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Abstract

Nowadays, more and more people start to live in cities. This change involves the
apparition of new problems that could be solved using ICTs, which would lead to
”Smart Cities”. In said cities, all kinds of data is gathered thanks to the sensors all
around them, and different applications can be developed, such as the detection of
crowded places. The detection of these places can be used, for example, for the
prevention of human stampedes, for traffic redirection or for reporting the status of a
place remotely. The motivation for this research of the detection of crowded places
is caused by the small amount of literature that specifies what was considered a
crowded place and that most of the existing methods for their detection distinguished
between ”crowded” and ”not crowded” areas arbitrarily.

In this thesis, a method for the detection of crowded places calculating the threshold
which distinguishes the two mentioned states is presented. For this end, proce-
dures for inferring the number of people, the maximum capacity of an area, and the
calculation of the crowdedness threshold using mobility data are described. In con-
junction with the description of the methods, their validation in three different areas
is also presented.

The results of the validation show that the use of a linear regression model for in-
ferring the number of people in a certain area, is an appropriate approach, as the
obtained R-Squared value was acceptable, but its performance could be improved
by gathering more ground-truth data for the training phase. Regarding the algo-
rithm for the calculation of the maximum capacity, a possible maximum capacity
was calculated for each of the analysed areas, but it was inferior to the considered
as ground-truth. Finally, thresholds for detecting crowded situations at each of the
areas were calculated.
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Chapter 1

Introduction

Nowadays more and more people are starting to live in the cities. In fact, their
population growth rate it is so high that it has been anticipated that by 2050, the 75%
of the world population will live in cities [1]. This change involves some problems, like
difficulty of waste management, scarcity of resources, air pollution, human health
concerns, traffic congestions, optimization of energy and water usage and savings,
employment generation, etc.

In a similar way to cities, the ICTs (Information and Communication technologies)
have had great developments. Some of the most remarkable ones would be: smart-
phones, sensors, cloud computing, the semantic web and the IoT (Internet of Things).
Due to the improvement of these technologies, there have been several attempts to
resolve the aforementioned problems using them.

The incorporation of ICTs to improve and resolve the cities’ services, management
problems, and other issues, leads us to the ”smart cities”. A Smart city denotes
an interconnected and intelligent city [2]. In order to make the interconnection pos-
sible, the development of broadband infrastructure combining several technologies
like cable, optical fibre and wireless networks would be necessary, offering high con-
nectivity and bandwidth to the citizens and organization located in the city. It would
be also necessary to enrich the physical space and infrastructures with embedded
systems, smart devices, sensors and actuators, to be capable of obtaining real-time
data and offering real-time services. To be capable of having an ”intelligent” city,
the creation of applications enabling data collection and processing, would be also
necessary [3].

In a Smart city, thanks to data gathering devices and actuators, a large amount of
different applications could be developed. Some of these applications could be: the
detection and identification of different Points of Interest, targeted advertising, the
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2 CHAPTER 1. INTRODUCTION

optimization of public transport, traffic flow and parking systems, the reduction of
CO2 emissions, for example.

Also, another possible application is to detect if a place is crowded. This system
could reveal events in different areas such as parades, festivals or street shows,
making possible the prevention of stampedes like the ones occurred in 2014 at
Shanghai (China) on New Year’s Eve [4] and at Duisburg (Germany) in 2010 [5].
Additionally, this could be implemented to focus on transport flows creating systems
that detect traffic jams, accidents or population peaks in public transport such as
buses, underground, etc., which could be used to find a pattern and optimize the
number and frequency of said means of transport, or to send alerts and, in certain
moments, increase their numbers or frequency. In a similar way, the detection of
crowded areas could be used to inform the people of the condition of a place re-
motely, for example, if a person wishes to study, he could check the status of his
usual library to evaluate if there may be space for him, and after checking it, the
person would be able to consider if the travel to the library is worth it or not.

1.1 Motivation

From the different applications mentioned until now, the detection of crowded ar-
eas has been chosen as the research topic for this thesis. This decision has been
motivated by the fact that there are different researches focused on the creation
of systems thought to perform in crowded areas, but they do not specify what is
considered ”crowded” [6] [7] [8].

Due to this fact, an investigation of the existent literature about the detection of
crowded spaces was carried out. The findings were that it was limited, and in the
existing researches, the threshold to distinguish ”crowded” and ”not crowded” situa-
tions were arbitrarily established by the researchers. In consequence, in this project
it is desired the creation of a method that detects if a place is crowded or not, calcu-
lating the threshold to split those situations using mobility data.

1.2 Challenges

In the chosen research field, there are different challenges that must be overcome.
First of all, the conversion of the gathered mobility data to numbers that represent
people. This matter can be an issue as, depending on the analysed area, the people
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in it may use several devices capable of generating that mobility data, or maybe
none, which would discard the possibility of making the equivalence of one data
source, one person.

The second challenge to be faced is calculating the maximum capacity of the anal-
ysed area, as the crowdedness of it will be affected by the number of people that
it is capable of containing. This can be a very difficult matter as this capacity may
change depending on the behaviour of the people, which can be hard to predict due
to its high variability.

Finally, the last problem that is faced is the creation of a threshold that would divide
the ”not crowded” and ”crowded” states. The concept of crowded may vary depend-
ing on the person and space, however, as each person’s perception of ”crowded”
cannot be known, the creation of this threshold should be based on what, in gen-
eral, people perceive as ”crowded”. In addition, as it is not desired to depend on
people’s reports about the crowdedness of the analysed area, but to calculate the
limit using mobility data, the general perception of ”crowded” should be inferred by
the observed behaviour of the people that access it.

1.3 Research Questions

From the explanation in the motivation, the main research question is formulated:

• Can we detect if a place is crowded using the mobility data of the devices in
the area?

This question implies other three secondary questions, as was implied in the chal-
lenges:

• How can we determine the number of people in an area?

• Can we calculate the maximum capacity of an area using the mobility data of
the devices in it?

• How can we determine if a place is crowded or not using the mobility data of
the devices in it?
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1.4 Contributions

The main contributions of this research are: the design of a method for the calcu-
lation of a limit to distinguish if a place is crowded or not, not based on arbitrary
thresholds but instead on the observed behaviour of the devices. In a similar way, a
method is proposed to calculate the maximum capacity of an area considering the
existence of data of devices that, even if they are detected, should be discarded as
they may not be using the analysed zone. Finally, a method for the conversion of the
detected data to people is explained.

1.5 Outline

The following chapter will provide background information on the mobility data and
the different ways of collecting it, along with the explanation of the related investi-
gations that try to answer similar research questions to the ones presented in this
project. Chapter 3 describes the proposed procedures for answering the research
questions. Chapter 4 shows the validation process of the proposed procedures in a
testbed and the obtained results. Finally, in Chapter 5, a conclusion of this project
is drawn.



Chapter 2

Background and Related work

The first section of this chapter will talk about the mobility data and the different ways
to collect its traces. Then, the next section will introduce different researches that
use this data to answer the proposed questions in this project.

2.1 Background

Mobility data is described as a set of position records that make possible the cal-
culation of one object’s trajectory, if they are chronologically ordered. These traces
contain information as basic as the object identifier, the timestamp of the detection
and the position of the object when it was detected [9]. There are generally three
ways to collect the mobility traces: monitoring locations, monitoring communications
and monitoring contacts [10].

2.1.1 Monitoring location

In this category, a wide range of technologies is included. The most widely used
technology for outdoor localization systems is the Global Positioning System (GPS),
which is based on satellites and provides location accuracy within a few meters.
Since this technology requires a line of sight between the monitored device and the
satellites, its use is not possible in areas in which there is a high shadowing effect,
or indoor areas.

For those cases in which the GPS cannot be used, the location of devices can be
determined using the WiFi technology [11]. This approach has been popular in the
last few years due to its low deployment cost, potential for reasonable accuracy and
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6 CHAPTER 2. BACKGROUND AND RELATED WORK

readiness to be applied to mobile devices. The existing WiFi-based solutions usually
belong to one of two categories: fingerprint based solutions [12] [13] [14], or model-
based approaches [15] [16] [17]. The first solution fingerprints different locations
in the area of interest and then searches for the best matching position. On the
other hand, the model-based approaches train a signal propagation model using
training/calibration data and then trilateration for localization of the objects. These
methods have shown to be promising as, under lab conditions, they have achieved
below 10 meters’ accuracy. Nevertheless, large-scale accurate indoor localization
systems have to be developed, as in a real-world context, the localization accuracy
of existing approaches in large spaces such as shopping malls and airports can still
be up to 20-30 meters.

Finally, if a sub-inch distance precision is required, the RFID technology can be
used, in which systems are formed by RFID tags and readers. A disadvantage
exists, however, where for being able to detect an object with an RFID tag, the reader
has to be extremely close to it. Nevertheless, it is not necessary to be a line of sight
between them. Due to its characteristics, the RFID technology has been used in
cards for controlling access to different areas and for making electronic payments
possible. It has also been used for tracking assets, like robots, in indoor spaces [18].

2.1.2 Monitoring Communication

Another alternative to obtain mobility traces is to use the communication systems,
and to monitor the communication of the traced devices, as is the case of this project.
The position of a device can be calculated by obtaining the strength of the signal
between the base station/access (BS/AP) point and itself. A second method would
be checking the connectivity events of the device, since in GSM or WLAN, when a
device connects to a cell/access point, it is assumed that it is close to the BS/AP.

This approach is not very precise, as the location data only provides information on
whether the mobile device is within the transmission range of some BS/AP. Never-
theless, it can be used indoors as an inexpensive way to locate a node in a specific
area (for example, a room) or to validate assumptions of microscopic mobility mod-
els. In addition, the accuracy of approximate data can be improved by applying
methods of data fusion for tracking [19]. The goal of those methods is to associate,
correlate and combine information from a single or multiple sensors to achieve pre-
cise estimations.
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2.1.3 Monitoring contacts

This approach obtains mobility traces using mobile devices to sniff other mobile de-
vices around them. The traces obtained by this method are called ”contact traces”,
since the detected devices are considered ”contacts” and they can be traced using
Bluetooth or WLAN in a infrastructureless mode. Also, as the devices may be mo-
bile, the obtained traces cannot be mapped on absolute locations. Nevertheless,
for some type of networks, such as opportunistic networks, contacts between the
mobile nodes may be more interesting than the localization of the nodes. Contact
traces can be used to examine movement and social characteristics which can be
used to develop new models and validate existing ones [20].

2.2 Related work

For the development of this project, it was desired to be able to infer the number of
people in an area, to know the maximum capacity of it, and to calculate a threshold
which would determine if it was crowded or not. In the following sections, researches
that try to answer those matters will be explained, followed by a review of their short-
comings.

2.2.1 Detecting people

For the detection of people in a place, it is quite popular to use algorithms based
on image or video processing. Said algorithms are based on the recognition of
objects’ parts that can represent a person (e.g.: faces [21], heads [22] or heads and
shoulders [23]–[25]). Nevertheless, these approaches can have several downsides:
it is necessary to install cameras for monitoring the desired areas which can have
a high cost, and it may be necessary to have an uncomplicated background, etc.
Low-cost alternative methods for inferring the number of people in a place can be
used as alternative.

For instance, [26] measures the occupancy of a room using a PIR sensor. In their
research, a single passive infra-red (PIR) sensor was used, installed in a room which
would measure the motion patterns detected at different time windows. Then, the
information was used to create a machine learning model to estimate the number of
people in the room.

A different method was used by Zhou et al. [27]. In this investigation, the researchers
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tried to characterize the educational behaviour of the students of a university mea-
suring parameters such as the attendance ratio or the students’ punctuality to the
lectures. They used the WLAN of the university to capture the mobility data of the
students’ mobile devices. However, in order to complete such objectives, they had
to solve how to link the number of devices detected in one place to the number of
actual people in it. It was not possible to assume that one device corresponded to
one person as an account could be used in different devices at the same time. In
the research, an app was developed which helped its users to manage their network
account on their devices, and also automatically log them into the WLAN. Due to
this, once a device was logged in, its MAC address was associated with the used
account on that device and the number of logged accounts was used as the number
of people in the area.

In addition, in [28] the researchers also used people’s smartphones to detect the
number of people in an area. However, this approach was focused on the use of the
microphones installed in them. For reaching their objective, they use unsupervised
learning techniques that allow them to infer the number of people in a conversation
or at its surroundings (but not their identity), having all the computation in the smart-
phone itself. This approach was tested in different environments: quiet (e.g.: homes,
offices) and loud (e.g.: restaurants, shopping malls or public squares). As results,
the difference between the estimated number of people in the quiet environments
and the actual number of people is, on average, slightly over 1, while this error was
not larger than 2 in the noisy outdoor environments.

2.2.2 Maximum capacity

The detection of the maximum capacity of an area is, for the best of our knowledge,
a not a very investigated area. Nevertheless, in [1], the researchers tried to calculate
the moments in which a train station will be crowded. To do so, they collected the
number of times that the RFID cards which granted access to the train station were
used and the maximum of readings collected in a time window, arbitrarily specified
by the researches, as the maximum capacity of the station.

In a similar way, Google’s search engine gives a prediction of the crowdedness of a
business in comparison with the maximum number of devices that were located on
that place. In this case, Google counts the number of devices which have the option
”My Location” from Google Maps activated in each of the hours of a day and this
maximum is calculated using the data of the past two weeks.
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2.2.3 Crowd detection

In the matter of crowd detection, there are two approaches: on one hand is the ap-
proach in which an area (halls, concerts, races, parks, etc.) is selected and, inside it,
spots which are considered crowded or not, are identified. In this type of researches,
the crowdedness of a location is calculated by measuring the ”crowd-density” of
them [29], [30]. The ”crowd-density” is the number of people in the analysed scene
or the number of people per square meter [31]. For the first case, in [32], the number
of people to determine if a place is crowded is arbitrarily established. For the sec-
ond case, however, it seems to usually be considered that the spot is crowded when
there are 2-3 people per square meter, and beyond that limit, it is considered dan-
gerous for the people, as the possibility of accidents on those levels are high [33],
[34]. Nevertheless, in [4], instead of using a fixed number for the analysed areas,
an algorithm was implemented to calculate the threshold from which a square meter
was considered crowded. The number of people per square meter was collected
enabling Baidu Map’s positioning function in people’s smartphones from the anal-
ysed places (stadiums or tourist places). On each of the analysed days, the highest
amount of people per square meter was chosen and all those values were consid-
ered to follow a normal logarithmic distribution. Due to this fact, those numbers are
transformed to logarithmic values and their mean (µ) and variance (σ2) are calcu-
lated. Finally, those values are used to calculate the threshold using the following
equation:

ω = µ̂peak + 3σ̂peak (2.1)

On the other hand, there are other researches that consider, in a more general way,
if a place is crowded or if it is not, instead of labelling spots inside them. In these
approaches, the criteria to determine whether a zone is ”crowded”, is different in
each study. For instance, in the mentioned [1] in which the objective was to estimate
whether a train station was crowded or not, to create the threshold that distinguishes
those states, the considered maximum capacity of the station was multiplied by λ.
This variable λ was manually given different values (0.5, 0.6, and 0.8) in order to
consider that the place was crowded depending on the peoples concept of ”crowd”.

In a similar way, in [35] it was tried to estimate the congestion in train cars using the
RSSI value of Bluetooth devices. In this case, it was known that each train wagon
had a total of 40, 44 or 54 seats (depending on the evaluated train) and it was
considered that when 60 people were detected in the same wagon, it was crowded.

There is another approach in which instead of arbitrarily determining a threshold for
determining the crowdedness of an area, the people could report their opinion on
the crowdedness. This was done using a mobile app in which the users reported the
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crowdedness of their public transport by selecting one level out of 5 of crowdedness
[36].

2.2.4 Short-comings of the presented methods

As it has been shown, the existing solutions in the literature for answering this
project’s research questions have different limitations.

In the case of people detection, if a solution based on image or video processing
is used, the costs will be high and there may be problems with the positioning of
the cameras among others. Nonetheless, the low cost alternatives also present
problems such as not being able to properly infer the number of people as they
do not manifest themselves (not using the expected WLAN in [26], being static or
covered in [27] or remaining silent in the case of [28]).

Regarding the maximum capacity calculation, the presented method presents the
problem of not taking into consideration devices that should be filtered out. Due
to this fact, in scenarios in which devices that are passing close to the analysed
area will be detected, generating faulty results. Also, the obtained maximum it is not
confirmed to be the real maximum of the area or simply the highest record of people
found in it.

Finally, the methods for crowd detection have different limitations, depending on the
type of of the approach used. In the case of crowd-density approaches, they require
precise positioning systems to be able to measure the existing density in a small
area. This could be a problem in indoor scenarios since there are no widespread
accurate positioning solutions. On the other hand, in the other approach, the thresh-
old to determine whether a place is crowded or not, is arbitrarily established.



Chapter 3

Methodology

In this chapter, the general methodology used to complete this project is defined.
Firstly, the necessary resources will be described, continuing with a general expla-
nation of the methodology and concluding with the detailed approach which plans to
answer the Research Questions.

3.1 Data overview

In order to investigate the crowdedness of an area, mobility data generated by the
devices in the zone is used. Each detection is a tuple (a, s, ts), being a the hashed
MAC address of the detected device, s being the id of the sensor that detected a,
and ts being the timestamp of the detection. In addition, to validate the proposed
approach, ground truth of the number of people that were in the different analysed
areas is also needed. It consists in counting the number of people in each zone
during different moments of one day, during several days.

3.2 General procedure

As mentioned in Chapter 1, in this thesis, the main research question to be solved
is whether a crowded place can be detected using mobility data gathered from the
devices in that area. Hence, three matters were necessary to be accomplished:

• The inference of the number of people in the area using the detected devices
in it.

• The calculation of the maximum capacity of the analysed area.

11
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• The estimation of the threshold to differentiate the ”crowded” and ”not crowded”
states.

This tasks are solved in the following order:

Figure 3.1: General methodology

3.2.1 People inference

In order to know the status of an area during each minute of a day, it is necessary
to know the devices that arrive, leave and are currently inside each of the analysed
areas. Hence, the first step to be made is the classification of the readings in these
groups:

1. New addresses: this group contains the readings from the devices that have
been considered new in the area during any minute of one day.

2. Gone addresses: this group contains the last readings from the devices that
have left the area during any minute of one day.

3. Detected addresses: it contains the readings from the devices that are inside
the selected area during any minute of one day.

Once the number of the devices in each area, during any moment of a day, is known,
it is possible to transform the obtained number of MAC addresses into the number
of people in the analysed zone (Figure 3.2).

Figure 3.2: People inference methodology

This conversion would be possible using the number of MACs detected in an area
and the gathered ground truth of the actual number of people in the area as training
data for a regression model.
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3.2.2 Maximum capacity calculation

The following task would be the calculation of the maximum capacity of an area. For
this end, different information is needed (Figure 3.3).

Figure 3.3: General methodology for the calculation of the maximum capacity of an
area

First, it is necessary to distinguish between the devices that stay in each of the
areas for a small amount of time, and the devices that stay in them for a long period
of time at them (”short stayers” and ”long stayers”). This distinction is necessary,
as when an area starts to be crowded, there will be people that will not find a spot
appropriate for them and will therefore leave the zone quickly, or people passing by
could be detected by the sensors, etc., thus, they are not using the available space
but they are detected. On the other hand, there will be people that, even if the area
is crowded, will find a spot for themselves and they will be truly using the facility, for
which they will stay a long time. Hence, the highest peak of the long stayers in an
area would be taken as the possible maximum capacity of it. It is called ”possible
maximum capacity” as it is not known if it is the actual maximum capacity or the
highest number recorded until that moment.

Once the classification of the devices is done, the detection of the rejection points is
necessary to confirm that the possible maximum capacity is actually the maximum
capacity and to detect the crowded moments. The ”rejection points” would be those
moments in which the number of new short stayers in proportion to the new long
stayers is unusually large, meaning that the examined area is crowded or even full.
The ”new short stayers” would be those which, from the new devices that entered
the area, belong to the short stayers group. Similarly, the ”new long stayers” would



14 CHAPTER 3. METHODOLOGY

be those new arrived devices that belong to the ”long stayers” group.

With the rejection points it is possible to check if the possible maximum is, indeed,
the real maximum capacity of an area. For instance, if a possible maximum is found,
it could have rejection point, or it may not have one. In case of having a rejection
point, as all the seats of the zone will not be occupied, there will be people that will
enter and stay in the area making the number of new long stayers at that moment
greater than zero. On the contrary, if the maximum capacity is reached, a rejection
point should happen, as, if new people arrive, they will not find a place to sit and they
will leave. Due to this fact, in this rejection point there will be zero new long stayers.

3.2.3 Crowdedness threshold estimation

Finally, the crowdedness threshold would be estimated from the rejection points.
In order to get the threshold, the number of long stayers during those moments in
one day will be retrieved and their mean will be calculated, obtaining as a result
the threshold for that day. To get a general threshold, the means from all the days
will be averaged, obtaining the number of long stayers from which the area is con-
sidered generally crowded (Figure 3.4). The reason for using a general threshold
is that there may be moments on one day in which there may not be detections
and, as consequence, the rejection moment cannot be detected, even if the place is
crowded.

Figure 3.4: General methodology for crowdedness threshold of an area
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3.3 Approach

Now that the general approach has been explained, the detailed explanation of the
methodology will be carried out. First, the process for the division of the addresses
into groups will be explained. Then, the calculation of the criteria for the distinction
of the Short and Long stayers is described, followed by the calculation of the Rejec-
tion points. Finally, the processes for the maximum capacity and the crowdedness
threshold are defined.

3.3.1 Group division

As it was previously mentioned, it is necessary to know the addresses that enter,
leave and are inside one area in order to know its status during any minute of one
day. However, it is necessary to distinguish between the readings from the devices
that are new in the area or that were there,then left and came back, and those
readings from devices that were sensed before, did not leave the area, and were
detected again. To make this possible, the threshold to consider that a device left
the area or that it is still in it, even if it was not sensed, must be obtained. It will be
calculated for each day to keep it updated on each analysed day. This time limit is
necessary as all the devices in the area are not detected at the same moments and,
the interval of times in which one device is noticed is not constant. Finally, the read-
ings should be classified into each of the groups mentioned before (New addresses,
Gone addresses and Detected addresses).

3.3.1.1 Devices’ time limit

As it was just mentioned, since the devices in the analysed area are not detected at
the same times and the intervals in which they are noticed vary, it is necessary to
establish a ”Time limit”. It determines when a reading comes from a device that was
not in the area and just entered it and when a reading belongs to a device that was
in it before and it is sensed again. If the threshold is not used and, instead, the first
reading of a device is marked as its arrival and the last reading as its departure, it
could have happened that the device leaves the area and comes back several times
and it would not be taken into account. Using this margin would make detecting
the aforementioned entries and exit possible, and it would also allow to ignore those
moments in which the device was not sensed due to interferences or because it was
not emitting a signal at that moment.
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As every device is sensed at different times and at different time intervals, the mean
of those times is used. In order to do so, first all the different MAC addresses de-
tected during the day will be paired with their different timestamps. Then, the dif-
ference between the timestamps of each MAC will be calculated and the obtained
numbers used to obtain the average time that each MAC is sensed. Finally, those
average times are used to obtain one final mean which represents the average time
that passes before a device is sensed again. Also, those addresses which only have
1 reading are not taken into account, as those are devices passing by and they will
only lower the mean.

This last calculated value is used as the threshold for the day to distinguish between
the devices that have just entered the area, the ones that have left the area, and
those that were already in the area.

The following pseudo-code shows the described algorithm:

Algorithm 1 Calculation of one day’s time limit

Input: all the readings from the database

Output: time limit to determine if an address left the area.

address_timestamp_list = []

address_interval_mean_list = []

address_timestamp_list = pair_addresses_timestamps(reading_list) #gene-

#rates a list of dictionaries which relates each MAC with a list of

#its timestamps

address_interval_mean_list =

make_macs_timestamp_interval_means(addresses_list) #generates a

#list of dictionaries which relates each MAC with the average time that

#has to pass to be detected

final_mean_seconds =

make_final_mean_from_means(address_interval_mean_list)

final_mean_minutes = round_to_closest_int (final_mean_seconds/60)

return final_mean_minutes
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3.3.1.2 Group classification process

Once the time limit is calculated, we proceed to classify the gathered readings
of an area to know the number of devices that arrive (”New addresses”), leave
(”Gone addresses”) and are inside it (”Detected addresses”), during each minute of
a day. In this process, there are a total of 6 groups: ”New addresses”, ”Gone addresses”,
”Detected addresses”, ”Ordered readings”, ”Addresses in this minute”,
”Addresses in previous minutes”. The important groups are the first three which
will have a total of 1440 positions (1 position for every minute in 1 day). The
other 3 groups will be used as support to obtain the final classification and the ”Or-
dered readings” will also have 1440 positions, while the remaining groups’ longitude
is not limited.

Now the classification is explained in detail. It is done in 4 steps:

• Step 0: all the readings extracted from one day from the database are ordered
by their timestamp and saved on the ”Ordered readings” list. From the times-
tamps, the hour and the minute of the analysed reading will be retrieved and it
will be stored in its corresponding position (e.g.: if the time is 1:05, the reading
will be stored on the 64th position). Each position will contain a list of readings.

• Step 1: the ”Ordered readings” list is traversed. As mentioned previously, at
each position, there is a list of readings of the detected devices during each
minute. When one minute’s reading is processed, its address is searched in
the group of
Addresses in previous minutes”. If it is in the ”Addresses in previous minutes”
group, the reading of that address in that group is deleted, in order to not keep
addresses with old timestamps.

Afterwards, the addresses of the readings are searched in the
”Addresses in this minute” group. Those readings whose address were not in
the group are added, otherwise, they are not. This is done in order to prevent
an address from being counted twice in the same minute.

Those readings whose addresses were not in previous minutes nor in this
minute, are the ones that belong to the devices that just entered the area. Due
to it, they will be added to the ”New addresses” group in their correspondent
position, which is marked again by their timestamp.

• Step 2: Once all the readings of one minute of the day are processed, the
readings of the ”Addresses in previous minutes” are checked to detect those
which have ”timed out”. A reading is considered to have ”timed out” when the
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difference between its timestamp and the time of the day that was processed
is equal or greater to the time limit calculated for this day (Subsection 3.3.1.1).

If a reading has timed out, the device that created the reading is consid-
ered out of the area. Thus, this reading is included in ”Gone addresses”,
once again in the position that correspond to the time of the day given by
its timestamp. Those readings that did not time out are considered in the
area even if they were not sensed. Consequently, they are added to the ”Ad-
dresses in this minute” vector.

Finally, before processing the next minute, the readings in the
”Addresses in this minute” are added to the ”Detected addresses” matrix in
the positions given by the minute that was just analysed. Then, the readings
in ”Addresses in this minute” are used to overwrite the
”Addresses in previous minutes” list and then the group is emptied, as the
processed minute is changed and new addresses are going to be processed.

• Step 3: the previous 2 steps are done for all the minutes of one day and once
all these minutes are processed, a correction must be made. As some devices
are considered to be in the area even if they were not sensed, by the time
a time out of a reading is detected, its address will have been added to ”De-
tected addresses” group several times. In consequence, the ”Gone addresses”
list is traversed, and at the moment that an address is found, the positions
that correspond to the next minute until the time limit are taken from the ”De-
tected addresses” matrix. From those positions the readings that contain the
address found at ”Gone address” will be deleted.

The classification process can be seen on the Algorithm 2. In order to have a better
comprehension of this algorithm, an example has been added to Appendix A.

3.3.2 Short and long stayers’ distinction criteria

In order to obtain the maximum capacity, it would be necessary to distinguish the
devices that represent people that were detected but are not using the analysed
space (people passing by, people that went there to retrieve something, etc.), from
the devices of those people that are using the area. These two different groups
will be referred as ”short stayers” and ”long stayers”. The groups can be used for
detecting the rejection points and the possible maximum capacity. These can be
made obtaining the ratio of the number of short stayers per long stayers in each
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Algorithm 2 Group classification process

Input: all the readings from the database, time limit

Output: new addresses, gone addresses, detected addresses

new_addresses, gone_addresses, detected_addresses = []

ordered_readings, addresses_in_this_minute=[]

addresses_in_previous_minutes =[]

#Step 0

ordered_readings = order_readings_by_ts(database_readings)

#Step 1

for(minute=0; minute<len(ordered_readings); minute++)

reading_list = ordered_readings[minute]

rejection point and taking the highest number of long stayers as a possible maximum
capacity respectively.

To be able to differentiate between these two groups, it is necessary to know the
staying times of the people on the days which do not belong to the high activity
period and the ones that do. On the low activity days, there will be more people that
stay only a few minutes in the area than on the high activity days, as there is not
a great necessity to stay there. However, there will be a moment in time in which
there will be a tendency of there being more devices on the high activity days than
in the low ones, due to the people’s necessity to stay long times to do their activities
in that area. This increment on the number of devices will not happen only once, but
repeatedly over time, as not every person will stay the same amount of time but most
of them will need long times. In consequence, the moment in which the number of
devices at the high activity days is higher than in the low ones is taken as threshold
to distinguish the ”low stayers” and the ”long stayers”. In order to make possible the
comparison between these days, as on each of them different number of readings
were collected, the number of readings in each day is normalized.

As seen in Algorithm 3, each day is processed and the devices that were detected
on each minute are grouped by the number of minutes that stayed in that area (stay
time). Each group contains the number of devices that stay there between an interval
of time (”minutes per group”). For example, if each group contains intervals of 5
minutes, then, there will be the following resulting groups: Group 0 (devices that stay
between 0 and 4 minutes), Group 1 (devices that stay between 5 and 9 minutes),
Group 2 (devices that stay between 10 and 14 minutes), etc. Then, the number
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for(idx=0; idx<len(reading_list); idx++)

reading = reading_list[idx]

previously_detected = is_in_previous_minutes(reading,

addresses_in_previous_minutes)

in_this_min = is_in_this_minute(reading,

addresses_in_this_minute)

if previously_detected:

addresses_in_previous_minutes.delete(reading)

if not in_this_min:

addresses_in_this_minute.append(reading)

if not presviously_detected and not in_this_min:

new_addresses[minute].append(reading)

#Step 2

for(idx=0; idx<len(addresses_in_previous_minutes); idx++)

reading = addresses_in_previous_minutes[idx]

reading_minute = reading.get_timestamp()

if (minute - reading_minute < time_limit):

addresses_this_minute.append(reading)

else:

#Time out

gone_addresses[minute].append(reading)

detected_addresses[minute] = addresses_in_this_minute

addresses_in_previous_minutes = addresses_in_this_minute

addresses_in_this_minute.empty_list()

#Step 3

for(minute=0; minute<len(gone_addresses);minute++)

gone_array_addrs = gone_addresses[minute]

for(idx=0; idx<len(gone_array_addrs); idx++)

gone_addr = gone_array_addrs[idx]

#Offset starts at 1 to erase the entries after the address was

#gone

for(offset=1; offset<=time_limit; offset++)

examined_gone_array_addrs = gone_addresses[minute+offset]

position = find_addr_position_in_addrs_list(gone_addr,

examined_gone_array_addrs)

examined_gone_array_addrs[position].delete(gone_addr)

return new_addresses, gone_addresses, detected_addresses



3.3. APPROACH 21

of devices detected in each group is normalized using the total number of devices
detected on that day. Afterwards, the normalized number of devices at each minute
of that day is appended to each group on the list of the ”high activity days group list”,
if the analysed day was a high activity day, or to the ”low activity days group list” if
it was not. Finally, the two lists are graphed and the tendency is searched.

Algorithm 3 Tendency detection process

Input: day list #list of the analysed days with the detected addresses

minutes per group #range of stay minutes that each group contains

Output: graph with the medians of the high and low activity days

high_activity_days_group_list = []

low_activity_days_group_list = []

#The length of the two list above is equal to 1440/minutes_per_group

#being 1440 the total number of minutes in a day. Each position is a

#group and each contains a list of numbers which are the normalized

#number of devices

for(a=0; a<len(day_list); a++)

tmp_group_list = [] #It contains the detected devices on

#a day, grouped by the stay times

normalized_temp_group_list = [] #It contains the normalized

#of the detected devices on day, grouped by the stay times

day = day_list[a]

total_device_num = day.get_total_device_num()

detected_addrs = day.get_detected_addrs()

for(minute=0; minute<len(detected_addrs); minute++)

addr_list = detected_addrs[minute]

for(idx=0; idx<len(addr_list); idx++)

addr=addr_list[idx]

stay_time = addr.get_stay_time()

position = int(stay_time/minutes_per_group)

tmp_group_list[position].append(addr)
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for(minute=0; minute<len(tmp_group_list); minute++)

normalized_num = len(tmp_group_list[minute])/total_device_num

normalized_temp_group_list[minute].append(normalized_num)

if(day.is_high_activity_day()):

high_activity_days_group_list.append_for_each_group(

normalized_temp_group_list)

else:

low_activity_days_group_list.append_for_each_group(

normalized_temp_group_list)

generate_median_graphs(high_activity_days_group_list,

low_activity_days_group_list)

3.3.3 Rejection ratio

Once short and long stayers can be obtained, all the analysed days are processed
again. On this process, first, the low activity days are analysed to calculate the ”busy
threshold”. The busy threshold represents the number of long stayers on an area
from which there are more people than usual and, thus, making crowded moments
possible. This division is necessary to limit the analysis to those moments in which
rejection points could happen.

The busy threshold is calculated by taking the highest peaks of the low activity days
and averaging them, as shown on the Algorithm 4. The low activity days are used as
they are not supposed to be crowded at any of the moments and, thus, the crowded
moments will be placed over the highest point of the low activity days. However,
as exceptions may occur, in order to compensate them, the mean of the highest
moments is used.

Afterwards, the high activity days are processed to locate the interval of minutes that
may have a rejection point. To do so, the intervals that contain the same number
of long stayers or more than in the busy threshold are located (Algorithm 5). The
intervals can have a size where, when dividing the total number of minutes in a day,
the result is an integer number (e.g.: 1, 2, 3).

Then, all the analysed days are processed to get, from the intervals that were con-
sidered busy, the number of short stayers that entered that area at each day at each
interval of time (Algorithm 6). The number will be normalized in order to be able to
compare the number of devices on each of the day types (high and low activity). The
comparison is made using the medians of each of the groups. The medians of the
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Algorithm 4 Busy threshold calculation process

Input: low day list #list of the low activity days with the long stayer

#devices.

Output: busy threshold

highest_peaks_list = []

for(a=0; a<len(low_day_list); a++)

day = low_day_list[a]

long_stayers_list = day.get_long_stayers_per_minute()

#long_stayers_list contains 1440 positions with the number

#of long stayers at each position

max_long_stayers_at_1_minute = long_stayers_list.get_maximum_number()

highest_peaks_list.append(max_long_stayers_at_1_minute)

busy_threshold = mean(highest_peaks_list)

return busy_threshold

Algorithm 5 Busy intervals detection process

Input: busy threshold, interval size,

high day list #list of the high activity days with the long stayer

#devices

Output: busy interval list

busy_interval_list = []

for(a=0; a<len(high_day_list); a++)

day = high_day_list[a]

long_stayers_list = day.get_long_stayers_per_interval(interval_size)

#long_stayers_list contains (1440/interval_size) positions with the

#number of long stayers at each position

for(interval=0; interval<len(long_stayers_list); interval++)

if (long_stayers_list[interval] >= busy_threshold):

busy_interval.append(interval)

return busy_interval
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Algorithm 6 Rejection intervals detection process

Input: day list,interval size

Output: rejection interval list

for(a=0; a<len(day_list); a++)

day = day_list[a]

total_device_num = day.get_total_device_num()

new_short_stayers_list = day.get_new_short_stayers_per_interval(

interval_size)

#new_short_stayers_list contains (1440/interval_size) positions with

#the number of short stayers that entered the area at each position

for(interval=0; interval<len(new_short_stayers_list); interval++)

if(interval in busy_interval_list):

normalized_value =

new_short_stayers_list[interval]/total_dev_num

normalized_new_short_stayers_list.append(normalized_value)

if(day.is_high_activity_day()):

high_short_stayers_list.append(normalized_value)

else:

low_short_stayers_list.append(normalized_value)

for(interval=0; interval<len(high_short_stayers_list); interval++)

high_median = high_short_stayers_list[interval].median()

low_median = low_short_stayers_list[interval].median()

if( high_median > low_median):

rejection_interval = busy_interval_list[interval]

rejection_interval_list.append(rejection_interval)

return rejection_interval_list
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new short stayers in an area are compared as it is expected that usually on the days
in which there are no hurries to finish tasks (low activity days) there will be more
people that are passing by the area than in the days that are of high activity, since
on those days people will be staying in the area for long periods of time to finish the
tasks. Therefore, if there is an interval in which the number of new short stayers of
the high activity days is higher than the low ones, it would mean that something is
keeping the people from staying in the area. This is taken as a ”Rejection interval”.

Next, from the intervals in which it was considered that people were being rejected,
the ratio of the number of new short stayers that are detected in the area is calcu-
lated, per each new long stayer (Algorithm 7). In consequence, the feature that can
identify a rejection point is known. Finally, the ratio of each interval is averaged in
order to know the average ratio on the rejection points and to be able to detect one
when processing a day (Algorithm 7).

Algorithm 7 Rejection ratio calculation

Input: rejection interval list,

new short stayers list #list with the raw number of the new short

#stayers in an area per interval

new long stayers list #list with the raw number of the new long stayers

#in an area per interval

Output: general ratio

ratio_list = []

for(interval=0; interval<len(rejection_interval_list); interval++)

ratio =

new_short_stayers_list[interval]/new_long_stayers_list[interval]

general_ratio = mean(ratio_list)

return general_ratio

3.3.4 MAC to people conversion

Once that the number of devices on each area is known, the detected MACs and
the gathered ground truth of the actual people in one area can be used to know the
number of people in the area from the gathered readings. As the number of readings
will be linearly correlated with the number of people, since the number of devices
in one area will depend on the number of people in it, a linear regression algorithm
can be used to make this conversion.
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For this end, the number of people during one moment is paired with its correspond-
ing number of readings. Finally, those pairs are used for the training of the linear
regression model, and once this phase is done, it will be possible to predict the
number of people from the number of readings.

3.3.5 Maximum capacity

Now that the people that are using the areas to study can be detected, the possible
maximum capacity can be obtained (Algorithm 8). First, the long stayers of the high
activity days are identified and the highest number of those long stayers is taken as
a possible maximum. Then, it is corroborated that the possible maximum is actually
the maximum capacity. To do so, we check whether there is a rejection point at the
moment in which it was found. When the maximum capacity is reached in an area,
any person that tries to stay in it will not have a spot and will leave the zone, because
of this, a rejection point should happen at that moment and, also, the number of new
long stayers at that moment is zero.

Algorithm 8 Calculation of the Maximum capacity

Input: high activity days, long stay criteria, rejection ratio

Output: maximum capacity or possible maximum capacity

is_max_capacity = False

is_rejection_point = False

num_long_stayers = -1

possible_max =

get_possible_max_capacity(high_activity_days,long_stay_criteria)

is_rejection_point, num_long_stayers =

rejection_point_at_possible_max(possible_max,rejection_ratio)

if (rejection_point) and (num_long_stayers == 0):

is_max_capacity = True

return possible_max, is_max_capacity

3.3.6 Crowdedness threshold

In order to calculate the number of people for which the area is generally considered
crowded, from the high activity days, the number of long stayers on the detected
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rejection points on one day are used (Algorithm 9). On each day, the long stayers
on the rejection points are averaged and the resulting number is the crowdedness
threshold for each day. Finally, to get the general threshold, each day’s thresholds
are averaged. A general threshold is calculated because there may be moments
in one day in which rejection points could not happen as there may not be signals
passing by and, as consequence, the rejection moment cannot be detected, even if
the place is crowded.

Algorithm 9 Calculation of the Crowdedness threshold

Input: high activity days, long stay criteria, rejection ratio

Output: crowdedness threshold

threshold_list = []

crowdedness_threshold = 0

for(i=0;i<len(high_activity_days);i++)

day = high_activity_days[i]

day_threshold =

get_crowded_threshold(day, long_stay_criteria, rejection_ratio)

add_threshold(day_threshold, threshold_list)

crowdedness_threshold = mean(threshold_list)

return crowdedness_threshold
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Chapter 4

Validation

In this chapter, the previously described methodology will be tested to answer the
Research Questions. Firstly, the testbed used for this validation is introduced, along
with the used methods to gather the mobility data. In addition to this, the analysed
day span and the obtained ground truth are also described. Next, the assump-
tions that were used are explained, and, finally, the processes used to answer the
research questions are described.

4.1 Data acquisition

On this thesis, the University of Twente Vrijhof building’s library has been used as
the testbed, which contains a total of 3 Wi-Fi sensors. The sensors IDs are 1992,
1994 and 2001, but for a better understanding, they will be called Sensor 1, Sensor
2 and Sensor 3 from this moment onwards. Their function is to capture the mobil-
ity data generated by the devices in their coverage area in order to investigate its
crowdedness. The position of the sensors can be seen on the maps pictured in
Appendix B.

Each detection is a tuple, like the one presented in the methodology, but it has an
additional parameter o, which contains the OUI of the detected device. Due to this
fact, the structure of the tuple in this test is (a, s, ts, o). This additional field is
used because, in the analysed areas, there may be devices with randomized MAC
addresses and they can be removed by processing them.

About the analysed days, they start on the 5th of September of 2016 and end on
the 2nd of February of 2017. From that range, the weekends and the Christmas
Holidays were discarded as the people’s behaviour on those days differ from regular

29
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working days, and the number of devices on those days is greatly reduced. It is
also worth noting that there were some days in which a sensor was not working or
stopped working early in the day (”Faulty days”), and those are also discarded. From
the remaining days, the days of the high activity period were manually chosen using
the official calendar of the University of Twente’s official exam days as ground truth.
Those days that showed higher activity than normal days in the previous 2 weeks
to each of the exam periods and in the exam period were chosen as ”high activity
days”. Finally, those days that did not belong to the ”faulty days” or the ”high activity
days” are the ones belonging to the ”low activity days”. These leaves the following
number of days in each group of days for each sensor:

Sensor 1 Sensor 2 Sensor 3
Low activity days 53 77 78

High activity days 23 21 20

Faulty days 22 0 0

Total days 98 98 98

Table 4.1: Used days

In addition, the ground truth of the number of people that were in the different sen-
sors’ areas was gathered. It consists on the counting of the number of people in
each area covered by the sensors. The counts were manually made from the 18th
of October of 2016 to the 25th of November of 2016 at five different hours (10:00,
11:30, 14:00, 19:00 and 21:00). Also, the number of total seats in each area was
counted.

4.2 Assumptions

In order to answer the research questions, it was assumed that the analysed areas
would have high activity periods. In this case, as the sensors are placed in a univer-
sity library, it would be the exam periods and their previous weeks, as the students
would use the facilities to finish their assignments and to prepare themselves for the
upcoming exams. In these high activity periods, there is believed to be a higher
probability to have the chosen areas at their maximum capacity than outside of the
exam period, where less students would feel the necessity to go to the library.

To answer the question of how to obtain the number of people in the area, a very
simple assumption was made: the number of detected MACs will be related to the
number of people in the area.
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4.3 Validation process

The following subsections contain the application of the proposed methodology in
the context of this project.

4.3.1 Group classification

The first step to be made is the calculation of the Time limit to detect if the analysed
reading belongs to a device that just arrived, that left and came back, or simply
to a device that was sensed before and did not leave, and then the readings are
classified into the previously mentioned groups (new, gone and detected in the area)
will be made. However, as in this case the analysed devices can have randomized
MAC addresses, they must be detected and then removed, in order to not sense
one device and count it as 2,3,4, or more different devices. To make the detection
possible, the OUI field of the analysed MAC is used and this is done before anything
else.

The MAC addresses can be either universally administered or locally administered
addresses.

• The universally administered addresses are uniquely assigned to a device by
its manufacturer. They have a total of 6 octets, the first 3 identify the organi-
zation that gave the device the identifier (these octets are known as OUI), and
the remaining 3 octets are assigned by the organizations in any manner they
please.

• The locally administered addresses are assigned to the devices by a network
administrator and they substitute the original address provided by the manu-
facturer.

The two types of addresses are distinguished by setting the second least signifi-
cant bit of the OUI part of the address. If the bit is 0, the address is universally
administered, and if it is 1, it is locally administered (Figure 4.1). As the randomized
addresses will be a type of locally administered address, in order to filter them out,
those OUIs whose second least significant bit is set to 1, will be filtered out. How-
ever, doing this may introduce an error as not all the OUIs with the bit set to 1 implies
that the address is randomized, but as those addresses are exceptions, the error is
considered acceptable.
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Figure 4.1: MAC address structure

The reading filtering process is shown on Algorithm 10. First, the analysed readings
OUI attribute will be retrieved and, as it will be an hexadecimal value, it will be
transformed to binary. Then if the value of the second least significant bit is 1, the
reading will be discarded, and if it is not, it will be used for the rest of the process.

Algorithm 10 Detection of a Randomized MAC

Input: one reading from the database

Output: True, the address is probably randomized, or False, it is not.

oui_hex = reading.get_OUI()

oui_bin = transform_to_binary(oui_hex)

if get_second_least_significant_bit(oui_bin) == 1

return True

else:

return False

Once the devices with randomized MACs are removed, the time limit is calculated
and the readings are grouped for one day. It is possible to observe the number of
people that were in one area during a certain day (Figure 4.2).
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Figure 4.2: Detected MACs in one day example

4.3.2 Short and long stay criteria

After obtaining the capability of sensing the different devices in an area, it is calcu-
lated the threshold between the short and long stayers to later detect rejection points
and get the general ratio for their detection. As previously explained, there are two
types of days: low activity days and high activity days. In the first type, as there is
not a great necessity to stay in the area, there will be a great number of devices that
will have low stay times and only some with high stay times. On the other hand, on
the high activity days, there will be only some devices that will stay a few minutes
while a great number of the devices will have high stay times. Hence, it is expected
that showing the number of the devices on each possible minute of stay time, on the
first minutes, the number of the devices that belong to the low activity days will be
higher than the number of devices of the high activity days. However, as the stay
time increases, there will be a point where the number of devices from the ”high
activity” group will be greater than those of the ”low activity” group, and this will be
the case for a long time. The minute in which this tendency of having more devices
on the low activity days than on the high activity days is reversed, it is considered as
the threshold that a device has to pass to be considered a long stayer.

For the calculation of the threshold of the short and long stayers, firstly, the devices
that were detected during each day are retrieved with their stays times and they are
grouped by them. However, before grouping them, the number of devices that were
detected during each day is normalized in order to be able to make the comparisons.
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Then, these groups are made every minute of stay time, which means that in Group
0 there will be the devices which have stay time of 0 minutes (between 0 and 59
seconds), in Group 1 those which have a stay time of 1 minute (between 60 and
119 seconds), etc. Groups representing each minute of stay time are used, as it
was desired to have clusters representing small fragments of time to be able to de-
tect the threshold between short and long stayers accurately. Inside of each group,
another two clusters are created splitting the devices that were on the high and low
activity days. Finally, the medians of the groups are used to locate the tendency
change(Figures 4.3,4.4 and 4.5).

Figure 4.3: On sensor 1, there are more devices on low activity days until the Group
26, from which the tendency is reversed and then, there are more de-
vices on high activity days. General view above, zoomed in view below
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Figure 4.4: On sensor 2, there are more devices on low activity days until the Group
10, from which the tendency is reversed and then, there are more de-
vices on high activity days. General view above, zoomed in view below
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Figure 4.5: On sensor 3, there are more devices on low activity days until the Group
10, from which the tendency is reversed and then, there are more de-
vices on high activity days. General view above, zoomed in view below

As seen on Table 4.2, the Sensor 1’s tendency change starts in group 26, which
means that it will be considered that the devices which stay for longer than 26 min-
utes are the long stayers. In the case of the sensors 2 and 3, the threshold is in the
group 10.

Tendency change point (minute)
Sensor 1 26

Sensor 2 10

Sensor 3 10

Table 4.2: Tendency change on people’s stay times in each sensor

4.3.3 Rejection ratio

After having made the distinction between the short stayers and the long stayers, the
calculation of the rejection points ratio begins. In this process, the general ratio of
the number of new short stayers per each new long stayer is calculated, since it will
inform of the moments in which there will be a higher amount of new short stayers
than usual. That event would mean that the area is crowded or even full. This
ratio enables the detection of the rejection points, which, consequently, confirms
if a possible maximum capacity is the actual maximum or just the highest number
recorded, and also calculates the threshold for distinguishing the crowded and not
crowded states.
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To calculate the mentioned ratio, it is searched for the moments in which the median
of the short stayers in the high activity days is higher than the median of the short
stayers in the low activity days. This is done because those moments are considered
rejection intervals. Those moments are considered rejection intervals since they are
of short duration and the expected behaviour on the high activity days would be to
have less new people staying short periods of time than in low activity days, due to
the necessity of the students to finish their tasks. Due to this fact, if there is a higher
amount of new short stay devices at the high activity days, it means that something is
keeping the people from staying inside that area, which would be the lack of space.
The process to estimate the ratio is the following one:

Firstly, the ”busy threshold” is calculated to divide the moments which may have the
possibility to be crowded and those which may not. To do so, the long stayers of
the low activity days are retrieved and each day’s highest number is used to make a
mean, therefore obtaining the threshold.

Afterwards, the high activity days are traversed and the detected devices that en-
tered at every minute are grouped, and their number is normalized by the total
number of devices that were sensed on that day, in order to be able to make the
comparison. After this, the intervals which have the same number of long stayers or
more than the busy threshold are analysed. Those moments in which the median of
the short stayers in high activity days is higher than the median of the long stayers
are chosen as rejection intervals (Figures 4.6,4.7 and 4.8).

Figure 4.6: Rejection interval example at sensor 1
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Figure 4.7: Rejection interval example at sensor 2

Figure 4.8: Rejection interval example at sensor 3

Also, in order to verify that the two types of medians are statistically different, a T-test
is done in each sensor. This test is carried out since it is necessary to know if the
two types of medians statistically different from each other. If they were not, different
medians would be compared in the process but the results would be meaningless,
which would imply that this approach is not appropriate to find the rejection inter-
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vals. Due to this fact, a null hypothesis is formulated stating that the medians of the
normed short stayers of the high activity days and the medians of the normed short
stayers of the low activity days are not statistically different. Since the p-value in
each of the T-Tests was inferior to 0.05 (Table 4.3), it means that the null hypothesis
is discarded, meaning that the two types of medians are statistically different.

p-value
Sensor 1 6.27e−27

Sensor 2 4.15e−9

Sensor 3 8.37e−42

Table 4.3: p-value of the medians in each sensor

Finally, the detected rejection points are used to calculate the ratio of the number
of short stay devices per long stay device should be detected to consider whether a
rejection point is happening. To do so, on each rejection point, the number of short
stayers on the high activity days is divided by the number of long stayers. Once this
is done on each of the points, their ratios are averaged obtaining one general ratio
for each sensor.

4.3.4 MACs to people conversion

As it was mentioned before, the sensors used detect devices capable of connecting
to a Wi-Fi. Due to the popularity of the smartphones, tablets, laptops and other
devices, these readings indicate the presence of people in an area. However, as a
person can have no devices, one device, or more than one device, it is not possible
to assume that for each sensed device there is one person. In consequence, it is
necessary to find a way to translate the detected MAC addresses to the number of
people in the area. In order to accomplish this task, the use of a Linear Regression
algorithm has been chosen.

The linear regression algorithm fits a line to be able to predict, from the detected
number of readings, the number of people. It needs some data to be able to trace
the best fitting line (training phase) and for this means, the readings gathered in
the ”Detected addresses” group and the obtained ground truth are used. The ”De-
tected addresses” group is used instead of the long stayers as, when the counting of
people was carried out on each of the hours (10:00, 11:30, 14:00, 19:00 and 21:00),
it is not known whether the people that were counted included people only from long
stayers or from both groups. In addition, as the ground truth was collected by peo-
ple, an error was made when the information was written down. Even though the
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information was supposedly obtained at certain time (e.g.: 11:30) the most probable
scenario is that the counting of people in one area started a little before and/or after
that supposed time.

To correct these errors, a window of time will be used. It will go from 0 minutes
to the maximum possible minute of one day (1439 minutes) in order to cover every
minute of the day, independently from the time in which the recollection of data was
made. During each window, as shown in the Algorithm 11 a lower limit and upper
limit are calculated and the mean of the detected readings between those times is
obtained. Then, the Pearsons correlation between the averaged readings and the
people counted is calculated and stored with the variables used for its calculation.

Algorithm 11 Process for the compensation of the human error made when count-
ing

Input: counted people, countings’s time

Output: detected readings people

correlation_list = []

averaged_detected_readings_list = []

for (window=0; window<1440; w++)

start_time = counting’s_time window

stop_time = counting’s_time + window

detected_readings = get_detected_readings_in_window (start_time,

stop_time)

averaged_detected_readings = mean(detected_readings)

correlation = get_correlation (averaged_detected_readings,

counted_people)

correlation_list.append (correlation)

averaged_detected_readings_list.append(averaged_detected_readings)

picked_reading_number = get_first_peak_correlation(correlation_list,

averaged_detected_readings_list)

return picked_reading_number

After processing all the possible windows, the window with the first peak is selected
as the one to be used for that time. The first encountered peak is chosen instead
of the highest correlation, as it is possible that the correlation of a non-reasonable
window could be higher than the real one. For instance, this can be seen on Figures
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4.9, 4.10 and 4.11, where the first peak is located in small time windows, but then,
there are higher correlation values in very large windows. Nevertheless, the latter
values should not be taken as indication of the duration of the ground truth gathering
process as it is not reasonable to last 600 minutes over or 600 minutes under to
supposed hour on which the data was obtained. However, it is more reasonable to
assume that the gathering lasted 10 minutes more or 10 minutes less.

Figure 4.9: Comparison of the correlations in each window on sensor 1 at 10:00
(first peak marked in red)

Figure 4.10: Comparison of the correlations in each window on sensor 2 at 11:30
(first peak marked in red)
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Figure 4.11: Comparison of the correlations in each window on sensor 3 at 14:00
(first peak marked in red)

Once the human error has been compensated for, the ground truth and the chosen
averaged number of readings of the chosen windows are used to train a linear re-
gression model. Also, it has to be taken into account that on each of the sensors,
there are approximately 80 data samples of detected devices-counted people. As
this number of samples is too low to appropriately train a model, a decision was
made to feed with the data samples of all the sensors to a new linear regression
model. This additional model will be linked to the implementation with an imaginary
sensor labelled as Sensor 4.

To make sure that the final number of readings and the number of people in each
sensor is correlated, the Pearsons correlation is measured on each of the sensors,
obtaining the following values:

Pearson’s correlation
Sensor 1 0.86

Sensor 2 0.86

Sensor 3 0.85

Sensor 4 0.89

Table 4.4: Pearson’s correlation between the sensed devices and the counted peo-
ple in each area

However, even if there is a high correlation on each sensor, there may values in the
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data which are very far from the reality (e.g.: moments in which there are 50 people
and 0 readings were made), those points are called outliers. They can interfere in
the training phase of the models, and to avoid it, those misleading points must be
removed.

4.3.4.1 Outlier detection

If the average number of readings of the chosen windows are confronted with the
counted people, the points representing the observed response (Figure 4.12) can
be obtained. The first step to finding those points which are wrong or are unusual,
is to create the best fitting line which will return the predicted values (Figure 4.12).

Figure 4.12: Observed responses (blue) and predicted values (green)

This line has a coefficient and an intercept that reduces the Residual Sum of Squares
(RSS) to the minimum. The residuals express the distances between the observed
response and the predicted value, such as:

ei = yi − ŷi (4.1)

Where ei is the i-th residual, yi represents the i-th observed response and ŷi. repre-
sents the i-th predicted value.

The following step would be the calculation of the Studentized residuals of each
point of the dataset. In order to obtain those value, the residuals, the leverage of
each point, and the Mean Squared Error of that line are necessary.
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The leverage of a point quantifies the influence that the observed response yi has
on its predicted value ŷi. If the leverage, hii, is small, then the observed value
has a small role in the value of the predicted response ŷi, and vice versa. The hii

values are measurements of the distances between the x value of the i-th data and
the mean of the x values of the dataset, they have values between 0 and 1 (both
inclusive) and the sum of all the hii values is equal to the number of coefficients that
are used to obtain the line of best fit, including the intercept. The hii can be obtained
using the formula:

hii =
1

n
+

(xi − x̄)2∑n
k=1 (xk − x̄)2

(4.2)

Where xi represents the x’s i-th observed response, x̄ is the mean of all the x values
of the observed responses and the n is the number of observed responses.

The Mean Squared Error (MSE) measures how close a fitted line is to data points.
The smaller the MSE, the closer the fitted line is to the data. It is calculated using
the following formula:

MSE =
1

n
∗

n∑
k=1

(ŷi − yi)2 (4.3)

Where n is the number of data points and ŷi is the i-th predicted value and yi repre-
sents the i-th observed response.

Returning to the main subject, the Studentized residuals are calculated using the
following formula:

ri =
ei√

MSE(1− hii)
(4.4)

Once the Studentized residuals values are obtained, the points where the absolute
values are greater than 2 are considered outliers and they will be discarded. This
may seem quite arbitrary, but it is generally considered that attention should be paid
to those values greater than |2|and even more to the ones greater than |3|(Figure
4.13). Finally, the remaining data is used for the training and testing of the Linear
Regression model.
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Figure 4.13: Example of outlier detection. Outliers (red), non-outliers (blue), best
fitting regression line (green)

4.4 Results

In the following section, the results obtained in the validated areas are shown.

4.4.1 MAC to people conversion

The results of the linear regression models used for the MAC to people conversion
have been evaluated using a 5-Fold Cross Validation algorithm to evaluate the av-
erage performance that each of the models have, depending on the training data.
Instead of the usual 10 folds, 5 are used as with 10, the test groups would be very
small due to the fact that in the sensors 1 to 3 there are only approximately 80
samples for training and testing.

Firstly, the R-Squared value of each sensor’s model is calculated. As seen in the
Figure 4.14, the model of the Sensor 1 is able to predict 20.27% of the test data, the
model of the Sensor 2 is able to predict 44.93% and the model of the Sensor 3 can
predict 30.54%. All of these models have a poor performance. However, the model
of the imaginary Sensor 4, which was trained with the data of all the models, shows
a performance of 69.98%. As the last model has the highest reliability, it is used for
the MAC to people transformations.

In addition to the R-Squared value, the Root Mean Squared Error (RMSE) is also
calculated in order to know the error margin in the predictions (Figure 4.15).
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Figure 4.14: Linear regression models’ R-Squared values

Figure 4.15: Linear Regression models’ RMSE values

It is worth noting that even if the Sensor 4 has a good R-Squared mark, the gathering
of more training data is required in order to create a more reliable regression model
for each sensor.
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4.4.2 Maximum capacity

To get the maximum capacity of an area, as it was indicated in the methodology,
the highest number of long stayers in each area is obtained. These numbers are
the possible maximum capacity of each area and, to confirm that they are the actual
maximum capacities, on each of them, a rejection point with zero new long stayers
should be found. This event should happen at the detected possible maximums as,
if the maximum was truly achieved, new people should not be able to stay for a long
time, for which a rejection point with zero new long stayers should be found.

In consequence, the long stayers of the high activity days and the rejection points
are visualized in order to find out if in a possible maximum there is a rejection point
with zero new long stayers. From the data, the following possible maximums are
obtained (Figures 4.16,4.17, 4.18): 158 for the area of sensor 1, 172 for the area of
sensor 2, and 203 for the area of sensor 3. However, they could not be confirmed
as the actual maximum capacity since there were no rejection points on the possible
maximums at sensors 1 and 3 (Figure 4.19 and 4.21) , and in sensor 2, even though
there was a rejection point, at that moment, 7 new long stayers (Figure 4.20) were
able to enter the area.

Figure 4.16: Possible maximum capacity in Sensor 1
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Figure 4.17: Possible maximum capacity in Sensor 2

Figure 4.18: Possible maximum capacity in Sensor 3
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Figure 4.19: Rejection points close to the possible maximum in Sensor 1

Figure 4.20: Rejection points at the possible maximum in Sensor 2
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Figure 4.21: Rejection points close to the possible maximum in Sensor 3

After transforming the possible maximum capacity in MACs to numbers of people
using the linear regression model of the Sensor 4, it was obtained that the maximum
capacity for the area covered by the sensor 1 is 109.81, the maximum for the sensor
2 is 118.87 and the maximum for the sensor 3 is 138.92. However, as those num-
bers represent people, they are rounded up to the nearest integer value (Table 4.5).

Maximum in MACs Maximum in people Error margin
Sensor 1 158 109.81 ≈ 110 14

Sensor 2 172 118.87 ≈ 119 14

Sensor 3 203 138.92 ≈ 139 14

Table 4.5: Predicted maximum capacities

The conversion of the maximums from MAC to people numbers enables the com-
parison of the calculated capacity to the available number of seats at each zone (it
is considered that 1 person will occupy 1 seat). However, the comparison between
the predicted values and the available seats is challenging. The reason for this chal-
lenge is that in the analysed areas there are individual seats and several rooms
destined for doing group assignments (these are called ”Project rooms”).

In each area, there is a different number of project rooms and not all of them have
the same number of seats. In the following table, the number of project rooms in
each area are shown, with the minimum and maximum seats counted inside each
area’s project rooms:
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Project rooms Minimum seats Maximum seats
Area 1 5 6 6

Area 2 12 6 10

Area 3 15 6 10

Table 4.6: Project rooms and seats in each area

The problem appears when a room is being used, since the group that is in it may
not use the whole room, but the room will be occupied as there can only be one
group per room. In consequence, in the case of having every other room and the
individual seats occupied, the zone will be at its full capacity even if all the seats are
not occupied. As it is also highly unlikely to have all the project rooms occupied at
their full capacity along with the individual seats, a decision was made to estimate
the maximum capacity in two ways: the first estimation will be made considering all
the counted seats (this will be identified as the ”high estimation”) while the second
one will be made considering that the project rooms have a maximum of 6 seats.
The reason for using 6 seats as a maximum is because it is not usual to be in
groups larger than 6 people.

As seen in Figure 4.22, if the predictions are compared with either of the estimations,
there is a difference of, at least, 12 seats. This could be caused by the error margin
during the conversion from MACs to people numbers (marked in red on the graph)
and also by the fact of not having all the project rooms occupied at their full capacity.

Figure 4.22: Maximum capacity comparison
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4.4.2.1 Baseline

As it was explained in the Background (Chapter 2), only one research ( [1]) was
found in which the maximum capacity of an area was calculated. In consequence,
it is used as baseline. In this study, the maximum capacity of an area is obtained
by taking the highest number of detections encountered in the analysed period.
However, this method does not include a process to discard the detections that may
not belong to people using the area, nor a method to confirm that the highest number
is the actual maximum and not only the highest number of devices recorded until that
moment. Nonetheless, in order to observe the results that this approach would have
in this thesis’ scenario, it has been tested.

Following the procedure of the baseline, from the whole number of detections, the
highest number is taken as a possible maximum capacity. This is done instead
of distinguishing between short and long stayers. As seen in the Figure 4.23, the
results obtained by this method seem to be similar to the ones achieved by the
procedure implemented in this thesis, but instead of obtaining lower values than
those considered to be the real ones, which is what is obtained in this thesis, higher
values are obtained as possible maximum capacities. This is logical, due to the lack
of a method to filter out the readings of devices that are detected by the sensor but
not using the area.

Figure 4.23: Comparison of the results obtained by the thesis’ method with the one
of the baseline
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4.4.3 Crowdedness threshold

For the distinction of the not crowded and crowded moments, as explained in the
Methodology Background (Chapter 3), the number of long stayers in each of the
detected rejection points in one day are averaged obtaining a threshold for that day.
However, as a general threshold is desired, the thresholds of all the days are aver-
aged to obtain one final threshold which, if its surpassed, will lead to the area to be
considered crowded. As seen in Figures 4.24, 4.25 and 4.26, the general crowded-
ness threshold for Sensors 1,2 and 3 are 101.81,122.08 and 146.57, respectively.
If those device numbers are transformed into people, the thresholds become 73.58,
87.17 and 102.69. However as those numbers represent people, they are rounded
up being considering that the thresholds are 74, 88 and 103 (Table 4.7).

Crowdedness
threshold in MACs

Crowdedness
threshold in people

Error margin

Sensor 1 101.81 73.58 ≈ 74 14

Sensor 2 122.08 87.17 ≈ 88 14

Sensor 3 146.57 102.69 ≈ 103 14

Table 4.7: Predicted general crowdedness thresholds

If a comparison with the estimated maximum capacities is made (Figure 4.27), then
it is found that the obtained limits seem to be reasonable. However, due to time
issues, it was not possible to confirm that when the number of people was close to
or above those limits, the expected behaviour of people of not staying in the area for
long times due to the crowdedness was happening, which would confirm the validity
of the calculated thresholds.



54 CHAPTER 4. VALIDATION

Figure 4.24: Crowdedness thresholds in Sensor 1

Figure 4.25: Crowdedness thresholds in Sensor 3
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Figure 4.26: Crowdedness thresholds in Sensor 3

Figure 4.27: Crowdedness threshold comparison with the considered maximum ca-
pacities
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Chapter 5

Conclusions and Future work

5.1 Conclusions

This thesis describes the design of a method for the detection of crowded places in
which the people have predefined seats. The design seeks to know the number of
people in the analysed place, its maximum capacity and the threshold that distin-
guishes the states of ”not crowded” and ”crowded”. The evaluation of the methods
was performed in a real context (a library) in three different areas, each one covered
by a sensor.

The calculation of people in the different zones, using the number of devices in
each of them, was validated, and the results showed that the used approach was
adequate. This was done by obtaining an R-Squared value of 69% in the linear re-
gression which is used to predict from the detected devices, the number of people.
Nevertheless, since it was necessary to combine the gathered ground-truth sam-
ples from the three areas to create a reliable model, and as its reliability could be
improved, it is concluded that more ground-truth data should be collected.

Regarding the calculation of the maximum capacity of an area, an algorithm was de-
scribed to estimate the maximum capacity of a place taking into account the errors
introduced by the devices passing close to the analysed zone but not using it, which
was not found in the existing literature, which is very limited. The results obtained
from the validation of this algorithm were found to be inconclusive as, due to time
issues, it was not possible to visually confirm that the areas were full at any moment
during the considered high activity days. This entails that even if a possible maxi-
mum was calculated by the algorithm, it was not possible to confirm that it was the
actual maximum.

Finally, a novel algorithm for the automatic calculation of the threshold for the dis-

57



58 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

tinction of the ”crowded” and ”not crowded” states was designed for areas with pre-
defined seats for people, which until now had not be done, since the threshold for
that state distinction was arbitrarily established. In addition, the results of this project
were considered reasonable but their practical value could not be confirmed since,
as before, there were time issues and it could not be visually confirmed.

5.2 Future work

As mentioned, this approach considers that the analysed place has high and low ac-
tivity days, the former being the days in which it is more likely that the zone reaches
its maximum capacity. In this project, those days are chosen based on the exam cal-
endar of the university in which the library used for the validation is placed, however,
the automatic classification of those days could be very useful for more exact calcu-
lations of the maximum capacity of an area in which the people tend to stay for long
periods of time. For instance, this could help to remove days in which anomalies are
detected and an odd number of readings are captured due to an unusual use of the
analysed zone.

In addition, the behaviour of the people and their stay times when they enter into a
crowded area has also been mentioned. A deeper research of that behaviour could
gather the necessary information to be able to develop more efficient algorithms
for the automatic calculation of the threshold for the ”not crowded” and ”crowded”
states.
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Appendix A

Group classification example

This example shows how the classification algorithm works using some invented
MAC addresses and timestamps. In order to make the example easier, there are no
randomized MAC’s readings, the readings will be ordered by timestamp and treated
as addresses directly, and they will also have, next to them, their Timestamp in
brackets and the ”Time Limit” will be 2 minutes.

A.1 Processed minute 1 (12:58)

As said, first the readings are recovered from the group with all the readings. Then,
it will be checked if any of those addresses were present in the previous minutes:

Data set
Time Addresses
12:58 A (12:58) B (12:58) A (12:58)
12:59
13:00 B (13:00)
13:01

Addresses in previous minutes

As they were not present, their presence in the current minute will also be checked.
In this case, the first two addresses were not present during this minute, so they are
added to the ”Addresses in this minute” group. However, by the time that the third
address is processed, the first ”A” address is considered to be in this minute, so this
new reading is discarded to avoid having two ”A”s in the same minute, which would
mean that the same device is counted twice. Then, the considered addresses to be
in this minute are:
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Addresses in this minute
A (12:58) B (12:58)

In addition, as the 2 different addresses were not found in the
”Addresses in previous minutes” or in this minute, they are added to the ”New addresses”
group.

New addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59
13:00
13:01

Step 1 from the explanation is completed and we proceed to Step 2. However, as
in this example, at this moment there are not any addresses in previous minutes,
the checking of the ”Time outs” is not carried out. Afterwards, the addresses at
”Addresses in this minute” are inserted into the ”Detected addresses” group, in the
position that corresponds to the time that was just analysed (12:58).

Detected addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59
13:00
13:01

Finally, the addresses in ”Addresses in this minute” are copied to
”Addresses in previous minutes” in order to empty the first group and be able to
reuse it in the next processed minute.

Addresses in this minute Addresses in previous minutes
A (12:58) B (12:58)

A.2 Processed minute 2 (12:59)

The second minute is processed. The addresses from this new minute are recov-
ered and a check is carried out to find out if any of them are in ”Addresses in previous minutes”.
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Data set
Time Addresses
12:58 A (12:58) B (12:58) A (12:58)
12:59
13:00 B (13:00)
13:01

As there are no new addresses, the ”Addresses in previous minutes” and
”Addresses in this minute” contain the following data.

Addresses in this minute Addresses in previous minutes
A (12:58) B (12:58)

Now, it is calculated if any of the previous addresses has timed out. To do so, the
difference between the processed time and their timestamp is calculated:

12 : 59− 12 : 58 = 1

1 < 2→ No Time out

In this case, neither ”A” nor ”B” timed out, as their timestamp difference is inferior to
the Time Limit. At this moment, the addresses that did not time out are copied into
”Addresses in this minute” and the result is copied into ”Detected addresses”.

Addresses in this minute
A (12:58) B (12:58)

Detected addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59 A (12:58) B (12:58)
13:00
13:01

Finally, the addresses in ”Addresses in this minute” are copied to
”Addresses in previous minutes” and the first group is emptied.

Addresses in this minute Addresses in previous minutes
A (12:58) B (12:58)

A.3 Processed minute 3 (13:00)

The readings of this new minute are recovered and checked if they were present in
previous minutes. As in this case ”B” was, it is not included in the ”New addresses”
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group.

Data set
Time Addresses
12:58 A (12:58) B (12:58) A (12:58)
12:59
13:00 B (13:00)
13:01

Addresses in previous minutes
A (12:58) B (12:58)

Afterwards, as the ”B” address was present during previous minutes and now there
is a more recent reading of it, it is deleted from the ”Addresses in previous minutes”
as its timestamp will be refreshed with this new reading.

Addresses in previous minutes
A (12:58) B (12:58)

Now that the Step 1 is finished, Step 2 will begin. First it is checked whether A times
out.

13 : 00− 12 : 58 = 2

2 < 2→ Time out

As indeed it does time out, it is added to the ”Gone addresses” group at the moment
indicated by the timestamp of the reading.

Gone addresses
Time Addresses
12:58 A (12:58)
12:59
13:00
13:01

Now ”B”, which is the only address considered to be present in this minute, is copied
into ”Detected addresses”.

Addresses in this minute
B (13:00)

Detected addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59 A (12:58) B (12:58)
13:00 B (13:00)
13:01
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Finally, the addresses in ”Addresses in this minute” are copied to
”Addresses in previous minutes”, and the first group is emptied.

Addresses in this minute Addresses in previous minutes
B (13:00)

A.4 Processed minute 4 (13:01)

Now the third minute is processed and it does not contain any addresses. Due to this
fact, the ”Addresses in this minute” and ”Addresses in previous minutes” groups do
not change.

Data set
Time Addresses
12:58 A (12:58) B (12:58) A (12:58)
12:59
13:00 B (13:00)
13:01

Now, the second step begins and it is calculated whether any of the previous ad-
dresses has timed out.

13 : 01− 13 : 00 = 1

1 < 2→ No Time out

As the difference is inferior to the Time limit, ”B” does not time out and it is considered
to be present in this minute. In consequence, it is copied to ”Addresses in this minute”
and the readings of that groups are copied to ”Detected addresses”.

Addresses in this minute
B (13:00)

Detected addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59 A (12:58) B (12:58)
13:00 B(13:00)
13:01 B(13:00)

Finally, the addresses in considered in this minute are copied to
”Addresses in previous minutes”, and the first group is emptied.

Addresses in this minute Addresses in previous minutes
B (13:00)



68 APPENDIX A. GROUP CLASSIFICATION EXAMPLE

A.5 Processed minute 5 (13:02)

The forth minute is processed and it does not contain any addresses:

Data set
Time Addresses
12:58 A (12:58) B (12:58) A (12:58)
12:59
13:00 B (13:00)
13:01
13:02

Now, the second step begins and it is checked whether ”B” has timed out:

13 : 02− 13 : 00 = 1

2 < 2→ Time out

As it does, it is added to the ”Gone addresses” group at the moment indicated by
timestamp of the reading.

Gone addresses
Time Addresses
12:58 A (12:58)
12:59
13:00 B (13:00)
13:01

As there are no more readings to process, Step 3 begins.

A.6 Final correction

From the previous data processing, the ”New addresses”, ”Detected addresses”
and ”Gone addresses” groups have the following information:
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New addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59
13:00
13:01

Gone addresses
Time Addresses
12:58 A (12:58)
12:59
13:00 B (13:00)
13:01

Detected addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59 A (12:58) B (12:58)
13:00 B (13:00)
13:01 B (13:00)

As it can be seen, ”A” and ”B” are ”detected” even after they are gone, and therefore,
this is corrected in the third step. To do so, each address saved in the ”Gone addresses”
group is processed in ”Detected addresses” and, starting from the following minute
since which the address had gone, n− 1 minutes are traversed and deleting in them
the processed address, being n the Time limit. In this example, in the case of ad-
dress ”A”, the minute 12:59 is processed and in the case of ”B”, the minute 13:01 is
processed.

At the end of the process, the groups will contain the following data:

New addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59
13:00
13:01

Gone addresses
Time Addresses
12:58 A (12:58)
12:59
13:00 B (13:00)
13:01

Detected addresses
Time Addresses
12:58 A (12:58) B (12:58)
12:59 B (12:58)
13:00 B (13:00)
13:01
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Map of Sensors
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Sensor 1994
(Sensor 2)
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Sensor 1992
(Sensor 1)

Sensor 2001
(Sensor 3)
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