Porting Compose* to the Java Platform

A thesis submitted for the degree
of Master of Science at
the University of Twente

Roy David Spenkelink

Enschede, June 06, 2007
Graduation committee: Twente Research and Education
Prof. dr. ir. M. Aksit on Software Engineering
Dr. ir. L.M.]. Bergmans Department of Computer Science
Ir. W. Havinga Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

A
’!l;ESE &
University of Twente

Twente Research & Education
on Software Engineering Enschede - The Netherlands

Abstract

Compose* is a project that aims at enhancing the power of component- and object-based pro-
gramming, so that software becomes easier to structure and modularize, hence easier to de-
velop, maintain and extend. In particular, Compose* offers aspect-oriented programming
through the composition filters model.

One goal of the Compose* project is to familiarize a large audience with the concept of the
composition filters model. Currently, Compose* runs on the .NET platform and C platform.
This thesis describes in detail the process of porting Compose* to the Java platform, resulting
in Compose*/J.

Since Compose* is a language and platform independent solution, some of the key Java fea-
tures might not be supported by the composition filters model. Therefore, this thesis also inves-
tigates the possibility of supporting specific Java features in Compose*/]. First, it discusses the
possibilities for modularizing exception handling with composition filters. Second, it discusses
the possibilities for expressing crosscutting concerns on inner classes. Finally, it discusses the
possibilities and benefits for weaving on Java interfaces.

Acknowledgements

My graduation time was a long but exciting process and I would not have missed it for the
world. Many people contributed to the completion of this thesis, for which I am grateful. In
particular, I would like to express my appreciation to the following people.

First, I would like to thank the members of my graduation committee. I would like to thank
my supervisor Lodewijk Bergmans. Although he sometimes responded late to my e-mails, that
did not weight up against his enthusiastic and expert guiding. I also would like to thank Wilke
Havinga. His remarks and suggestions helped me a lot.

In addition, I am thankful to Pascal Durr. Although, not a member of my committee, he pro-
vided me with valuable tips. Finally, many thanks go to my family for encouraging me to do
my best and supporting me all the way. A special thanks goes out to my brother Dennis for
sharing his thoughts about my project day in day out.

ii

Contents

Abstract
Acknowledgements
List of Figures

List of Listings

1 Introduction to AOSD

1.1 Introduction
12 Traditional Approach
1.3 AOPApproach
1.3.1 AOP Composition

132 AspectWeaving
1321 Source Code Weaving

1.3.22 Intermediate Language Weaving

1.3.2.3 Adapting the Virtual Machine

14 AOPSolutions e
141 Aspect] Approach

142 Hyperspaces Approach
143 Composition Filters

2 Compose*

2.1 Evolution of Composition Filters
2.2 Composition Filters in Compose*
2.3 Demonstrating Example L o L oo o
2.3.1 Initial Object-Oriented Design

23.2 Completing the Pacman Example
2321 Implementationof Scoring

iii

vii

ix

2322 Implementation of Dynamic Strategy 19

24 Compose* Architecture 19
24.1 Integrated Development Environment. 19
242 CompileTime 22
243 Adaptation 22
244 Runtime 22
25 Platforms 22
2.6 Features Specific to Compose* 23
Problem Identification 25
31 Background 25
3.2 Designing Compose* /] 25
3.3 Supporting specific Java features Lo Lo 26
34 Summary 26
Exception Handling in Compose* 27
41 Background 27
41.1 JavaExceptionHandling 27
412 ErrorFilter. 29
42 Motivation L 30
421 Demonstrating Example 0 o0 30
43 SolutionModels L 32
43.1 Preliminaries 32

4.3.2 Solution Model A: Exception handling in current composition filters model 34

43.3 Solution Model B: Two-way composition filters model 37
434 Solution Model C : Introducing return filters 41
4.4 Comparison of SolutionModels 43
441 CriteriaappliedtoModel A 43
442 CriteriaappliedtoModelB L. 45
443 CriteriaappliedtoModel C 46
444 EBvaluation 48
Composition filters & Inner classes 49
51 Background 49
511 Memberclasses 49
512 Localclasses 50

51.3 Anonymousclasses. o 51

514 Nested top-levelclasses
5.2 Motivation & Demonstrating Example
5.3 Extending selectorlanguage Lo L oo L
54 Implementationissues L L o o
541 Dummy generation. L
54.2 Weaving technique : interpreter vsinlining
55 Summaryand Conclusion L oL
Composition filters & Java interfaces
6.1 Background
6.2 Motivation & Demonstratingexample
6.3 SolutionProposal
6.4 Summaryand Conclusion Lo oo L
Design of Compose*/]
7.1 Integrated Development Environment
7.1.1 Eclipse Architecture
7.1.2 Design of the Compose* /] Eclipse plug-in
7121 Usecasediagram
7.1.2.2 Using services provided by Eclipse
72 Adaptation
7.2.1 Collecting type information
722 Weaving
7221 Determining the weaving process
7222 Selecting a byte code manipulator
7223 Signature transformation dummies
73 Runtime e
74 Summary and Conclusion
Implementation of Compose*/]
81 Eclipseplug-in.
811 Corepart.
8.1.2 Languagedependentpart
8.1.3 Building a Compose*/J application
82 Adaptation
821 Dummygeneration.
8.2.1.1 Control flow DUMMER.

63
64
64
65
65
66
68
68
69
69
70
71
72
72

8.2.2 Collecting type information L.

8221 Control flow harvesting

8222 Control flow collecting

8223 Languagemodel

8.2.3 Signature Transformation
823.1 Control flow SITRA

824 Weaver e
8.2.4.1 Editing expressionsin Javassist

8.2.4.2 Static structure of theweaver.

8.2.4.3 Control flow of theweaver

83 Runtime e

9 Conclusion, Future Work and Related Work
9.1 Conclusions
9.2 Future Work
9.3 Related Work e

Bibliography
Appendices
A Example BuildConfiguration-file

B Screenshots of the Eclipse Plug-in

93
93
94
95

97

99

100

103

List of Figures

1.1

2.1
2.2
2.3

41
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11

7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8
8.9

Dates and ancestry of several important languages 1
Components of the composition filtersmodel 15
UML class diagram of the object-oriented Pacman game 17
Overview of the Compose* architecture 21
Java Exception Hierarchy 28
Control flow of a message in Compose* 32
Current composition filters model in Compose* 33
Control flow of ametafilter 34
A possible way to support exception handling in current composition filters model. 34

Another way to support exception handling in current composition filters model. 36

Two way composition filters model: filter on return messages 37
Different scenarios for the control flow of return messages. 39
Exception handling in two-way composition filters model. 39
Model C: Introduction of return filters 41
Exception handling in action using a return filter. 42
Use case diagram: Compose*/] Eclipse plug-in actions. 66
UML static structure of the core part of the Compose*/] Eclipse plug-in. 73
build configuration data objectmodel. L oL 74
UML static structure of the language part of the Compose*/]J Eclipse plug-in. . . 75
UML sequence diagram - control flow of building a Compose* /] application. . . 76
UML static structure of DUMMER. 78
UML sequence diagram - control flow of DUMMER. 79
UML static structure of collecting type information - (a) HARVESTER (b) COL-

LECTOR (c) AnnotationCollector. 80
UML sequence diagram - control flow of HARVESTER 80
UML sequence diagram - control flow of COLLECTORNd AnnotationCollector . 81

1X

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

B.1
B.2
B.3
B.4

abstraction of the Java languagemodel. 83
UML static structure of LAMA. o 84
UML static structure of SITRA. 85
UML sequence diagram - control flow of SITRA. 86
UML static structure - editing expressions in javassist. 87
UML static structure of the Compose*/Jweaver. 89
UML sequence diagram - control flow of the Compose* /] weaver. 90
UML static structure of Compose* /] interpreter. 91
Wizard for creating a Compose* /] project. 103
Setting the global Compose* /] compiler settings. 104
Setting the project Compose* /] compiler settings. 105
Launch configuration for launching a Compose*/]J project. 106

Listings

1.1 Modeling addition, display, and logging without using aspects 3
(@) Addition 3
(b) CalcDisplay 3
1.2 Modeling addition, display, and logging with aspects 4
(@) Additionconcern 4
(b) Tracingconcern 4
1.3 Example of dynamic crosscuttingin Aspect] 8
1.4 Example of static crosscutting in Aspect] 0L 9
1.5 Creationofahyperspace L L L o 9
1.6 Specification of concern mappings 10
1.7 Defining a hypermodule 10
21 Abstractconcerntemplate L Lo L Lo 14
2.2 DynamicScoring concernin Compose* 19
2.3 ImplementationofclassScore L Lo L L 20
2.4 DynamicStrategy concernin ComposeXx 21
41 Catchingexceptionsinjava., 29
42 Throwing exceptionsinJava. 29
4.3 Snapshot implementation of class PersonDAO. 31
4.4 Snapshot partial implementation of class PersonDAO (i.e. without concerns) in
Compose 31
4.5 ”Simple exception logging” concern in current composition filters model. 35
4.6 "Simple exception logging” concern in current composition filters model. 37
4.7 "Simple exception logging” concerninmodel B.. o000 40
4.8 ”Simple exception logging” concerninmodel C. 0oL 42
49 Unclear semantics in current composition filters model. 43
4.10 Profiling concern in current composition filters model. 44
4.11 Generic profiling concern in current composition filters model. 44
412 Profiling concerninmodel C. o L oL 47

X1

413 Generic profiling concerninmodel C. o 0L 47

5.1
52
5.3
54
55
5.6
57
6.1
6.2
6.3
6.4

6.5
6.6
6.7
8.1

Example memberclass L L 50
Examplelocalclass 50
Example anonymousclass L Lo 51
Example nested top-levelclass 52
Demonstratingexample L o L o 52

Applying concern on anonymous class with current Compose* language toolset. 53

More specific selector that uses predicates specified for inner classes. 53
Interface declaration L L 57
Implementing aninterface L L o L oL 58
Simulating multiple inheritanceinJava 59
Example concern that results in a growing interface (i.e. methods first() and last()

are added to all classes that implement the List interface). 60
In practice we cannot use references to interface types 61
Interface predicates. L oL 61
Weaving on Java interfaces by selecting an interface in the selector definition. . . 62
Example usage of meta variables. 0 0. 88

Chapter 1

Introduction to AOSD

The first two chapters have originally been written by seven M. Sc. students [6, 7, 12, 19, 20,
35, 41] at the University of Twente. The chapters have been rewritten for use in the following
theses: [9, 10, 11, 21, 22, 34, 38, 40] and this thesis. They serve as a general introduction into
Aspect-Oriented Software Development and Compose* in particular.

1.1 Introduction

The goal of software engineering is to solve a problem by implementing a software system. The
things of interest are called concerns. They exist at every level of the engineering process. A re-
current theme in engineering is that of modularization: separation and localization of concerns.
The goal of modularization is to create maintainable and reusable software. A programming
language is used to implement concerns.

Fifteen years ago, the dominant programming language paradigm was procedural program-

Snal | tal k

2000 ____l(Thvoer/d)o——— e C#)emmmm o et e

2005 (Qomposer

aspect-oriented obj ect-oriented procedural and concurrent functional logic
| anguages | anguages | anguages | anguages | anguages

Figure 1.1: Dates and ancestry of several important languages

Porting Compose* to the Java Platform University Twente

ming. This paradigm is characterized by the use of statements that update state variables.
Examples are Algol-like languages such as Pascal, C, and Fortran.

Other programming paradigms are the functional, logic, object-oriented, and aspect-oriented
paradigms. Figure 1.1 summarizes the dates and ancestry of several important languages [42].
Every paradigm uses a different modularization mechanism for separating concerns into mod-
ules.

Functional languages try to solve problems without resorting to variables. These languages are
entirely based on functions over lists and trees. Lisp and Miranda are examples of functional
languages.

A logic language is based on a subset of mathematical logic. The computer is programmed to
infer relationships between values, rather than to compute output values from input values.
Prolog is currently the most used logic language [42].

A shortcoming of procedural programming is that global variables can potentially be accessed
and updated by any part of the program. This can result in unmanageable programs because no
module that accesses a global variable can be understood independently from other modules
that also access that global variable.

The Object-Oriented Programming (OOP) paradigm improves modularity by encapsulating
data with methods inside objects. The data may only be accessed indirectly, by calling the
associated methods. Although the concept appeared in the seventies, it took twenty years to
become popular [42]. The most well known object-oriented languages are C++, Java, C#, and
Smalltalk.

The hard part about object-oriented design is decomposing a system into objects. The task
is difficult because many factors come into play: encapsulation, granularity, dependency,
adaptability, reusability, and others. They all influence the decomposition, often in conflict-
ing ways [15].

Existing modularization mechanisms typically support only a small set of decompositions and
usually only a single dominant modularization at a time. This is known as the tyranny of the
dominant decomposition [37]. A specific decomposition limits the ability to implement other
concerns in a modular way. For example, OOP modularizes concerns in classes and only fixed
relations are possible. Implementing a concern in a class might prevent another concern from
being implemented as a class.

Aspect-Oriented Programming (AOP) is a paradigm that solves this problem.

AOQOP is commonly used in combination with OOP but can be applied to other paradigms as
well. The following sections introduce an example to demonstrate the problems that may arise
with OOP and show how AOP can solve this. Finally, we look at three particular AOP method-
ologies in more detail.

1.2 Traditional Approach

Consider an application containing an object Add and an object CalcDisplay . Add inherits from
the abstract class Calculation and implements its method execute(a, b) . It performs the
addition of two integers. CalcDisplay receives an update from Add if a calculation is finished
and prints the result to screen. Suppose all method calls need to be traced. The objects use a
Tracer object to write messages about the program execution to screen. This is implemented

Roy Spenkelink 2

1. Introduction to AOSD

public class Add extends Calculation{

private int result;
private CalcDisplay calcDisplay;
private Tracer trace;

Add() {
result = 0O;
calcDisplay = new CalcDisplay();
trace = new Tracer();
}
public class CalcDisplay {
public void execute(int a, int b) { private Tracer trace;
trace.write("void Add.execute(int, int)");
result = a + b; public CalcDisplay() {
calcDisplay.update(result); trace = new Tracer();
} }
public int getLastResult() { public void update(int value){
trace.write("int Add.getLastResult()"); trace.write("void CalcDisplay.update(int)");
return result; System.out.printin("Printing new value of calculation: "+value);
} }
} }

(a) Addition (b) CalcDisplay

Listing 1.1: Modeling addition, display, and logging without using aspects

by a method called write . Three concerns can be recognized: addition, display, and tracing.
The implementation might look something like Listing 1.1.

From our example, we recognize two forms of crosscutting: code tangling and code scattering.

The addition and display concerns are implemented in classes Add and CalcDisplay = respec-
tively. Tracing is implemented in the class Tracer , but also contains code in the other two
classes (lines 5, 10, 14, and 20 in (a) and 2, 5, and 9 in (b)). If a concern is implemented across
several classes, it is said to be scattered. In the example of Listing 1.1, the tracing concern is
scattered.

Usually a scattered concern involves code replication. That is, the same code is implemented
a number of times. In our example, the classes Add and CalcDisplay contain similar tracing
code.

In class Add the code for the addition and tracing concerns are intermixed. In class
CalcDisplay the code for the display and tracing concerns are intermixed. If more then
one concern is implemented in a single class they are said to be tangled. In our example, the
addition and tracing concerns are tangled. Also display and tracing concerns are tangled.
Crosscutting code has the following consequences:

Code is difficult to change
Changing a scattered concern requires us to modify the code in several places. Making
modifications to a tangled concern class requires checking for side effects with all existing
crosscutting concerns;

3 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

public class Add extends Calculation{

private int result;
private CalcDisplay calcDisplay;

Add() {

result = 0;

calcDisplay = new CalcDisplay();
} aspect Tracing {

Tracer trace = new Tracer();

public void execute(int a, int b) {

result = a + b; pointcut tracedCalls():

calcDisplay.update(result); call (* (Calculation+). =)l
} call (* CalcDisplay. =*(..));
public int getLastResult() { before (): tracedCalls() {

return result; trace.write(thisJoinPoint .getSignature().toString());
} }

}
(a) Addition concern (b) Tracing concern

Listing 1.2: Modeling addition, display, and logging with aspects

Code is harder to reuse
To reuse an object in another system, it is necessary to either remove the tracing code or
reuse the (same) tracer object in the new system;

Code is harder to understand
Tangled code makes it difficult to see which code belongs to which concern.

1.3 AOP Approach

To solve the problems with crosscutting, several techniques are being researched that attempt
to increase the expressiveness of the OO paradigm. Aspect-Oriented Programming (AOP) in-
troduces a modular structure, the aspect, to capture the location and behavior of crosscutting
concerns. Examples of Aspect-Oriented languages are Sina, Aspect], Hyper/J, and Compose*.
A special syntax is used to specify aspects and the way in which they are combined with reg-
ular objects. The fundamental goals of AOP are twofold [18]: first to provide a mechanism to
express concerns that crosscut other components. Second to use this description to allow for
the separation of concerns.

Join points are well-defined places in the structure or execution flow of a program where ad-
ditional behavior can be attached. The most common join points are method calls. Pointcuts
describe a set of join points. This allows us to execute behavior at many places in a program by
one expression. Advice is the behavior executed at a join point.

In the example of Listing 1.2, the class Add does not contain any tracing code and only imple-
ments the addition concern. Class CalcDisplay also does not contain tracing code. In our
example, the tracing aspect contains all the tracing code. The pointcut tracedCalls specifies
at which locations tracing code is executed.

The crosscutting concern is explicitly captured in aspects instead of being embedded within

Roy Spenkelink 4

1. Introduction to AOSD

the code of other objects. This has several advantages over the previous code.

Aspect code can be changed
Changing aspect code does not influence other concerns;
Aspect code can be reused
The coupling of aspects is done by defining pointcuts. In theory, this low coupling allows
for reuse. In practice, reuse is still difficult;
Aspect code is easier to understand
A concern can be understood independent of other concerns;
Aspect pluggability
Enabling or disabling concerns becomes possible.

1.3.1 AOP Composition

AOP composition can be either symmetric or asymmetric. In the symmetric approach, every
component can be composed with any other component. For instance, Hyper/] follows this
approach.

In the asymmetric approach, the base program and aspects are distinguished. The base pro-
gram is composed with the aspects. For instance, Aspect] (covered in more detail in the next
section) follows this approach.

1.3.2 Aspect Weaving

The integration of components and aspects is called aspect weaving. There are three approaches
to aspect weaving. The first and second approach rely on adding behavior in the program,
either by weaving the aspect in the source code, or by weaving directly in the target language.
The target language can be intermediate language (IL) or machine code. Examples of IL are Java
byte code and Common Intermediate Language (CIL). The remainder of this chapter considers
only intermediate language targets. The third approach relies on adapting the virtual machine.
Each method is explained briefly in the following sections.

1.3.2.1 Source Code Weaving

The source code weaver combines the original source with aspect code. It interprets the defined
aspects and combines them with the original source, generating input for the native compiler.
For the native compiler there is no difference between source code with and without aspects.
Hereafter the compiler generates an intermediate or machine language output (depending on
the compiler-type).

The advantages of using source code weaving are:

High-level source modification
Since all modifications are done at source code level, there is no need to know the target
(output) language of the native compiler;

Aspect and original source optimization
First, the aspects are woven into the source code and hereafter compiled by the native
compiler. The produced target language has all the benefits of the native compiler opti-

5 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

mization passes. However, optimizations specific to exploiting aspect knowledge are not
possible;

Native compiler portability
The native compiler can be replaced by any other compiler as long as it has the same
input language. Replacing the compiler with a newer version or another target language
can be done with little or no modification to the aspect weaver.

However, the drawbacks of source code weaving are:

Language dependency
Source code weaving is written explicitly for the syntax of the input language;

Limited expressiveness
Aspects are limited to the expressive power of the source language. For example, when
using source code weaving, it is not possible to add multiple inheritance to a single in-
heritance language.

1.3.2.2 Intermediate Language Weaving

Weaving aspects through an intermediate language gives more control over the executable pro-
gram and solves some issues as identified in Section 1.3.2.1 on source code weaving. Weaving
at this level allows for creating combinations of intermediate language constructs that cannot
be expressed at the source code level. Although IL can be hard to understand, IL weaving has
several advantages over source code weaving:

Programming language independence
All compilers generating the target IL output can be used;

More expressiveness
It is possible to create IL constructs that are not possible in the original programming
language;

Source code independence
Can add aspects to programs and libraries without using the source code (which may not
be available);

Adding aspects at load- or runtime
A special class loader or runtime environment can decide and do dynamic weaving. The
aspect weaver adds a runtime environment into the program. How and when aspects
can be added to the program depend on the implementation of the runtime environment.

However, IL weaving also has drawbacks that do not exist for source code weaving;:

Hard to understand
Specific knowledge about the IL is needed;

More error-prone
Compiler optimization may cause unexpected results. Compiler can remove code that
breaks the attached aspect (e.g., inlining of methods).

1.3.2.3 Adapting the Virtual Machine

Adapting the virtual machine (VM) removes the need to weave aspects. This technique has
the same advantages as intermediate language weaving and can also overcome some of its

Roy Spenkelink 6

1. Introduction to AOSD

disadvantages as mentioned in Section 1.3.2.2. Aspects can be added without recompilation,
redeployment, and restart of the application [31, 32].

Modifying the virtual machine also has its disadvantages:

Dependency on adapted virtual machines
Using an adapted virtual machine requires that every system should be upgraded to that
version;

Virtual machine optimization
People have spent a lot of time optimizing virtual machines. By modifying the virtual
machine these optimizations should be revisited. Reintegrating changes introduced by
newer versions of the original virtual machine, might have substantial impact.

1.4 AOP Solutions

As the concept of AOP has been embraced as a useful extension to classic programming, dif-
ferent AOP solutions have been developed. Each solution has one or more implementations to
demonstrate how the solution is to be used. As described by [14] these differ primarily in:

How aspects are specified
Each technique uses its own aspect language to describe the concerns;
Composition mechanism
Each technique provides its own composition mechanisms;
Implementation mechanism
Whether components are determined statically at compile time or dynamically at run
time, the support for verification of compositions, and the type of weaving.
Use of decoupling
Should the writer of the main code be aware that aspects are applied to his code;
Supported software processes
The overall process, techniques for reusability, analyzing aspect performance of aspects,
is it possible to monitor performance, and is it possible to debug the aspects.

In the next sections, we introduce Aspect] [25], Hyperspaces [30] and Composition Filters [5],
which are three main AOP approaches.

1.4.1 Aspect] Approach

Aspect] [25] is an aspect-oriented extension to the Java programming language. It is probably
the most popular approach to AOP at the moment, and it is finding its way into the industrial
software development. Aspect] has been developed by Gregor Kiczales at Xerox’s PARC (Palo
Alto Research Center). To encourage the growth of the Aspect] technology and community,
PARC transferred Aspect] to an open Eclipse project. The popularity of Aspect] comes partly
from the various extensions based on it. Various projects are porting Aspect] to other languages
resulting in tools such as AspectR and AspectC.

One of the main goals in the design of Aspect] is to make it a compatible extension to Java.
Aspect] tries to be compatible in four ways:

7 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

aspect DynamicCrosscuttingExample {
Log log = new Log();

pointcut traceMethods():
execution (edu.utwente.trese. *.ox (L))

before () : traceMethods {
log.write("Entering " + thisJointPoint.getSignature());

}

after () : traceMethods {
log.write("Exiting " + thisJointPoint.getSignature());

}
}

Listing 1.3: Example of dynamic crosscutting in Aspect]

Upward compatibility
All legal Java programs must be legal Aspect] programs;
Platform compatibility
All legal Aspect] programs must run on standard Java virtual machines;
Tool compatibility
It must be possible to extend existing tools to support Aspect] in a natural way; this
includes IDEs, documentation tools and design tools;
Programmer compatibility
Programming with Aspect] must feel like a natural extension of programming with Java.

Aspect] extends Java with support for two kinds of crosscutting functionality. The first allows
defining additional behavior to run at certain well-defined points in the execution of the pro-
gram and is called the dynamic crosscutting mechanism. The other is called the static crosscutting
mechanism and allows modifying the static structure of classes (methods and relationships be-
tween classes). The units of crosscutting implementation are called aspects. An example of an
aspect specified in Aspect] is shown in Listing 1.3.

The points in the execution of a program where the crosscutting behavior is inserted are called
join points. A pointcut has a set of join points. In Listing 1.3 is traceMethods an example of
a pointcut definition. The pointcut includes all executions of any method that is in a class
contained by package edu.utwente.trese

The code that should execute at a given join point is declared in an advice. Advice is a method-
like code body associated with a certain pointcut. Aspect] supports before, after and around
advice that specifies where the additional code is to be inserted. In the example, both before
and after advice are declared to run at the join points specified by the traceMethods pointcut.

Aspects can contain anything permitted in class declarations including definitions of pointcuts,
advice and static crosscutting. For example, static crosscutting allows a programmer to add
tields and methods to certain classes as shown in Listing 1.4.

The shown construct is called inter-type member declaration and adds a method trace to class
Log. Other forms of inter-type declarations allow developers to declare the parents of classes
(superclasses and realized interfaces), declare where exceptions need to be thrown, and allow
a developer to define the precedence among aspects.

Roy Spenkelink 8

1. Introduction to AOSD

aspect StaticCrosscuttingExample {
private int Log.trace(String traceMsg) {
Log.write(" --- MARK --- " + traceMsgQ);

}
}

Listing 1.4: Example of static crosscutting in Aspect]

With its variety of possibilities, Aspect] can be considered a useful approach for realizing soft-
ware requirements.

1.4.2 Hyperspaces Approach

The Hyperspaces approach is developed by H. Ossher and P. Tarr at the IBM T.]. Watson Research
Center. The Hyperspaces approach adopts the principle of multi-dimensional separation of
concerns [30], which involves:

Multiple, arbitrary dimensions of concerns;

Simultaneous separation along these dimensions;

Ability to dynamically handle new concerns and new dimensions of concern as they arise
throughout the software life cycle;

Overlapping and interacting concerns. It is appealing to think of many concerns as inde-
pendent or orthogonal, but they rarely are in practice.

We explain the Hyperspaces approach by an example written in the Hyper/] language. Hyper/]
is an implementation of the Hyperspaces approach for Java. It provides the ability to identify
concerns, specify modules in terms of those concerns, and synthesize systems and components
by integrating those modules. Hyper/] uses bytecode weaving on binary Java class files and
generates new class files to be used for execution. Although the Hyper/] project seems aban-
doned and there has not been any update in the code or documentation for a while, we still
mention it because the Hyperspaces approach offers a unique AOP solution.

As a first step, developers create hyperspaces by specifying a set of Java class files that contain
the code units that populate the hyperspace. To do this is, you create a hyperspace specification,
as demonstrated in Listing 1.5.

Hyper/] will automatically create a hyperspace with one dimension—the class file dimension.
A dimension of concern is a set of concerns that are disjoint. The initial hyperspace will con-
tain all units within the specified package. To create a new dimension you can specify concern
mappings, which describe how existing units in the hyperspace relate to concerns in that di-
mension, as demonstrated in Listing 1.6.

The first line indicates that, by default, all of the units contained within the package edu.
utwente.trese.pacman address the kernel concern of the feature dimension. The other map-

Hyperspace Pacman
class edu.utwente.trese.pacman. *

Listing 1.5: Creation of a hyperspace

9 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

package edu.utwente.trese.pacman: Feature.Kernel
operation trace: Feature.Logging
operation debug: Feature.Debugging

Listing 1.6: Specification of concern mappings

pings specify that any method named trace or debug address the logging and debugging
concern respectively. These later mappings override the first one.

Hypermodules are based on concerns and consist of two parts. The first part specifies a set of
hyperslices in terms of the concerns identified in the concern matrix. The second part specifies
the integration relationships between the hyperslices. A hyperspace can contain several hyper-
modules realizing different modularizations of the same units. Systems can be composed in
many ways from these hypermodules.

Listing 1.7 shows a hypermodule with two concerns, kernel and logging. They are related
by a mergeByName integration relationship. This means that units in the different concerns
correspond if they have the same name (ByName) and that these corresponding units are to be
combined (merge). For example, all members of the corresponding classes are brought together
into the composed class. The hypermodule results in a hyperslice that contains all the classes
without the debugging feature; thus, no debug methods will be present.

The most important feature of the hyperspaces approach is the support for on-demand remod-
ularisation: the ability to extract hyperslices to encapsulate concerns that were not separated in
the original code. This makes hyperspaces especially useful for evolution of existing software.

1.4.3 Composition Filters

Composition Filters is developed by M. Aksit and L. Bergmans at the TRESE group, which is
a part of the Department of Computer Science of the University of Twente, The Netherlands.
The composition filters (CF) model predates aspect-oriented programming. It started out as an
extension to the object-oriented model and evolved into an aspect-oriented model. The current
implementation of CF is Compose*, which covers .NET, Java, and C.

One of the key elements of CF is the message. A message is the interaction between objects, for
instance a method call. In object-oriented programming, the message is considered an abstract
concept. In the implementations of CF, it is therefore necessary to reify the message. This reified
message contains properties, like where it is send to and where it came from.

The concept of CF is that messages that enter and exit an object can be intercepted and manip-
ulated, modifying the original flow of the message. To do so, a layer called the interface part is
introduced in the CF model. This layer can have several properties. The interface part can be
placed on an object, which behavior needs to be altered, and this object is referred to as inner.

hypermodule Pacman_Without_Debugging
hyperslices : Feature.Kernel, Feature.Logging;
relationships : mergeByName;

end hypermodule ;

Listing 1.7: Defining a hypermodule

Roy Spenkelink 10

1. Introduction to AOSD

There are three key elements in CF: messages, filters, and superimposition. Messages are sent
from one object to another, if there is an interface part placed on the receiver, then the message
that is sent goes through the input filters. In the filters the message can be manipulated before
it reaches the inner part, the message can even be sent to another object. How the message will
be handled depends on the filter type. An output filter is similar to an input filter. The only
difference is that it manipulates messages that originate from the inner part. The latest addition
to CF is superimposition, which is used to specify which interfaces needs to be superimposed
on which inner objects.

11 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Roy Spenkelink 12

Chapter 2

Composex

Compose* is an implementation of the composition filters approach. There are three target
environments: the .NET, Java, and C. This chapter is organized as follows, first the evolution
of Composition Filters and its implementations are described, followed by an explanation of
the Compose* language and a demonstrating example. In the third section, the Compose*
architecture is explained, followed by a description of the features specific to Compose*.

2.1 Evolution of Composition Filters

Compose* is the result of many years of research and experimentation. The following time
line gives an overview of what has been done in the years before and during the Compose*
project.

1985 The first version of Sina is developed by Mehmet Aksit. This version of Sina contains a
preliminary version of the composition filters concept called semantic networks. The
semantic network construction serves as an extension to objects, such as classes, mes-
sages, or instances. These objects can be configured to form other objects such as
classes from which instances can be created. The object manager takes care of syn-
chronization and message processing of an object. The semantic network construction
can express key concepts like delegation, reflection, and synchronization [26].

1987 Together with Anand Tripathi of the University of Minnesota the Sina language is
further developed. The semantic network approach is replaced by declarative specifi-
cations and the interface predicate construct is added.

1991 The dispatch filter replaces the interface predicates, and the wait filter manages the
synchronization functions of the object manager. Message reflection and real-time
specifications are handled by the meta filter and the real-time filter [4].

1995 The Sina language with Composition Filters is implemented using Smalltalk [26]. The
implementation supports most of the filter types. In the same year, a preprocessor
providing C++ with support for Composition Filters is implemented [17].

1999 The composition filters language Compose] [43] is developed and implemented. The
implementation consists of a preprocessor capable of translating composition filter
specifications into the Java language.

2001 Concern] is implemented as part of a M. Sc. thesis [33]. Concern] adds the notion of
superimposition to Composition Filters. This allows for reuse of the filter modules

13

Porting Compose* to the Java Platform University Twente

and facilitation of crosscutting concerns.

2003 The start of the Compose* project, the project is described in further detail in this
chapter.

2004 The first release of Compose*, based on .NET.

2006 Compose* is ported to the C platform.

2.2 Composition Filters in Compose*

A Compose* application consists of concerns that can be divided in three parts: filter module
specifications, superimposition, and implementation. A filter module contains the filter logic
to filter on incoming or outgoing messages on superimposed objects. Messages have a tar-
get, which is an object reference, and a selector, which is a method name. A superimposition
part specifies which filter modules, annotations, conditions, and methods are superimposed on
which objects. An implementation part contains the class implementation of a concern. How
these parts are placed in a concern is shown in Listing 2.1.

The working of a filter module is depicted in Figure 2.1. A filter module can contain input and
output filters. The difference between these two sets of filters is that the first is used to filter
on incoming messages, while the second is used to filter on outgoing messages. The return of
a method is not considered an outgoing message. A filter has three parts: a filter identifier, a
filter type, and one or more filter elements. A filter element exists out of an optional condition
part, a matching part, and a substitution part. These parts are shown below:

identi fier filter type condition part

stalker_filter : Dispatch = {!pacmanlsEvil =>

matching part substitution part

[x.get NextMove] stalk_strategy.get NextMove }

concern {
filtermodule {
internals
externals
conditions
inputfilters
outputfilters

}

superimposition {
selectors
filtermodules
annotations
constraints

}

implementation

}
Listing 2.1: Abstract concern template

Roy Spenkelink 14

2. Compose*

received messages

input filters

interface part
A

/
inner part

output filters

\/
sent messages

Figure 2.1: Components of the composition filters model

A filter identifier is a unique name for a filter in a filter module. Filters match when both the
condition part and the matching part evaluate to true. In the demonstrated filter, every message
where the selector is getNextMove matches. If an asterisk (x) is used in the target, every target
will match. When the condition part and the matching part are true, the message is substituted
with the values provided in the substitution part. How these values are substituted, and how
the message continues, depends on the type of filter used. At the moment there are four basic
filter types defined in Compose*. It is, however, possible to write custom filter types.

Dispatch If the message is accepted, it is dispatched to the specified target of the message,
otherwise the message continues to the subsequent filter. This filter type can only be
used for input filters;

Send If the message is accepted, it is sent to the specified target of the message, otherwise
the message continues to the subsequent filter. This filter type can only be used for
output filters;

Error If the filter rejects the message, it raises an exception, otherwise the message contin-
ues to the next filter in the set;

Meta If the message is accepted, the message is sent as a parameter of another meta mes-
sage to an internal or external object, otherwise the message just continues to the
next filter. The object that receives the meta message can observe and manipulate
the message and can re-activate the execution of the message.

The identifier pacmanisEvil , used in the condition part, must be declared in the conditions
section of a filter module. Targets that are used in a filter can be declared as internal or external.
An internal is an object that is unique for each instance of a filter module, while an external is
an object that is shared between filter modules.

Filter modules are superimposed on classes using filter module binding, which specifies a se-
lection of objects on the one side, and a filter module on the other side. The selection is spec-

15 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

ified in a selector definition. This selector definition uses predicates to select objects, such as
isClassWithNamelnList , isNamespaceWithName , and namespaceHasClass . In addition to
filter modules, it is possible to bind conditions, methods, and annotations to classes using su-
perimposition.

The last part of the concern is the implementation part, which can be used to define the behav-
ior of a concern. For a logging concern, for example, we can define specific log functions and
use them as internal.

2.3 Demonstrating Example

To illustrate the Compose* toolset, this section introduces a Pacman example. The Pacman
game is a classic arcade game in which the user, represented by pacman, moves in a maze to
eat vitamins. Meanwhile, a number of ghosts try to catch and eat pacman. There are, however,
four mega vitamins in the maze that make pacman evil. In its evil state, pacman can eat ghosts.
A simple list of requirements for the Pacman game is briefly discussed here:

e The number of lives taken from pacman when eaten by a ghost;

A game should end when pacman has no more lives;

The score of a game should increase when pacman eats a vitamin or a ghost;
A user should be able to use a keyboard to move pacman around the maze;
Ghosts should know whether pacman is evil or not;

Ghosts should know where pacman is located;

Ghosts should, depending on the state of pacman, hunt or flee from pacman.

2.3.1 Initial Object-Oriented Design

Figure 2.2 shows an initial object-oriented design for the Pacman game. Note that this UML
class diagram does not show the trivial accessors. The classes in this diagram are:

Game
This class encapsulates the control flow and controls the state of a game;
Ghost
This class is a representation of a ghost chasing pacman. Its main attribute is a property
that indicates whether it is scared or not (depending on the evil state of pacman);
GhostView
This class is responsible for painting ghosts;
Glyph
This is the superclass of all mobile objects (pacman and ghosts). It contains common
information like direction and speed;
Keyboard
This class accepts all keyboard input and makes it available to pacman;
Main
This is the entry point of a game;
Pacman
This is a representation of the user-controlled element in the game. Its main attribute is a
property that indicates whether pacman is evil or not;

Roy Spenkelink 16

2. Compose*

World

-screenData - short[][]
-pacman : Pacman
+Warld()

+canMove() : bool
+canMoveDown() : bool
+oanMovelefi() : bool
+canMaoveRight() : baol

Glyph +canMovelp() - bool
— +eatFocd()
[+speed it = 0 world [+eatVitamin()
+direction @ int =3 +faodCn(} - bool
X Int =1 " l+isEmpty() - bool
yrint= a 1 |epaint()
Hdxcint =0 +reset()
dy 2 int = P
w: : i:t - ? +V|tam|n0nﬂ : bool
vy tint=0 id . Frame
Glyph() o
+doTurn()
Hmovel)
Fresel()
+setStartPosition()
Hupdata(}
4}_ Game
-level |int i
Hives © int Panel Main
lstate : State
0.* i ooSE [vGame() ain()
+addGhosi{) +maini}
Ghost +doGameaovear|)
: +doPlaying) instantiates
[scared : bool +gamalnit()
Pacman +Ghast() ‘+ghostBumpsPacman()|
P Tr— +doTurmi) +paint()
Ep"""'”"e - bong isScared) : bool play() | -
: di_lgmanf] +paint(} +proceed() View
et urnl) +update() +pacmarnkKilled() -+ +bufferGraphics - Graphics|+#
+p?5|r1_LI(] oo . +reset() game +bufferimage : Image
+|5 Vi [[}J . +roundinit() e)
| serSianPesition()) sroundOuer() clearBuffer()
; apdate) pacman +roundStart() :f.l-la:l?;ﬁ.uﬁef(]
k A
parent | 1 parent | 1
1 keyboard
L J
Keyboard strategy RandomStrategy
[direction : int=0 >
+getMexthovel) | int 1 +gatMaxthMoval) :int
theyPressed()
[theyReleased())
[HeyTyped() w"Tj'“ Ghostviow child
1 ' Hmages : Image][] h 1
v +GhostView()
PacmanView *painti}
Fimages : Image(][])
HPacmaniew) chid
H+palnt) T

Figure 2.2: UML class diagram of the object-oriented Pacman game

17 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

PacmanView
This class is responsible for painting pacman;

RandomStrategy
By using this strategy, ghosts move in random directions;

View
This class is responsible for painting a maze;

World
This class has all the information about a maze. It knows where the vitamins, mega
vitamins and most importantly the walls are. Every class derived from class Glyph checks
whether movement in the desired direction is possible.

2.3.2 Completing the Pacman Example

The initial object-oriented design, described in the previous section, does not implement all the
stated system requirements. The missing requirements are:

e The application does not maintain a score for the user;
e Ghosts move in random directions instead of chasing or fleeing from pacman.

In the next sections, we describe why and how to implement these requirements in the
Compose* language.

2.3.2.1 Implementation of Scoring

The first system requirement that we need to add to the existing Pacman game is scoring. This
concern involves a number of events. First, the score should be set to zero when a game starts.
Second, the score should be updated whenever pacman eats a vitamin, mega vitamin or ghost.
Finally, the score itself has to be painted on the maze canvas to relay it back to the user. These
events scatter over multiple classes: Game (initializing score), World (updating score), Main
(painting score). Thus scoring is an example of a crosscutting concern.

To implement scoring in the Compose* language, we divide the implementation into two parts.
The first part is a Compose* concern definition stating which filter modules to superimpose.
Listing 2.2 shows an example Compose* concern definition of scoring.

This concern definition is called DynamicScoring (line 1) and contains two parts. The first part
is the declaration of a filter module called dynamicscoring (lines 2-11). This filter module
contains one meta filter called score_filter (line 6). This filter intercepts five relevant calls
and sends the message in a reified form to an instance of class Score . The final part of the
concern definition is the superimposition part (lines 12-18). This part defines that the filter
module dynamicscoring is to be superimposed on the classes World , Gameand Main .

The final part of the scoring concern is the so-called implementation part. This part is defined by
a class Score . Listing 2.3 shows an example implementation of class Score . Instances of this
class receive the messages sent by score_filter and subsequently perform the events related
to the scoring concern. In this way, all scoring events are encapsulated in one class and one
Compose* concern definition.

Roy Spenkelink 18

2. Compose*

concern DynamicScoring in pacman {

filtermodule dynamicscoring {
externals
score : pacman.Score = pacman.Score.instance();
inputfilters
score_filter : Meta = {[* eatFood] score.eatFood,
[*.eatGhost] score.eatGhost,
[* .eatVitamin] score.eatVitamin,
[*.gamelnit] score.initScore,
[* .setForeground] score.setupLabel}
}
superimposition {
selectors

scoring = { C | isClassWithNamelnList(C, ['pacman.World’,
‘pacman.Game’, 'pacman.Main’]) };
filtermodules
scoring <- dynamicscoring;

Listing 2.2: DynamicScoring concern in Compose*

2.3.2.2 Implementation of Dynamic Strategy

The last system requirement that we need to implement is the dynamic strategy of ghosts. This
means that a ghost should, depending on the state of pacman, hunt or flee from pacman. We
can implement this concern by using the strategy design pattern. However, in this way, we
need to modify the existing code. This is not the case when we use Compose* dispatch filters.
Listing 2.4 demonstrates this.

This concern uses dispatch filters to intercept calls to method RandomStrategy.getNextMove

and redirect them to either StalkerStrategy.getNextMove or FleeStrategy.getNextMove
If pacman is not evil, the intercepted call matches the first filter, which dispatches the inter-
cepted call to method StalkerStrategy.getNextMove (line 9). Otherwise, the intercepted

call matches the second filter, which dispatches the intercepted call to method FleeStrategy.
getNextMove (line 11).

2.4 Compose* Architecture

An overview of the Compose* architecture is illustrated in Figure 2.3. The Compose* archi-
tecture can be divided in four layers [28]: IDE, compile time, adaptation, and runtime.

2.4.1 Integrated Development Environment

Some of the purposes of the Integrated Development Environment (IDE) layer are to interface
with the native IDE and to create a build configuration. In the build configuration it is specified
which source files and settings are required to build a Compose* application. After creating
the build configuration, the compile time is started.

The creation of a build configuration can be done manually or by using a plug-in. Examples

19 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

import Composestar.Runtime.FLIRT.message. *;
import java.awt. *;

public class Score

{
private int score = -100;
private static Score theScore = null ;
private Label label = new java.awt.Label("Score: 0");

private Score() {}

public static Score instance() {

if (theScore == null) {
theScore = new Score();

}

return theScore;

}

public void initScore(ReifiedMessage rm) {
this .score = O;
label .setText("Score: "+score);

}

public void eatGhost(ReifiedMessage rm) {
score += 25;
label .setText("Score: "+score);

}

public void eatVitamin(ReifiedMessage rm) {
score += 15;
label .setText("Score: "+score);

}

public void eatFood(ReifiedMessage rm) {
score += b5;
label .setText("Score: "+score);

}

public void setupLabel(ReifiedMessage rm) {
rm.proceed();
label = new Label("Score: 0);
label .setSize(15 *View.BLOCKSIZE+20,15 +View.BLOCKSIZE);
Main main = (Main)Composestar.Runtime.FLIRT.message.Messagelnfo
.getMessagelnfo().getTarget();
main.add(label ,BorderLayout.SOUTH);

Listing 2.3: Implementation of class Score

Roy Spenkelink 20

2. Compose*

concern DynamicStrategy in pacman {
filtermodule dynamicstrategy {
internals
stalk_strategy : pacman.Strategies.StalkerStrategy;
flee_strategy : pacman.Strategies.FleeStrategy;
conditions
pacmanliskEvil : pacman.Pacman.isEvil();
inputfilters
stalker_filter : Dispatch = {!pacmanlisEvil =>
[*.getNextMove] stalk_strategy.getNextMove};
flee_filter : Dispatch = {
[*.getNextMove] flee_strategy.getNextMove}

}
superimposition {
selectors
random = { C | isClassWithName(C,
‘pacman.Strategies.RandomsStrategy’) };
filtermodules
random <- dynamicstrategy;
}

Listing 2.4: DynamicStrategy ~ concern in Compose*

IDE

Composition-filter Builq '
Specifications Configuration

y Compile Time

Repository

Source Code
Implementation yA

Adaptation

A

Compiled Code Weaving Specification

Woven Code Repository Copy

Y .
- Runtime interaction ﬂne

Figure 2.3: Overview of the Compose* architecture

21 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

of these plug-ins are the Visual Studio add-in for Compose*/ .NET and the Eclipse plug-in for
Compose*/C.

2.4.2 Compile Time

The compile time layer is platform independent and reasons about the correctness of the com-
position filter implementation with respect to the program which allows the target program to
be build by the adaptation.

The compile time “pre-processes’ the composition filter specifications by parsing the specifica-
tion, resolving the references, and checking its consistency. To provide an extensible architec-
ture to facilitate this process a blackboard architecture is chosen. This means that the compile
time uses a general knowledgebase that is called the ‘repository’. This knowledgebase contains
the structure and metadata of the program which different modules can execute their activities
on. Examples of modules within analysis and validation are the three modules SANE, LOLA
and FILTH. These three modules are responsible for (some) of the analysis and validation of
the super imposition and its selectors.

2.4.3 Adaptation

The adaptation layer consists of the program manipulation, harvester, and code generator.
These components connect the platform independent compile time to the target platform. The
harvester is responsible for gathering the structure and the annotations within the source pro-
gram and adding this information to the knowledgebase. The code generation generates a
reduced copy of the knowledgebase and the weaving specification. This weaving specification
is then used by the weaver contained by the program manipulation to weave in the calls to
the runtime into the target program. The result of the adaptation is the target program that
interfaces with the runtime.

2.4.4 Runtime

The runtime layer is responsible for executing the concern code at the join points. It is acti-
vated at the join points by function calls that are woven in by the weaver. A reduced copy
of the knowledgebase containing the necessary information for filter evaluation and execution
is enclosed with the runtime. When the function is filtered the filter is evaluated. Depending
on if the condition part evaluates to true, and the matching part matches, the accept or reject
behavior of the filter is executed. The runtime also facilitates the debugging of the composition
filter implementations.

2.5 Platforms

The composition filters concept of Compose* can be applied to any programming language,
given that certain assumptions are met. Currently, Compose* supports two platforms: .NET
and C. For each platform, different tools are used for compilation and weaving. They all share
the same platform independent compile-time.

Roy Spenkelink 22

2. Compose*

Compose*/.NET targets the .NET platform and is the oldest implementation of Compose*. Its
weaver operates on CIL byte code. Compose*/.NET is programming language independent
as long as the programming language can be compiled to CIL code. An add-in for Visual Studio
is provided for ease of development. Compose*/C contains support for the C programming
language. The implementation is different from the .NET counterpart, because it does not have
a run-time environment. The filter logic is woven directly in the source code. Because the
language C is not based on objects, filters are woven on functions based on membership of sets
of functions. Compose*/C provides a plug-in for Eclipse.

2.6 Features Specific to Composex

The Composition Filters approach uses a restricted (pattern matching) language to define fil-
ters. This language makes it possible to reason about the semantics of the concern. Compose*
offers three features that use this possibility, which originate in more control and correctness
over an application under construction. These features are:

Ordering of filter modules
It is possible to specify how the superimposition of filter modules should be ordered.
Ordering constraints can be specified in a fixed, conditional, or partial manner. A fixed
ordering can be calculated exactly, whereas a conditional ordering is dependent on the re-
sult of filter execution and therefore evaluated at runtime. When there are multiple valid
orderings of filtermodules on a join point, partial ordering constraints can be applied to
reduce this number. These constraints can be declared in the concern definition;

Filter consistency checking
When superimposition is applied, Compose* is able to detect if the ordering and con-
junction of filters creates a conflict. For example, imagine a set of filters where the first
filter only evaluates method m and another filter only evaluates methods a and b. In this
case the latter filter is only reached with method m; this is consequently rejected and as a
result the superimposition may never be executed. There are different scenarios that lead
to these kinds of problems, e.g., conditions that exclude each other;

Reason about semantic problems
When multiple pieces of advice are added to the same join point, Compose* can reason
about problems that may occur. An example of such a conflict is the situation where a
real-time filter is followed by a wait filter. Because the wait filter can wait indefinitely, the
real-time property imposed by the real-time filter may be violated.

The above mentioned conflict analyzers all work on the assumption that the behavior of every
filter is well-defined. This is not the case for the meta filter, its user-undefined, and therefore
unpredictable, behavior poses a problem to the analysis tools.

Furthermore, Compose* is extended with features that enhance the usability. These features
are briefly described below:

Integrated Development Environment support
The Compose* implementations all have a IDE plug-in; Compose*/.NET for Visual Stu-
dio, Compose* /C for Eclipse;

23 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Debugging support
The debugger shows the flow of messages through the filters. It is possible to place break-
points to view the state of the filters;

Incremental building process
Incremental rebuilding re-uses the compilation results of previous buildings to safe com-
pilation time

Some language properties of Compose* can also be seen as features, being:

Language independent concerns
A Compose* concern can be used for all the Compose* platforms, because the composi-
tion filters approach is language independent;

Reusable concerns
The concerns are easy to reuse, through the dynamic filter modules and the selector lan-
guage;

Expressive selector language
Program elements of an implementation language can be used to select a set of objects to
superimpose on;

Support for annotations
Using the selector, annotations can be woven at program elements. At the moment anno-
tations can be used for superimposition.

Roy Spenkelink 24

Chapter 3

Problem Identification

This chapter identifies the challenges that exist in porting Compose* to the Java platform.

3.1 Background

One goal of the Compose* project is to familiarize a large audience with the concept of the
composition filters model. Currently, Compose* runs on the .NET platform [6, 16, 20, 40] and
C platform [38]. Adding a third platform increases our audience. Furthermore, it helps us in
proving the language and platform independent aspect of the composition filters model.

Our choice for Java as the third platform is straightforward. First of all, Java is the most pop-
ular programming language according to the TIOBE index published on the internet [39]. The
TIOBE index gives an indication of the popularity of programming languages. The ratings are
based on the world-wide availability of skilled engineers, courses and third party vendors. Java
is especially popular in the Software Engineering research community. Secondly, since the in-
troduction of Aspect] [25] in 2001, AOP has become increasingly popular on the Java platform.
This increases the possibility of using or working with existing third-party tools, frameworks
and libraries. Finally, previous efforts were made in the past to implement the composition
filters model on the Java platform [33, 43]. We can use this experience for the development of
Compose*/].

3.2 Designing Compose*/]

Our first challenge is to design and implement Compose*/J.

As described in Chapter 2, the Compose* architecture is divided in four layers [28]: IDE,
compile-time, adaptation and runtime. The compile-time layer reasons about the composition
filters model, and thus is considered language independent. All implementations of Compose*
share the analysis tools that exist in this layer.

The other three layers are partially language dependent. Thus we need to design and im-
plement these layers in Compose*/]. More specific, Compose*/] is based on the following
technologies:

25

Porting Compose* to the Java Platform University Twente

IDE integration. Integration into an existing Integrated Development Environment (IDE) in
the form of a plug-in. One of the purposes of the plug-in is to create a build configuration.
In the build configuration, it is specified which source files and settings are required to
build a Compose* application.

Type Collecting. In order to reason about concerns, the program structure and annotations
within the source code are collected and stored in a knowledgebase. This technology is
part of the adaptation layer.

Weaver. The weaver is responsible for weaving advice code into the target program. The
weaver is also part of the adaptation layer.

Interpreter. The interpreter is responsible for executing concern code at the joinpoints. It is
triggered by function calls that are woven in by the weaver. It is part of the runtime layer.

3.3 Supporting specific Java features

Since Compose* is a language independent solution, some of the Java features might not be
supported by the composition filters model or even be supported in the future. Our second
challenge is to investigate the possibility of supporting specific Java features in Compose*/J.
We focus on the following Java features:

Exception Handling. Mechanism that handles the occurrence of an exceptional condition that
changes the control flow of the normal execution of a program. Currently, Compose*
generates exceptions, but it cannot handle them. Chapter 4 discusses the possibilities for
modularizing exception handling with composition filters.

Inner Classes. Inner classes are classes defined inside the definition of another class. Currently,
Compose* cannot handle inner classes. In Chapter 5, we discuss the possibilities for
expressing crosscutting concerns on inner classes.

Java Interfaces. An interface in Java is a group of related methods with empty bodies. They
form a contract between classes and the outside world. Currently, Compose* only sup-
ports class-based weaving. Chapter 6 discusses the possibilities and benefits for weaving
on Java interfaces.

In our approach, we do not consider the language independence of Compose*. We assume
that Compose* is solely meant for the Java platform. Therefore, solutions presented in this
thesis should be further investigated with the aspect of language independence in mind.

3.4 Summary

Since the introduction of Aspect], a lot of AOP tools have been on the Java platform. This fact
combined with our intention to prove the language and platform independence of Compose*,
motivates us to port Compose* to the Java platform, yielding in Compose*/].

Implementing Compose* /] comes with challenges. Our first challenge is to implement the
language dependent technologies in Compose*/]. Chapter 7 and Chapter 8 present the design
and implementation of Compose*/J.

Our second challenge is to investigate the possibility of supporting specific Java features in
Compose*/]. The next three chapters elaborate on this.

Roy Spenkelink 26

Chapter 4

Exception Handling in Compose*

This chapter focuses on the possibility of supporting exception handling in Compose*. First,
it presents some background information. Then, it describes our motivation for modularizing
exception handling with composition filters. After that, it defines a set of comparison criteria
for composition filters models. Finally, it presents three possible composition filters models
that support exception handling, applies the criteria on the models and evaluates them.

4.1 Background

Exception handling is a mechanism to handle the occurrence of an exceptional condition that
changes the control flow of the normal execution of a program. Such a condition is called
an exception. When an exception occurs, a handler temporarily interrupts the normal execution.
Nowadays, many computer languages have built-in support for exception detection and excep-
tion handling. One of these languages is Java. Section 4.1.1 describes the exception handling
mechanism in Java. Section 4.1.2 describes the error filter, which is currently the only built-in
support in Compose* that deals with exceptions.

4.1.1 Java Exception Handling

When an exceptional behavior causes an exception to be thrown, that exception is represented
by an object. The Java exception hierarchy is shown in Figure 4.1.

All exception objects are instantiated from a class named Throwable or one of its subclasses.
Sun [36] states the following about the class Throwable :

The Throwable class is the superclass of all errors and exceptions in the Java language. Only objects
that are instances of this class (or one of its subclasses) are thrown by the Java Virtual Machine or can
be thrown by the Java throw statement. Similarly, only this class or one of its subclasses can be the
argument type in a catch clause.

As we can see in Figure 4.1 the class Throwable has two subclasses. The difference between
these two can be best explained by looking again at their definition:

An Error is a subclass of Throwable that indicates serious problems that are external to an application.
A reasonable application should not try to catch these errors. Most such errors are abnormal conditions

27

Porting Compose* to the Java Platform University Twente

Throwable

unchecked checked

RuntimeException

unchecked

Figure 4.1: Java Exception Hierarchy

that the application cannot anticipate or recover from. These errors can be caught to notify the user about
the problem, but it also makes sense to print the stack trace and exit the application.

The class Exception and its subclasses are a form of Throwable that indicates conditions that a reasonable
application might want to catch.

Unlike many programming languages that support exception handling, Java distinguishes be-
tween two types of exceptions:

Unchecked exceptions. Unchecked exceptions are types of exceptions that you can optionally
handle, or ignore. If you elect to ignore the possibility of an unchecked exception (i.e.
exception is never caught in the program), and one occurs, your program will terminate
as a result. If you elect to handle an unchecked exception and one occurs, the result will
depend on the code that you have written to handle the exception. Unchecked exceptions
are exceptions instantiated from RuntimeException and its subclasses.

Checked exceptions. Checked exceptions are all exceptions instantiated from the class
Exception , or from subclasses other than RuntimeException and its subclasses. These
exceptions cannot be ignored while writing code. So checked exceptions represent
abnormal conditions that should be anticipated and caught to prevent program from
termination. The Java compiler raises an error when checked exceptions are not handled
by a try/catch block or throws definition.

How to catch or throw an exception?

Listing 4.1 shows an example of catching exceptions in Java. An exception can be caught by
declaring a try/catch block. The parameter of the catch block indicates which exception objects
are caught. In this case, the catch block catches instances of the class Exception and of its
subclasses.

Roy Spenkelink 28

4. Exception Handling in Compose*

public class myClass

{
public void myMethod()

{
try
{

}

catch (Exception e)

{
}

Listing 4.1: Catching exceptions in Java.

Listing 4.2 shows an example of throwing exceptions in Java. A method can either throw an
existing exception object (i.e. generated elsewhere) or throw a new exception. A new exception
can be thrown by using the keywords throw and new. A throws-clause in the method decla-
ration indicates that a method throws the declared exceptions. In this case methodB throws a
new exception, methodA opts to ignore the exception and throws it again.

public class myClass

{
public void methodA() throws Exception
methodB();
}
public void methodB() throws Exception
{
throw new Exception("my own exception");
}
}

Listing 4.2: Throwing exceptions in Java.

4.1.2 Error Filter

Currently, the error filter is the only filter in Compose* that deals with exceptions. The defini-
tion of the error-filter is as follows:

An error filter raises an exception when it rejects a message. The substitution part is ignored. When it
accepts a message, the message continues through the next filter.

The error filter was first used to express multiple views on objects. It enables us to restrict
access to particular methods.

29 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

4,2 Motivation

In the world of AOP, exception handling is often mentioned as an example of a crosscutting
concern. The following properties of crosscutting concerns explain this:

Code tangling. There is tangling between code for what the program should do (i.e. its normal
behavior) and code for detecting and handling exceptions.

Code replication. Often responses to exceptions are similar. This leads to replication of code.
Examples of such responses are: “log and ignore”, "set the return to a default value” and
“throw an exception of a different kind"”. [27]

Code scattering. Code scattered among different objects can sometimes be identified as one
concern. E.g. All methods that call a server should be prepared for network failures and retry
calling it 3 times before giving up.

Since Compose* is an AOP solution, our motivation for supporting exception handling in
Compose* becomes clear. We would like to support the following things:

Modularize exceptional/normal behavior. We want to split up the exceptional behavior from
the normal behavior. Specificly, we want to express code belonging to exception detection
and handling with composition filter code.

Eliminate scattering of exception declarations The use of checked exceptions forces program-
mers to declare throws clauses at places in the program where they do not want to han-
dle exceptions. This leads to scattering of exception declarations (i.e. numerous throws
clauses). This scattering hampers the process of pinpointing the exact locations of where
the exceptions are handled. We want to eliminate this redundancy by specifying in the
concern code where exceptions are handled.

4.2.1 Demonstrating Example

As described above, exception handling can often lead to redundant code due to replication
of code. Assume we write a data access object (DAO) PersonDAO for retrieving and updating
data of a Person in a database, as shown in Listing 4.3.

The two methods getPerson and updatePerson both have the same response to handling a
SQLException . They simply log the exception.

We can say that lines 12, 14-17, 21 and 23-26 belong to a single concern ”Simple logging of excep-
tions”. It should be possible in Compose* to leave out these lines from the code and express
them with composition filters code. Currently, Compose* does not support this. The result
could be a clear reduction of source code, no tangled code and modularization between nor-
mal and exceptional behavior. The reduced source code is shown in Listing 4.4.

Section 4.3 presents three possible composition filters models for expressing this concern with
composition filters.

Roy Spenkelink 30

4. Exception Handling in Compose*

package apackage;

public class PersonDAO

{

private Person person;

public PersonDAO() {

/Il ... setup database connection

}

public

try {
.. execute
}

catch {SQLException e} {
System.out.println(e.getMessage());

void getPerson() {

query for retrieving Person

}
}
public void

try {
.. execute
}

catch {SQLException e} {
System.out.println(e.getMessage());

updatePerson() {

geury for updating Person

}
}
}

Listing 4.3: Snapshot implementation of class PersonDAO.

package apackage;

data .

data .

Listing 4.4: Snapshot partial implementation of class PersonDAO (i.e. without concerns) in

public class PersonDAO
{

private Person person;

public PersonDAO() {

/l ... setup database connection

}

public void getPerson() {

/I ... execute query for retrieving Person data .
}

public void updatePerson() {

/I ... execute qeury for updating Person data .
}
}
Compose*.
31

Roy Spenkelink

Porting Compose* to the Java Platform University Twente

4.3 Solution Models

This section describes three possible composition filters models that enable us to modularize
exception handling in Compose*. The next section compares these models based on three
criteria, which we present below. Since these criteria are hard to measure, we evaluate them
based on a qualitative study.

Intuitive semantics. Using intuitive semantics facilitates reasoning about the composition fil-
ters models and the filters used in the models. We define intuitive as: are things executed
in the order in which they are written; are conditions evaluated at the moment a message
passes a filter; is it clear what the filters do when they accept or reject a message; etc.

Amount of ordering. Different orderings of the filters superimposed on an object can lead to
different results. This criteria evaluates in what degree it is possible to specify orderings
between the filters in the different composition filters models. We evaluate this criteria
by examining the possible orderings.

Reusability of concerns. This criteria evaluates the reusability of concerns in the different
composition filters models. We define reusability of concerns as: 1) the ability to par-
tially reuse concerns through apprioriate modularization(s) and 2) the ability to adapt
concerns. We evaluate this criteria by examining concerns that can potentially be used by
other concerns, e.g. exception handling and profiling.

4.3.1 Preliminaries

First, we give preliminaries to better understand the composition filters models presented be-
low. Consider the control flow of a message currently in Compose¥, illustrated in Figure 4.2.

In the figure, we see three objects (A, B and C). Object A sends a message to object B. This
message first runs through a set of outputfilters superimposed on object A. When a message
runs through a filter, it first runs through the matching part of the filter. This matching part
decides what filter action is going to be executed. Each filtertype defines four filter actions:
accept call, reject call, accept return and reject return. If a message matches with the matching
pattern, the accept call action of the specified filter is executed. If the message does not match
with the matching pattern, the filter executes it reject call action. Furthermore, the call actions
are tightly coupled with the return actions. This means that if a filter executed its accept call
action, it executes its accept return action when it receives a return (i.e. normal method return).
Likewise, a filter executes its reject return action when it rejected the message.

Legend

[] Matching part
[] Filter actions
Object A ——» Call
e -—-——-» Retun

Figure 4.2: Control flow of a message in Compose*

In this case, all outputfilters superimposed on object A decide not to change the message and
the message continues through the inputfilters superimposed on object B. The last filter in this
set dispatches the message to object B. After receiving the message from object A, object B

Roy Spenkelink 32

4. Exception Handling in Compose*

sends a message to object C. Again the message runs through a set of outputfilters and a set of
inputfilters. Eventually the message is dispatched to object C and object C invokes the message.

After object C invokes the message, it sends a return to its caller. This return runs through the
same filters that were passed by the message, but in opposite direction. In contrast to messages,
returns bypass the matching pattern part and run straight through the filter action part of the
filters (i.e. the return action has already been decided on the call). The filters either perform
their accept return or reject return action, based on whether they accepted the call or not. In this
case, no further action is taken on returns and the return returns to object A.

Table 4.1 shows the possible filter actions of the filtertypes currently supported in Compose*/J.
For example, the dispatch filter only defines an accept call action (i.e. it dispatches a message).
Furthermore, note that none of the current filters define any return actions.

Filtertype acceptcall rejectcall acceptreturn reject return

Dispatch dispatch X X X
Send dispatch X X X
Error X raise X X
Meta reify X X X

Table 4.1: Filter actions of the filtertypes.

A more detailed figure of the composition filters model is shown in Figure 4.3.

receivad messages

returns

[=]5]
InpulTillers filtermodule oo
[=§=]
wiE @ iniefnals [sis]
oo Qy (tamals output filters
oo o condfions
Tnput Tilters filtermodule E E
[a)]
= Q interrals oo
ga b yiemak ouipai Tilters
€ condtions returns

sent messages

Legend

[] Matehing part
Filter actions
Call
Return

Figure 4.3: Current composition filters model in Compose*

It shows two filtermodules superimposed on an object. The implementation part of the ob-
ject consists of instance variables, methods and condition methods (i.e. methods that return a
boolean).

A filtermodule consists of conditions, internals and externals. It can also contain two filtersets:
inputfilters and outputfilters. The difference between these two sets of filters is that the first is

33 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

used to filter on incoming messages, while the second is used to filter on outgoing messages.
As described above, the filtertypes in each filterset define four possible actions: it can either
accept or reject a message or a return.

Furthermore, the ordering of the filtermodules is the same for incoming as for outgoing mes-
sages. Filters in each filterset are evaluated in the order they are written.

This model acts as the base for the solution models. In two of the three models, we propose
slight adjustments to this model in order to support modularizing exception handling with
composition filters, but first we look at the current model. Is this model suitable for the job?

4.3.2 Solution Model A: Exception handling in current composition filters model

There exists several alternatives to modularize exception handling using the current composi-
tion filters model. For example, consider the meta filter. Figure 4.4 illustrates the control flow

of the meta filter.
OF
r
=1

Figure 4.4: Control flow of a meta filter

In the figure, we see an example of an implementation of the logging concern. Object A sends
a message to object B. This message runs through the outputfilters superimposed on object A.
The first filter in the filterset is a meta filter. This filter accepts the message and sends a reified
message to an instance of class Logger , which implements the logic for logging. After Logger
finishes its logging procedure, the original message proceeds again through the filterset. Fi-
nally, the dispatch filter dispatches the message to object B.

In other words, if we use a filter we can leave a filterset, either temporarily or completely. This
behavior allows us to support exception handling, as is illustrated in Figure 4.5.

xception
Handler

thrown
exceptions

@

Figure 4.5: A possible way to support exception handling in current composition filters model.

OF

filterX

In the figure, object A sends a message to object B. This message is intercepted by an uniden-
tified filter, called filterX. The filter accepts the message and sends it (i.e. as an argument of a

Roy Spenkelink 34

4. Exception Handling in Compose*

new message) to an instance of the class ExceptionHandler ~, which acts as a wrapper class for
catching exceptions. ExceptionHandler ~ executes the original message, and catches exceptions
thrown by this message.

A suitable name for filterX is the “catch” filter. We can use this filter either as an inputfilter or
as an outputfilter. The possible semantics of this catch filter is:

If the catch filter accepts a message, it adds the message as an argument of a new message. This new
message is send to the object defined in the substitution part. This object executes the message and catches
exceptions thrown during the execution. The type of exceptions caught is specified by the implementation
part of the object.

A possible implementation of the concern described in Section 4.2.1 using the above semantics
is shown below:

concern SimpleLogExceptionConcern in apackage {
filtermodule SimpleLogException {
externals

exch : apackage.ExceptionHandler = apackage.ExceptionHandler.instance();
outputfilters
catchfilter : Catch = {[* getPerson] exch.log,
[* .updatePerson] exch.log}

}
superimposition {
selectors
class = { C | isClassWithName(C, 'apackage.PersonDAQO’) }
filtermodules
class <- SimpleLogExceptionConcern;

Listing 4.5: ”Simple exception logging” concern in current composition filters model.

The concern is called SimpleLogExceptionConcern (line 1) and it contains one filtermodule
called SimpleLogException (lines 2-8). The filtermodule contains one outputfilter catchfilter
(lines 6-7) and is superimposed on all instances of PersonDAO (lines 9-14).

The catch filter accepts all outgoing messages with selector getPerson or updatePerson. Upon
acceptance, the message is sent as an argument of a new message to the log() method of
an instance of the class ExceptionHandler . This method executes the original message and
catches the exceptions thrown by the message.

Although the above semantics sound correct, there exist some drawbacks. For example, we
cannot declare a filter after a catch filter, because the catch filter executes the message. This
leads to unwanted restrictions. Suppose we want to log the execution of a method call and
handle exceptions thrown by this method. We can only achieve this by declaring a meta filter
before a catch filter. Such a relationship between filters is generally unwanted, since it hampers
the programmers freedom.

Furthermore, notice that the type of exceptions that are handled is determined by the imple-
mentation part of the object defined in the substitution part. This could also be determined by
the catch filter itself (i.e. by using filter parameters).

35 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

There exist a second alternative that solves these drawbacks. As described in the previous
section, a filter has four filter actions. It can either accept or reject a message or a return. Now,
we can consider a thrown exception as a return. In other words, we can create a filter that
catches exceptions, as is illustrated in Figure 4.6.

Object B

thrown
exceptions

Figure 4.6: Another way to support exception handling in current composition filters model.

In the figure, object A sends a message to object B. A catch filter intercepts this message. Upon
acceptance, the catch filter does nothing and the message continues through the filterset. The
next filter is a dispatch filter, which dispatches the message to object B and the message is
executed. Exceptions thrown during the execution of this message run back through the filters
in opposite direction. The dispatch filter does not define any return action, so the return is
sent to the catch filter. Now, the catch filter defines an accept return action. Since the catch filter
accepted the call, this action is executed. The catch filter dispatches the exception to an instance
of the class ExceptionHandler ~ which handles the exception.

Table 4.2 shows again the possible filter actions of the filtertypes. The catch filter only defines
the accept return action.

Filtertype acceptcall rejectcall acceptreturn reject return

Dispatch ~ dispatch X X X
Send dispatch X X X
Error X raise X X
Meta reify X X X
Catch X X dispatch X

Table 4.2: Filter actions of the filtertypes.

The semantics of the catch filter changes slightly:

If the catch filter accepts a message, it does nothing. If the catch filter accepts a return (i.e. an exception),
it dispatches the exception to an instance of the object defined in the substitution part, which implements
the logic for handling the exception. The type of exceptions that are caught in this way are specified with
filter parameters.

A possible implementation of the concern described in Section 4.2.1, using these updated se-
mantics of the catch filter, is shown in Listing 4.6. The code differs from the code in Listing 4.5
at only one place. The catch filter specifies which type of exceptions are caught (line 6). In the
example, only exception objects of the type SQLException are handled.

To summarize, it is possible to modularize exception handling using the current composition
filters model. This is accomplished by using a new filter, called the catch filter. We presented

Roy Spenkelink 36

4. Exception Handling in Compose*

two different semantics and demonstrated the use of this catch filter. The next section proposes
a model that supports exception handling based on intercepting return messages.

concern SimpleLogExceptionConcern in apackage {
filtermodule SimpleLogException {
externals

exch : apackage.ExceptionHandler = apackage.ExceptionHandler.instance();
outputfilters
catchfilter : Catch ("SQLException™) = {[*.getPerson] exch.log,
[* .updatePerson] exch.log}
}
superimposition {
selectors
class = { C | isClassWithName(C, ’'apackage.PersonDAQO’) };
filtermodules
class <- SimpleLogExceptionConcern;

Listing 4.6: ”Simple exception logging” concern in current composition filters model.

4.3.3 Solution Model B: Two-way composition filters model

received messages

raturns ///——\

input Tiers ™——_—" filtlermodule oo
& imainaks aa
== % e rak outpLt Tilters
oo ¢p condrians T
i T
iy
input fMiers ™" filtenmocule g8
88
(=] Q Incarmats EE
oo eterrak — Tilters|
oo g condrians - output filters returns

sent messages

Legend

[] Matching part
Filter actions
Call
Return

Figure 4.7: Two way composition filters model: filter on return messages

The second model is depicted in Figure 4.7. As we can see, it has has two filtersets: inputfilters
and outputfilters. The difference with model A is, that in this model the filters in the filtersets
can accept or reject two different types of messages: call messages (as in model A) and return

37 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

messages. In other words, in this model we artificially consider returns as messages. This means
that, similar to messages, returns run through the matching part of the filters. Since the filters
in this model can accept two different types of messages, we refer to this model as the two-way
composition filters model. To distinct between messages and returns, in this section we refer to
messages as call messages and returns as return messages.

Return messages represent method returns (i.e. normal returns or exceptions). Similar to incom-
ing and outgoing call messages, return messages can have a target and a selector. Together they
represent the method that returned the message. This enables the filters to intercept return
messages in a similar way that they intercept call messages.

In this model, the matching part of a specific filter is passed twice. First, a call message passes
the filter after a method call is made. Then, after the method returns, a return message passes
the same filter again. This means, that we have two options for evaluating the conditions of the
filters:

Evaluate once. Conditions are evaluated each time a call message passes a filter.
Evaluate twice. Conditions are evaluated each time a message (i.e. a call or a return) passes a
filter.

We opt for the second option in this model, since the state of an object can change during the
execution of a method. Thus, conditions are evaluated twice. The change in effect, compared
to model A, is that for instance the question whether or not to catch exceptions is determined
at a later stage. In model A, this is determined before the execution of a method. In this model,
the question is answered after the exception is thrown.

Furthermore, we can choose between two possible control flows for return messages:

Run back through evaluated filters. Return messages only run back through the filters that
were evaluated on the call.

Run back through superimposed filters. Return messages run through the filters superim-
posed on an object, including the filters that were not evaluated on the call.

To choose between these two options, let’s take a look at an example. Suppose a programmer
wants to replace calls to method bar() with method foo() and he wants to catch any exception
thrown by any method. He comes up with the following code:

concern SimpleLogExceptionConcern in apackage {
filtermodule SimpleLogException {
externals
exch : apackage.ExceptionHandler = apackage.ExceptionHandler.instance();
inputfilters
disp : Dispatch = {[* bar] *.foo}
catch : Catch ("Exception”) = {[*.] exch.log}
}
superimposition {
selector
classes = ...

filtermodules
classes <- SimpleLogExceptionConcern;

Roy Spenkelink 38

4. Exception Handling in Compose*

scenario a) run back through evaluated filters scenario b) run back through superimposed filters
IF IF
21 & 3 |8
Object A I Object B Object A RE; Object B
Y/ %
thrown excoptions
exceptions P

xception

xception
Handler

Handler

Figure 4.8: Different scenarios for the control flow of return messages.

Figure 4.8 shows what happens in both scenarios. In the first scenario, the exceptions thrown
by foo() are never caught since the catch filter was not evaluated on the call. The second
scenario results in the right behavior. Note that the programmer can also achieve the right
behavior in the first scenario if he switches the two filters. In other words, both scenarios are
valid options, but the first option hampers the programmers freedom, so we opt for the second
option.

Now, the way exception handling works in this model is shown in Figure 4.9.

IF
Bl|&F
Object A s Object B

thrown
exceptions

xception
Handler

Figure 4.9: Exception handling in two-way composition filters model.

In the figure, object A sends a message to object B. The message runs through a set of inputfil-
ters superimposed on object B. The first filter in the set, a catch filter, does not accept the call
message and the message continues through the filterset. Then, a dispatch filter dispatches the
message to object B and the message is executed. During the execution, return messages (i.e.
thrown exceptions) run through the superimposed filters in opposite direction. The dispatch
filter does not accept any return messages. The catch filter accepts the return message and
sends a message to an instance of the class ExceptionHandler ~ which handles the exception.

As described above, we can again use a catch filter to modularize exception handling. The filter
actions of this catch filter are similar as the actions shown in Table 4.2. The semantics of the
catch filter in this model is:

If a catch filter accepts a call message, it does nothing. If it accepts a return message, that contains a
thrown exception, it dispatches the exception to an instance of the object defined in the substitution part,
which implements the logic for handling the exception. The type of exceptions that are caught in this

39 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

way are specified with filter parameters.

A possible implementation of the concern described in Section 4.2.1 in this model is shown in
Listing 4.7.

concern SimpleLogExceptionConcern in apackage {
filtermodule SimpleLogException {
externals
exch : apackage.ExceptionHandler = apackage.ExceptionHandler.instance();
inputfilters
catchfilter : Catch ("SQLException”) = {[* getPerson] exch.log,
[*.updatePerson] exch.log}
}
superimposition {
selectors

class = { C | isClassWithName(C, 'apackage.PersonDAQ’) }
filtermodules
class <- SimpleLogExceptionConcern;

Listing 4.7: ”Simple exception logging” concern in model B.

The code is similar to the code in Listing 4.6, only this time we use an inputfilter. If we use an
outputfilter the effect is the same.

To summarize, this model is based on intercepting return messages. Return messages represent
method returns (i.e. normal returns or exceptions). Similar to call messages, they have a target
and a selector. Together they represent the method that returned the message. This enables
filters in this model to intercept call messages as well as return messages. Similar to the first
model, we can use a catch filter to modularize exception handling. We presented the semantics
and demonstrated the use of this catch filter. A difference between this model and the current
composition filters model, is the different moments in time of condition evaluations, which can
lead to different effects.

In the next section, we propose another way to modularize exception handling, namely a model
based on using a separate filterset for return messages (i.e. returnfilters).

Roy Spenkelink 40

4. Exception Handling in Compose*

4.3.4 Solution Model C : Introducing return filters

retums received messages
retrn 1 iers:-.._..--" call filters ; fillermodule oo oo
oo oo & inlermals oo oo
5 Qy exlemnzls — call filters == relurn filiers
oo @ conditions e
Fai Y
returm 1 Itars: ; call iilters filtermodule oo og
oo [=f=] @ irilemals oo oo
oo oo Qy avismals call filters Feturm Niers
@ carditiors ey e
returns
interface
senl Messanes

[Matching pan
Filter actions
Call
Return

m Inputfilters
m Outputfilters

Figure 4.10: Model C: Introduction of return filters

The third model is depicted in Figure 4.10. This model introduces a new type of filterset: re-
turnfilters. Similar to the original inputfilters and outputfilters, returnfilters can be placed on
the incoming and outgoing side of an object, giving a total of four filtersets. All filters define
two possible actions: it can accept or reject a message. The difference is that returnfilters can only
accept or reject return messages. Similar, the original inputfilters and outputfilters can only accept
or reject call messages. For clarity, we refer to these filters as callfilters.

The idea behind this model is to distinct between calls and returns. As described in the previous
sections, most of the filters only define actions on one particular event (i.e. a call or return). This
means, that a lot of the four possible filter actions are undefined. By introducing returnfilters,
we can reduce the amount of filter actions to two, and subsequently reduce the amount of
undefined actions, as is shown in Table 4.3. The context column tells us in what filterset the
filter can be used (i.e. either as a callfilter or as a returnfilter)

Filtertype accept reject context

Dispatch dispatch X call
Send dispatch x call
Error X raise call
Meta reify X call

Catch dispatch x return

Table 4.3: Filter actions of the filtertypes.

41 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Using this model it is again possible to introduce a “catch filter”. We use this filter as a return-
filter. The possible semantics of this catch filter is:

The catch filter only filters return messages. If it accepts a return message, that contains a thrown
exception, it dispatches the exception to an instance of the object defined in the substitution part, which
implements the logic for handling the exception. The type of exceptions that are caught in this way are
specified with filter parameters.

The way exception handling works in this model is shown in Figure 4.11. In the figure, object
A sends a message to object B. During the execution of the message, thrown exceptions are
caught by a returnfilter (i.e. a catch filter). Exceptions within the return message are handled
by an instance of the class ExceptionHandler

xception

Handler

thrown

RF

o

=
exceptions @

Figure 4.11: Exception handling in action using a return filter.

A possible implementation of the concern described in Section 4.2.1 in this model is
shown in Listing 4.8. The keyword return (line 6) is introduced to make a distinction
between the returnfilters and the regular incoming and outgoing filters. The concern
is called SimpleLogExceptionConcern (line 1) and it contains one filtermodule called
SimpleLogException (lines 2-9). The filtermodule contains one inputfilter catchfilter (lines 7—
8) and is superimposed on all instances of PersonDAO (lines 10-15).

The catch filter accepts all outgoing returning messages with selector getPerson or updatePerson
that contains an exception of type SQLException (line 7). Upon acceptance, the exception is
handled by an instance of ExceptionHandler , which is used as an external object (line 4).

concern SimpleLogExceptionConcern in apackage {
filtermodule SimpleLogException {
externals

exch : apackage.ExceptionHandler = apackage.ExceptionHandler.instance();
outputfilters

return
catchfilter : Catch ("SQLException”) = {[*.getPerson] exch.log,
[* .updatePerson] exch.log}
}
superimposition {
selectors

class = { C | isClassWithName(C, 'apackage.PersonDAO’) };
filtermodules
class <- SimpleLogExceptionConcern;

Listing 4.8: “Simple exception logging” concern in model C.

Roy Spenkelink 42

4. Exception Handling in Compose*

4.4 Comparison of Solution Models

Section 4.3 presents three possible solution models that enable us to modularize exception han-
dling in Compose*. This section applies the criteria, described in Section 4.3, to the models
and evaluates the results.

4.4.1 Criteria applied to Model A
Model A is depicted in Figure 4.3. Applying the criteria, results in the following evaluation:

Intuitive semantics : -/ +
Model A exposes some unintuitive semantics according to the following arguments:

Firstly, the idea of using an inputfilter or an outputfilter for catching exceptions sounds awk-
ward, since exceptions are caught after a return, not before a message is executed. Using a
separate filterset for return messages (i.e. as in model C) sounds more intuitive.

Secondly, in Section 4.3.2 we mentioned two different semantics of the catch filter in this model.
This proves that it might be unclear to the programmer how to use this filter.

Finally, sometimes the semantics of concerns might be unclear to the programmer. Suppose we
declare a substitute filter after a catch filter, as is shown below.

concern SimpleLogExceptionConcern in apackage {
filtermodule SimpleLogException {
externals
exch : apackage.ExceptionHandler = apackage.ExceptionHandler.instance();
inputfilters
catchfilter : Catch ("Exception”) = {[*.getName] exch.log}
substitute : Substitute = {[*.getName] *.getAddress}
}
superimposition {
selectors

class = { C | isClassWithName(C, 'apackage.PersonDAQO’) };
filtermodules
class <- SimpleLogExceptionConcern;

Listing 4.9: Unclear semantics in current composition filters model.

Consider we use the second semantic of the catch filter described in Section 4.3.2. Intuitively,
the programmer might come up with the following semantics:

1. Exceptions thrown by getName are caught. Since getName gets substituted by getAddress,
no exceptions are caught.

2. Calls to getName are substituted by getAddress, so exceptions thrown by getAddress are
caught.

Although the first semantic sounds plausible, the correct semantic is the second one. First, the
catch filter accepts messages with selector getName. When it accepted the message, the filter
also selected its accept return action. This action is triggered whenever any return (i.e. that

43 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

is an exception) runs back again through the filters. getName gets substituted with getAddress
by the substitute filter, thus the only exceptions that are caught are the exceptions thrown by
getAddress.

A positive thing about model A is the fact that it uses a simpler syntax compared to model C.
This improves readability and thus reasoning about the concerns.

Amount of ordering : -/+

In the current composition filters model, it is possible to specify an ordering between filtermod-
ules superimposed on the same object. Likewise, it could be possible to specify an ordering be-
tween filters (i.e. execute filters of a particular type before filters of an other type), but this can
conflict with one characteristic we defined for intuitive semantics, namely that things should
be executed in the order in which they are written. In other words, an ordering specification
on filter-level hampers the programmer to reason about the control flow. Thus, this is not sup-
ported in Compose*. However, there exists a simple workaround for this issue. An ordering
on filter-level can be accomplished by defining each filter in a separate filtermodule.

Reusability : +

In Compose*, it is possible to partially reuse concerns by references or with filtermodule pa-
rameters. [11] identifies several drawbacks for reuse by references. For example, when a
programmer reuses a filter, he needs to take care that the filtermodule uses the same iden-
tifiers for internals, externals and conditions as the “donor” filtermodule. This hampers the
adaptability of concerns. It also mentiones the fact that we can rewrite the code that uses the
reuse-by-referencing construct, into generic code with parameters. For these reasons, we only
discuss reuse with filtermodule parameters.

As described in Section 4.3.2, we only need one filtertype (i.e. a catch filter) to express a concern
like exception handling. Likewise, we can also use one filter to express a profiling concern, as
is shown in Listing 4.10. The concern profiles the execution time of the method bar() . Both
concerns are examples of reusable concerns. They can easily be used by other concerns. In other
words, they can be made generic. For example, Listing 4.11 shows a generic profiling concern.
In this case, the generic concern code uses one parameter: a string that identifies the selector of
the message. This is just one of the several uses of filtermodule parameters. A complete list of
the possibilities can be found in [11]. In general, we can say that the reusability in this model is
good thanks to the use of filtermodule parameters.

concern ProfilingConcern in apackage {
filtermodule Profiling {
inputfilters
profile : Profiling = {[* .bar]}
}
superimposition {
selectors

foo = { C | isClassWithName(C, 'apackage.Foo’) };
filtermodules
foo <- Profiling;

Listing 4.10: Profiling concern in current composition filters model.

Roy Spenkelink 44

4. Exception Handling in Compose*

concern GenericProfilingConcern in apackage {
filtermodule Profiling(?method) {
inputfilters
profile : Profiling = {[*.?method]}
}
superimposition {
selectors

foo = { C | isClassWithName(C, 'apackage.Foo’) };
filtermodules
foo <- Profiling("bar");

Listing 4.11: Generic profiling concern in current composition filters model.

4.4.2 Criteria applied to Model B
Model B is depicted in Figure 4.7. Applying the criteria, results in the following evaluation:

Intuitive semantics : -/ +
Model B exposes some unintuitive semantics according to the following arguments:

Firstly, the two-way composition filters model does not match our intuitive thoughts in the
sense that the return messages follow the wrong direction. In the model, a return message first
runs through a set of inputfilters superimposed on the target-object. Later on, when the return
message reaches the original caller-object, it runs through the outputfilters superimposed on
the caller-object. The other way around is more intuitive (i.e. outputfilters before inputfilters).
Furthermore, the filters are not executed in the order they are written on returns.

Secondly, it might be unclear which type of messages the different filtertypes can accept. Filters
can define actions on call messages and return messages. However, most of the filters have
undefined actions on one of the two events (i.e. calls and returns). This makes reasoning about
the concern a bit harder.

Thirdly, in Section 4.3.3 we described two different control flows for return messages. This
might confuse the programmer.

Finally, the unclear semantics shown in Listing 4.9 also applies to this model. A programmer
might think that the catch filter catches exceptions thrown by getAddress , but this is not the
case. The matching pattern of the catch filter never evaluates to true, because the substitute
filter substitutes getName with getAddress . Thus, the catch filter never accepts a message.

A positive thing about model B is the fact that it uses a simple syntax, similar to model A.

Amount of ordering : -/ +

In the two-way composition filters model, it is possible to specify an ordering between filter-
modules superimposed on the same object, similar to model A. The order in which the filters
are evaluated inside a filtermodule is fixed for the same reason as explained in Section 4.4.1.

45 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Reusability : +
The two-way composition filters model has the same syntax as the current composition filters
model. Therefore, the reusability in both models is the same.

4.4.3 Criteria applied to Model C
Model C is depicted in Figure 4.10. Applying the criteria, results in the following evaluation:

Intuitive semantics : +

Model C exposes the most intuitive semantics of all three models. Unlike in model B, return
messages follow the more intuitive direction. It also makes sense to dinstinct between filtersets
that accept call messages and filtersets that accept return messages. Furthermore, the filters are
executed in the order they are written on returns.

If we express the example concern from Listing 4.9 using this model, then we get the following
code:

concern SimpleLogExceptionConcern in apackage {
filtermodule SimpleLogException {
externals
exch : apackage.ExceptionHandler = apackage.ExceptionHandler.instance();
inputfilters
call
substitute : Substitute = {[*.getName] *.getAddress}
outputfilters
return
catchfilter : Catch ("Exception”) = {[*.getName] exch.log}
}
superimposition {
selectors

class = { C | isClassWithName(C, 'apackage.PersonDAQO’) };
filtermodules
class <- SimpleLogExceptionConcern;

Now, it is not likely that a programmer will come up with more than one semantic. The pro-
grammer undoubtedly knows that exceptions that are thrown by getName are caught . Whether
or not getName gets executed is another question. This question does not interfere with the
question what exceptions are caught, unlike in the other two models.

On the other hand, two extra filtersets and extra keywords (return and call) result in less
concise files and mental overloading, which makes reasoning about concerns a bit harder.

Amount of ordering : +

In model C, it is possible to specify an ordering between filtermodules superimposed on the
same object. Additionally, we can specify different filtermodule orderings for call messages
and returning messages. The order in which the filters are evaluated inside a filtermodule is
fixed.

Roy Spenkelink 46

4. Exception Handling in Compose*

Reusability : +

This model differs mainly from the other two models in the area of expressing concerns that
do something on the call and on the way back (return). An example of such a concern is the
profiling concern. Unlike in the other two models, we need two filters to express the profiling
concern, as is shown in Listing 4.12. One filter that intercepts a call message (i.e. profile_before)
and one filter that intercepts a return message (i.e. profile_after).

concern ProfilingConcern in apackage {
filtermodule Profiling {
inputfilters
call
profile : profile_before = {[* .bar]}
return
profile : profile_after = {[* bar]}
}
superimposition {
selectors

foo = { C | isClassWithNamelnList(C, 'apackage.Foo’) };
filtermodules
foo <- Profiling;

Listing 4.12: Profiling concern in model C.

The introduction of the extra filter results in less adaptability. However, when we try to reuse
this concern by using the reuse-by-filtermodule-parameters construct, as is shown in Listing 4.13,
we see that the syntax of the superimposition is the same as in the other two models. In other
words, the reusability is as good as in the other two models.

concern GenericProfilingConcern in apackage {
filtermodule Profiling(?method) {
inputfilters
call
profile : profile_before = {[* . ?method]}
return
profile : profile_after = {[* ?method]}
}
superimposition {
selectors

foo = { C | isClassWithName(C, 'apackage.Foo’) };
filtermodules
foo <- Profiling("bar");

Listing 4.13: Generic profiling concern in model C.

47 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

4.4.4 Evaluation

A summary of the evaluation results is shown in Table 4.4.

Table 4.4: Evaluation results composition filters models.

Model Intuitive Semantics Ordering Reusability

A -/+ -/+ +
B -/+ -/+ +
C + + +

Based on the results, the best possible solution model is model C. The semantics in model C
matches our intuitive thoughts the most. Furthermore, it scores good on ordering. There is no
difference between the reusability in the three models.

For conclusion, we here briefly present a list of the advantages and disadvantages of the mod-
els:

Model A: Current composition filters model

+ Simple syntax.

+ Only needs small changes to the interpreter to support exception handling.

- Unclear semantics.

- Conditions are not evaluated on returns. This means for instance, that the question whether
or not to catch exceptions has to be decided before the execution of a method. In the other two
models this can be decided after an exception has been thrown.

- Average amount of filter orderings.

Model B: Two-way composition filters model

+ Simple syntax.

+ Conditions are evaluated on returns.

- Reasoning about the control flow is hard / unclear semantics.

- Average amount of filter orderings.

- The interpreter must be changed to support exception handling.

Model C: Introducing return filters

+ Exposes the most intuitive semantics of the three models.

+ Conditions are evaluated on returns.

+ Highest amount of possible filter orderings.

- A bit more complex syntax.

- The interpreter must be changed to support exception handling.

Roy Spenkelink 48

Chapter 5

Composition filters & Inner classes

This chapter discusses the possibility of expressing crosscutting concerns on inner classes in
Compose*/]. First, it presents some background information about inner classes. Then, it de-
scribes our motivation. Finally, it presents solutions to support this feature in Compose*/J.

5.1 Background

In Java, a class definition can contain other class definitions. These classes are called inner
classes. Inner classes are primarily used for code readability. A program that contains inner
classes can be transformed into a program that only contains top-level classes. Actually, this
happens when the Java compiler compiles a program. Since the Java Virtual Machine knows
nothing about the various types of inner classes, the Java compiler converts them into standard
non-nested class files that the Java interpreter understands.

There exist four kinds of inner classes. We explain each of them in the following subsections.

5.1.1 Member classes

A member class is a non-static class defined inside another class definition. An object of the
member class is internally linked to an object of the enclosing class.

The most important benefit of member classes has to do with accessing members of the enclos-
ing classes. The methods of a member class have direct access to all members of the enclosing
classes, including private members. Thus, the use of member classes eliminates the require-
ment to connect objects together via constructor parameters.

Listing 5.1 illustrates the use of a member class. In the example, class B is a member class of
class A. As we can see, class B has access to the members of class A. In this case, method printA
of class B prints out the value of the instance variable aVar of class A.

49

Porting Compose* to the Java Platform University Twente

public class A

{

private int aVar,

class B // member class

{
public void printA()

{
}

} /I end class definition B

System.out.printin("aVar has value "+aVar);

} /I end class definition A

Listing 5.1: Example member class

5.1.2 Local classes

A local class is a class that is defined within a block of Java code. Local classes are most fre-
quently defined within methods and constructors, but they can also be defined elsewhere (e.g.
static initializers blocks or instance initializers). Similar to member classes, an object of a local
class is internally linked to an object of the enclosing class.

Objects instantiated from local classes share many of the characteristics of objects instantiated
from member classes (e.g. direct access to members of enclosing classes). However, a local class
can be defined closer to its point of use than would be possible with a member class, leading to
improved code readability.

Listing 5.2 illustrates the use of a local class. In the example, class B is a local class of class A.
It is defined inside the method block meth of class A (lines 7-13). As with local variables, the
class definition for a local class must appear before the code that attempts to instantiate the
class (line 15).

public class A

{

private int aVar;

public void meth()

{
class B // local class
{
public void printA()
{
System.out.printin("aVar has value "+aVar);
}
} /I end class definition B
B obj = new B();
obj.printA();
}
} /I end class definition A

Listing 5.2: Example local class

Roy Spenkelink 50

5. Composition filters & Inner classes

5.1.3 Anonymous classes

An anonymous class is essentially a local class without a name. An anonymous class is defined
and instantiated in a single expression using the new operator. While a local class definition is a
statement in a block of Java code, an anonymous class definition is an expression, which means
that it can be included as part of a larger expression, such as a method call. When a local class
is used only once, it can be replaced by an anonymous class.

Listing 5.3 illustrates the use of an anonymous class. In the example, the anonymous class
definition appears as an argument of a method call (lines 6-12). Note that the object is not
instantiated from the class WindowAdapter , but from a subclass of WindowAdapter that does
not have a name (line 5).

public class GUI extends Frame

{
public GUI()

{
addWindowListener(new WindowAdapter()

{ /I begin anonymous class definition
public void windowClosing(WindowEvent e)

{

System.out.printin("Close button clicked");
System.exit(0);
}

} /I end anonymous class definition
); /I end addWindowListener
} /I end constructor

} /I end class definition GUI

Listing 5.3: Example anonymous class

5.1.4 Nested top-level classes

A nested top-level class is a static class defined inside another class definition. Unlike the other
kinds of inner classes, an object of a nested top-level class is not internally linked to an object of
the enclosing class. A nested top-level class behaves the same as a normal top-level class. The
difference is that the name of a nested top-level class includes the name of the class in which it
is defined.

Nested top-level classes are typically used as a convenient way to group related classes.

Listing 5.4 illustrates the use of a nested top-level class. In the example, two nested top-level
class definitions (Rectangle and Circle) appear in the class definition of class Shape (lines 4—
9).

51 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

public class Shape

{
/I two nested top -level class definitions
public static Rectangle extends Shape {
}
public static Circle extends Shape {
}

}

Listing 5.4: Example nested top-level class

5.2 Motivation & Demonstrating Example

As described in Section 5.1, inner classes are primarily used for code readability. During a
compilation process, inner classes are transformed to top-level classes. This means that cross-
cutting concerns (e.g. logging) that apply to top-level classes may also apply to inner classes.
This motivates our idea to support advice code weaving on inner classes in Compose*/J.

Listing 5.5 presents a demonstrating example. In the example, we use an anonymous class
(lines 5-13). Our goal is to add a logging concern to method windowClosing of the anonymous
class (line 9).

public class GUI extends Frame

{
public GUI()
{
addWindowListener(new WindowAdapter()
{
public void windowClosing(WindowEvent e)
{
/I printing handled by concern ...
System.exit(0);
}
}
)i
setVisible(true);
}
}

Listing 5.5: Demonstrating example

Currently, the Compose* language possesses the tools to express the above concern with com-
position filters as is shown in Listing 5.6. An anonymous class does not have a name, but as
described in Section 5.1.3, it is a subclass of an existing class (or a class that implements a par-
ticular interface). We can use this information in the selector definition. The problem of this
approach is that the selector selects all subclasses of WindowAdapter (lines 10-11). In some
scenarios, we may want to select one specific class or a specific group of classes (e.g. only
anonymous classes). The next section presents a solution to this problem by extending the
selector language.

Roy Spenkelink 52

5. Composition filters & Inner classes

concern WindowEventLogConcern {

filtermodule WindowEventLog {
externals
logger : Logger = Logger.instance();
inputfilters
log : Meta = { [=*.windowClosing] logger.log }
}
superimposition {
selectors
anonymous = { C | isClassWithName(Super, "java.awt.event.WindowAdapter")
, isSuperClass(Super, C) }
filtermodules
anonymous <- WindowEventLog;
}

}

Listing 5.6: Applying concern on anonymous class with current Compose* language toolset.

5.3 Extending selector language

The selector definition in Listing 5.6 gives all subclasses of WindowAdapter . We may want to
select a more specific set of classes. In order to achieve this, we expand the selector language
in Compose* /] with the following predicates:

islnnerClass(Class).
isDefinedWithin(InnerClass, DefinedInClass).
isDefinedWithin(InnerClass, DefinedinMethod).

isAnonymous(Class).
isLocal(Class).
isMember(Class).
isNested(Class).

The first predicate makes it possible to select all classes that are inner classes. The second and
third predicate allow us to be even more specific. With these predicates, we can select all inner
classes defined within a particular class or method.

The last four predicates are used to distinct between the four different kinds of inner classes.

Listing 5.7 demonstrates the use of the extra predicates. The selector anonymous only se-
lects anonymous classes, enclosed in the class GUI, that extend the functionality of class
WindowAdapter .

selectors
anonymous = { C | isClassWithName(Super, "java.awt.event.WindowAdapter"),
isSuperClass(Super, C), isAnonymous(C),
isDefinedWithin(C, DefClass), isClassWithName(DefClass, "aPackage.GUI") }

Listing 5.7: More specific selector that uses predicates specified for inner classes.

53 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

5.4 Implementation issues

The previous section describes the changes in the Compose* /] selector language to support
expressing crosscutting concerns on inner classes. This section addresses some implementation
issues that exist when implementing these changes.

5.4.1 Dummy generation

In order to let the selector language function properly, we need to gather the type informa-
tion from our application. In Compose* /] this is done by using reflection, which means the
program sources need to be compiled first. Since composition filters can create a mismatch be-
tween the class interfaces and real interfaces (signature mismatch) errors can occur while com-
piling the program sources. A solution was found in the form of using dummy sources [20].

Currently, dummy sources are created from program sources by replacing all method bodies
with empty or default return statements. Since some class definitions can exist in the scope
of method blocks (i.e. local and anonymous classes), this may lead to loss of type information.
Thus, special care should be taken with local and anonymous classes. All class definitions must
be preserved in the dummy sources.

5.4.2 Weaving technique : interpreter vs inlining

Two main alternatives exist to weave advice code into a target program.

Currently, Compose* /] uses an interpreter-based weaving approach. This means that calls
inside the target program are replaced with interpreter calls. The interpreter uses filter infor-
mation, stored in a central repository, to run the actual advice code.

The other approach is the inlining technique, which is based on inserting the actual advice
code directly into the target program. The primary advantage of using inlining is performance
gain due to the absence of an interpreter. Its implementation is a bit more complex than the
interpreter-based approach.

The interpreter-based approach exposes a drawback when we try to weave on inner classes.
Suppose we want to weave the code belonging to the concern described in Section 5.2. In the
interpreter-based approach we replace the call to windowClosing ~ with an interpreter call. In
this case, the example is an example of a call-back and the call takes place in a system library.
Weaving in a system library is not recommended, since another running program can use the
same library. Besides that, we do not exactly know where the actual call is made inside the sys-
tem library. This problem does not apply to inner classes only. It applies to call-back situations
to a system library in general.

The inlining technique solves this problem partly. If we use an inputfilter to express the con-
cern, than the actual advice code is woven in the beginning of method windowClosing . We do
not have to weave in a system library. If we use an outputfilter than this problem still exists
(i.e. we still need to replace a call).

We conclude that the interpreter-based approach is insufficient when dealing with call-back
situations. The inlining technique is more suitable for this job.

Roy Spenkelink 54

5. Composition filters & Inner classes

5.5 Summary and Conclusion

In Java, there exist four kinds of inner classes. They are primarily used for code readability. At
compile-time, inner classes are transformed to top-level classes, which means that crosscutting
concerns that apply to top-level classes may also apply to inner classes. This motivates us to
support expressing crosscutting concerns on inner classes.

To distinct between inner classes and standard top-level classes, we introduced some new pred-
icates in the selector language of Compose*/]. Finally, we identified some implementation
issues. We concluded that the inlining weaving approach is more suitable than the interpreter-
based approach when dealing with call-back situations.

55 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Roy Spenkelink 56

Chapter 6

Composition filters & Java interfaces

This chapter discusses the possibilities and benefits for weaving on Java interfaces in
Compose*/]. First, it presents some background information about Java interfaces. Then,
it describes our motivation for interface-based weaving. Finally, it proposes a solution to
support this feature in Compose*/J.

6.1 Background

What is an Java interface?

An interface in Java is a group of related methods with empty bodies. They form a contract
between classes and the outside world. It is a type that defines what should be done, but now
how to do it. The actual implementation is done by the class that implements an interface.

A simple interface example

Listing 6.1 shows an example of an interface declaration. An interface is declared by using
the keyword interface. Similar to classes, an interface can inherit functionality. In the example,
we have declared the interface List . It inherits functionality from the interface Collection
Furthermore, the example shows two empty method declarations: get() and isEmpty()

public interface List extends Collection
{
public Object get(int index);
public boolean isEmpty();

..
Listing 6.1: Interface declaration

Implementing an interface

Listing 6.2 shows how a class implements an interface. A class implements an interface by
using the keyword implements. A class which implements an interface must either implement
all methods in the interface, or be an abstract class. In this case the class ArrayList is not

57

Porting Compose* to the Java Platform University Twente

abstract and it implements the interface List , which means it implements all methods declared
in List

public class ArrayList implements List

{
public Object get(int index) {
...
}

public boolean isEmpty() {
...

}

Listing 6.2: Implementing an interface

Why using Java interfaces?

Java interfaces offer the following benefits:

They speed up the development process. By using Java interfaces, a team of developers can
quickly establish integration among the application objects without knowing the exact
implementations of these objects. This enables developers to work simutaneously and
concentrate on their development tasks without having to worry about the integration.

They improve maintainability. Java interfaces improves the maintainability of an application
in a couple of ways. Firstly, if a class implements an interface, the interface type can be
used as the reference type for instances of that class. This means, that the actual imple-
mentation can be swapped out without breaking the code. Secondly, if we change an
interface, the Java compiler automatically identifies which classes needs to be changed as
well. This reduces the investigation of the possible impact of changes to an interface.

They improve readability. Interfaces improve readability, in the sense that they give program-
mers a second, concise location to overview what a class does.

Multiple inheritance

Java interfaces is Java’s answer to multiple inheritance. In Java, a class can only extend from
one superclass. Multiple inheritance of classes is not allowed. However, a Java class may
implement any number of interfaces. Using this characteristic and Java’s delegation technique,
multiple inheritance can be simulated, as is shown in Listing 6.3.

The example shows three classes (AB and C) and one interface (interfaceX). Class C extends
from class A.

Now, class Ccan also extend from class B by using an interface and Java’s delegation technique.
First, class C and class B should both implement the interface interfaceX . To accomplish
multiple inheritance, class C delegates all messages defined in the interface interffaceX to an
instance of class B.

Roy Spenkelink 58

6. Composition filters & Java interfaces

public interface interfaceX
{
public void foo();
}
public class A
{
public void bar(){
System.out.printin("Inheriting from Al")
}
}
public class B implements interfaceX
{
public void foo(){
System.out.printin("Inheriting from B!");
}
}
public class C extends A implements interfaceX
{
private B otherParent;
public C({
otherParent = new B();
}
public void foo(){
otherParent.foo();
}
}

Listing 6.3: Simulating multiple inheritance in Java

6.2 Motivation & Demonstrating example

Currently, Compose* /] only supports weaving on classes. This section presents our motiva-
tion for weaving on Java interfaces.

In general, suppose we superimpose filters on a class that implements an interface. These filters
can create a signature mismatch in the form of a growing interface, which means that the filters
can introduce new methods to the interface! of a class [20].

In the case of a growing interface, the new methods should be available to call on all instanti-
ations of the superimposed class [20]. The Compose* /] compiler solves this issue by adding
default implementations of the methods to the class definition. However, the method dec-
larations are not added to the Java interface. This can result in unavoidable castings to the
implementing class if we want to make a call to the new method. We cannot use any references
to the interface type because that results in a compile error.

To demonstrate this, consider the concern in Listing 6.4. In the example, we humanize * all
classes that implement the interface List by adding two new methods: first() and last()

!The conceptual nature, not the concrete Java programming language construct.
’In general, there exist two types of interfaces: “humane” interfaces and “minimal” interfaces. The idea behind
the “minimal” interface is to design an API that allows the client to do everything they need to do, but boils down

59 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

To accomplish this, we use a dispatch filter (line 6) that dispatches calls to first() and last()
to an instance of the class HumanizedList . In the selector we select all classes that implement
the interface List (line 11). The implementations of the methods first() and last() use a
static method call to the class Messagelnfo to retrieve the inner object (line 30 and line 44).

concern HumanizeListConcern {

filtermodule HumanizeList {
externals
h : aPackage.HumanizedList = aPackage.HumanizedList.instance();
inputfilters
disp : Dispatch = { [* first] h.first, [* last] h.last }
}
superimposition {
selectors

classes = { C | isClass(C), isInterfaceWithName(l,"java.util.List"),
classimplementsinterface(C,l) }
filtermodules
classes <- HumanizelList;

}

implementation in Java by aPackage.HumanizedList as "HumanizedList.java"

{

package aPackage;
import java.util.List;
private static HumanizedList instance = null;

public class HumanizedList

{
public Object first() {

List list = null;
Object inner = Composestar.Runtime.FLIRT.message.Messagelnfo
.getMessagelnfo().getinner();

if (inner instanceof List) {
list = (List)inner;
return list.get(0);

}

return null;

}
public Object last() {

List list = null;
Object inner = Composestar.Runtime.FLIRT.message.Messagelnfo
.getMessagelnfo().getinner();

if (inner instanceof List) {
list = (List)inner;
return list.get(list.size()-1);

the capabilities to the smallest reasonable set of methods that will do the job. A “humane” interface, on the other
hand, considers typical uses of the interface and provides convenience methods as a part of the interface itself.

Roy Spenkelink 60

6. Composition filters & Java interfaces

return null;
}
public static HumanizedList instance()
{
if(instance == null)
{
instance = new HumanizedList();
}
return instance;
}
}
}
}
Listing 6.4: Example concern that results in a growing interface (i.e. methods first() and last() are

added to all classes that implement the List interface).

Now, Listing 6.5 shows a possible way of using this concern in practice. First we retrieve a
List (line 1). Since, the Compose*/] weaver did not weave the new methods in List , we
cannot use the reference to List (line 3). We explicitly need to cast to the implementing class
(line 4). As you can imagine, these castings can lead to runtime errors. The method getList()
can return any class that implements the interface List . In other words, supporting only class-
based weaving downgrades the use of Java interfaces. By weaving on Java interfaces, we can
eleminate the problems mentioned above.

List | = getList();

Lfirst(); /I results in a compile error
(ArrayList)l.first(); /I casting is needed

Listing 6.5: In practice we cannot use references to interface types

The next section proposes a solution for modularizing interface-based weaving in the compo-
sition filters model.

6.3 Solution Proposal

Currently, programmers can only superimpose composition filters on classes. However, the
selector language of Compose* possesses the tools to select interfaces as well. Listing 6.6 shows
a list of predicates that can be used in the selector definition to select interfaces. For example,
we can select all private interfaces by executing the query "isInterfaceWithAttribute(Interface,
"private’)”.

isInterface(Interface).
isInterfaceWithName(Class).
isInterfaceWithAttribute(Class).

Listing 6.6: Interface predicates.

To solve the problems mentioned in Section 6.2 we need to weave on Java interfaces. Now, a
possible way to tell the Compose* /] weaver to weave explicitly on Java interfaces is to select an

61 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

interface in the selector definition, as is shown in Listing 6.7. A problem with this approach is
that it may seem that we are trying to superimpose filters on instances of Java interfaces, which
sounds awkward. Messages are not sent to Java interfaces. Messages are sent to objects, which
are always instances of classes. Java interfaces are abstract, they cannot be directly instantiated.
In other words, putting a filter on a Java interface makes no sense.

To avoid this, we say that selecting an interface in the selector definition is purely syntactic
sugar for selecting all classes that implement the interface, but it additionally has some seman-
tic meaning, namely that it tells the weaver to weave on the Java interface as well.

concern HumanizeListConcern {

filtermodule HumanizeList {
externals
h : aPackage.HumanizedList = aPackage.HumanizedList.instance();
inputfilters
disp : Dispatch = { [+ first] h.first, [* last] h.last }
}
superimposition {
selectors
classes = { | | isInterfaceWithName(l,"java.util.List")}

filtermodules
classes <- HumanizelList;

}

/I implementation

Listing 6.7: Weaving on Java interfaces by selecting an interface in the selector definition.

6.4 Summary and Conclusion

An interface in Java is a group of related methods with empty bodies. They form a contract
between classes and the outside world. Java interfaces speed up the development process,
improve maintainability and improve readability.

Currently, Compose* only supports class-based weaving, which means that the Compose* /]
weaver does not weave on Java interfaces. This restriction can lead to unwanted results when
we try to superimpose filters on classes that implement an interface. In particular, problems
arise when the filters create a signature mismatch in the form of a growing interface. These
problems include redundant castings and runtime errors. To avoid downgrading the use of
Java interfaces, we concluded that Compose* /] should support interface-based weaving.

In this chapter we proposed a solution for modularizing interface-based weaving in the form
of selecting interfaces in the selector definition. We defined that selecting an interface is purely
syntactic sugar for selecting all classes that implement the interface. It additionally tells the
Compose* /] weaver to weave on the selected interface.

Roy Spenkelink 62

Chapter 7

Design of Compose*/]

As explained in Chapter 2, the architecture of Compose*/] is divided in four layers: IDE,
compile-time, adaptation and runtime. The compile-time layer reasons about the composition
filters model, and thus is considered language independent. All implementations of Compose*
share the analysis tools that exist in this layer. The other three layers are partially language de-
pendent. Figure 7.1 shows a more detailed figure of the Compose* /] architecture. In the figure,
the compile-time layer and adaptation layer are integrated as one layer, called the Analysis and
Adaptation-layer. This layer consists of modules. The modules that are java specific are greyed

out, the language independent modules are filled with white color.

COMpose”
Plugin

|
|
| o L
| BuildConfigManager MAsterMAnager
™ — —® (CONMAN) (MAMA]
|
| cenpes g v
i e
I- ____________ 1 [Main
| — — — —p| Cortroller
I (MASTER)
! L |
—_—
: v v) ¥ v ¥ v ¥ v ¥ v ¥
! Toomress | [P] oo | [oe | [0 | [oome | [arone | [0 | [| [me] [| [o
> C?DEILSPEgR Extractor g‘G"MaaEE Mysiification REFearences Lafgltige RCE::::;Y Engine & cHecking Engine Engine Gegmon
() (EMBEX) () (i (REXREF) R !) (SANE) (FILTH) (CORE) (FIRE) (SIGN)

lr____u I [|
1

—

s »
I Incremental
| Controller -+
| (INCRE)
: ' ' ' ' v
I y
E iC
I (_)Dpy]ng Weaver Code. Compile Slignature saaw:ng
T libraries (WEAVER) ‘geMEralion Sources TRAnsformer Tool
I | | (BACG) (CONE) (RECOMA) (SITRA) (SECRET)
A
L | I o __ r . t
yom e -
|
|
|
|

___________________________________ [

b ————

Figure 7.1: A detailed overview of the Compose* /] architecture.

63

Porting Compose* to the Java Platform University Twente

This chapter discusses the design choices made in the layers and presents the design of the
language specific parts of Compose*/]. We discuss each layer, except the compile-time layer,
in a separate section.

7.1 Integrated Development Environment

The Compose* /] compiler uses a build configuration file for building a Compose* applica-
tion. This build configuration file contains information about the source files, concerns and
settings of the Compose* /] compiler. For automatic creation of such a build configuration,
Compose* /] interfaces with a native Integrated Development Environment (IDE).

There are many IDE’s on the Java platform. The most popular are NetBeans [29] and
Eclipse [13]. We use Eclipse as our IDE platform for Compose* /], because of its following
characteristics:

Platform for multiple IDE’s. Eclipse is an extensible platform for building IDE’s. Besides the
built-in Java IDE, there are language IDE’s for most of the popular programming lan-
guages, such as C/C++ Development Tooling (CDT). This saves us some effort in writing
plug-ins for other Compose* implementations. An example of such an implementation
is Compose* /C [38], which uses an Eclipse plug-in as well.

Extensible nature. Eclipse has an open architecture, making it extensible. This extensible na-
ture of the Eclipse Platform enables us to easily add other features (e.g. debugging) or
use other applications in the future.

7.1.1 Eclipse Architecture

/Eclipse Platform

Java
Development
Tooling

(IDT)

workbench

Plug-in
Developer

Environment
(PDE)

[jworkspace

atform Runtime

Eclipse SDK

Figure 7.2: Overview of the Eclipse architecture.

Roy Spenkelink 64

7. Design of Compose* /]

Figure 7.2 illustrates an overview of the Eclipse architecture. The Eclipse SDK includes the
Eclipse Platform, a Java Development Tool (JDT) and the Plug-in Development Environment
(PDE). The JDT and PDE are plug-ins to the Platform.

The Eclipse Platform is built on a mechanism for discovering, integrating, and running plug-
ins. A plug-in is the smallest unit of function that can be developed and delivered separately.
Plug-ins may rely on services provided by other plug-ins (“"extensions”) or provide services on
which yet other plug-ins may rely (”extension points”). Usually a small tool consists of a single
plug-in. A complex tool has its functionality split over multiple plug-ins.

The Eclipse Platform consists of a couple of components that contain a bunch of built-in plug-
ins. These plug-ins provide standard services that can be used by the Compose* /] plug-in.
Section 7.1.2.2 describes which services the plug-in uses. The major components of the Eclipse
Platform are:

Platform Runtime. A small kernel that loads the plug-ins.

Workbench. Component that implements the graphical interface of Eclipse, and its subcom-
ponents JFace (i.e. a toolkit with classes for handling many common UI programming
tasks) and the Standard Widget Toolkit (SWT). E.g. it provides services to create dialogs
and wizard pages.

Workspace. Component that “holds” information about the development environment. E.g.
it provides services to extract project information.

Team. Component that adds version and configuration management (VCM) capabilities to
projects in the Workspace. It handles the issues of checking-in and checking-out code
versions when a group of developers are working on the project.

Help. Component that provides online documentation and context-sensitive help to applica-
tions.

The Compose* /] plug-in is a new tool that can be integrated in the Eclipse Platform. Below,
we present the design of this plug-in.

7.1.2 Design of the Compose*/J Eclipse plug-in

This section presents the design of the Compose* /] Eclipse plug-in. It first presents a use case
diagram that shows what actions a user can do with the plug-in. After that, it describes which
services provided by the Eclipse SDK the plug-in uses.

7.1.2.1 Use case diagram

Figure 7.3 shows a use case diagram of what actions a user can do with the plug-in. The
diagram defines the following actions:

1. Create a Compose*/] project. The action that creates a Compose* /] project. A user can
create a Compose* /] project by using a wizard. The wizard acts similar as the wizard
for creating a standard Java project, found in the JDT plug-in. The difference is that the
Compose* /] wizard adds the Compose* /] libraries to the Java project.

2. Configure compiler settings. The action that configures the compiler settings. A user
can change the settings of the Compose*/] compiler either globally (i.e. each new
Compose* /] project receives the initial global settings) or per project.

65 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Build Compose*/J
project

Configure compiler
settings {project)

Canfigure launch
canfiguration

Launch Composea®/J
project

Create & Composa™.J
| project (wizard)

Configure compiler
setlings (global)

user

Figure 7.3: Use case diagram: Compose* /] Eclipse plug-in actions.

3. Build a Compose*/] project. The action that builds a Compose* /] project. The build
process consists of two steps. First, a build configuration file is created that contains
the project information and compiler settings. After that, the Compose*/] compiler is
triggered with the build configuration file as input.

4. Configure launch configuration. The action that configures a Compose* /] launch con-
figuration. Similar to creating a launch configuration for Java applications, a user can
create a launch configuration for Compose* /] projects. The launch configuration auto-
matically adds the Compose* /] runtime libraries to the classpath.

5. Launch a Compose*/J project. The action that launches a Compose* /] project.

7.1.2.2 Using services provided by Eclipse

As described in Section 7.1.1, the Eclipse Platform provides standard services that simplify the
process of implementing a plug-in. Such a service has an unique identifier. The Compose* /]
plug-in uses the following standard services:

1. org.eclipse.ui.newWizards This extension point provides a way to register resource cre-
ation wizard extensions. When using this service the wizard is automatically added to
the graphical interface of Eclipse. The Compose* /] plug-in uses this service for regis-
tering the wizard that creates a new Compose* /] project. This service is found in the
Workbench component.

2. org.eclipse.ui.preferencePages The workbench provides one common dialog box for
preferences. This extension point provides a way to add pages to the preference dialog
box. The Compose* /] plug-in uses this service to add the preference page that enables
a user to change the global Compose* /] compiler settings. This service is found in the
Workbench component.

3. org.eclipse.ui.propertyPages This extension point provides a way to add additional
property pages to objects of a given type. The Compose* /] plug-in uses this service to
add a property page to a project that enables a user to change the Compose* /] compiler
settings. This service is found in the Workbench component.

Roy Spenkelink 66

7. Design of Compose* /]

4.

org.eclipse.ui.popupMenus This extension point provides a way to add menuitems to a
popupmenu to objects of a given type. The Compose* /] plug-in uses this service to add
a ”"build” and “launch” menuitem to the popupmenu that popups when right-clicking on
a project. This service is found in the Workbench component.

org.eclipse.debug.ui.launchConfigurationTabGroups This extension point provides a
mechanism for contributing a group of tabs to the launch configuration dialog for a type
of launch configuration. The Compose* /] plug-in uses this service to create a tabgroup
to configure the launch of a Compose* /] application. This service is found in the Work-
bench component.

org.eclipse.debug.core.launchConfigurationTypes This extension point provides a con-
figurable mechanism for launching applications. When using this service the launch con-
figuration is automatically added to the launch configuration dialog. The Compose* /]
plug-in uses this service to add the launch configuration mechanism for Compose* /]
applications to the Eclipse workbench.

org.eclipse.jdt.launching.classpathProviders This extension point provides a way to dy-
namically compute and resolve classpaths and source lookup paths for Java launch con-
figurations. The Compose* /] plug-in uses this service to compute the classpath for the
Compose* /] launch configuration. This service is found in the JDT plug-in.

67

Roy Spenkelink

Porting Compose* to the Java Platform University Twente

7.2 Adaptation

The adaptation layer in Compose* /] consists of components that connect the platform inde-
pendent compile-time layer to the Java platform. The result of the adaptation layer is a tar-
get program that interfaces with the Compose* /] runtime. This section describes the design
choices made for the language specific parts of this layer in Compose*/].

7.2.1 Collecting type information

Sources (7) Diurmmies (%) ummies (+}
jaridil)

. e e o o e e “w | e
! \ ! A
| DUMMER | I TYM I
| | |
| bl |
I AST Dummy Dummy | |) . |
FParser . Generation »| Compilation ; Ly Type Hawastlr!g N Type Cn!lechng Program structure

: [ANTLR) (*) (emitters) (*) (+) | | | (reflection) (+) {+ : (+)

|
I : I + I

\)
\\. __________________________ / e e e e e —_—— o

IF{:reign libs (+)
jardll)
Type 4

i Extraction
(C)

Figure 7.4: Uniform approach for collecting type information.

In order to reason about concerns, the Compose* /] compiler needs to collect the structure
and annotations within the source program and store it in a knowledgebase. Since Compose*
is a language independent solution, it is useful that this is done in a uniform way in each
Compose* implementation. Figure 7.4 presents such a uniform approach. An asterix (*) in
the model indicates a language specific procedure or output (e.g. Java or C#). A plus sign (+)
indicates a platform specific procedure or output (e.g. Java or .NET).

Since most OO-languages support a reflection mechanism, we use this mechanism for collect-
ing type information. This requires compilation of all program sources, but since composition
filters can create a mismatch between the class interfaces and real interfaces (signature mis-
match), errors can occur while compiling these sources. A solution for this problem was found
in the form of using dummy sources [20].

Dummy sources are created from program sources by replacing all method bodies with empty
or default return statements. A solution for creating these dummy sources, is to use a parser for
each language. Fortunately, we can use ANTLR as the sole parser generator since it supports
grammars for a lot of OO-languages. An apprehensive list of supported languages can be
found on the ANTLR-site [1].

ANTLR creates an Abstract Syntax Tree (AST) for each program source. This tree is used to cre-

Roy Spenkelink 68

7. Design of Compose* /]

ate a dummy source. After the dummy sources are created, the dummy sources are compiled.
This process is performed in one module, called DUMMER

A second module, called TYM(TYpe Mystification), uses the compiled dummies to collect the
type information. This process is done in two procedures. The first procedure (Type Harvest-
ing) uses reflection to retrieve the type information from the compiled dummies. The second
procedure (Type Collecting) collects the types and stores them into the repository.

Compose* /] uses this general approach for collecting type information.

An example of a Compose* implementation that uses an other approach is Compose*/C.
Compose*/C uses source code weaving, thus it does not need to create dummies. The type
information is directly retrieved from the Abstract Syntax Tree’s.

7.2.2 Weaving

A crucial part of the adaptation layer is the weaving process. In context of Compose*, weaving
is the process that manipulates a target program with changes introduced by the composition
filters. This section describes the design choices made for weaving in Compose*/].

7.2.2.1 Determining the weaving process

There exist many approaches for AOP weaving. A complete domain analyses is found in [41].
To determine the approach in Compose* /], we answer the questions below.

How to weave?

The first question we answer is how to weave. There exist three alternatives:

e Source code modification: changing the source code of the program directly. This hap-
pens before the program is running (i.e. at compile time). This requires source code to be
available.

e Byte code modification: changing the byte code of the program. This happens after the
program has been compiled. In Java, this can happen either at compile time or at load
time (i.e. when class is loaded by a class loader). This alternative does not require source
code to be available.

e Reflection: changing the code with a reflection mechanism. This happens when the pro-
gram is running (i.e. at runtime). The reflection mechanism is used to determine the exact
position in the code that is being executed.

e VM-level modification: adding AOP-knowledge to a VM. This alternative requires a JVM
that internally keeps track of the joinpoints (e.g. method calls) and executes advice code
at these joinpoints.

Selected: Byte code modification
The reflection mechanism is a costly operation, which results in poor performance at runtime.

At the moment, there does not exist a stable JVM that supports AOD, although they are being
developed (e.g. JRockit [24]). Changing a JVM by ourselves takes too much time. Furthermore,

69 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

using a JVM that supports AOP decreases our audience, since every user must install this JVM
to be able to use Compose*/].

This leaves us with either source code or byte code modification. We choose byte code modifi-
cation, since it has the advantage that it does not require source code to be available. Further-
more, it is simpler, because byte code is normalized, i.e. it does not contain syntactic sugar.

What to weave?

The second question we answer is what to weave. There exist two alternatives:

e Actual code: inserting the advice code directly in the code where it is needed. Once the
program is executed, the advice code is executed automatically.

e Hooks: inserting calls to a process which decides which advice code to execute. These
calls are called hooks.

Selected: Hooks

The first alternative requires a complete model of what code to weave. The second alternative
is more easier to implement. This alternative is also used by Compose*/.NET. It uses hooks to
an interpreter to execute filter advise code [16]. The main part of this interpreter was written
in J#, with the intention to support porting it to the Java platform.

When to weave?

The third question we answer is when to weave. There exist three alternatives:

e Compile time: changing the byte codes of a program while the program is not running
(i.e. byte code of the files stored on disk are changed).

e Load time: changing the byte codes of a program, as the classes, of which the program
exists, are loaded into memory by a class loader.

e Runtime: changing the behavior of a program while the program is running by linking
aspects and objects at runtime.

Selected: Compile-time

Currently, the Compose* language does not express dynamic weaving at runtime, so weaving
at runtime is not useful yet. This leaves us with either compile-time or load-time weaving.
Load-time weaving is virtual machine dependent, which requires different implementations to
do load-time weaving. We only need one implementation to do compile-time weaving, so we
choose compile-time weaving.

7.2.2.2 Selecting a byte code manipulator

As described in Section 7.2.2.1, we use byte code modification as our weaving mechanism in
Compose*/]. A couple of byte code manipulation tools exist on the Java platform. In this
section we shortly describe three of them, compare them and select one for Compose*/].

Roy Spenkelink 70

7. Design of Compose* /]

BCEL

BCEL (Byte Code Engineering Library) [3] is a toolkit for the static analysis and dynamic cre-
ation or transformation of Java class files. It enables developers to implement the desired fea-
tures on a low level of abstraction (i.e. byte code instructions). Therefore, it has a high learning
curve.

ASM

ASM [2] is a Java byte code manipulation framework. It can be used to dynamically generate
stub classes or other proxy classes, directly in binary form, or to dynamically modify classes at
load time. It offers similar functionalities as BCEL, but is much smaller and faster.

Javassist

Javassist (Java Programming Assistant) [23] makes Java byte code manipulation simple. Unlike
BCEL and ASM, Javassist provides two levels of API: source level and byte code level. Using
the source level AP, it is possible to edit a class file without knowledge of the specifications of
the Java byte code. On the other hand, the byte code level API allows programmers to directly
edit a class file as well, like BCEL and ASM.

Selected: Javassist

We only need simple instructions to implement the weaving functionality in Compose* /] (i.e.
adding methods or changing a single statement). All three tools support these kind of instruc-
tions.

From performance point of view, ASM is the best option. It is significantly smaller and faster
than BCEL and Javassist. On the other hand, Javassist is easiest to use. Since performance
is not the most important requirement in Compose*/]J, and due to the short time frame for
implementing Compose* /], our choice is Javassist. If performance becomes an issue, then
switching to ASM is recommended.

7.2.2.3 Signature transformation dummies

Al

Slgnature |
GaMeration |

| (SIGMN) I
N /

[———

.

- -

f]
I - | Slgnature
compiled TRAnsformation

dummies, \ (SITRA)

transformed
dummies,

program Compilation
L sourcas (Mative oon'.pular] cnmplled
sourcas

Figure 7.5: Compilation process of program sources in Compose* /]

As described in Section 7.2.1, dummy sources are used for collecting type information, but

71 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

these dummy sources serve another purpose as well, as is shown in Figure 7.5.

As described in Section 7.2.1, composition filters can create a mismatch between the class in-
terfaces and real interfaces (signature mismatch). Thus, errors can occur while compiling the
program sources. Now, in order to compile the program sources, the Compose* /] compiler
transforms the signatures of the compiled dummy sources, using the results produced by the
compile time module, called SIGN (SIgnature GeNeration). SIGN calculates the changes of the
signatures introduced by the concerns. The actual transformation is performed by a language
dependent module, called SITRA (SIgnature TRAnsformation). After the transformation, the
program sources are compiled “against” the changed dummies.

7.3 Runtime

Our main reason for using an interpreter in Compose* /] is the fact that already an interpreter
exists in Compose*/.NET. This interpreter is largely written in J# to simplify the process of
porting it to the Java platform.

The interpreter is responsible for executing concern code at the joinpoints. It is triggered by
function calls that are woven in by the weaver. It uses a reduced copy of the repository to
evaluate and execute the filters.

Porting the interpreter to the Java platform only requires the implementation of a small set of
classes. These classes are presented in Chapter 8.

7.4 Summary and Conclusion

The architecture of Compose* /] is divided in four layers: IDE, compile-time, adaptation and
runtime. The compile-time layer is language independent. Thus, Compose* /] reuses it. The
other three layers are partially language dependent. This chapter presented the design choices
made in these layers. To summarize, we here briefly present a list of the main design choices:

e Compose* /] interfaces with the Eclipse IDE.

e Compose* /] uses a general approach for collecting the structure and annotations within
a source program. This approach is based on ANTLR and the reflection mechanisms of
OO-languages.

e Compose*/] uses byte code manipulation at compile time as the weaving process. The
weaver inserts hooks to an interpreter. Javassist is used as the byte code manipulation
tool.

e Compose*/] reuses the interpreter of Compose* /.NET.

The next chapter presents a detailed implementation of the language specific parts of
Compose*/].

Roy Spenkelink 72

Chapter 8

Implementation of Composex/]

The previous chapter presented the design choices of the various language specific parts of
Compose*/]. This chapter presents a detailed implementation of those language specific parts.

8.1 Eclipse plug-in

First, we present the implementation of the Compose* /] Eclipse plug-in. The Eclipse plug-
in consists of two components: a core component and a language specific component. All
Compose* implementations that interface with the Eclipse IDE share the core component. The
language part is language dependent. Currently, the implementations of Compose* that inter-
face with the Eclipse IDE are Compose* /] and Compose*/C.

ComposestarEclipsePluginPlugi

_rplugin ‘ComposestarEclipsePluginPlugin
HPLUGIN_NAME : string
F+aetDefault() : ComposestarEdipsePluginPlugin

BuildAction

|

|

|

|

|

|

|

'

|

T [tseiConcernSources()

+setSources()

: +setPaths()
|
|
|
|
|
|
|
|
I

*I—Ij

Sources

Debug
lnstance : Debug
[tinstance() : Debug
[Hogl}

Core.Actions

BuildC

CommandLineExecutor

-Instance : BuildConfigurationhManager

[+instance() : BuilkdCanfigurationManager
[+saveToXML()

HereateContents() : Control

1

1

1

1

| |+performapply()
: [+loadDialogSettings()
1

1

1

1

1

Fresecl) - int

tr

Comp Pref r

«subsystemn»
BuikdConfiguration
DO

FereateContents() : Control
L +performApply()
| [HoadDialogSettings()

I
1
Core.BuildConfig : Core. Ul

Timer FileUtils

Hstart(}
+atopl)
+getElapsed() | long

Core.Utils

Figure 8.1: UML static structure of the core part of the Compose*/] Eclipse plug-in.

73

Porting Compose* to the Java Platform University Twente

8.1.1 Core part

Figure 8.1 shows the implementation of the core part of the plug-in. The main class is
ComposestarEclipsePluginPlugin , which represents the heart of the plug-in. The class
Debug is used for printing out debug information on a console. Furthermore, the core part
consists of four packages: BuildConfig, Ul, Actions and Utils. We describe the components in
each package below.

BuildConfig
The package BuildConfig contains logic for building a build configuration file. The class
BuildConfigurationManager creates such a file. It uses a data object model for mapping

the data to xml, shown in Figure 8.2. Appendix A shows an example of a build configuration
file.

Project Settings
[depandencies : ArrayList savesToXml LalobalSettings | HashMap
-sources | Arraylist moduleSettings : HashMap
:lt;ﬁ:f:;;c:e:m:;rayLls1 salesTaXML Hpaths @ Arraylist

q T BuildConfigurationManager . ! .

Path MaoduleSetting

TypeSource - — ¥ -
- savasTaxXML Hriarme : string name : s_mng
Fname ; string Hpath @ string -seftings - HashMap

Hilenarme : string

Platform

-name ; string
l-classPath : string

Core.BuildConfig

Figure 8.2: build configuration data object model.

Ul

The package UI contains core classes that extend the graphical interface of the Eclipse Work-
bench. As described in the previous chapter, the plug-in uses a property page and a preference
page.

Actions

This package contains core classes for dealing with actions. The class BuildAction ~ represents
the action “building a Compose* application”. The class Sources extracts the sources of a
project from the Eclipse workspace.

Utils

This package contains utility classes. The classes CommandLineExecutor and StreamGobbler
provide the ability to run an application (e.g. the Compose*/]J compiler) from the command
line and catch the output. The class FileUtils ~ contains methods that deal with file handling
(e.g. converting backslashes in filenames to slashes). The class Timer represents a stopwatch.

Roy Spenkelink 74

8. Implementation of Compose* /]

8.1.2 Language dependent part

Figure 8.3 shows the implementation of the language dependent part of the plug-in. As a
naming convention, all package names start with the name of the language (i.e. Java). We
describe the components in each package below.

! eclipse.jdt.launching

1
I 1
: StandardClasspathProvider :
1 KH
I 1
I 1
_______________ o
AR S ST OSSO SEE 1
| Java !
I MasterManager |
I Finstance - MasierManager Comp lasspathProvider I
: +completed : boal I
| +run() +computaldnresolvedClasspath() :
| +getinstance() | MastarM |
I I
L

HaddPagesl)

Java.Ul. Wizards

B Ry

[R AR A 1 A T T T EEme
= 1
: JavaActions | | JavaUl |
1 1
: JavaBuildAction JavaRunAction 1 : JavaComposestarPreferencePage ComposestarJavaClasspathTab 1
1
1 [
1
: +run(} Hrrun() : : +setDefaults() 1
| +busild () H+perform() 1 I I 1
: ‘ : : JavaComposestarPropertyPage Comp tarJavad ionTabGroup :
1 1
: TestBuild TostRun | : [creataTabs() :
Pl (|
- I !
: +run() - Object run) - Object | Y -
I TR ;I T T Y
A R R Y 'l [comp Project irstPage | [Comp Proj dSecondPage| |
AR RSO EE 1 | = 1
I vinterfaces 1 1 1
I IPlatformRunnable : 1 :
[Obji |
| +runyf) : Object | | ! ‘ i_ :
I 3 ; [
I eclipse.core.runtime | | |ComposestarProjectWizard |
! |
I
I
I

JavaProjectWizardFirstPage JavaCapabilityConfigurationPage

Wizard

[———

eclipse jdt.internal.ui.wizards | £ eclipse.jdt.ui.wizards

Figure 8.3: UML static structure of the language part of the Compose*/] Eclipse plug-in.

Java

This package contains components that do not belong specifically to any subpackage.

The class MasterManager triggers the Compose* /] compiler. To accomplish this, it uses the
CommandLineExecutor of the core part. ComposestarClasspathProvider provides a way to
load the classpath used by the Compose* /] compiler in the Eclipse workbench. It extends the
standard classpath provider service of the Eclipse Platform, located in the eclipse.jdt.launching
package.

75 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Java.Actions

This package contains classes that perform specific Compose* /] actions.

The class JavaBuildAction represents the action "building a Compose* /] application”. Sec-
tion 8.1.3 presents a detailed control flow of this process. JavaRunAction —represents the action
“running a Compose*/]J application”. Furthermore, the classes TestBuild and TestRun pro-
vide services to test both actions in headless Eclipse (i.e. without IDE).

Java.Ul
This package contains classes that extend the graphical interface of the Eclipse Workbench. The
classes JavaComposestarPreferencePage and JavaComposestarPropertyPage provide re-

spectively a preference page and a property page. ComposestarJavaApplicationTabGroup

creates a tab group containing several pages to configure the launch of a Compose* /] appli-
cation. Many of these pages are reused from the JDT tool that is part of the Eclipse SDK for
launching a Java application. The only tab page that is different is the page that configures the
Compose* /] compiler classpath. The class ComposestarJavaClasspathTab implements this

page.
Java.UlL.Wizards

This package is a subpackage of Java.Ul. It contains classes that extend the Eclipse Workbench
with wizards for creating a Compose* /] project. Again, the classes use several classes from the
JDT tool. Appendix B shows screenshots of the graphical interface of the plug-in.

8.1.3 Building a Compose*/]J application

This section describes the control flow of building a Compose* /] application in the Eclipse
plug-in. Figure 8.4 shows an UML sequence diagram of the control flow. The diagram defines
the following sequence of actions:

rur()

start()

oot e e ey

:> setDependencies()
> setPaths()
> setSources()

> loadDialogSettings()

sava ToXML(}

-I—C— ————————————— '1' build

Figure 8.4: UML sequence diagram - control flow of building a Compose* /] application.

Roy Spenkelink 76

8. Implementation of Compose* /]

1. Start the build process. The build process is started by calling the run() method of an
instance of the class JavaBuildAction . This method starts a new thread for refreshing
the Eclipse Ul during execution of the build process. This thread performs the build
process by calling the build) method of JavaBuildAction

2. Start a timer. The build process starts with running a stopwatch to time the process. This
is done by calling the start() method of an instance of the class Timer .

3. Collect necessary information to build a configuration file. This process collects
the necessary information for building a configuration file. This information is re-
trieved by calling the methods setDependencies() , setPaths() , setSources() and
loadDialogSettings()

4. Build a configuration file. The build configuration file is created by calling the
saveToXML() method of an instance of the class BuildConfigurationManager

5. Compile the Compose*/] application. A Compose* /] application is compiled by the
Compose* /] compiler. This compiler is triggered by calling the run() method of an
instance of the class MasterManager .

6. Stop the timer. After compilation, the stopwatch is stopped by calling the stop()
method of the class Timer .

8.2 Adaptation

This section presents the implementation of the various language specific parts of the adapta-
tion layer in Compose*/].

8.2.1 Dummy generation

The process of creating dummies is performed by the module DUMMERDUMmy ManagER).
Figure 8.5 shows the UML structure of this module.

The class DummyManager is the starting point of the module. The DummyManager uses an
instance of the class DummyEmitter to create the dummy files. Each Compose* imple-
mentation uses a specific language emitter. In this case, Compose* /] uses an instance of
JavaDummyEmitter to create dummies from sources written in the Java language.

Furthermore, the classes JavaRecognizer —and JavalLexer represent respectively a parser and
a lexer for the Java language. ANTLR creates these classes from a specified grammar file.

Finally, the class JavaCompiler defines logic for compiling dummies and program sources
with a native Java compiler.

77 Roy Spenkelink

Porting Compose* to the Java Platform

University Twente

| I
| Core. DUMMER i1 Core.COMP :
| 1
| ainterfaces DummyManager 11 :
1| DummyEmbter MODULE_NAME : sting [+ \
I +createDummy() +run(} : : 1
: rereateDummiss() +createProjectDurmmies() | | 1
i AN I '
| 1
I —!— 11 «interfaces 1
I DefaultEmitter 11 LangCompiler :
h : I [rcompieDummiss() | |
: HeraataDummy() | : +compile Sources() 1
| [rcreateDummies() 11 1
i I i '
1 T T T T A 1 RN RTINS
Y | BRI EE 1
I - I L 1
| | JavaDummyEmitter P — : I JavaCompiler 1
| Fdummy : StringBuilder ____D.Ia\raTokenTypes 1| ompllerDutput : string :
I LtokenMames : Amray |1 - -
| 1 +compileDummies() 1
| +a?§:|gﬁm:;f1! _i | | [FeompileSources()]
| fastnidi} - Javal exer | | [-createdrchive()]
FHnterceptMethodBody() - i 1
: uisit() HsetFileNamea() : : createfile() 1
| pvisitChildren() - bool - Pl 1
| }setupTokenMames() JavaRecognizer P 1
I +compilationUnitr) 11 1
: +QetAST() | : :
i Java.DUMMER reeFlehamel) I} Java.COMP i
I I 1

Figure 8.5: UML static structure of DUMMER.

8.2.1.1 Control flow DUMMER

Figure 8.6 shows an UML sequence diagram of the control flow of the module DUMMERThe
diagram defines the following sequence of actions:

1. Start the module. The module DUMMER triggered by the class JavaMaster

the method run() of an instance of the class DummyManager. JavaMaster

execution of all modules.

by calling
controls the

2. Create dummies. The process of creating dummies is triggered by calling the method
of an instance of the class JavaDummyEmitter

createDummies()
JavaDummyEmitter

creates a dummy source of every program source in a Compose* /]

project. This process is performed in a sequence of actions: (a) the method
of an instance of the class JavaRecognizer
tax Tree (AST) of the program source, (b) the method visit()

compilationUnit()

the dummy source to a file.

creates an Abstract Syn-
of JavaDummyEmitter is
recursively called to construct a dummy from the AST and (c) the method emit()

emits

3. Compile dummies. After the dummies are created, the dummies are compiled by calling
of an instance of the class JavaCompiler

the method compileDummies()

Roy Spenkelink

78

8. Implementation of Compose* /]

[| oo | | oo || s || s || o

run{)

createDummies()

> createDummy()

setFilaMame()

> visit() [recursive]
> emit(}

for each source

T T compileDummies()

A r _____________________________ 1
T T

Figure 8.6: UML sequence diagram - control flow of DUMMER.

8.2.2 Collecting type information

The process of collecting type information in Compose* /] is performed by three modules:

1. HARVESTER This module extracts classes from the compiled dummies.

2. COLLECTOR This module collects the type information (other than annotations) from
the extracted classes and stores them in the repository.

3. AnnotationCollector This module collects the annotations from the extracted classes and
stores them in the repository.

Figure 8.7 shows the UML structure of these three modules. All three modules are located
in the package TYM (TYpe Mystification). The starting point of the module HARVESTERs the
class JavaHarvestRunner . This class uses an instance of the class JarLoader to load classes
from a jar file (i.e. the dummies are stored in a jar file). Exceptions that occur during this
process are represented as objects of the type JarLoaderException . In order to locate the jar
file, JavaHarvestRunner uses an instance of the helper class ClassPathModifier . This class
can change the classpath at runtime.

Furthermore, HARVESTERtores the classes in an instance of the singleton class ClassMap . The
classes JavaCollectorRunner and AnnotationCollector use the information stored in this
singleton class to map it to a representation in the repository.

79 Roy Spenkelink

Porting Compose* to the Java Platform

University Twente

o

Java TYM.TypeHarvester

JavaHarvestRunner

ClassPathModifier

Hrun()

JarLoader

- addFile()
+addURL()

ClassMap

-harvestedClasses | HashMap
Hinstance - ClassMap

-classesDefined : HashMap
-classesFromJar : HashMap

HdefineAllCliasses()
+gelloadedClasses() - HashMap
defineloadedClass() : Class

JarLoaderException

+addClass()
+getClass() - Class
tinstance() : ClassMap
+map() - HashMap

—t+runi)

JavaCollectorRunner

Fpending Types - HashMap
Hprocessad Types : HashMap

Fprocess Typel)
-processMethodinfol)
-processFieldinfof}
+processParameterinfol)

Java. TYM. AnnotationCaollector

AnnotationCollector

L lerun()

fetchMethadAnnotations()

-getTypelocation() : Type

~getMethodLocation(} : Methodinfo

Figure 8.7: UML static structure of collecting type information - (a) HARVESTER (b) COLLEC-
TOR (c) AnnotationCollector.

| run()
— |—addFile(arfile)
DO i
L4 | Foreach library
oo consiructor(jarfile)
DefinedllClasses))
DefreloadedClass()
- For each class
SN\ et paceadClasses N\
e _______________ -
]
|: addClass(Class)
ot S For cach dass.
- ar each library
- “—

Figure 8.8: UML sequence diagram - control flow of HARVESTER

Roy Spenkelink

80

8. Implementation of Compose* /]

8.2.2.1 Control flow harvesting

Figure 8.8 shows an UML sequence diagram of the control flow of the process of harvesting the
type information (i.e. the module HARVESTER The diagram defines the following sequence of
actions:

1. Start the module HARVESTER The module HARVESTERis triggered by the class

JavaMaster by calling the method run() of an instance of the class JavaHarvestRunner

. Add libraries to classpath. In order to extract the classes from the dummy library and

dependent libraries of a Compose* /] project, the classpath must contain the paths to the
libraries. The paths are added to the classpath by calling the method addFile() of the
static class ClassPathModifier for each library.

. Extract the classes from libraries. The next step is to extract all classes from the li-

braries. This action is performed by calling the constructor of an instance of the class
JarLoader , which has a jarfile as argument. The classes are retrieved by calling the
method getLoadedClasses() of the JarLoader

. Store the classes in memory. The module HARVESTERNds with storing all the extracted

classes in memory. This is done by calling the method addClass() of the singleton class
ClassMap for each extracted class.

8.2.2.2 Control flow collecting

Ay i |l

|£ﬂdﬂﬁt§:| ‘ﬂﬁﬂﬂﬂ‘ ‘mmw nn

runi)
|

instance()

N
V

Froc_Types()

Y

Proc_Metharks()

processPendingTypesi)

V

Proc_Fiekis()

/

Proc_Paramed)

For each class =~

fatchidethod Annotatkansd |
|: |- For each class]

U |

Figure 8.9: UML sequence diagram - control flow of COLLECTORnNd AnnotationCollector

81

Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Figure 8.9 shows an UML sequence diagram of the control flow of the process of collecting
the type information (i.e. the modules COLLECTORnNd AnnotationCollector). The diagram
defines the following sequence of actions:

1. Start the module COLLECTOR The module COLLECTORIs triggered by the class
JavaMaster by calling the method run() of an instance of JavaCollectorRunner

2. Retrieve classes. The module COLLECTORtarts with retrieving the classes from mem-
ory. This is done by calling the method instance() of the class ClassMap . instance
() returns an instance of ClassMap , which contains the classes extracted by the module
HARVESTER

3. Extract the type information from the classes. This action extracts all type information
(except annotations) from the classes. The type information consists of classes, methods,
fields and parameters found in the classes. These objects are mapped to a uniform lan-
guage model. Section 8.2.2.3 presents this language model.

4. Start the module AnnotationCollector . The next phase is to extract the annota-
tions. This is done by the module AnnotationCollector . The module is triggered
by the class JavaMaster by calling the method run() of an instance of the class
AnnotationCollector

5. Retrieve classes. The first step of the module AnnotationCollector is the same as the
module COLLECTOR It reads the classes from memory by retrieving an instance of the
class ClassMap .

6. Fetch the annotations from the classes. This action extracts the annotations from the
methods of the classes. This is done by calling the method fetchMethodAnnotations()
of the class AnnotationCollector

8.2.2.3 Language model

Figure 8.10 shows an abstraction of the Java language model.

The Java language model is specific for the Java language, but the various tools in the compile
time layer (e.g. SIGN, FIRE and LOLA) are platform and language independent. In order to
reason about concerns in a uniform way in each Compose* implementation, these tools need
a platform and language independent representation of the static structure of a Compose*
application. This representation is shown in Figure 8.11.

As we can see, the platform and language independent model (LAMA) closely resembles to
the model shown in Figure 8.10. It contains the most important components that exist in a
OO-language: types, methods, fields, parameters, annotations and namespaces. Each class
other than the class Annotation extends from the abstract class ProgramElement . Every
ProgramElement can contain zero or more annotations. Furthermore, every platform specific
program element extends from a platform independent counterpart. (e.g. JavaMethodinfo
represents a method in Java and DotNETMethodInfo represents a method in .NET, they both
extend from the class MethodInfo). This mapping allows us to access the program elements in
a uniform way in the platform and independent compile-time layer.

Roy Spenkelink 82

8. Implementation of Compose* /]

Package
-subpackageslz

n.* ’
- -implements 0.1
0.1 . . \|: -extends
1 Class 0. ReferenceType 0. Interface ;
*.
| & J. $
1 1
Type Primitive Type
%

-1yp-e-DfT T-resuItCn‘

0.* | -fields

|

Field -constant Method ||
0.* -methods -abstract methods
0.
. Modifier
-ocal variables

Annotation Local Variable

Figure 8.10: abstraction of the Java language model.

83

Roy Spenkelink

Porting Compose* to the Java Platform

University Twente

Namespace

ProgramElement

Fannotations : Collection

+addAnnctation()

FoetAnnotations()

+oetUnithame() - string
FraetlUnitTyped) : sting 1
FoetUnitAtiibutes() : Collection
+hasUnitAttributel) © bool

+getUnitRelation() : UnitResult

FremoveAnnotation()

: Collection

T
|

Type

Methodinfo

+isMestedPrivate : bool
+isMestedPublic : bool
HfullMame : string

+name : siring

-childTypes : Collection

Hield Types ; Collection

Helds : Collection
Limplementadinterfaces | Collection
-implementedBy : Collection
-methodReturnTypes : Collection
Fmethods : Collection
-paramaterTypes @ Collection
-parentMS : Namespace

Hname : string
-parameters : Collection
-parent : Type
HreturnType | Type
Hraturm TypeSiring : string

+getethod() : Methodinfa
HgathMathods() : Collection
+name() : string

Fialdinfo
HieldType : Type
Fparent : Type
Hname © string
HieldTypel) - Type

Parameternfo

rparent - Methodinfo
FparameterType : Type
+parameterTypaStiring : siring
Hname @ string

JavaType DotNETType

L parent() - T #parameterTypel) - Type
+getParameters() ; Collection +$me{) . gtrsrr% =parenit() : Methodinfo
H+name() : string Hname() : string
Hparant() : Type
+retum Typel) : Type

JavaFieldinfo | |DotNETFieldinfo
JavaParameterinfo DotNETParameterinfo
JavaMethodinfo | |DothNETMethodinfo
Annotation
target ; ProgramElement
Fype : Type
+deregister])
+getTarget() - ProgramElement 0.
H+aetTypel) : Typa
+register)
JavaAnnotation DotNETAnnotation

Figure 8.11: UML static structure of LAMA.

Roy Spenkelink

84

8. Implementation of Compose* /]

8.2.3 Signature Transformation

The process of signature transformation of the dummy sources is performed by the module
SITRA (SIgnature TRAnsformation). Figure 8.12 shows the UML structure of this module.

JavaSignatureTransformer

Funt)

JarTransformer ClassModifier
HarFile ; string Terar -
-modifiedClasses - Hashhap _Qj;m;i' .Ccl:'la:;h':‘:;dnllﬂar
~unmedifiedEntries - HashiMap poc
+addMethods()

o) L findClass() : CiClass
read() +instance() : ClassModifier

Htransform() =
4write) +madifyClass()

ClassWrapper
-theClass : Class
Fconcern ; Concem
Fbytecode : bytef]
+geiBytecode() : byte(]
+getConcern() : Concemn
+getClazz() - Class
+selBylacodal)

Figure 8.12: UML static structure of SITRA.

The class JavaSignatureTransformer is the starting point of the module. It uses an in-
stance of the class JarTransformer to transform the compiled dummies inside a jarfile.
JarTransformer ~ uses an instance of the class ClassModifier to perform the transforma-

tions on a class. This is done by using Javassist as the bytecode manipulation tool. The class
ClassWrapper acts as a wrapper for manipulated classes. It contains the original Class object,
the transformed bytecode of the class and a Concern object that holds information about what
needs to be transformed.

8.2.3.1 Control flow SITRA

Figure 8.13 shows an UML sequence diagram of the control flow of the module SITRA. The
diagram defines the following sequence of actions:

1. Start the module. The module SITRA is triggered by the class JavaMaster by calling the
method run() of an instance of the class JavaSignatureTransformer

2. Read classes from jar. JavaSignatureTransformer calls the method run() of an in-
stance of the class JarLoader . Jarloader initiate the transformation process by reading
all classes from the specified jarfile. This is done by the method read()

3. Transforming the classes. The actual transformation is performed by calling the method
modifyClass() of an instance of the class ClassModifier for each class. The method
addMethods() of ClassModifier adds the signatures of the new methods, introduced
by the concerns, to a class. The new bytecode is set by calling the setBytecode() = method
of the ClassWrapper

4. Write classes back to jar. The module SITRA ends with writing the changes back to the
original jarfile. This is done by calling the method write()

85 Roy Spenkelink

Porting Compose* to the Java Platform

University Twente

[t | | masmaustasons | | st | | ot
run(}
construciorjarfile)
e _________
runi)
> read()
Qelt[hw}
CIaséWrapper
NEaIihiiii :-JHaooaa;
ClassModifier
N\t
addMethads()
setBytecode()
T
B R
E— I for each modified class —
> w0
e -
- l

Figure 8.13: UML sequence diagram - control flow of SITRA.

Roy Spenkelink

86

8. Implementation of Compose* /]

8.2.4 Weaver

As described in the previous chapter, we use Javassist as our weaving tool. In this section, we
tirst describe how Javassist deals with editing expressions. After that, we present the imple-
mentation of the Compose* /] weaver.

8.2.4.1 Editing expressions in Javassist

MethodCall NewExpr Cast
+replace() +replace() replace()
ClassPool CiClass ExprEditor Expr
+get() | CiClass +instrument| ExprEditor e)() +edit{MethodCall)() +replace()
writeFile{) +edit(Cast)()
+editNewExpr)

Figure 8.14: UML static structure - editing expressions in javassist.

Figure 8.14 shows the classes in Javassist that play a role in editing expressions. We describe
the classes below:

CtClass The CtClass object is an object that represents a class obtained from a given class file.
It provides almost the same functionality as the java.lang.Class class of the standard
java reflection API. Similar to CtClass , Javassist also has classes that represent meth-
ods, constructors, fields, etc (i.e. CtMethod , CtConstructor and CtField). Unlike the
standard reflection API, Javassist allows programmers to change the definition of a class
through the CtClass object. One method that can be used is instrument(ExprEditor)

This method scans all the method bodies of the methods declared in the class, and ed-
its expressions found in the methods through an instance of the class ExprEditor . The
method writeFile() of CtClass writes the changes back to a class file.

ClassPool The ClassPool object is an container of CtClass objects. A CtClass object is ob-
tained through the get() method. This method finds a class file through the classpath
and creates a CtClass object from it.

ExprEditor Asdescribed above, the ExprEditor object represents a translator for method bod-
ies. The edit() method inspects and modifies an given expression.

Expr The Expr object is an object that represents an expression. Each type of expression ex-
tends from this class, e.g. MethodCall , Cast and NewExpr (object creation). The method
replace() replaces the expression with the bytecode derived from the given source text.

Now, as described above, Javassist edits expressions by calling the replace() method of ex-
pression objects. This method takes source text as an argument. In the source text, we can use
special meta variables, listed in Table 8.1, to perform reify and reflect operations on demand. A
complete explanation of these meta variables is found in [8].

87 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

$0, $1, $2, ... parameter values
$_ result value
$$ a comma-separated sequence of the parameters
$args an array of the parameter values
$r formal type of the result value
$w the wrapper type
$proceed(..) execute the original computation
$class a java.lang.Class object representing the target class
$sig an array of java.lang.Class representing the formal parameter types
$type ajava.lang.Class object representing the formal result type

$cflow(..) amechanism similar to cflow of Aspect]

Table 8.1: Meta variables

Listing 8.1 shows an example of the usage of these meta variables. The code shows a translator
that edits expressions of the type MethodCall . More specific, it replaces method calls made
to methods with the name methodX. If such a method call is found, the expression is replaced
with two expressions. The first expression prints out the name of the method. The second
expression “$_ = $proceed($$) ” executes the original expression. Note that this example is
an example of an implementation of a before logging concern.

new ExprEditor()}{
public void edit(MethodCall mc){
if (mc.getMethodName().equals("methodX")){
mc.replace({ System.out.printin("methodX");"
+ "$_ = $proceed($$); }');

Listing 8.1: Example usage of meta variables.

8.2.4.2 Static structure of the weaver

Figure 8.15 shows the implementation of the Compose* /] weaver. In the figure, above on the
right, we see the part of Javassist that we explained above. The core part of the weaver consists
of only two interfaces. They tell us that the Compose* /] weaver is a WEAVERNd a Compose*
module. The most interesting part is the language dependent part. This part connects with
Javassist and it contains the following classes:

JavaWeaver The JavaWeaver object is the entry point of the weaver.

HookDictionary The HookDictionary ~ object is a storage place for hooks. A hook is a location
in the program where a call to the interpreter should be inserted by the weaver. This in-
formation is also available in the repository, but computing and accessing it directly takes
more time. Thus, we use a mapping for it. The MethodBodyTransformer object uses the
HookDictionary to check whether or not to place hooks in particular expressions.

ClassWeaver The ClassWeaver object is an object that performs the weaving on the classes of
a given project. It contains a ClassPool object that stores the CtClass objects that need
to be transformed.

Roy Spenkelink 88

8. Implementation of Compose* /]

MethodBodyTransformer The MethodBodyTransformer

object is a translator for method
bodies. This object replaces expressions with hooks to the interpreter. It extends the
class ExprEditor that is part of Javassist.

. I
CT.Core I'| Part of Javassist |
L
winterfacen | | MethodGall NewExpr Cast I
CTCommonModule T |
Hruni) L Hreplace() Hreplace() Hreplace() |
I
T f G 5|
MSE‘;& I : ClassPool CiClass ExprEditor Expr :
| I +get() : CtClass +instrument{EprEditor e} +edit(MethodCall mi} +replace() |
45 I [writeFile() +edit{Cast ¢)i) I
1 | | +edit{NewExpr n)() |
1
B O
T
1
1
] CT.Java.Weaver
1
JavaWeaver ClassWeaver MethodBodyTransformer
lasspool : ClassPool _
~appendClasspa) -
+createHookDictionary() +weave() ediiNewExpr)

HookDictionary

|-castinterceptions @ Amraylist
+afterlnstantationinterceptions | AmrayList
Fmethod Interceptions : Hashtable

+addCastinterception(}
+addAfterinstantationinterce ptioni)
+addMethodinterception)
+HsCastinterception() : bool

+HsAfterl nstantationinterception() : bool

+isMethodinterception() : bool

|
|
|
|
|
|
|
|
|
|
|
L
|
|
|
|
|
| +runi}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 8.15: UML static structure of the Compose* /] weaver.

8.2.4.3 Control flow of the weaver

Figure 8.16 shows an UML sequence diagram of the control flow of the weaver. The diagram
defines the following sequence of actions:

1.

. Create the hook dictionary. The HookDictionary

Start the weaver. The weaver is triggered by the class JavaMaster by calling the method
run() of an instance of the class JavaWeaver .

is created by calling the method
createHookDictionary() of the JavaWeaver object. This method inserts three types
of hooks to the dictionary: a) method calls b) object creations and c) castings.

Add libraries to classpath. This action adds the libraries of a Compose* /] project to the
classpath, in order to find the classes that need to be transformed. This is accomplished
by calling the addClassPath() method of the ClassWeaver object for each library.

89

Roy Spenkelink

Porting Compose* to the Java Platform

University Twente

4. Transform the classes. This action is triggered by calling the weave() method of the
ClassWeaver object. The weave() method starts with adding the application start info to

the main class of the given project. This is done by calling the writeApplicationStart

() method. The application start info contains logic for initializing the interpreter.

Furthermore, the weave()
MethodBodyTransformer

method instruments each class in the project with a
object, which performs the transformation of interesting

expressions. After the transformations are performed, the classes are written back to disk

by calling the writeFile()

method of the CtClass objects.

| avaldaster | | JavaWeaver

‘ ClassWeaver

=1

run(}

Figure 8.16: UML sequence diagram - control flow of the Compose* /] weaver.

| createHookDictionary() _

instance(}

HookDictionary

addMethodinterception()

add

[repeatadly)

addCastInterception()

[repeatadly)

Afterlnstantiationlinte reeptl

on()

[repeatadly)
6 _________
ey addClassPathilibrary)
6 _________ Y O R R R
SRR | forevery library |
weave()
e I |

8.3 Runtime

> wiiteApplication Star()

MethodBody Transformer

instrument(}

edit{Expr)*

Message

for every class

As described in Section 7.3, Compose* /] uses the interpreter of Compose*/.NET. A detailed
description of the interpreter is found in [16]. Porting the interpreter to the Java platform only

Roy Spenkelink

90

8. Implementation of Compose* /]

requires the implementation of a small set of classes. These classes are shown in Figure 8.17.
We describe the classes below:

| RuntimeCore

: MessageHandlingFacility PlatformProvider Invoker Objectinterface RepositoryDeserializer

1

: [thandleApplicationStart() +instantiatePlatformi) HHmvoke() +getFields() : String] +deserialize() : DataStore

| +getRepositoryDeserializer() +getClass() : Class +getFieldValue() : Object 43

1 +getAttributesFor() | ArayList

1 +objectHasMethod() : bool

1

- - ___

e e e e e et
JavaMessageHandlingFacility JavaPlatformProvider Javalnvoker JavaObjectinterface JavaRepositoryDeserializer

+handleJavatpplicationStart(}

]

1

]

1

]

- e |

]

1

]

1

]

1

]

1 ClassUtilities MethodFinder RepositoryFixer
]

1

1 +findMethod) : Method +HixRepository()
1

]

1

RuntimeJava

Figure 8.17: UML static structure of Compose* /] interpreter.

JavaMessageHandlingFacility The class JavaMessageHandlingFacility is the entry point
of the interpreter. Calls to this class are woven in by the weaver in a Compose*/] ap-
plication. JavaMessageHandlingFacility inherits the functionality from the core class
MessageHandlingFacility

JavaPlatformProvider The class JavaPlatformProvider initializes the interpreter and pro-
vides a repository deserializer for the Java Platform. It inherits the functionality from the
core class PlatformProvider

Javalnvoker The class Javalnvoker provides the ability to invoke intercepted messages using
the Java reflection API. It inherits the functionality from the core class Invoker

JavaObjectInterface The class JavaObjectinterface provides access to the interface of an
object using the Java reflection APIL It inherits the functionality from the core class
Objectinterface

JavaRepositoryDeserializer The class JavaRepositoryDeserializer provides the ability to
deserialize the repository created at compile time. It inherits the functionality from the
core class RepositoryDeserializer

RepositoryFixer The class RepositoryFixer fixes the repository after it has been deserialized.

MethodFinder The class MethodFinder is a utility class for finding methods. It uses the stan-
dard Java reflection API.

ClassUtilities The class ClassUtilities is a utility class for classes. It uses the standard Java
reflection APL

91 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Roy Spenkelink 92

Chapter 9

Conclusion, Future Work and Related
Work

In this thesis, we presented the design and implementation of Compose*/J, the Compose*
implementation for the Java Platform. Furthermore, we investigated the possibilities of sup-
porting specific Java features in Compose*/J.

In this final chapter, we conclude this thesis. First, we summarize the main conclusions drawn
in this thesis. Then we describe some possible future work on Compose*/J and at the end of
this chapter we present some related work.

9.1 Conclusions

This section is divided in two parts. In the first part, we summarize the main design choices of
Compose*/]J. In the second part, we summarize the conclusions drawn from the investigation
of supporting specific Java features in Compose*/].

Main design choices of Compose*/]J

e Compose* /] interfaces with the Eclipse IDE. The main reason for this is that Eclipse is an
extensible platform for building IDE’s. Besides the built-in Java IDE, there are language
IDE’s for most of the popular programming languages, such as C/C++ Development
Tooling (CDT). This saves us some effort in writing plug-ins for other Compose* imple-
mentations for other base languages.

e Compose* /] uses a general approach for collecting the program structure and annota-
tions within a source program. This approach is based on source code parsing and the
reflection mechanisms of OO-languages. The program structure is mapped to an uniform
language model for OO-languages. This mapping is needed to create and reuse platform
independent analysis tools that reason about the composition filters model.

e Compose* /] uses byte code manipulation at compile time as the weaving process. The
weaver inserts hooks to an interpreter. Javassist is used as the byte code manipulation
tool. Our main reason for using Javassist is the fact that it provides a source-level AP],
unlike other byte code manipulation tools. This means, that we can edit a class file with-

93

Porting Compose* to the Java Platform University Twente

out knowledge of the specifications of the Java bytecode, which speeded up the imple-
mentation of the Compose* /] weaver.

e Compose* /] reuses the interpreter of Compose* / NET. The interpreter of Compose* /. NET
was developed with the intention of porting it to the Java Platform. The biggest part was
written in J#. Porting the interpreter to the Java Platform only required the implementa-
tion of a couple of classes.

Supporting specific Java features

e In the world of AOP, exception handling is often mentioned as an example of a crosscut-
ting concern, so we investigated the possibility of modularizing exception handling with
composition filters. We presented three composition filters models, each supporting ex-
ception handling in a different way, and we compared them based on a qualitative study.
We concluded that a model based on returnfilters is the best choice, because it exposes
the most intuitive semantics, it offers real-time condition evaluation and it provides the
highest amount of possible filter orderings.

e We also investigated the possibility of expressing crosscutting concerns on inner classes.
We argued that crosscutting concerns that apply to top-level classes, may also apply to in-
ner classes. Furthermore, we described that the current selector language of Compose* /]
does not possess the tools to select inner classes properly, so we proposed new predicates
to the selector language.

e Finally, we discussed the possibility and benefits of weaving on Java interfaces. We
concluded that supporting only class-based weaving, makes working with Java inter-
faces cumbersome. Thus, we proposed a way to modularize interface-based weaving in
Compose*/].

9.2 Future Work

In this section we describe some future work on Compose*/]J.

Extend functionality of plug-in

The current version of the Compose*/] Eclipse plug-in provides a wizard to create a
Compose*/] application, windows for changing the Compose*/] compiler settings and
various ways to build and run a Compose* /] application. In the future, it can be extended
with new functionality, e.g. debug capabilities, visualization tools and a help section.

Change weaving strategy

As described above, Compose* /] uses Javassist as the byte code manipulation tool. From a
performance point of view, ASM [2] is a better choice. If performance becomes an issue, then
switching to ASM is recommended.

Furthermore, we concluded in this thesis that the current interpreter-based weaving strategy
exposes a drawback when dealing with call-backs. The inlining weaving strategy solve these
problems partially.

Roy Spenkelink 94

9. Conclusion, Future Work and Related Work

Further investigation on specific Java features

We mainly focused our investigation of supporting specific Java features in Compose*/J on
a language level. Further research should be performed to implement the various changes
introduced to the Compose* /] language.

Speed up Compose*/] compiler

Currently, the Compose* /] compiler is non-incremental. However, [34] describes a way to
speed up the compiler.

9.3 Related Work

To conclude this chapter, we here briefly present some work related to Compose*/]J.

Compose*/.NET and Compose*/C

The composition filters concept of Compose* can be applied to any programming language,
given that certain assumptions are met. Beside Compose* /], Compose* currently supports
two other platforms: .NET and C. For each platform, different tools are used for compilation
and weaving. They all share the same platform independent compile-time. Compose*/.NET
targets the NET platform and is the oldest implementation of Compose*. Its weaver operates
on CIL byte code. Compose*/.NET is programming language independent as long as the
programming language can be compiled to CIL code. An add-in for Visual Studio is provided
for ease of development. Compose*/C contains support for the C programming language.
The implementation is different from the .NET counterpart, because it does not have a run-
time environment. The filter logic is woven directly in the source code. Because the language C
is not based on objects, filters are woven on functions based on membership of sets of functions.
Similar to Compose* /], Compose* /C provides a plug-in for Eclipse.

Compose] and Concern]

Compose] and Concern] are two previous implementations of the composition filters model on
the Java Platform.

Compose] [43] is the oldest of the two. It is constructed as a preprocessor to the Java compiler.
Compose] bases its implementation of the composition filters model on successive source code
transformations directed by the composition filter specification.

Concern] [33] acts as a preprocessor for Compose]. It introduced the notion of superimposition
to the composition filters model. This allows for reuse of the filter modules and facilitation of
crosscutting concerns.

95 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Roy Spenkelink 96

Bibliography

[1] Antlr. grammar list. URL http://www.antlr.org/grammar/list
[2] ASM. Java byte code manipulation framework. URL http://asm.objectweb.org/
[3] BCEL. Byte code engineering library. URL http://jakarta.apache.org/bcel/

[4] L. Bergmans. Composing Concurrent Objects. ~ PhD thesis, University of Twente,
1994. URL http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.
pi.top.htm

[5] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters.
Comm. ACM, 44(10):51-57, Oct. 2001.

[6] S.R. Boschman. Performing transformations on .NET intermediate language code. Mas-
ter’s thesis, University of Twente, The Netherlands, Aug. 2006.

[7] R. Bosman. Automated reasoning about Composition Filters. Master’s thesis, University
of Twente, The Netherlands, Nov. 2004.

[8] S.Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode Translators.
2003. URL http://www.csg.is.titech.ac.jp/paper/chiba-gpce03.pdf .

[9] O. Conradi. Fine-grained join point model in Compose*. Master’s thesis, University of
Twente, The Netherlands, Aug. 2006.

[10] A.]. de Roo. Towards more robust advice: Message flow analysis for composition filters
and its application. Master’s thesis, University of Twente, The Netherlands, Mar. 2007.

[11] D. Doornenbal. Analysis and redesign of the Compose* language. Master’s thesis, Uni-
versity of Twente, The Netherlands, Oct. 2006.

[12] P.E. A. Diirr. Detecting semantic conflicts between aspects (in Compose*). Master’s thesis,
University of Twente, The Netherlands, Apr. 2004.

[13] Eclipse. An open development platform. URL http://www.eclipse.org

[14] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Comm. ACM, 44(10):
29-32, Oct. 2001.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: elements of reusable
object-oriented software. Addison Wesley, 1995.

[16] C. E. N. Garcia. Compose* - a runtime for the .NET platform. Master’s thesis, Vrije Uni-
versiteit Brussel, Belgium, Aug. 2003.

97

http://www.antlr.org/grammar/list
http://asm.objectweb.org/
http://jakarta.apache.org/bcel/
http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.pi.top.htm
http://www.csg.is.titech.ac.jp/paper/chiba-gpce03.pdf
http://www.eclipse.org

Porting Compose* to the Java Platform University Twente

[17] M. Glandrup. Extending C++ using the concepts of composition filters. Master’s the-
sis, University of Twente, 1995. URL http:/trese.cs.utwente.nl/publications/
paperinfo/glandrup.thesis.pi.top.htm

[18] J. D. Gradecki and N. Lesiecki. Mastering Aspect]: Aspect-Oriented Programming in Java.
John Wiley and Sons, 2003. ISBN 0471431044

[19] W. Havinga. Designating join points in Compose* - a predicate-based superimposition
language for Compose*. Master’s thesis, University of Twente, The Netherlands, May
2005.

[20] E.J. B. Holljen. Compilation and type-safety in the Compose* .NET environment. Master’s
thesis, University of Twente, The Netherlands, May 2004.

[21] R. L. R. Huisman. Debugging Composition Filters. Master’s thesis, University of Twente,
The Netherlands, 2006. To be released.

[22] S. H. G. Huttenhuis. Patterns within aspect orientation. Master’s thesis, University of
Twente, The Netherlands, 2006. To be released.

[23] Javassist. Java programming assistant. URL http://www.csg.is.titech.ac.jp/
~chibal/javassist/

[24] JRockit. Bea. URL http://dev2dev.bea.com/jrockit/

[25] G.Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of Aspect]. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS 2072, pages 327-353, Berlin,
June 2001. Springer-Verlag.

[26] P. Koopmans. Sina user’s guide and reference manual. Technical report, Dept. of
Computer Science, University of Twente, 1995. URL http://trese.cs.utwente.nl/
publications/paperinfo/sinaUserguide.pi.top.htm

[27] M. Lippert and C. V. Lopes. A study on exception detection and handling using aspect-
oriented programming. In Proceedings of the 22nd ICSE2000, page 7. Xerox Corporation,
1999.

[28] 1. Nagy. On the Design of Aspect-Oriented Composition Models for Software Evolution. PhD
thesis, University of Twente, The Netherlands, June 2006.

[29] Netbeans. URL http://www.netheans.org

[30] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the Hyperspace
approach. In M. Aksit, editor, Software Architectures and Component Technology. Kluwer
Academic Publishers, 2001. ISBN 0-7923-7576-9.

[31] A.Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-oriented programming.
In G. Kiczales, editor, Proc. 1st Int” Conf. on Aspect-Oriented Software Development (AOSD-
2002), pages 141-147. ACM Press, Apr. 2002.

[32] A. Popovici, G. Alonso, and T. Gross. Just in time aspects. In M. Aksit, editor, Proc.
2nd Int” Conf. on Aspect-Oriented Software Development (AOSD-2003), pages 100-109. ACM
Press, Mar. 2003.

Roy Spenkelink 98

http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://dev2dev.bea.com/jrockit/
http://trese.cs.utwente.nl/publications/paperinfo/sinaUserguide.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/sinaUserguide.pi.top.htm
http://www.netbeans.org

Bibliography

[33] P. Salinas. Adding systemic crosscutting and super-imposition to Composition Filters.
Master’s thesis, Vrije Universiteit Brussel, Aug. 2001.

[34] D. R. Spenkelink. Incremental compilation in Compose*. Master’s thesis, University of
Twente, The Netherlands, Oct. 2006.

[35] T. Staijen. Towards safe advice: Semantic analysis of advice types in Compose*. Master’s
thesis, University of Twente, Apr. 2005.

[36] Sun. Sun microsystems inc. URL http://www.sun.com

[37] P. Tarr, H. Ossher, S. M. Sutton, Jr., and W. Harrison. N degrees of separation: Multi-
dimensional separation of concerns. In R. E. Filman, T. Elrad, S. Clarke, and M. Aksit,
editors, Aspect-Oriented Software Development, pages 37-61. Addison-Wesley, Boston, 2005.
ISBN 0-321-21976-7.

[38] J. W. te Winkel. Bringing Composition Filters to C. Master’s thesis, University of Twente,
The Netherlands, 2006. To be released.

[39] TIOBE. Tiobe programming community index. URL http://www.tiobe.com/tpci.htm

[40] M. D. W. van Oudheusden. Automatic Derivation of Semantic Properties in .NET. Mas-
ter’s thesis, University of Twente, The Netherlands, Aug. 2006.

[41] C. Vinkes. Superimposition in the Composition Filters model. Master’s thesis, University
of Twente, The Netherlands, Oct. 2004.

[42] D. A. Watt. Programming language concepts and paradigms. Prentice Hall, 1990.

[43]]J. C. Wichman. The development of a preprocessor to facilitate composition filters in the
Java language. Master’s thesis, University of Twente, 1999. URL http://trese.cs.
utwente.nl/oldhtml/publications/msc _theses/wichman.thesis.pdf

99 Roy Spenkelink

http://www.sun.com
http://www.tiobe.com/tpci.htm
http://trese.cs.utwente.nl/oldhtml/publications/msc_theses/wichman.thesis.pdf
http://trese.cs.utwente.nl/oldhtml/publications/msc_theses/wichman.thesis.pdf

Appendix A

Example BuildConfiguration-file

<?xml version="1.0" encoding="us—ascii”?>
<!——This BuildConfiguration file is automatically generated by the Composestar
Eclipse Plugin.——>
<BuildConfiguration version="1.00">
<Projects buildDebugLevel="4" applicationStart="PlatypusExample.Main”
runDebugLevel="1" outputPath="C:/ComposestarSVN/Java/Examples/Platypus/bin/">
<Project name="Platypus” language="Java” basePath="C:/ComposestarSVN/Java/
Examples/Platypus/” >
<Sources>
<Source fileName="C:/Platypus/PlatypusExample/Bird.java” />
<Source fileName="C:/Platypus/PlatypusExample/Animal.java” />
<Source fileName="C:/Platypus/PlatypusExample/Main.java” />
<Source fileName="C:/Platypus/PlatypusExample/Food.java” />
<Source fileName="C:/Platypus/PlatypusExample/Egg.java” />
<Source fileName="C:/Platypus/PlatypusExample/Caretaker.java” />
<Source fileName="C:/Platypus/PlatypusExample/Mammal.java” />
<Source fileName="C:/Platypus/PlatypusExample/Platypus.java” />
</Sources>
<Dependencies>
<Dependency fileName="C:/Program Files/eclipse32/eclipse/plugins/
ComposestarCore/Binaries/ComposestarCORE. jar” />
<Dependency fileName="C:/Program Files/eclipse32/eclipse/plugins/
ComposestarCore/Binaries/ComposestarJava.jar” />
<Dependency fileName="C:/Program Files/eclipse32/eclipse/plugins/
ComposestarCore/Binaries/ComposestarRuntimelnterpreter.jar” />
</Dependencies>
<TypeSources>
</TypeSources>
</Project>
<ConcernSources>
<ConcernSource fileName="C:/Platypus/PlatypusExample/Platypus.cps” />
</ConcernSources>
</Projects>
<Settings>
<Modules>
<Module name="INCRE” enabled="False” config="C:/Program Files/eclipse32/
eclipse/plugins/ComposestarJava/INCREconfig.xml” />
<Module name="FILTH” input="" />
<Module name="SECRET” mode="-1" />
</Modules>
<Paths>

100

A. Example BuildConfiguration-file

<Path name="Base” pathName="C:/Platypus/” />
<Path name="Composestar” pathName="C:/Program Files/eclipse32/eclipse/plugins/
ComposestarCore/” />
<Path name="EmbeddedSources” pathName="embedded/” />
<Path name="Dummy” pathName="dummies/” />
</Paths>
</Settings>
<Platforms>
<Platform name="Java” mainClass="Composestar.Java.MASIER. JavaMaster” classPath="%
composestar¥%/binaries /ComposestarCORE. jar;%composestar%/binaries/
ComposestarJava.jar;%composestar%/binaries/antlr .jar;%composestar%/binaries/
prolog/prolog.jar;%composestar%/binaries/groove/castor —0_-9_5_2 —xml. jar;%
composestar¥%/binaries/groove/groove—1_2_0.jar;%composestar%/binaries/groove/
jgraph.jar;%composestar%/binaries/groove/xerces —2_6_0—xercesImpl.jar;%
composestar¥%/binaries/groove/xerces —2_6_0—xml—apis.jar;%composestar%/binaries/
javassist.jar” options="">
<Languages defaultLanguage="Java”>
<Language name="Java”>
<Compiler name="JavaCompiler” executable="javac.exe” options=
implementedBy="Composestar . Java .COMP. JavaCompiler”>
<Actions>
<Action name="Compile” argument="{OPTIONS} {SOURCES}” />
<Action name="CreateJar” argument="jar {OPTIONS} {NAME} {CLASSES}” />

"

</Actions>
<Converters />
</Compiler>
<DummyGeneration emitter="Composestar.Java .DUMMER. JavaDummyEmitter” />
<FileExtensions>
<FileExtension extension=".java” />
</FileExtensions>
</Language>
</Languages>
<RequiredFiles>

<RequiredFile fileName="ComposestarCore.jar” />
<RequiredFile fileName="Composestarfava.jar” />
<RequiredFile fileName="prolog/prolog.jar” />
</RequiredFiles>
</Platform>
</Platforms>
</BuildConfiguration>

101 Roy Spenkelink

Porting Compose* to the Java Platform University Twente

Roy Spenkelink 102

Appendix B

Screenshots of the Eclipse Plug-in

& New Compose® Java Project il

Create a Compose™* Java project

Create a Compose® Java project in the workspace or in an external location.

Project narne: I |

Conkents
¥ Create new project in workspace

" Create project from existing source

Direckary: I C:Composestarsthil Javal Exanmples Browse. .. |

—IRE

' Lse default JRE (Currently jdki.5.0_05" Configure JRES. ..

" Use a project specific JRE: dekl.S.D_EIS 'I

—Project layouk

{* e project Folder as rook For sources and class files

" Create separate source and output Folders Confiqure defaulk. ..

(7) < Barck Mext = | Fimish I Cancel

Figure B.1: Wizard for creating a Compose* /] project.

103

Porting Compose* to the Java Platform

University Twente

& Preferences

I tvpe Filter bext

[+ General

Compose™® R

=10l x|

—@eneral Settings

FunDebuglewvel ICruu:iaI

Kl

[+ Help

-- InstalfUpdate BuildDebuglewvel ICruu:iaI j

[#- Java

(¥ Plug-in Development SecretMode IP.IIOrders.ﬁ.ndSelect =l

[+ RunfDebug

& Team Incremental IFalse j
Classpath I ecomposestar¥s/binaries/ComposestarCORE . jar; %:compc

Restore Defaults | Apply |
(7 oK, I Cancel |

Figure B.2: Setting the global Compose* /] compiler settings.

Roy Spenkelink

B. Screenshots of the Eclipse Plug-in

& Properties for Platypus O] =]

| type Filter text Compose* P)
- Infa
- Builders —Main class

& Compose® I PlatypusExarnple. Main Search... |

- Java Build Path

[Java Code Style [Include libraries when searching Faor a main cass
(- Java Compiler [Include inherited rmain when searching for a main class
- Javador Location
- Project References ~Compose® Settings (Project specific)
RunDebuglLevel ICruciaI j

BuildDebuglevel IDel:uug

L

SecretMode INu:utSet j

Incremental IFaIse ﬂ
FilkerModuleOrder | Browse. .. |
Classpath | “hcomposestar e binaries i Composestar”OR

Restore Defaults | Apply |

(7 (0] 4 I Cancel |

Figure B.3: Setting the project Compose* /] compiler settings.

105 Roy Spenkelink

Porting Compose* to the Java Platform

University Twente

Create, manage, and run configurations

Run a Compose® Java application

; : —Project:
Meva_configuration

& Eclipse Application Browse, ..
""" ‘d* Equino:: 013G Framework,
~El Java Applet —Main class:
_____ Ju jil::: Application | PlatypusEsxanple.Main
JV 20ni Plug-in Test

Search... |
[Include libraries when searching For a main class
----- 7] SWT Application

[Include inherited mains when searching for a main class
[~ Stop in main

& [H
= o -
A=R. | S MName: | Mew_canfiguration
type Filker bext -
I m= P.rguments| =i JRE| 4. Classpath | IE"W Source| B Envirnnment| E=| Qommonl
=+ Compose® Java Application

| Platypus

apphy | Renverk |
I";‘I

Run Close |

Figure B.4: Launch configuration for launching a Compose* /] project.

Roy Spenkelink

106

	Abstract
	Acknowledgements
	List of Figures
	List of Listings
	1 Introduction to AOSD
	1.1 Introduction
	1.2 Traditional Approach
	1.3 AOP Approach
	1.3.1 AOP Composition
	1.3.2 Aspect Weaving
	1.3.2.1 Source Code Weaving
	1.3.2.2 Intermediate Language Weaving
	1.3.2.3 Adapting the Virtual Machine

	1.4 AOP Solutions
	1.4.1 AspectJ Approach
	1.4.2 Hyperspaces Approach
	1.4.3 Composition Filters

	2 Compose*
	2.1 Evolution of Composition Filters
	2.2 Composition Filters in Compose*
	2.3 Demonstrating Example
	2.3.1 Initial Object-Oriented Design
	2.3.2 Completing the Pacman Example
	2.3.2.1 Implementation of Scoring
	2.3.2.2 Implementation of Dynamic Strategy

	2.4 Compose* Architecture
	2.4.1 Integrated Development Environment
	2.4.2 Compile Time
	2.4.3 Adaptation
	2.4.4 Runtime

	2.5 Platforms
	2.6 Features Specific to Compose*

	3 Problem Identification
	3.1 Background
	3.2 Designing Compose*/J
	3.3 Supporting specific Java features
	3.4 Summary

	4 Exception Handling in Compose*
	4.1 Background
	4.1.1 Java Exception Handling
	4.1.2 Error Filter

	4.2 Motivation
	4.2.1 Demonstrating Example

	4.3 Solution Models
	4.3.1 Preliminaries
	4.3.2 Solution Model A: Exception handling in current composition filters model
	4.3.3 Solution Model B: Two-way composition filters model
	4.3.4 Solution Model C : Introducing return filters

	4.4 Comparison of Solution Models
	4.4.1 Criteria applied to Model A
	4.4.2 Criteria applied to Model B
	4.4.3 Criteria applied to Model C
	4.4.4 Evaluation

	5 Composition filters & Inner classes
	5.1 Background
	5.1.1 Member classes
	5.1.2 Local classes
	5.1.3 Anonymous classes
	5.1.4 Nested top-level classes

	5.2 Motivation & Demonstrating Example
	5.3 Extending selector language
	5.4 Implementation issues
	5.4.1 Dummy generation
	5.4.2 Weaving technique : interpreter vs inlining

	5.5 Summary and Conclusion

	6 Composition filters & Java interfaces
	6.1 Background
	6.2 Motivation & Demonstrating example
	6.3 Solution Proposal
	6.4 Summary and Conclusion

	7 Design of Compose*/J
	7.1 Integrated Development Environment
	7.1.1 Eclipse Architecture
	7.1.2 Design of the Compose*/J Eclipse plug-in
	7.1.2.1 Use case diagram
	7.1.2.2 Using services provided by Eclipse

	7.2 Adaptation
	7.2.1 Collecting type information
	7.2.2 Weaving
	7.2.2.1 Determining the weaving process
	7.2.2.2 Selecting a byte code manipulator
	7.2.2.3 Signature transformation dummies

	7.3 Runtime
	7.4 Summary and Conclusion

	8 Implementation of Compose*/J
	8.1 Eclipse plug-in
	8.1.1 Core part
	8.1.2 Language dependent part
	8.1.3 Building a Compose*/J application

	8.2 Adaptation
	8.2.1 Dummy generation
	8.2.1.1 Control flow DUMMER

	8.2.2 Collecting type information
	8.2.2.1 Control flow harvesting
	8.2.2.2 Control flow collecting
	8.2.2.3 Language model

	8.2.3 Signature Transformation
	8.2.3.1 Control flow SITRA

	8.2.4 Weaver
	8.2.4.1 Editing expressions in Javassist
	8.2.4.2 Static structure of the weaver
	8.2.4.3 Control flow of the weaver

	8.3 Runtime

	9 Conclusion, Future Work and Related Work
	9.1 Conclusions
	9.2 Future Work
	9.3 Related Work

	Bibliography
	Appendices
	A Example BuildConfiguration-file
	B Screenshots of the Eclipse Plug-in

