.1 Proposed Architecture
	3.4.2 Geometry Stage
	3.4.3 Sorting Stage
	3.4.4 Rasterizer Stage

	4 Implementation
	4.1 Reference System
	4.2 Accelerators
	4.2.1 Geometry Accelerator
	4.2.2 Tile Rasterizer Accelerator

	4.3 Hardware Accelerated System
	4.4 Reproducible Architecture

	5 Results & Evaluation
	5.1 Performance Evaluation
	5.1.1 Reference System
	5.1.2 Hardware Accelerated System

	5.2 Hardware Costs
	5.2.1 Geometry Accelerator
	5.2.2 Rasterizer Accelerator

	6 Conclusion
	6.1 Future Work
	6.2 Reflection
	Acronyms
	List of Figures
	List of Tables

	Bibliography

