
Simulating Stochastic Scheduling Policies on
Unrelated Machines

Tariq Bontekoe

June 26, 2017

Abstract

We investigate the competitive performance bounds of a purely combi-
natorial, online algorithm for stochastic and non-preemptive scheduling
on unrelated machines. Several simulation experiments with different in-
stances are executed and the performance is investigated from a computa-
tional perspective. The performance of this online algorithm is compared
to an offline LP relaxation based algorithm and the WSEPT rule, both on
average and in worst case. Finally, the random LP-relaxation based policy
is derandomized and the effects on the performance of this algorithm are
investigated.

1 Introduction

Scheduling. Scheduling n jobs on m parallel machines is a fundamental prob-
lem in combinatorial optimization. The problem to minimize the total weighted
completion time Σ j w j C j on unrelated machines, denoted by R | (r j ) | Σ j w j C j

in the three-field notation of Graham et al. [1], is one of the classical problems
in deterministic scheduling. In this problem, each job j has a weight w j , and a
processing time on machine i , which is defined by pi j . A job j also might have
a release date, which is given by r j , before which job j cannot be scheduled on
any machine. The objective of this problem is to minimize the total weighted
completion time Σ j w j C j , where C j denotes the completion time of job j . This
problem turned out to be MaxSNP-hard [2], which implies that no polynomial-
time approximation algorithm for a solution to this problem exists.

In a lot of cases, the processing time pi j of job is unknown and uncertain.
This is where deterministic scheduling becomes stochastic scheduling. Unfortu-
nately, this uncertainty makes the scheduling of jobs significantly harder than
in the deterministic case. We would then still want to be able to come up with a
schedule which minimizes the weighted completion time. So, we would like to
find a non-anticipatory scheduling policy which schedules n non-preemptive
jobs with uncertain processing times pi j on m machine. Here, non-anticipatory
means that for a decision at time t the scheduling policy can only use infor-
mation based on the observations up to time t . The fact that jobs are non-

1



preemptive means that once a job is started, it cannot be interrupted and is being
processed until it is finished.

This problem R | (r j ) | Σ j w j C j with unknown processing times pi j has both
an offline and an online version. This problem was for the first time investigated
by Skutella et al. [3] and resulted in an algorithm with a worst case performance
guarantee of 3

2 + ∆
2 without release dates and a guarantee of 2+∆ when release

dates are present. In the offline version the entire set of jobs is presented to
the algorithm at the start. In the online version the jobs are presented to the
scheduling algorithm one by one and the magnitude of the complete set of jobs
is unknown to the scheduler.

In this paper, we consider the online stochastic version of the unrelated ma-
chine problem, denoted by R | (r j ) | Σ j w j C j . There are several approaches
to tackle this problem. It is known however, that when n jobs appear online,
are non-preemptive, and nothing else is known about these jobs, no algorithm
can be better than n-competitive. The fact that an online algorithm ALG is α-
competitive, means that for any given instance I , cost function C and constant
c: C(ALG(I )) ≤α ·C(OPT (I ))+c, where OPT is the optimal offline algorithm for
this instance I . In the case of stochastic scheduling, the cost function C equals
the expected weighted completion time E[

∑
j∈J w j C j ].

One solution to this problem is to assume that jobs may be pre-empted.
Many papers have been written on this type of model. Another solution is the
one we use in this paper: the jobs remain non-preemptive, but we know the
probability distribution of pi j . This is called the stochastic scheduling model
with non-preemptive jobs. Since, in this paper we assume that we know the
probability distribution of the processing time of job, we will from now on use
Pi j to denote the random variable belonging to the processing time, whereas
pi j will be used to represent the realization of Pi j .

Contribution. Throughout this paper, we take a look at a new, very recent
algorithm from Gupta et al. [4], which is the first online, O(∆)-competitive, com-
binatorial algorithm for stochastic scheduling on unrelated machines. Here, ∆
is the square of the coefficient of variation CV2[Pi j ] = Var[Pi j ]/(E[Pi j ])2. They
derive an algorithm which is (8+ 4∆)-competitive in the case without release
dates, this is called the online-list model. When release dates are present, the
online-time model, a (144+72∆)-competitive bound is derived. These bounds
may seem quite large, but it should be taken into account that this algorithm
is purely combinatorial and hence, is computationally attractive. This is con-
trary to the algorithm for the online case from Skutella et al. [3], which involves
a computationally cumbersome time-indexed linear programming relaxation.
Finding the optimal solution for these kinds of LP relaxations is generally hard
to achieve in practice.

In this paper, the tightness of the bounds of the online-list model from Gupta
et al. [4] is investigated. By this, we mean that we will take a look at the optimal-
ity gap, the gap between the weighted completion time of the optimal offline

2



algorithm and the weighted completion time of this online, combinatorial algo-
rithm. We will look at this optimality gap from a computational perspective.

The combinatorial algorithm [4] will be compared to offline algorithms from
[3] and the optimal value of the LP relaxation from the same paper. We will
look at the optimality gap of the combinatorial algorithm on ‘regular’, as well as
(possibly) ‘problematic’ instances. Throughout this paper, several experiments
with these instances are performed and computational bounds on the optimal-
ity gaps for these instances will be shown. By performing these computational
experiments, we analyze whether the provided bound of (8+4∆) might be too
loose and whether the algorithm performs better than these bounds imply or
indeed behaves as badly.

Finally, we will also look at the randomized algorithm provided for the of-
fline case [3]. The performance bound for this is shown to be 3

2 + ∆
2 . Throughout

the experiments we will take a look at the tightness of the performance bound
in practice. Also, we will look at the effect on the practical performance of a de-
randomized version of this algorithm. This derandomization will be performed
using the well-known method of conditional probabilities [5]. We will show that
is algorithm works in polynomial time, has equal or better performance than the
random version and, we will simulate the performance of this derandomized al-
gorithm.

2 Notation and Preliminaries

Throughout this paper every instance of a stochastic scheduling model will be
defined as follows. We are given a set of jobs J of cardinality n with job weights
w j ∈ R>0, j ∈ J , and a set of unrelated parallel machines M of cardinality m.
Moreover, we are given a random variable Pi j which represents the distribution
of the processing time of job j ∈ J on machine i ∈ M . Each job j must be exe-
cuted non-preemptively on one of the machines i ∈ M and each machine i ∈ M
can process at most job at the same time. If a job j is being processed on ma-
chine i its processing time is given by Pi j however the actual realisation pi j of
this processing time Pi j is only known after the job has finished. For each in-
stance we will construct a non-anticipatory scheduling policy which minimizes
the expected total weighted completion time E[Σ j w j C j ], where C j denotes the
completion time of job j . Here, the expectancy is taken over C j which is depen-
dent of the random variables Pi j . We take the expected value because we want
too know how the policy performs in expectation and not on some particular
realization of Pi j ’s.

The fact that the jobs are non-preemptive means that once a job is started it
cannot be interrupted until it has been processed. The fact the the scheduling
policy has to be non-anticipatory means that at time t the policy can only use
information that has been observed upto time t . It is allowed that certain jobs
j ∈ J cannot be processed on certain machines i ∈ M , in which case E[Pi j ] =∞.

3



Furthermore we will make use of the online-list model, meaning that the
existence of job j is unknown before it is shown to the machine, and upon ar-
rival, only the random variables Pi j are known. A non-anticipatory policy will,
at any time t , decide whether a job j should be assigned to a machine i based
on the information that has been observed in the past upto time t . Without loss
of generality we also assume that no pair of job j and machine i exists such that
E[Pi j ] = 0, as then job j can always be scheduled at machine i at no cost.

3 Stochastic Scheduling Policies for Unrelated Machines

In this section we will take a look at two algorithms for scheduling policies on
unrelated machines. Firstly, an offline time-indexed LP relaxation with accom-
panying scheduling algorithm as described in [3] will be stated. Secondly, the
online greedy combinatorial algorithm from [4] will be stated. The latter algo-
rithm is the one we are interested in and the former one will provide us with a
means of comparison. The time-indexed LP relaxation will be used as a com-
parative in two ways.

Firstly, we use the optimal solution of the LP relaxation. The fact that this is
an LP relaxation implies that the optimal value hereof will be less than or equal
to the optimal value of any non-anticipatory schedule. This makes that we can
use this optimum to provide a lower bound for the expected weighted comple-
tion time of an optimal policy. The second way in which we can use the LP re-
laxation as a comparative, is by using the accompanying scheduling algorithm
denoted by ASSIGN(X ). This policy is constructed by using the solution of the LP
relaxation and is currently the best known offline scheduling algorithm for the
stochastic scheduling problem on unrelated machines. This means that it can
serve as an adversary for the online algorithm as described in [4] and provide an
upper bound for the expected weighted completion time of an optimal policy.
In our experiments we will use both this lowerand upper bound for the optimal
expected weighted completion time to analyze the performance of the online,
purely combinatorial algorithm from [4].

3.1 Offline Time-indexed LP relaxation

The LP relaxation of the stochastic scheduling model for unrelated machines
assumes that the random variables Pi j , i ∈ M , j ∈ J take positive integral values
only. By [3, Lemma 1] this costs at most a factor 1+ ε for any fixed ε > 0 in the
objective function value. A certain factor ε can be achieved by scaling the time
appropriately. If one, for example, multiplies all processing times by a factor 10,
the amount of time variables in the LP gets 10 times as big. But, actually this is
similar as taking steps of 1

10 in time instead of steps with size 1, which is normal.
So, by scaling the time the LP relaxation becomes more accurate. In this paper
we will from now on assume that Pi j takes positive integral values. If Pi j does
not take integral values we will use a discrete approximation of Pi j .

4



This implies that, without loss of generality, jobs may only be started at an
integral point in time t ∈ Z≥0, at the cost of a factor ε. The other information
about the processing time Pi j that is needed to formulate the LP relaxation are
the expected processing times Pi j and the values

qi j r :=P[Pi j ≥ r +1] fori ∈ M , j ∈ J ,r ∈Z≥0

Below follows the LP relaxation of the given problem for unrelated machines
as derived in [3, §3]. Let xi j t be the probability that job j ∈ J is started on ma-
chine i ∈ M at time t ∈ Z≥0. This means that this decision may depend on the
actual processing times of jobs started beforehand. It is however independent
of decisions that happen at time t∗ ≥ t . These probabilities xi j t are the variables
of the LP relaxation. The LP relaxation, which results in an optimal solution xi j t

corresponding to a policy Π (this policy is a solution to the LP relaxation prob-
lem, it might not be a solution to the original scheduling problem) where the
expected weighted completion time is equal to the optimal value of the LP solu-
tion x, is:

min
∑
j∈J

w j C LP
j (1)

s.t.
∑

i∈M

∑
t∈Z≥0

xi j t = 1 ∀ j ∈ J , (2)

∑
j∈J

s∑
t=0

xi j t qi j s−t ≤ 1 ∀ i ∈ M , s ∈Z≥0, (3)

C LP
j = ∑

i∈M

∑
t∈Z≥0

xi j t (t +E[Pi j ]) ∀ j ∈ J , (4)

xi j t ≥ 0 ∀ j ∈ J , i ∈ M , t ∈Z≥0.

In the above defined LP relaxation equations (1) and (4) together define the
objective. Since the LP variables CLP are uniquely defined by xi j t this might also
be placed in the objective function (1), which represents the expected weighted
completion time.

The constraints are given by equations (2) and (3). The former ensures that
every job is processed completely. The latter constraint ensures that that the
expected number of jobs processed by machine i during timespan [s, s+1] is no
more than 1.

It should be remarked that this LP has an infinite amount of variables xi j t

due to the fact that for any time t ≥ 0 the probability that a job can be started may
be positive. Fortunately, there exists a bound T such that an optimal solution
with xi j t = 0, t > T exists. This bound [3, Lemma 3] is given by:

T := 2n max
j∈J ,i∈M

E[Pi j ]+2
∑
j∈J

w j ·max
i∈M

∑
j∈J
E[Pi j ] (5)

By applying this bound, the amount of variables becomes finite and it is now
possible to practically obtain an LP solution. In order to transform the LP solu-

5



tion into a scheduling policy, we use the policy ASSIGN(X ) [3, §4]. Here X is de-
fined by using the feasible LP solution X , by defining Xi j :=∑

t∈Z≥0
xi j t for i ∈ M ,

j ∈ J . The scheduling policy ASSIGN(X ) now assigns each job j ∈ J indepen-
dently at random to one machine i ∈ M with probability Xi j . After all jobs have
been assigned, the jobs get sorted in the right order. On each machine i ∈ M
the jobs assigned to i are scheduled according to the WSEPT (weighted shorted
expected processing time) rule. So, in non-increasing order of w j /E[Pi j ].

It is known that the expected value of the schedule constructed by ASSIGN(X )
is at most a factor 3

2 + ∆
2 times the value of the underlying LP solution x [3].

3.2 Online Greedy Algorithm

For the online Greedy Algorithm [4] it is w.l.o.g. assumed that the jobs are pre-
sented in the order 1,2, ..., |J |. On any machine i , let H( j , i ) and L( j , i ) denote the
sets of all jobs that have higher respectively lower priority than job j according
to their order in non-increasing order of ratios w j /E[Pi j ], ties broken by index:

H( j , i ) := {k ∈ J | wk

E[Pi k ]
> w j

E[Pi j ]
}∪ {k ∈ J | k ≤ j ,

wk

E[Pi k ]
= w j

E[Pi j ]
}

L( j , i ) := J \ H( j , i )

Also, let k → i denote the fact that job k has been assigned to machine i .
With these definitions the Greedy Algorithm works as follows: Whenever a new
job j ∈ J is presented to the Greedy Algorithm, the algorithm calculates the ex-
pected increase EI( j → i ) for all machines i ∈ M by means of equation (6).

EI( j → i ) := w j

(
E[Pi j ] + ∑

k→i ,k< j ,k∈H( j ,i )
E[Pi k ]

)
+E[Pi j ]

∑
k→i ,k< j ,k∈L( j ,i )

wk (6)

The Greedy Algorithm now assigns job j to the machine where the expected
increase is minimal, i.e. j is assigned to machine i ( j ) := argmini∈M {EI( j → i )},
ties broken arbitrarily. Once all jobs have been assigned to a machine, they are
sequenced according to the WSEPT rule, so in non-increasing order of w j /E[Pi j ].
In [4, Theorem 1] it is proven that this algorithm is (8+4∆)-competitive for this
stochastic scheduling problem. The competitive ratio holds with respect to the
worst-case sequence of online jobs and processing time distributions. It does
however not hold for the worst realization of processing times Pi j , but only for
the expected processing times.

4 Analysis on Identical Machines

In this section we take a look at the performance of both the greedy algorithm
and the LP relaxation on the stochastic simulation problem with identical par-
allel machines. This problem is in principle easier than the problem with unre-

6



lated machines, but a good comparative algorithm already exists for this prob-
lem: the offline WSEPT rule (schedule jobs with highest ratio of weight to ex-
pected processing time first). The performance bound for the WSEPT-rule is
1+ (m−1)(∆+1)

2m for arbitrary distributions of Pi j and 2− 1
m if CV[Pi j ] ≤ 1 [6]. This

guarantee is quite a lot better than the guarantee of the online Greedy Algorithm,
so it is interesting to make this comparison.

4.1 Experiment

In order to evaluate the practical performance of the Greedy algorithm, we com-
pare its expected performance to the solution of the LP relaxation (optimal value
& policy). Besides that, we are also interested in the expected performance of
the WSEPT rule, even though that rule is not an online algorithm. This will be
considered as an additional benchmark. All algorithms were programmed in
Python and this code can be found in Appendix B. Firstly, some comparisons
are made using general instances in order to review the general performance of
the Greedy Algorithm.

These general instances have different amounts of machines and jobs, with
exponentially distributed processing times Pi j . This instance type is defined as
follows:

Instance 1.

Pi j ∼ Exp(ki ) ki ∈Z,1 ≤ ki ≤ 10,∀ j ∈ J

Pi j = Pm j ∀i ,m ∈ M ,∀ j ∈ J

w j = 1 ∀ j ∈ J

The expected value of these processing times is allowed to take integral val-
ues from one upto and including 10, i.e. 0 ≤ E[Pi j ] ≤ 10,E[Pi j ] ∈Z. Notice that in
the case of exponentially distributed processing times ∆= 1. Since all machines
are identical: Pi1 j = Pi2 j ∀ii , i2 ∈ M . The amount of jobs reaches from 1 to 9 and
the amount of machines from 2 to 4. Per combination of amount of jobs and ma-
chines 100 instances, with randomly drawn values of E[Pi j ] in the given domain,
were used as input. Per instance the optimal values of the WSEPT rule, Greedy
Algorithm, LP and LP ASSIGN(X )-algorithm were compared. The calculation of
these values will be explained in the next paragraph

Also simulations with bigger amounts of jobs and machines were executed.
Since the calculations on the LP are computationally very involved simulations
of bigger versions of Instance 1 are done without comparing to the optimal LP
value or the ASSIGN(X ) policy. The amount of machines in this case ranges from
1 to 100 and the amount of jobs from 20 to 500.

After the first instances, we will take a look at a known problem instance for
the WSEPT rule, namely the stochastic Kawaguchi and Kyan instance [7]. It is
interesting to see if this instance is also problematic for the Greedy Algorithm.
Next to that, it is interesting to see if there exist problematic instances which

7



come close to the 8+4∆ performance bound. The instance is defined as follows,
where h ∈Z and k ∈Z is divisible by b(1+p

2)hc:

Instance 2 (Stochastic Kawaguchi Kyan).

|M | = h +b(1+
p

2)hc
|J | = mk +h

Pi j ∼ Exp(1/(1+p
2)) for 1 ≤ j ≤ mk, ∀i ∈ M

w j = 1+
p

2 for 1 ≤ j ≤ mk, ∀ j ∈ J

Pi j ∼ Exp(k) for mk +1 ≤ j ≤ mk +h, ∀i ∈ M

w j = 1/k for mk +1 ≤ j ≤ mk +h, ∀ j ∈ J

Notice that w j /E[Pi j ] = 1 for all jobs. This implies that every list schedule
is a WSEPT schedule, however the order in which the jobs are scheduled does
influence the expected weighted completion time. The schedule has optimal
performance when all long jobs are scheduled fist, and worst-case performance
if the long jobs are scheduled last. This instance gives a worst case performance
bound of approximately 1.229, which is worse than the worst known determin-
istic instance which has a tight performance bound of approximately 1.207 [8].
This instance is simulated with a few different amounts of machines and jobs.
For each simulation a comparison between the optimal list schedule for this
instance and respectively the worst case schedule for the WSEPT rule or the
Greedy Algorithm is made.

Also another type of possibly problematic instances are simulated for the
Greedy Algorithm with respect to the WSEPT algorithm. These instances consist
of jobs having a so called 2-point distribution. In this case all instances had the
following processing time distributions Pi j , for different probabilities p:

Instance 3.

Pi j =
{

1, with probability p

1010 +1, with probability p
0.5 ≤ p < 1,∀ j ∈ J

w j = 1 ∀ j ∈ J

Each instance will have 10 machines, a different value for ∆, and a differ-
ent amount of jobs ranging from 20 to 100. The factor ∆ can be influenced by
changing p, since for this instance ∆ ≈ p

1−p . Here, p must be chosen in such a

way that (1−p) ·1010 is a lot bigger than 1, in the experiment 0.5 ≤ p ≤ 64/65, so
this condition holds throughout the experiment. This fact is derived as follows:

8



E[Pi j ] = 1+ (1−p) ·1010

Var[Pi j ] = p((1−p) ·1010)2 + (1−p)(1+p ·1010)2

∆= Var[Pi j ]

(E[Pi j ])2

= p((1−p) ·1010)2 + (1−p)(1+p ·1010)2

(1+ (1−p) ·1010)2

≈ p((1−p) ·1010)2 + (1−p)(p ·1010)2

((1−p) ·1010)2 (provided 1 ¿ (1−p) ·1010)

= p(1−p)+p2

1−p

= p

1−p

Instance 3 has jobs with high variance and it is interesting to see how the
multiplicative optimality gap between the WSEPT rule and the Greedy Algo-
rithm differs with the amount of jobs and ∆. Especially, since the proven per-
formance bound for the Greedy Algorithm contains a factor 4∆.

Also, a few other instance types were considered but eventually not included
in this paper. We did not include deterministic instances, or instances with a
very low variance, since less uncertainty gives less interesting results. Neither
did we include instances which, just like Instance 3 have a high coefficient of
variation, since this instance already provides us with enough information re-
garding ∆. Lastly, we did not try to perturb and/or combine instances men-
tioned above, since we are mainly interested in the performance of the Greedy
Algorithm on unrelated machines. A few test simulations were performed, but
no new or additive information was gained.

4.2 Constructing the Experiment

As mentioned in the previous paragraph, simulations were run by means of code
written in Python (see Appendix B). The way this code implements the simula-
tion of the different algorithms shall be explained roughly below, as to sketch the
execution of the experiments.

A simulation of a particular instance starts with the generation of the in-
stance according to the mentioned specifications. This means that the machines,
jobs, job weights and job distributions are instantiated. The real processing
times are still unknown. When the instance is instantiated, it is passed to (a
selection of) the algorithms.

The WSEPT algorithm obtains the instance and schedules the job according to
the WSEPT rule (weighted shorted expected processing time first) [9, §10.1]. The
WSEPT rule works as defined in Algorithm 1.

9



We see there that jobs get assigned to a machine one by one.Once they are
assigned a realization pi j of the processing time Pi j is drawn from the given
distribution. This process continues until all jobs have been assigned. After-
wards the weighted completion times get summed up, which results in the total
weighted completion time. Since the realized processing times pi j are drawn
randomly from a given distribution, the same instance is processed by the WSEPT
rule 10,000 times with different, randomly drawn, realizations of the processing
times. By taking the average of the weighted completion time of each run, we ob-
tain the expected weighted completion time E[

∑
j∈J w j C j ] of the given instance.

Data: Jobs: J ; Machines: M
Result: Policy: Π; Weighted Completion Time: value
initialize t := 0;
while there are unscheduled jobs do

j ob := argmax j∈J

{ w j

E[Pi j ]

}
;

if a machine is idle at time t then
schedule j ob at time t at an idle machine;
draw a realization pi j of the processing time;

else
change t to next time a machine falls idle;
value = value +w j · t , where j is the job that finished at time t ;

end
end
while jobs are being processed do

change t to next time a machine falls idle;
value = value +w j · t , where j is the job that finished at time t ;

end

Algorithm 1: Calculating the weighted completion time of an instance for
the WSEPT rule

The Greedy Algorithm is deterministic in the sense that for every instance it
will return one schedule, independent of the realizations pi j of the processing
times Pi j . Because of this, the expected weighted completion time E[

∑
j∈J w j C j ]

can be calculated by looking at the weighted completion time of the same in-
stance, when using the expected processing time E[Pi j ] instead of the realiza-
tions pi j . This agrees with [4, Lemma 3]. So during the simulation, firstly the
jobs are presented in their input order to the algorithm, which schedules the
jobs to the machines. Once all jobs are scheduled the expected completion time
of each machine is calculated and these are added together. This also results in
the correct value for the expected weighted completion time E[

∑
j∈J w j C j ]. This

entire process is depicted by Algorithm 2.

10



Data: Jobs: J ; Machines: M
Result: Policy: Π; Expected weighted completion time: value
for j ∈ J do

j → argmini∈M {EI( j → i )};
end
for i ∈ M do

Order all jobs j assigned to i in non-increasing order of
w j

E[Pi j ] ;

end
value := 0;
for i ∈ M do

t := 0;
for j assigned to i (in order defined previously) do

t = t +E[Pi j ];
value = value +w j · t ;

end
end

Algorithm 2: Calculating the expected weighted completion time of the
Greedy Algorithm

The Linear Programming Relaxation obtains the instance and starts with
constructing the time-indexed LP relaxation defined by equations (1), (2), (3)
and (4). This LP is than solved using Gurobi and its Python API. This will re-
turn an optimal value, which is smaller than or equal to the expected weighted
completion time of an optimal policy for the given instance.

The optimal value of the LP relaxation is used as a lower bound for the ac-
tual optimal solution of the given instance. The optimal LP relaxation solution
X is also used in the LP-based algorithm ASSIGN(X ). Recall that X is defined
by, Xi j := ∑

t∈Z≥0
xi j t for i ∈ M , j ∈ J . Since this optimal solution only uses

probabilistic information concerning the processing times Pi j , it is independent
of the realizations pi j of the processing times. Because of this fact, also here
we will use the expected processing time E[Pi j ] instead of the realizations pi j

thereof. This algorithm must still be run multiple times (10,000) since the policy
ASSIGN(X ) contains a random element (it assigns jobs to machines according to
the probability distribution X ). The average value of all runs is calculated and
this results in the expected weighted completion time E[

∑
j∈J w j C j ] of the policy

ASSIGN(X ). The process of one run is depicted in Algorithm 3.

11



Data: LP solution X ; Machines: M ; Jobs: J
Result: Policy: Π; Policy value: value
for j ∈ J do

j → i with probability Xi j ;
end
for i ∈ M do

Order all jobs j assigned to i in non-increasing order of
w j

E[Pi j ] ;

end
value := 0;
for i ∈ M do

t := 0;
for j assigned to i (in order defined previously) do

t = t +E[Pi j ];
value = value +w j · t ;

end
end

Algorithm 3: Calculating the weighted completion time of ASSIGN(X )

4.3 Results & Analysis

In the previous paragraph, the experiment for the identical machine case was
described. Firstly, we will take a look at Instance 1. These are instances with an
amount of jobs between 1 and 9 and an amount of machines reaching from 2 to
4, where the jobs are exponentially distributed with weights of 1. Since it is hard
to know what the actual optimal value is, we will take a look at the multiplica-
tive factor between the optimal solution according to the LP relaxation and the
expected weighted completion time of each algorithm. The value of the opti-
mal LP solution might be unreachable in reality, but it does give a good look into
how far each algorithm is maximally away from the optimum. Besides that, the
LP solution provides a good benchmark in order to make a comparison between
all algorithms.

The results of the simulation can be found in Table 1 in the appendix. This
table shows for each amount of machines and jobs, what the average respec-
tively worst case factor of difference is between the LP solution and the used
algorithm. The first thing that is noticeable is the fact that the WSEPT algorithm
behaves best on average and in worst case for all the instances. The performance
of the Greedy Algorithm is less with respect to the WSEPT rule, the difference
factor is about 0.1 for the average case and the worst case. ASSIGN(X ) clearly
behaves clearly worse, the factor of this policy is approximately 0.2 worse than
the WSEPT rule, in both the average and worst case.

Observation 1. The Greedy Algorithm has a factor ≈ 1.1 bet-
ter performance than ASSIGN(X ) on ‘average’ instances for
identical machines.

12



So, as expected the WSEPT rule has the best performance guarantee on small
average instances. This is to be expected since it makes use of the fact that jobs
sometimes finish sooner than expected and does not schedule all jobs at time 0,
which is what the Greedy and ASSIGN(X ) algorithms do. However, it is also in-
teresting that the relative difference in performance guarantee becomes smaller
as the amount of jobs increases.

When looking at bigger amounts of jobs and machines we obtain Table 2
in the appendix. This shows with what multiplicative factor the value of the
Greedy Algorithm is higher than that of the WSEPT rule. On average the fac-
tor of difference seems to lie around 1.15 and the worst case difference in the
simulation was about 1.17. We see that this factor is not really that dependent
on the amount of jobs or machines and that the difference remains quite small.

Observation 2. Both the Greedy Algorithm and ASSIGN(X )
have notable worse performance on ‘average’ instances for
identical machines than the WSEPT algorithm.

After the experiment on normal cases, an experiment with a known worst-
case instance for the WSEPT-rule was tested, the stochastic Kawaguchi Kyan in-
stance (Instance 2). The results can be found in Table 3. This instance was run
with different amounts of machines |M| and different amounts of jobs. Here we
see that the worst case performance guarantee of the WSEPT rule is a little bit
lower than that of the Greedy Algorithm. However the worst case performance
guarantee of the WSEPT rule increases when the instance becomes bigger and
as shown in [7] will be approximately 1.23 when enough machines and jobs are
present. The Greedy Algorithm seems to have the worst performance when the
amount of jobs is a bit lower (1.25) and slightly better when this amount in-
creases (1.23). This can be explained by the fact that for a big amount of jobs
it does not really matter that much that all jobs were scheduled at time t = 0.
However, this difference is minor, and it seems that the worst case performance
guarantee of the Greedy Algorithm is quite similar to that of WSEPT for this worst
case instance.

Observation 3. The Greedy Algorithm has slightly worse per-
formance on the difficult stochastic Kawaguchi Kyan instance
than the WSEPT rule. When the amount of jobs and ma-
chines increases, they behave similarly and the Greedy Al-
gorithm is a good alternative here.

Actually the performance of the Greedy Algorithm seems to be overall very
close to WSEPT, since both algorithms work similarly. WSEPT can however have
a small advantage due to the fact that jobs are only scheduled when a machine
falls idle. This gives the possibility to use the fact that jobs might end sooner
than expected due to their stochastic processing times. The Greedy Algorithm
does not have this possibility, but the jobs are scheduled in a similar way, so the

13



worst case performance of this algorithm should not be a lot worse than that of
the WSEPT rule.

Finally we look at Instance 3, with high variance. The multiplicative gap be-
tween the WSEPT rule and the Greedy Algorithm is investigated. The results of
the experiment can be found in Table 4. Firstly, we observe that for each ∆ their
exists an amount of jobs which gives the biggest optimality gap. This is quite
logical, since with a really high amount of jobs almost each machine will have
a job with a very long processing time, and in that case it does not really matter
whether all jobs are assigned at time 0 or only when a machine falls idle.

Observation 4. The Greedy Algorithm performs a lot worse
than the WSEPT rule, on instances with a high coefficient of
variation and identical machines. The optimality gap be-
tween the two algorithms increases positively with ∆.

We also see here that increasing ∆ increases the gap notably. When we look
closely, we see that the gap does not increase with a factor 8 when ∆ is doubled.
In the worst case, the gap increases at the same rate as ∆, but most of the time
it increases way slower. This makes us realize that the factor 4∆ in the proven
performance bound is too negative. The algorithm probably has a way lower
performance bound of a constant plus 1 or 2 ∆.

Observation 5. The optimality gap of the Greedy Algorithm
most likely does not increase at a rate of 4∆, when ∆ in-
creases. The increase rate probably lies between ∆ and 2∆
in worst case.

5 Analysis on Unrelated Machines

In the previous section the performance of the Greedy Algorithm on identical
machines was tested and compared to algorithms. In this section we will look at
the unrelated machines case, which is what the algorithm was actually designed
for. This algorithm is said to be (8 + 4∆)-competitive. We will show whether
or not we can find instances for which the performance is indeed close to this
given performance bound. Next to this, we take a look at the performance of this
algorithm with respect to ‘average’ instances. The performance of this algorithm
will again be compared with the optimal value of the LP relaxation and the policy
ASSIGN(X ), both defined in paragraph 3.1.

5.1 Experiment

The experiment for unrelated machines has a similar structure as the experi-
ment in paragraph 4.1. The simulation code, which was roughly described in
paragraph 4.2, for the Greedy Algorithm and the Linear Programming Relax-
ation with the accompanying algorithm ASSIGN(X ) is identical. The instances
are the only thing that was changed for this part of the experiments.

14



Firstly, a comparison between both the Greedy Algorithm and the ASSIGN(X )
algorithm with respect to the optimal LP relaxation solution are made on ‘com-
mon’ instances. This is an interesting experiment, since here we can see how
the Greedy Algorithm performs with respect to ASSIGN(X ) on instances which
have not been constructed to be difficult for these algorithms. These common
instances have different amounts of machines and jobs, with exponentially dis-
tributed processing times Pi j . The ‘common’ instances are defined by:

Instance 4.

Pi j ∼ Exp(ki ) ki ∈Z,1 ≤ ki ≤ 10,∀ j ∈ J

Pi j = Pm j ∀i ,m ∈ M ,∀ j ∈ J

w j = 1 ∀ j ∈ J

The expected value of these processing times takes integral values from 1
upto and including 10, i.e. 0 ≤ E[Pi j ] ≤ 10,E[Pi j ] ∈ Z. Notice that ∆ = 1, and
that the processing times Pi j for a job j might have different expected values for
different machines i . The amount of jobs in the simulation ranges from 1 to 9
and the amount of machines from 2 to 4.

Per combination of amount of jobs and machines 100 instances, with ran-
domly drawn values of E[Pi j ], in the given domain, are used as input. Per in-
stance the optimal values of the Greedy Algorithm, LP and LP ASSIGN(X ) are
stored and compared. The calculation of these values has been explained in
paragraph 4.2.

After the common instances we will look at a few types of worst case in-
stances, trying to exploit the fact that the machines are unrelated. In both in-
stances we will construct jobs which have a low expected processing times on
one half of the machines and notably worse expected processing times on the
other half of the machines. The first type of instances had two types of jobs:

Instance 5.

Pi j ∼ Exp(4) for 1 ≤ j ≤ |M |/2, ∀i ∈ M

Pi j ∼
{

Exp(4), 1 ≤ i ≤ |M |/2

Exp(1000), |M |/2+1 ≤ i ≤ |M | for |M |/2+1 ≤ j ≤ |J |

w j = 1 ∀ j ∈ J

The jobs are also presented to the Greedy Algorithm in this order, to ensure
that the short jobs are put in the first half of the machines. After that the jobs
which have a longer processing time on the second half of the machines will be
put at the same first half of the machines. This results in the fact that the second
half of the machines remains idle. By constructing the instance like this, we
can exploit the unknowingness of the Greedy Algorithm about the jobs that still
have to be presented. This instance will also be given to the LP relaxation and

15



the accompanying ASSIGN(X ) algorithm to obtain a comparison. The instance
will be run for different values of |M | and |J |.

Another instance which exploits a different feature of the unrelated machines
model will be simulated. This instance is defined as follows:

Instance 6.

|J | = |M |
Pi j ∼ Exp(k) for 1 ≤ j ≤ |M |/2, ∀i ∈ M

Pi j ∼
{

Exp(k), 1 ≤ i ≤ |M |/2

Exp(2k −1), |M |/2+1 ≤ i ≤ |M | for |M |/2+1 ≤ j ≤ |M |

w j = 1 ∀ j ∈ J

In this case, the jobs are presented to the Greedy Algorithm in the exact same
order as defined above. This results in the fact that firstly the jobs which have the
same short expected processing time on all machines are assigned to the first
half of the machines. After that, the second half of the jobs will be assigned to
the second half of the machines, since this results in a lower expected weighted
completion time. This instance makes use of the fact that the Greedy Algorithm
does not know which jobs still have to be presented. The simulation is run for
different values of k and |M |. In the end a comparison between the Greedy Al-
gorithm, the optimal LP solution and ASSIGN(X ) is made.

We considered a few other instances, but these were not included in the pa-
per. Firstly, variants on Instance 5 and 6 with different amounts of jobs or slightly
different processing times have been considered. These were not included, be-
cause they behaved similarly to these instances, and hence provided no extra
information. An unrelated machine variant of Instance 3 was also considered,
but after a few test runs we did not gain any information that the other instances
had not already given, so these instances did not make it to this paper. The last
type of instances that is not included in this paper, is the one were weights w j

are chosen randomly, equal to the processing time Pi j , or in some other man-
ner. For all options tried the behaviour was similar to changing the processing
time Pi j instead of the weight w j , so also these type of instances did not provide
new information and were thus not included here.

5.2 Results & Analysis

The first instance that was simulated was the ‘common’ Instance 4, consisting of
jobs with various exponential distributions. The results hereof can be found in
Table 5 in the Appendix. In this table we see that the multiplicative gap between
the Greedy Algorithm and the optimal value of the LP relaxation can become
quite big. It seems however that the worst case gap will not become a lot bigger
than 1.70. Not only is this the highest value we obtain in this simulations, but
when the amount of jobs gets bigger, the gap seems to become smaller. Besides

16



that, an increasing amount of machines does not seem to have a big influence.
It is however difficult to be sure since the simulation could not be run on bigger
instances. But it seems logical that the gap will at least not become bigger than
2.

Observation 6. The multiplicative gap between the expected
weighted completion time of the Greedy Algorithm and the
optimal value of the LP relaxation is quite big. However, it
will most likely not exceed 2 and certainly not come close to
8+4∆.

On the other hand, when we compare the Greedy Algorithm and ASSIGN(X )
we observe the following:

Observation 7. On ‘common’ instances with unrelated ma-
chines, the Greedy Algorithm and ASSIGN(X ) have on aver-
age almost the same performance.

Observation 8. The worst case performance guarantee, of
ASSIGN(X ) on ‘common’ instances with unrelated machines
is notably better than the worst case guarantee of the Greedy
Algorithm.

After these ‘common’ instances, two types of problematic instances were
simulated. The first type of instance is described by Instance 5 and the results
of the simulation can be found in Table 6 in the Appendix. We see here that the
multiplicative gap between the LP solution and the Greedy Algorithm can get
as big as 1.81, if the amount of long jobs equals the amount of machines. Be-
sides that, we also see that the Greedy Algorithm performs a lot worse than the
ASSIGN(X ) policy, which has a worst case performance bound of approximately
1.42.

Observation 9. For instances for unrelated machines, with
jobs that have very high processing time on one machine
ASSIGN(X ) performs a factor ≈ 1.4 better than the Greedy
Algorithm.

The other difficult instance is defined by Instance 6 and the results of the
simulation can be found in Table 7. For this instance it looks as if the worst-case
performance bound of the Greedy Algorithm is converging to approximately 1.5.
This is a better gap than we saw at the previous instance, but still worse than
the average performance of the Greedy Algorithm on a ‘common’ instance. It
is however striking that the performance of the Greedy Algorithm is a lot worse
than the performance of the ASSIGN(X ) algorithm, which returns a policy that is
nearly optimal. When the expected processing time is high enough the LP relax-
ation works best and the multiplicative gap approaches 0, whereas the Greedy
Algorithm approaches 1.5. So here we see that the Greedy Algorithm lacks in
performance, where ASSIGN(X ) works almost perfect.

17



Observation 10. On ‘problematic’ instances for unrelated
machines, where jobs have large differences in processing
times for different machines, ASSIGN(X ) should be preferred
over the Greedy Algorithm when looking at optimality of the
resulting policy.

When we combine all results, we conclude that the performance gap be-
tween the Greedy Algorithm and the LP solution can get quite big (for ∆= 1). It
looks as if the gap can be extended to 2, by choosing the right parameters for the
jobs. However the bound of 8+4∆ seems to be quite far out of reach.

6 Derandomization of ASSIGN(X )

6.1 Derandomization

In previous sections we simulated the algorithm ASSIGN(X ) quite a couple of
times. It turned out that the multiplicative gap between the optimal value of
the LP relaxation and the ASSIGN(X ) policy can become quite big. Sometimes,
this policy had even worse performance than the Greedy Algorithm, which is
unexpected. This gave us enough reason to look into the derandomization of
this algorithm in order to increase the performance. The technique we will use
for this, is the method of conditional probabilities. This method is implicitly
contained in a paper of Erdös and Selfridge [10] and was extended to general
cases by Spencer [5]. Since this method uses the expected weighted completion,
we need an expression using the LP solution to calculate this value in polynomial
time.

Theorem 1. The expected weighted completion time E
[∑

j∈J w j C j
]
, for given val-

ues P[i → j ] is equal to∑
j∈J

w j
∑

i∈M
P[ j → i ]

∑
k∈H( j ,i )

E[Pi k ]P[k → i | j → i ].

Proof. Firstly, using the linearity of the expected value we obtain

E
[ ∑

j∈J
w j C j

]= ∑
j∈J

w jE[C j ]. (7)

Secondly, by conditioning on the assignment of job j

E[C j ] = ∑
i∈M

P[ j → i ]E[C j | j → i ]. (8)

Now, recall the definition of H( j , i ),

H( j , i ) := {k ∈ J | wk

E[Pi k ]
> w j

E[Pi j ]
}∪ {k ∈ J | k ≤ j ,

wk

E[Pi k ]
= w j

E[Pi j ]
},

18



and index the jobs k in H( j , i ) by k1,k2,k3, ... in non-increasing order of wk /E[Pi k ],
breaking ties by index. Remark that H( j , i ) 6= ; and that job j is the last element
of the ordered sequence {ki }. Thirdly, by conditioning on jobs ki ,

E[C j | j → i ] =P[k1 → i ]E[C j | j → i ,k1 → i ]+ (1−P[k1 → i ])E[C j | j → i ,k1 6→ i ]

=P[k1 → i ](E[Pi k1 ]+E[C j | j → i ,k1 6→ i ])+ (1−P[k1 → i ])E[C j | j → i ,k1 6→ i ]

=P[k1 → i ]E[Pi k1 ]+E[C j | j → i ,k1 6→ i ]

... conditioning on first element of H(j,i), until |H( j , i )| = 1 =⇒ H( j , i ) = { j }

= ∑
k∈H( j ,i )\{ j }

P[k1 → i ]E[Pi k1 ] + E[C j | j → i ,k 6→ i ,∀k ∈ H( j , i ) \ { j }]

= ∑
k∈H( j ,i )\{ j }

P[k1 → i ]E[Pi k1 ] + E[Pi j ]

= ∑
k∈H( j ,i )

E[Pi k ]P[k → i | j → i ] (9)

In the final step we use P[k → i | j → i ] = P[k → i ], ∀k 6= j and P[k → i | j → i ] =
1, k = j . Finally, by combining Equations (7), (8), and (9) we obtain

E
[ ∑

j∈J
w j C j

]= ∑
j∈J

w j
∑

i∈M
P[ j → i ]

∑
k∈H( j ,i )

E[Pi k ]P[k → i | j → i ]. (10)

Hence we conclude our proof.

Using equation (10) we can easily calculate E
[∑

j∈J w j C j
]
. We can also use

the same formula to calculate E
[∑

j∈J w j C j | jk → im
]
, by setting P [ jk → i ] to

equal 1 for machine i = im and 0 for all other machines i 6= im .
Since, we have obtained expressions for the expected weighted completion

for given valuesP[i → j ], we can calculate E
[∑

j∈J w j C j
]

for all solutions X of the
LP relaxation. This means we can calculate the expected weighted completion
time of ASSIGN(X ) using equation (10). The method of conditional probabilities
states that we can now derandomize ASSIGN(X ), by making a decision per job j
by using equation (10).

Since E
[∑

j∈J w j C j
] = ∑

i∈M P[ j1 → i ]E
[∑

j∈J w j C j | j1 → i
]
, we know there

exists a machine iOPT ∈ M such that E
[∑

j∈J w j C j | j1 → iOPT
]≤ E[∑

j∈J w j C j | j1 →
i
]
, ∀i ∈ M . But also E

[∑
j∈J w j C j | j1 → iOPT

]≤ E[∑
j∈J w j C j

]
.

The method of conditional probabilities tells us that we can now subsequently
assign job j to machine iOPT and be sure that our expected value is less than
or equal to that of the random version of ASSIGN(X ). The derandomization of
ASSIGN(X ) is depicted by Algorithm 4.

19



Data: LP solution: X ; Machines: M ; Jobs: J
Result: Policy: Π; Policy value: optV alue
for j ∈ J do

opt M achi neV al ue = ∞;
opt M achi ne = None;
for i ∈ M do

machi neV alue = E
[∑

k∈J wkCk | j → i
]

(use Equation (10));
if machi neV alue ≤ opt M achi neV al ue then

opt M achi neV al ue = machi neV alue;
opt M achi ne = i ;

end
end
j → opt M achi ne;
Update Π with ( j → i ) (in non-increasing order of w j /E[Pi j ]);
Update X to X |( j → i );
optV alue = opt M achi neV al ue;

end

Algorithm 4: Derandomized version of ASSIGN(X ).

If one looks closely at the algorithm, the complexity of the determinization
of ASSIGN(X ) can be determined. In Algorithm 4 we see that the outer for-loop
has complexity O(n), where n is the amount of jobs. Inside this for-loop, we see
another for-loop of complexity O(m), with m equal to the amount of machines.
So the complexity we can see in Algorithm 4 is O(nm).

However, we have to take into account that on the inside of these for-loops
the value E

[∑
k∈J wkCk | j → i

]
is being calculated. For this we use Equation (10),

with a slightly adapted version of the LP solution X as explained above. It is easy
to see, that the complexity of calculating this sum O(n2m). By combining all this
derive the following fact:

Fact 1. The complexity of the derandomized version of ASSIGN(X )
is O(n3m2).

This result is desirable, since it means that our policy can be calculated in
polynomial time once we have obtained the optimal LP solution X .

6.2 Analysis & Results

The performance of the derandomized version of ASSIGN(X ) has also been com-
pared to the random version of this algorithm. This has been done using the
derandomized version on the same instances on which the random version of
ASSIGN(X ) has also been used (Instances 1, 4, 5 and 6). A comparison can be
made by comparing the optimality gap between each version of ASSIGN(X ) and
the optimal value of the LP relaxation. The simulations have been performed
in the same way as explained in section 4 and 5, Instances 1, 4, 5 and 6 are also

20



defined there. The Python code which was used for the derandomization can be
found in Appendix B.

Firstly, we compare both versions of ASSIGN(X ) on Instance 1, which has
identical machines. We observe that the derandomized version has a better per-
formance than the random version, both on average and in worst case. When
the amount of jobs gets higher, the factor between these two algorithms is ap-
proximately 1.1. In this case it would definitely pay off to use the derandomized
version.

Observation 11. On ‘common’ instances with identical ma-
chines, derandomization of ASSIGN(X ) improves both the
average and worst case performance noticeably with a fac-
tor ≈ 1.1.

On Instance 4, which is the unrelated machine version of Instance 1, we ob-
serve similar behaviour. On average the difference factor between the random
and randomized version is again approximately 1.1, however when looking at
the worst case, we see that the performance is almost similar.

The simulation results on Instance 5 also show a notable difference in per-
formance between the random and derandomized version of ASSIGN(X ). Here
the multiplicative gap between the two algorithms also lies around 1.1, but is
sometimes quite a bit bigger.

Observation 12. On instances with unrelated machines, de-
randomization of ASSIGN(X ) improves both the average and
worst case performance notably with a factor ≈ 1.1.

With Instance 6 we see something quite remarkable, namely that the deran-
domized version always yields the optimal policy, whereas the random version
does not. This can be observed by noticing that the expected weighted comple-
tion time of this algorithm is always equal to the optimal value of the LP relax-
ation. Since this value is lower than or equal to the weighted completion time of
an optimal schedule, the policy of the derandomized ASSIGN(X ) must be opti-
mal here.

Observation 13. On some instances the derandomization
of ASSIGN(X ) yield an optimal policy, whereas the random
version does not.

If we now combine all results we see here, we see that derandomizing ASSIGN(X )
enhances the performance greatly (on average with a factor 1.1), at the cost of
a small polynomial-time computation. So it would definitely be advised to use
this derandomized policy, which for some instances even yields an optimal pol-
icy.

21



7 Conclusions

After several simulations, with different stochastic scheduling instances, of the
Online Greedy Algorithm from [4] we can conclude that worst case performance
bound is most likely lower than 8 + 4∆. The Greedy Algorithm however does
not have better performance than the WSEPT rule on identical machines. The
performance of the online Greedy Algorithm, is however notably better than the
LP based algorithm ASSIGN(X ) from 3.

In the unrelated machines case, we see that the performance of the online
Greedy Algorithm is a bit worse than that of the online LP based algorithm ASSIGN(X ).
It should however be taken into account that the computation of ASSIGN(X ) is
computationally intractable. This is why the balance between computation and
performance should be found and both algorithms can be useful in different sit-
uations. Since in the online case the Greedy Algorithm is the only one for unre-
lated machines, and the performance from a computational perspective is quite
good, it is a very promising algorithm for this type of problems.

Finally, this paper derived a derandomization of ASSIGN(X ) which can be
computed in polynomial O(n3m2) time. The performance of this algorithm is
notably better than that of the random version and for some instances even re-
turns an optimal policy.

Acknowledgements. This work was performed under the guidance of mentor
Marc Uetz, University of Twente. The author thanks him for his great support
and advise whilst this paper was being written.

22



References

[1] R. L. Graham, E. Lawler, J. Lenstra, and A. H. G. Rinnooy Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: A
survey”, Annals of Discrete Mathematics, vol. 5, pp. 287–326, 1979.

[2] H. Hoogeveen, P. Schuurman, and G. Woeginger, “Non-approximability
results for scheduling problems with minsum criteria”, vol. 13, pp. 157–
168, 2001.

[3] M. Skutella, M. Sviridenko, and M. Uetz, “Stochastic scheduling on unre-
lated machines”, Mathematics of Operations Research, vol. 41, no. 3, pp. 851–
864, 2016.

[4] V. Gupta, B. Moseley, M. Uetz, and Q. Xie, “Stochastic online scheduling
on unrelated machines”, Integer Programming and Combinatorial Opti-
mization, F. Eisenbrand and J. Koenemann, Eds., to appear in 2017, Lec-
ture Notes in Computer Science.

[5] J. Spencer, “Ten lectures on the probabilistic method”, in CBMS–NSF Re-
gional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1987.

[6] R. Möhring, A. S. Schulz, and M. Uetz, “Approximation in stochastic schedul-
ing: The power of lp-based priority policies”, Journal of the ACM, vol. 46,
pp. 924–942, 1999.

[7] C. J. Jagtenberg, U. Schwiegelshohn, and M. Uetz, “Analysis of smith’s rule
in stochastic machine scheduling”, Operations Research Letters, vol. 41,
no. 6, pp. 570–575, 2013.

[8] T. Kawaguchi and S. Kyan, “Worst case bound on an lrf schedule for the
mean weighted flow-time problem”, SIAM Journal on Computing, vol. 15,
pp. 1119–1129, 1986.

[9] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed. Springer
International Publishing, 2016.

[10] P. Erdös and J. Selfridge, “On a combinatorial game”, Journal of Combina-
torial Theory Series A, vol. 14, no. 3, pp. 298–301, 1973.

23



A Tables

This section of the Appendix contains the tables with the results of all simula-
tions. It is divided into two subsections, of which the first contains the tables
which are used in section 4. The second subsection contains the tables for sec-
tion 5.

A.1 Section 4 tables

|M | |J |
Average Worst

WSEPT ASSIGN(X ) Greedy
Derandomized

WSEPT ASSIGN(X ) Greedy
Derandomized

ASSIGN(X ) ASSIGN(X )
2 2 1.00 1.07 1.00 1.00 1.07 1.25 1.00 1.00
2 3 1.04 1.14 1.09 1.14 1.13 1.30 1.24 1.27
2 4 1.09 1.22 1.17 1.20 1.24 1.40 1.33 1.33
2 5 1.12 1.28 1.21 1.23 1.22 1.44 1.34 1.34
2 6 1.14 1.32 1.23 1.25 1.23 1.43 1.33 1.32
2 7 1.15 1.35 1.26 1.27 1.23 1.44 1.33 1.38
2 8 1.17 1.37 1.27 1.27 1.28 1.45 1.37 1.38
2 9 1.18 1.38 1.28 1.27 1.26 1.46 1.38 1.37
3 3 1.00 1.07 1.00 1.00 1.03 1.20 1.00 1.06
3 4 1.03 1.12 1.03 1.10 1.10 1.30 1.21 1.21
3 5 1.05 1.16 1.11 1.16 1.10 1.34 1.20 1.27
3 6 1.07 1.23 1.16 1.19 1.14 1.35 1.25 1.29
3 7 1.09 1.27 1.19 1.22 1.16 1.39 1.29 1.30
3 8 1.10 1.31 1.22 1.24 1.18 1.40 1.30 1.31
3 9 1.11 1.35 1.24 1.25 1.17 1.43 1.32 1.31
4 4 1.00 1.07 1.00 1.00 1.06 1.20 1.00 1.08
4 5 1.01 1.11 1.04 1.08 1.06 1.21 1.16 1.16
4 6 1.03 1.14 1.07 1.13 1.08 1.28 1.18 1.24
4 7 1.04 1.18 1.12 1.17 1.10 1.32 1.22 1.25
4 8 1.06 1.23 1.16 1.18 1.11 1.36 1.24 1.25
4 9 1.07 1.26 1.18 1.21 1.12 1.37 1.28 1.26

Table 1: Simulation of Instance 1 using respectively the WSEPT-rule, ASSIGN(X )
and the Greedy Algorithm for different amounts of jobs and machines. The
numbers represent the multiplicative gap between the optimal value of the LP
relaxation and the respective algorithm. Both the average and worst multiplica-
tive gap are shown.

24



|M | |J | Average Worst
10 20 1.12 1.17
10 30 1.12 1.17
10 40 1.14 1.17
10 50 1.14 1.15
20 40 1.13 1.16
20 60 1.15 1.17
20 80 1.15 1.17
20 100 1.14 1.15
30 60 1.13 1.16
30 90 1.15 1.17
30 120 1.15 1.16
30 120 1.15 1.15
40 80 1.13 1.15
40 120 1.15 1.17
40 160 1.15 1.16
40 200 1.15 1.15
50 100 1.12 1.16
50 150 1.15 1.17
50 200 1.15 1.16
50 250 1.15 1.15

|M | |J | Average Worst
60 120 1.13 1.15
60 180 1.15 1.17
60 240 1.15 1.16
60 300 1.15 1.15
70 140 1.13 1.15
70 210 1.15 1.16
70 280 1.15 1.16
70 350 1.15 1.15
80 160 1.13 1.14
80 240 1.15 1.16
80 320 1.15 1.16
80 400 1.15 1.15
90 180 1.13 1.14
90 270 1.15 1.16
90 360 1.15 1.16
90 450 1.15 1.15

100 200 1.13 1.15
100 300 1.15 1.13
100 400 1.15 1.16
100 500 1.15 1.15

Table 2: Simulation of Instance 1 using the Greedy Algorithm for different
amounts of jobs and machines. The numbers represent the multiplicative gap
between the average weighted completion time of the WSEPT rule and the
Greedy Algorithm. Both the average and worst multiplicative gap are shown.

25



|M | |J | WSEPT Greedy
3 7 1.11 1.24
3 13 1.18 1.24
3 19 1.17 1.24
3 25 1.19 1.24
3 31 1.21 1.23
5 17 1.15 1.25
5 32 1.18 1.24
5 47 1.20 1.24
5 62 1.20 1.24
5 77 1.21 1.24
8 43 1.18 1.25
8 83 1.22 1.25
8 123 1.21 1.23
8 163 1.21 1.23
8 203 1.22 1.23

10 64 1.19 1.25
10 124 1.21 1.24
10 184 1.21 1.24
10 244 1.23 1.23
10 304 1.23 1.24
13 109 1.21 1.24
13 213 1.21 1.24
13 317 1.21 1.24
13 421 1.22 1.23
13 525 1.22 1.23

Table 3: Simulation of the stochastic Kawaguchi Kyan instance (Instance 2) us-
ing either the WSEPT-rule or the Greedy Algorithm. Different values of |M| and
|J| were used. The numbers represent the multiplicative gap between the opti-
mal value of the expected weighted completion time and that of the respective
algorithm.

26



|J|
∆

1 2 4 8 16 32 64

20 1.28 1.47 1.51 1.50 1.48 1.52 1.50
30 1.19 1.52 1.93 2.00 1.98 1.99 1.98
40 1.17 1.40 2.07 2.47 2.48 2.52 2.48
50 1.14 1.33 1.94 2.88 2.99 3.06 2.93
60 1.13 1.29 1.73 3.06 3.50 3.49 3.53
70 1.11 1.25 1.59 2.96 3.92 3.94 4.03
80 1.10 1.22 1.52 2.72 4.34 4.49 4.52
90 1.09 1.19 1.46 2.45 4.54 5.00 5.03

100 1.08 1.17 1.41 2.21 4.63 5.45 5.53

Table 4: Simulation of Instance 3 for different amounts of jobs and different val-
ues of ∆ using the Greedy Algorithm. The numbers represent the multiplicative
gap between the expected weighted completion time of the WSEPT rule and the
Greedy Algorithm.

27



A.2 Section 5 tables

|M | |J |
Average Worst

ASSIGN(X ) Greedy
Derandomized

ASSIGN(X ) Greedy
Derandomized

ASSIGN(X ) ASSIGN(X )
2 2 1.09 1.08 1.00 1.50 1.50 1.00
2 3 1.17 1.16 1.08 1.53 1.53 1.16
2 4 1.23 1.24 1.12 1.36 1.55 1.25
2 5 1.27 1.29 1.17 1.41 1.60 1.34
2 6 1.30 1.31 1.17 1.47 1.60 1.40
2 7 1.32 1.35 1.20 1.49 1.63 1.45
2 8 1.32 1.35 1.21 1.42 1.58 1.41
2 9 1.34 1.37 1.24 1.55 1.57 1.52
3 3 1.13 1.11 1.00 1.53 1.53 1.00
3 4 1.19 1.19 1.10 1.44 1.52 1.23
3 5 1.22 1.23 1.20 1.49 1.76 1.35
3 6 1.25 1.28 1.24 1.42 1.55 1.32
3 7 1.29 1.33 1.28 1.41 1.65 1.32
3 8 1.32 1.36 1.29 1.50 1.69 1.39
3 9 1.34 1.38 1.31 1.47 1.63 1.45
4 4 1.15 1.14 1.00 1.49 1.42 1.13
4 5 1.19 1.20 1.08 1.35 1.63 1.15
4 6 1.25 1.25 1.16 1.53 1.47 1.27
4 7 1.27 1.28 1.23 1.43 1.59 1.37
4 8 1.30 1.32 1.28 1.52 1.70 1.42
4 9 1.31 1.34 1.29 1.49 1.63 1.48

Table 5: Simulation of Instance 4 using respectively the Greedy Algorithm and
ASSIGN(X ) with different amount of machines and jobs. The numbers represent
the multiplicative gap between the optimal value of the LP relaxation and the
expected weighted completion time of the algorithm.

28



|M | |J | ASSIGN(X ) Greedy
Derandomized

ASSIGN(X )
2 2 1.14 1.50 1.00
2 3 1.20 1.81 1.20
2 4 1.27 1.81 1.27
2 5 1.28 1.75 1.28
2 6 1.28 1.67 1.28
4 4 1.17 1.50 1.00
4 6 1.32 1.81 1.20
4 8 1.34 1.81 1.27
4 10 1.36 1.75 1.28
4 12 1.35 1.67 1.28
6 6 1.18 1.50 1.00
6 9 1.34 1.81 1.20
6 12 1.34 1.81 1.27
6 15 1.40 1.75 1.28
6 18 1.37 1.67 1.28
8 8 1.26 1.50 1.13
8 12 1.35 1.81 1.20
8 16 1.42 1.81 1.27
8 20 1.41 1.75 1.28
8 24 1.38 1.67 1.28

10 10 1.23 1.20 1.10
10 15 1.37 1.81 1.20
10 20 1.41 1.81 1.27
10 24 1.41 1.75 1.28
10 30 1.38 1.67 1.28

Table 6: Simulation of Instance 5 using respectively the Greedy Algorithm and
ASSIGN(X ) with different amount of machines and jobs. The numbers represent
the multiplicative gap between the optimal value of the LP relaxation and the
expected weighted completion time of the algorithm.

29



|M | k ASSIGN(X ) Greedy
Derandomized

ASSIGN(X )
2 5 1.11 1.40 1.00
2 10 1.05 1.45 1.00
2 15 1.03 1.47 1.00
2 20 1.02 1.48 1.00
2 25 1.02 1.48 1.00
2 30 1.02 1.48 1.00
4 5 1.14 1.40 1.00
4 10 1.08 1.45 1.00
4 15 1.05 1.47 1.00
4 20 1.04 1.48 1.00
4 25 1.03 1.48 1.00
4 30 1.02 1.48 1.00
6 5 1.15 1.40 1.00
6 10 1.14 1.45 1.00
6 15 1.10 1.47 1.00
6 20 1.09 1.48 1.00
6 25 1.07 1.48 1.00
6 30 1.06 1.48 1.00
8 5 1.17 1.40 1.00
8 10 1.12 1.45 1.00
8 15 1.14 1.47 1.00
8 20 1.09 1.48 1.00
8 25 1.07 1.48 1.00
8 30 1.06 1.48 1.00

10 5 1.21 1.40 1.00
10 10 1.17 1.45 1.00
10 15 1.09 1.47 1.00
10 20 1.08 1.48 1.00
10 25 1.05 1.48 1.00
10 30 1.03 1.48 1.00

Table 7: Simulation of Instance 6 using respectively the Greedy Algorithm,
ASSIGN(X ) (random and derandomized version) with different amounts of ma-
chines and short processing times k. The numbers represent the multiplicative
gap between the optimal value of the LP relaxation and the expected weighted
completion time of the algorithm.

30



B Python Code

In this section of the appendix all code used in the simulations is included. Only
the programming of the several loose instances is not included. It is however
quite easy to replicate the instances using the Job class, which can be found in
the Problem module. Documentation of each module and the included meth-
ods and classes is included in the code.

This section of the appendix contains three modules: Main, Problem and
Algorithm. The module Main contains the code for performing a simulation,
the instance should also be defined here and the algorithms that should be used
can be called here. Next to this,Main also contains method for the calculations
involving the derandomization of ASSIGN(X ).

The module Problem contains three classes Problem, Machine and Job. The
former defines a stochastic scheduling problem with all its properties, by using
the latter two classes. These two classes define respectively a machine and a job
in a stochastic scheduling problem. Finally, the Algorithm module contains
classes for executing the algorithms used in this paper.

B.1 Main module and Derandomization of ASSIGN(X )

"""

This is the main code of the package Scheduling of the Bachelor

Assignment. Only this code should be run.,→

The other modules in this package shouldn't be changed.

This module also contains two methods for the derandomization

of Assign(X).,→

"""

# File name: main.py

# Python version: 3.5

# Author: Tariq Bontekoe

# Date created: 01-05-2017

# Version: 24-06-2017

from algorithm import *

from math import inf

from typing import List

def higher(problem: 'Problem', job_j: 'Job', machine_i:

'Machine') -> List['Job']:,→

"""

This method calculates all jobs that would have higher

priority than job j on machine i, mathematically defined,→

by H(j,i).

31



:param problem: the problem instance which contains all

jobs and machines.,→

:param job_j: the job j for which H(j,i) should be

calculated,→

:param machine_i: the machine i on which H(j,i) is

calculated,→

:return: a list containing jobs which represents H(j,i)

"""

higher_list = []

job_j_ratio = job_j.weight /

job_j.exp_time[machine_i.number],→

for job_k in problem.jobs:

job_k_ratio = job_k.weight /

job_k.exp_time[machine_i.number],→

if job_k_ratio > job_j_ratio:

higher_list.append(job_k)

elif job_k_ratio == job_j_ratio and job_k.number <=

job_j.number:,→

higher_list.append(job_k)

return higher_list

def derandomize(problem: 'Problem', solution:

List[List[float]]) -> Tuple[float, List[List[float]]]:,→

"""

This method calculates the derandomized version of

Assign(X), using LP relaxation solution X. It returns both

the

,→

,→

expected weighted completion time and the optimal policy.

:param problem: The problem on which the derandomized

version of Assign(X) is applied.,→

:param solution: The LP relaxation solution X for the

problem.,→

:return: First return argument is the expected weighted

completion time, second list is an adapted version of $X$,→

which represents the schedule which results after this

algorithm has been applied.,→

"""

for job in problem.jobs:

lowest_value = inf

lowest_machine = None

for machine in problem.machines:

# build solution for this assignment

32



solution_temp = solution[:]

for i in range(len(problem.machines)):

solution_temp[i][job.number] = 0.0

solution_temp[machine.number][job.number] = 1.0

# calculate expected value given j->i

value = 0

for job_j in problem.jobs:

value_job = 0

for machine_i in problem.machines:

value_machine = 0

for job_k in higher(problem, job_j,

machine_i):,→

value_machine +=

job_k.exp_time[machine_i.number] *

solution_temp[machine_i.number][job_k.number]

,→

,→

value_machine *=

solution_temp[machine_i.number][job_j.number],→

value_job += value_machine

value_job *= job_j.weight

value += value_job

if value < lowest_value:

lowest_value = value

lowest_machine = machine

# best machine for this job is known

for i in range(len(problem.machines)):

solution[i][job.number] = 0.0

solution[lowest_machine.number][job.number] = 1.0

# calculate final value

value = 0

for job_j in problem.jobs:

value_job = 0

for machine_i in problem.machines:

value_machine = 0

for job_k in higher(problem, job_j, machine_i):

value_machine +=

job_k.exp_time[machine_i.number] *

solution[machine_i.number][job_k.number]

,→

,→

value_machine *=

solution[machine_i.number][job_j.number],→

value_job += value_machine

value_job *= job_j.weight

value += value_job

33



return value, solution

if __name__ == '__main__':

n_wsept = 10000

n_lp = 10000

machines = 0

jobs = 0

problem = Problem(machines)

"""

INSERT INSTANCE HERE (CHANGE problem, jobs AND/OR machines

(DEFINED STRAIGHT ABOVE) IF NECESSARY),→

"""

print("--- WSEPT ---")

avg_weighted_completion_time = 0

avg_completion_time = 0

for t in range(1, n_wsept + 1):

problem.reset()

for job in problem.jobs:

job.draw_real_times()

weighted_completion_time, completion_time =

WSEPT(problem).run(),→

avg_weighted_completion_time +=

weighted_completion_time,→

avg_completion_time += completion_time

print("### Total weighted completion time: {}

###".format(avg_weighted_completion_time / n_wsept)),→

print("### Completion time: {}".format(avg_completion_time

/ n_wsept)),→

wsept = avg_weighted_completion_time / n_wsept

print("--- GREEDY ALGORITHM ---")

problem.reset()

greedy, *trash = GreedyAlgorithm(problem).run()

print("--- LINEAR PROGRAMMING RELAXATION ---")

problem.reset()

D = 0

for i in range(machines):

this_D = 0

for job in problem.jobs:

34



this_D += job.exp_time[i]

if this_D > D:

D = this_D

weights_sum = 0

for job in problem.jobs:

weights_sum += job.weight

U = D * weights_sum

max_exp_time = 0

for i in range(machines):

for job in problem.jobs:

if job.exp_time[i] > max_exp_time:

max_exp_time = job.exp_time[i]

R = 2 * jobs * max_exp_time

time_bound = 2 * U + R

print("Time bound: {}".format(time_bound))

lp = LinearProgram(problem, time_bound)

lp_ref = lp.solution

lp_schedule = lp.x

avg_weighted_completion_time = 0

avg_completion_time = 0

for t_lp in range(1, n_lp + 1):

problem.reset()

lp.assign_jobs()

weighted_completion_time, completion_time = lp.run()

avg_weighted_completion_time +=

weighted_completion_time,→

avg_completion_time += completion_time

print("### Total weighted completion time: {}

###".format(avg_weighted_completion_time / n_lp)),→

print("### Completion time: {}".format(avg_completion_time

/ n_lp)),→

lp = avg_weighted_completion_time / n_lp

print("--- DERANDOMIZATION ---")

derand, *derand_sol = derandomize(problem, lp_schedule)

print(derand_sol)

print(derand)

35



B.2 Problem module

"""

This module contains classes to define a stochastic scheduling

problem, of n jobs (with possible release dates),→

on m unrelated machines.

"""

# File name: problem.py

# Python version: 3.5

# Author: Tariq Bontekoe

# Date created: 01-05-2017

# Version: 24-06-2017

from typing import List, Tuple, Any

from queue import *

from functools import total_ordering

class ProblemError(Exception):

def __init__(self, message):

super().__init__(self, message)

class Problem:

"""

Class defining a stochastic scheduling problem, containing

jobs with stochastic processing times on unrelated,→

machines.

"""

def __init__(self, n_machines: int):

"""

Constructor of a stochastic scheduling problem with m

unrelated machines.,→

:param n_machines: amount of machines in this problem

"""

self._machines = tuple(Machine(i) for i in

range(n_machines)),→

self._jobs = []

self._n_machines = n_machines

self._n_jobs = 0

def __repr__(self) -> str:

36



return '# machines: {self._n_machines} \n' \

'[] machines: \n {self._machines}

\n'.format(self=self),→

@property

def machines(self) -> Tuple['Machine', ...]:

return self._machines

@property

def jobs(self) -> List['Job']:

return self._jobs

def add_job(self, new_job: 'Job'):

"""

Method to add a job to this problem.

:param new_job: Job to add to the problem.

"""

new_job.set_number(self._n_jobs)

self._jobs.append(new_job)

self._n_jobs += 1

def reset(self):

for machine in self._machines:

machine._queue = PriorityQueue()

for job in self._jobs:

job._assigned_to = None

job._real_time = None

class Machine:

"""

Class defining a machine for a stochastic scheduling

problem.,→

"""

def __init__(self, number: int):

"""

Constructor of machine for a problem, with a certain

number.,→

Also gives the machine a priority queue to store the

jobs in.,→

:param number: number of this machine

"""

self._number = number

37



self._queue = PriorityQueue()

def __repr__(self) -> str:

return 'Machine {0} \n' \

'Queue: {1} \n'.format(self._number,

sorted(self._queue.queue)),→

@property

def number(self) -> int:

return self._number

@property

def queue(self) -> 'Queue':

return self._queue

def add_to_queue(self, job: 'Job'):

"""

This method adds a job to the queue of this machine

:param job: job object to add to this queue

"""

self._queue.put(job)

@total_ordering

class Job:

"""

Class defining a job for a stochastic scheduling problem,

having a certain stochastic processing time for m,→

machines.

"""

def __init__(self, cdf: List['Any'], real_time_f:

List['Any'], exp_time: List[float], weight: float,,→

release_time: float = 0.0):

"""

Constructor of a job of a problem, with a real (drawn

from distribution) processing time, an expected one and a,→

job weight.

:param cdf: cdf function of the processing time

:param real_time_f: function to draw a real processing

time,→

:param exp_time: expected processing time

:param weight: weight of this job

38



:param release_time: release time of this job, standard

release time is 0.0,→

"""

self._number = None

self._assigned_to = None

self._cdf = cdf

self._real_time_f = real_time_f

self._real_time = None

self._exp_time = exp_time

self._weight = weight

self._release_time = release_time

def __repr__(self) -> str:

return 'Job {self._number} with weight {self._weight},

release time {self._release_time}, exp time ' \,→

'{self._exp_time} \n'.format(self=self)

def __lt__(self, other):

if not type(other) is Job:

raise TypeError('unorderable types: {1} <

{0}'.format(type(self), type(other))),→

if self._assigned_to is None or other.assigned_to is

None:,→

self_ratio = self._weight / self._exp_time[0]

other_ratio = other.weight / other.exp_time[0]

else:

self_ratio = self._weight /

self._exp_time[self._assigned_to.number],→

other_ratio = other.weight /

other.exp_time[other.assigned_to.number],→

return self_ratio > other_ratio or (self_ratio ==

other_ratio and self.number < other.number),→

@property

def cdf(self) -> List['Any']:

return self._cdf

@property

def real_time(self) -> List[float]:

return self._real_time

@property

def exp_time(self) -> List[float]:

return self._exp_time

39



@property

def weight(self) -> float:

return self._weight

@property

def number(self) -> int:

return self._number

@property

def assigned_to(self) -> 'Machine':

return self._assigned_to

def draw_real_times(self):

"""

Method to draw real times from the given distribution.

"""

self._real_time = []

for f in self._real_time_f:

self._real_time.append(f())

def set_number(self, number: int):

"""

Method for inside problem package only. Sets the number

of this job.,→

:param number: number of this job

"""

self._number = number

def assign(self, machine: 'Machine'):

"""

This method assigns this job to the given machine, it

also is put in the queue of this machine.,→

:param machine: Machine to which this job is assigned.

"""

self._assigned_to = machine

machine.add_to_queue(self)

40



B.3 Algorithm module

"""

This module contains classes for several different algorithms

to solve a stochastic scheduling problem.,→

"""

# File name: algorithm.py

# Python version: 3.5

# Author: Tariq Bontekoe

# Date created: 01-05-2017

# Version: 24-06-2017

from problem import *

from typing import Tuple, List

from math import inf, ceil

from numpy.random import random

from gurobipy import *

class AlgorithmError(Exception):

def __init__(self, message):

super().__init__(self, message)

class Algorithm:

"""

Class for an algorithm on a stochastic scheduling problem.

The method which calculates the total weighted completion

time E[Sum_j(w_j*C_j)] is implemented.,→

"""

def __init__(self, problem: 'Problem'):

"""

Constructor of the Algorithm abstract class.

:param problem: Stochastic scheduling problem on which

this algorithm should be run.,→

"""

self._problem = problem

def run(self) -> Tuple[float, float]:

"""

This method calculates what the weighted completion

time for the given problem was, using the Greedy Algorithm.,→

41



:return: weighted completion time for this problem,

completion time for this problem,→

"""

if type(self) is GreedyAlgorithm:

print("### Assignment### \n\n" +

str(self._problem)),→

weighted_completion_time = 0

completion_time = 0

for machine in self._problem.machines:

queue = machine.queue

current_machine_time = 0

while not queue.empty():

current_job = queue.get()

if type(self) is GreedyAlgorithm or type(self)

is LinearProgram: # use expected time for

solid policy

,→

,→

current_machine_time +=

current_job.exp_time[current_job.assigned_to.number],→

weighted_completion_time +=

current_machine_time *

current_job.weight

,→

,→

else: # use real time (drawn) for non-solid

policy,→

current_machine_time +=

current_job.real_time[current_job.assigned_to.number],→

weighted_completion_time +=

current_machine_time *

current_job.weight

,→

,→

if current_machine_time > completion_time:

completion_time = current_machine_time

if type(self) is GreedyAlgorithm:

print("### Total weighted completion time: {}

###".format(weighted_completion_time)),→

print("### Completion time:

{}".format(completion_time)),→

return weighted_completion_time, completion_time

class GreedyAlgorithm(Algorithm):

"""

Class for calculating the total weighted completion time

E[Sum_j(w_j*C_j)] for the Greedy Algorithm.,→

"""

42



def __init__(self, problem: 'Problem'):

"""

Constructor for the Greedy Algorithm to solve this

stochastic scheduling problem.,→

Also assigns the jobs accordingly.

:param problem: Stochastic scheduling problem on which

this algorithm should be run.,→

"""

super(GreedyAlgorithm, self).__init__(problem)

self.assign_jobs()

def assigned_higher_lower(self, job: 'Job', machine:

'Machine') -> Tuple[List['Job'], List['Job']]:,→

"""

Method which return as tuple of the jobs assigned to

this machine that have higher/lower priority than this job.,→

:param job: The job that should be assigned.

:param machine: The machine it can be scheduled to.

:return: Firstly a list of the higher priority jobs on

this machine, secondly a list of the lower priority,→

jobs on this machine.

"""

higher = []

lower = []

job_ratio = job.weight / job.exp_time[machine.number]

for other_job in self._problem.jobs:

if other_job.assigned_to is machine:

other_job_ratio = other_job.weight /

other_job.exp_time[machine.number],→

if other_job_ratio > job_ratio or

(other_job_ratio == job_ratio and

other_job.number < job.number):

,→

,→

higher.append(other_job)

else:

lower.append(other_job)

return higher, lower

def expected_increase(self, job: 'Job', machine: 'Machine')

-> float:,→

"""

This method calculates the expected increase if a job

is assigned to a machine, makes use of the,→

assigned_higher_lower method.

:param job: The job that should be assigned.

43



:param machine: The machine for which the expected

increase is calculated.,→

:return: Expected increase of this job is assigned to

this machine.,→

"""

higher, lower = self.assigned_higher_lower(job,

machine),→

job_increase = job.weight *

(job.exp_time[machine.number] +

sum([h.exp_time[machine.number] for h in higher]))

,→

,→

lower_increase = job.exp_time[machine.number] *

sum([l.weight for l in lower]),→

return job_increase + lower_increase

def assign_jobs(self):

"""

This method assigns all jobs in order (defined in

problem) to the machine with the lowest expected increase.,→

"""

for job in self._problem.jobs:

min_expected_increase = inf

min_machine = None

for machine in self._problem.machines:

expected_increase = self.expected_increase(job,

machine),→

if expected_increase < min_expected_increase:

min_expected_increase = expected_increase

min_machine = machine

job.assign(min_machine)

class LinearProgram(Algorithm):

"""

Class for calculating the total weighted completion time

E[Sum_j(w_j*C_j)] for the Linear Programming Relaxation.,→

"""

def __init__(self, problem: 'Problem', time_bound: float):

"""

Constructor for the Linear Program to solve this

stochastic scheduling problem.,→

Also assigns the jobs accordingly.

:param problem: Stochastic scheduling problem on which

this algorithm should be run.,→

44



:param time_bound: Upper bound for the time, in order

to bound the amount of variables.,→

"""

super(LinearProgram, self).__init__(problem)

self._time_bound = int(ceil(time_bound))

self._solution = 0.0

self._x = self.run_lp()

@property

def solution(self) -> float:

return self._solution

@property

def x(self) -> List[List[float]]:

return self._x

def run_lp(self) -> List[List[float]]:

# Create Model

model = Model()

# Create variables (standard lb = 0.0, ub = inf, type =

continuous),→

x_vars = model.addVars(len(self._problem.machines),

len(self._problem.jobs), self._time_bound + 1,

name='x')

,→

,→

# Set objective

objective = LinExpr() # construct empty linear

objective function,→

for j in range(len(self._problem.jobs)): # build up

the objective per job,→

for i in range(len(self._problem.machines)): # sum

over machine,→

for t in range(self._time_bound + 1): # sum

over time,→

coefficient = self._problem.jobs[j].weight

* (t +

self._problem.jobs[j].exp_time[i])

,→

,→

objective.addTerms(coefficient, x_vars[i,

j, t]),→

model.setObjective(objective, GRB.MINIMIZE) # set the

objective function to the model,→

# Set first constraint

45



for j in range(len(self._problem.jobs)): # add one

constraint per job,→

constraint_one = LinExpr() # create clean linear

expression for job j,→

for i in range(len(self._problem.machines)): # sum

over machine,→

for t in range(self._time_bound + 1): # sum

over time,→

constraint_one.addTerms(1.0, x_vars[i, j,

t]),→

model.addConstr(constraint_one, GRB.EQUAL, 1,

"c_one_job{}".format(j)) # add the constraint

to the model

,→

,→

# Set second constraint

for i in range(len(self._problem.machines)):

for s in range(self._time_bound + 1): # add one

constraint per machine/time combination,→

constraint_two = LinExpr() # create clean

linear expression for machine j/ time s

combination

,→

,→

for j in range(len(self._problem.jobs)): # sum

over jobs,→

for t in range(s + 1): # sum over time

coefficient =

self._problem.jobs[j].cdf[i](s - t

+ 1)

,→

,→

if coefficient >= 10 ** (-13): # only

add coefficients large enough,→

constraint_two.addTerms(coefficient,

x_vars[i, j, t])

,→

,→

model.addConstr(constraint_two,

GRB.LESS_EQUAL, 1.0,,→

"c_two_machine{i}_time{s}".format(i=i,

s=s)) # add the

constraint to the model

,→

,→

,→

# Run model

model.setParam('OutputFlag', True)

model.optimize()

self._solution = model.getAttr(GRB.Attr.ObjVal)

46



# Calculate X_ij

x = []

for i in range(len(self._problem.machines)):

x_i = []

for j in range(len(self._problem.jobs)):

x_ij = 0

for t in range(self._time_bound + 1):

if x_vars[i, j, t].getAttr(GRB.Attr.X) > 0:

print(i, j, t, x_vars[i, j,

t].getAttr(GRB.Attr.X)),→

x_ij += x_vars[i, j, t].getAttr(GRB.Attr.X)

x_i.append(x_ij)

x.append(x_i)

print(x)

# Test whether or not sums equal one

for j in range(len(self._problem.jobs)):

test = 0

for i in range(len(self._problem.machines)):

test += x[i][j]

return x

def assign_jobs(self):

"""

This method assigns all jobs randomly to the right

machine.,→

"""

for job in self._problem.jobs: # assign each job to a

machine,→

rand = random()

upper_bound = 1

for machine in self._problem.machines:

upper_bound -=

self._x[machine.number][job.number] #

bound for draw

,→

,→

if rand >= upper_bound: # this machine was

drawn,→

job.assign(machine)

break

class WSEPT(Algorithm):

"""

47



Class for calculating the total weighted completion time

E[Sum_j(w_j*C_j)] for the WSEPT algorithm,→

"""

def __init__(self, problem: 'Problem'):

"""

Constructor for the Greedy Algorithm to solve this

stochastic scheduling problem.,→

Also assigns the jobs accordingly.

:param problem: Stochastic scheduling problem on which

this algorithm should be run.,→

"""

super(WSEPT, self).__init__(problem)

self.assign_jobs()

def assign_jobs(self):

"""

This method assigns all jobs according to the order

that would happen if WSEPT is applied.,→

"""

jobs_sorted = sorted(self._problem.jobs)

for machine in self._problem.machines:

machine.idle_time = 0

for job in jobs_sorted:

first_machine_idle = self._problem.machines[0]

first_machine_idle_time = inf

for machine in self._problem.machines:

if machine.idle_time < first_machine_idle_time:

first_machine_idle = machine

first_machine_idle_time = machine.idle_time

job.assign(first_machine_idle)

first_machine_idle.idle_time +=

job.real_time[first_machine_idle.number],→

for machine in self._problem.machines:

del machine.idle_time

48


