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Chapter 1

Introduction

Traditionally in queueing theory, the way to analyse a priority queue is to assume that

every customer upon arrival has a fixed priority, which is class-dependent [8, 10, 14].

Also, no customer from a given class commences service if a customer of a higher class

is still present in the queue. However, in situations where a performance target has to

be met, such as maximum waiting time of a customer, this model of priority queueing

is not satisfactory. There are situations where high priority classes easily meet their

performance target in terms of the maximum waiting time of a customer, while lower

classes do not meet their targets in terms of maximum waiting time.

For example, for a two-class case, it is possible that the high-class customer almost

always starts service within the hour, while the low-class customer only has a 70%

chance to start service within an hour. However, the performance target of this queue

is such that 95% of the high class customers start service within the hour and the same

holds for 80% of the low class customers. Hence, the traditional models of priority

queueing do not meet our requirements.

Kleinrock [11] introduced a time-dependent priority queue in 1964. In this paper, re-

sults are derived for a delay dependent priority system in which a customer’s priority

is increasing, from zero, linearly with time in proportion to a rate assigned to the cus-

tomer’s priority class. The advantage of this new priority structure is that it provides

a number of degrees of freedom with which to manipulate the relative waiting times for

each customer class. Upon a departure, the customer with highest priority in queue (if

any) commences service.

In 2013, Stanford, Taylor and Ziedins [18] pointed out that the performance of many

queues, particularly in the healthcare and human services sectors, is specified in terms

of tails of waiting time distributions for customers of different classes. They use this

time-dependent priority queue, which is referred to as the accumulating priority queue

1



CHAPTER 1. INTRODUCTION 2

in [18], to construct a corresponding stochastic process to derive its waiting time dis-

tributions, rather than just the mean waiting times. This stochastic process is referred

to as the maximum priority process.

We are interested in the stationary distribution at the times of commencement of ser-

vice of this maximum priority process. Until now, there is no explicit expression for

this distribution. We construct a mapping of the maximum priority process to a tan-

dem fluid queue [3–7, 15–17] which enables us to find expressions for this stationary

distribution using techniques derived in [15, 16] by O’Reilly and Scheinhardt.

Previous work on this topic was done by Dams [9]. However, he was not able to ob-

tain the stationary distribution of the maximum priority process at the times of the

commencement of service. This stationary distribution is interesting because it gives

information on the maximum waiting time of the customer.

The remainder of this report is organized as follows. In Chapter 2 we describe the

accumulating priority queue and the corresponding maximum priority process. We

also provide some explanations and diagrams in order to explain the model in detail,

for the benefit of the reader. In Chapter 3, we give the definition of the tandem

fluid queue and construct the mapping of the maximum priority process to a tandem

fluid queue. Chapter 4 describes the numerical treatment of the tandem fluid queue.

Moreover, we give an example of how the maximum priority process can be mapped

as a tandem fluid queue. We conclude this report with Chapter 5, here we provide

comments on our method and suggestions for further research are given.



Chapter 2

The priority process

In this chapter we consider the accumulating priority queue introduced in [18], in which

two classes of customers accumulate priority over time at linear and class-dependent

rates. We give the details of the construction of this process and describe a related

maximum priority process. The latter will form the key focus for this report.

2.1 Accumulating priority queue

Here, we give details of the multiclass accumulating priority queue as defined in [18],

for convenience of the reader.

Consider a single-server queue with Poisson arrivals such that customers of class i ar-

rive to the queue at some rate λi > 0. Upon arrival to the queue, a customer of class i

starts accumulating priority at rate bi > 0. After completion of the service, the server

starts serving the customer with the highest accumulated priority, regardless of their

class. Note that this means that the queue discipline is not first in, first out (FIFO).

That is, when the server selects the next customer to be served, they do not choose

the customer who arrived first, but the customer with the highest accumulated priority.

Assume that the single server has a general distribution B(i) of service time with mean

1/µi for customer class i. Let X(i) be the random variable recording the service time

of customer class i. The distribution function B(i) for a class i customer has a Laplace-

Stieltjes transform B̃(i)(s) = E(e−sX
(i)

), which is defined in the right complex half-plane

for at least some s with Re(s) < 0. Assume that the inter-arrival times and service

processes are mutually independent and that the system is stable.

Let Γ = {Γn;n = 1, 2, . . .} be the corresponding stochastic process of the inter-

arrival times with γn =
∑n

k=1 Γk denoting the time of the nth arrival. Further, let

3



CHAPTER 2. THE PRIORITY PROCESS 4

χ = {χ(n);n = 1, 2, . . .} be the process recording the customer classes of the arrivals

such that χ(n) is the customer class of the nth arrival. Also, let X = {Xn;n = 1, 2, . . .}
be the service time of the nth arriving customer.

Now, we define the accumulated priority function Vn(t) by

Vn(t) = bχ(n)[t− γn]+, (2.1)

where Vn(t) denotes the accumulated priority of the nth customer. Note that bχ(n) is

the rate of the nth arriving customer. Also note that if the nth customer arrived after

time t, that is when γn > t, then the accumulating priority at time t is set to 0.

Let n(m) be the function recording the position in the arrival sequence of the mth

customer to be served. For example, if the third customer to be served was the fourth

arrival then n(3) = 4.

t

Vn(t)
class 1
class 2

Cn(1) Cn(2) Cn(3) Cn(4) Cn(5)

Dn(1) Dn(2) Dn(3) Dn(4) Dn(5)

Figure 2.1: An example of the evolution of the accumulating priority function Vn(t).

Let Cn be the time that the nth arrival starts service and Dn be the departure time

of this customer, with clearly Dn = Cn + Xn. The time that the mth customer com-

mences service is therefore Cn(m) and the departure time of this customer is Dn(m).

After departure of a customer there are two possibilities, the queue is empty, or the

queue is non-empty and the customer with the highest priority commences service. In

mathematical form this can be written as

n(m+ 1) = min{arg maxn/∈{n(i) 1≤i≤m}Vn(Dn(m))}, (2.2)

where we use the minimum function since it is possible that the set in (2.2) contains

more than one element, though the probability of this occurring is 0. An example of

the evolution of the accumulating priority function Vn(t) is presented in Figure 2.1.

Here, we observe 5 arrivals, with the corresponding start-of-service times Cn(m) and

departure times Dn(m), for m = 1, 2, . . . , 5.
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2.2 Maximum priority process

In this section we describe the maximum priority process M = {(M1(t),M2(t)); t ≥ 0},
as defined in [18], that corresponds to the accumulating priority queue of Section 2.1

with two classes of customers such that b1 > b2, so that a class 1 customer accumulates

priority at a higher rate than class 2 customer. Intuitively, this process records the

least upper bounds M1(t) and M2(t) of the accumulated priority Vn(t) for customer

classes 1 and 2, respectively. The values of M1(t) and M2(t) grow at class-dependent

rates during service, with M1(t) always and M2(t) possibly observing a jump down at

the end of the service.

Definition 2.1. For the two-class accumulating priority queue, the maximum priority

process M = {(M1(t),M2(t)); t ≥ 0} is defined as follows.

1. For an empty queue at time t, we let M1(t) = M2(t) = 0.

2. For a non-empty queue, at the departure times {Dn(m),m = 1, 2, . . .}, we let

M1(Dn(m)) = max
n/∈{n(k);1≤k≤m}

Vn(Dn(m)), (2.3)

M2(Dn(m)) = min{M1(Dn(m)),M2(Cn(m) + b2Xn(m))}. (2.4)

3. For a non-empty queue during the mth service at time t, that is for t ∈ [Cn(m), Dn(m)),

for i = 1, 2, we let

Mi(t) = Mi(Cn(m)) + bi(t− Cn(m)). (2.5)

By the above definition, at departure times the accumulated priority of the customer

with the highest accumulated priority determines M1(t). This customer is also the

person who commences service at that time point. Clearly, the accumulated priority

of the customer commencing service must be lower than the accumulated priority of

the customer leaving service. Consequently, M1(t) will always experience jumps down

at the departure times.

On the other hand, since b1 > b2, M2(t) will experience jump down at a departure time

only when the accumulated priority of the customer with the highest accumulated pri-

ority is strictly less than the accumulated priority of the customer that is leaving the

service.

An example of a sample path of the maximum priority process M = {(M1(t),M2(t)); t ≥
0} is shown in Figure 2.2. We observe the jumps in M1(t) at all departure times, while

this is not always true for M2(t).
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t

M
M1(t)
M2(t)

Figure 2.2: The maximum priority process corresponding to Figure 2.1.

2.3 Jumps in Vn(t)

Consider the behaviour of the accumulated priority function Vn(t) at the departure

times. Denote by Ek the value of the jump in Vn(t) at the kth departure time, defined

as

Ek = bi(k)Xn(k) − bi(k+1)[Dn(k) − γn(k+1)]
+ +M1(Cn(k)), (2.6)

where i(k) is the customer class corresponding to the kth position in the start-of-service

sequence, and Dn(k) is the departure time of that customer. Note that γn(k+1) is the

arrival time of the customer that commences the (k + 1)th service. M1(Cn(k)) is the

accumulated priority of the kth customer at the beginning of the service and Xn(k) is

the service time of this customer. See Figure 2.3.

The second term on the right-hand side of equation (2.6) becomes 0 if the queue is

empty at the kth departure time. This is due to the fact that in such case the arrival

of the (k + 1)th customer did not occur yet, and so γn(k+1) > Dn(k). In this case we

have Vn(Dn(k)) = 0.

2.4 Jumps in the maximum priority process M

The behaviour of the jumps in the maximum priority process M is somewhat similar

to that of the jumps in Vn(t). The difference is that the size of the jump affects the

behaviour of the process M. This is because the maximum priority process M records

the least upper bounds of both classes of customers in the queue. Also, the jumps in

the process M will always be jums down.

At the non-departure times t, both variables M1(t) and M2(t) are increasing at constant

rates, b1 and b2, respectively. The jumps down may only occur at the departure times.

We consider three different types of behaviour at the departure times.
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t

Vn(t)
class 1, rate b1

class 2, rate b2

Ek

Xk

Dn(k)
τn(k+1)

Figure 2.3: Example of the behaviour of the jump down in the accumulating priority

process.

Type 1: Priority of customer that commences service is higher

then the upper bound of the class 2 customers

We illustrate this in Figure 2.4. In this case, at the departure times t, the least upper

bound of class 2 customers, M2(t), remains unchanged, while the least upper bound

of the class 1 customer, M1(t), jumps down to the maximum accumulated priority of

the customers still in queue. Therefore, the difference Z(t) = M1(t) −M2(t) is equal

precisely to the difference of the accumulated priority of the customer that commences

service and M2(t), and so Z(t) > 0.

t

M
M1(t)
M2(t)

t

M
M1(t)
M2(t)

Figure 2.4: Type 1 jump in the maximum priority process M.
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Type 2: Priority of customer that commences service is smaller

than the upper bound of the class 2 customers

We illustrate this in Figure 2.5. In this case, at the departure times t, there are some

customers still present in the queue after the service of the n(k)th customer was com-

pleted, with a priority smaller than M2(t). Consequently, both upper bounds, M1(t)

and M2(t), are set to the value of the priority of the customer that commences service,

and so M1 = M2 > 0 and Z(t) = 0.

t

M
M1(t)
M2(t)

t

M
M1(t)
M2(t)

Figure 2.5: Type 2 jump in the maximum priority process M.

Type 3: There are no customers in the queue after the com-

pletion of the service

We illustrate this in Figure 2.6. At the departure times t, the queue is empty and

the least upper bound for both classes is M1(t) = M2(t) = 0 and Z(t) = 0, and these

quantities will remain zero until the next arrival.

t

M
M1(t)
M2(t)

t

M
M1(t)
M2(t)

Figure 2.6: Type 3 jump in the maximum priority process M.



Chapter 3

The tandem fluid model

Consider the two-class maximum priority process M = {(M1(t),M2(t)); t ≥ 0} of

Section 2.2 as defined in [18]. We will construct a mapping of this process to a tandem

fluid queue {(ϕ(t), X(t), Y (t)); t ≥ 0}, which was analysed in [15, 16]. The goal is to

derive a stationary distribution for the two-class maximum priority process M using

the results in [15, 16].

3.1 Tandem fluid queue

Consider two fluid queues, collecting fluid in buffers X and Y . The level variables

recording the content of the buffers at time t are given by X(t) and Y (t), respectively.

These level variables are driven by the same background continuous-time Markov chain,

denoted by {ϕ(t); t ≥ 0} with some finite state space S and irreducible generator T.

We partition the state space S as S = S+ ∪ S−, where S+ = {i : ri > 0}, S− = {i :

ri < 0}, and refer to i ∈ S+ as the up-phases and i ∈ S− as the down-phases.

The first level variable X(t) has a lower boundary at level 0, and depends on ϕ(t) and

real-valued fluid rates ri, for all i ∈ S, as follows. When the buffer is non-empty, the

level in the buffer changes at rates ri. However, when the buffer is empty and i ∈ S−,

the level of the fluid stays 0. That is,

d

dt
X(t) = rϕ(t) when X(t) > 0, (3.1)

d

dt
X(t) = max(0, rϕ(t)) when X(t) = 0. (3.2)

The second fluid queue Y (t) depends on X(t), ϕ(t) and rates ci, for all i ∈ S, as

follows. When the first buffer is non-empty, the level in the second buffer changes at

non-negative fluid rates ĉi. However, when the first buffer is empty, the level in the

9
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second buffer changes at negative fluid rates či. That is,

d

dt
Y (t) = ĉϕ(t) ≥ 0 when X(t) > 0, (3.3)

d

dt
Y (t) = čϕ(t) < 0 when X(t) = 0, Y (t) > 0, (3.4)

d

dt
Y (t) = ĉϕ(t) · 1{ϕ(t) ∈ S+} when X(t) = 0, Y (t) = 0. (3.5)

Remark 1. The tandem fluid queue analysed in [15, 16] only considers ĉϕ(t) > 0,

however the result still holds if ĉϕ(t) ≥ 0.

We denote such defined process as {(ϕ(t), X(t), Y (t)); t ≥ 0}. The stationary distri-

bution of this tandem fluid queue was derived in [15, 16]. Next, we map the two-class

maximum priority process M into {(ϕ(t), X(t), Y (t)); t ≥ 0}.

3.2 Mapping of the maximum priority process with

exponential service times to a tandem fluid queue

We map the maximum priority process M described in Section 2.2 into a tandem fluid

queue {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} as follows.

First, let {ϕ(t); t ≥ 0} be some background continuous-time Markov chain with state

space S = {+,−}, where + is referred to as the up-phase, and − as the down-phase.

In our mapping, these phases correspond to the service time and the jump down in the

process M of Section 2.2, respectively. The generator of this chain is assumed to be

T =

[
−µ µ

1 −1

]
. (3.6)

Note that the distribution of the time spent in phase + is equal to the distribution of

the service time in the process M.

Next, with the variables M1(t) and M2(t) as described in Section 2.2, let the process

{(Z(t),M2(t)); t ≥ 0} be an adjusted representation of the maximum priority process

M = {(M1(t),M2(t)); t ≥ 0}, where

Z(t) = M1(t)−M2(t), (3.7)

and define the variables Z̃(t) and M̃2(t) with the following desired properties.

1. To map the behaviour of the process M during service times, we assume that

when ϕ(t) = +, then Z̃(t) and M̃2(t) increase at rates (b1−b2) and b2, respectively.

This means the distribution of shift in Z̃(t) and M̃2(t) is equivalent to that of

Z(t) and M2(t), respectively, during service times.



CHAPTER 3. THE TANDEM FLUID MODEL 11

2. To map the behaviour of the process M at the end of service times, that is when

we observe the jumps, we assume that when ϕ(t) = −, the variables Z̃(t) and

M̃2(t) will change at some appropriate rates, such that the distributions of jumps

in Z(t) and M2(t) at the end of the service times are the same as the distribu-

tions of shift in Z̃(t) and M̃2(t) at the end of the down phase −, respectively. We

choose these rates according to part 2 of Theorem 3.2 in [18].

For completeness, we state part 2 of Theorem 3.2 in [18] below.

Theorem 3.1. The accumulated priorities {Vk(t); k = 1, 2, . . .} of all customers still

present in the queue are distributed as a Poisson process with piecewise constant rates,

with rate zero on the interval [M1(t),∞), rate λ1
b1

on the interval [M2(t),M1(t)), and

rate
(
λ1
b1

+ λ2
b2

)
on the interval [0,M2(t)).

To this end, we assume

d

dt
Z̃(t) = b1 − b2 when Z̃(t) > 0, ϕ(t) ∈ S+, (3.8)

d

dt
Z̃(t) = −

(
λ1

b1

)
when Z̃(t) > 0, ϕ(t) ∈ S−, (3.9)

d

dt
Z̃(t) = max(0, b1 − b2) when Z̃(t) = 0, (3.10)

and

d

dt
M̃2(t) = b2 when Z̃(t) > 0, ϕ(t) ∈ S+, (3.11)

d

dt
M̃2(t) = 0 when Z̃(t) > 0, ϕ(t) ∈ S−, (3.12)

d

dt
M̃2(t) = −

(
λ1

b1

+
λ2

b2

)
when Z̃(t) = 0, M̃2(t) > 0, (3.13)

d

dt
M̃2(t) = b2 · 1{ϕ(t) ∈ S+} when Z̃(t) = 0, M̃2(t) = 0. (3.14)

Below we show that the desired properties 1-2 are met by assuming the rates (3.8)–

(3.14).

Lemma 3.2. The following properties stated below hold.

1. The distributions of shift in Z(t) and M2(t) during service times are equivalent

to that of shift in Z̃(t) and M̃2(t) during up-phase +, respectively.

2. The distributions of jumps in Z(t) and M2(t) at the end of the service times are

equivalent to that of shift in Z̃(t) and M̃2(t) at the end of the down phase −,

respectively.
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Proof. First, we prove property 1.

By assumption, the service time Xn(m) of a customer in the maximum priority process

M is exponentially distributed with parameter µ, for all m = 1, 2, . . .. The rate at

which Z(t) increases during service time is (b1 − b2), while M2(t) increases at rate b2.

That is, during the time interval [Cn(m), Dn(m)), for m = 1, 2, . . ., we have

Z(Dn(m))− Z(Cn(m)) ∼ Exp((b1 − b2) · µ), (3.15)

M2(Dn(m))−M2(Cn(m)) ∼ Exp(b2 · µ). (3.16)

That is, the distribution of shift in Z(t) during service time is exponentially distributed

with parameter ((b1 − b2) · µ), while the distribution of shift in M2(t) during service

time is exponentially distributed with parameter (b2 · µ).

Let τi be the time spent in phase i before leaving phase i. Then by the choice of

generator T in the tandem fluid queue {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} as described in 3.6,

the time spent τ+ in up-phase + is exponentially distributed with parameter µ. The

rate at which Z̃(t) increases during time τ+ is (b1 − b2), while M̃2(t) increases at rate

b2. Therefore, at the end of time τ+, we have

Z̃(τ+) ∼ Exp((b1 − b2) · µ), (3.17)

M̃2(τ+) ∼ Exp(b2 · µ). (3.18)

That is, the distribution of shift in Z̃(t) during up-phase is exponentially distributed

with parameter ((b1 − b2) · µ), while the distribution of shift in M̃2(t) during up-phase

is exponentially distributed with parameter (b2 · µ).

By (3.15)–(3.18), the distribution of shift in Z̃(t) and M̃2(t) in up-phase is equivalent

to that of Z(t) and M2(t) during service times, which proves property 1.

It is left to prove property 2.

Let D−n(m) be the moment at the end of service time just before the jump. By Theo-

rem 3.1, the accumulated priorities {Vk(t); k = 1, 2, . . .} of all customers still present in

the queue at the end of service times D−n(m) are distributed as a Poisson process with

piecewise constant rates in the maximum priority process M. The constant rate in the

interval [M2(D−n(m)),M1(D−n(m))) is λ1
b1

. The constant rate in the interval [0,M2(D−n(m)))

is
(
λ1
b1

+ λ2
b2

)
if Z(t) = 0 for t ∈ [D−n(m), Dn(m)]. Therefore, for t ∈ [D−n(m), Dn(m)) and
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Vk(t) ∈ [M2(t),M1(t)), we have

Z(Dn(m))− Z(D−n(m)) ∼ Exp

(
λ1

b1

)
, (3.19)

M2(Dn(m))−M2(D−n(m)) = 0, (3.20)

and for Vk(t) ∈ [0,M2(t)), we have

Z(Dn(m))− Z(D−n(m)) = 0, (3.21)

M2(Dn(m))−M2(D−n(m)) ∼ Exp

(
λ1

b1

+
λ2

b2

)
. (3.22)

That is, the distribution of shift in Z(t) during jump timeDn(m) when Vk(t) ∈ [M2(t),M1(t)),

is exponentially distributed with parameter
(
λ1
b1

)
, while the distribution of shift in

M2(t) during jump time when Vk(t) ∈ [M2(t),M1(t)), is zero. The distribution of shift

in Z(t) during jump time Dn(m) when Vk(t) ∈ [0,M2(t)), is zero, while the distribution

of shift in M2(t) during jump time when Vk(t) ∈ [M2(t),M1(t)), is exponentially dis-

tributed with parameter
(
λ1
b1

+ λ2
b2

)
.

The time τ− spent in down-phase − in the tandem fluid queue {(ϕ(t), Z̃(t), M̃2(t)); t ≥
0} is exponential distributed with parameter 1, by (3.6). The rate at which Z̃(t)

changes during down-phase, that is for t ∈ [0, τ−), when Vk ∈ [M2(t),M1(t)) is
(
λ1
b1

)
.

The rate at which Z̃(t) changes when Vk(t) ∈ [0,M2(t)) is
(
λ1
b1

+ λ2
b2

)
if Z̃(t) = 0.

Therefore, at the end of time τ+, when Vk(t) ∈ [M2(t),M1(t)), we have

Z̃(τ−) ∼ Exp

(
λ1

b1

)
, (3.23)

M̃2(τ−) = 0, (3.24)

and for Vk ∈ [0,M2(t)), we have

Z̃(τ−) = 0, (3.25)

M̃2(τ−) ∼ Exp

(
λ1

b1

+
λ2

b2

)
. (3.26)

That is, the distribution of shift in Z̃(t) at the end of service time τ− when Vk(t) ∈
[M2(t),M1(t)), is exponentially distributed with parameter

(
λ1
b1

)
, while the distribution

of shift in M2(t) at the end of service time when Vk(t) ∈ [M2(t),M1(t)), is zero. The dis-

tribution of shift in Z(t) at the end of service time when Vk(t) ∈ [0,M2(t)), is zero, while

the distribution of shift in M2(t) at the end of service time when Vk(t) ∈ [M2(t),M1(t)),

is exponentially distributed with parameter
(
λ1
b1

+ λ2
b2

)
.
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By (3.23)–(3.26), the distribution of shift in Z̃(t) and M̃2(t) at the end of down-phase

is equivalent to that of Z(t) and M2(t) at jump times, which proves property 2.

Now, consider the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} observed only when ϕ(t) = +.

Then by (3.15)–(3.26), the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} is a mapping of the

process {(Z(t),M2(t)); t ≥ 0}. Indeed, the time spent in up-phase and down-phase in

the {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} observed only when ϕ(t) = + is now equal to that of

the maximum priority process {(Z(t),M2(t)); t ≥ 0}.

Recall that the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} is a tandem fluid queue as described

in Section 3.1. Here, Z̃(t) corresponds to X(t) and M̃2(t) to Y (t). Further, the rates

(b1 − b2) and
(
−
(
λ1
b1

))
correspond to the rates rϕ(t), the rates b2 and 0 correspond to

ĉϕ(t) and the rate
(
−
(
λ1
b1

+ λ2
b2

))
corresponds to čϕ(t).

The stationary distribution of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} can be readily

derived using the results in [15, 16]. Below, we explain how to derive the stationary

distribution of the the maximum priority process M using the stationary distribution

of {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}.

3.3 The stationary distribution of M

We consider the stationary distribution of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} de-

fined in Section 3.2, and the stationary distribution of its embedded chain {Jk; k =

1, 2, . . .} observed at the moments of transition to up-phase +. We show a relationship

between these processes and the stationary distribution of {(Z(t),M2(t)); t ≥ 0}.

First, we give the intuitive behaviour of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}. The

process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} alternates between two types of behaviour.

(i) The first buffer Z̃ is empty, while M̃2(t) is decreasing, possibly until the second

buffer M̃2 becomes empty, and ϕ(t) ∈ S−. This period ends when ϕ(t) makes a

transition from S− to S+, at which a type (ii) behaviour begins.

(ii) The first buffer Z̃ is non-empty, with M̃2(t) non-decreasing, while Z̃(t) can either

increase or decrease. This period ends when the first buffer Z̃ becomes empty

with ϕ(t) ∈ S−.

Denote by z and m2 as the values of level variables Z̃(t) and M̃2(t), respectively. Ob-

serve that in stationarity, the process can not be at m2 = 0, z > 0. Indeed, if a type

(ii) behaviour starts with z = 0, m2 = 0, that is when both buffers are empty, then

levels Z̃(t) and M̃(t) increase at rates (b1−b2) and b2, respectively. The slope of leaving
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the origin (z,m2) = (0, 0) is b2/(b1 − b2) > 0, and any future slope of (z,m2) cannot

be lower than this value. Consequently, after leaving the origin (z,m2) = (0, 0), the

values {(z,m2);m2 < z · b2/(b1 − b2)} can never occur.

As a result of this, the stationary distribution of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}
described in Section 3.2 will have the following components.

� A probability point mass at (0, 0), denoted p̃(0, 0) = [p̃+(0, 0) p̃−(0, 0)].

� A one-dimensional density, denoted π̃(0,m2) = [π̃+(0,m2) π̃−(0,m2)] form2 > 0.

� A two-dimensional density, denoted π̃(z,m2) = [π̃+(z,m2) π̃−(z,m2)] for the set

{(z,m2); z > 0,m2 > z · b2/(b1 − b2)}.

In rigorous terms, we define the components of the stationary distribution of the process

{(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}, when ϕ(t) = −, as

π̃−(z,m2) = lim
t→∞

∂2P (ϕ(t) = −, Z̃(t) ≤ z, M̃2(t) ≤ m2)

∂z∂m2

, (3.27)

π̃−(0,m2) = lim
t→∞

∂P (ϕ(t) = −, Z̃(t) = 0, M̃2(t) ≤ m2)

∂m2

, (3.28)

p̃−(0, 0) = lim
t→∞

P (ϕ(t) = −, Z̃(t) = 0, M̃2(t) = 0). (3.29)

Similar expressions follow when ϕ(t) = +. Note that p̃+(0, 0) = 0 and π̃+(0,m2) = 0,

because at the moment of a transition from down-phase − to up-phase +, the fluid

level of buffer Z starts to increase, which implies that z > 0.

Next, we introduce the following embedded Markov chain of the tandem fluid queue

{(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}, observed at the moments of transition to up-phase +. Note

that the end of a type (i) behaviour in the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} coincides

with the moment right after jump of the process {(Z(t),M2(t)); t ≥ 0}. We will show

in Theorem 3.4 below that the stationary distributions of these processes at these times

are equivalent.

Let νk for k = 1, 2, . . . be the kth time that {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} transitions to an

up-phase +. Also, let ηk for k = 1, 2, . . . be the kth time that {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}
transitions to the down-phase −.

Let Jk = (ϕ(νk), Z̃(νk), M̃2(νk)) and note that {Jk; k = 1, 2, . . .} is a discrete-time

Markov chain with discrete/continuous state space, such that state Jk at time k records

the position of {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} at times νk. That is, Z̃(νk) and M̃2(νk) are

the contents of the first buffer and second buffer, respectively, at the beginning of the

kth up-phase. This is equal to the content at the end of the (k − 1)th down-phase. A

corresponding sample path is drawn in Figure 3.1.
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Z̃(t)

M̃2(t)
ηk+1

νk+2

νk

ηkνk+1

Figure 3.1: Sample path of the the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} and the dis-

crete time points νk and ηk.

We define the components of the stationary distribution of the process {Jk; k = 1, 2, . . .}
as a probability point mass, a one-dimensional density and a two-dimensional density

in a manner similar to that of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}. That is,

π̂−(z,m2) = lim
k→∞

∂2P (ϕ(νk) = −, Z̃(νk) ≤ z, M̃2(νk) ≤ m2)

∂z∂m2

, (3.30)

π̂−(0,m2) = lim
k→∞

∂P (ϕ(νk) = −, Z̃(νk) = 0, M̃2(νk) ≤ m2)

∂m2

, (3.31)

p̂−(0, 0) = lim
k→∞

P (ϕ(νk) = −, Z̃(νk) = 0, M̃2(νk) = 0). (3.32)

Further, consider the stationary distribution of the process {(Z(t),M2(t)); t ≥ 0}
embedded right before commencement of service times C−n(k), referred to as Hk =

(Z(C−n(k)),M2(C−n(k))). Note that {Hk; k = 1, 2, . . .} is a discrete-time Markov chain

such that state Hk at time k records the position of {(Z(t),M2(t)); t ≥ 0} at times

C−n(k). The components of the stationary distribution of this process Hk are,

π(z,m2) = lim
k→∞

∂2P (Z(C−n(k)) ≤ z,M2(C−n(k)) ≤ m2)

∂z∂m2

, (3.33)

π(0,m2) = lim
k→∞

∂P (Z(C−n(k)) = 0,M2(C−n(k)) ≤ m2)

∂m2

, (3.34)

p(0, 0) = lim
k→∞

P
(
Z(C−n(k)) = 0,M2(C−n(k)) = 0

)
. (3.35)

Now, we prove that the stationary distribution of the process {Hk; k = 1, 2, . . .}, de-

fined as the stationary distribution of the process {(Z(t),M2(t)); t ≥ 0} embedded

right before commencement of service times, is the same as the stationary distribution

of the process {Jk; k = 1, 2, . . .}.
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Theorem 3.3. For the stationary distributions of the embedded Markov chains Hk and

Jk, we have for all z > 0 and m2 > 0,

π̂−(z,m2) = π(z,m2), (3.36)

π̂−(0,m2) = π(0,m2), (3.37)

p̂−(0, 0) = p(0, 0). (3.38)

Proof. From Lemma 3.2, in particular (3.15)–(3.26), it follows that the stationary

distribution of {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} at the end of down-phase − is equal to that

of {(Z(t),M2(t)); t ≥ 0} after jump times for both buffers. After a jump there are two

possibilities.

� The queue is non-empty. This implies that a customer commences service and

the down-phase ends.

� The queue is empty. This implies that both buffers are empty, i.e. there is no

shift in both the buffers until arrival of a new customer. Upon arrival of a new

customer the down-phase ends.

In other words, the stationary distribution of Hk is equal to that of Jk. Hence, (3.36)–

(3.38) are true.

Also, we prove that the stationary distribution of {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} at the

end of the down-phase, also referred to as the process {Jk; k = 1, 2, . . .}, is the same as

the stationary distribution of {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} during the down-phase.

Theorem 3.4. For the stationary distributions of the tandem fluid queue {(ϕ(t), Z̃(t), M̃2(t)); t ≥
0} and its embedded Markov chain Jk at times νk, we have for all z > 0 and m2 > 0,

π̂−(z,m2) = π̃−(z,m2)/β, (3.39)

π̂−(0,m2) = π̃−(0,m2)/β, (3.40)

p̂−(0, 0) = p̃−(0, 0)/β, (3.41)

where β, the probability being in down-phase, is a normalizing constant given by

β = p̃−(0, 0) +

∫ ∞
m2=0

π̃−(0,m2)dm2 +

∫ ∞
z=0

∫ ∞
m2=0

π̃−(z,m2)dzdm2, (3.42)

which alternatively can be calculated using the generator of the continuous-time Markov

chain ϕ(t).

Proof. Intuition: the time spent in down-phase of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥
0} is exponentially distributed. We use the memoryless property of this distribution

to show that the moment of transition to the up-phase does not depend on how much

time has elapsed already in the down-phase.
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First, we establish expressions for the stationary distribution at the end of the down-

phase of the tandem fluid queue {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0}, i.e. the process {Jk; k =

1, 2, . . .}. The content of the buffers Z̃(t) and M̃2 at the end of the down-phase is

Z̃(νk+1) = [Z̃(ηk)− |r−| · τ−(k)]
+, (3.43)

M̃2(νk+1) = M̃2(ηk)−Dk, (3.44)

respectively, where τ−(k) denotes the time spent in the kth down-phase, r− = −
(
λ1
b1

)
<

0, and Dk is given by

Dk =



0 for τ−(k) <
Z̃(ηk)
|r−| , (3.45)

|č−|

(
τ−(k) −

Z̃(ηk)

|r−|

)
for Z̃(ηk)

|r−| ≤ τ−(k) <
Z̃(ηk)
|r−| + M̃2(ηk)

|č−| , (3.46)

M̃2(ηk) for τ−(k) ≥ Z̃(ηk)
|r−| + M̃2(ηk)

|č−| . (3.47)

Note that νk = ηk + τ−(k), and that we express the fluid level of the buffer at the end

of the down-phase in terms of the fluid level at the beginning of the down-phase. The

three cases in Dk refer to the the three types of jumps in the maximum priority process

M described in Section 2.4.

For case (3.45), if the time spent in down-phase is less than Z̃(ηk)
|r−| , that is the time that

is required to empty the first buffer, nothing will happen to the second buffer M̃2. This

refers to a type 1 jump described in Section 2.4. For case (3.46), if the time spent in

down-phase is more than Z̃(ηk)
|r−| , but less than Z̃(ηk)

|r−| + M̃2(ηk)
|č−| , which is the time that is

required to empty both the buffers, than the second buffer will decrease in level but

will not reach zero. Recall that the first buffer has to be empty before the level of

the second starts decreasing. Therefore, the term
(
τ−(k) − Z̃(ηk)

|r−|

)
is the excess time

after the first buffer is empty. The rate of decrease in the second buffer in this excess

time č− = −
(
λ1
b1

+ λ2
b2

)
. This refers to a type 2 jump described in Section 2.4. For

case (3.47), if the time spent in down-phase is more than Z̃(ηk)
|r−| + M̃2(ηk)

|č−| , than both

buffers will be empty at the end of down-phase and the corresponding fluid levels are

zero for both buffers. This refers to a type 3 jump described in Section 2.4.

Further, for the distribution during the down-phase we can create a similar expression.

Define ηk + τ ∗−(k) as some time during the kth down-phase, where τ ∗−(k) represents some

residual time. The content of the buffers at that time point are

Z̃(νk+1) = [Z̃(ηk)− |r−| · τ ∗−(k)]
+ (3.48)

M̃2(νk+1) = M̃2(ηk)−D∗k, (3.49)



CHAPTER 3. THE TANDEM FLUID MODEL 19

where D∗k is given by

D∗k =



0 for τ ∗−(k) <
Z̃(ηk)
|r−| , (3.50)

|č−|

(
τ ∗−(k) −

Z̃(ηk)

|r−|

)
for Z̃(ηk)

|r−| ≤ τ ∗−(k) <
Z̃(ηk)
|r−| + M̃2(ηk)

|č−| , (3.51)

M̃2(ηk) for τ ∗−(k) ≥
Z̃(ηk)
|r−| + M̃2(ηk)

|č−| . (3.52)

The expressions for the distribution of Jk are similar to that of {(ϕ(t), Z̃(t), M̃2(t)); t ≥
0} during down-phase, except for the time spent in down-phase τ−(k) and τ ∗−(k), respec-

tively. For these random variables, we have

τ−(k) ∼ Exp(µ), (3.53)

τ ∗−(k) ∼ Exp(µ). (3.54)

Hence, the stationary distribution of Jk is follows the same distribution as to that of

{(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} during down-phase.

Theorem 3.3 and Theorem 3.4 hold, therefore we have the following result.

Corollary 1. The stationary distribution of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} in

down-phase − is equal up to a factor β, given by (3.42), to the stationary distribution

of the process {(Z(t),M2(t)); t ≥ 0} embedded at commencement of service times, that

is

π−(z,m2) = π̃−(z,m2)/β, (3.55)

π−(0,m2) = π̃−(0,m2)/β, (3.56)

p−(0, 0) = p̃−(0, 0)/β. (3.57)

3.4 Mapping of the maximum priority process with

phase-type distributed service times to a tan-

dem fluid queue

We generalize the results of Section 3.2 to the case that the service time of the pro-

cess M has a phase-type distribution. We map the maximum priority process M =

{(M1(t),M2(t)); t ≥ 0} of Section 2.2 into a tandem fluid queue {(ϕ(t), X(t), Y (t)); t ≥
0} of Section 3.1. The class of phase-type distributions is dense in the field of all

positive-valued distributions, that is, it can be used to approximate any positive-valued

distribution.



CHAPTER 3. THE TANDEM FLUID MODEL 20

Definition 3.5. Consider a continuous-time Markov chain {ϕ(t); t ≤ 0} with state

space S = {0, 1, . . . ,m} where m is an absorbing state, and generator

T =

[
Q q

0 0

]
, (3.58)

where Q is the matrix of transition rates between non-absorbing states, q is the column

vector of transition rates from non-absorbing states to the absorbing state m. Note

that q = −Q1. Further, let the process have an initial probability distribution vector

α = [αi] of starting in any of the non-absorbing states such that αi = P (ϕ(0) = i).

Let X be a random variable which records the time until absorption to state m. We

say that X follows phase-type distribution with parameters (α,Q,q) and write

X ∼ PH(α,Q,q). (3.59)

We now construct a tandem fluid queue {(ϕ(t), X(t), Y (t)); t ≥ 0} with the property

that the time spent in the set of up-phases S+ until a transition to the down-phase −,

which models service times in the maximum priority process M = {(M1(t),M2(t)); t ≥
0}, follows phase-type distribution.

Consider the tandem fluid queue {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} described in Section 3.2

by (3.8)–(3.14). Let {ϕ(t); t ≥ 0} be some background continuous-time Markov chain

with state space S = S+ ∪ {−}, where S+ is referred to as the set of up-phases, and −
as the single down-phase. For every state in S+, d

dt
Z̃(t) = b1− b2 and d

dt
M̃2(t) = b2. In

our mapping of Section 3.2, the phases in S+ correspond to the service time and the

down-phase − to the jump down in the process M of Section 2.2, respectively. The

generator of this chain is

T =

[
T++ T+−

T−+ T−−

]
, (3.60)

partitioned according to S = S+∪{−}. Note that T++ is the transition matrix between

the phases in S+, T+− is the transition vector from phases in S+ to the down-phase

−. The vector T−+ is the transition vector from down-phase − to the up-phases in

S+. Since the down-phase − is exponentially distributed with parameter 1, T−− = −1.

Also, since T−+1 = 1, we may interpret the vector T−+ as the initial distribution of

starting in any of the phases in S+ after a down-phase.

Further, define τ+ as the time spent in the set of up-phases S+ until transition to state

−. Then the random variable τ+ follows a phase-type distribution, that is

τ+ ∼ PH(T−+,T++,T+−). (3.61)

As described in Section 3.2, the service time in the process M corresponds to the ran-

dom variable τ+. Therefore, the above construction of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥
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0} with phase-type distributed up-phases instead of exponential up-phases is a tandem

fluid queue as described in Section 3.2.

We can now follow a similar analysis as in Section 3.3 to show that the stationary

distribution of a tandem fluid with phase-type distributed set of phases is in distri-

bution equal up to a factor to that of the process {(Z(t),M2(t)); t ≥ 0} embedded at

commencement of service times, where the service times are phase-type distributed.

Theorem 3.6. In the current setting where the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} has

phase-type distributed set of up-phases instead of exponential up-phases, the statements

in Theorem 3.3 and Theorem 3.4 and hence Corollary 1 still hold.



Chapter 4

Numerical treatment

To evaluate the stationary distribution discussed in Chapter 3, we use a numerical

approach given in [15, 16]. First, we give a summary of this approach in Section 4.1.

After that, the expressions for the Laplace-Stieltjes transform (LST) of the densities

π̃(x, y) are given in Section 4.2. At last, in Section 4.3, we give two simple examples

of this numerical treatment with respect to the maximum priority process M.

4.1 Numerical approach

In this numerical approach we discretize and bound the state space of the fluid level in

the second buffer. We choose some large integer L, with ` = 1, 2, . . . , L, to be the num-

ber of uniform intervals of size ∆u such that maximum level of the second buffer is L∆u.

First, we discretize the process Jk for moments when x = 0, discussed in Section 3.3, to

the discrete-time Markov chain {J̄k; k = 0, 1, 2, . . .} with state space {(i, `); i ∈ S−, ` =

1, 2, . . . , L}. This discretization is constructed such that when Jk = (i, 0, z) for some

(` − 1)∆u ≤ z < `∆u, ` = 1, 2, . . . , L − 1, we have J̄k = (j, `). For Jk = (i, 0, z) with

z ≥ (L − 1)∆u, we have J̄k = (j, L). Note that for the models we discussed in 3, we

only have one down-phase i.

Now, we discretize the corresponding transition probabilities Pz,y [16, equation (30) of

Section 3.2] to P̄i,`,j,m, where

P̄i,`,j,m = P (J̄k+1 = (j,m) | J̄k = (i, `)). (4.1)

This matrix records the probabilities for hitting 0 in buffer X in phase j with level m

in buffer Y , starting the last time hitting 0 in buffer X in phase i with level ` in buffer Y .

Because we only consider one down-phase, we can collect this values P̄i,`,j,m in a matrix

22
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P̄ = [P̄`m]`,m=1,2,...L, where

P̄`m ≈ ∆uP`∆u,m∆u, (4.2)

derived in [16, equations (74)–(75) of Section 4].

With the use of this discretized probability matrix P̄ we derive the stationary distri-

bution vector of the process {J̄k; k = 0, 1, 2, . . .} denoted by ξ̄ = [ξ̄`]`=1,2,...,L, ξ̄` =

[ξ̄j,`]j∈S− , where limk→∞P (J̄k = (j, `)) = ξ̄j,`. This vector ξ̄ exist if the process

{J̄k; k = 0, 1, 2, . . .} is stable.

We approximate the the stationary distribution of the process {(ϕ(t), Z̃(t), M̃2(t)); t ≥
0} using the limiting distribution vector ξ̄` such that

ξz ≈
ξ̄`
∆u

, (4.3)

for any z with (` − 1)∆u ≤ z < `∆u, ` = 1, 2, . . . , L [16, equation (77) of Section 4].

Modifying an using [16, equations (42),(58),(78)], we have that

p̃(0, 0)− ≈ δ
L∑
`=1

ξ̄`e
(|č−|)−1T−−`∆u(−T−−)−1, (4.4)

and

π̃(0, ·)(s)− ≈ δ
L∑
`=1

ξ̄` · e(|č−|)−1T−−`∆u((|č−|)−1T−− + sI)−1

×
(
I − e((|č−|)−1T−−+sI)`∆u

)
(|č−|)−1, (4.5)

where δ is a normalizing constant and I is the identity matrix of appropriate size. See

Appendix A for the explicit expression of δ.

With the use of equation 4.5 and [16, equation (61) of Section 3] we can now approx-

imate π̃(x, y), x > 0, y > 0 with the use of the Euler-Euler inversion method in [1].

Recall that we only considered models with one down-phase.

4.2 Inverting the Laplace-Stieltjes transform

We evaluate the densities π̃(x, y) = [π̃(x, y)+ π̃(x, y)−] by inverting the LST π(·, ·)(v, s) =

[π(·, ·)(v, s)+ π(·, ·)(v, s)−]. For every phase j, [π(·, ·)(v, s)]j is defined as

[π(·, ·)(v, s)]j = E(e−vXe−sY I{ϕ = j}), (4.6)
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where X = limt→∞X(t), Y = limt→∞Y (t) and ϕ = limt→∞ϕ(t). We calculate the

LST with the Euler-Euler 2D-inversion method of Abate and Whitt in [1]. With the

use of [16, Corollary 3], we are now able to derive the LST.

Note that, as explained in Section 3.3, the level variable Y satisfies Y ≥ X·mini∈S+{ĉi/ri}.
Therefore, in order to apply the algorithm in [1], we perform the following shift of the

LST. Define Ỹ = Y −X ·mini∈S+{ĉi/ri} and the LST of π̃(x, ỹ) for phase j such that

[π(·, ·)(v −min
i∈S+
{ĉi/ri} · s, s)]j = E(e−(v−mini∈S+{ĉi/ri}·s)X · e−sY I{ϕ = j}) (4.7)

= E(e−vX · e−s(Y−X·mini∈S+{ĉi/ri})I{ϕ = j}) (4.8)

= E(e−vX · e−sỸ I{ϕ = j}). (4.9)

4.3 Examples

In this section we construct two examples using the numerical approach of Section 4.1.

In the first example we consider a server with exponentially distributed service times.

The second example considers a server with Coxian-2 distributed service times.

Example 1. We consider a single server queue with two classes of customers with

Poisson arrival rates λ1 and λ2. These customers gain priority over time with class-

dependent rates b1 and b2 where b1 is larger than b2. The single server has an ex-

ponential distribution B for service times with mean 1/µ. We choose the following

parameters: b1 = 1, b2 = 0.5, λ1 = 1, λ2 = 2, µ = 4.

In order to derive the stationary distribution embedded at commencement of service

of the maximum priority process M, we first derive the stationary distribution of the

tandem fluid queue {(ϕ(t), Z̃(t), M̃2(t)); t ≥ 0} discussed in Section 3.2. We translate

the above parameters of the maximum priority process to parameters of the tandem

fluid queue, where (3.1)–(3.5) are compared to (3.8)–(3.14): S = {+,−}, r+ = b1−b2 =

0.5, r− = −
(
λ1
b1

)
= −1, ĉ+ = b2 = 0.5, ĉ− = 0, č+ does not exist, č− = −

(
λ1
b1

+ λ2
b2

)
=

−5 and

T =

[
−4 4

1 −1

]
.

We note that the stability conditions are met, since∑
i∈S

riP (ϕ = i) = −0.7 < 0,∑
i∈S

ĉiP (ϕ = i,X > 0)−
∑
i∈S−

|či|P (ϕ = i,X = 0) = −3.4 < 0.
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Figure 4.1: Simulated values for Z̃(t) and M̃2(t), with 0 ≤ t ≤ 105, in Example 1.

First, we simulate the above process to find appropriate parameters L and ∆u. The

result of one of these simulations is displayed in Figure 4.1. As seen in Figure 4.1,

the level of the second buffer does not exceed 2. Figure 4.2 shows the probability of

exceeding 2 is nearly 0. As a result, we approximate this process with parameters

L = 200 and ∆u = 0.01, which truncates the values of y to the interval [0, 2].

The values ξz based on (77) in [16] are plotted in Figure 4.3. We find p̃(0, 0)− = 0.6796

and p̃− = 0.7, which indicates that the stationary probability mass at (0, y), y > 0 is

p̃−− p̃(0, 0)− = 0.0204. With the use of the Euler inverse method of Abate and Whitt

in [2], we find the values of π̃(0, y), which are displayed in Figure 4.4.

The stationary probability of both buffers being non-empty is 1 − p̃− = 0.3. In Fig-

ure 4.5 are selected values of π̃(x, y) plotted, using the Euler-Euler inversion method

of Abate and Whitt [1].
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Figure 4.2: Empirical values of F (y) = P (Y ≤ y) in the simulation of Example 1.

Recall from Corollary 1 that we are interested in the stationary distribution of the

fluid model in the down-phase − to calculate the stationary distribution at times of

commencement of service of the maximum priority process M. In this example we use

the generator to calculate the factor β = 4/5.

The interpretation of the solution is that in stationarity 87.5% of the times that a

service is finished, the first person in line will commence service. This is regardless of

type due to the fact that the priority levels for customer class 1 and customer class 2

are equal, i.e. M1 = M2. The probability that the queue is empty when a customer

arrives is p(0, 0)− = p̃(0, 0)−/β ≈ 85%.
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Figure 4.3: The values [ξ̄z]i for i = 2 in Example 1.

Figure 4.4: The values [π̃(0, y)]i for i = 2 in Example 1.
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Figure 4.5: The values [π̃(x, y)]i for i = 2 and selected values of x, y in Example

1. The lines (left to right) correspond to x = 0.2, . . . , 0.5, with y =

x + 0.01, x + 0.1, x + 0.2, . . . , 1. We note that the range of x and y is

chosen such that it meets the condition y > xĉ1/r1 (here equivalent to

y > x since ĉ1/r1 = 1), as detailed in Section 3.2.

Example 2. We consider a single server queue with two classes of customers with

Poisson arrival rates λ1 and λ2. Again, these customers gain priority over time with

class-dependent rates b1 and b2 where b1 is larger than b2. The single server has a

Coxian-2 distribution B for service times. For customer arriving at the server, he has a

service time which is exponentially distributed with parameter 1/µ. With probability

p1 he finishes service and with probability 1− p1 he has another service, which is also

exponentially distributed with parameter 1/µ. The situation is displayed in Figure 4.6.

We choose the following parameters: b1 = 1, b2 = 0.5, λ1 = 1, λ2 = 2, µ = 4, p1 = 0.5.

We translate the above parameters of the maximum priority process with phase-type

distributed service times to parameters of the tandem fluid queue, where (3.1)–(3.5)

are compared to (3.8)–(3.14): S = {1, 2, 3}, r1,2 = b1 − b2 = 0.5, r3 = −
(
λ1
b1

)
= −1,

ĉ1,2 = b2 = 0.5, ĉ3 = 0, č1,2 does not exist, č3 = −
(
λ1
b1

+ λ2
b2

)
= −5 and

T =

 −4 2 2

0 −4 4

1 0 −1

 .
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1 2

p1

1− p1

Figure 4.6: The Coxian-2 distribution. In Example 2 the parameter p1 = 0.5.

Figure 4.7: Simulated values for Z̃(t) and M̃2(t), with 0 ≤ t ≤ 105. The colors

represent the time spent in different phases where red is phase 1, blue is

phase 2 and green is phase 3.

We note that the stability conditions are met, since∑
i∈S

riP (ϕ = i) = −0.5909 < 0,∑
i∈S

ĉiP (ϕ = i,X > 0)−
∑
i∈S−

|či|P (ϕ = i,X = 0) = −2.8182 < 0.

We simulate the above process to find appropriate parameters L and ∆u. The result

of one of these simulations is displayed in Figure 4.7. As seen in Figure 4.7, the level

of the second buffer does not exceed 4. Figure 4.8 shows the probability of exceeding

4 is nearly 0. As a result, we approximate this process with parameters L = 400 and

∆u = 0.01, which truncates the values of y to the interval [0, 4].
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Figure 4.8: Empirical values of F (y) = P (Y ≤ y) in the simulation of Example 2.

We find p̃(0, 0)− = 0.5631 and p̃− = 0.5909, which indicates that the stationary prob-

ability mass at (0, y), y > 0 is p̃− − p̃(0, 0)− = 0.0278. With the use of the Euler

inverse method of Abate and Whitt in [2], we find the values of π(0, y). These values

are displayed in Figure 4.9.

The stationary probability of both buffers being non-empty is 1− p̃− = 0.4091. In Fig-

ure 4.10 are selected values of π̃(x, y) plotted, using the Euler-Euler inversion method

of Abate and Whitt [1].

Recall from Corollary 1 that we are interested in the stationary distribution of the

fluid model in the down-phase − to calculate the stationary distribution at times of

commencement of service of the maximum priority process M. In this example we use

the generator to calculate the factor β = 8/11.

The interpretation of the solution is that in stationarity 81.25% of the times that a

service is finished, the first person in line will commence service. This is regardless of

type due to the fact that the priority levels for customer class 1 and customer class 2

are equal, i.e. M1 = M2. The probability that the queue is empty when a customer

arrives is p(0, 0)− = p̃(0, 0)−/β ≈ 77.43%.
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Figure 4.9: The values [π(0, y)]i for i = 3 in Example 2.

Figure 4.10: The values [π(x, y)]i for i = 3 and selected values of x, y in Example

2. The lines (left to right) correspond to x = 0.2, . . . , 0.5, with y =

x + 0.01, x + 0.1, x + 0.2, . . . , 1. We note that the range of x and y is

chosen such that it meets the condition y > xĉ1/r1 (here equivalent to

y > x since ĉj/rj = 1 for every j ∈ S+).



Chapter 5

Conclusions and recommendations

In this chapter the conclusions and recommendation of the research are provided. In

the Section 5.1 the reader will find the conclusions, while some recommendations for

further research are given in Section 5.2.

5.1 Conclusions

In this project we considered the maximum priority process M studied in [18], and

derived the results for the stationary distribution of this process embedded at times of

commencement of service. The stationary distribution of the maximum priority pro-

cess at the times of the commencement of service gives information on the maximum

waiting time of a customer. At the time of commencement of a customer, his priority is

known. With this information, since the priority rates accumulate at a constant rate,

we know the maximum time this customer waited.

First, we considered the two class accumulating priority queue and defined the cor-

responding maximum priority process [9, 18]. We explained the model in detail with

pictures for convenience of the reader.

Next, we mapped the maximum priority process to a tandem fluid queue analysed

in [15, 16]. The assumptions in these papers were to strict to model the maximum

priority process at first, however we were still able to use the techniques derived in [15,

16] with a slightly loosened assumption. With this adjustment we were able to map

the maximum priority process to a tandem fluid queue and we derived the stationary

distribution at the times of the commencement of service, where the service times were

exponentially distributed.

32
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Further, we extended these results to the maximum priority process in which service

times are phase-type distributed. We assumed that the service times for every customer

class followed the same distribution and that priority rates were equal for every phase.

Again, with the use of the results of the tandem fluid queue in [15, 16] we derived the

stationary distribution at the times of the commencement of service.

Finally, we constructed two simple numerical examples to illustrate the theory.

5.2 Recommendations

As future work we are interested in the analysis of the models with more than only two

classes of customers, so that we can consider more realistic scenarios. For example,

the emergency department of a hospital does not only collect urgent and non-urgent

patients. There are also patients that are more urgent then non-urgent patients, but

not life-threatening. These different types of patients can be modelled as the classes of

customers in priority queues.

Also, we are interested in class-dependent service times. The assumption of a service

time that is the same for every customer class is generally not true. To address this, dif-

ferent requests can be modelled as different classes with class-dependent service times.

Further, it would be interesting to construct time-varying models in order to analyse

problems where the arrival/service rates vary in time. Such models could be useful

in the analysis of peak-hours in supermarkets, as an example. This could be achieved

by applying the methodology derived in this research to a time-varying tandem model

in [13], built on the results in [12, 15].
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Appendix A

The normalizing constant δ

The normalizing constant δ of equation (4.5) is given in [16, equation (43) of Section

3]. For convenience we state the expression below.

δ =
{
ξ(−T−−)−1

(
1 + T−+K−1 [ (R+)−1 Ψ(|R−|)−1 ]

)}−1
, (A.1)

where ξ =
∫∞
z=0

ξzdz, Ψ = Ψ̂(s)|s=0 and K = K̂(s)|s=0, with Ψ̂(s) the minimum

non-negative solution of the Ricatti equation and where K̂(s) solves

K̂(s) = Q̂(s)++ + Ψ̂(s)Q̂(s)−+. (A.2)

The definition of the key generator matrix Q̂(s) can be found in [equation (18)] [4].
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