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Chapter	1. Introduction	

Change	is	the	law	of	life	
and	those	who	look	only	to	the	past	or	present	

are	certain	to	miss	the	future	
John	Fitzgerald	Kennedy	

§1.1 Study	rationale	
Monitoring	 of	 vital	 signs	 is	 paramount	 for	 the	 recognition	 of	 deterioration	 of	 hospitalised	 pa-
tients	and	clinical	decision	support.	Changes	in	vital	signs	often	precede	acute	physiological	de-
terioration	 due	 to	 complications	[1–8],	 particularly	 after	 major	 surgery	[9–13].	 Unrecognised	
complications	 cause	patient	 decline	 and	 if	 vital	 instability	 is	 not	 adequately	managed	patients	
may	 die	 (failure	 to	 rescue)	[14].	 Such	 critical	 adverse	 events	 are	 often	measured	with	 certain	
outcomes,	e.g.	activation	of	a	medical	emergency	 team	 (MET)	or	Rapid	Response	Team	 (RRT),	
unplanned	readmission	to	an	 intensive	care	unit	 (ICU),	unplanned	reoperation	or	specific	com-
plications,	for	example	sepsis.	For	industrialised	countries,	the	World	Health	Organization	(WHO)	
reports	3–22%	of	 inpatients	undergoing	surgery	suffer	from	major	complications	and	failure	to	
rescue	occurs	in	up	to	0.8%	[15].	About	half	[15]	of	these	postoperative	adverse	events	are	con-
sidered	 preventable	[12,16,17].	 The	 resulting	 prolonged	 admissions	 and	 increased	 number	 of	
readmissions	and	interventions	aggravate	the	burden	of	healthcare	for	patients,	caregivers,	hos-
pitals	and	society	[18,19].	

Vital	signs	monitoring	is	key	for	the	recognition	of	physiological	changes,	and	thus	for	their	
adequate	 management.	 For	 this	 and	 the	 aforementioned	 reasons,	 ICUs	 and	 other	 high	 care	
wards	continuously	monitor	patients’	vital	signs,	such	as	heart	rate	and	respiratory	rate.	In	con-
trast,	regular	hospital	wards	do	not	monitor	vital	signs	as	frequently.	In	general,	monitoring	on	
these	wards	is	performed	manually	by	nurses,	often	no	more	than	once	per	work	shift	(i.e.,	eve-
ry	8	hours).	This	may	lead	to	missed	or	delayed	recognition	of	critical	changes	in	vital	signs	[9].	

One	reason	for	the	lower	monitoring	frequency	is	that	the	risk	of	deterioration	is	considered	
to	be	lower	in	regular	ward	patients.	This	may	not	always	be	the	case	[7,20].	For	example,	Bar-
wise	et	al.	report	that	RRT	activation	was	required	in	about	40–60	per	1000	discharges	in	2012	in	
the	Mayo	Clinic	[7].	Another	study	found	that	in	cancer	patients	the	four	most	common	ICU	ad-
mission	 characteristics	 were	 sepsis,	 cardiac	 insufficiency,	 respiratory	 insufficiency	 and	 cardio-
pulmonary	resuscitation	(CPR)	[20].	For	all	these	complications,	it	has	been	shown	they	may	be	
avoidable	if	recognised	in	an	early	stage	with	monitoring	of	vital	signs.	

Other	 reasons	 for	 lower	 frequency	 and	quality	of	 vital	 signs	monitoring	 are	 the	 increasing	
pressure	 to	 reduce	 admission	 times,	 growing	 health	 expenditure,	 trends	 to	 reduce	 nurse	 and	
doctor	staffing	and	the	increasing	elderly	population	[17,21–24].	These	factors	contribute	nega-
tively	to	both	medical	and	surgical	patient	safety.	At	night	time	patient	safety	reduces	even	fur-
ther,	because	the	number	of	nurses	and	doctors	per	patient	typically	is	lower	during	night	shifts	
compared	to	day	and	evening	hours	[23].	

In	 other	 words,	 a	 contrasting	 situation	 exists	 in	 which	 patient	 safety	 can	 be	 enhanced	
through	frequent	monitoring	of	vital	signs,	but	monitoring	of	deterioration	and	its	management	
need	to	be	improved.	This	is	especially	the	case	on	regular	wards,	where	resources	are	fewer	for	
a	larger	number	of	patients.	This	decrease	in	ability	to	timely	recognise	deterioration	from	ICU	to	
regular	ward	continues	after	hospital	discharge.	For	example,	at	home	or	in	nursing	homes	fre-
quent	patient	monitoring	is	virtually	non-existent.	For	all	the	aforementioned	reasons,	continu-
ous	monitoring	of	vital	signs	for	timely	recognition	of	physiological	deterioration	of	the	surgical	
patient	is	of	current	interest.	
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The	 recent	 trend	of	wearable	and	wireless	 smart	 technologies	has	 resulted	 in	unobtrusive	
devices	that	provide	opportunities	to	monitor	vital	signs	without	the	limitations	of	bulky,	wired,	
bed-bound	and	manual	monitoring.	A	wireless	device	for	continuous	and	remote	monitoring	of	
vital	 signs	has	 the	potential	 to	monitor	patients	during	 their	hospital	 stay	and	after	discharge.	
Patients	with	a	wearable	monitor	can	move	freely	while	they	recover,	without	the	limitations	of	
wired	monitoring.	Such	a	wearable	system	with	embedded	smart	software	may	be	able	to	(au-
tomatically)	recognise	patients	at	elevated	risk	of	critical	deterioration	in	an	early	stage.	In	gen-
eral,	any	system	to	detect	and	react	to	physiological	deterioration	is	called	a	physiological	track-
and-trigger	system	[25,26].	Currently,	continuous	monitoring	of	vital	signs	requires	a	caregiver	to	
be	physically	nearby	at	all	 times.	This	paradigm	will	 shift	 if	a	wearable	physiological	 track-and-
trigger	system	proves	capable	of	early	recognition	of	the	deteriorating	patient.	

To	 implement	wearable	 vital	 signs	monitors	 their	performance	must	be	evaluated.	Due	 to	
the	underlying	wireless	technology,	nearly	continuous	data	acquisition	and	transmission	become	
a	possibility,	independent	of	space	and	time.	Various	challenges	arise	from	this	situation.	Signal	
continuity	 and	 validity	must	meet	 requirements	 for	 use	 in	 clinical	 practice.	 For	 example,	 one	
challenge	is	the	reliability	of	the	data	transmission,	which	might	be	compromised	because	wire-
less	connectivity	is	more	fragile	than	classical	wired	connections.	Another	challenge	is	that	both	
normal	and	abnormal	physiology	must	be	presented	accurately	without	a	high	false	alarm	rate,	
as	is	common	in	current	state-of-the-art	bedside	monitors	[27,28].	A	high	false	alarm	rate	causes	
alarm	fatigue,	which	in	turn	can	reduce	patient	safety.	

Currently	no	standardised	validation	protocol	exists	for	this	type	of	monitoring	technology.	
This	is	reflected	by	the	vastly	varying	quality	of	assessments	found	in	(grey)	literature	[29].	Often	
the	conclusions	are	too	optimistic;	developments	show	promising	results	but	are	too	technical	
and	 not	 (yet)	 feasible	 for	 clinical	 practice;	 validation	 assessments	 are	 performed	 in	 small	 and	
unrepresentative	population	samples;	or	quality	of	physiological	measurements	is	low	[30–32].	

A	number	of	medical-grade,	CE	marked	and	FDA	approved	wearable	vital	 signs	monitoring	
devices	are	currently	available	[31].	Despite	approval	for	medical	use,	very	little	evidence	exists	
on	their	added	clinical	value	and	whether	the	devices	perform	as	specified	by	their	manufactur-
ers.	The	added	clinical	value,	i.e.	enhancement	of	patient	safety	and	decrease	of	the	burden	of	
hospitalisation,	has	not	been	studied	in	well-defined	clinical	validation	studies.	This	makes	iden-
tification	of	wearables	suitable	for	monitoring	of	vital	signs	a	difficult	 task.	Their	added	clinical	
value	for	the	postoperative	population	and	reimbursement	are	as	of	yet	unclear.	

The	goals	of	this	thesis	research	were	to	evaluate	one	wearable	vital	signs	monitor	through	
technical	and	clinical	assessments:	HealthPatch®	MD	(Vital	Connect,	Campbell,	CA	USA).	This	is	a	
patch	with	integrated	sensor	technologies	for	the	measurement	of	vital	signs	and	wireless	con-
nectivity	for	the	transmission	of	data.	The	research	presented	in	this	thesis	aims	to	perform	an	
early	 clinical	 feasibility	 study	 of	 this	wearable.	 This	 is	 done	 in	 five	 following	 chapters,	 each	 of	
which	having	different	goals	and	answering	different	 research	questions.	After	 these	chapters,	
the	last	chapter	discusses	and	concludes	this	thesis.	

§1.2 Research	questions	and	goals	
The	main	question	being	investigated	is:	

Can	 HealthPatch	 MD	 be	 used	 in	 clinical	 practice	 for	
early	recognition	of	the	deteriorating	surgical	patient?	

This	is	described	in	multiple	chapters,	each	with	their	own	research	questions	and	goals	listed	in	
Table	1.	
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Table	1	‒	This	table	lists	the	research	questions	and	goals	of	this	thesis	and	in	which	chapter	they	are	described.	

Research	questions	 Goals	 Chapter	
What	is	HealthPatch	MD,	
what	does	it	do	and	how	does	
it	work?	

To	specify	technically	what	Health-
Patch	MD	features,	functionality	
and	specifications	are	as	adver-
tised	

Chapter	2.	Health-
Patch	MD	by	Vital	
Connect	

How	well	does	HealthPatch	
MD	perform	in	simulated	pa-
tients?	

To	obtain	better	understanding	of	
the	technical	performance	of	
HealthPatch	MD	through	a	simula-
tion	experiment	

Chapter	3.	Simulation	
experiment	with	
HealthPatch	MD	

How	are	measurements	with	
HealthPatch	MD	performed	in	
clinical	practice?	

To	obtain	measurements	with	
HealthPatch	MD	in	a	patient	popu-
lation	at	high	risk	of	adverse	
events:	postoperative	patients	on	
the	surgical	medium	care	ward	in	
the	UMCU	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD		

How	can	data	from	Health-
Patch	MD	be	acquired?	

To	acquire	raw	measurement	data	
systematically	after	performing	
measurements	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD		

How	can	data	from	Health-
Patch	MD	be	stored	and	pre-
processed	for	further	analy-
sis?	

To	store	and	pre-process	the	raw	
data	while	facilitating	further	anal-
yses	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD	on	a	clinical	
ward	

What	methods	are	available	
to	measure	agreement	be-
tween	measurement	methods	
of	time	series?	

To	review	and	discuss	various	
methods	for	agreement	analysis	
between	measurement	methods	of	
multiple	time	series	of	physiologi-
cal	data	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD	on	a	clinical	
ward	

What	do	heart	rate	and	res-
piratory	rate	measurements	
by	HealthPatch	MD	look	like?	

To	describe	a	measurement	with	
the	corresponding	patient’s	case.	

Chapter	5.	Data	analy-
sis:	agreement	of	
HealthPatch	MD	with	
Spacelabs	XPREZZON	

How	well	do	HealthPatch	MD	
signals	agree	with	the	bedside	
reference	standard?	

To	perform	agreement	analysis	on	
HealthPatch	MD	data	with	the	
bedside	reference	monitor	used	in	
the	UMCU	

Chapter	5.	Data	analy-
sis:	agreement	of	
HealthPatch	MD	with	
Spacelabs	XPREZZON	

How	is	risk	of	deterioration	in	
the	surgical	patient	meas-
ured?	

To	summarise	the	methods	used	to	
objectively	assess	risk	of	physiolog-
ical	deterioration	on	the	surgical	
medium	care	ward	of	the	UMCU	

Chapter	6.	Predicting	
risk	of	adverse	events	

How	can	risk	time	series	be	
predicted	based	on	other	time	
series?	

To	review	and	discuss	prediction	
modelling	methods	for	multiple	
physiological	time	series	

Chapter	6.	Predicting	
risk	of	adverse	events	
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Chapter	2. HealthPatch	MD	by	Vital	Connect	

If	we	don't	know	life	
how	can	we	know	death?	

Confucius	

This	chapter	describes	the	HealthPatch®	MD	(Vital	Connect,	Campbell,	CA	USA)	system.	The	sys-
tem’s	advertised	specifications,	features	and	functionality	relevant	to	this	thesis	are	described	in	
the	following	section.	The	details	in	this	chapter	are	used	for	reference	in	upcoming	chapters.	

§2.1 Physical	features	
HealthPatch	MD	is	a	wireless	wearable	vital	signs	sensor	system	in	the	form	of	an	adhesive	patch	
and	a	sensor	module	which	is	inserted	into	the	patch	upon	activation.	Figure	1	shows	these	two	
elements.	Together	they	form	the	HealthPatch.	

The	 adhesive	 patch	 has	 dimensions	 115×40×7	mm³	 and	 weighs	 11	grams	 with	 the	 sensor	
module	 inserted	[33].	The	patch	 is	available	 in	 two	grades:	gentle	and	active.	The	active	grade	
has	a	stronger	adhesive	compared	to	the	gentle	grade,	hence	it	is	better	suited	for	high-activity	
measurements	 (e.g.	sports)	and	possibly	sweating	patients.	However,	 the	gentle	grade	has	the	
advantage	 that	 it	 can	 be	 reapplied	 after	 temporary	 removal	 of	 the	 patch,	whereas	 the	 active	
grade	cannot	be	reapplied.	The	gentle	grade	patch	may	therefore	be	more	practical	in	situations	
where	 it	 needs	 to	 be	 removed	 temporarily,	 e.g.	 during	 a	medical	 intervention	 or	 radiological	
chest	exams.	On	the	other	hand,	the	active	grade	patch	is	better	suited	for	use	in	very	wet	con-
ditions,	such	as	showering.	The	adhesive	patch	consists	of	a	zinc-air	cell	battery	(the	white	circle	
in	the	middle	part	of	the	patch	in	the	figure),	some	flexible	electronics	with	a	connection	for	the	
module,	 a	 thermistor	 and	 two	 electrocardiography	(ECG)	 electrodes.	 The	 patch	 has	 a	 second	
grading	system:	medical	and	non-medical.	The	medical	variant	name	has	the	MD	suffix;	the	non-
medical	grade	patch	does	not	have	any	suffix.	The	MD	grade	adhesive	patch	supports	 the	MD	
grade	sensor	module,	which	supports	transmission	of	the	ECG	signal.	

The	sensor	module	 is	 the	second	element	 in	a	HealthPatch.	 It	contains	more	advanced	cir-
cuitry,	an	embedded	processor	and	additional	sensor	technology,	along	with	a	Bluetooth	radio	
transceiver	 for	 wireless	 connection	 with	 a	 relay	 device	 (described	 later).	 The	 module	 is	 also	
available	in	an	MD	and	non-MD	variant	and	must	be	matched	to	the	medical	grade	of	the	adhe-
sive	patch.	

§2.2 HealthPatch	MD	signals	
The	HealthPatch	measures	the	following	physiological	signals	using	the	integrated	sensors.	Only	
those	 signals	 relevant	 in	 this	 research	 are	 described,	 all	 others	 are	mentioned	 in	 one	 section	
below.	The	relevant	sensing	methods	are	illustrated	in	Figure	2.	The	values	and	algorithms	in	the	
following	 sections	 are	 as	 specified,	 advertised	 and	 researched	 by	 Vital	 Connect,	 but	 not	 as	
measured	in	this	research	[34–38].	

§2.2.1 Electrocardiogram	
A	 single-lead	ECG	 is	measured	 in	µV	using	 the	 two	 skin	electrodes	 in	 the	adhesive	patch.	 It	 is	
sampled	at	125	Hz.	Note	that	ECG	is	measured	independent	of	the	medical	grade	of	the	Health-
Patch.	Both	the	medical	and	non-medical	grade	variants	measure	the	ECG,	but	only	the	medical	
grade	can	transmit	the	ECG	data	to	the	relay	device.	ECG	values	range	from	-10	mV	to	+10	mV.	
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§2.2.2 Heart	rate	
Heart	 rate	 in	 beats	 per	minute	(bpm)	 is	measured	 using	 the	 single-lead	 ECG.	 The	 algorithm	 is	
based	on	the	R-R	interval,	which	is	the	time	between	individual	R	peaks	in	the	QRS	complex.	The	
reciprocal	of	the	R-R	interval	signal	is	passed	through	a	moving	average	filter	of	10	heart	beats	to	
calculate	a	heart	rate	sample.	Heart	rate	 is	sampled	once	per	four	seconds,	 i.e.	0.25	Hz.	Meas-
ured	heart	rate	values	lie	in	the	range	30–200	bpm	with	an	accuracy	of	±5	bpm	or	10%,	which-
ever	is	greater.	

§2.2.3 Acceleration	
Tri-axial	 acceleration	 is	measured	using	 a	MEMS1,	 an	 accelerometer.	 It	 needs	 to	be	 calibrated	
after	initiation	of	a	measurement.	This	can	be	done	automatically	by	walking	around	for	about	a	
minute	after	application	of	the	patch	to	the	skin.	A	manual	calibration	can	be	performed	by	posi-
tioning	the	subject	in	an	upright	position,	e.g.	standing	or	sitting,	and	then	forcing	recalibration	
in	that	vertical	position	using	the	relay	device’s	software.	

§2.2.4 Respiratory	rate	
Respiratory	rate	in	breaths	per	minute	(brpm)	is	measured	based	on	a	weighted	average	of	three	
individual	 algorithms	 to	 calculate	 respiratory	 rate.	 These	 algorithms	 are	 based	 on	 two	 of	 the	
aforementioned	signals.	One	algorithm	is	based	on	the	accelerometer	signal,	the	other	two	are	
ECG-based:	

1. Acceleration	of	the	chest	is	measured	using	the	accelerometer,	from	which	the	respira-
tion	signal	can	be	obtained.	The	algorithm	is	based	on	the	change	in	chest	angle	during	
respiration	with	respect	to	the	direction	of	gravity.	

2. Two	ECG	components	are	used:	
a. Due	to	various	physiological	changes	during	respiration,	the	heart	rate	changes	

with	inspiration	and	expiration.	This	phenomenon	is	called	respiratory	sinus	ar-

																																																													
1	Microelectromechanical	system	

Figure	 1	 ‒	 The	 HealthPatch	MD	wearable	 studied	 in	 this	 thesis	 is	 a	 sensor	 system	 consisting	 of	 an	
adhesive	patch	(left)	and	a	sensor	module	(right),	which	is	inserted	into	the	patch	upon	activation.	
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rhythmia	(RSA)	 	[39].	During	inspiration,	heart	rate	increases;	during	expiration,	
heart	rate	decreases.	With	this	variability,	the	R-R	interval	varies	as	well.	The	R-R	
interval	signal	over	time	can	therefore	be	used	to	estimate	respiratory	rate.	

b. Due	 to	 the	 changes	 in	 the	 cardiac	 axis	with	 respect	 to	 the	 chest	wall	 during	 a	
respiration	 cycle,	 the	 ECG	 QRS	 complex	 amplitude	 varies	 (modulation).	 This	
modulation	signal	contains	the	respiratory	rate.	

In	the	respiratory	rate	algorithms	of	the	HealthPatch	it	is	assumed	the	rate	lies	in	the	ranges	6–
42	brpm.	A	custom	45-second	moving	average	window	is	used	to	obtain	three	respiratory	rate	
signals.	The	three	signals	are	then	averaged	using	a	quality	measure	to	ensure	the	best	signals	
are	weighted	more	heavily	towards	the	final	respiratory	rate	signal.	In	this	weighting,	the	accel-
erometer	signal	is	the	only	component	used	if	its	quality	exceeds	a	certain	threshold	and	if	the	
respiratory	rate	 is	greater	than	half	the	heart	rate.	This	 is	because	the	ECG-derived	respiratory	
rate	signals	are	sampled	by	every	heart	beat	and	thus	they	can	only	measure	respiratory	rate	up	
to	 half	 the	heart	 rate	 (due	 to	 the	Nyquist-Shannon	 sampling	 theorem	[40]),	 otherwise	 cardiac	
aliasing	occurs.	

The	final	respiratory	rate	signal	 is	sampled	once	per	four	seconds,	i.e.	0.25	Hz.	Values	lie	in	
the	range	4–42	brpm	with	an	accuracy	of	±5	brpm.	

§2.2.5 Other	signals	
Various	other	signals—both	physiological	and	technical—are	measured	by	HealthPatch,	but	are	
not	 of	 interest	 in	 this	 research.	 Available	 physical/physiological	 signals	 are	 skin	 temperature,	
heart	rate	variability,	fall	detection,	step	count,	posture	(laying	down,	sitting,	standing,	walking,	
running,	leaning	back),	R-R	interval,	stress	level,	energy	expenditure	(both	total	and	rate),	activi-
ty	(both	total	and	rate).	Available	technical	signals	are	patch	skin	application	status,	contact	im-
pedance,	battery	level	and	sensor	memory	level.	

Adhesive	patch Sensor	module

Heart	rate
(bpm)

Respiratory	
rate

(brpm)

Thorax	movement

R-R	interval

QRS	amplitude	modulation

Respiratory	sinus	arrhythmia BLE	transceiver1-lead	ECG

Accelerometer

Zinc-air	battery Power

Figure	2	‒	Heart	rate	and	respiratory	rate	are	calculated	in	the	HealthPatch	sensor	module	based	
on	two	physical	measurements	performed	by	sensors	within	the	adhesive	patch	and	the	sensor	
module.	Bpm:	beats	per	minute,	brpm:	breaths	per	minute,	BLE:	Bluetooth	Low	Energy.	
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§2.3 Battery	life	
As	 specified	 by	Vital	 Connect,	HealthPatch	 has	 an	
embedded	 zinc-air	 cell	 battery.	 The	 battery	 life	 is	
advertised	 to	 be	 at	 least	 72	 hours	 (3	 days)	 when	
ECG	transmission	is	enabled	and	96	hours	(4	days)	
when	 ECG	 transmission	 is	 disabled.	 Transmission	
can	be	switched	on	or	off	using	 the	 relay	device’s	
software.	

§2.4 Memory	
Because	 any	 wireless	 connection	 is	 fragile	 by	 na-
ture,	 transmission	 of	 signals	 from	 HealthPatch	 to	
relay	 may	 be	 interrupted.	 During	 an	 interruption	
HealthPatch	 continues	 to	measure	 and	 stores	 the	
acquired	 data	 in	memory.	 This	memory	 is	 limited	
depending	on	the	number	of	signals	requested	for	
transmission,	 e.g.	 transmission	 of	 the	 default	 sig-
nals	 plus	 ECG	 data	 requires	 more	 memory	 than	
just	 the	 default	 signals.	 The	 default	 signals	 are	
heart	rate,	R-R	interval,	respiratory	rate,	skin	tem-
perature,	step	count,	posture	and	fall	detection.	

Vital	Connect	specifies	no	less	than	10	hours	of	
data	 can	be	 stored	 in	 a	HealthPatch,	 but	 typically	
18	hours	with	ECG	data	and	40	hours	without	can	
be	stored.	After	the	connection	with	the	relay	de-
vice	 has	 been	 re-established,	 the	 stored	 data	 is	
transmitted	piecewise	to	the	relay	device.	

§2.5 The	Vital	Connect	Platform	
The	 Vital	 Connect	 Platform	 is	 what	 Vital	 Connect	
calls	the	network	formed	by	a	HealthPatch,	a	relay	
device	 and	 an	 optional	 data	 server.	 This	 section	
describes	these	network	elements	and	the	connec-
tions	between	 them.	An	overview	of	 the	platform	
is	illustrated	in	a	data	flow	diagram	in	Figure	3.	

§2.5.1 Data	 flow	 from	HealthPatch	 to	 re-
lay	
The	HealthPatch	 collects	 and	 stores	 data	 for	 transmission.	 This	 is	 done	 via	 the	Bluetooth	 Low	
Energy	(BLE)	protocol.	BLE	is	relatively	energy-efficient	and	nowadays	generally	available	in	wire-
less	computers	and	other	wireless	connected	devices,	e.g.	smartphones	and	tablets.	The	typical	
connection	range	of	BLE	devices	is	up	to	10	metres	within	line	of	sight.	

§2.5.2 Storage	on	the	relay	
The	receiving	BLE	device	 is	called	the	relay	device,	because	it	 is	a	transmission	hub	in	the	Vital	
Connect	Platform.	The	relay	device	uses	its	BLE	transceiver	to	communicate	with	a	HealthPatch.	
For	this	to	work	it	needs	software	that	can	work	with	Vital	Connect’s	specific	protocols	and	data	

Patient

iOS	device

HealthPatch

Bluetooth	Low	
Energy

HealthWatch	app

Computer	(iTunes)

Data	file	
(JSON)

USB

Web	interface	
(VitalCloud)

Wi-Fi

Data	file	
(CSV)

Figure	3	‒	The	data	flow	diagram	from	patient	
through	 HealthPatch	 MD	 results	 in	 either	 a	
JSON	or	a	CSV	file	of	raw	vital	signs	data.	
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formats.	Vital	Connect	provides	an	application	that	does	this	 for	 iOS	(Apple	 Inc.,	Cupertino,	CA	
USA)	called	HealthWatch.	They	are	currently	developing	an	application	for	Android	(Google	Inc.,	
Mountain	View,	CA	USA)	 and	 they	provide	 an	 SDK2	 to	develop	 custom	 relay	 software	 for	 iOS,	
Android	or	embedded	devices.	

The	HealthWatch	iOS	app	provides	a	monitoring	interface	where	current	and	historical	data	
can	be	watched.	Some	basic	monitoring	functionality	is	available,	such	as	warnings	(e.g.	bad	skin	
contact)	and	notifications	(e.g.	threshold	alarms).	

The	relay	device	stores,	processes	and	optionally	transmits	the	data	to	a	remote	data	server.	
Storage	on	the	relay	device	is	managed	by	the	HealthWatch	application.	It	does	this	in	the	JSON3	
data	 language.	This	data	 format	knows	widespread	use	 in	programming	and	data	 interfaces.	 It	
allows	 to	 store	multiple	 so-called	 objects	 or	 arrays	with	 one	or	multiple	 values,	which	 can	 be	
objects	or	 arrays	 themselves.	 For	example,	 a	HealthPatch	 JSON	 file	 could	 contain	 a	heart	 rate	
object	consisting	of	an	array	of	multiple	values,	being	the	bpm	samples	measured	by	the	patch.	
For	details	on	the	actual	JSON	file	format	as	stored	by	the	HealthWatch	application	for	iOS,	the	
reader	 is	 referred	 to	 the	 Vital	 Connect	 developer	 resources	[34]	 and	 the	 HealthPatch	 Clinical	
Resource	Guide	[35].	

Transmission	of	data	from	relay	to	a	remote	data	server	is	optional,	because	the	relay	device	
itself	can	be	used	as	a	local	(as	in:	being	near	the	patient)	database.	All	the	measurement	data	is	
stored	on	the	relay	device,	so	a	remote	(as	in:	not	necessarily	being	near	the	patient)	data	server	
is	not	 required.	Using	 the	 relay	device	as	 local	data	 storage	without	 transmission	 to	a	 remote	
data	 server	 can	be	preferred	 for	various	 reasons,	e.g.	 security	of	 the	 remote	connection.	Vital	
Connect	calls	this	‘serverless	mode’.	

To	acquire	the	locally	stored	data	the	caregiver	must	be	physically	near	the	relay	device.	The	
HealthWatch	JSON	files	can	be	obtained	from	the	iOS	relay	device	using	Apple	iTunes,	which	is	
computer	software	to	connect	with	iOS	devices.	

§2.5.3 Transmission	from	relay	to	a	remote	data	server	
In	contrast	to	serverless	mode,	as	described	in	the	previous	section,	the	relay	device	can	be	con-
figured	to	transmit	data	to	a	remote	server.	This	functionality	 is	easily	used	if	the	relay	device,	
e.g.	a	smartphone,	has	other	network	connections	available	to	the	internet	or	an	intranet.	This	
allows	for	the	local	data	to	be	transmitted	easily	to	a	remote	server.	Transmission	to	a	remote	
server	allows	for	a	HealthPatch	measurement	to	take	place	without	the	requirement	of	a	care-
giver	being	physically	present	near	 the	 relay	device.	 If	 the	 caregiver	has	 access	 to	 the	 remote	
server,	the	patient	may	roam	freely	as	 long	as	the	HealthPatch	is	connected	with	the	relay	de-
vice,	which	in	turn	is	connected	with	the	remote	data	server.	Such	a	network	completely	differ-
ent	from	the	continuous	monitoring	network	paradigm	as	currently	found	in	acute	care	settings	
in	hospitals.	Hence,	the	Vital	Connect	platform	(and	similar)	has	the	potential	to	become	a	dis-
ruptive	innovation	when	implemented	in	clinical	practice.	

Transmission	 to	 the	 remote	data	 server	 takes	place	 in	an	almost	 real-time	 fashion.	A	data	
packet	 is	 typically	sent	every	 few	seconds	and	transmission	normally	another	 few.	The	Health-
Watch	 iOS	application	provided	by	Vital	Connect	can	be	configured	to	transmit	data	to	the	re-
mote	data	server	as	soon	as	it	has	been	received	from	a	patch,	but	regular	intervals	can	be	con-
figured	to	reduce	the	power	consumption	of	the	relay	device	software.	This	would	be	beneficial	
for	a	relay	device	depending	on	a	battery,	e.g.	a	smartphone,	but	would	increase	the	transmis-
sion	time	of	the	packet.	

																																																													
2	Software	Development	Kit	
3	JavaScript	Object	Notation,	www.json.org	
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§2.5.4 Access	on	the	remote	data	server	
The	remote	data	server	can	 for	example	be	a	web	 interface	accessed	 through	a	web	browser.	
This	is	exactly	what	Vital	Connect	provides.	For	demonstration	purposes,	they	have	developed	a	
web	interface	called	HealthWatch4	(like	the	iOS	application),	where	a	 live	connection	(notwith-
standing	connection	latency)	can	be	made	remotely	with	a	relay	device	while	performing	meas-
urements.	HealthWatch	also	provides	heart	 rate	 variability	 (HRV)	 details,	which	are	 calculated	
on	 the	 remote	 server	 and	 unavailable	 on	 the	 relay	 device.	 The	web	 interface	 also	 provides	 a	
historical	 data	 overview.	Historical	 data	 can	 be	 downloaded	 in	 comma-separated-values	 (CSV)	
format,	which	 is	 a	 less	powerful	but	easier	 to	understand	data	 file	 format	 compared	 to	 JSON.	
The	 HealthWatch	 CSV	 files	 contain	 less	 technical	 information	 about	 the	 measurements,	 but	
enough	for	this	research:	heart	rate	and	respiratory	rate	are	available	in	these	files.	

§2.6 Practical	use	of	HealthPatch	MD	
To	use	HealthPatch	MD,	one	needs	an	adhesive	patch	 (medical	or	non-medical),	 a	 compatible	
(medical	or	non-medical)	sensor	module	and	a	relay	device.	The	HealthPatch	 is	activated	upon	
insertion	of	 the	module	 into	 the	patch.	One	of	 three	available	application	sites	 can	be	chosen	
based	on	researcher,	caregiver	or	subject	preference.	The	three	location	are:	

1. at	a	45°	angle	on	the	left	m.	pectoralis	major	
2. vertically	on	the	sternum	
3. over	the	left	midclavicular	line	near	the	6th	and	7th	intercostal	spaces	

The	location	of	preference	is	1,	because	of	the	easiest	accessibility	and	comfort	for	the	subject.	
Vital	Connect	suggests	women	to	use	locations	1	or	3	and	obese	people	to	use	locations	1	or	2.	
Excessive	chest	hair	can	be	removed	and	the	skin	can	be	cleaned	with	alcohol	prior	to	applica-
tion	for	enhanced	skin	contact	and	reduced	long-term	irritation	of	the	skin.	

Upon	removal	of	a	HealthPatch,	the	sensor	module	is	removed	from	the	adhesive	patch.	The	
patch	can	be	recycled.	The	sensor	module	can	be	cleaned	with	an	alcohol	wipe	and	stored	for	
reuse	in	another	patch.	

§2.7 Validation	status	of	HealthPatch	MD	
Small	 validation	 studies	 in	 limited	populations	and	settings	have	been	performed	with	Health-
Patch.	Both	PubMed5	and	Scopus6	list	the	same	two	results	for	‘HealthPatch’	performed	by	Vital	
Connect	[41,42]	 (date	 accessed:	 27	 September	 2016).	 Other	 studies	 have	 been	 conducted	 by	
Vital	Connect	[36–38].	These	five	studies	have	in	common	that	the	included	subjects	are	not	very	
representative	of	 a	hospital	 population	and	 the	observations	were	done	 in	 controlled	 settings	
instead	of	spontaneous.	

The	 first	 study	[36]	 included	15	 subjects	 aged	63–79	without	 specified	medical	 conditions.	
They	were	asked	to	breathe	spontaneously	for	four	minutes	and	perform	metronome	breathing	
to	simulate	various	respiratory	rates	(12–24	brpm),	each	rate	for	three	minutes.	The	quality	out-
come	was	measured	as	mean	absolute	error	(MAE)	compared	to	nasal	cannula	capnography.	

The	second	study	[37]	again	included	15	subjects	aged	63–79	without	specified	medical	con-
ditions.	It	is	mentioned	this	is	the	same	sample	as	used	in	the	first	study.	Furthermore,	10	sub-
jects	 aged	18–29	were	 included.	 In	 this	 study	 the	outcomes	of	 interest	were	heart	 rate,	HRV,	
posture	detection,	step	counting	and	fall	detection.	The	younger	subjects	performed	the	simu-
lated	activities	of	daily	living	(ADL),	the	older	subjects	performed	the	protocol	of	the	first	study,	
which	may	possibly	be	the	exact	same	experiments.	Again,	the	measure	of	quality	was	MAE	and	
																																																													
4	accessible	at	https://healthwatch.vitalconnect.com/	
5	https://www.ncbi.nlm.nih.gov/pubmed/	
6	https://www.scopus.com/	
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furthermore	root-mean-square	error	(RMSE)	with	respect	to	an	unspecified	Actiheart	device	and	
nasal	cannula	capnography.	

The	third	study	[38]	included	76	subjects	aged	59–85	with	various	medical	histories,	but	who	
were	otherwise	healthy	elderly	volunteers.	They	wore	HealthPatches	for	50	days.	Various	practi-
cal	usability	measures	were	assessed	during	the	study.	However,	only	on	days	1	and	4	the	valida-
tion	measurements	were	done	similar	 to	 the	previous	 studies:	 simulated	ADL	and	metronome	
breathing	were	 used	 to	 compare	 heart	 rate	 and	 respiratory	 rate	with	 reference	 devices	 using	
MAE	as	the	performance	metric.	

The	fourth	and	fifth	studies	[41,42]	evaluate	specific	applications	of	the	HealthPatch.	These	
studies	are	demonstrations	of	 the	patch	applied	 for	 sleep	apnoea	 screening	and	psychological	
acute	stress	monitoring.	Since	they	do	not	validate	heart	rate	or	respiratory	rate,	 they	are	not	
further	evaluated	here.	

The	 FDA	 510(k)	 clearance	 for	 marketing	 as	 a	 medical	 device	 for	 HealthPatch	 MD	 can	 be	
found	in	three	FDA	documents	[43–45].	The	first	FDA	document	does	not	specify	on	which	study	
the	validation	was	based.	The	second	document	mentions	a	study	with	76	participants	who	wore	
the	 patch	 over	 50	 days,	which	may	 correspond	 to	 the	 study	mentioned	 above	with	 the	 same	
number	of	participants	and	methods	[38].	The	third	FDA	document	mentions	the	same	previous	
experiments	were	deemed	sufficient.	It	is	noteworthy	the	VitalPatch,	a	new	device	by	Vital	Con-
nect	(see	also	§2.8)	similar	to	HealthPatch	MD,	is	mentioned	in	the	last	FDA	document.	

In	general,	 the	validation	measure	used	 in	Vital	Connect’s	studies	was	MAE.	 It	provides	 in-
sight	in	how	well	the	mean	error	between	two	measurement	methods	is,	but	does	not	tell	how	
large	the	individual	errors	are.	However,	the	latter	is	of	interest	in	validation	of	continuous	heart	
rate	 and	 respiratory	 rate	monitoring,	 because	 individual	 observations	must	 not	 deviate	much	
from	the	true	values	(or	an	accepted	reference	method).	Even	if	the	MAE	is	low,	individual	errors	
may	be	large.	The	MAEs	found	in	the	studies	were	less	than	3	bpm	for	heart	rate	and	less	than	
3	brpm	for	respiratory	rate.	This	number	is	acceptable	for	heart	rate,	but	it	is	not	for	respiratory	
rate	 if	 a	 clinician	 wants	 to	 distinguish	 a	 tachy-	 or	 bradypnoea	 from	 a	 normal	 breathing	 rate.	
Nonetheless,	Vital	Connect	advertises	heart	rate,	respiratory	rate	and	other	signals	measured	by	
HealthPatch	 as	 validated	[35].	More	 specifically,	 they	mention	 respiratory	 rate	 accuracy	 to	 be	
±3	brpm	in	the	range	of	10–30	brpm,	validated	by	clinical	studies.	The	accuracy	is	±1.5	brpm	for	
the	entire	range	of	4–42	brpm,	validated	by	simulation	studies.	This	 is	more	accurate	than	the	
±5	brpm	mentioned	 in	§2.2.4,	but	 the	numbers	here	are	officially	only	validated	 for	use	 in	 the	
USA	and	its	territories,	which	refers	to	the	FDA-clearance.	

§2.8 VitalPatch	
A	successor	to	the	HealthPatch	MD	has	been	introduced	in	March	of	2016:	VitalPatch	[46].	It	is	
the	next	iteration	of	the	HealthPatch	based	on	a	collaboration	with	Philips.	The	hardware	of	the	
VitalPatch	has	 an	 integrated	disposable	 sensor	module	 instead	of	 a	 separate	 reusable	one.	At	
this	time	it	is	unclear	to	what	extent	the	VitalPatch	differs	from	HealthPatch	MD,	other	than	the	
aforementioned	integrated	sensor	module,	because	all	other	specifications	are	identical	[33,47].	
Vital	Connect	may	have	plans	for	further	development	of	their	software	platform,	as	they	now	
collaborate	with	a	 ‘Digital	Health	Platform’	called	BePatient7	and	plan	 to	 further	develop	 their	
mobile	applications	(announced	through	communication	with	their	technical	support).	

§2.9 Discussion	
This	 chapter	discussed	various	 features	and	 specifications	of	HealthPatch	MD,	as	marketed	by	
Vital	Connect.	This	is	important	information	to	have	for	the	methods	and	analyses	in	the	upcom-

																																																													
7	https://www.bepatient.com/	
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ing	 chapters.	 Sections	§2.1–§2.6	described	 the	 theoretical	 and	practical	use	of	 the	patch.	 Sec-
tions	§2.7	and	§2.8	reviewed	the	current	status	and	future	developments	of	the	patch.	

It	 is	 noteworthy	 that	 the	 validation	 studies	 performed	 to	 obtain	 FDA	 510(k)	 clearance	 for	
marketing	as	a	medical	device	were	performed	with	few	studies	of	limited	methodological	value.	
The	patient	samples,	the	experimental	designs	and	analysis	methods	used	in	those	studies	may	
be	improved,	which	may	result	in	higher	quality	evidence	about	the	validity	of	measurements	by	
HealthPatch	MD.	Evidence	for	being	acceptable	for	continuous	and	reliable	monitoring	of	heart	
rate	and	clinical	decision	support	has	not	yet	been	demonstrated.	
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Chapter	3. Simulation	experiment	with	HealthPatch	MD	

Intelligence	is	the	ability	to	adapt	to	change	
Stephen	Hawking	

§3.1 Introduction	
To	 obtain	 a	 better	 understanding	 of	 the	 technical	 properties,	 features	 and	 reliability	 of	 the	
HealthPatch	MD	we	conducted	a	simulation	experiment	before	any	other	experiments	with	data	
from	measurements	performed	on	patients.	This	chapter	describes	the	steps	taken	in	this	exper-
iment.	The	goal	was	 to	obtain	an	 in-depth	understanding	of	 the	behaviour	of	 the	HealthPatch	
signals	and	data	when	various	normal	and	abnormal	heart	rate	and	respiratory	rate	patterns	are	
presented	to	the	device.	 It	 is	useful	to	know	this	simulated	behaviour	before	patient	measure-
ments	are	performed	in	clinical	practice.	After	all,	some	heart	rate	and	respiratory	rate	patterns	
are	 relatively	 rare	 in	 clinical	 practice,	 but	 can	 be	 easily	 simulated,	 e.g.	 asystole	 or	 ventricular	
fibrillation	(VF).	Furthermore,	the	physical	principles	on	which	wearable	vital	signs	monitors	base	
their	measurements	can	differ	substantially	[31].	A	simulation	experiment	can	shed	light	on	the	
inner	workings	of	these	devices.	

This	chapter	presents	the	physical	and	physiological	background,	methods	and	results	of	the	
simulation	experiment	with	HealthPatch	MD.	The	methods	consist	of	a	disassembly	of	the	patch,	
connection	of	the	inner	electronics	to	a	vital	signs	simulator,	performing	simulations	of	various	
heart	and	respiratory	rhythms	and	the	analysis	of	the	results.	

§3.2 Background	
To	 connect	 a	HealthPatch	 to	a	patient	 simulator,	which	 is	ordinarily	used	 to	 test	bedside	vital	
signs	monitors,	it	is	essential	to	study	its	internal	electronics.	The	HealthPatch	does	not	measure	
all	vital	signs	based	on	the	same	physical	and	physiological	principles	as	a	bedside	monitor.	This	
section	describes	the	HealthPatch	electronics	and	their	use.	

§3.2.1 HealthPatch	measurement	methods	in	comparison	with	typical	bedside	
monitors	

ECG,	heart	rhythm	and	heart	rate	

Regular	bedside	monitors	measure	various	ECG	 leads	derived	 from	various	available	electrode	
locations.	Commonly	used	locations	are	the	extremity	electrodes,	which	are	right	arm	(RA),	left	
arm	(LA),	left	leg	(LL,	also	called	foot	(F))	and	right	leg	(RL,	also	called	neutral	(N)).	Bedside	moni-
tors	use	three	(RA+LA+LL)	or	more	electrodes.	In	contrast,	HealthPatch	uses	only	two	electrodes.	
This	raises	a	question:	can	HealthPatch	measure	a	signal	from	a	simulator	that	assumes	three	or	
more	 available	 leads?	 Also,	 how	 does	 HealthPatch	 cope	 with	 the	 absent	 reference	 electrode	
(RL)?	In	theory,	the	simulator	could	apply	too	much	current	to	the	HealthPatch	if	the	reference	
potential	is	too	different	from	the	HealthPatch	‘ground’	or	zero	potential	(the	average	between	
its	two	electrodes).	This	is	not	expected	to	be	the	case,	however,	because	the	simulator	gener-
ates	signals	of	physiological	order	of	magnitude,	which	is	precisely	what	HealthPatch	is	designed	
for.	

Another	concern	 is	 the	amplitude	of	 the	simulated	signals	and	the	amplitude	of	 the	meas-
ured	signals,	which	depends	on	electrode	separation	distance.	The	HealthPatch	electrodes	are	
about	 10	cm	 apart,	whereas	 regular	 bedside	monitors	 electrodes	 are	much	 further	 apart.	 For	
example,	the	RA	and	LL	electrodes	placed	on	shoulder	and	hip	can	exceed	80	cm	in	distance.	A	
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relatively	shorter	distance	between	electrodes	means	a	relatively	smaller	potential	difference	is	
measured	[48].	This	is	easily	understood	if	we	take	the	limit	of	the	distance	approaching	zero:	if	
it	were	zero,	no	potential	difference	would	be	measured	as	both	electrodes	measure	the	exact	
same	 signal.	 If	 it	were	 very	 close	 to	 zero,	 the	 potential	 difference	would	 increase,	 but	 still	 be	
small.	 Thus,	 a	 larger	 distance	 creates	 the	 ability	 to	measure	 greater	 potential	 differences	 (alt-
hough	too	large	distances	would	measure	too	much	noise	instead	of	the	signal	of	interest).	The	
concern	 in	this	 is	 that	the	simulator	generates	signals,	assuming	they	are	measured	on	the	ex-
tremities.	Because	HealthPatch	measures	them	much	more	centrally,	nearly	on	top	of	the	heart,	
its	 electrodes	measure	different	 signals	 in	practice.	 It	 is	unknown	how	 this	 affects	 the	Health-
Patch	measurements.	

The	shorter	distance	between	the	HealthPatch	electrodes	also	has	an	advantage.	Noise	is	to	
be	rejected	from	the	ECG	signal,	which	can	be	partially	achieved	if	both	electrodes	measure	the	
same	noise	(common	mode).	The	differential	signal	then	rejects	the	common	mode	(differential	
noise	reduction).	To	achieve	perfect	differential	noise	reduction,	both	electrodes	must	measure	
the	exact	same	noise.	This	can	be	achieved	by	placing	the	electrodes	close	to	each	other.	In	the	
same	reasoning	as	above,	 if	the	distance	were	zero	between	the	electrodes,	they	would	meas-
ure	 the	 exact	 same	noise,	 i.e.	 the	 common	mode	 contains	 all	 the	 noise.	 The	 differential	 then	
would	perfectly	reject	the	noise.	Trivially,	the	common	mode	then	also	contains	all	the	signal	of	
interest,	which	results	in	total	rejection	of	the	ECG.	With	increasing	distance	between	the	elec-
trodes,	the	measured	noise	changes,	hence	the	common	mode	rejection	does	not	remove	all	the	
noise	from	the	differential	signal.	If	the	distance	is	not	too	large,	a	large	fraction	of	the	noise	will	
still	be	rejected	by	the	differential	signal.	

HealthPatch	achieves	most	of	its	noise	reduction	likely	through	common	mode	rejection,	be-
cause	the	electrodes	are	located	quite	closely.	In	contrast,	a	regular	bedside	monitor	can	use	a	
reference	electrode	to	enhance	its	common	mode	rejection	ratio.	The	measurement	electrodes	
then	need	not	be	closely	located.	

The	ECG	leads	measured	by	bedside	monitors	are	calculated	from	the	electrode	locations	on	
the	skin.	They	indicate	the	electric	potential	direction	of	the	heart	vector	during	the	cardiac	cy-
cle.	The	extremity	ECG—three	or	four	electrodes	on	positions	RA,	LA,	RL,	and	LL—can	measure	
six	leads.	They	are	I,	II,	III,	aVR,	aVL	and	aVF.	The	angular	direction	of	these	leads	is	illustrated	in	

Figure	4	‒	The	hexaxial	reference	system	indicates	the	angular	direction	of	ECG	leads	I,	II,	III,	aVR,	aVL	
and	 aVF.	 Note	 that	 the	 leads’	 positive	 (▲)	 and	 negative	 (▼)	 directions	 are	 indicated,	 hence	 the	
twelve	directions	of	the	six	leads.	Image	reused	under	license	from	Wikipedia	Commons	[95].	
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Figure	4.	Both	the	positive	and	negative	directions	are	drawn,	hence	twelve	instead	of	six	direc-
tions.	This	is	called	the	hexaxial	reference	system,	wherein	the	centre	of	the	system	is	located	in	
the	heart.	Taking	different	combinations	of	differential	potentials	from	the	electrodes	results	in	
the	 hexaxial	 system	 leads.	 For	 example,	 differencing	 LL	 and	 RA	 results	 in	 lead	 II.	 Leads	 II	 and	
minus	aVR	point	approximately	 in	the	same	direction	as	the	HealthPatch	applied	on	position	1	
(at	a	45°	angle	on	the	left	m.	pectoralis	major,	see	also	§2.6).	Hence,	HealthPatch	approximately	
measures	the	heart	vector	in	the	direction	of	leads	II	and	minus	aVR.	

It	is	expected	HealthPatch	can	accurately	measure	the	simulated	heart	rate	based	on	its	sin-
gle	 lead	 ECG.	 The	 HealthWatch	 iOS	 application	 and	 web	 interface	 do	 not	 provide	 automatic	
heart	 rhythm	pattern	classification,	but	 simulated	heart	 rhythm	morphologies	are	expected	 to	
be	recognised	manually.	

Respiration	and	respiratory	rate	

Typical	 bedside	 vital	 signs	monitors	 offer	 a	 patient-friendly	 respiration	measurement	method	
based	on	chest	impedance	variability.	During	the	respiratory	cycle,	 inspiration	causes	the	chest	
to	 expand,	which	 changes	 the	 volume	 and	 shape	 of	 the	 conducting	 tissue	 between	 ECG	 elec-
trodes.	Likewise,	expiration	causes	 the	opposite	changes.	The	result	 is	a	changing	distance	be-
tween	the	ECG	electrodes,	which	has	an	effect	on	the	impedance	between	them.	Over	time,	the	
respiratory	cycle	generates	a	signal	in	the	chest	impedance	from	which	the	respiratory	rate	can	
be	estimated.	

However,	HealthPatch	does	not	estimate	respiratory	rate	based	on	chest	 impedance	varia-
bility.	Its	methods,	based	on	accelerometry	and	ECG	features,	are	described	in	§2.2.4.	This	might	
pose	a	challenge	 in	this	simulation	experiment,	because	the	respiratory	rate	simulator	 is	made	
for	monitors	that	measure	chest	impedance	variations.	If	the	simulator	would	realistically	gener-
ate	an	ECG	containing	QRS	complex	amplitude	modulation	and	RSA,	HealthPatch	should	be	able	
to	estimate	the	respiratory	rate.	Otherwise	 it	 is	not	expected	the	patch	 is	able	to	measure	the	
respiratory	rate	accurately,	if	at	all.	

§3.3 Materials	and	methods	
One	HealthPatch	MD	was	used	 for	measurement	of	 simulated	heart	and	 respiration	 signals.	 It	
was	 opened	 and	 connected	 to	 a	 simulator.	 Measurements	 were	 performed	 in	 the	 course	 of	
nearly	1½	hour,	in	which	various	heart	and	respiration	rhythms	were	generated	by	the	simulator.	
The	results	were	analysed	and	are	presented	after	this	section.	
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§3.3.1 Disassembly	of	HealthPatch	MD	
The	HealthPatch	was	opened	to	reveal	its	electronics,	it	was	studied	and	connected	to	the	simu-
lator	(described	in	the	next	section).	The	disassembly	revealed	a	small,	flexible	strip	with	some	
electronic	connections	to	the	two	ECG	electrodes	and	the	zinc-air	cell	battery.	These	connections	
are	on	one	side	of	the	strip,	on	the	other	side	the	connection	for	the	sensor	module	was	found.	
It	looks	very	similar	to	a	micro-SD	card	connection	in	shape	and	positioning	of	the	connections.	
Figure	5	shows	the	strip’s	 front	and	back.	The	back	shows	the	thermistor	for	skin	temperature	
measurements.	Wires	were	soldered	where	the	battery	and	ECG	electrodes	previously	connect-
ed.	 Through	 these	wires	 both	 power	 and	 signal	 could	 be	 delivered	 to	 the	HealthPatch	 sensor	
module.	On	the	sensor	module	side	(the	micro-SD-alike	connection),	the	eight	connections	have	
the	following	functions:	

1. Connects	to	the	RA	skin	electrode.	
2. Connects	to	the	LL,	RL	or	LA	skin	electrode,	depending	on	orientation	(see	al-

so	§2.6).	
3. Connects	to	the	thermistor	positive	pole.	
4. Connects	 to	 the	 negative	 pole	 of	 the	 power	 source,	 i.e.	 reference.	 It	 also	

connects	to	the	thermistor	negative	pole.	
5. Not	connected.	
6. Connects	to	the	positive	pole	of	the	power	source.	
7. Not	connected.	
8. Not	connected.	

§3.3.2 Vital	signs	simulator	
Simulation	of	heart	and	respiration	signals	was	done	with	a	ProSim	4	by	Fluke	(Fluke	corp.,	Ever-
ett,	WA	USA)	[49].	This	simulator	can	generate	various	physiological	signals.	Of	these,	the	follow-
ing	vital	signs	and	specifications	are	relevant	to	this	simulation	experiment.	

A	three	or	more	(up	to	twelve)	lead	ECG	can	be	connected.	Sinus	rhythm	(SR)	can	be	gener-
ated	 at	 various	 frequencies	 in	 the	 range	 30–320	bpm	with	 an	 accuracy	 of	 1%	 of	 the	 rate.	 Ar-
rhythmias	 that	 can	 be	 simulated	 are	 atrial	 fibrillation	 (AFib,	 coarse	 and	 fine),	 premature	 ven-
tricular	 contraction	 (PVC,	 left	 ventricular),	 ventricular	 tachycardia	 (VT,	 160	bpm	 or	 200	bpm),	
ventricular	fibrillation	(VFib,	coarse	and	fine),	second	or	third	degree	atrioventricular	(AV)	block	
and	asystole.	Some	artificial	signals,	such	as	a	square	wave,	can	be	generated	as	well.	The	ampli-
tude	of	 the	ECG	signal	 can	be	set.	Respiration	can	be	simulated	at	0	brpm,	or	10–100	brpm	 in	
10	brpm	increments.	Respiration	is	simulated	as	variation	in	chest	impedance.	

Figure	5	‒	The	 internal	electronics	of	a	HealthPatch	MD	are	shown	after	removal	of	the	surrounding	
materials,	 ECG	 electrodes	 and	 battery.	 Additional	 cables	 were	 applied:	 the	 green	 and	 green-white	
(upper	two	 in	 left	panel)	wires	connect	to	the	ECG	electrodes;	 the	blue	(middle)	and	red	(bottom	in	
left	panel)	wires	connect	to	the	power	source.	Blue	is	negative,	red	is	positive.	To	the	right	end	of	the	
strip	a	connection	similar	to	a	micro-SD	card	can	be	seen.	The	left	panel	shows	the	front	side	of	the	
circuitry,	the	right	panel	shows	the	backside,	i.e.	the	side	faced	towards	the	patient’s	skin.	In	the	right	
panel,	the	thermistor	is	visible	as	a	black	component	soldered	to	two	electrodes.	The	photograph	was	
taken	on	5×5mm²	grid	paper	for	reference.	
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§3.3.3 Experimental	setup	
The	connection	to	the	simulator	was	realised	by	attaching	regular	ECG	electrode	clamps	to	the	
wires	connected	to	the	HealthPatch.	These	clamps	can	readily	be	applied	to	the	ProSim	4	simula-
tor.	The	connection	to	a	power	source	was	realised	via	general	wire	clamps.	The	power	source	
was	set	to	generate	a	1.4VDC	potential,	which	is	the	nominal	voltage	of	the	zinc-air	cell	battery	
normally	incorporated	in	a	HealthPatch.	

At	 the	start	of	 the	measurements,	 the	HealthPatch	MD	was	activated	by	 inserting	a	corre-
sponding	 sensor	module.	 A	 BLE	 connection	was	 established	with	 an	Apple	 iPad	mini™	 (model	
A1455)	 as	 the	 relay,	 running	 the	 HealthWatch	 application.	 The	 iPad	 was	 connected	 to	 the	
HealthWatch	remote	data	server	 through	Wi-Fi.	A	computer	showed	the	HealthWatch	web	 in-
terface	during	the	course	of	the	measurements.	The	ProSim	4	patient	simulator	was	set	to	gen-
erate	SR	at	80	bpm	and	respiration	at	20	brpm.	The	HealthPatch	ECG	electrodes	were	connected	
to	 the	 simulator’s	 RA	 and	RL	 electrodes.	 The	 setup	was	 successful	 in	 one	 try:	 vital	 signs	were	
seen	immediately	after	the	measurement	commenced.	Figure	6	shows	an	overview	of	the	exper-
imental	setup.	

The	 relay	 software	was	 set	 to	 upload	 every	 5	seconds	 to	 the	HealthWatch	web	 interface,	
which	enabled	nearly	live	online	monitoring	of	the	measurements.	

§3.3.4 Measurement	protocol	
Every	 few	minutes,	 the	 ProSim	 4	was	 set	 to	 simulate	 different	 heart	 rhythms	 and	 respiration	
signals.	The	measurement	protocol	is	listed	in	Table	2	for	every	time	a	change	was	made.	Initial-
ly,	measurements	were	performed	on	 lead	RL–RA	 (vertically	oriented,	 i.e.	 +90°	 in	 the	hexaxial	
reference	system),	but	because	HealthPatch	MD	approximately	measures	lead	II,	a	switch	to	LL–
RA	was	made	 on	minute	 28	 of	 the	measurement.	 A	 switch	 to	 another	 patient	 simulator	with	
similar	 technical	 specifications	was	made	on	minute	65,	because	this	allowed	for	easier	ampli-
tude	changes.	These	changes	were	made	to	test	the	ECG	sensitivity	of	the	HealthPatch.	This	was	
done	 by	 reducing	 the	 generated	 signal	 amplitude	with	 stepwise	 decrements	 until	 the	 Health-
Patch	ceased	to	measure	a	signal.	

Furthermore,	the	iOS	HealthWatch	application	was	tested	by	using	some	of	its	functions.	A	
number	of	warning	and	alarm	thresholds	was	set	to	test	the	reactions	of	the	monitor	interfaces	
(both	application	and	web	interface)	to	the	various	rhythms.	

Figure	6	‒	 The	experimental	setup	overview	shows	the	Fluke	ProSim	4	patient	simulator	 (front	 left)	
the	disassembled	HealthPatch	(centre)	and	the	iPad	mini	(right).	
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§3.3.5 Analysis	
Data	 was	 analysed	 by	 exploration.	 A	 manual	 comparison	 between	 simulated	 and	 measured	
heart	rate	and	respiratory	rate	was	done,	because	the	true	values	are	only	coarsely	known.	For	
example,	 the	 true	 heart	 rate	 during	 coarse	 or	 fine	 AFib	 as	 generated	 by	 the	 simulator	 is	 un-
known,	 hence	 no	 comparison	 can	 be	 made	 with	 the	 HealthPatch.	 For	 such	 a	 comparison,	 a	
Bland-Altman	analysis	could	be	carried	out,	 for	which	 the	simulator	heart	 rate	and	respiratory	
rate	time	series	would	need	to	be	available.	All	analyses	were	done	with	raw	data	obtained	from	
the	iPad	without	any	pre-processing.	
	 	

Table	2	‒	The	simulation	measurement	protocol	is	tabulated	for	every	point	in	time	where	a	dif-
ferent	heart	rhythm	or	respiratory	rate	was	set.	SR:	sinus	rhythm.	Bpm:	beats	per	minute.	Brpm:	
breaths	 per	minute.	 PVC:	 premature	 ventricular	 complex.	 VT:	 ventricular	 tachycardia.	 RL:	 right	
leg.	LL:	left	leg.	AFib:	atrial	fibrillation.	VFib:	ventricular	fibrillation.	AV:	atrioventricular.	

Minute	 Heart	rhythm	 Respiratory	rate	
0–13	 SR	80	bpm	 –	
0–31	 –	 20	brpm	

14–18	 Asystole	 –	
19–20	 SR	80	bpm	 –	
20–23	 PVC	 –	
24–26	 SR	80	bpm	 –	
27–29	 VT	200	bpm	 –	

28	 Electrode	repositioned	from	RL	to	LL	 –	
30–35	 Bradycardia	30	bpm	 –	

32	 –	 Bradypnoea	10	brpm	
33–end	 –	 Tachypnoea	30	brpm	
36–37	 Coarse	AFib	 –	
38–40	 Fine	AFib	 –	
41–42	 Asystole	 –	

43	 SR	60	bpm	 –	
44-47	 Bradycardia	30	bpm	 –	
48–52	 Coarse	VFib	 –	
53–56	 Third	degree	AV	Block	 –	
57–59	 Second	degree	AV	Block	 –	
60–64	 SR	80	bpm	 –	

65	 Patient	simulator	change	 –	
66–74	 Signal	amplitude	tests	 –	

69	 VT	180	bpm	 –	
72–end	 SR	80	bpm	 	
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Figure	7	 ‒	 The	 two	graphs	 in	 this	 figure	 show	an	overview	of	 the	HealthPatch	data	 throughout	 the	
simulation	 experiment.	 The	 upper	 panel	 shows	 heart	 rate	 in	 beats	 per	minute	 vs.	 time,	 the	 lower	
panel	shows	respiratory	rate	in	breaths	per	minute	vs.	time.	
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Figure	8	‒	The	HealthPatch	heart	rate	in	this	graph	is	annotated	w
ith	the	m

easurem
ent	protocol	found	in	Table	2.	
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§3.4 Results		
§3.4.1 Measured	signals	
Heart	rate	and	respiratory	rate	as	measured	by	HealthPatch	MD	throughout	the	simulation	pro-
tocol	are	graphed	in	Figure	7.	

ECG,	heart	rhythm	and	heart	rate	

It	was	found	the	HealthPatch	ECG	signal	uses	adaptive	filtering	algorithms	to	obtain	a	maximally	
noise-free	signal,	which	was	seen	on	the	HealthWatch	web	interface.	This	was	seen	in	the	first	
minute	of	the	measurements,	directly	after	connecting	the	patient	simulator.	

Heart	rate	and	a	number	of	arrhythmias	are	measured	accurately	by	the	HealthPatch.	Figure	
8	shows	the	heart	rate	measurement	with	the	protocol	annotated	in	the	graph.	Some	abnormal	
heart	rhythm	patterns	are	easy	to	see	and	recognise	in	the	HealthPatch	ECG,	but	do	not	result	in	
a	characteristic	change	in	measured	heart	rate.	For	example,	a	third-degree	AV	block	leads	to	a	
ventricular	bradycardia,	but	is	not	distinguishable	from	a	regular	bradycardia	or	another	conduc-
tivity	 cardiopathy	 based	 on	 heart	 rate	 alone.	 Both	 simulated	 tachycardia	 and	 bradycardia	 are	
precisely	followed	by	the	HealthPatch:	200	bpm	is	measured	as	199	bpm.	This	could	be	a	meas-
urement	error	by	HealthPatch	or	a	simulation	error	by	the	ProSim	4,	which	has	an	accuracy	of	
1%,	i.e.	2	bpm.	A	simulated	bradycardia	at	a	constant	30	bpm	is	measured	as	a	constant	30	bpm.	
The	patch	seems	to	be	insensitive	to	PVCs:	heart	rate	barely	changes	during	that	simulation	pe-
riod.	This	could	be	explained	by	the	moving	average	filter	over	10	heart	beats	used	by	Health-

Figure	9	‒	Various	simulated	ECG	recordings	by	HealthPatch	MD	are	shown	 in	the	three	panels.	The	
upper	panel	shows	a	sinus	rhythm,	the	middle	panel	shows	fine	atrial	 fibrillation,	 the	 lower	panel	 a	
third-degree	atrioventricular	block.	
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Patch	(see	also	§2.2.2).	A	few	short	sections	of	the	ECG	measurement	are	depicted	in	Figure	9,	in	
which	three	rhythms	can	be	clearly	recognised.	

The	effect	of	the	moving	average	filter	is	clearly	visible	in	Figure	10:	the	measured	VT	slowly	
falls	before	reaching	the	actual	bradycardia	at	30	bpm.	The	fall	takes	about	45	seconds,	while	it	
actually	happened	instantaneously	in	the	simulation	(hence	the	fall	is	a	negative	step	response).	

Depending	on	the	generated	amplitude,	which	was	varied	near	the	end	of	the	measurement,	
HealthPatch	was	or	was	not	able	to	measure	anymore.	At	a	generated	ECG	amplitude	of	0.3	mV	
all	signals	were	continuously	measured.	At	0.25	mV	or	lower	however,	the	signal	starts	to	drop	
due	to	uncertain	calculations	or	is	completely	absent.	

Respiration	and	respiratory	rate		

As	expected,	HealthPatch	cannot	measure	respiratory	rate	based	on	chest	impedance	variability.	
Because	the	ProSim	4	generates	its	respiratory	rate	signals	based	on	this	principle,	the	result	is	
that	 HealthPatch	 respiratory	 rate	 does	 not	 measure	 the	 simulated	 rate.	 The	 respiratory	 rate	
seen	in	Figure	7	varies	greatly	and	is	not	near	the	simulated	respiratory	rates,	which	were	set	to	
constant	 values	 throughout	 large	parts	of	 the	measurement	protocol.	No	 correlation	between	
simulated	 and	 measured	 respiratory	 rate	 was	 seen.	 However,	 positive	 correlation	 between	
HealthPatch	heart	 rate	and	respiratory	 rate	was	 found:	when	heart	 rate	was	very	high	or	very	
low,	respiratory	rate	often	was	too.	In	these	parts	of	the	measurement,	the	respiratory	rate	sig-
nal	seems	to	vary	about	a	constant	average	value	that	correlates	with	heart	rate.	For	example,	
between	minutes	44	and	48,	respiratory	rate	varies	closely	around	a	constant	average	of	about	
5	brpm.	It	is	remarkable	that	the	measurement	limits	of	4	brpm	and	42	brpm	are	reached.	

§3.4.2 Behaviour	of	the	relay	software	and	remote	server			
The	relay	software	on	the	iPad	mini,	i.e.	the	HealthWatch	application,	and	the	HealthWatch	web	
interface	generally	reflected	the	signals	as	generated,	albeit	minimally	delayed	by	5	seconds	(see	
experimental	setup	in	§3.3.3).	A	few	times,	the	monitors	showed	incorrect	 information.	During	
asystole,	it	is	not	possible	for	HealthPatch	to	measure	heart	rate	or	respiratory	rate.	During	the	
simulation	of	asystole,	the	iPad	showed	‘--’	(two	dashes)	and	the	web	interface	showed	the	last	
observed	 value.	Only	 after	 the	user	 navigated	 to	 another	page	of	 the	web	 interface	 and	 then	
returned	to	the	live	monitoring	view,	the	web	interface	would	also	show	‘--’	 instead	of	the	last	

Figure	10	‒	A	detail	of	the	HealthPatch	heart	rate	measurement	is	shown.	Simulated	heart	rate	drops	
instantaneously	 from	 VT	 at	 200	bpm	 to	 bradycardia	 at	 30	bpm.	 The	 HealthPatch	 heart	 rate	 drops	
slowly	due	to	its	10	heart	beat	moving	average	filter.	The	filter	effect	can	be	seen	in	the	figure,	indi-
cated	by	the	arrows.	



	

	

	

23	

observed	value.	Other	moments	during	the	simulation	protocol	showed	no	unexpected	behav-
iour	of	the	monitoring	interfaces.		

Both	the	application	and	the	web	interface	showed	changes	in	colour	of	the	measured	heart	
rate	when	a	threshold	was	crossed.	This	did	not	occur	during	asystole,	however.	

§3.5 Discussion		
This	 chapter	described	 the	 simulation	experiment	performed	with	HealthPatch	MD.	 Simulated	
heart	rate	and	rhythm	could	be	accurately	measured,	but	not	always	automatically	detected	due	
to	lack	of	classification	algorithms.	The	measured	frequencies	diverged	minimally	from	the	simu-
lated	frequencies,	assessed	visually.	Heart	rate	was	measured	as	a	moving	average	over	a	num-
ber	of	heart	beats:	 a	 simulated	 instant	decrease	 from	200	bpm	to	30	bpm	took	45	 seconds	 to	
reach	a	steady	state	in	the	HealthPatch	measurement.	This	means	abrupt	changes	in	heart	rate	
cannot	be	instantly	detected,	but	within	one	minute	this	is	possible.	It	depends	on	clinical	con-
text	whether	or	not	this	is	too	long.	A	reaction	time	of	one	minute	may	be	too	long	for	continu-
ous	monitoring	in	an	acute	care	setting,	where	immediate	detection	of	apnoea	or	asystole	is	of	
vital	 importance.	However,	monitoring	at	home	may	not	require	such	continuity	and	detection	
speed,	 but	 may	 focus	 more	 on	 slow	 changes	 (trends)	 or	 patterns	 corresponding	 to	 recov-
ery/decline.	As	such,	a	reaction	time	of	one	minute	may	be	quick	enough.	

Various	 heart	 rhythms	were	 simulated:	 sinus	 rhythm	(SR),	 asystole,	 premature	 ventricular	
complexes	(PVCs),	ventricular	tachycardia	(VT),	bradycardia,	coarse	and	fine	atrial	and	ventricu-
lar	fibrillation	(AFib	and	VFib	respectively),	and	atrioventricular	(AV)	blocks.	The	ECG	simulation	
amplitude	was	also	varied.	All	rhythms	were	visible	in	the	ECG	measured	by	HealthPatch	MD.	In	
the	 heart	 rate	measurement,	 it	 was	more	 difficult	 to	 recognise	 the	 presence	 of	 arrhythmias.	
PVCs	had	almost	no	 influence	on	measured	heart	 rate.	AFib	was	 visible	 as	minor	 variations	 in	
heart	 rate,	which	may	 not	 be	 distinguishable	 from	 physiological	 variability	 of	 heart	 rate.	 VFib	
was	visible	as	a	great	increase	in	heart	rate	variance.	The	third-degree	AV	block	was	visible	in	the	
heart	 rate	 signal	 as	 a	 bradycardia.	 Upon	 decrease	 of	 generated	 ECG	 amplitude	 to	 0.25	mV	or	
lower,	the	measurements	ceased.	This	can	be	explained	because	the	QRS	complexes	in	the	ECG	
signal	probably	become	 indistinguishable	 from	 the	noise,	or	 the	patch	algorithms	become	 too	
uncertain	about	R-R	 interval.	 In	practical	measurements	performed	with	HealthPatch	(see	next	
chapter),	it	was	found	the	amplitude	of	the	ECG	generally	exceeded	0.5	mV.	Based	on	this	simu-
lation	 experiment	 0.5	mV	 is	 enough	 for	measurement	 of	 ECG	with	HealthPatch	without	 drop-
outs.	

For	clinical	practice,	it	may	be	required	some	sort	of	rhythm	detection	is	available.	In	its	cur-
rent	state,	the	HealthPatch	system	does	not	provide	such	functionality.	However,	based	on	the	
1-lead	 ECG	 some	 simulated	 arrhythmias	 were	 clearly	 seen,	 thus	 automatic	 detection	may	 be	
possible.	Yet,	 it	 remains	unclear	whether	or	not	detection	of	arrhythmias	 is	possible	 in	patient	
measurements.	

The	HealthWatch	iOS	application	and	web	interface	were	found	inappropriate	for	use	in	clin-
ical	practice.	The	application	showed	no	measurements	as	soon	as	the	HealthPatch	fails	to	calcu-
late	them,	e.g.	during	asystole.	In	this	acute	scenario,	the	web	interface	performed	even	worse,	
because	 it	 showed	 the	 last	 known	 correct	 value.	 This	 phenomenon	 is	 called	 Last	Observation	
Carried	Forward	(LOCF).	This	is	potentially	dangerous,	because	it	may	lead	to	an	erroneous	deci-
sion	to	not	act	upon	an	acute	situation	that	is	falsely	reported	as	acceptable,	whereas	the	true	
situation	requires	timely	action.	LOCF	should	be	marked	with	a	clear	time	stamp	indicating	the	
measurement	is	historical,	how	much	time	has	passed	since	and	possibly	what	the	cause	of	LOCF	
might	 be	 (e.g.	 bad	 skin	 contact,	 loss	 of	 internet	 connection,	 etc.).	 Thus,	 asystole	 is	 not	 recog-
nised	by	HealthPatch	MD,	instead	LOCF	or	‘--’	are	displayed.	This,	while	in	theory	it	is	possible	to	
recognise	asystole	using	an	 integration	of	multiple	parameters:	 if	 the	skin	contact	 is	good	(low	
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impedance)	and	the	ECG	is	flat,	asystole	can	be	assumed.	The	same	holds	for	respiratory	depres-
sion.	

Other	 arrhythmias,	 such	 as	 fibrillation	 or	 AV	 blocks,	 were	 clearly	 visible	 in	 the	measured	
ECG.	However,	neither	the	relay	software	nor	the	web	interface	recognised	these	or	reacted	on	
them.	 This	 is	 because	 they	 are	demonstration	 software	provided	by	Vital	 Connect	 and	do	not	
incorporate	detection	algorithms	for	such	patterns.	The	software	only	provides	threshold	notifi-
cations	and	alarms.	More	advanced	 (e.g.	 the	aforementioned	 integration	of	signals)	and	smart	
alarm	strategies	are	not	available	in	the	HealthPatch	software.	

The	 Fluke	 ProSim	 4	 patient	 simulator	 does	 not	 support	 simulation	 of	 respiration	 through	
changes	 in	 the	 ECG,	 i.e.	 RSA	 and	 QRS	 complex	 amplitude	 modulation.	 This	 resulted	 in	 the	
HealthPatch	being	unable	to	measure	respiratory	rate.	However,	the	patch	did	estimate	respira-
tory	 rate	 based	on	 the	 available	 ECG.	 This	 estimate	was	 inaccurate,	 as	 it	 seemed	 to	 correlate	
only	with	the	heart	rate	at	that	particular	moment	in	time.	 It	did	not	agree	with	the	simulated	
respiratory	rates.	The	reason	for	this	correlation	is	unknown,	but	may	be	due	to	small	variations	
in	simulated	QRS-complex	timings	or	assumptions/guesses	made	by	the	HealthPatch	algorithms.	

Because	 HealthPatch	 measures	 electrode	 impedance,	 it	 could	 have	 measured	 respiration	
based	on	chest	impedance	variability	in	this	experimental	setup.	However,	 in	practice	the	elec-
trodes	are	probably	too	close	to	each	other	(about	10	cm	apart)	to	measure	variations	in	chest	
impedance	 due	 to	 respiration.	 Besides,	 the	 impedance	 measurement	 is	 sampled	 once	 per	
4	seconds,	 i.e.	 at	 0.25	Hz,	 as	 a	 consequence	 the	maximum	 respiratory	 rate	 that	 can	be	 deter-
mined	 from	 the	 impedance	 signal	 is	 60	s	 ×	 ¼	Hz	 ×	 ½	 ÷	 1	min	 =	 7½	min-1	 (using	 the	 Nyquist-
Shannon	 sampling	 theorem	[40]).	 This	 is	not	high	enough	 to	measure	normal	 respiratory	 rate,	
not	to	mention	tachypnoea.		

Based	on	these	aspects	and	the	results,	HealthPatch	MD	seems	unreliable	for	measurement	
of	simulated	respiratory	rate	based	on	chest	impedance.	To	test	respiratory	rate	measurements	
by	means	of	a	simulation	study,	the	simulator	should	be	able	to	generate	the	physiological	sig-
nals	needed	 for	 the	HealthPatch	MD.	With	 such	a	 simulator,	 it	would	be	possible	 to	push	 the	
patch	 to	 its	 limits	 to	 obtain	 a	 better	 understanding	of	 the	 three	 respiratory	 rate	 algorithms	 it	
uses	(see	also	section	§2.2.4).	

Continuation	of	the	development	of	the	HealthWatch	application	and	web	interface	is	nec-
essary,	but	they	have	the	potential	to	become	practical	monitoring	interfaces	for	both	patients	
and	 caregivers,	 both	 locally	 (physically	near	 the	patient)	 and	 remotely,	 and	 continuously	or	 at	
(ir)regular	intervals.	

In	conclusion,	 the	HealthPatch	MD	appears	 to	adequately	measure	heart	 rate.	How	well	 it	
measures	respiratory	rate	remains	unknown,	because	simulation	was	not	possible.	Detection	of	
arrhythmias	 currently	 requires	active	monitoring	by	a	 caregiver,	which	defeats	 the	purpose	of	
automatic	monitoring	with	HealthPatch	MD.	
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Chapter	4. Measurements	with	HealthPatch	MD	on	a	clinical	ward	

If	a	man	neglects	education	
he	walks	lame	to	the	end	of	his	life	

Plato	

Measurements	were	 performed	with	 HealthPatch	MD	 to	 obtain	 patient	 vital	 signs	 for	 the	 re-
search	described	in	the	following	chapters.	The	current	chapter	describes	these	measurements,	
the	clinical	setting,	data	storage	and	the	signal	analysis	methods	used	in	this	study.	Besides	vital	
signs	data	 from	HealthPatch	MD,	measurements	were	performed	with	a	continuous	vital	 signs	
monitor	for	agreement	analysis	(Bland-Altman	analysis)	of	the	two	methods.	In	the	UMCU,	the	
Spacelabs	XPREZZON™	(Spacelabs	Healthcare,	Snoqualmie,	WA	USA)	monitoring	system	is	used	
(hereafter	referred	to	as	Spacelabs).	The	measurement	methods	are	described	in	§4.1.	Because	
the	HealthPatch	platform	has	never	been	used	before	in	the	UMCU	a	database	is	needed	specifi-
cally	for	measurements	with	this	type	and	quantity	of	data.	The	database	design	is	described	in	
§4.2.	 §4.3	 describes	 the	 pre-processing	methods	 the	 database	 allows	 to	 perform	 on	 the	 data	
before	 further	 analyses	 can	 be	 carried	 out.	 Lastly,	 §4.4	 describes	 the	 analyses	 with	 which	
agreement	between	HealthPatch	MD	and	Spacelabs	measurements	was	assessed.	

This	chapter’s	main	focus	is	the	methodology	to	obtain	and	analyse	the	data.	The	results	of	
these	methods	are	presented	mainly	in	the	following	chapter.	

§4.1 Measurements	on	the	surgical	medium	care	ward	
§4.1.1 Patients	and	setting	
The	main	research	question	of	this	thesis	focuses	on	the	postoperative	population.	This	popula-
tion	was	chosen,	because	they	are	at	elevated	risk	of	adverse	events,	e.g.	complications	such	as	
infection.	Patients	after	major	surgical	procedures	are	particularly	at	risk	of	critical	physiological	
decline.	The	goal	was	to	acquire	physiological	signals	that	show	both	normal	and	abnormal	phys-
iology,	while	the	population	sample	 is	 representative	of	 the	surgical	population.	 Intensive	care	
patients,	of	whom	a	large	fraction	are	surgery	patients,	are	not	an	ideal	population	choice	in	this	
case.	This	is	because	they	are	often	mechanically	ventilated,	i.e.,	they	do	not	breathe	spontane-
ously,	yet	measurements	of	spontaneous	respiration	are	of	interest	in	this	study.	This	is	why	the	
surgical	medium	care	ward	was	chosen	for	measurements	with	HealthPatch	MD.	On	the	surgical	
medium	 care	 patients	 breathe	 spontaneously,	 although	 some	 respiratory	 support	 is	 available,	
e.g.	continuous	positive	airway	pressure	(CPAP).	Many	of	these	patients	have	undergone	major	
surgery	after	traumatic	injury,	vascular	disease	or	oncology.	They	require	some	form	of	monitor-
ing	because	of	their	(risk	of)	vital	instability	or	fragility,	or	for	diagnostic	or	therapeutic	reasons.	

Patients	were	selected	based	on	the	following	criteria.	Inclusion	criteria	were	age	≥	18	years,	
an	 indication	for	postoperative	admission	to	the	surgical	medium	care	ward,	continuous	moni-
toring	of	heart	rate	and	respiratory	rate	with	Spacelabs	and	expected	length	of	stay	(LOS)	≥	24	
hours	 on	 this	 ward.	 Exclusion	 criteria	 were	 allergy	 for	 sticking	 plasters	 (medical	 adhesives	 or	
latex),	any	wound	or	irritation	on	or	near	the	application	site,	an	electric	cardiac	implant,	isola-
tion	(for	infection	control)	and	pregnancy	or	lactation	of	a	newborn.	

Medical	ethical	board	approval	was	obtained	for	measurements	on	this	ward.	This	meant	a	
participation	ended	upon	transfer	from	the	surgical	medium	care	ward	to	a	regular	or	intensive	
care	ward,	or	another	hospital.	
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§4.1.2 Measurement	protocol	
After	 patients	 had	 been	 reviewed	 for	 inclusion	 or	 exclusion	 based	 on	 their	 electronic	medical	
records	(EMRs,	 also	 called	 electronic	 health	 records	(EHRs)),	 the	 nurse	 responsible	 for	 the	 pa-
tient	 judged	whether	 or	 not	 the	 patient	was	 able	 to	 cooperate.	 Patients	with	 neurological	 or	
psychiatric	 disorders,	 e.g.	 delirium	or	 psychosis,	may	 not	 be	 able	 to	 give	 informed	 consent	 or	
might	 unintentionally	 remove	 the	 HealthPatch	 from	 their	 chest.	 In	 these	 cases,	 the	 patient’s	
partner	or	direct	family	were	informed	and	asked	to	give	consent	if	a	measurement	was	feasible.	

Informed	consent	was	acquired	from	all	participants	by	providing	both	verbal	and	written	in-
formation	about	the	study	goals,	the	measurements	and	the	implications	for	their	personal	data	
(anonymous	 treatment)	 and	 hospital	 care	 (none).	 Patients	 were	 granted	 time	 to	 review	 their	
decision	to	participate	or	not.	

Before	the	measurements	

Upon	participation,	a	HealthPatch	MD	was	applied	to	the	patient’s	skin.	In	the	first	number	par-
ticipants	of	this	study	measurements	were	performed	with	the	patch	oriented	in	position	3	(see	
also	§2.6),	i.e.,	over	the	left	midclavicular	line	near	the	6th	and	7th	intercostal	spaces.	This	was	
based	 on	 earlier	 student	 research	 that	 indicated	 that	 position	 as	 preferred.	 Later	 patients	 re-
ceived	the	patch	on	position	1,	i.e.,	at	a	45°	angle	on	the	left	m.	pectoralis	major.	This	was	based	
on	recommendations	given	by	Vital	Connect	(the	HealthPatch	manufacturer)	after	we	reported	
some	data	discontinuities	(see	also	§4.5.2).	Also,	at	first	gentle	grade	HealthPatches	were	used,	
which	was	changed	to	the	active	grade	variant	for	better	skin	adhesion.	All	HealthPatches	were	
medical	grade	(with	the	MD	name	suffix).	

At	the	start	of	a	measurement	a	Bluetooth	connection	with	the	relay	device	was	established.	
Apple	 iPad	minis	were	used	as	relay	devices.	They	ran	the	latest	available	HealthPatch	applica-
tion	 available	 for	 their	 iOS	 version.	 The	 relay	 devices	were	 configured	 to	 connect	 to	 the	Vital	
Connect	web	interface	(VitalCloud)	through	a	secured	UMCU	Wi-Fi	connection.	The	iPads	were	
positioned	behind	the	patient	bed,	within	a	distance	of	less	than	2	metres	and	connected	to	the	
power	socket	to	ensure	they	were	powered	at	all	times.	

During	and	after	the	measurements	

After	the	measurements	started,	a	number	of	patient	characteristics	were	documented	in	a	da-
tabase,	which	is	described	in	§4.2.2.	That	section	contains	the	details	of	all	the	collected	data	for	
every	 measurement.	 The	 database	 structure	 was	 as	 follows:	 patients–participations–
measurements–annotations.	

Any	events,	such	as	temporary	or	unexpected	removal	(e.g.	unexpected	end	of	participation)	
of	the	patch	were	documented	during	the	measurements.	After	every	measurement,	the	patch	
was	 removed	 from	 the	 skin.	 The	 reusable	 sensor	 module	 was	 removed	 from	 the	 patch	 and	
cleaned	 for	 the	next	use	and	 the	used	patch	was	disposed.	The	measurements’	 raw	data	 files	
were	collected	and	stored	in	the	database.	

§4.2 Data	acquisition	and	storage	
A	database	was	set	up	to	facilitate	acquisition,	storage	and	pre-processing	of	all	data.	This	sec-
tion	covers	the	first	two	of	these	aspects,	§4.3	covers	the	third.	

§4.2.1 Data	acquisition	
Measurements	were	done	with	two	vital	signs	monitors:	HealthPatch	MD	and	Spacelabs	XPREZ-
ZON.	 These	 are	 completely	 different	 systems	 with	 different	 underlying	 data	 storage	 systems;	
they	are	described	separately	below.	
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HealthPatch	MD	data	acquisition	

The	way	 the	HealthPatch	 system	 stores	 its	measurements	 is	 described	 in	 Chapter	 2.	 In	 short,	
HealthPatch	data	is	stored	on	the	relay	device	in	JSON	format;	on	the	web	interface	the	data	can	
be	obtained	in	CSV	format.	The	CSV	files	contain	a	time	stamp	(time	of	measurement),	heart	rate	
(in	bpm),	respiratory	rate	(in	brpm)	and	a	few	of	the	other	measured	signals.	The	JSON	files	also	
contain	this	data	and	much	more	technical	details	about	the	measurements,	but	require	more	
physical	steps	to	collect.	They	are	extracted	from	the	iPads	through	a	computer	running	iTunes.	
This	was	tested	and	it	was	found	the	JSON	files	could	not	reliably	be	found	on	the	iPads:	many	of	
them	were	missing,	even	though	the	corresponding	data	was	indeed	correctly	transmitted	to	the	
remote	 data	 server	 and	 accessible	 through	 the	 web	 interface.	 Vital	 Connect	 was	 contacted	
about	this	issue,	but	at	the	time	of	writing	their	technical	support	has	not	been	able	to	provide	a	
solution.	

Because	of	these	reasons	and	because	in	this	study	only	heart	rate	and	respiratory	rate	were	
of	interest,	the	CSV	files	were	sufficient	for	the	further	analyses	in	the	next	chapters.	They	were	
acquired	reliably	 from	the	web	 interface.	The	web	 interface	provides	one	HealthPatch	CSV	file	
per	day.	For	example,	if	a	measurement	starts	on	day	one	at	noon	and	ends	on	day	two	at	noon	
(24	hours),	the	data	is	contained	in	two	CSV	files,	i.e.,	one	for	each	(partial)	day	starting	and	end-
ing	at	midnight.	 The	 raw	data	 files	were	organised	 in	 a	 folder	 and	 the	paths	 to	 the	 files	were	
stored	in	the	database	under	every	corresponding	HealthPatch	measurement	entry.	

Spacelabs	XPREZZON	data	acquisition	

The	Spacelabs	system	used	in	the	UMCU	has	a	server	backend	in	the	hospital	through	which	all	
data	can	be	accessed,	both	live	and	retrospectively.	The	surgical	medium	care	ward’s	Spacelabs	
data	is	stored	on	these	servers	for	24	hours,	after	which	the	data	are	lost.	It	was	possible	to	ob-
tain	daily	reports	from	the	server.	Reports	were	set	up	to	be	generated	automatically	just	after	
midnight,	in	which	all	vital	signs	data	of	the	previous	day	was	stored.	The	reports	were	generat-
ed	 in	 a	 custom	 spreadsheet	 format,	 which	 is	 easy	 to	 read	manually,	 but	 may	 be	 challenging	
when	 extracting	 data	 automatically	 (see	 also	 §4.3.1).	 By	 automatically	 e-mailing	 the	 reports,	
filtering	 the	 e-mails	 and	 moving	 the	 attached	 spreadsheets	 to	 the	 raw	 data	 files	 folder,	 the	
Spacelabs	data	were	acquired	quite	easily.	Unfortunately,	 the	 report	generating	server	proved	
unreliable	at	times,	resulting	in	Spacelabs	data	loss	where	HealthPatch	data	could	be	available.	

In	principle	one	Spacelabs	vital	signs	file	was	generated	per	day,	starting	and	ending	at	mid-
night.	Every	Spacelabs	file	contained	vital	signs	sampled	once	per	60	seconds.	The	values	stored	
in	 the	 report	were	 the	numbers	 that	happened	to	be	on	 the	Spacelabs	monitor	 screen	on	 the	
instance	a	sample	was	taken.	The	raw	data	files	were	organised	in	a	folder	and	the	paths	to	the	
files	were	stored	in	the	database	under	every	corresponding	Spacelabs	measurement	entry.	

§4.2.2 Data	storage	
The	data	storage	structure	was	chosen	to	closely	 resemble	the	study	design:	patients	were	 in-
cluded	 in	participations,	measurements	were	performed	 in	each	participation	and	annotations	
were	made	of	the	measurements.	This	database	design	is	elucidated	in	the	following	sections.	

Patients	could	participate	more	than	once	

Every	patient	 inclusion	equals	a	participation.	 If—after	having	participated	before—the	patient	
underwent	another	operation,	was	readmitted	to	the	surgical	medium	care	ward	and	they	met	
the	inclusion	criteria,	they	could	be	included	another	time.	Thus,	every	patient	could	participate	
more	than	once.	This	resulted	in	a	1: 𝑛	association	between	patients	and	participations.	This	 is	
reflected	by	the	database:	one	patient	contains	records	to	one	or	more	participations.	
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Participations	could	contain	two	or	more	measurements	

Measurements	 could	 take	 multiple	 days,	 because	 an	 admission	 on	 the	 surgical	 medium	 care	
ward	could	 last	 for	days.	As	a	consequence,	a	HealthPatch	MD	could	need	to	be	replaced,	e.g.	
when	 the	battery	 ran	out	of	power.	Replacement	of	a	HealthPatch	MD	was	considered	as	 the	
start	of	a	new	measurement	within	the	same	participation.	In	this	way,	it	was	possible	to	analyse	
every	HealthPatch	measurement	 individually,	or	analyse	all	measurements	 (a	participation)	 to-
gether	as	one	long	measurement.	

Spacelabs	XPREZZON	vital	signs	were	also	collected	throughout	every	participation,	which	is	
a	different	measurement	device.	Therefore,	every	participation	comprised	of	two	(at	 least	one	
HealthPatch	MD	and	the	Spacelabs)	or	more	measurements.	Similar	to	the	patient-participation	
association,	participations	and	measurements	were	linked	1: 𝑛.	

Measurements	could	contain	any	number	of	annotations	

Because	the	main	goal	of	this	is	thesis	is	to	investigate	how	postoperative	physiological	changes	
and	decline	can	be	measured	with	HealthPatch	MD,	annotations	were	made	about	any	relevant	
findings	during	the	measurements.	For	example,	when	a	complication	had	occurred	it	was	rele-
vant	 to	 annotate	 this	on	 the	 corresponding	date	and	 time	within	 the	 corresponding	measure-
ment.	This	allowed	to	compare	clinical	findings	from	the	EMR	with	measured	vital	signs.	Annota-
tions	could	be	made	in	time,	i.e.,	they	had	a	start	date	and	time	and	(optionally)	an	end	date	and	
time.	For	example,	if	a	patient	had	suffered	from	tachycardia	during	the	course	of	multiple	days,	
this	could	be	annotated	with	one	annotation	from	start	to	end.	

Naturally,	 any	measurement	 could	 contain	 any	 number	 of	 annotations	 about	 clinical	 find-
ings.	Similar	to	the	patient-participation	and	participation-measurement	associations,	the	meas-
urements	and	annotation	were	linked	1: 𝑛.	

Database	records	

The	aforementioned	sections	illustrate	the	structure	of	the	gathered	data.	Figure	11	shows	the	
database	structure	in	a	class	diagram	based	on	the	Unified	Modeling	Language	(UML).	This	 is	a	
diagramming	language	that	can	be	used	to	represent	a	database	model	such	as	the	one	in	this	
study.	Every	block	represents	a	class,	an	object	in	the	database	system.	The	objects’	properties	
are	listed	as	well.	

Note	how	the	database	class	(top	left	in	the	figure)	is	associated	with	the	patient,	participa-
tion,	 measurement	 and	 annotation	 classes,	 i.e.,	 those	 classes	 are	 stored	 in	 properties	 of	 the	
database	class.	These	classes	also	have	associations	between	them.	Annotations	are	always	as-
sociated	with	one	measurement;	a	measurement	is	always	associated	with	one	participation;	a	
participation	is	always	associated	with	one	patient.	

Some	associations	may	be	shared,	denoted	by	the	♢	association	symbols.	For	example,	the	
database	 contains	patients,	 participations,	measurements	 and	 annotations	of	 this	 associations	
type.	This	means	a	database	may	contain	a	particular	patient,	but	another	instance	of	a	database	
may	contain	the	same	patient.	This	is	useful	to	perform	various	analyses	on	different	subsets	of	
the	entire	database.	For	example,	to	study	both	HealthPatch	and	Spacelabs	measurements,	the	
entire	 database	 could	 be	 used;	 a	 subset	 could	 contain	 the	measurements	 by	 the	HealthPatch	
only,	for	example.	The	patient,	participation,	measurement	and	annotation	classes	are	associat-
ed	with	the	♦	symbols.	This	symbol	indicates	a	composition,	meaning	that	for	example	a	patient	
is	a	component	of	a	participation,	i.e.,	every	patient	‘belgons	to’	a	participation	and	vice	versa.	
Moreover,	this	can	only	be	one	patient,	hence	the	‘1’	under	the	‘patient	ID	no.’	property	in	the	
association.	The	other	way	around,	i.e.,	from	patient	to	participation,	there	must	be	one	or	more	
participation	 denoted	 by	 ‘1..*’.	Without	 any	 participation,	 a	 patient	 cannot	 exist	 in	 this	 data	
model	and	a	participation	cannot	exist	without	a	patient	either.	The	same	is	true	for	measure-
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ments	 and	 participations.	 Annotations,	 however,	may	 not	 exist:	measurements	 can	 have	 zero	
annotations,	but	when	an	annotation	exists,	it	is	associated	with	one	measurement	only.	

This	database	model	allows	for	thorough	manipulation	and	extraction	of	its	contents.	To	il-
lustrate	 this,	 consider	 the	 following	 example.	 The	 entire	 database	 contains	measurements	 by	
HealthPatch	 and	 Spacelabs	 sensors.	 If	 a	 subset	 of	 only	 the	 HealthPatch	 measurements	 is	 re-
quired,	 removing	all	 the	Spacelabs	measurement	 implies	 removal	of	all	the	associated	annota-
tions	as	well,	because	they	must	have	an	associated	measurement	(as	modelled).	If	the	partici-
pations	associated	with	these	deleted	measurements	contain	no	other	measurements,	they	are	
removed	too.	 In	 turn,	 if	 their	 removal	 results	 in	patients	without	participations,	 these	patients	
are	removed	from	the	database.	

The	 diagram	 lists	 the	 properties	 stored	 in	 the	 database.	 The	 following	 list	 provides	 some	
more	details	about	these	properties.	

• Patient:	
o General:	

§ Identification	number	(from	EMR)	
§ Date	of	birth	
§ Sex:	

Figure	11	‒	 The	database	 is	 represented	 in	 a	 class	diagram	based	on	 the	Unified	Modeling	 Lan-
guage	(UML).	This	 is	a	simplified	version	of	 the	true	database	representation.	Every	block	repre-
sents	a	class.	Class	properties	are	shown	in	every	class	block.	Associations	are	shown	between	the	
classes.	Note	the	patient–participation–measurement–annotation	associations	 in	particular.	TM:	
telemonitoring,	ID:	identification,	SL:	Spacelabs,	HP:	HealthPatch.	
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• Female	
• Male	

§ Comments	 (any	 patient-specific	 notes,	 but	 not	 specific	 to	 a	 participa-
tion)	

• Participation:	
o General:	

§ Identification	 number	 (a	 unique	 positive	 integer	 incremented	 for	 each	
participation)	

§ Start	date	(without	time)	
§ End	date	(without	time)	
§ Inclusion/exclusion	status	
§ Unexpected	reason	for	end:	

• Yes	
• No	

§ If	unexpected	end,	the	reason	could	be	noted	
§ Comments	 (any	 participation-specific	 note,	 but	 not	 specific	 to	 a	meas-

urement)	
o Medical:	

§ Surgery	identification	number	(from	EMR)	
§ Surgery	date	and	time	(of	incision)	
§ American	 Society	 of	 Anaesthesiologists	 (ASA)	 physical	 status	 classifica-

tion	(1–5,	6	is	N/A	as	such	patients	do	not	survive	surgery)	
§ Emergency	surgery	priority:	

• A	(within	2	hours)	
• B	(within	6	hours)	
• C	(within	1	day)	
• D	(within	7	days)	
• N/A	(not	an	emergency	surgical	procedure,	i.e.,	elective)	

§ Patient	characteristics	during	participation:	
• length	(metres)	
• weight	(kilograms)	
• body-mass	index	(BMI,	kg⋅m-²)	

• Measurement:	
o General:	

§ Identification	number	(a	positive	integer	unique	for	each	measurement	
within	a	participation)	

§ Start	 date	 and	 time,	 note	 that	 this	may	 differ	 from	 participation	 start	
date	

§ End	date	and	time,	note	that	this	may	differ	from	the	participation	end	
date	

§ Ward,	i.e.,	surgical	medium	care8	
§ Date	and	time	of	admission	to	the	ward	

o Sensor:	

																																																													
8	Measurements	took	place	on	one	ward	 in	this	study.	However,	plans	were	made	to	perform	measure-
ments	on	more	than	one	ward,	but	not	realised	during	the	research	for	this	thesis.	For	this	reason	and	for	
future	 research	 on	multiple	wards,	 the	 database	 took	 record	 of	 the	ward	of	 participation.	 In	 the	 study	
design,	a	measurement	was	meant	to	end	when	a	patient	was	transferred	to	another	ward	while	still	par-
ticipating	 in	 the	 study.	 In	 that	 case	 one	participation	would	 have	 contained	multiple	measurements	 on	
multiple	wards,	although	the	monitoring	devices	(especially	the	wearables)	could	be	the	same.	
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§ Device	model:	
• Spacelabs	
• HealthPatch	MD	

§ Device	category:	
• Reference	(Spacelabs)	
• Index	(HealthPatch	MD)	

§ For	HealthPatch	MD	only:	
• Relay	device	number	(iPads	were	numbered	1–4)	
• Sensor	module	number	(modules	were	numbered	1–8)	

§ Vital	data	files	(paths	to	data	files	containing	raw	vital	signs)	
§ Comments	 (any	 measurement-specific	 note,	 but	 not	 as	 specific	 as	 an	

annotation)	
• Annotation:	

o Vital	signs:	
§ Start	date	and	time	
§ End	date	and	time	
§ Vital	signs	to	annotate:	

• heart	rate	
• respiratory	rate	
• all	(for	general	annotations)	

§ What	to	do	with	annotated	section:	
• Include	(specifically	include	this	section)	
• Exclude	(specifically	exclude	this	section)	
• Nothing,	i.e.,	just	annotate	

o Comment:	any	text	to	annotate	the	measurement	with	

§4.3 Data	pre-processing	
Before	further	analyses	could	be	performed,	it	was	necessary	to	extract	the	data	from	the	data-
base.	This	was	not	a	 trivial	 task,	because	 the	database	was	 custom-made	and	 the	data	at	 this	
point	 were	 still	 contained	 in	 the	 raw	 data	 files.	 Further	 analyses	 were	 done	 in	 MATLAB	 (The	
MathWorks	 Inc.,	 Natick,	 MA	 USA),	 which	 is	 software	 that	 provides	 tools	 and	 a	 programming	
language	for	scientific	computing,	statistics,	data	analysis,	graphics,	etc.	For	this	thesis,	MATLAB	
R2014b	was	used,	which	was	the	version	available	in	the	UMCU.	A	database	interface	was	writ-
ten	 in	MATLAB	 that	 could	 import	all	 data	 from	 the	database.	 In	essence	 it	was	written	 to	be	a	
mirror	 image	 of	 the	 database:	 it	 contains	 patients,	 participations,	measurements	 and	 annota-
tions	in	a	structure	similar	to	the	UML	class	diagram	in	Figure	11.	Hereafter,	this	mirror	image	is	
referred	to	as	mirror,	to	avoid	confusion	with	the	database	by	which	we	mean	the	actual	data-
base	in	which	all	data	were	manually	entered.	

Besides	providing	an	 interface	 to	 the	database,	all	analyses	 in	 the	 following	chapters	were	
performed	 in	MATLAB.	To	facilitate	this,	all	pre-processing	steps	were	written	embedded	 in	the	
mirror.	Pre-processing	steps	written	for	the	mirror	included,	but	were	not	limited	to:	

• Reading	raw	data	(§4.3.1)	
• Resampling	and	filtering	(§4.3.2)	
• Synchronising	HealthPatch	and	Spacelabs	(§4.3.3)	
• Graphing	participations	for	exploratory	analysis	(§4.3.4)	

These	steps	contain	a	number	of	important	methods	that	need	to	be	elucidated.	This	is	done	in	
the	following	subsections.	

The	mirror	was	programmed	based	on	the	object-oriented	programming	(OOP)	paradigm,	in	
which	classes	(programs)	define	objects	(which	can	represent	anything)	with	certain	properties,	
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methods	(actions)	and	events	(reactions).	For	example,	a	patient	can	be	represented	as	an	ob-
ject	having	properties	such	as	a	name,	date	of	birth,	EMR	 identification	number	and	their	sex,	
similar	to	what	was	shown	before	in	the	UML	diagram.	The	mirror	itself	was	also	programmed	as	
an	object,	with	the	patients,	participations,	measurements	and	annotations	as	its	properties.	The	
various	methods	were	programmed	to	perform	pre-processing	of	the	data.	

The	OOP	paradigm	allowed	for	flexible	extension	and	modification	of	all	the	required	calcu-
lations	 in	MATLAB.	 It	was	written	with	 future	 research	 in	mind,	 to	allow	 for	easy	enhancement	
and	extension	of	the	mirror	when	needed.	

§4.3.1 Reading	raw	data	
Raw	 (unprocessed)	data	 files	were	organised	 in	 the	database	 in	a	 text	 field	within	each	meas-
urement.	For	example,	a	measurement	with	a	HealthPatch	of	 three	days	would	contain	a	 text	
field	with	paths	to	the	three	corresponding	HealthPatch	CSV	files.	To	gather	the	vital	signs	data	
from	these	files,	the	following	processing	pipeline	was	programmed:	

1. Loading	raw	data	files	
2. Removing	invalid	data	and	retaining	gaps	
3. Uniform	sampling	

Loading	raw	data	files	

First,	every	 raw	data	 file	was	 read	 into	a	 table.	Because	 there	were	different	data	 file	 sources	
(HealthPatch	or	Spacelabs),	these	were	different	methods	depending	on	the	source.	For	Space-
labs	data,	an	additional	step	was	necessary:	because	the	report	generating	server	was	unreliable	
(see	§4.2.1):	there	could	be	zero	or	more	than	one	report	of	the	same	day.	To	handle	this,	the	
raw	 time	 series	 from	 all	 files	was	 read,	 but	 only	 the	 unique	 time	 stamps	were	 kept.	 In	 other	
words:	the	same	sample	could	have	been	read	multiple	times	from	multiple	files,	but	it	was	only	
kept	once.	

Removing	invalid	data	and	retaining	gaps	

At	this	point	the	data	had	been	read	in	a	raw	format	that	needed	to	be	processed	into	a	usable	
format.	 For	 example,	many	 empty	 or	 invalid	 (not-a-number:	NaN	 in	MATLAB)	 values	may	 have	
been	read;	such	values	may	exist	 in	 the	raw	data	 files	 for	various	 reasons.	All	 these	undesired	
values	were	removed	to	obtain	continuous	vectors	of	vital	signs	samples	with	the	corresponding	
time	stamps.	

It	 is	known	HealthPatch	records	heart	rate	and	respiratory	rate	at	one	sample	per	 four	se-
conds.	Due	to	the	removal	of	missing	or	invalid	samples,	the	measurements	could	contain	gaps	
that	were	of	interest	to	study.	For	example,	if	the	skin	contact	impedance	was	high,	the	Health-
Patch	may	have	had	trouble	measuring	vital	signs,	resulting	in	missing	samples.	These	gaps	were	
detected	by	looking	at	the	time	vectors	of	the	signals:	a	gap	was	detected	where	the	difference	
between	consecutive	 sample	 times	was	greater	 than	 the	expected	difference	of	 four	 seconds.	
Closer	 inspection	of	 the	raw	data	revealed	the	sample	rate	was	0.25	Hz	on	average,	but	never	
exactly	that	value.	The	true	sample	rate	varied	from	sample	to	sample;	it	was	off	by	a	fraction	of	
a	second,	but	on	average	the	sampling	time	was	4	seconds.	In	other	words:	the	raw	HealthPatch	
signals	were	sampled	non-uniformly,	which	can	be	challenging	for	many	analyses.	A	time	differ-
ence	threshold	was	used	to	detect	gaps:	where	the	time	between	samples	was	greater	than	1.5	
times	 the	median	 sample	 time,	 a	 gap	was	 defined.	With	 this	 algorithm,	 time	 differences	 of	 a	
little	longer	than	4	seconds	due	to	the	variable	sample	rate	were	allowed.	However,	gaps	were	
detected	where	a	sample	was	truly	missing,	 i.e.,	where	the	time	between	consecutive	samples	
was	about	8	seconds	or	longer.	
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Gaps	are	useful	to	retain	in	the	signals,	because	they	allow	the	gaps	to	be	graphed.	Graphing	
software,	such	as	MATLAB,	needs	to	explicitly	know	where	to	draw	a	 line	between	samples	 (no	
gap)	and	where	to	draw	no	line	(gap).	If	no	gaps	would	be	drawn,	a	line	would	be	graphed	at	all	
times,	 which	 insinuates	 samples	 were	measured	 at	 all	 times,	 while	 actually	 no	measurement	
took	place	at	some	points	 in	time.	Gaps	are	 illustrated	in	Figure	12,	where	a	short	section	of	a	
measurement	by	both	HealthPatch	and	Spacelabs	is	shown.	

Non-uniform	sampling	was	found	for	Spacelabs	vital	signs	as	well:	the	data	were	sampled	at	
an	average	sample	rate	of	1/60	Hz,	i.e.,	one	sample	per	minute,	but	time	stamps	could	be	a	few	
seconds	off.	The	same	gap	detection	and	retention	methods	as	used	with	HealthPatch	data	were	
performed	on	the	Spacelabs	vital	signals.	

Uniform	sampling	

The	non-uniform	sample	rates	of	the	devices	are	impractical	for	many	statistical	and	signal	anal-
ysis	steps,	so	a	uniformly	sampled	data	set	was	desired.	Uniform	signals	were	obtained	by	inter-
polating	the	non-uniform	signals	on	a	uniform	grid	sampled	at	the	desired	rate.	Linear	interpola-
tion	was	 used,	 which	 introduced	minor	 errors	 in	 the	 sampled	 data.	 However,	 since	 following	
analyses	will	not	use	as	frequently	sampled	data,	but	instead	use	low-pass	filtered	or	averaged	
aggregates	of	samples,	these	errors	are	filtered	out,	therefore	negligible.	

§4.3.2 Resampling	and	filtering	
With	the	raw	data	read,	gaps	preserved	and	signals	uniformly	sampled	at	the	devices’	particular	
sampling	 frequencies,	 a	 comparison	between	HealthPatch	 and	 Spacelabs	 (see	§4.4)	 cannot	be	
readily	made,	 yet.	After	 all,	HealthPatch	MD	signals	were	 sampled	once	per	4	seconds,	 i.e.,	 at	

Figure	12	‒	Discontinuities	in	the	data	are	graphed	as	gaps	instead	of	continuous	connections.	The	
plotted	signals	are	a	section	of	an	actual	participation.	Note	that	both	HealthPatch	MD	and	Space-
labs	show	gaps:	 the	Spacelabs	measurement	 is	discontinuous	 just	before	14:30,	 the	HealthPatch	
MD	measurement	from	about	15:30	to	17:00.	A	gap	may	be	as	short	as	one	sample	and	gaps	can	
occur	in	both	the	HealthPatch	and	Spacelabs	measurement	simultaneously.	
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0.25	Hz,	while	Spacelabs	data	was	sampled	less	often	at	about	0.0167	Hz,	i.e.,	once	per	minute.	
This	poses	a	challenge	which	is	solved	by	resampling	the	signals	to	the	same	sampling	frequency.	

Resampling	can	be	done	with	various	methods.	In	the	current	study,	the	resampling	goal	was	
to	decimate,	which	means	that	less	samples	are	retained	from	a	more	frequently	sampled	signal	
while	applying	appropriate	filtering	techniques.	For	example,	one	resampling	method	would	be	
to	decimate	 the	HealthPatch	 signals	 to	1/60	Hz	 to	obtain	 the	 same	sampling	 frequency	as	 the	
Spacelabs	signals.	The	simplest—however	erroneous—method	is	to	take	one	sample,	leave	out	a	
few	and	repeat:	this	process	is	called	downsampling.	It	may	cause	aliasing,	which	is	the	artificial	
introduction	of	 frequency	components	 in	a	signal	when	 it	 is	sampled	with	a	sample	rate	 lower	
than	twice	the	Nyquist	frequency	[40].	The	Nyquist	frequency	is	largest	frequency	component	of	
a	signal.	Because	the	signals	to	be	resampled	are	already	sampled	and	the	underlying	continuous	
physiological	processes	can	be	quite	variable	over	time,	 it	 is	assumed	the	raw	HealthPatch	and	
Spacelabs	 signals	 contain	 spectral	power	up	 to	 the	Nyquist	 frequencies.	This	was	verified	with	
spectral	 analysis	 (Fourier	 analysis,	 spectrograms	 and	 periodograms).	 This	 means	 that	 before	
decimation	can	be	performed	a	 filter	must	be	applied	 to	 remove	 the	 spectral	power	 from	the	
signals	beyond	the	new	Nyquist	frequency,	i.e.,	half	the	new	sampling	frequency.	Such	a	filter	is	
called	an	anti-aliasing	filter,	which	is	a	low-pass	filter	that	keeps	only	low	frequencies	up	to	the	
Nyquist	rate.	

Various	 anti-aliasing	 filters	 can	 be	 designed,	 depending	 on	 the	 desired	 filter	 properties.	
MATLAB	 provides	 the	 resample	 function,	 which	 incorporates	 a	 finite	 impulse	 response	(FIR)	
filter	based	on	a	Kaiser	window.	This	window	is	best	thought	of	as	a	moving	average	filter	that	
gives	more	weight	 to	original	 samples	close	 to	 the	desired	samples.	The	 resulting	signal	 is	not	
the	 resampled	 original	 signal	 with	 lots	 of	 information	 lost	 and	 aliasing	 introduced;	 instead,	 it	
contains	much	information	about	many	of	the	old	samples	around	the	new	sample	while	aliasing	
is	prevented.	

The	downside	of	 the	window	used	 in	 the	anti-aliasing	 filter	 is	 that	 it	 is	not	 robust	 for	data	
with	 gaps.	 If,	 for	 example,	 a	 HealthPatch	 signal	 sampled	 once	 per	 4	seconds	 needs	 to	 be	
resampled	to	once	per	minute	(i.e.,	keep	1	in	every	15	samples),	a	Kaiser	window	of	15	times	the	
FIR	window	length	would	be	used	as	the	anti-aliasing	filter.	 If	only	one	sample	were	missing	(a	
gap	of	8	seconds)	in	the	original	HealthPatch	data,	the	filter	cannot	be	applied	without	introduc-
ing	larger	gaps.	The	result	then	becomes	a	gap	as	well,	but	since	we’re	downsampling	by	a	factor	
15	times	the	window	length	in	this	example,	the	gap	becomes	a	lot	larger.	This	induces	relatively	
large	gaps	in	the	downsampled	signals,	which	is	a	form	of	artificial	data	loss.	This	is	the	price	of	
using	an	appropriate	resampling	method.	This	adverse	effect	is	not	as	bad	when	the	gap	in	the	
original	data	consists	of	many	samples,	but	 is	still	present.	The	 implications	of	 this	 loss	 for	the	
analyses	are	shown	in	§5.2,	where	the	results	of	resampling	are	presented.	

This	 resampling	method	was	 performed	 in	 the	 forthcoming	 analyses	 on	 both	HealthPatch	
and	the	Spacelabs	signals,	depending	on	the	desired	sampling	frequencies.	

§4.3.3 Synchronising	HealthPatch	and	Spacelabs	
With	the	raw	data	of	both	HealthPatch	MD	and	Spacelabs	resampled	to	the	same	sampling	fre-
quency,	a	comparison	can	still	not	be	readily	made.	Resampling	the	signals	to	the	same	uniform	
grids	does	not	mean	the	signals	are	aligned,	in	other	words:	the	signal	time	grids	may	be	off	by	a	
(non-integer)	number	of	samples	and	seconds.	The	raw	data	come	from	two	different	sources,	
being	 the	 iPads	 for	 the	 HealthPatch	measurements	 and	 the	 UMCU	 servers	 for	 the	 Spacelabs	
data.	These	are	separate	computer	systems	whose	 internal	clocks	are	not	necessarily	synchro-
nised.	 It	may	well	be	possible	that	while	either	device’s	clock	e.g.	 is	at	midnight,	 the	other	de-
vice’s	clock	is	a	few	minutes	from	midnight.	As	a	consequence,	the	pre-processed	time	series	are	
not	synchronised.	Comparing	two	samples	with	the	same	time	stamp	could	be	a	comparison	of	
samples	recorded	a	few	minutes	apart,	simply	because	the	recording	devices’	internal	clocks	do	
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not	tell	the	same	time.	Because	it	is	unknown	what	time	points	are	the	same	in	a	pair	of	Space-
labs	and	HealthPatch	measurements,	they	must	be	synchronised	based	on	the	vital	signs	values.	
Assuming	both	devices	measure	the	same	signals	with	a	decent	accuracy	and	precision,	it	can	be	
assumed	both	devices	to	some	degree	reflect	the	same	underlying	true	physiological	values	of	
the	vital	 sign	being	measured.	Based	on	this	assumption,	both	devices’	measurements	contain	
similar	signals,	albeit	shifted	in	time.	It	is	this	time	shift	we	are	interested	in.	If	the	time	shift	is	
known,	either	device	can	be	delayed	or	shifted	forward	in	time	to	align	the	time	series,	i.e.,	syn-
chronise	the	measurements.	Because	Spacelabs	measurements	were	used	as	reference,	Space-
labs	time	was	taken	as	reference	time	to	shift	to,	thus	HealthPatch	measurements	were	aligned	
to	Spacelabs	measurements.	

Synchronisation	algorithm	

The	time	series	notation	

The	HealthPatch	and	Spacelabs	time	and	vital	signs	data	are	time	series,	denoted	by	(𝑡', 𝑣')	and	
(𝑡+, 𝑣+)	respectively.	In	these	notations	𝑡	is	the	time	vector,	i.e.,	timestamps	of	a	measurement,	
𝑣	denotes	the	vector	of	measured	vital	sign	values	(heart	rate	or	respiratory	rate	in	their	corre-
sponding	units).	The	subscripted	𝑖	stands	for	index	device	(HealthPatch)	and	𝑟	stands	for	refer-
ence	device	(Spacelabs).	The	goal	of	the	synchronisation	algorithm	is	to	align	𝑡' 	to	𝑡+ 	by	adding	
or	subtracting	a	delay.	Therefore,	this	delay	must	be	estimated.	The	delay	can	be	expressed	ei-
ther	in	samples,	or	in	units	of	time.	The	sample	and	time	domain	units	are	associated	by	 𝑛 =
𝑡 ⋅ 𝑓0,	with	𝑛	in	samples,	𝑡	in	the	time	unit	and	𝑓0	the	sampling	frequency	in	Hertz.	

Aligning	signals	in	the	time	and	sample	domains	

The	final	step	in	synchronisation	is	based	on	maximisation	of	the	cross-correlation	function	(CCF)	
of	 the	HealthPatch	and	Spacelabs	 signals	(CCF	maximisation).	Before	CCF	maximisation	 can	be	
performed,	the	time	grids	must	be	aligned	in	the	sample	domain.	To	understand	this,	consider	
the	following.	

CCF	maximisation	 estimates	𝑛12345,	 the	 number	 of	 samples	 of	 delay	 between	 the	 signals,	
i.e.,	in	the	sample	domain.	In	other	words,	the	CCF	does	not	take	into	account	the	time	domain.	
If,	for	example,	a	HealthPatch	measurement	started	after	a	Spacelabs	measurement	(which	was	
common,	because	Spacelabs	measurements	often	were	started	upon	arrival	on	the	surgical	me-
dium	care	ward,	whereas	HealthPatch	measurements	were	started	later	during	the	admission),	
their	sample	numbers	(which	simply	count	from	1	to	the	number	of	elements	 in	the	vital	signs	
vectors)	represent	an	entirely	different	domain	than	their	time	vectors:	the	first	sample	in	𝑡',	i.e.,	
𝑡' 1 	needs	not	be	equal	 to	𝑡+ 1 .	This	 is	 illustrated	with	example	signals	 in	Figure	13.	Note	 in	
particular	the	different	domains	in	the	middle	and	lower	panels,	being	the	time	and	sample	do-
mains	respectively.	In	all	three	panels	the	same	data	is	plotted,	but	in	the	first	and	second	panels	
this	 is	done	 in	 the	 time	domain,	whereas	 the	 third	 is	plotted	 in	 the	sample	domain.	Note	 that	
with	these	particular	example	signals,	the	synchronisation	in	the	time	domain	should	result	in	a	
shift	of	the	index	signal	(red)	to	the	left	(backward)	in	the	time	domain,	but	to	the	right	(forward)	
in	 the	 sample	 domain.	 This	 paradox	 is	 caused	 by	 the	 difference	 in	 domains,	 the	 difference	 in	
start	time	(in	this	example	𝑡' 1 > 𝑡+ 1 )	and	the	different	lengths	of	the	signals.	

The	 time	 vectors	 point	 to	 a	moment	 in	 time	 of	 the	 index	 or	 reference	 clock.	 The	 sample	
numbers	indicate	a	point	in	the	vital	signs	vector,	starting	at	1.	Thus,	sample	1	of	a	HealthPatch	
measurement	could	point	to	a	moment	in	time	hours	before	or	after	the	time	of	the	first	Space-
labs	sample.	 It	 is	up	to	the	researcher	to	make	sure	the	samples	used	in	CCF	maximisation	are	
aligned	on	their	respective	time	grids.	This	is	what	is	achieved	with	the	following	steps.	
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Because	the	sampling	grid	of	𝑡' 	might	not	match	the	reference	grid,	a	template	time	vector,	
denoted	by	𝑡'∗,	is	created	that	is	aligned	to	the	sampling	grid	of	𝑡+.	This	mismatch	is	illustrated	in	
the	middle	panel	of	Figure	13:	note	the	sample	grids	do	not	align	in	time;	they	are	off	by	a	frac-
tion	of	a	sample.	There	are	three	possibilities	for	this	template	based	on	the	first	samples	of	the	
HealthPatch	and	Spacelabs	time	vectors:	

1. 𝑡' 1 < 𝑡+ 1 ,	i.e.,	the	first	index	sample	was	measured	before	the	first	reference	sample	
2. 𝑡' 1 = 𝑡+ 1 ,	i.e.,	the	first	index	sample	was	measured	at	the	same	time	as	the	first	ref-

erence	sample	
3. 𝑡' 1 > 𝑡+ 1 ,	i.e.,	the	first	index	sample	was	measured	after	the	first	reference	sample	

As	noted	before,	this	 ‘being	ahead’	or	 ‘being	behind’	only	means	the	first	sample	of	the	meas-
urement	comes	later	in	time,	which	not	necessarily	means	the	actual	signal	 is	ahead	or	behind	
the	other.	

Situation	2	is	the	simplest:	we	set	𝑡'∗ = 𝑡',	because	the	template	time	vector	grid	is	already	
equal	to	the	reference	grid.	We	then	proceed	to	CCF	maximisation	(see	the	next	section).	

In	situations	1	and	3	the	time	vector	template	𝑡'∗	needs	to	be	shifted	so	that	its	grid	aligns	to	
the	 reference	grid.	 In	 these	 situations,	we	 shift	𝑡' 	 forward	by	a	 fraction	of	 a	 sample	 so	 that	 it	
aligns	with	the	reference	time	grid.	

Figure	13	‒	Example	reference	and	 index	signals	 containing	the	same	 information	are	 illustrated	
with	various	methods.	The	upper	panel	shows	a	line	plot	of	the	signals	vs.	time.	The	middle	panel	
shows	the	same	data	in	a	stem	plot,	which	makes	it	easier	to	see	individual	samples	in	time.	Note	
the	 sample	 time	 grids	 of	 reference	 and	 index	 do	 not	 align	 on	 whole	 samples.	 The	 lower	 panel	
shows	the	signals	plotted	vs.	 their	sample	number.	 This	 is	 a	different	domain	than	the	time	do-
main.	Note	how	the	index	signal	contains	the	same	pattern	as	the	reference,	albeit	shifted	in	both	
time	and	sample	number.	Also,	the	lengths	of	the	signals	differ.	For	the	purpose	of	the	example	
no	noise	was	 added	to	the	signals,	whereas	 in	reality	 additive	noise	does	exist.	 The	time	unit	 is	
arbitrary.	
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In	situation	1,	the	last	sample	in	𝑡' 	smaller	than	𝑡+ 1 	is	used,	its	sample	number	is	denoted	
by	𝑛∗.	The	time	difference	between	these	samples	therefore	is	𝑑∗ = 𝑡+ 1 − 𝑡' 𝑛∗ .	In	situation	
3	 something	 similar	 is	 done,	 but	 the	 other	 way	 around.	 Here,	 the	 first	 sample	 number	 in	 𝑡+ 	
greater	 than	 𝑡' 1 	 is	𝑛∗.	 The	 grid-alignment	 time	 shift	 then	 becomes	𝑑∗ = 𝑡+ 𝑛∗ − 𝑡' 1 .	 The	
grid-aligned	template	then	is	set	to	𝑡'∗ = 𝑡' + 𝑑∗.	In	situation	3,	the	index	time	series	also	needs	
to	be	padded	with	dummy	samples,	so	the	first	𝑛∗ − 1	samples	of	𝑡+ 	are	inserted	before	𝑡'∗	and	
the	same	number	of	samples	consisting	of	empty	values9	are	inserted	before	the	index	vital	signs	
vector	𝑣'.	These	empty	values	cannot	be	plotted,	as	they	contain	no	numerical	value,	but	they	
do	take	the	space	of	one	sample	each,	which	is	a	property	used	in	the	next	step	of	the	synchro-
nisation	process.	

Note	that	in	the	second	situation	no	grid	alignment	is	necessary,	therefore	𝑑∗ = 0.	The	grid-
aligned	HealthPatch	vital	signs	time	series	is	denoted	by	(𝑡'∗, 𝑣'∗),	shown	with	the	example	signals	
in	the	upper	panel	of	Figure	14.		

The	result	of	the	grid	alignment	process	is	a	minor	shift	in	time	(𝑑∗)	that	must	be	accounted	
for.	This	shift	is	0 ≤ 𝑑∗ < 𝑇0,	where	𝑇0 = 1/𝑓0	is	the	sampling	time	in	seconds.	In	samples:	𝑛∗ =
𝑑∗/𝑇0	, 𝑛∗ ∈ 0,1 .	In	other	words,	a	fraction	up	to	one	sample	shift	occurs	in	the	grid	alignment	
process.	

																																																													
9	Not-a-Number,	NaN	in	MATLAB	

Figure	14	‒	The	synchronisation	algorithm	is	illustrated	with	the	example	signals	of	Figure	13.	The	
upper	panel	shows	the	grid	alignment	step.	The	middle	and	lower	panels	demonstrate	the	cross-
covariance	maximisation	step	 in	the	sample	and	time	domains	respectively.	Note	that	 in	middle	
panel,	 the	 index	 signal	 has	 been	padded	with	 three	 zeroes	 at	 the	beginning,	 hence	 the	 signal’s	
name	 is	𝒗𝒊∗	 instead	of	𝒗𝒊.	The	zeroes	were	inserted	for	the	purpose	of	visibility	in	this	figure	and	
are	not	used	in	the	true	methods,	in	which	empty	samples	are	used	instead.	
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Cross-correlation	and	cross-covariance	maximisation	in	the	time	domain	

To	 estimate	 the	 time	 delay	 between	 the	 time	 series	 an	 algorithm	 was	 used	 based	 on	 cross-
correlation.	Cross-correlation	measures	similarity	of	two	signals.	It	is	defined	as	

ccfFG 𝑛 = 𝑓 ⋆ 𝑔 𝑛 = 𝑓 𝑚 𝑔 𝑚 + 𝑛
K

LMNK

,	

for	 real	 and	 uniformly	 sampled	 signals	 𝑓	 and	 𝑔	 with	 mean	 𝜇F = 𝜇G = 0.	 Where	 the	 cross-
correlation	function	(CCF)	has	a	global	maximum,	the	corresponding	sample	number	is	−𝑛12345,	
which	can	be	formulated	as	(by	convention,	we	take	the	negative	to	indicate	delay)	

𝑛12345,FG = − arg	max
U

ccfFG 𝑛 ,	

where	𝑛12345 ∈ ℤ,	an	integer.	It	is	the	number	of	samples	by	which	the	HealthPatch	signal	must	
be	delayed	to	align	it	to	the	Spacelabs	signal.	

The	algorithm	used	was	as	 follows.	 It	 can	be	assumed	 the	 iPad	 time	and	Spacelabs	 server	
time	were	 not	 too	 far	 apart.	 To	 reduce	 computation	 time,	 it	was	 assumed	 a	maximum	 cross-
correlation	 could	 be	 found	within	 delay	 of	 ±10	minutes,	 i.e.,	 a	window	 of	 ±600	 seconds.	 The	
synchronisation	was	done	at	the	default	sample	rate	of	the	Spacelabs	measurements,	to	which	
HealthPatch	measurements	were	resampled	(1/60	Hz).	At	this	sampling	frequency,	a	10-minute	
delay	equals	a	maximum	delay	of	±10	samples.	This	reduces	the	equation	for	cross-correlation	to	

ccfFG,WX 𝑛 = 𝑓 𝑚 𝑔 𝑚 + 𝑛
WX

LMNWX

,	

which	requires	much	 less	computation	time	and	memory	 for	signals	of	many	samples,	 such	as	
the	relatively	 long	measurements	with	HealthPatch	and	Spacelabs.	Because	the	grid	alignment	
step	(the	previous	step)	is	performed	before	the	CCF	maximisation	step,	the	total	time	shift	may	
become	 greater	 than	 the	maximum	of	 10	 samples	 after	 both	 steps.	 The	 total	 shift	 after	 both	
steps	 is	 𝑛YZY43 = 𝑛∗ + 𝑛12345.	 Because	−10 ≤ 𝑛12345 ≤ 10	samples	 and	 0 ≤ 𝑛∗ < 1	sample,	 it	
follows	that	𝑛YZY43	may	become	greater	than	10.	This	is	not	a	problem,	just	an	effect	of	the	syn-
chronisation	processes	that	should	not	surprise	the	researcher.	 If	 it	were	undesired,	one	could	
limit	the	cross-correlation	summation	domain	to	be	one	sample	smaller.	

Now,	the	time	vectors	in	 𝑡+, 𝑣+ 	and	 𝑡'∗, 𝑣'∗ 	are	grid-aligned	and	ready	to	be	synchronised	
by	CCF	maximisation.	In	this	step,	the	mean	of	the	signals	must	be	zero,	because	otherwise	the	
summation	of	multiplications	in	ccfFG 𝑛 	will	result	in	infinity	or	be	undefined10.	Subtracting	the	
mean	is	only	valid	if	a	constant	mean	can	be	assumed	and	the	signals	are	wide-sense	stationary	
(WSS).	If	a	trend	or	other	process	influences	the	mean,	this	could	influence	the	CCF	and	result	in	
an	incorrect	delay	estimation.	However,	because	the	signals	used	in	this	study	can	be	very	long,	
the	 CCF	 maximisation	 algorithm	 is	 robust	 for	 a	 minor	 violation	 of	 this	 assumption.	 Cross-
correlation	of	signals	whose	mean	has	been	subtracted	is	the	same	as	the	cross-covariance	func-
tion,	

covFG 𝑛 = 𝑓 𝑚 − 𝜇F 𝑔 𝑚 + 𝑛 − 𝜇G

K

LMNK

.	

Alternatively,	if	a	linear	trend	exists	throughout	a	measurement,	it	can	be	subtracted	instead	of	
subtracting	a	mean	assumed	to	be	constant.	See	Chapter	6	for	more	about	time	series	compo-
nents,	one	of	which	is	a	trend.	

																																																													
10	A	question	(initiated	by	the	author),	discussion	and	answer	about	the	difference	between	and	confusion	
about	 the	 statistical	 and	 signal	 processing	 definitions	 of	 cross-correlation	 and	 cross-covariance	 can	 be	
found	on	http://dsp.stackexchange.com/questions/34778.	
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In	the	example	signals	of	the	previous	figures,	 the	mean	is	close	to,	but	not	exactly	zero11.	
Therefore,	cross-covariance	maximisation	was	performed	with	Figure	15	as	a	result	of	the	pro-
cess.	

The	synchronisation	time	shift	

The	 final	 step	 is	 the	 actual	 calculation	 of	 the	 synchronised	 time	 vector	 of	 the	 index	measure-
ment.	 It	 is	the	original	 index	time	vector	plus	the	grid-alignment	delay	and	the	synchronisation	
time	delay.	

𝑡',^5_` = 𝑡' + 𝑑∗ + 𝑡^5_` = 𝑡'∗ + 𝑡^5_`,	
where	

𝑡^5_` =
𝑛12345 + 𝑛∗ − 1

𝑓0
,	

in	situation	1	and	

𝑡^5_` =
𝑛12345 − 𝑛∗ − 1

𝑓0
,	

in	situation	3.	
The	synchronised	time	series	now	are	(𝑡+, 𝑣+)	 (unaltered)	and	(𝑡',^5_`, 𝑣').	For	the	example	

signals	 the	synchronised	time	series	are	plotted	 in	the	 lower	panel	of	Figure	14.	Note	that	 the	

																																																													
11	The	mathematically	inclined	reader	will	recognise	the	example	signals	as	the	cardinal	sine	(sinc)	function	
shifted	in	time	and	knows	their	mean	actually	is	zero.	However,	because	we	consider	only	a	short	window	
of	samples,	their	mean	is	not	zero	per	se.	

Figure	15	‒	 The	 cross-covariance	 function	 for	 the	example	 signals	of	 Figure	13	 is	 graphed	 for	 a	
maximum	absolute	lag	of	10	samples.	The	maximum	is	found	at	lag	𝒏 = −𝟑,	hence	𝒏𝐝𝐞𝐥𝐚𝐲 = +𝟑	
samples.	
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vital	signs	in	𝑣' 	are	not	altered	at	all.	The	intermediate	step	where	𝑣'∗	is	created	is	only	used	to	
accommodate	for	the	changed	length	of	𝑡'∗.	

§4.3.4 Graphing	participations	for	exploratory	analysis	

Trimming	HealthPatch	and	Spacelabs	signals	

With	the	HealthPatch	and	Spacelabs	signals	synchronised	they	can	be	graphed	to	visually	ana-
lyse	the	vital	signs	data.	Some	measurements	were	done	while	either	of	the	measurements	had	
not	yet	started	or	had	already	ended.	These	sections	beyond	the	start	and	end	are	not	of	inter-
est	 to	be	graphed.	For	better	graphs	of	 the	data,	 these	sections	were	 trimmed	 from	the	data.	
Note	 that	 this	was	only	done	 for	 the	analyses	 that	 compared	HealthPatch	and	Spacelabs	data	
together,	 as	 it	 would	 be	 a	 waste	 of	 data	 to	 remove	 parts	 of	 the	 HealthPatch	measurements	
when	they	are	not	compared	to	the	reference	signals.	

Plotting	signals	of	participations	

In	the	database,	every	patient	participates	one	or	more	times.	Every	participation	belongs	to	one	
admission	on	the	surgical	medium	care	ward.	The	vital	signs	measured	during	one	participation	
are	of	interest,	so	when	graphing	them,	each	participation	is	considered	separately.	One	partici-
pation	may	encompass	one	or	more	measurements	with	both	a	HealthPatch	and	the	Spacelabs	
monitor.	As	a	consequence,	plotting	one	participation	results	 in	two	(one	index	plus	one	refer-
ence)	or	more	measurements	being	graphed.	

§4.4 Analysis	of	validity	of	measurements	
The	validity	of	measurements	by	HealthPatch	MD	in	clinical	practice	is	of	 interest	 in	this	study.	
By	 validity	 is	meant:	 a	 description	of	 accuracy	 and	precision	of	 the	measured	 vital	 signs	 com-
pared	to	a	reference	standard,	often	termed	agreement	[50].	That	is,	it	is	of	interest	how	good	
heart	rate	and	respiratory	rate	are	measured	by	the	patch,	compared	to	another	vital	signs	mon-
itor	of	which	the	performance	is	known.	If	the	patch’s	performance	is	similar	to	that	of	the	other	
monitor,	 the	agreement	 is	 said	 to	be	high.	How	high	an	agreement	must	be	 to	be	 considered	
acceptable	depends	on	clinical	judgement	and	the	nature	of	the	measured	quantities	[51].	

Clinical	validation	studies	of	diagnostic	methods	require	a	comparison	with	the	‘gold	stand-
ard’.	This	 is	defined	as	 the	best	 (available)	diagnostic	 for	 the	measurand	of	 interest.	Note	 that	
this	does	not	always	 refer	 to	 the	best	available	method,	because	 that	method	could	 require	a	
harmful	intervention	on	the	patient	(e.g.	arterial	blood	pressure	via	an	arterial	catheter,	which	is	
invasive	and	may	not	be	desirable	or	feasible)	or	is	only	possible	during	autopsy	(e.g.	confirma-
tion	of	diagnosis).	For	 the	validation	 in	 the	current	study,	 the	Spacelabs	XPREZZON™	system	 is	
the	reference	monitor.	It	is	the	current	bedside	reference	standard	for	continuous	measurement	
of	heart	rate	and	respiratory	rate	on	the	surgical	medium	care	ward	in	the	UMCU	and	used	for	
clinical	decision	support.	Hence,	it	was	chosen	as	the	reference	for	assessment	of	agreement.	

The	goals	of	 this	 section	are	1)	 to	evaluate	what	methods	are	available	 to	perform	agree-
ment	analysis,	2)	to	evaluate	how	suitable	they	are	for	the	type	of	data	obtained	with	wearable	
continuous	 vital	 signs	monitoring	devices,	 and	3)	 to	 describe	 the	agreement	 analysis	 that	was	
performed	on	data	from	HealthPatch	MD	and	Spacelabs	measured	in	the	postoperative	popula-
tion.	The	results	of	this	analysis	are	presented	in	§5.2	in	the	next	chapter.	

§4.4.1 Agreement	analysis	
We	need	to	define	agreement	before	it	can	be	assessed.	In	the	arguably	classic	and	famous	pa-
pers	by	Bland	and	Altman	[50,52]	they	present	a	methods	comparison	method.	In	modern	medi-
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cine,	 it	 is	 often	 eponymously	 called	 Bland-Altman	 Analysis	(BAA),	 although	 others	 have	 used	
similar	methods	in	other	fields	of	science	before	them	(e.g.	John	Tukey,	another	important	stat-
istician).	Other	names	for	BAA	are	limits	of	agreement	(LOA)	analysis	or	simply	agreement	analy-
sis.	

Bland	and	Altman	defined	measures	of	agreement	for	individual	measurements	on	individu-
al	subjects	by	two	methods	to	measure	a	certain	physical	quantity,	the	measurand.	Examples	of	
such	quantities	are	blood	pressure,	heart	rate,	respiratory	rate,	etc.	It	is	not	always	an	easy	task	
to	measure	the	true	value	of	such	quantities.	Instead,	methods	have	been	developed	to	derive	
the	quantity	of	interest	from	other	physical	measurements.	For	example,	heart	rate—expressed	
in	beats	per	minute—is	best	derived	indirectly	from	the	ECG,	which	is	a	measurement	of	electric	
potential	generated	by	the	heart,	but	not	the	heart	rate	itself.	

An	example	of	an	experiment	 in	which	BAA	could	be	performed	is	as	follows.	 If	one	would	
want	to	assess	the	validity	of	heart	rate	derived	from	pulse	measured	manually	on	the	a.	radialis,	
one	could	perform	BAA	to	compare	pulse	heart	rate	with	ECG	heart	rate.	Measurements	could	
be	 performed	 on	𝑛	 subjects.	 Each	 subject’s	 heart	 rate	would	 be	measured	 as	 the	 number	 of	
heart	 beats	 in	 one	minute.	 Ideally,	 their	 ECG	would	 be	measured	 simultaneously	 by	 the	 two	
methods	to	ensure	the	same	true	heart	rate	was	measured.	BAA	would	then	give	the	agreement	
between	 the	 two	methods.	 How	 this	 agreement	 is	 defined	 and	 calculated	 is	 described	 in	 the	
following	section.	

Bland-Altman	Analysis	of	bias	and	limits	of	agreement	

This	 section	 is	 a	 summary	of	 the	 LOA	analysis	 by	Bland	 and	Altman	 [50–52].	 It	 is	 summarised	
here,	because	in	the	following	sections	further	specifications	of	BAA	are	described,	for	which	a	
good	understanding	of	their	methods	is	essential.	

In	BAA	the	agreement	between	two	methods	to	measure	a	physical	quantity	 is	of	 interest.	
Measurements	are	performed	on	multiple	subjects	by	the	two	methods	and	used	in	this	analy-
sis.	The	result	is	an	observation	pair.	Each	observation	pair	is	an	estimate	of	the	true	value	of	the	
measurand,	since	both	methods	may	contain	an	(un)known	error.	The	error	consists	of	a	num-
ber	 of	 components.	 They	 need	 to	 be	well-understood,	 because	 later	we	will	 perform	BAA	 on	
data	with	repeated	measurements,	which	affects	how	the	error	 is	measured.	After	all,	 it	 is	the	
error	we’re	interested	in,	for	 if	we	know	how	great	the	error	is,	we	know	how	precise	a	meas-
urement	 method	 is.	 The	 error	 components	 arise	 from	 the	 quantity	 to	 measure	 and	 the	 two	
methods	themselves.	The	quantity	to	measure,	i.e.	the	true	value,	varies	by	nature	from	subject	
to	subject	(e.g.	heart	rate)	and	as	such	has	some	variance.	Furthermore,	the	two	methods	each	
have	their	measurement	variance	as	well,	representing	their	uncertainty	of	the	measured	quan-
tity.	 If	we	denote	the	two	methods’	measurements	by	𝑋	and	𝑌	and	assume	the	methods’	vari-
ances	are	independent	from	the	measurand,	the	variances	of	𝑋	and	𝑌	are	

var 𝑋 = 𝜎kl = 𝜎ml + 𝜎nl,	
and	

var 𝑌 = 𝜎ol = 𝜎ml + 𝜎pl,	
where	𝜎ml	is	the	variance	of	the	true	values	and	𝜎nl	and	𝜎pl	are	the	methods’	variances.	

Besides	error—which	tells	us	about	precision—the	relative	bias	of	the	two	methods	is	of	in-
terest.	Bias	informs	us	about	accuracy.	It	is	possible	the	two	methods	do	not	measure	the	same	
values	on	average,	thus	a	bias	exists	between	them.	If	we	know	both	bias	and	error,	we	have	a	
measure	for	agreement	of	the	two	methods,	agreement	being	both	accuracy	and	precision.	

The	bias	 is	estimated	as	 the	mean	difference	between	the	values	as	measured	by	 the	 two	
methods.	If	we	denote	the	difference	as	𝐷 = 𝑋 − 𝑌,	then	the	bias	is	𝐷 = 𝑋 − 𝑌,	where	the	over-
line	denotes	the	mean.	Note	that	var 𝐷 = 𝜎rl = 𝜎kl + 𝜎ol = 𝜎nl + 𝜎pl	and	thus	𝜎rl	is	independ-
ent	of	𝜎ml.	This	is	due	to	the	subtraction	in	𝐷,	in	which	we	remove	the	variance	of	the	true	value.	
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This	means	that	if	we	analyse	the	differences,	we	can	estimate	to	which	degree	the	two	meth-
ods	(dis)agree,	independent	of	the	true	value	of	the	measurand.	This	is	a	nice	property	of	BAA,	
because	the	true	value	often	is	unfortunately	unknown.	If	it	were	known	BAA	would	not	be	nec-
essary	and	we	could	resort	to	simpler	agreement	analysis	methods.	

The	differences	in	𝐷	are	likely	to	be	normally	distributed,	independent	of	the	distribution	of	
the	true	values	themselves	[51].	Thus,	95%	of	the	differences	lie	in	the	range	𝐷 ± 1.96𝑠r,	where	
𝑠r	 is	 the	 sample	 standard	deviation	of	𝐷	 and	value	of	1.96	 is	 the	97.5	percentile	point	of	 the	
normal	distribution,	which	represents	95%	of	the	area	around	the	mean	(excluding	2.5%	in	each	
tail).	These	95%	limits	around	𝐷	are	called	the	limits	of	agreement	(LOA).	They	represent	a	ref-
erence	interval	for	the	observed	differences,	not	to	be	confused	with	a	confidence	interval	(CI)	
despite	the	seemingly	similar	result,	but	in	fact,	their	calculations	are	very	different.	

An	important	tool	in	BAA	is	the	mean-difference	plot.	This	is	a	graph	in	which	the	differences	
of	observations	are	plotted	against	their	mean,	i.e.	𝐷 = 𝑋 − 𝑌	against	𝜇 = (𝑋 + 𝑌)/2.	With	this	
graph,	 it	 is	 possible	 to	 assess	 the	 range	 of	 differences	 between	 the	methods,	where	 possible	
outliers	exist	and	to	see	the	bias.	The	bias	and	both	upper	and	lower	LOA	can	be	plotted	in	the	
same	graph	[52].	

Ideally,	the	bias	is	not	significantly	different	from	zero	and	the	LOA	encompass	a	small	range,	
which	should	be	defined	beforehand	by	clinical	judgement.	However,	a	large	bias	is	not	a	large	
problem,	for	it	can	be	easily	corrected	by	simply	subtracting	it	from	𝑋	or	adding	it	to	𝑌.	

An	extension	to	BAA	is	the	calculation	of	the	CI	of	the	bias	and	the	LOA.	Since	the	bias	and	
LOA	are	results	of	a	sample	(patients)	 from	a	 larger	population,	they	are	estimates	of	the	true	
bias	and	LOA,	hence	they	have	a	CI.	For	the	methods	of	the	CI	calculation	the	reader	is	referred	
to	the	papers	by	Bland	and	Altman	[50,51].	An	 implementation	to	perform	BAA	was	written	 in	
MATLAB	and	published	online,	the	details	of	which	can	be	found	in	Appendix	A.	

Bland-Altman	Analysis	for	repeated	measurements	of	a	changing	quantity	

Repeated	measurements	on	the	same	subject	can	be	taken	of	a	constant	quantity	or	a	changing	
quantity.	An	example	of	a	constant	quantity	is	body	fat	percentage	measured	on	the	same	day.	
An	example	of	a	changing	quantity	is	blood	pressure,	which	can	vary	greatly	throughout	a	day.	
This	 section	 focuses	 on	BAA	 for	 repeated	measurements	 of	 changing	quantities	 only,	 because	
heart	rate	and	respiratory	rate	are	the	subject	of	this	thesis,	which	are	changing	quantities	dur-
ing	the	time	period	of	the	measurements.	

BAA	for	repeated	measurements	of	changing	quantities	is	described	first	in	the	1999	paper	
by	Bland	and	Altman	[51]	and	corrected	in	their	2007	publication	[53].	The	analysis	is	based	on	
one-way	analysis	of	variance	(ANOVA),	in	which	a	linear	model	is	used	to	estimate	the	influences	
of	various	sources	of	variance	 in	 the	measurements	by	 the	two	methods	 (components	of	vari-
ance	method).	As	described	before,	there	are	multiple	sources	of	variance	in	the	measurements.	
One	 source	 is	 the	 variance	 of	 the	 true	 value,	𝜎ml,	 which	was	 differenced	 out	 of	 the	 equation	
when	 taking	 the	difference	between	measurements	𝑋	 and	𝑌.	When	𝑋	 and	𝑌	 contain	multiple	
observations	per	subject,	their	variances,	𝜎kl	and	𝜎ol,	are	influenced	by	both	the	particular	vari-
ances	 of	 these	 subjects	 and	 the	 variances	 between	 them.	 The	 total	 variance	 thus	 is	 a	 sum	of	
these	sources	of	variance,	which	is	written	as	follows.	

𝜎kl = 𝜎ml + 𝜎n,x2Yy22_
l + 𝜎n,yzY{z_

l ,	
𝜎ol = 𝜎ml + 𝜎p,x2Yy22_

l + 𝜎p,yzY{z_
l ,	

and	therefore	
𝜎rl = 𝜎n,x2Yy22_

l + 𝜎n,yzY{z_
l + 𝜎p,x2Yy22_

l + 𝜎p,yzY{z_
l .	

This	 poses	 a	 problem,	 because	we	 are	 not	 interested	 in	 the	 variance	within	 or	 between	 each	
subject,	but	in	how	good	methods	𝑋	and	𝑌	perform	with	respect	to	each	other	independent	of	
the	subjects.	
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To	 illustrate	 this	 problem,	 consider	 the	 following	 extreme	 and	 trivial	 example.	 To	 assess	
methods	𝑋	and	𝑌,	we	could	measure	one	observation	pair	in	1000	subjects	and	perform	regular	
BAA.	This	results	in	some	LOA	and	bias.	Now,	in	the	extreme	repeated	measurements	case,	we	
could	have	taken	1000	observation	pairs	from	only	one	subject.	This	data	can	be	used	in	regular	
BAA	as	well,	but	the	results	probably	are	not	as	interpretable	as	in	the	case	with	1000	subjects.	
This	 is	because	we	are	determining	the	LOA	and	bias	between	𝑋	and	𝑌	on	measurements	that	
show	variance	and	bias	that	could	be	heavily	influenced	by	this	particular	subject,	i.e.,	the	with-
in-subject	variance	is	much	greater	than	the	between-subject	variance	(which	is	zero	when	only	
using	data	from	one	subject).	

Theoretically,	 we	 could	 be	measuring	 the	 subject’s	 heart	 rate	 and	 it	 could	 happen	 to	 be	
60	bpm	on	average	with	all	1000	measurement	in	the	range	50–70	bpm.	As	a	consequence,	our	
results	do	not	inform	us	well	about	how	good	the	agreement	is	in	general,	but	only	for	subjects	
with	this	particular	heart	rate	range.	Furthermore,	if	either	method	would	be	very	bad	(or	good)	
at	measuring	heart	rate	in	this	range	(or	in	this	particular	subject,	for	whatever	reason),	regular	
BAA	would	lead	to	the	conclusion	that	the	method	is	bad	(or	good),	while	it	could	be	very	good	
(or	bad)	 in	a	more	 representative	population	 sample	and	at	different	heart	 rates,	 i.e.,	 a	wider	
range	of	values.	

To	 address	 this	 problem,	 Bland	 and	 Altman	 revised	 their	 original	 methods	 for	 replicated	
measurements	 and	 describe	 and	 ANOVA	 method,	 which	 is	 summarised	 in	 the	 following	
section	[51,53].	

The	one-way	ANOVA	method	by	Bland	and	Altman	

Bland	and	Altman	base	 their	 analysis	of	 agreement	 for	 repeated	measurements	of	 a	 changing	
quantity	 on	 one-way	 ANOVA	[51].	 They	model	 the	 observed	 differences	 between	methods	𝑋	
and	𝑌	as	

𝐷'| = 𝐵 + 𝐼' + 𝐸'|,	
where	𝐷'| 	is	the	difference	between	observations	𝑋'| 	and	𝑌'| 	on	subject	𝑖,	𝐵	is	the	bias	(overall	
mean	 difference),	 𝐼' 	 is	 the	 subject-method	 interaction	 and	𝐸'| 	 a	 normally	 distributed	 error	 of	
observation	𝑗	of	subject	𝑖.	In	this	model,	the	variance	of	𝐷	is	

𝜎rl = 𝜎r,x2Yy22_
l + 𝜎r,yzY{z_

l .	
It	 can	be	estimated	using	a	 components	of	 variance	 technique,	which	estimates	 the	between-	
and	within-subject	variances	separately.	In	the	one-way	ANOVA	calculations,	a	table	of	sources	
of	 variance	 can	 be	 constructed.	 In	 this	 table,	 the	mean	 square	 error	(MSE)	 is	 an	 estimator	 of	
𝜎r,yzY{z_
l .	The	sum	of	squared	errors	(SSE)	is	used	to	calculate	MSE.	

𝑆𝑆𝐸 = 𝐷'| − 𝐷'.
l

L�

|

U

'

,	

𝜎r,yzY{z_
l = 𝑀𝑆𝐸 =

𝑆𝑆𝐸
𝑁 − 𝑛

,	
where	𝑛	is	the	number	of	subjects,	𝑁	the	total	number	of	observations	such	that	𝑁 = ∑𝑚' 	with	
𝑚' 	the	number	of	observations	of	subject	𝑖,	and	𝐷'.	the	within-subject	mean	difference	between	
the	methods.	Note	that	the	subjects	need	not	have	equal	numbers	of	observations	(𝑚')	and	as	
such	the	ANOVA	design	can	be	balanced	(all	𝑚' 	equal)	or	unbalanced	(different	values	of	𝑚').	

The	 between-subject	 variance	 of	 the	 difference	𝜎r,x2Yy22_
l 	 can	 be	 estimated	 with	 similar	

methods	as	for	the	within-subject	variance.	It	is	estimated	by	the	difference	between	the	mean	
squared	subject	effect	(MSS)	and	MSE	divided	by	a	factor	depending	on	the	number	of	subjects	
and	the	number	of	observations	per	subject.	

𝑆𝑆𝑆 = 𝑚' 𝐷'. − 𝐷.. l
U

'

,	
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𝑀𝑆𝑆 =
𝑆𝑆𝑆
𝑛 − 1

,	

𝜎r,x2Yy22_
l =

𝑀𝑆𝑆 − 𝑀𝑆𝐸
𝑛X

,	

where	𝑆𝑆𝑆	denotes	the	sum	of	squared	subject	effects,	𝐷..	is	the	global	mean,	i.e.,	the	bias,	and	

𝑛X =
𝑁l − ∑𝑚'

l

(𝑛 − 1)𝑁
,	

a	factor	depending	on	the	number	of	observation	and	subjects.	
Now,	we	have	estimators	for	both	components	of	variance,	hence	the	total	variance	of	the	

difference	 is	 estimated	 by	𝜎rl = 𝜎r,x2Yy22_
l + 𝜎r,yzY{z_

l .	 This	 is	 the	 variance	 of	 differences	 be-
tween	 individual	 observations	 by	 both	 the	measurement	methods,	 independent	 of	 subject	 or	
number	of	observations	within	the	subjects.	That	is,	assuming	the	sample	of	the	subjects	is	rep-
resentative	 of	 the	 population	 being	 studied	 and	 the	 performance	 (variance	 and	 bias)	 of	 the	
methods	does	not	change	over	time.	These	are	general	assumptions	in	agreement	analysis.	The	
rest	of	the	calculations	can	now	be	done	as	in	the	regular	LOA	calculations.	

Non-constant	bias	and	limits	of	agreement	

Because	there	may	be	an	association	between	mean	and	difference	of	the	measurements	of	the	
physical	quantities	of	interest,	e.g.,	measurements	by	two	devices	of	large	values	are	further	off,	
the	assumption	of	a	constant	bias	(overall	mean)	may	not	be	adequate.	This	also	means	the	LOA	
may	be	non-constant.	Furthermore,	 the	variance	of	 the	difference	may	be	associated	with	 the	
mean,	for	example,	the	differences	may	show	larger	variability	for	larger	means	(heteroscedas-
ticity).	 Using	 constant	 LOA	 then	 also	 is	 not	 truthful	 to	 the	 data,	 because	 the	 limits	 should	 be	
closer	to	the	bias	where	variance	of	the	differences	is	lower	and	further	away	where	variance	is	
greater.	

To	address	this	issue,	Bland	and	Altman	state	that	simple	linear	regression	lines	can	be	used	
instead	of	constants	[51].	The	bias	then	has	an	intercept	and	a	slope.	The	bias	line	has	a	certain	
goodness-of-fit	and	all	the	data	not	fit	by	the	line	are	the	residuals.	It	may	be	interesting	to	study	
the	residuals,	because	they	can	show	some	varying	behaviour	too.	For	example,	 in	the	hetero-
scedastic	case	the	variance	of	the	residuals	may	increase	or	decrease	with	increasing	mean.	This	
means	the	LOA	should	diverge	or	converge	to	truly	fit	the	data.	If	the	residuals	are	significantly	
heteroscedastic,	 another	 simple	 linear	 regression	 line	 can	 be	 fit	 to	 them	 to	 obtain	 the	 non-
constant	LOA.	

Another	 method	 proposed	 by	 Bland	 and	 Altman	 is	 the	 use	 of	 logarithmic	 transfor-
mation	[51].	 This	 is	 suitable	 for	when	 the	 differences	may	 show	 an	 increasing	 variance	 of	 the	
differences	with	increasing	mean.	Log-transformation	is	similar	to	calculation	of	the	ratio	of	the	
observation	pair	instead	of	their	difference.	

§4.4.2 Agreement	analyses	of	HealthPatch	and	Spacelabs	
Agreement	between	HealthPatch	MD	and	the	clinical	reference	monitoring	standard	at	the	bed-
side	 (Spacelabs)	 was	 investigated	 using	 the	 BAA	methods	 for	 repeated	measurements	 as	 de-
scribed	in	the	previous	section.	Because	the	measurements	are	of	heart	rate	and	respiratory	rate	
sampled	over	multiple	hours	up	to	days,	 the	methods	were	adjusted	to	assume	a	varying	true	
value,	i.e.,	it	was	not	assumed	the	true	value	was	constant	(which	otherwise	is	an	assumption	in	
BAA).	Because	the	lengths	of	the	measurements	varied,	different	numbers	of	observations	were	
available	per	 subject	 for	 agreement	 analysis.	 Therefore,	 the	BAA	methods	 for	 repeated	meas-
urements	 incorporated	an	unbalanced	ANOVA	design,	whereas	equal	numbers	of	observations	
per	 subject	would	have	been	analysed	with	a	balanced	design.	To	examine	 the	effect	of	using	
the	incorrect	assumptions	of	regular	BAA,	 i.e.,	not	accounting	for	repeated	measurements,	the	
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data	was	analysed	with	regular	BAA	as	well	to	compare	the	results	and	the	effect	of	the	incor-
rect	assumptions.	

The	 outcomes	 of	 interest	were	 the	mean-difference	 plot	 and	 statistics.	 The	 bias	 and	 LOA	
with—where	available—their	95%	CIs	were	graphed.	Any	trends	in	the	difference	statistics	were	
investigated	using	the	methods	proposed	by	Bland	and	Altman	[51].	Acceptable	agreement	was	
defined	as	the	respiratory	rate	LOA	being	between	–2	and	2	brpm	around	the	bias	[54]	and	heart	
rate	LOA	in	the	range	of	–10%	to	10%	of	the	mean	around	the	bias.	The	latter	range	allows	for	
easy	verification	using	the	ratio	between	HealthPatch	and	Spacelabs	values	instead	of	the	differ-
ence.	Ideally,	the	ratio	bias	is	equal	to	1,	so	the	95%	LOA	of	the	ratio	should	be	no	greater	than	
the	bias	±	0.1,	i.e.,	±10%.	

For	the	analyses,	the	data	were	resampled	to	𝑓0 = 1/60	Hz,	i.e.,	one	sample	per	minute,	us-
ing	the	methods	described	in	§4.3.2.	This	is	the	native	Spacelabs	sampling	frequency.	Individual	
data	points	from	all	subjects	were	included	only	if	both	data	points	from	HealthPatch	and	Space-
labs	(an	observation	pair)	were	available.	

Because	in	this	study	it	is	of	interest	to	measure	changes	in	vital	signs,	the	dynamic	validity	
of	HealthPatch	MD	is	to	be	evaluated.	However,	BAA	is	a	static	analysis:	it	does	not	quantify	how	
well	changes	in	vital	signs	are	measured	by	either	of	the	compared	methods.	What	can	be	done	
with	BAA	is	an	analysis	of	the	extreme	values	in	the	vital	signs	data.	This	still	is	no	performance	
measure	 for	 dynamic	 validity	 of	 HealthPatch	MD,	 but	 it	 provides	 some	 information	 about	 its	
performance	when	vital	signs	are	out	of	their	normal	range.	After	all,	it	is	of	particular	interest	to	
measure	 extreme	 vital	 signs	 correctly,	 because	 they	 can	 potentially	 be	 used	 to	 recognise	 the	
deteriorating	patient.	For	this	reason,	BAA	was	performed	on	the	lowest	vital	signs	up	to	the	10th	
percentile	 and	 separately	 on	 the	highest	 vital	 signs	 from	 the	90th	 percentile	 upward.	 If	 agree-
ment	is	high	in	these	subsets,	then	this	provides	evidence	about	the	performance	of	HealthPatch	
compared	to	Spacelabs	near	these	extreme	values.	The	10th	and	90th	percentiles	were	calculated	
from	the	Spacelabs	data,	because	in	this	study	it	is	the	reference.	

The	results	of	the	agreement	analyses	described	in	this	section	are	presented	in	§5.2	of	the	
next	chapter.	

§4.5 Discussion	
This	 chapter	 described	 the	 measurements	 performed	 with	 HealthPatch	 MD	 and	 Spacelabs	
XPREZZON	on	the	surgical	medium	care	ward.	Furthermore,	the	design	of	the	database	and	the	
interface	with	MATLAB	were	outlined.	Next,	this	chapter	described	some	of	the	most	 important	
methods	used	to	pre-process	the	raw	data	into	a	format	that	facilitates	further	analyses.	Lastly,	
these	 analyses	 were	 described	 by	 summarising	 Bland-Altman	 analysis	 methods	 and	 which	 of	
these	were	used	in	this	study.	

§4.5.1 Experiences	with	HealthPatch	MD	in	practical	measurements	
During	 the	measurements	with	HealthPatch	MD	 it	was	 found	 the	placement	of	 the	 thermistor	
has	a	disadvantage.	The	thermistor,	shown	in	Figure	5	of	the	previous	chapter,	is	on	the	patient’s	
skin	side	of	the	electronics	inside	the	adhesive	patch.	This	creates	a	protrusion	that	is	visible	and	
tangible	through	the	patch’s	outer	material.	This	design	choice	may	have	been	made	because	in	
this	position	the	thermistor	probably	has	better	skin	contact,	because	 it	protrudes	up	to	a	few	
millimetres	from	the	adhesive	surface	into	the	skin.	The	theoretical	disadvantage	of	this	place-
ment	 is	 that	 the	protrusion	could	damage	 the	 skin	and	cause	 irritation.	Because	 thermometry	
was	not	of	 interest	 in	this	study,	 it	was	not	further	 investigated	how	the	thermistor	placement	
affected	patient	comfort	and	temperature	measurement	quality.	No	patients	reported	irritation	
by	the	patch	when	asked,	which	 leads	to	the	conclusion	that	 in	this	study’s	measurements	the	
thermistor	placement	was	irrelevant.	
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§4.5.2 The	battery	phenomenon	
In	early	stages	of	this	study	a	number	of	HealthPatch	measurements	showed	problems	recording	
data.	Many	short	and	 long	gaps,	 ranging	 from	seconds	 to	hours,	were	present	 in	 the	data.	Ex-
plorative	analysis	of	the	raw	data	files	of	these	measurements	revealed	the	battery	level	showed	
strange	behaviour.	The	level	could	drop	rapidly	(and	even	instantly)	from	100%,	which	is	a	nor-
mal	 level	 throughout	the	first	days,	 to	0%.	After	some	time	at	0%,	which	could	range	from	se-
conds	to	hours,	the	battery	level	instantly	rose	to	100%	again	and	the	measurement	would	con-
tinue	normally.	However,	the	battery	dropouts	would	often	occur	shortly	after	one	another.	This	
resulted	in	a	measurement	with	many	short	and	long	gaps,	because	the	HealthPatch	turned	on	
and	 off	 repeatedly	 for	 arbitrary	 periods	 of	 time.	 It	was	 unknown	what	 the	 quality	was	 of	 the	
sections	of	data	that	were	available,	especially	the	short	sections	of	a	few	samples	between	bat-
tery	dropouts.	

The	first	time	this	phenomenon	was	witnessed,	we	thought	it	could	have	been	caused	by	a	
faulty	 HealthPatch	 or	 by	 some	 electrical	 influence	 of	 the	 Spacelabs	 ECG	 electrodes	 that	 by	
chance	happened	 to	be	 located	near	 the	patch	 location12.	Unfortunate	 enough,	we	 found	 the	
same	strange	battery	behaviour	in	later	measurements	as	well.	Plots	of	the	battery	level	versus	
time	showed	a	sawtooth	shape,	which	we	named	the	‘battery	phenomenon’.	Figure	16	shows	an	
example	of	what	the	phenomenon	looks	like.	

Various	hypotheses	for	a	cause	were	tested,	but	the	battery	phenomenon	seemed	to	occur	
randomly	and	all	attempts	to	prevent	the	phenomenon	from	occurring	appeared	futile.	We	con-
tacted	Vital	Connect’s	technical	support,	who	after	inspection	of	the	data	and	some	unsuccessful	
advice	suggested	that	the	phenomenon	could	be	caused	by	the	battery	design.	As	described	in	
Chapter	2,	the	patch	incorporates	a	zinc-air	cell	battery	as	 its	power	source.	 It	requires	oxygen	
for	the	redox	with	zinc	that	generates	the	electric	potential	for	the	patch	to	function.	Vital	Con-
nect	hypothesised	the	oxygen	supply	was	deficient	in	the	patch	positioned	over	the	left	midcla-
vicular	line	near	the	6th	and	7th	intercostal	spaces.	They	suggested	we’d	perform	future	meas-
urements	with	 the	patch	at	 a	 45°	 angle	on	 the	 left	m.	pectoralis	major.	 Since	 their	 advice,	 all	
measurements	were	 performed	with	 the	 patch	 on	 the	 suggested	 application	 site.	 The	battery	
phenomenon	has	never	occurred	since.	Our	current	hypothesis	 is	that	the	previous	patch	loca-
tion	on	 the	 skin	was	 (more)	prone	 to	obstructing	airflow	 towards	 the	battery	due	 to	 clothing,	
blankets,	or	the	patients	themselves.	Fact	is	that	not	only	our	patient	require	oxygen.	

																																																													
12	The	patient	in	question	had	wounds	near	the	regular	Spacelabs	electrode	locations,	hence	the	different	
placement.	

Figure	16	–	The	battery	phenomenon	is	shown	of	a	measurement	containing	almost	8	con-
secutive	hours	of	the	problem.	The	characteristic	sawtooth	shape	of	the	battery	level	can	be	
seen.	The	battery	 level	can	 change	either	slowly	or	 almost	 instantly	 from	100%	to	0%	and	
the	other	way	around.	
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Because	shortly	after	discovery	of	the	battery	phenomenon	(but	not	yet	the	solution)	a	lot	of	
HealthPatches	 showed	 problems.	 The	 resulting	 large	 amount	 of	 data	 loss	 was	 unacceptable.	
Therefore,	it	was	decided	to	study	the	reliability	of	HealthPatch	measurements.	Later,	after	the	
solution	was	found	and	the	amount	of	data	loss	went	down,	this	reliability	analysis	was	redone.	
The	results	of	these	analyses	of	HealthPatch	reliability	can	be	found	in	Appendix	B.	

From	all	the	aforesaid,	it	may	be	concluded	that	the	position	under	the	nipple	is	more	likely	
to	suffer	from	oxygen	depletion	of	the	battery	than	the	more	cranial	location	on	the	chest.	The	
oxygen	 depletion	 could	 be	 caused	 by	 the	 patient’s	 blankets	 and	 clothing	 covering	 the	 patch	
more	often	and	more	thoroughly.	Also,	a	patient	laying	on	their	side	or	in	pronation,	which	may	
happen	e.g.	while	washing,	could	cause	suffocation	of	the	battery.	Furthermore,	 it	happened	a	
few	times	that	the	active	grade	HealthPatch,	which	is	not	meant	to	be	reapplied	after	removal,	
was	reapplied	and	did	not	adhere	too	well	any	more.	Consequently,	the	nurse	put	a	transparent	
sticker	(Tegaderm)	over	the	patch,	which	impeded	the	oxygen	supply	enough	to	cause	the	phe-
nomenon.	 Although	 Tegaderm	 is	 permeable	 for	 oxygen,	 it	 apparently	 impedes	 the	 supply	
enough	to	cause	the	phenomenon.	

These	 practical	 implications	 of	 unforeseen	 circumstances	 and	 human	 behaviour	 indicate	
how	challenging	the	design	of	a	wearable	vital	signs	monitor	can	be.	It	also	shows	that	it	is	im-
portant	 to	research	and	develop	 in	close	cooperation	with	manufacturers,	 researchers,	 techni-
cians,	nurses,	clinicians	and	patients.	If	this	technology	is	to	be	applied	out	of	the	hospital,	e.g.	in	
a	patient’s	home,	it	is	probable	that	more	unforeseen	practical	issues	will	emerge.	

§4.5.3 Annotating	plots	of	participations	or	measurements	
In	the	current	implementation	of	the	methods	to	plot	the	vital	signs,	no	support	was	built	in	yet	
to	add	annotations	to	the	graphs.	For	further	studies,	it	is	recommended	information	in	annota-
tions	 is	 added	 to	 the	plots.	 This	 can	be	very	 informative	when	assessing	 the	data	visually.	 For	
example,	when	a	patient	with	stable	heart	rate	and	respiratory	rate	 is	also	stable	according	to	
their	medical	record,	it	may	be	worth	annotating	that	moment	or	period	in	time.	It	is	even	more	
interesting	 to	annotate	medical	 findings	 that	may	 influence	 the	vital	 signs.	For	example,	when	
patients	develop	a	cardiac	arrhythmia,	that	will	be	seen	by	nurses	on	the	continuous	Spacelabs	
monitor,	resulting	in	a	potential	annotation,	and	confirmed	by	doctors,	resulting	in	another	an-
notation.	Any	treatments	or	 interventions	could	be	recorded	as	annotations	as	well.	Complica-
tions,	such	as	suspected	infections	or	anastomotic	leakage,	would	be	very	interesting	to	record	
along	the	HealthPatch	measurements.	If	all	that	clinical	information	also	shows	up	in	the	plots,	it	
may	help	 indicate	where	 interesting	events	happen	and	recognise	what	trends	or	patterns	can	
be	seen	in	the	time	around	such	events.	This	may	aid	future	developments	towards	the	recogni-
tion	of	the	deteriorating	surgical	patient.	

The	task	of	annotating	plots	with	manually	extracted	information	from	the	medical	records	
can	be	 tedious.	 It	may	be	aided	by	 future	developments	 in	natural	 language	processing	 to	ex-
tract	information	from	the	EMR	automatically	[55].	

§4.5.4 Bland-Altman	analysis	

Autocorrelation	in	repeated	measurements	violates	the	assumption	of	independence	

In	an	experiment	where	multiple	measurements	are	performed	on	the	same	 individual	by	two	
methods—instead	of	just	one	measurement	per	method	per	individual	as	with	regular	BAA—the	
assumptions	of	BAA	are	possibly	violated.	As	with	many	analysis	methods	for	sampled	data,	 in	
BAA	it	is	assumed	that	samples	are	taken	independently.	Repeated	measurements	of	vital	signs	
from	the	same	individual	likely	violate	this	assumption	when	the	sample	rate	is	high	relative	to	
the	natural	changes	of	 the	measurand.	For	example,	your	current	heart	rate	 is	probably	about	
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the	same	as	your	heart	 rate	of	one	minute	ago;	heart	 rate	 is	autocorrelated,	hence	heart	 rate	
samples	taken	shortly	after	one	another	are	not	independent:	knowledge	of	a	previous	sample	
provides	information	about	a	following	sample.	Repeated	measurements	are	likely	to	be	corre-
lated	unless	the	measurand	is	truly	random,	which	may	not	be	possible	for	physiological	quanti-
ties.	Moreover,	 zero	correlation	does	not	 imply	 independence,	since	two	variables	may	be	de-
pendent	in	a	way	correlation,	which	merely	is	a	measure	of	linear	association,	cannot	detect,	e.g.	
non-linear	associations.	

To	correct	for	autocorrelation	or	autoregression,	as	it	is	more	generally	called	(more	on	this	
subject	in	Chapter	6,	the	data	should	be	decorrelated	to	a	point	where	it	is	no	longer	considered	
to	 be	 autocorrelated.	 The	 question	 is	 if	 this	 leads	 to	 analyses	 that	 can	 practically	 answer	 the	
questions	being	investigated.	

To	 illustrate	 this,	 consider	 the	 following	 example.	 Heart	 rate	 is	 measured	 every	 minute	
throughout	a	day,	just	like	in	this	study.	Heart	rate	values	are	autocorrelated	as	exemplified	be-
fore.	The	autocorrelation	function	(ACF)	can	be	estimated	using	the	methods	from	§4.3.3,	specif-
ically	using	the	autocovariance	function.	The	resulting	graph	will	show	high	(∼80–100%)	correla-
tion	at	and	near	zero	lag	and	low	correlation	at	lags	further	away	from	zero.	In	this	graph,	a	cer-
tain	threshold	of,	say,	10%	could	be	used	to	find	the	lag,	i.e.,	the	time	at	which	we	consider	the	
data	to	be	uncorrelated	to	itself.	For	the	purpose	of	the	example,	let’s	say	the	interval	found	is	3	
hours.	 Then,	 samples	 taken	 independently	 at	 3-hour	 intervals	 can	 be	 considered	 to	 have	 low	
autocorrelation.	Sampling	at	this	 lower	frequency	will	however	diminish	the	time	resolution	of	
the	measurement.	Originally,	we	were	 interested	 in	measuring	every	minute	for	good	reasons,	
e.g.	to	be	able	to	timely	detect	acute	and	critical	changes	in	heart	rate.	This	temporal	resolution	
is	lost	if	we	sample	at	a	lower	rate	merely	to	obtain	uncorrelated	samples.	

In	the	example,	it	is	not	possible	to	resample	the	minute-sampled	data	down	to	one	sample	
per	 three	hours.	This	would	either	 incur	 the	penalty	of	aliasing,	or	when	using	an	anti-aliasing	
filter	(see	§4.3.2)	the	data	would	become	correlated	again	due	to	every	filter	being	some	func-
tion	of	current	and	past	samples,	somewhat	comparable	to	a	weighted	moving	average	filter.	

The	current	study	therefore	did	not	consider	techniques	to	remove	autocorrelation	from	the	
measured	time	series,	but	treated	them	as	if	they	had	zero	autocorrelation.	How	this	affects	the	
analyses	is	unknown,	but	it	is	probable	the	estimations	of	CI	and	LOA	in	BAA	are	affected.	

Alternative	agreement	analysis	methods	

Besides	 the	 well-known	 Bland-Altman	 analysis	 and	 the	 variations	 explained	 and	 used	 in	 this	
chapter,	 other	 agreement	 analysis	 methods	 exist.	 For	 longitudinal	 data,	 such	 as	 used	 in	 this	
study,	others	have	suggested	methods	to	accommodate	the	classical	BAA	methods.	Myles	and	
Cui	propose	a	method	based	on	methods	commonly	used	in	social	studies:	random	effects	mod-
els	[56].	 In	their	methods,	the	studied	subjects	are	treated	as	different	groups	of	observations,	
similar	 to	 the	ANOVA	method	 in	BAA	for	 repeated	measurements.	The	 individual	observations	
within	one	subject	are	treated	as	variables	that	change	with	time,	where	time	is	a	predictor	 in	
the	model	 too.	 It	 is	a	different	method	 to	estimate	 the	variation	within	each	subject,	which	 is	
indeed	the	factor	that	makes	the	regular	BAA	methods	inappropriate.	The	random	effects	mod-
elling	method	also	allows	 to	adjust	 for	other	 covariates	 that	 the	 researcher	deems	 relevant	 in	
the	assessment	of	agreement	between	the	two	methods.	As	such,	the	random	effect	model	is	an	
extension	of	the	ANOVA	method.	This	study	did	not	consider	the	random	effects	model,	but	it	is	
recommended	 to	 study	 its	 use	 and	 methods	 in	 future	 agreement	 analyses.	 A	 bootstrapping	
study	 by	 Van	 Loon	 et	 al.	 showed	 that	 the	 random	 effects	model	 by	Myles	 and	 Cui	 produces	
comparable	 results	 to	Bland	and	Altman’s	 repeated	measurements	method,	although	 the	LOA	
range	can	be	a	bit	smaller	[57].	
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Chapter	5. Data	analysis:	agreement	of	HealthPatch	MD	with	Space-
labs	XPREZZON	

People	love	chopping	wood	
in	this	activity	one	immediately	sees	results	

Albert	Einstein	

The	 previous	 chapter	 described	 the	 measurement	 methods,	 raw	 data	 storage	 and	 pre-
processing,	 signal	 analysis	 and	 Bland-Altman	 analysis	 (BAA)	 methods	 used	 in	 this	 study.	 This	
chapter	presents	and	analyses	the	obtained	results.	

§5.1 Measurement	results	
§5.1.1 Results	of	the	patient	sample	
In	total,	33	patients	were	included.	Their	vital	signs	were	measured	in	35	participations,	as	two	
patients	were	 admitted	more	 than	once	 and	 could	 be	 included	 a	 second	 time.	 Therefore,	 the	
following	patient	characteristics	are	calculated	for	the	35	participations,	not	for	the	33	patients.	
In	other	words,	the	patients	are	treated	as	a	group	of	35,	where	two	of	them	are	included	twice.	

Patient	age	at	the	start	of	the	participation	ranged	from	23–80	years	and	was	60.8	years	on	
average.	Female-to-male	ratio	was	2:5.	Patient	length,	weight	and	BMI	were	not	available	in	the	
EMR	of	all	patients.	When	two	of	the	three	parameters	were	available,	the	third	could	be	calcu-
lated.	 As	 a	 result,	 length	was	 known	 for	 31	 patients	 and	was	 1.77	m	on	 average.	Weight	was	
available	 for	 32	 patients	 with	 an	 average	 of	 81.40	 kg.	 BMI	 was	 known	 in	 31	 cases	 and	 was	
26.0	kg/m-2	 on	 average.	ASA	(American	 Society	 of	Anesthesiologists)	 score	was	unavailable	 for	
many	 participations,	 because	 some	 patients	 underwent	 emergency	 surgery	where	 determina-
tion	of	the	score	was	usually	not	possible.	Additional	descriptive	statistics	are	 listed	in	Table	3.	
Table	4	lists	these	statistics	for	individual	patients	per	participation.	Note	that	because	two	pa-
tients	 participated	 twice,	 their	 statistics	 are	 listed	 twice	 as	well,	 although	 some	 statistics	may	
change	from	one	participation	to	another.	

Of	 the	patient	sample	with	35	participations,	a	 total	of	36	HealthPatch	measurements	and	
35	Spacelabs	measurements	were	obtained	for	a	total	of	71	measurements.	There	was	one	extra	
HealthPatch	measurement,	because	one	patch	 failed	 to	 transmit	 any	useful	data	 (see	also	 the	
discussion	 about	 the	 ‘battery	 phenomenon’	 in	 §4.5.2),	 hence	 it	was	 replaced	with	 another	 as	
soon	as	 the	problem	was	discovered.	The	patient	was	 still	 expected	 to	 stay	on	 the	ward	 for	a	
long	enough	time	to	start	a	second	HealthPatch	measurement.	Because	of	the	database	design	

Table	3	–	Included	patient	characteristics	are	listed	as	descriptive	statistics.	BMI:	body-mass	index.	
IQR:	inter-quartile	range.	ASA:	American	Society	of	Anesthesiologists.	

Characteristic	 Number	 Mean	 Standard	deviation	 Median	 IQR	 Range	(min–
max)	

Patients	 35	 –	 –	 –	 –	 –	
Male	 25	 –	 –	 –	 –	 –	

Female	 10	 –	 –	 –	 –	 –	
Age	(years)	 35	 60.8	 13.6	 63	 13.8	 23–80	
Length	(m)	 31	 1.77	 0.09	 1.75	 0.12	 1.57–1.96	
Weight	(kg)	 32	 81.4	 16.6	 82.5	 18.3	 47.7–145	
BMI	(kg/m-2)	 31	 26.0	 4.5	 25.7	 4.2	 17.6–40.2	

ASA	score	 20	 2.7	 0.8	 3	 1	 1–4	
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as	described	before,	it	is	allowed	to	have	any	number	of	measurements	of	any	number	of	wear-
ables	within	one	participation.	

The	total	duration	of	all	Spacelabs	measurements	was	over	65	days.	The	HealthPatch	yielded	
70	days,	22	hours	and	45	minutes	of	measurements.	On	average,	 this	was	1	day	and	20	hours	

Table	4	–	Individual	patient	characteristics	are	listed	per	participation.	BMI:	body-mass-
index.	ASA:	American	Society	of	Anesthesiologists.	

Participation	
№	

Sex	 Age	
(years)	

Length	
(m)	

Weight	
(kg)	

BMI	
(kg/m²)	

ASA	
Score	

8	 male	 48	 1.75	 88.6	 28.93	 1	
9	 male	 76	 1.8	 76.3	 23.55	 unknown	
10	 male	 59	 1.72	 62.7	 21.19	 unknown	
11	 male	 58	 1.78	 66	 20.83	 unknown	
12	 female	 58	 1.75	 68	 22.20	 unknown	
13	 male	 28	 1.89	 92	 25.76	 unknown	
14	 male	 65	 1.78	 85.1	 26.86	 3	
15	 male	 53	 1.67	 67	 24.02	 2	
16	 female	 64	 1.69	 70	 24.51	 unknown	
17	 male	 75	 –	 –	 –	 unknown	
18	 male	 75	 –	 81	 –	 unknown	
19	 female	 73	 1.68	 75	 26.57	 unknown	
20	 male	 71	 1.7	 85	 29.41	 unknown	
21	 male	 71	 1.8	 74	 22.84	 2	
22	 male	 63	 1.9	 145	 40.17	 4	
23	 female	 57	 1.67	 100.5	 36.04	 3	
24	 male	 23	 –	 –	 –	 3	
25	 female	 61	 1.75	 84	 27.43	 3	
26	 male	 71	 1.8	 57	 17.59	 2	
27	 male	 66	 –	 –	 –	 unknown	
28	 female	 63	 1.65	 81	 29.75	 4	
29	 female	 37	 1.90	 87.7	 24.29	 2	
30	 female	 37	 1.90	 87.7	 24.29	 2	
31	 male	 75	 1.75	 78.8	 25.73	 2	
32	 male	 63	 1.72	 90	 30.42	 3	
33	 male	 67	 1.69	 70	 24.51	 3	
34	 male	 77	 1.78	 87	 27.46	 3	
35	 male	 52	 1.96	 92	 23.95	 unknown	
36	 female	 58	 1.57	 47.65	 19.33	 2	
37	 male	 70	 1.82	 85.2	 25.72	 unknown	
38	 male	 49	 1.84	 88	 25.99	 unknown	
39	 male	 80	 1.88	 97.7	 27.64	 unknown	
40	 male	 63	 1.76	 69.5	 22.44	 3	
41	 male	 60	 1.74	 90.5	 29.89	 4	
42	 female	 62	 1.64	 75	 27.89	 3	
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per	patient	for	Spacelabs	and	a	little	over	2	days	for	HealthPatch.	Three	tables	in	Appendix	D	list	
the	 numbers	 of	 samples	 per	 participation	 of	 the	 raw,	 uniformly	 sampled	 and	 ensemble	 (both	
HealthPatch	and	Spacelabs	resampled,	synchronised	and	trimmed	to	each	other)	data	sets;	the	
second	and	third	table	also	list	total	measurement	duration.	

Because	measurements	could	contain	gaps,	it	was	of	interest	to	quantify	the	amount	of	data	
loss.	This	loss	is	expressed	in	time	of	measurement	without	data	and	can	be	expressed	as	a	per-
centage	of	the	total	measurement	duration	as	well.	The	data	loss	of	the	HealthPatch	measure-
ments	is	summarised	in	Table	5.	This	table	shows	the	data	loss	duration	(time	without	data)	and	
the	percentage	of	the	total	measurement	time	that	was	lost.	Because	most	measurements	had	
no	data	loss,	the	median	data	loss	also	was	zero.	For	this	reason,	a	subset	of	measurements	was	
taken	 to	calculate	 the	 same	statistics:	only	HealthPatch	measurements	with	nonzero	data	 loss	
were	considered	in	the	subset.	

For	reference,	plots	of	all	vital	signs	as	measured	by	HealthPatch	MD	and	Spacelabs	XPREZ-
ZON	in	this	study	are	included	in	Appendix	C.	As	an	example,	one	participation	is	shown	in	Figure	
17.	The	figure	shows	the	vital	signs	as	measured	by	both	Spacelabs	and	HealthPatch	during	one	
participation.	Heart	rate	and	respiratory	rate	are	graphed	 in	different	panels.	The	vertical	axes	
show	heart	rate	in	bpm	(top	panel)	and	respiratory	rate	in	brpm.	The	horizontal	axes	are	identi-
cal	and	show	date	and	time:	the	participation	took	place	over	the	course	of	almost	4½	days.	Of	
this	participation,	the	case	is	described	below.		

Case	study:	one	participation	explored	

The	participating	patient	is	a	60-year-old	male	that	underwent	open	nephrectomy	for	suspected	
carcinoma	in	situ	one	day	before	the	start	of	the	participation.	The	patient	has	an	extensive	car-
diac	 and	 vascular	 medical	 history,	 including	 restrictive	 cardiomyopathy,	 pulmonary	 hyperten-
sion,	obesity,	diabetes	mellitus	type	2,	peripheral	vascular	disease	with	most	notably	 lower	 leg	
amputation	and	renal	insufficiency.	

On	the	day	of	surgery,	atrial	flutter	(AF)	was	seen.	The	patient	was	admitted	to	the	surgical	
medium	 care	ward	 for	 hemodynamic	monitoring	 on	 the	day	 after	 surgery.	 For	 heart	 rate	 and	
respiratory	 rate,	 not	many	 interesting	 developments	 transpired	 on	 this	 day.	 However,	 on	 the	
next	morning	(September	8th)	the	patient	required	more	norepinephrine	to	maintain	tension	and	
elevations	of	heart	rate	were	seen.	Later	that	morning	AF	was	seen	again.	However,	the	ECG	did	
not	seem	worse	than	what	was	seen	before.	In	the	evening	the	heart	rhythm	became	very	irreg-
ular	with	tachycardia	up	to	110	bpm.	A	cardiologist	concluded	the	same	AF	as	seen	before	was	
the	main	cause.	On	September	9th,	some	bradycardias	as	low	as	44	bpm	were	seen	during	hae-
modialysis.	The	next	day,	even	slower	heart	rhythms	of	35–40	bpm	were	witnessed.	

Table	5	–	HealthPatch	measurement	data	loss	statistics	are	summarised.	The	lost	time	is	
given	in	hours:minutes:seconds	format.	The	percentage	indicates	how	much	of	the	total	
measurement	duration	is	lost.	

Data	set	 Total	loss	 Mean	
loss	

Median	
loss	

Min	loss	 Max	loss	

All	 HealthPatch	
measurements	
(𝑛 = 36)	

101:15:24	
(5.9%)	

02:48:45	
(5.9%)	

00:00:00	
(0%)	

00:00:00	
(0%)	

59:59:08	
(52.4%)	

Subset:	
HealthPatch	
measurements	
with	 any	 data	
loss	(𝑛 = 17)	

101:15:24	
(15.5%)	

05:57:22	
(15.5%)	

00:53:36	
(2.3%)	

00:00:08	
(0.0%)	

59:59:08	
(52.4%)	
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Throughout	September	10th	and	11th,	AF	and	bradycardias	were	regularly	seen.	Norepineph-
rine	was	still	 required	and	was	gradually	 increased	over	the	course	of	the	day.	During	the	day,	
the	patient	declined	slowly	until	the	nurse	became	worried	and	activated	a	urologist	to	see	what	
was	 going	on.	 The	doctor	 suspected	haemorrhage	 and	around	midnight	of	 September	12th	 an	
angiographic	 procedure	 confirmed	 the	 diagnosis.	 The	 right	 testicular	 artery	was	 coiled	 subse-
quently.	After	this	procedure,	the	patient	was	admitted	to	the	IC	and	the	participation	ended.	

To	 illustrate	 the	 course	 of	 this	 patient’s	 physiological	 decline,	 consider	 the	 Early	Warning	
Score	(EWS)	values	that	were	recorded	during	this	patient’s	admission	on	the	surgical	medium	
care:	Figure	18	shows	these	values.	In	Chapter	6,	§6.1	goes	into	more	detail	about	the	EWS.	

§5.2 Agreement	analysis	results	
The	results	of	 the	agreement	analysis	as	described	 in	§4.4.2	are	presented	 in	 this	 section.	The	
resampling	and	observation	pair	matching	required	for	these	analyses	resulted	in	partial	exclu-
sion	of	data	(see	also	Table	11	in	Appendix	D).	After	exclusion	of	data	points	without	observation	
pairs	 in	either	HealthPatch	or	Spacelabs	measurements,	the	data	of	26	of	the	35	participations	
remained.	This	may	seem	as	a	 large	exclusion,	but	this	was	not	caused	by	the	observation	pair	
matching.	The	actual	reason	for	exclusion	of	these	participations	was	that,	after	resampling,	zero	
data	points	were	available	 in	both	 the	HealthPatch	and	Spacelabs	measurements.	Reasons	 for	
this	were	that	either	the	Spacelabs	or	the	HealthPatch	data	files	were	unavailable	(mostly	Space-
labs,	see	also	Appendix	D),	so	no	common	measurement	times	were	possible;	or	that	the	meas-
urements	were	either	too	short	or	contained	relatively	many	gaps,	which	made	the	resampling	
process	impossible	without	removing	all	data	(see	also	§4.3.2).	

Figure	17	–	A	participation	of	multiple	days	 is	shown.	The	upper	panel	shows	heart	rate	 in	
beats	per	minute,	the	lower	respiratory	rate	in	breaths	per	minute.	Both	the	measurements	
by	HealthPatch	(red)	and	Spacelabs	(blue)	are	shown.	
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In	total,	𝑁 = 55565	observation	pairs	were	available	of	heart	rate	and	𝑁 = 56674	observa-
tion	pairs	were	available	for	respiratory	rate.	These	total	numbers	were	distributed	between	the	
26	patients	as	follows.	The	numbers	of	samples	per	patient	ranged	from	249	to	5501	for	heart	
rate	 and	 for	 respiratory	 rate	 the	 numbers	 ranged	 from	 243	 to	 5507.	 On	 average,	 there	were	
2137.1	and	2179.8	observation	pairs	per	patient	respectively.	The	numbers	of	observation	pairs	
are	listed	in	Table	6.	

§5.2.1 Agreement	analysis	of	heart	rate	

Regular	Bland-Altman	analysis	of	HealthPatch	MD	and	Spacelabs	heart	rate	

Regular	BAA	on	all	data	as	if	each	observation	pair	came	from	an	individual	subject	resulted	in	a	
bias	 of	𝐷 = 1.13	bpm	 and	 95%	 LOA	 ranging	 from	 –6.38	bpm	 to	 8.64	bpm	 on	 the	 domain	 of	
about	40–140	bpm.	The	range	of	 the	LOA	 is	8.64 − −6.38 = 15.02	bpm.	Using	 the	agreement	
criterion	of	10%	on	either	side	of	the	bias,	the	agreement	of	HealthPatch	MD	with	Spacelabs	is	
acceptable	 for	 heart	 rates	 over	 10 ⋅ 15.02/2	 = 75.10	bpm.	 Figure	 19	 shows	 the	 mean-
difference	plot	created	with	regular	BAA	performed	on	all	data.	

In	a	regular	mean-difference	plot	used	in	BAA	a	scatter	plot	of	the	observation	pairs	would	
be	made.	However,	due	to	the	very	 large	number	of	samples,	this	cannot	be	visualised.	There-
fore,	 a	 honeycomb	 plot	 was	 used	 instead.	 A	 honeycomb	 plot	 is	 a	 two-dimensional	 binning	
method	using	hexagonal	bins	instead	of	regular	square	bins.	Hexagonal	bins	have	the	advantage	
that	 they	are	 rounder	and	 fit	 into	one	another	 to	 form	a	compact	grid	of	bins.	The	bin	colour	
indicates	the	number	of	samples	in	the	particular	bin.	Altogether,	the	colour	cloud	in	the	honey-
comb	plot	 reveals	 the	underlying	distribution	of	 the	data.	Because	no	 (correct)	MATLAB	 imple-
mentation	existed	to	create	honeycomb	plots,	one	was	written	and	published.	The	details	of	this	
can	be	found	in	Appendix	E.	

Figure	18	–	The	Early	Warning	Score	throughout	the	course	of	the	case	of	Figure	17	is	plot-
ted.	Note	the	increase	to	a	value	of	9	in	the	last	48	hours	of	the	participation.	
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Note	that	the	graph’s	vertical	axis,	i.e.,	the	difference,	is	limited	from	about	–9	bpm	to	about	
11	bpm	for	better	visibility	of	the	bias	and	LOA	lines	and	the	point	cloud.	Although	some	obser-
vations	 lie	 out	 of	 the	 graph’s	 vertical	 range,	most	 data	 points	 are	 plotted;	 in	 fact,	 95%	of	 the	
observations	 lie	between	 the	LOA,	 so	more	 than	95%	of	 the	data	 is	 shown	 in	 the	 figure.	Note	
that	the	95%	CI	of	the	bias	and	LOA	are	graphed	as	red	error	bars	on	the	very	right	edge	of	the	
plot.	The	CI	are	tiny,	because	their	calculation	is	based	on	division	by	 𝑁 ≈ 236,	which	is	a	large	
number	relative	to	 𝑛 ≈ 5.	Furthermore,	the	line	of	equality	(zero	difference)	is	drawn	for	ref-
erence.	Lastly,	the	graph’s	legend	shows	the	Spearman	rank	correlation	of	the	differences	with	
the	means	and	its	𝑝-value.	The	correlation	is	significant	and	is	slightly	negative	(–0.16).	

A	 large	 amount	 of	 data	 points	 is	 seen	 near	 the	 bias	 line.	 Because	 of	 the	 large	 amount	 of	
points,	the	centre	of	the	point	cloud	is	in	itself	clouded	by	the	points,	which	makes	it	difficult	to	
see	 individual	points.	Near	the	right	end	of	the	graph	a	group	of	points	appears	to	be	concen-
trated,	while	 looking	a	bit	separated	from	the	main	point	cloud.	This	 lesser	cloud	could	be	the	
result	 of	 a	 number	 of	 observations	 from	 one	 patient	 near	 an	 average	 heart	 rate	 about	 130–
140	bpm.	

Table	6	–	The	numbers	of	observations	per	patient	available	for	Bland-Altman	analysis	are	
listed.	Every	sample	represented	a	minute’s	worth	of	data.	

Patient	№	
Number	of	observation	pairs	
Heart	rate	 Respiratory	rate	

1	 5230	 4584	
2	 1114	 1304	
3	 741	 758	
4	 5501	 5507	
5	 910	 1512	
6	 3947	 4891	
7	 1989	 2019	
8	 2307	 2555	
9	 2356	 2392	
10	 1121	 1124	
11	 4790	 4685	
12	 2113	 2181	
13	 1038	 1049	
14	 1312	 1352	
15	 2306	 1930	
16	 4263	 4276	
17	 1342	 1343	
18	 249	 243	
19	 1900	 1727	
20	 1103	 1208	
21	 2206	 2233	
22	 547	 561	
23	 1903	 1920	
24	 1429	 1438	
25	 1414	 1432	
26	 2434	 2450	
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Figure	 19	 –	 The	 mean-difference	 plot	 of	 regular	 Bland-Altman	 analysis	 of	 heart	 rate	 is	
shown.	 The	analysis	was	performed	with	 all	 heart	 rate	data,	 as	 if	 each	data	point	was	 an	
individual	observation	from	an	individual	subject.	Because	the	number	of	samples	is	large,	a	
honeycomb	plot	 is	made	 instead	of	 a	scatter	plot.	 The	agreement	between	the	two	meas-
urement	methods	(M1	and	M2)	is	given	by	the	bias	and	the	limits	of	agreement	(LOA),	drawn	
as	horizontal	 lines.	Note	the	tiny	95%	 confidence	 intervals	 to	the	right	end	of	 the	 lines	 for	
the	95%	limits	of	agreement	and	bias:	they	are	so	small	due	to	the	large	number	of	observa-
tions;	 they	appear	 as	 flat	 lines	 (compare	with	the	next	 figure).	HP:	HealthPatch.	HR:	heart	
rate.	SL:	Spacelabs.	𝒓𝒔:	Spearman	rank	correlation.	
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Figure	20	–	The	mean-difference	plot	of	Bland-Altman	analysis	for	repeated	measurements	
of	heart	rate	in	beats	per	minute	(bpm)	is	shown.	The	bias	and	limits	of	agreement	(LOA)	are	
shown	as	horizontal	 lines.	The	95%	 confidence	 intervals	of	 the	bias	and	LOA	are	shown	as	
error	bars	on	the	right	ends	of	the	lines.	Note	the	vertical	axis	has	been	scaled	compared	to	
Figure	19.	HP:	HealthPatch.	HR:	heart	rate.	SL:	Spacelabs.	𝒓𝒔:	Spearman	rank	correlation.	
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Bland-Altman	analysis	 for	repeated	measurements	of	heart	 rate	by	HealthPatch	MD	
and	Spacelabs	

Figure	20	shows	the	mean-difference	plot	of	BAA	for	repeated	measurements	of	heart	rate	while	
accounting	 for	changing	true	values.	The	difference	with	the	previous	 figure	 is	clear:	 there	are	
much	 less	 data	 points	 to	 be	 plotted,	 because	 only	 the	 subjects’	mean	 differences	 are	 plotted	
versus	their	mean.	The	same	elements	from	Figure	19	are	plotted	in	Figure	20.	The	bias	was	𝐷 =
1.13	bpm,	which	equals	the	bias	of	the	regular	BAA	method	due	to	the	identical	calculation.	The	
LOA	are	slightly	different,	but	 similar	nonetheless,	at	–6.40	and	8.66.	The	biggest	difference	 is	
seen	in	the	95%	CI	of	the	bias	and	LOA,	which	have	become	much	larger.	Using	the	CI	of	the	bias,	
it	 cannot	be	 concluded	 that	 the	bias	 is	different	 from	 the	 line	of	 equality	 at	 a	5%	 significance	
level,	because	the	line	of	equality	lies	within	the	interval.	

The	domain	 in	 the	graph	 ranges	 from	about	60	bpm	 to	about	130	bpm.	The	narrower	do-
main	compared	to	the	previous	figure	is	a	result	of	the	averaging	of	values	within	each	subject.	
One	subject	had	an	average	heart	rate	of	over	130	bpm,	which	is	concordant	with	the	group	of	
data	points	around	130	bpm	in	the	previous	figure.	

Like	in	the	regular	BAA,	the	Spearman	rank	correlation	is	found	to	be	negative	in	the	repeat-
ed	measurements	analysis;	it	is	–0.60	with	a	𝑝-value	of	0.0016.	Because	both	analyses	point	out	
a	negative	 linear	trend	 in	the	differences	with	 increasing	mean,	 it	may	be	 interesting	to	adjust	
the	bias	and	LOA	lines	to	these	trends.	Two	analyses	were	done	in	which	both	bias	and	LOA	were	
calculated	as	simple	 linear	regression	 lines	of	difference	on	mean.	 In	one	analysis,	 the	residual	
variance	was	assumed	to	be	constant,	 in	the	other	 it	was	assumed	to	be	variable.	Because	the	

Figure	21	–	Bland-Altman	analysis	using	simple	linear	regression	lines	for	bias	and	limits	of	agreement	 is	
shown.	 Instead	of	plotting	all	observations,	only	patient	means	are	plotted.	HP:	HealthPatch.	HR:	heart	
rate.	Bpm:	beats	per	minute.	SL:	Spacelabs.	𝒓𝒔:	Spearman	rank	correlation.	
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residual	variance	did	not	appear	to	be	variable,	only	the	results	of	the	constant	residual	variance	
analysis	are	given	here.	These	results	are	summarised	in	Figure	21,	in	which	the	mean	values	per	
patient	are	plotted	instead	of	using	the	honeycomb	plot	of	the	previous	figures.	This	has	no	in-
fluence	on	the	calculation	of	the	bias	or	LOA,	but	 is	a	different	way	of	visualising	the	data	set.	
Bland	and	Altman	also	plot	the	subject	means	in	their	articles	[51,53].	

The	bias	in	this	figure	a	simple	linear	regression	line;	the	intercept	is	2.47	bpm	and	the	slope	
is	 –0.016	 (dimensionless).	 The	 line	 ranges	 from	 1.67	bpm	 to	 0.22	bpm	 over	 the	 50–140	bpm	
domain.	 The	 upper	 and	 lower	 LOA	 regression	 lines	 are	 the	 bias	 line	 plus	 or	minus	 a	 constant	
based	on	the	standard	deviation	of	the	residuals.	This	constant	only	influences	the	intercept.	The	
upper	95%	LOA	has	 an	 intercept	of	 4.90	bpm	and	 the	 lower	95%	LOA’s	 intercept	 is	 0.05	bpm.	
Note	the	LOA	are	closer	to	the	bias	than	 in	the	constant	bias	and	LOA	method	of	the	previous	
figure.	The	LOA	are	2.42	bpm	above	and	below	the	bias	regression	line.	

Using	ratio	𝑅	instead	of	difference	as	the	agreement	statistic	resulted	in	a	bias	of	𝑅 = 1.017	
(dimensionless)	and	95%	LOA	of	0.893	and	1.140.	

Instead	of	analysing	the	entire	heart	rate	range,	the	lowest	and	highest	heart	rates	were	of	
interest	 to	 investigate	as	well.	Applying	BAA	 for	 repeated	measurements	on	heart	 rates	up	 to	
the	10th	percentile	(61.1	bpm)	resulted	in	a	non-significant	bias	of	–3.1	bpm	with	95%	LOA	of	–
24.4	bpm	and	18.1	bpm	(𝑛	 = 	13	subjects,	𝛴𝑚 = 5483	observation	pairs).	The	same	analysis	on	
heart	rates	greater	than	the	90th	percentile	(101.9	bpm)	resulted	in	a	significant	bias	of	8.4	bpm	
with	95%	LOA	of	–15.8	bpm	and	32.6	bpm	(𝑛 = 21	subjects,	𝛴𝑚 = 4742	observation	pairs).	

§5.2.2 Agreement	analysis	of	respiratory	rate	

Regular	Bland-Altman	analysis	of	HealthPatch	MD	and	Spacelabs	respiratory	rate	

The	results	of	the	regular	Bland-Altman	method	are	shown	in	the	mean-difference	plot	in	Figure	
22.	 The	 bias	 and	 95%	 LOA	 are	 2.28	brpm	 and	 –10.95	brpm	 to	 15.52	brpm	 respectively.	 These	
limits	 of	 agreement	 are	 too	 wide	 to	 be	 considered	 as	 acceptable	 by	 the	 predefined	 limits	 of	
2	brpm	around	the	bias.	The	Spearman	rank	correlation	between	difference	and	mean	is	signifi-
cantly	negative	at	–0.16.	

Bland-Altman	analysis	for	repeated	measurements	of	respiratory	rate	by	HealthPatch	
MD	and	Spacelabs		

As	with	heart	rate,	a	more	appropriate	method	was	BAA	for	repeated	measurements	assuming	a	
varying	true	value.	The	results	of	this	analysis	are	summarised	in	Figure	23.	The	bias	is	identically	
calculated	 as	with	 the	 regular	method	 bias;	 it	 is	 2.28	brpm	 and	 it	 is	 not	 significantly	 different	
from	zero	based	on	the	95%	CI.	The	lower	and	upper	95%	LOA	are	–11.00	brpm	and	15.56	brpm	
respectively,	which	are	 similar	 to	 the	 regular	method	LOA.	The	Spearman	 rank	correlation	be-
tween	difference	and	mean	is	not	significant	anymore	with	a	𝑝-value	of	0.31.	

It	can	be	seen	that	a	clear	heteroscedasticity	is	present	in	the	central	area	of	the	honeycomb	
plot:	low	mean	respiratory	rate	values	show	low	differences	on	average	than	high	mean	respira-
tory	rates,	i.e.,	most	low	mean	values	lie	close	to	the	bias	whereas	high	mean	values	do	less	so.	
Because	 of	 this,	 the	 repeated	measurements	 analysis	was	 extended	 by	 allowing	 non-constant	
bias	 and	 LOA	 to	 better	 fit	 the	 data.	 Using	 the	 simple	 linear	 regression	 approach,	 the	 mean-
difference	 graph	 in	 Figure	 24	was	 constructed.	 The	 bias	 regression	 line	 has	 an	 intercept	 of	 –
0.49	brpm	and	a	slope	of	0.16	(dimensionless).	The	lower	95%	LOA	has	an	intercept	of	3.11	brpm	
and	a	slope	of	–0.26.	The	upper	95%	LOA	has	an	intercept	of	–4.06	brpm	and	a	slope	of	0.58.	

Instead	 of	 analysing	 the	 entire	 respiratory	 rate	 range,	 the	 lowest	 and	 highest	 respiratory	
rates	were	of	 interest	to	 investigate	as	well.	Applying	BAA	for	repeated	measurements	on	res-
piratory	rates	up	to	the	10th	percentile	(10.9	brpm)	resulted	in	a	non-significant	bias	of	1.3	brpm	
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with	95%	LOA	of	–15.3	brpm	and	17.8	brpm	(𝑛	 = 	26	subjects,	𝛴𝑚 = 5554	observation	pairs).	
The	same	analysis	on	respiratory	rates	greater	than	the	90th	percentile	(27.0	brpm)	resulted	in	a	
non-significant	bias	of	2.7	brpm	with	95%	LOA	of	–13.6	brpm	and	19.0	brpm	(𝑛 = 26	 subjects,	
𝛴𝑚 = 4533	observation	pairs).	

§5.3 Discussion	
§5.3.1 Case	study:	exploration	of	vital	signs	of	a	deteriorating	patient	
The	case	study	in	§5.1.1	is	a	great	example	of	how	vital	signs	can	aid	in	the	recognition	of	a	dete-
riorating	patient.	This	particular	patient	underwent	major	surgery	and	had	a	relatively	bad	con-
dition	and	comorbidity	before	surgery.	Due	to	the	complicated	care	and	heavy	procedures	this	
patient	needs,	it	is	this	kind	of	patient	that	has	very	high	risk	of	not	recovering	well	or	experienc-
ing	an	adverse	event,	as	was	the	current	case.	Especially	 the	 last	48	hours	of	 the	participation	
show	that	the	vital	signs	do	contain	some	interesting	features	that	may	be	sensitive	for	a	deteri-
orating	patient.	

Heart	rate	was	generally	very	stable	throughout	September	9th	of	the	measurement,	but	on	
the	10th	 it	became	 less	stable	and,	at	 times,	very	 low.	Furthermore,	 from	September	10th	until	
confirmation	of	the	complication,	an	upward	trend	emerged	in	heart	rate.	While	these	absolute	

Figure	22	–	Respiratory	rate	(RR)	measured	by	HealthPatch	(HP)	and	Spacelabs	(SL)	was	analysed	
for	agreement	with	regular	Bland-Altman	Analysis.	The	results	are	summarised	in	the	plot,	where	
the	bias	and	95%	limits	of	agreement	are	shown	as	horizontal	lines.	Note	the	tiny	95%	confidence	
intervals	to	the	right	end	of	the	lines	for	the	95%	limits	of	agreement	and	bias:	they	are	so	small	
due	to	the	large	number	of	observations;	they	appear	as	flat	lines.	Brpm:	breaths	per	minute.	𝒓𝒔:	
Spearman	rank	correlation.	
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heart	 rate	 values	 are	not	 an	 indication	of	 a	 (developing)	 complication,	 the	dynamical	 changes	
may	be	informative.	

Respiratory	rate	showed	less	information	in	general,	because	of	the	greater	variance	of	the	
apparent	 high	 frequency	 noise	 compared	 to	 the	 slower	 signal	 components.	 Nevertheless,	 the	
last	48	hours	of	the	respiratory	rate	measurements	show	the	same	upward	trend.	

Although	 it	 seems	such	 trends	are	 informative	 for	developing	adverse	events,	 it	 should	be	
noted	 that	 this	particular	patient	 specifically	was	a	great	example.	Not	only	did	 the	vital	 signs	
show	interesting	dynamical	behaviour,	but	the	participation	was	long	as	well	and	the	measure-
ments	were	very	stable	while	the	patient	seemed	to	be	too.	This	is	not	so	much	the	case	in	the	
other	measurements,	in	which	almost	all	patients	simply	recovered	from	their	surgery	and	were	
dismissed	to	a	regular	ward.	Nonetheless,	this	specific	case	study	shows	that	monitoring	of	vital	
signs	with	a	wearable	vital	signs	monitor	such	as	HealthPatch	MD	may	provide	information	that	
otherwise	may	not	be	available,	e.g.	at	home	or	on	a	regular	hospital	ward.	

§5.3.2 Agreement	analysis	
In	 this	 chapter,	 the	 results	 of	 agreement	 analysis	 applied	 to	 heart	 rate	 and	 respiratory	 rate	
measurements	by	HealthPatch	MD	and	Spacelabs	were	presented.	Agreement	was	found	to	be	
acceptable	 for	heart	 rate,	but	not	 for	 respiratory	 rate.	The	 following	sections	discuss	 the	anal-
yses	performed	on	heart	 rate	and	 respiratory	 rate,	as	well	as	 some	methodological	 considera-
tions.	

Figure	23	–	The	results	of	Bland-Altman	analysis	for	repeated	measurements	of	respiratory	rate	(RR)	
in	breaths	per	minute	(brpm)	by	HealthPatch	(HP)	and	Spacelabs	(SL)	are	shown.	The	bias,	95%	limits	
of	 agreement	 and	 their	 95%	 confidence	 intervals	 (error	 bars	 on	 the	 right	 edge)	 are	 drawn	 in	 the	
mean-difference	plot.	𝒓𝒔:	Spearman	rank	correlation.	
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Heart	rate	agreement	was	acceptable,	but	not	for	extreme	values	

The	 Bland-Altman	 analysis	 methods	 performed	 on	 the	 heart	 rate	 data	 showed	 acceptable	
agreement	for	most	of	the	range	of	heart	rate	values.	Five	analyses	were	performed:	1)	regular	
BAA,	 2)	 BAA	 for	 repeated	measurements	of	 a	 changing	 true	 value,	 3)	 simple	 linear	 regression	
modelling	of	bias	and	the	LOA,	4)	using	ratio	instead	of	difference	as	the	agreement	statistic,	and	
5)	BAA	on	the	lowest	and	highest	lowest	heart	rates.	

The	first	analysis	was	methodologically	incorrect,	but	yielded	insight	in	what	the	agreement	
could	 be	 and	 how	 the	 incorrect	method	 performs,	which	 then	 could	 be	 compared	 to	 a	more	
correct	method.	The	bias	and	LOA	found	were	very	close	to	those	found	in	the	second	analysis.	
The	bias	and	LOA	do	not	always	have	to	be	similar	when	using	these	two	methods.	They	were	
similar	 in	 this	 study,	 because	 the	within-subject	 variance	was	 not	much	 greater	 than	 the	 be-
tween-subject	variance	(repeated	measurements	on	one	subject	did	not	vary	much	more	than	
the	measurements	from	subject	to	subject).	If	this	were	not	the	case,	the	LOA	estimated	by	the	
first	 analysis	 could	 become	wider	 than	 those	 found	 in	 the	 second	 analysis.	 The	 latter	 analysis	
accounts	for	this	effect	[53].	

The	LOA	appear	to	be	too	wide	in	the	second	analysis	at	first	sight;	the	data	points	are	not	
too	far	from	the	bias,	but	the	95%	LOA	encompass	a	much	wider	range.	However,	the	LOA	are	
correct.	Consider	an	incorrect	analysis	to	correct	for	repeated	measurements:	one	could	simply	

Figure	24	–	 Simple	 linear	 regression	 lines	were	used	 to	 fit	 the	95%	 limits	of	 agreement	 and	 the	
bias	to	the	observed	respiratory	rate	(RR).	The	mean	values	per	patient	are	plotted	 instead	of	a	
honeycomb	plot	for	all	observation	pairs.	HP:	HealthPatch.	Brpm:	breaths	per	minute.	SL:	Space-
labs.	𝒓𝒔:	Spearman	rank	correlation.	
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take	each	subject’s	average	difference	and	mean	and	perform	regular	BAA.	This	would	result	in	
too	narrow	LOA	which	may	falsely	lead	to	the	conclusion	of	acceptable	agreement.	

In	the	third	analysis,	it	was	tried	to	more	truthfully	fit	the	data	by	allowing	simple	linear	re-
gression	lines	instead	of	constants	to	be	fitted	on	the	data.	If	the	data	truly	shows	a	linear	trend,	
this	method	allows	the	bias	and	LOA	to	better	fit	the	data	than	in	the	analyses	with	constant	bias	
and	LOA.	This	 is	 seen	as	a	 reduction	of	 the	LOA	range.	This	was	 the	case	 in	 the	 third	analysis.	
Compared	to	the	second	analysis	the	95%	LOA	range	(difference	between	upper	and	lower	LOA)	
went	down	from	15.02	bpm	to	4.85	bpm.	The	 latter	result	 leads	to	the	conclusion	that	Health-
Patch	 agrees	 with	 Spacelabs	 heart	 rate	 over	 the	 entire	 range	 of	 observed	 heart	 rates	 (50–
140	bpm).	The	downside	of	the	regression	lines	is	that	they	are	more	difficult	to	interpret	com-
pared	 to	 the	 constant	 bias	 and	 LOA.	 The	 constant	 values	 allow	 for	 easy	 understanding	 of	 the	
agreement	over	the	entire	observed	range,	whereas	the	lines	require	some	calculations.	

Because	the	acceptable	range	was	defined	as	10%	above	or	below	the	bias,	this	range	varies	
with	 the	 mean.	 A	 mean	 heart	 rate	 of	 50	bpm	 accepts	 smaller	 LOA	 (±5	bpm)	 than	 those	 at	
130	bpm	(±13	bpm).	For	this	reason,	the	fourth	analysis	was	performed	with	ratio	as	the	agree-
ment	statistic	instead	of	difference.	The	ratio	inherently	shows	the	factor	by	which	the	methods	
agree	at	a	certain	mean	heart	rate,	so	LOA	between	±0.1	around	the	bias	were	considered	ac-
ceptable	agreement.	The	bias	of	𝑅 = 1.017	and	the	95%	LOA	of	0.893	and	1.140	(range:	24.70%)	
are	marginally	unacceptable	at	the	predefined	range	of	±10%.	

The	 last	analysis	was	done	on	the	 lower	and	upper	end	of	 the	measured	heart	 rate	range.	
This	was	done	because	BAA	does	not	quantify	dynamic	validity	of	the	methods	being	compared.	
Quantifying	agreement	in	the	extreme	ends	of	the	data	set	is	not	a	dynamic	performance	meas-
ure	either,	but	 it	does	provide	 information	about	the	performance	when	 it	 is	most	critical.	For	
heart	rate,	BAA	applied	separately	to	the	lowest	and	highest	values,	did	not	result	in	acceptable	
agreement	between	HealthPatch	and	Spacelabs:	the	95%	LOA	were	too	wide	 in	both	analyses.	
This	leads	to	the	conclusion	that	either	HealthPatch	MD	does	not	measure	extreme	heart	rates	
as	well	as	normal	heart	rates.	This	is	a	concern	if	this	wearable	is	to	be	used	in	clinical	practice	
and	out	of	the	hospital	 in	the	future.	Primarily,	extreme	heart	rates	are	of	 interest	to	diagnose	
the	deteriorating	patient.	It	is	due	to	the	large	amount	measurements	in	the	normal	heart	rate	
range	that	heart	rate	agreement	between	HealthPatch	and	Spacelabs	seemed	acceptable.	

Respiratory	rate	agreement	was	not	acceptable	

The	 respiratory	 rate	 agreement	 analysis	 results	 lead	 to	 the	 conclusion	 HealthPatch	 MD	 and	
Spacelabs	do	not	agree	within	the	limits	of	±2	brpm.	There	is	still	room	for	improvement	in	the	
pre-processing	of	the	data,	because	some	artefacts	are	present	that	could	be	removed	for	this	
analysis	(but	also	read	the	discussion	in	§7.1.2).	

Note	 the	 following	 peculiarities	 in	 Figure	 22.	 In	 the	 top	 left	 part,	 a	 linear	 cluster	 of	 data	
points	is	visible	which	appears	detached	from	the	main	point	cloud.	This	linear	area	is	an	artefact	
due	 to	 observations	 where	 Spacelabs	 measured	 0	brpm	 or	 a	 value	 very	 close	 to	 zero.	When	
Spacelabs	measures	 0	brpm,	 the	difference	with	 the	 value	measured	by	HealthPatch	 simply	 is	
that	value.	The	mean	of	these	sample	pairs	then	always	is	half	of	the	HealthPatch	value.	As	such,	
these	points	draw	a	line	with	slope	2	in	the	top	left	corner	of	the	graph.	This	artefact	may	influ-
ence	the	bias	and	LOA	found.	Removal	of	the	corresponding	data	points	would	however	be	ma-
nipulation	of	 the	observed	data.	Because	BAA	aims	 to	analyse	agreement	between	 two	meas-
urement	methods,	flaws	in	either	method	influence	the	results.	Removal	of	these	flawed	obser-
vations	is	not	recommended,	because	in	practice	they	do	exists	and	are	not	removed,	thus	their	
removal	would	embellish	the	results	artificially.	

If	 one	 would	 want	 to	 remove	 the	 artificially	 low	measurements	 by	 Spacelabs,	 the	mean-
difference	graph	can	be	used	to	determine	the	threshold	below	which	to	exclude	samples.	Note	
that	an	area	exists	between	 the	main	point	cloud	and	 the	 flawed	 linear	cloud	where	very	 few	
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observations	are	seen.	This	is	a	good	candidate	area	to	draw	a	line	(with	slope	2),	which	repre-
sents	the	threshold	below	which	Spacelabs	samples	are	considered	to	be	artificially	 low,	hence	
to	be	excluded.	

Another	part	of	the	graph	that	draws	attention	is	the	long	tail	of	points	towards	the	bottom	
right	 corner	of	 the	graph.	Here,	 a	 similar	mechanism	gives	 rise	 to	 this	 artefact.	 Instead	of	 the	
Spacelabs	 values	 being	 close	 to	 zero,	 they	 are	 close	 to	 unnaturally	 large	 values	 (greater	 than	
50	brpm).	It	is	likely	the	respiratory	rate	signal	mistakenly	took	variation	in	chest	impedance	due	
to	heart	 contractions	 for	 respirations,	which	 results	 in	values	of	 the	 same	order	as	heart	 rate.	
These	 are	measurement	 errors	 that	 result	 in	 a	 strongly	 negative	 difference	with	HealthPatch,	
hence	the	long	negative	linear	tail	towards	the	bottom	right	corner	of	the	graph.	The	same	rea-
soning	to	not	exclude	these	observations	holds	for	these	artificial	observations.	However,	if	the-
se	 observations	would	 have	 to	 be	 excluded,	 they	 can	 be	 by	 using	 some	 filtering	method	 that	
removes	 outliers.	 A	 simple	 threshold	 near	 42	brpm	may	 suffice.	 This	 number	 is	 based	 on	 the	
following	 clinical	 and	 technical	 considerations.	 Clinically,	 a	 respiratory	 rate	 of	 greater	 than	
40	brpm	is	not	absolutely	of	interest	anymore:	the	severe	tachypnoea	is	proven	and	of	interest,	
but	the	number	is	not	very	informative	of	the	severity.	More	interesting	would	be	detection	of	
the	breathing	pattern,	which	is	not	possible	with	HealthPatch	MD.	Technically,	the	HealthPatch	
is	known	to	measure	up	to	42	brpm	(see	§2.2.4),	which	makes	measurements	by	the	Spacelabs	
monitor	greater	than	a	value	near	42	brpm	unnecessary.	

Because	relatively	few	observations	make	up	these	measurement	error	tails,	their	influence	
is	not	too	large	in	the	repeated	measurements	analysis	seen	in	Figure	23.	The	95%	LOA	are	simi-
lar	in	both	the	regular	and	repeated	measurements	analyses,	which	supports	the	conclusion	of	
too	little	agreement	between	HealthPatch	and	Spacelabs	respiratory	rate.	

Another	observation	 in	 the	mean-difference	graph	of	 Figure	22	 is	 the	 leftmost	part	of	 the	
main	point	cloud	near	the	bias	line:	heteroskedasticity	can	be	clearly	seen.	The	variance	around	
the	bias	is	very	low	at	low	respiratory	rates	compared	to	higher	rates.	This	suggests	the	agree-
ment	 is	 better	 than	 the	 constant	 LOA	 suggest	 at	 lower	 respiratory	 frequencies,	 and	 may	 be	
worse	at	higher	rates.	This	situation	lends	itself	for	logarithmic	transformation	of	the	data	before	
performing	 the	 analyses,	 or	 for	 calculation	of	 the	 ratio	 instead	of	 differences	of	 observations.	
However,	due	to	a	number	of	Spacelabs	samples	being	so	close	to	zero,	some	of	the	ratios	would	
be	artificially	high	(or	low	if	Spacelabs	values	were	the	numerator)	and	result	in	unreliable	calcu-
lation	of	the	bias	and	LOA.	Logarithmic	transformation	also	isn’t	possible	when	the	data	contains	
zeroes,	because	the	logarithm	is	undefined	at	zero.	

For	this	reason,	a	third	BAA	was	performed	while	accounting	for	repeated	measurements	to	
construct	the	mean-difference	graph	shown	in	Figure	24.	The	bias	and	95%	LOA	are	simple	linear	
regression	lines.	Constant	residual	variance	(after	bias	regression)	was	not	assumed,	so	that	the	
LOA	were	allowed	to	have	different	slopes	to	accommodate	for	the	heteroskedasticity.	

The	resulting	LOA	diverge	with	increasing	mean,	which	indicates	respiratory	rate	agreement	
was	better	for	lower	means.	Throughout	the	domain	of	11–27	brpm,	the	95%	LOA	range	(upper	
minus	lower)	is	2.06	brpm	to	15.49	brpm.	In	other	words,	near	the	lower	end	of	the	domain	the	
agreement	 is	acceptable,	because	 the	LOA	 lie	about	1	brpm	above	and	below	the	bias.	 It	 is	at	
these	 lower	 frequencies	where	 the	 absolute	 value	 is	 critical.	 The	 difference	 between	3	 and	 5	
breaths	per	minute	is	relatively	larger	than	the	difference	between	23	and	25.	The	clinical	con-
sequences	of	the	agreement	at	the	low	end	are	more	important	than	at	the	higher	end.	

The	agreement	analyses	applied	to	the	lowest	and	highest	respiratory	rates	as	well.	This	was	
done	 for	 the	 same	 reasons	 as	with	 heart	 rate:	 BAA	 does	 not	 assess	 dynamic	 agreement.	 The	
resulting	 agreement	was	 poor	 in	 both	 the	 low	and	 the	high	data	 set.	 A	 possible	 cause	 is	 that	
artefacts	 are	 certainly	 present	 in	 both	 these	 data	 sets.	 In	 the	 low	 respiratory	 rate	 data	 set,	
Spacelabs	regularly	measured	a	value	of	(almost)	zero	when	HealthPatch	did	not.	It	remains	un-
known	which	of	 the	 two	devices	measured	a	value	closer	 to	 the	 true	value,	although	 it	 seems	
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unlikely	that	Spacelabs	is	correct	because	of	the	seemingly	high	frequency	of	the	low	values.	In	
the	high	value	subset,	the	low	agreement	may	have	been	cause	by	artefacts	certainly	cause	by	
Spacelabs:	the	respiratory	rates	over	42	brpm.	

Overall,	 the	 results	 of	 BAA	 applied	 on	 respiratory	 rate	measurements	 by	HealthPatch	MD	
and	Spacelabs	lead	to	the	conclusion	that	agreement	was	not	acceptable.	However,	the	regres-
sion	 approach	 resulted	 in	 good	 agreement	 between	 the	devices	 for	 low	 respiratory	 rates.	 For	
example,	 this	 can	be	done	by	performing	a	 simulation	 study	 followed	by	analysis	of	measure-
ments	 performed	 on	 patients	 with	 bradypnoea	 (e.g.	 respiratory	 depression	 due	 to	 morphine	
overdose).	
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Chapter	6. Predicting	risk	of	adverse	events	

All	models	are	wrong	
but	some	are	useful	

George	Box	

As	 illustrated	 in	Chapter	1,	 timely	recognition	of	deterioration	 is	of	utmost	 importance	to	ade-
quately	manage	 the	 deteriorating	 surgical	 patient.	 To	 investigate	 whether	 or	 not	 the	 Health-
Patch	MD	is	able	to	aid	in	this	recognition,	this	chapter	elaborates	on	methods	that	can	be	used	
on	 the	 particular	 type	 of	 data	 produced	 by	 the	 HealthPatch.	 However,	 this	 chapter	 does	 not	
result	in	a	model	for	the	prediction	of	risk	of	adverse	events.	

Up	front	it	is	important	to	realise	the	amount	and	quality	of	objective	information	available	
to	a	clinician	decline	with	every	step	down	the	path	from	surgery	to	home.	Normally,	monitoring	
of	vital	signs	is	unavailable	at	home.	Other	than	a	patient	or	their	direct	peers	(e.g.	spouse)	ac-
tively	calling	a	caregiver	when	it	may	be	already	too	late,	very	little	options	that	provide	contin-
uous	 and	 objective	 information	 on	 a	 patient’s	 status	 are	 available.	 Hospitalised	 patients	 are	
monitored	more	often	than	patients	after	discharge,	but	on	regular	hospital	wards	this	monitor-
ing	is	usually	done	manually	and	infrequently.	Only	on	high	care	wards	monitoring	is	done	more	
often	 or	 continuously	 and	 automatically.	 On	wards	 where	monitoring	 is	 infrequent,	 a	 system	
such	as	 the	Vital	Connect	platform	may	 increase	 the	quality,	 amount	and	 timeliness	of	 critical	
information	while	supporting	nursing	staff	in	their	monitoring	tasks.	These	situations	are	reasons	
why	systems	like	HealthPatch	are	of	interest	to	be	used	as	continuous	monitoring	solutions.	As	
of	yet	 it	 is	unknown	how	much	added	 information	and	thus	potential	value	such	a	continuous	
monitoring	device	has.	It	is	hypothesised	the	use	of	such	monitoring	devices	has	the	potential	to	
provide	early	warnings	before	adverse	events,	 such	as	deterioration,	occur.	 If	 true,	 this	 theory	
can	enhance	patient	safety	in	and	out	of	the	hospital.	

The	 goal	 of	 the	 current	 study	 is	 to	 assess	 methods	 to	 accurately	 predict	 risk	 of	 adverse	
events	 in	 the	surgical	population	using	wearable,	wireless,	nearly	continuous	and	non-invasive	
monitoring	 devices.	 Note	 that	 predicting	 risk	 of	 adverse	 events	 differs	 from	 prediction	 of	 the	
events	themselves.	For	example,	a	postoperative	patient	who	develops	sepsis	 in	the	first	week	
after	surgery	will	probably	show	abnormal	vital	signs	compared	to	their	normal	physiology,	such	
as	 tachycardia	 and	 tachypnoea.	 However,	 many	 other	 diseases	 and	 complications	may	 cause	
similar	symptoms.	These	physiological	deviations	are	not	specific	to	sepsis,	neither	do	they	have	
100%	sensitivity	for	the	condition.	This	makes	prediction	of	a	specific	adverse	outcome	difficult.	
Yet,	 physiological	 abnormalities	 in	 apparently	 normal	 physiological	 conditions—e.g.	 a	 patient	
resting	 in	bed	with	elevated	heart	 rate,	 temperature	and	 respiratory	 rate—indicate	 some	dys-
function,	which	can	be	of	interest.	Deviations	from	normal	values	are	not	always	sensitive	for	a	
specific	cause,	but	they	are	specific	for	dysfunction	in	general.	This	may	be	enough	information	
to	promptly	 inform	and	 activate	 a	 caregiver,	who	 can	 then	 further	 assess	 the	 status	 praesens	
and	may	decide	to	more	specifically	investigate	the	causes	of	the	abnormalities.	Especially	when	
comparing	the	current	situation	to	previous	moments	in	time,	the	relative	changes	indicate	the	
patient’s	physiology	 is	changing.	This	does	not	only	show	the	patient’s	current	physiology,	but	
tells	what	changes	have	happened	as	well.	Some	of	these	changes	precede	further	decline,	indi-
cating	elevated	risk	of	adverse	events.	This	risk	is	not	specific	for	a	certain	disease	or	any	other	
negative	outcome,	e.g.	(re)admission	to	an	ICU,	but	nonetheless	tells	a	caregiver	whether	or	not	
a	patient	deserves	additional	attention	relative	to	other	patients.	 It	 is	 this	 risk	of	deterioration	
we	are	interested	in	to	predict.	
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A	good	risk	measure	should	provide	information	over	the	course	of	time	about	the	severity	
of	disease	and	chances	of	adverse	events	taking	place	in	the	(near)	future.	In	literature,	adverse	
events	often	are	conveniently	defined	as	dichotomous	outcomes	[6,10,58–66],	e.g.	patient	sur-
vival:	the	event	either	occurs	or	not.	Because	many	adverse	events	can	be	defined	and	changes	
in	vital	signs	are	not	specific	 for	any	 in	particular	 (unless	extreme)	and	the	number	of	patients	
measured	in	this	study	is	limited,	it	is	futile	to	fit	a	prediction	model	for	one	outcome.	Fitting	a	
model	to	one	particular	outcome,	e.g.	readmission	to	the	 ICU,	would	 lead	to	overfitting	to	the	
particular	predictors	 for	 those	 few	observations	 in	which	 the	event	occurred.	Chances	are	 the	
model	 would	 become	 hardly	 generalizable	 for	 other	 observations	 (external	 validity	 would	 be	
low).	Therefore,	searching	for	methods	to	predict	risk	of	deterioration	and	risk	of	adverse	events	
in	general	is	more	feasible.	

One	standard	used	in	clinical	practice	for	the	early	recognition	of	adverse	events	is	the	Early	
Warning	Score	(EWS)	[67].	This	is	a	score	that	encompasses	a	number	of	physiological	and	clini-
cally	relevant	parameters	that	add	points	to	the	score	if	deviant	from	a	normal	range	of	values.	
An	EWS	 is	also	used	on	 the	surgical	medium	care	ward	of	 the	UMCU	as	an	additional	 tool	 for	
nurses	 and	 doctors	 to	 assess	 a	 patient’s	 risk	 of	 adverse	 events.	 In	 theory,	 if	 HealthPatch	MD	
were	able	predict	an	EWS,	 it	may	be	used	to	 indicate	patients	at	risk	of	postoperative	decline.	
Note	that	the	EWS	neither	predicts	adverse	events—originally	 it	was	 just	 intended	as	a	tool	to	
bring	 expert	 attention	 to	 patients	who	most	 need	 it	[68]—nor	 does	 it	 have	 perfect	 sensitivity	
and	specificity	for	all	conceivable	adverse	outcomes	[13,60,61].	To	raise	medical	awareness	for	
patients	with	elevated	risk	 is,	of	course,	 the	goal	 in	both	an	 in-hospital	situation	and	after	dis-
charge,	where	patients	can	otherwise	be	monitored	insufficiently.	Therefore,	if	it	were	possible	
to	predict	the	EWS	accurately	using	HealthPatch	data,	we	would	know	whether	or	not	a	patient	
is	of	interest	to	bring	the	attention	to,	but	not	really	if	they	are	truly	deteriorating.	Further	medi-
cal	 examination	 and	 diagnostics	 due	 to	 this	 directed	 attention	may	 increase	 chances	 of	 early	
diagnosis	and	as	a	consequence	prevent	adverse	events.	It	is	hypothesised	that	in	this	way,	pre-
diction	EWS	will	enhance	patient	safety	in	and	out	of	the	hospital.	

The	 following	sections	describe	what	 the	EWS	 is,	how	 it	works	and	what	methods	may	be	
used	to	predict	it	using	measurements	by	the	HealthPatch.	

§6.1 Early	Warning	Scores	
The	 introduction	 to	 this	 chapter	mentions	 the	 EWS	as	 a	 standard.	However,	 various	 EWS	 sys-
tems	exist,	 so	 the	EWS	can	hardly	be	called	 standardised.	Furthermore,	 the	 type	of	EWS	used	
varies	from	country	to	country	and	even	differs	between	hospitals	within	countries,	e.g.	 in	the	
Netherlands.	 The	 original	 EWS	 was	 first	 published	 on	 a	 poster	 at	 an	 intensive	 care	
conference	[67].	 Later	 it	 was	modified	 and	 named	 the	Modified	 Early	Warning	 Score	(MEWS)	
accordingly	[58,69].	Further	 implementations	and	adaptations	have	been	made	to	enhance	the	
score’s	 ability	 to	 indicate	 patients	 at	 risk	 of	 various	 adverse	 events,	 e.g.	 the	 standardised	
EWS	(SEWS)	[59,60].	Early	warning	scores	have	been	adjusted	to	different	populations,	e.g.	 for	
paediatrics	[70]	and	obstetrics	[71].	Currently,	the	National	Early	Warning	Score	(NEWS)	is	used	
in	 the	 United	 Kingdom	[72].	 The	 system	 used	 on	 the	 surgical	medium	 care	 ward	 in	 the	 UMC	
Utrecht	is	based	on	MEWS	and	NEWS,	but	differs	from	both	on	some	points.	It	is	an	adaptation	
of	 a	 guideline	 for	Dutch	 intensive	 cares13.	 The	EWS	 chart	used	 in	 the	UMCU	 is	 summarised	 in	
Table	7.	

																																																													
13	The	UMCU	EWS	protocol	 is	available	on	the	hospital’s	 intranet	and	as	a	form	for	nurses	to	use	in	HiX,	
the	EMR	used	by	the	UMCU.	However,	a	difference	between	the	two	protocols	was	found	by	the	author.	
An	 IC	 nurse	 responsible	 for	 patient	 safety	 organisation	 in	 the	 UMCU	was	 notified	 about	 this	 potential	
danger,	who	in	turn	notified	the	appropriate	people	to	correct	the	HiX	EWS	protocol.	
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Basically,	all	EWS	systems	are	point	accumulation	algorithms	where	points	are	added	for	de-
viating	vital	parameters.	In	other	words,	no	points	are	added	for	vital	signs	that	are	considered	
normal.	 For	 example,	 heart	 rate	 is	 considered	 normal	 in	 the	 range	 of	 51–90	bpm	 in	NEWS.	 A	
point	 is	 added	 if	 the	 heart	 rate	 is	 low,	 e.g.	 in	 the	 range	 of	 41–50	bpm.	 Even	 lower	 values	
(<40	bpm)	result	in	addition	of	3	points	to	the	total	score.	A	similar	system	of	ranges	applies	to	
increased	heart	rates.	Similar	amounts	of	points	are	accumulated	for	deviating	respiratory	rates,	
blood	oxygen	saturation	 (SpO2),	need	 for	any	supplemental	oxygen,	core	 temperature,	systolic	
blood	pressure	and	the	level	of	consciousness	(AVPU,	Alert,	Verbal,	Pain,	Unconscious)	[72].	

In	the	UMCU	protocols	an	EWS	<	3	indicates	little	risk	of	deterioration	in	the	next	few	hours	
to	a	day.	Elevated	EWS,	i.e.,	≥	3,	indicates	increased	risk	of	deterioration	of	the	patient	requiring	
activation	of	a	doctor.	More	 frequent	monitoring	 is	advised	 if	 the	patient	has	a	high	EWS.	Pa-
tients	with	EWS	≥	7	have	a	strong	indication	for	continuous	monitoring	on	a	medium	or	intensive	
care	ward,	because	some	major	systemic	dysfunction	is	causing	physiological	distress	that	may	
lead	to	worse	outcomes,	e.g.	irreversible	organ	damage	or	death	if	not	adequately	treated.	

In	short,	EWS	systems	are	algorithms	that	aid	caregivers	in	the	early	recognition	of	patients	
who	 require	more	attention	 than	otherwise	 regarded	adequate.	Because	 the	HealthPatch	 sys-
tem	measures	two	important	elements	of	the	EWS	algorithms,	it	may	be	possible	to	predict	EWS	
with	adequate	accuracy	based	on	heart	 rate	and	respiratory	 rate	alone.	 If	 the	accuracy	 is	high	
enough,	the	HealthPatch	EWS	(primary	EWS)	could	aid	 in	the	direction	of	medical	attention	to	
patients	who	most	need	it.	For	this	to	be	possible,	the	accuracy	of	a	HealthPatch	EWS	must	be	
studied.	 Various	methods	 can	 be	 used	 for	 this.	 The	 following	 sections	 elaborate	 on	methods	
from	various	sciences	that	aim	to	predict	future	time	series	data	based	on	current	and	past	val-
ues:	forecasting.	

Table	7	–	A	summary	of	the	Early	Warning	Score	chart	as	used	in	the	UMCU	is	shown.	Deviations	in	vital	signs	
increase	the	value	of	the	score.	A	score	of	zero	indicates	a	low	risk	of	near-future	deterioration.	By	protocol,	a	
score	of	 three	or	greater	requires	 an	 inquiry	of	a	doctor.	 *	AVPU:	Alert,	Verbal,	Pain,	Unconscious.	AVPU	 is	 a	
consciousness	 scoring	 system,	where	 alert	 indicates	 an	 EMV	 (eye,	movement,	 verbal)	 score	 of	 E4M6V5	 and	
unconscious	corresponds	to	E1M1V1.	Verbal	is	a	reaction	to	spoken	language	and	pain	is	a	reaction	to	a	painful	
stimulus.	

Score	 3	 2	 1	 0	 1	 2	 3	
Respiratory	
rate	(brpm)	 ≤	8	 –	 9–11	 12–20	 –	 21–24	 ≥	25	

Blood	oxygen	
saturation	(%)	 ≤	90	 91–93	 94–95	 ≥	96	 –	 –	 –	

Heart	rate	
(bpm)	 –	 ≤	39	 40–50	 51–100	 101–110	 111–130	 ≥	131	

Systolic	blood	
pressure	 ≤	69	 70–80	 81–100	 101–200	 –	 ≥	201	 –	

Core	tempera-
ture	(°C)	 ≤	35.0	 –	 35.1–36	 36.1–38.0	 38.1–39.0	 ≥	39.1	 –	

Consciousness	 –	 –	 –	 A*	 V*	 P*	 U*	

Nurse	concern	 –	 –	 Yes	 No	 –	 –	 –	
Urine	produc-
tion	in	the	past	

four	hours	
–	 –	 <	75	mL	 ≥	75	mL	 –	 –	 –	
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§6.2 Methods	 to	 predict	 risk	 of	 deterioration	 using	 repeated	measure-
ments	of	vital	signs	
§6.2.1 Matching	the	number	of	inputs	and	outputs	
The	 first	 step	 towards	 predictive	modelling	 is	 data	 acquisition	 from	HealthPatch	MD,	which	 is	
described	in	a	previous	chapter	in	this	thesis.	With	the	available	data,	it	may	be	possible	to	pre-
dict	a	desired	outcome:	the	EWS	as	measured	by	surgical	medium	care	nurses.	By	protocol,	EWS	
is	measured	at	least	once	every	work	shift,	but	more	often	if	indicated.	That	means	up	to	about	
every	8	hours	an	EWS	value	is	determined	for	a	patient.	This	value	is	usually	based	on	whatever	
values	are	currently	displayed	by	the	bedside	vital	signs	monitor	(Spacelabs).	

Because	measurements	with	HealthPatch	MD	contain	many	samples	in	time,	the	number	of	
inputs	 for	 a	predictive	model	 is	 very	 large	 compared	 to	 the	number	of	 EWS	observations;	 the	
latter	are	a	few	per	day.	Either	the	number	of	inputs	(also	known	as	independent	variables,	re-
gressors,	predictors)	must	decrease,	or	the	number	of	outputs	(also	known	as	dependent	varia-
bles,	regressands,	outcomes)	must	increase.	In	previous	research	time	windows	have	been	used	
to	equalise	the	number	of	inputs	to	the	output	to	predict	[10,73].	In	the	study	by	Cuthbertson	et	
al.	[10],	 in	 each	 window	 the	 last	 measured	 vital	 signs	 are	 used	 to	 predict	 the	 next	 outcome,	
which	was	sampled	hourly.	Taking	only	the	last	known	value	in	an	hour-long	time	window	is	to	
some	degree	 a	waste	 of	 the	 vital	 signs	measured	 earlier	 in	 the	 hour.	However,	 the	 last	 value	
before	the	outcome	could	be	the	most	representative	for	the	physiological	state	of	the	patient	
at	that	moment	in	time.	This	approach	allows	for	easy	modelling	and	interpretability	is	high.	On	
the	other	hand,	 the	 largest	part	of	 the	data	 (all	but	 the	 last	known	value	 in	 the	 time	window)	
must	contain	some	information	about	the	current	or	future	state	of	the	patient	as	well.	Still,	the	
number	of	input	samples	must	match	the	number	of	output	samples.	Therefore,	features	can	be	
extracted	based	on	 the	entire	 time	window	 (see	next	 section).	Tarassenko	et	al.	[73]	used	 the	
median	of	the	vital	signs	(sampled	per	minute)	over	time	windows	of	4,	8	and	12	hours.	This	uses	
all	data	available	in	a	time	window,	but	does	not	consider	other	information	such	as	trends.	

Instead	of	‘fixed’	time	windows,	other	window	functions	can	be	used.	It	is	probable	that	the	
last	value	 in	a	time	window	is	most	 informative	of	the	next	EWS	to	predict	and	a	sample	from	
the	past	less	so.	This	could	be	modelled	using	a	window	function	with	decaying	memory,	i.e.,	it	
weighs	samples	from	recent	history	more	than	samples	from	longer	ago.	An	exponential	decay	is	
an	example	of	a	historically	weighed	window.	

Besides	 reducing	 the	 number	 of	 inputs	 using	windows,	 the	 number	 of	 outputs	 can	 be	 in-
creased	 to	match	 the	number	of	 input	observations.	This	 can	be	achieved	 through	 imputation	
where	the	predictors	have	values,	but	the	outcome	does	not.	Imputed	values	can	be	interpolat-
ed,	extrapolated,	 carried	 forward,	etc.	Whatever	method	used	 for	 imputation	depends	on	 the	
implicit	 assumptions,	 especially	what	 they	mean	 clinically.	 True	 EWS	physiology	 could	be	 very	
different	from	the	imputed	values.	Where	predictors	are	missing,	samples	can	be	imputed	using	
similar	methods,	although	great	care	must	be	taken	when	imputing	missing	data	in	general	[74].	

§6.2.2 Feature	extraction	and	exploration	
The	inputs	for	the	prediction	model	are	heart	rate	and	respiratory	rate.	Instantaneous	heart	rate	
and	respiratory	rate	are	just	two	of	the	many	pieces	of	information	in	the	data	that	can	be	used	
to	predict	risk	of	deterioration.	This	instantaneous	information	merely	reflects	the	current	state	
of	a	patient,	but	tells	little	about	where	they	come	from	and	where	their	physiological	parame-
ters	might	be	going.	We	need	to	extract	features	in	the	data	that	contain	information	over	time.	
This	is	where	predictive	modelling	gets	both	complicated	and	interesting.	

Many	physiologically	reasonable	and	unreasonable	features	can	be	extracted	from	the	heart	
rate	and	respiratory	rate	signals	measured	by	HealthPatch	MD.	For	example,	based	on	EWS	cri-
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teria	in	the	UMCU,	a	heart	rate	in	the	range	101–110	bpm	adds	one	point	to	the	score.	Similarly,	
a	predictive	model	should	increase	the	predicted	EWS	if	heart	rate	is	too	high	(or	too	low).	How-
ever,	 not	 all	 patients	with	 a	high	EWS	 show	an	elevated	heart	 rate,	 nor	 can	a	high	heart	 rate	
purely	be	used	to	predict	a	high	EWS.	To	complicate	things	further,	the	vital	signs	used	as	inputs	
to	a	predictive	model	are	time	series,	i.e.,	they	consist	of	many	points	in	time.	This	means	they	
can	potentially	be	used	to	continuously14	predict	EWS.	However,	an	 important	question	arises:	
what	 time	window(s)	 should	 be	 considered	 in	 the	 vital	 signs?	A	 short	 time	window	 is	 easy	 to	
interpret:	 e.g.	 the	mean	 or	median	 heart	 rate	 over	 the	 last	 15	minutes	 could	 be	 informative	
about	the	current	EWS.	However,	the	15	minutes	before	this	time	window	might	be	informative	
for	the	current	value	as	well,	and	could	contain	information	about	where	the	EWS	is	going.	Who	
knows,	maybe	an	hour,	 two	hours,	a	work	 shift	 (eight	hours)	or	a	day	are	 interesting	because	
they	 contain	 useful	 information?	 Clinical	 investigations,	 experience	 and	 judgement	 say	 that	
somewhere	between	a	few	minutes	up	to	a	few	days	are	potential	windows	of	 interest.	This	 is	
why	feature	extraction	and	exploration	are	required;	it	can	indicate	the	time	windows	in	which	
information	is	found;	it	can	reveal	where	the	signal	content	is	interesting.	

Another	complicating	factor	 is	 the	number	of	 features	that	can	be	extracted.	The	possibili-
ties	are	limitless.	One	could	use	time	windows	in	which	to	take	the	mean,	mode,	median,	vari-
ance,	 standard	deviation,	minimum	value,	maximum	value,	 signal	energy,	 signal	power,	power	
spectral	density	(PSD),	frequency	contents,	harmonics,	estimated	signal-to-noise-ratio	(SNR),	and	
so	 on.	Many	 of	 these	 features	 are	 synthetic	 and	 few	 of	 them	 are	 directly	 related	 to	 clinically	
relevant	 information.	 Furthermore,	 if	 we	were	 to	 use	 such	 a	 large	 number	 of	 features	 taken	
from	many	time	windows	in	data	measured	in	many	patients	over	multiple	days,	the	amount	of	
data	 to	analyse	would	be	beyond	a	current	normal	computer’s	power.	Recent	advances	 in	big	
data	analysis	and	machine	learning	techniques	can	provide	methods	to	cope	with	such	relatively	
large	amounts	of	data.	The	downside	of	these	methods	is	the	difficult	clinical	interpretability	of	
the	models,	since	they	may	become	very	complex,	nonlinear,	etc.	

It	is	likely	an	approach	using	windows	to	match	the	number	of	inputs	to	the	number	of	out-
puts	results	in	a	model	that	can	be	used	to	predict	EWS,	or	be	used	to	better	understand	how	to	
achieve	a	model	to	predict	the	EWS.	

§6.2.3 Predictive	modelling	for	time	series	
Now	 that	 it	 has	been	described	how	 features	 can	be	extracted	 for	 the	prediction	of	 repeated	
measurements	of	the	outcome	of	interest,	we	elaborate	on	methods	to	actually	create	the	pre-
diction	models.	 The	methods	 available	 for	use	depend	on	 the	 type,	distributions	 and	assump-
tions	about	the	input	and	output	data	[75].	For	example,	the	output	can	be	modelled	either	as	
continuous,	i.e.,	any	real	number,	or	categorical,	i.e.,	any	of	a	number	of	classes.	The	EWS	is	an	
increasing	degree	of	risk	of	deterioration	with	fixed	levels,	being	nonnegative	integers	0,	1,	2	and	
so	on	up	to	20.	Technically	this	is	categorical	data,	but	it	is	ordinal	categorical	data	that	can	quite	
easily	be	modelled	as	continuous.	For	example,	if	in	the	prediction	model	a	(continuous)	EWS	of	
3.37	were	the	outcome,	it	 is	still	 interpretable:	the	EWS	is	greater	than	three,	but	not	by	a	lot.	
Even	though	 in	reality	such	an	EWS	 is	never	seen,	 the	score	 is	still	usable,	even	 if	non-integer.	
This	allows	some	flexibility	in	the	types	of	prediction	models	used.	

Classically,	in	medical	statistics	continuous	variables	are	often	predicted	using	simple	or	mul-
tivariate	regression,	whereas	categorical	outcomes	are	predicted	using	 logistic	regression	tech-

																																																													
14	Continuous	 is	 actually	 termed	 incorrectly,	because	 the	vital	 signs	 time	 series	are	 sampled,	hence	dis-
crete	and	not	continuous.	However,	the	sampling	rate	(once	every	few	minutes	or	greater)	is	much	great-
er	than	the	usual	EWS	sampling	rate	(once	every	few	hours	or	less).	In	this	perspective,	the	sampling	rate	
is	nearly	continuous.	
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niques	(multinomial	regression	for	categorical	output	with	more	than	two	classes,	such	as	EWS).	
For	time	series	data,	other	techniques	are	available	from	various	sciences.	

Binomial	and	multinomial	logistic	regression	for	time	series	

To	predict	categorical	variables,	logistic	regression	is	an	option.	Because	EWS	can	be	modelled	as	
categorical,	e.g.	low	vs.	high	or	in	more	than	two	categories,	various	logistic	regression	methods	
can	be	used.	For	the	case	with	two	classes	(binary),	binomial	logistic	regression	is	used.	If	more	
than	two	EWS	classes	are	modelled,	multinomial	logistic	regression	is	available.	The	latter	is	an	
extension	 of	 the	 first,	 so	 the	 first	 needs	 to	 be	 explained	 before	 the	 second.	 In	 literature,	 the	
word	binomial	is	often	omitted	from	binomial	logistic	regression	to	indicate	a	binary	model,	alt-
hough	binomial	and	multinomial	are	two	different	types	of	logistic	regression.	

Binomial	logistic	regression	models	a	dichotomous	outcome	by	modelling	the	probability	of	
an	observation	being	of	one	class,	𝑃(𝑌 = 1|𝑋),	where	𝑌	 is	 the	class	and	𝑋	 the	observation	of	
model	parameters	 1, 𝑥W, 𝑥l, … , 𝑥�NW 	 (the	1	is	the	intercept	term).	Because	there	are	only	two	
possible	outcomes,	this	means	the	probability	of	being	of	the	other	class	 is	𝑃 𝑌 = 2 𝑋 = 1 −
𝑃(𝑌 = 1|𝑋).	The	probability	is	modelled	through	a	function	𝑓	that	links	the	simple	linear	regres-
sion	𝑓 = 𝛽𝑋	to	the	probability	of	being	of	a	class,	where	𝛽	contains	the	model	coefficients.	The	
most	common	link	functions	in	logistic	regression	are	logit	and	probit.	Logit	is	

logit 𝜋W = ln
𝜋W

1 − 𝜋W
,	

which	is	then	set	to	equal	𝛽𝑋,	

ln
𝜋W
𝜋l

= 𝛽𝑋,	

where	𝜋W = 𝑃(𝑌 = 1|𝑋)	 and	𝛽	 is	 a	 vector	 of	model	 coefficients	 such	 that	𝛽𝑋 = 𝛽X + 𝛽W𝑥W +
⋯+ 𝛽�NW𝑥�NW.	The	logit	function	is	the	log	ratio	of	probabilities,	i.e.,	the	log	odds	for	outcome	
𝑌 = 1	versus	𝑌 = 2.	Probit	is	ΦNW 𝛽𝑋 ,	with	ΦNW	the	inverse	of	the	standard	normal	cumulative	
distribution	function.	

Using	 logit,	 the	 log	odds	of	either	outcome	versus	the	other	are	modelled.	 In	other	words,	
the	other	outcome	 is	 the	outcome	 ‘not	of	 interest’,	 i.e.,	 the	reference	outcome.	This	 is	an	 im-
portant	category	for	multinomial	logistic	regression,	which	models	the	probability	of	more	than	
one	outcome	class.	Also,	note	that	the	probabilities	of	all	classes	must	sum	to	one,	so	if	there	are	
𝑘	classes,	then	 𝜋  

W = 1.	Logically,	it	follows	that	𝑘 − 1	models	must	be	fitted,	because	if	the	
probability	of	all	but	one	class	is	modelled,	the	probability	of	the	remaining	class	is	known.	

In	multinomial	regression,	a	reference	class	is	used	like	with	binomial	logistic	regression,	of-
ten	the	first	or	the	𝑘th	class	in	the	model.	The	logit	model	from	above	then	becomes	

logit 𝜋| = ln
𝜋|
𝜋 

= 𝛽|𝑋, 𝑗 ∈ 1,2, … , 𝑘 − 1 .	

Note	𝜋|,	the	probability	of	𝑌 = 𝑗,	the	𝑗th	outcome	and	𝜋 ,	the	probability	of	the	reference	out-
come.	Also,	there	can	be	different	model	parameters	𝛽| 	for	the	𝑗	models.	

The	outcome	𝑌 = 𝑦W, 𝑦l, … , 𝑦  	not	necessarily	 indicates	an	observation	belongs	to	a	par-
ticular	 class.	 Other	 possibilities	 exist	 in	multinomial	 logistic	 regression.	 For	 example,	 consider	
EWS.	Every	EWS	value	can	be	modelled	 individually	(nominally),	but	because	we	know	there	 is	
an	order	of	the	categories,	we	can	model	the	outcome	to	be	ordered	as	well	 (ordinal).	For	ex-
ample,	we	know	that	an	EWS	of	4	 is	greater	 than	3,	etc.	This	means	a	prediction	model	could	
predict	𝑃(EWS > 3)	instead	of	𝑃(EWS = 3).	Possible	predicted	outcomes	are	

1. the	probability	of	𝑌 = 𝑦|;	
2. the	probability	of	𝑌 ≤ 𝑦| 	or	similarly	𝑌 ≥ 𝑦|;	
3. a	combination	of	the	first	two	options:	the	probability	of	𝑌 = 𝑦| 	given	𝑌 ≤ 𝑦| 	or	given	

that	𝑌 ≥ 𝑦|.	
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To	predict	if	an	observation	belongs	to	one	class	(option	1),	a	model	could	be	fit	that	models	that	
class	versus	all	other	classes	grouped	as	one	reference	class.	This	 is	a	one-versus-all	approach,	
which	essentially	creates	 the	same	situation	as	with	binomial	 logistic	 regression.	This	 is	a	valid	
approach	for	nominal	outcomes.	However,	EWS	is	ordinal,	so	options	2	or	3	can	be	more	inter-
esting.	

The	second	option	models	being	of	at	least	(or	at	most)	a	given	class.	In	the	logit	link	func-
tion	then	the	range	of	classes	of	interest	is	put	in	the	numerator	of	the	probability	fraction,	the	
range	of	classes	not	of	interest	are	put	in	the	denominator.	Then,	the	logit	link	function	is	writ-
ten	as	follows.	

ln
𝑃 𝑌 ≤ 𝑦||𝑋
𝑃 𝑌 > 𝑦||𝑋

= 𝛽|𝑋,	

or	

ln
𝑃 𝑌 ≥ 𝑦| 𝑋
𝑃 𝑌 < 𝑦| 𝑋

= 𝛽|𝑋.	

Note	that	the	differences	between	the	two	equations	are	the	flipped	greater/less	than	symbols,	
which	depends	on	the	model	choice	of	the	researcher.	This	model	may	be	a	good	representation	
of	the	EWS	in	the	UMCU,	because	in	that	hospital	an	EWS	of	3	or	greater	is	by	protocol	a	reason	
to	 activate	 a	 supervising	doctor	 for	 further	 attention,	while	 an	EWS	of	 2	or	 less	 is	 not.	 This	 is	
modelled	exactly	by	the	second	equation,	which	models	the	log	odds	of	having	an	EWS	equal	to	
or	greater	 than	𝑗	versus	an	EWS	 less	 than	𝑗.	The	model	 for	𝑗 = 3	 then	would	closely	resemble	
the	UMCU	EWS	protocol.	

The	third	and	 last	option	models	 the	outcome	being	EWS	=	𝑗,	given	that	 it	 is	at	 least	or	at	
most	𝑗,	i.e.,	it	is	not	less	or	greater	than	𝑗 − 1.	This	is	a	hierarchical	ordering	of	the	outcome	clas-
ses.	The	logit	link	function	combines	options	1	and	2.	

ln
𝑃 𝑌 = 𝑦||𝑋
𝑃(𝑌 > 𝑦||𝑋)

= 𝛽|𝑋,	

or	

ln
𝑃 𝑌 = 𝑦||𝑋
𝑃(𝑌 < 𝑦||𝑋)

= 𝛽|𝑋.	

Again,	note	that	the	flipped	greater	and	less	than	symbols	are	the	difference	between	the	two	
equations	 depending	 on	 the	 researcher’s	 choice.	 This	 hierarchical	model	 would,	 for	 example,	
predict	the	probability	of	the	EWS	being	3	or—using	the	second	equation—otherwise	lower.	

One	of	the	ever-existing	dangers	of	fitting	models	to	data	is	overfitting,	which	may	occur	if	a	
model	can	adapt	too	much	to	the	data	in	ways	that	aren’t	realistic.	If	a	model	contains	too	many	
parameters,	for	example,	it	could	fit	to	particular	peculiarities	in	the	data	that	in	truth	may	not	
be	interesting	to	model,	but	to	consider	as	error.	Such	models	in	general	suffer	from	low	gener-
alisability.	A	multinomial	logistic	regression	model	consists	of	𝑘 − 1	models	for	every	class	to	be	
predicted.	Every	model	has	its	own	parameter	set	𝛽|,	each	with	𝑝	(for	the	𝑝	variables	in	𝑋).	So,	a	
multinomial	 logistic	 regression	 model	 has	 𝑝 𝑘 − 1 	 parameters.	 To	 reduce	 this	 number,	 the	
proportional	odds	assumption	can	be	made.	This	assumes	every	 input	 in	𝑋	has	the	same	influ-
ence,	i.e.,	the	same	𝛽,	on	the	outcome,	but	the	intercept	in	the	models	is	allowed	to	vary.	The	
proportional	odds	model	is	

ln
𝜋|
𝜋 

= 𝛼| + 𝛽W𝑥W + 𝛽l𝑥l + ⋯+ 𝛽�𝑥�,	

with	𝛼| 	the	intercept	for	the	𝑗
th	model	and	𝛽	the	𝑝	model	coefficients	in	𝑋	(without	an	intercept	

term).	All	𝛽	 are	 the	same	 in	 the	𝑘 − 1	models.	The	proportional	odds	model	probably	 fits	 the	
data	worse	than	a	model	with	more	parameters,	but	 it	 is	 less	prone	to	overfitting	with	 its	𝑝 +
𝑘 − 1	parameters.	
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The	aforementioned	methods	can	be	applied	on	single	observations	of	𝑋	and	𝑌.	If	multiple	
observations	have	been	made	in	time	of	both	𝑋	and	𝑌,	they	are	time	series.	For	example,	Cuth-
bertson	 et	 al.	[10]	 predicted	 a	 binary	 outcome	 (transfer	 to	 IC	 versus	 transfer	 to	 general	ward	
from	a	high	dependency	unit)	based	on	multiple	observations	of	vital	signs	in	the	past	24	hours.	
Their	methods	 included	a	separate	 logistic	 regression	 for	every	hour	 in	 the	past	day.	The	data	
from	all	 these	hours	was	aggregated	and	used	as	 input	to	a	single	 logistic	 regression	model	 to	
predict	 the	 desired	 outcome.	 Such	 a	model	 can	 be	 used	 for	 EWS	 prediction	 as	well:	 features	
extracted	from	the	past	day	(or	any	time	window	of	interest)	can	be	used	to	predict	EWS.	Fur-
thermore,	the	model	can	be	adjusted	for	time-invariant	features,	such	as	patient	characteristics	
(e.g.	sex).	

Mixed-effects	models	

Mixed	 effects	models	 are	 a	 class	 of	models	 available	 for	 regression	 analysis	with	 time	 series.	
More	 generally,	 Generalised	 Linear	 Mixed-Effects	 Models	(GLMEs	 or	 GLMMs)	 are	 a	 class	 of	
available	mixed-effects	models.	A	main	difference	between	mixed-effects	models	and	GLMEs	is	
that	 the	 first	 assumes	 normality	 of	 the	 outcome,	 the	 latter	 can	 assume	other	 distributions	 as	
well	[75,76].	The	latter	case	is	true	for	EWS,	as	can	be	seen	in	Figure	25.	The	figure	shows	that	
most	 EWS	 values	 are	 close	 to	 zero,	 higher	 EWS	 values	 have	 a	 decreasing	 probability	 of	 being	
measured.	The	distribution	could	be	half	normal	or	exponential,	but	no	tests	for	any	distribution	
in	particular	were	performed.	The	distribution	is	a	result	of	the	artificial	scoring	chart	that	cate-

Figure	25	–	The	Early	Warning	Scores	as	recorded	by	nurses	during	participations	of	patients	
in	 this	 study	are	 graphed	 in	 a	histogram.	 The	distribution	of	 Early	Warning	 Scores	 can	be	
estimated	from	the	graph.	The	207	values	are	the	result	of	all	Early	Warning	Score	observa-
tions	during	all	participations,	 i.e.,	some	participations	have	contributed	more	scores	than	
others.	



	

	

	

73	

gorises	various	vital	signs,	that	each	have	their	own	distributions	(see	Tarassenko	et	al.	[73]	for	
empirical	examples).	

Because	the	EWS	consists	of	nonnegative	integers	it	 is	a	discretely	distributed	variable.	De-
pending	on	the	patient	population,	the	distribution	will	have	more	or	less	values	near	zero,	the	
most	common	EWS	value.	In	a	truly	average	population	there	will	be	relatively	many	EWS	values	
of	0	and	1,	while	relatively	few	values	will	be	2	or	greater.	The	population	described	in	this	thesis	
is	relatively	ill	and	old	and	every	patient	has	recently	undergone	surgical	procedures.	Therefore,	
EWS	values	greater	than	2	will	be	relatively	common,	although	most	of	the	time	EWS	will	still	be	
low.	The	distribution	of	EWS	depends	on	the	population.	This	has	influence	on	the	GLME	used,	
because	(assumptions	about)	the	distribution	must	be	specified	by	the	researcher.	

Another	way	to	look	at	GLMEs	is	to	see	them	as	an	extension	of	logistic	regression,	explained	
in	 the	previous	 section.	 In	 logistic	 regression,	every	model	 contains	 fixed	effects	 (the	𝛽	 vector	
estimated	for	the	𝑘 − 1	classes).	However,	there	may	be	effects	that	add	to	these	fixed	effects	
depending	on	a	different	group	or	a	moment	 in	time,	the	random	effects.	This	 is	an	additional	
set	of	model	parameters	that	accommodates	for	changes	within	a	subject.	For	example,	time	of	
measurement	can	be	taken	as	a	random	effect	[56].	Taking	time	as	a	random	effect	allows	for	an	
overall	model	 to	be	fit	with	the	fixed	effects,	but	changes	over	time	are	then	modelled	by	the	
random	effects	which	are	added	to	the	fixed	effects.	Hence	the	name	mixed	effects	models.	This	
accomplishes	a	way	to	model	correlations	within	patients;	as	mentioned	before,	sequential	vital	
signs	of	a	particular	patient	are	autocorrelated.	

Autoregressive	models	

In	 econometrics,	 geology,	meteorology	 and	 astronomy,	 autoregressive	(AR)	models	 have	been	
used	extensively	in	the	past	decades	for	time	series	forecasting.	Examples	of	applications	are	the	
stock	market,	where	it	is	of	interest	to	model	price	changes	(increasing	or	decreasing	trends)	and	
modelling	 seasonal	 effects	 (e.g.	 short-term	 temperature	 prediction	 from	 hour	 to	 hour)	 or	 cli-
mate	 change	 (long-term	average	prediction	 from	year	 to	 year).	Autoregression	means	 current	
values	of	 a	 certain	outcome	of	 interest	depend	on	previous	 values.	 This	 is	 a	 concept	we	have	
seen	before	 in	 the	discussion	of	Chapter	4.	Current	 vital	 signs	depend	on	previous	 values	and	
because	 EWS	 is	 constructed	 from	 vital	 signs	 measurements	 it	 possibly	 is	 autocorrelated	 too.	
Using	AR	modelling	techniques	is	an	option	for	predictive	modelling	of	EWS.	

For	this	type	of	modelling,	we	need	to	clearly	define	the	components	of	time	series.	Changes	
in	a	time	series	can	result	 from	various	sources	 in	which	we	might	be	 interested.	Trends	are	a	
linear	 non-random	 component.	 Periodic	 behaviour,	 such	 as	 increases	 followed	 by	 decreases	
during	active	and	inactive	periods,	are	a	non-random	component	of	interest	as	well.	Slow	peri-
odic	changes,	such	as	day-night	rhythm	can	be	distinguished	too.	Finally,	time	series	show	ran-
dom	fluctuations	about	 their	current	value	which	cannot	be	explained	by	a	 trend,	 fast	or	slow	
periodic	behaviour	[77].	

Trends	can	be	visualised	using	moving	average	(MA)	filters.	Depending	on	the	desired	time	
resolution,	an	averaging	window	of	more	or	less	samples	can	be	used.	In	this	way,	trends	can	be	
explored	over	every	hour,	work	shift,	day,	etc.	By	removing	(subtracting)	the	trend	a	signal	is	left	
that	 consists	 of	 periodic	 an	 random	behaviour.	 This	 periodic	 behaviour	 can	 be	 analysed	 using	
various	 time	or	 frequency	 domain	 techniques.	With	 such	 techniques,	 a	 time	 series	 can	 be	 re-
duced	to	its	various	components	until	white	noise	is	all	that	is	left.	

The	AR	model	of	order	𝑝	 is	𝑋 𝑡 = 𝜑'𝑋 𝑡 − 𝑖�
'MW + 𝜀 𝑡 ,	 sometimes	written	more	com-

pactly	 as	 𝜑X𝑋 𝑡 − 𝑖�
'MX = 𝜀 𝑡 .	 In	 these	equations,	𝑋 𝑡 	 is	 the	AR	process,	 depending	on	𝑝	

past	values	of	𝑋	itself,	multiplied	by	parameters	𝜑,	and	white	noise	𝜀 𝑡 ~𝑁(0, 𝜎l).	
Besides	AR	models,	an	MA	model	is	another	in	the	same	family.	The	MA	model	of	order	𝑞	is	

also	dependent	on	previous	 states,	but	 this	 time	 it	depends	on	previous	noise:	𝑋 𝑡 = 𝜀 𝑡 +
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𝜃|𝜀(𝑡 − 𝑗)
¬
|MW ,	or	again	arranged	more	compactly	𝑋 𝑡 = 𝜃|𝜀 𝑡 − 𝑗

¬
|MX .	The	model	parame-

ters	are	𝜃.	Note	that	an	MA	model	is	not	the	same	as	an	MA	filter.	
AR	and	MA	models	can	be	combined	 into	an	ARMA	model.	Noise-integrated	variants	exist	

(ARIMA).	All	 these	models	only	model	changes	over	time	 in	the	output	variable.	These	models	
can	be	extended	to	be	dependent	on	input	time	series	too.	For	example,	the	AR	model	with	ex-
ogenous	 input	 is	 called	 ARX,	 the	 ARMA	model	 with	 exogenous	 input	 is	 called	 ARMAX.	 These	
models	do	also	depend	on	current	and	previous	values	of	other	variables.	The	ARMAX	model	of	
order	 𝑝, 𝑞, 𝑏, 𝑛 	with	input	𝑈 𝑡 	is	

𝜑'𝑋 𝑡 − 𝑖
�

'MX

= 𝜃|𝜀 𝑡 − 𝑗
¬

|MX

+ 𝜂 𝑈 𝑡 − 𝑛 − 𝑘
°

 MW

.	

The	model	order	𝑏	is	the	number	of	previous	inputs	the	model	depends	on	(𝜂	being	the	weights)	
and	𝑛	is	a	fixed	lag.	If	𝑛 = 0,	then	there	is	no	lag	between	input	and	output.	To	fit	model	param-
eters	𝜑,	𝜃	and	𝜂,	various	methods	exist	in	software	packages	such	as	MATLAB.	AR	models	are	the	
legacy	of	the	forecasting	research	by	Box	and	Jenkins	[78].	

Machine	learning	and	big	data	

To	conclude	this	list	of	methods,	machine	learning	(ML)	and	big	data	analysis	are	mentioned.	ML	
is	the	field	of	mathematics	and	computer	science	that	tries	to	program	computers	in	such	a	way	
that	they	learn	without	being	told	precisely	what	to	do.	For	example,	the	many	features	that	one	
might	 come	up	with	when	using	 time	 series	 data,	 such	 as	 in	 this	 study,	 can	be	used	 in	ML:	 a	
computer	algorithm	may	be	able	to	select	only	those	features	that	are	truly	predictive	for	a	cer-
tain	outcome.	 In	this	case,	the	researcher	only	tells	the	computer	to	take	the	data	and	how	to	
look	for	good	information,	but	not	what	the	information	should	be,	nor	what	features	should	be.	

ML	is	also	a	technique	to	handle	big	data.	Big	data	is	a	vague	term	for	every	set	of	data	that	
is	large	in	volume,	variable,	changing	in	(real-)time	or	uninterpretable	due	to	various	complicat-
ing	factors,	such	a	very	diverse	data	of	variable	quality.	ML	techniques	are	available	that	can	find	
patterns	in	(big)	data	that	are	otherwise	concealed,	even	from	expert	judgement	[79].	

Trivially,	ML	is	an	extension	of	many	modelling	and	statistical	techniques.	For	example,	find-
ing	the	association	between	length	and	weight	 is	a	trivial	ML	problem:	the	researcher	asks	the	
computer	to	find	one	or	a	few	parameters	in	a	model,	but	does	not	tell	the	computer	what	these	
parameters	should	be.	This	becomes	 less	 trivial	when	the	model	 itself	 is	unknown	and	the	ML	
algorithm	is	instructed	to	look	for	models	that	may	be	appropriate.	

The	science	of	ML	also	studies	how	to	find	good	models.	If	an	ML	algorithm	is	allowed	to	fit	
data	as	good	as	it	can	achieve,	it	will	probably	overfit	the	data:	it	would	model	variability	that	is	
not	of	interest.	This	would	not	be	a	good	model,	because	good	models	perform	well	in	both	ob-
served	and	unobserved	data.	

For	the	prediction	of	time	series,	such	as	in	this	study,	some	ML	techniques	can	be	used.	One	
of	them	has	been	trending	in	the	last	decade,	although	its	conception	dates	from	halfway	back	in	
the	 past	 century.	 Artificial	 neural	 networks	(ANNs),	 or	 neural	 networks	(NNs)	 for	 short,	model	
the	connection	between	input	and	output	data	with	individual	nodes	(neurons),	each	having	an	
individual	set	of	inputs.	The	basic	NN	consists	of	a	number	of	fully	interconnected	layers;	Figure	
26	shows	a	schematic	of	a	basic	NN.	

The	first	 is	the	input	layer,	 in	which	every	neuron	takes	one	model	variable	as	 its	 input.	All	
neurons	have	an	activation	function	that	can	be	high	or	low,	depending	on	the	value	at	its	input.	
The	second	layer	consist	of	an	arbitrary	number	of	neurons.	All	these	neurons	take	as	inputs	all	
the	outputs	(activations)	from	the	input	layer.	All	these	connections	are	weighted,	so	the	second	
layer	neurons	all	activate	differently	based	on	the	activations	of	the	input	layer.	Any	next	layers	
consist	 of	 neurons	 as	 well,	 each	 layer	 connecting	 to	 all	 previous	 layer’s	 neurons	 in	 a	 similar	
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weighted	fashion	and	all	neurons	activating	to	these	weighted	inputs.	The	last	layer,	the	output	
layer,	activates	only	those	neurons	that	are	associated	with	the	predicted	outcome.	

When	fitting	a	NN	(using	a	method	called	backpropagation),	the	goal	is	to	find	the	weights	in	
the	connections	between	all	 layers.	 If	 the	resulting	model	 is	good,	every	 individual	neuron	 is	a	
specialised	model	in	itself	for	a	particular	feature	in	the	data	available	to	it.	Because	of	the	many	
interconnections,	layers	and	neurons	per	layer,	NNs	can	model	very	complex	a	high-dimensional	
data	with	many	subtleties.	

NNs	 have	 been	 used	 successfully	 in	 diverse	 applications,	 such	 as	 computer	 vision	 (face	
recognition,	self-driving	cars,	etc.),	music	classification	and	generation,	system	control	(robotics),	
natural	language	processing	(written	or	spoken	language)	and	medical	diagnosis	[80].	For	some	
of	these	applications,	advanced	network	topologies	and	computation	strategies	are	used	to	har-
ness	the	power	of	NNs.	

§6.3 Discussion	
This	chapter	elaborated	on	various	available	methods	for	the	prediction	of	future	values	of	time	
series	based	on	current	and	past	values	(of	other	time	series).	Such	methods	are	currently	nei-
ther	used	in	clinical	practice	for	the	goals	of	the	current	research,	nor	in	out-of-hospital	settings.	
Thus,	 they	 can	 be	 considered	 experimental.	 However,	 the	methods	 described	 in	 this	 chapter	
have	proven	to	be	useful	in	other	scientific	areas	such	as	digital	signal	processing,	control	system	
theory,	machine	learning	and	econometrics.	These	sciences	already	embrace	the	benefits	of	the	
use	of	these	methods	and	greatly	aided	in	their	development.	This	 indicates	the	potential	they	
may	have	 if	applied	to	the	 information	 in	the	time	series	used	 in	this	research.	Because	use	of	
information	technology	in	medicine	classically	lags	behind	other	sciences	[55]	and	medical	tech-
nologies/science	 are	 evidence-based,	 it	 remains	 important	 the	 promising	methods	 from	other	
sciences	presented	in	this	chapter	are	investigated	promptly,	but	carefully	considering	their	clin-
ical	implications.	

Take,	for	example,	the	neural	networks	described	in	the	previous	section.	They	are	so	versa-
tile,	because	they	can	take	any	form	a	researcher	allows	their	network	to	be.	This	is	a	challenging	

Figure	26	–	A	schematic	artificial	neural	network	with	one	hidden	layer	and	all	interconnec-
tions	is	shown.	Image	reused	under	license	from	Wikipedia	Commons	[96].	
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paradigm	shift	for	modern	medicine.	In	general,	clinicians	want	to	have	some	understanding	of	
predictive	models	before	they	would	apply	them	on	their	patients.	How	would	a	doctor,	whose	
responsibility	 is	 to	 find	 the	 best	 treatment	 for	 every	 individual	 patient,	 use	 a	model	 that	was	
fitted	to	data	that	probably	does	not	contain	his	particular	patient	population?	How	would	this	
doctor	know	whether	or	not	the	model	is	applicable	to	his	patients?	This	situation	can	unfortu-
nately	be	the	case	in	randomised	controlled	trials	in	which	a	specific	population	is	studied.	How	
well	this	population	generalises	to	others	is	not	always	an	easy	question	to	answer.	This	is	why	
big	data	and	machine	 learning	are	 the	 future	of	modelling	 in	 clinical	practice.	Why	 consider	 a	
small	population	when	you	can	consider	every	individual?	

The	 concepts	used	 in	ML	 can	be	much	more	difficult	 to	understand	 than	 classical	medical	
statistics,	 but	 the	 power	 lies	 in	 the	 generalisability.	 Because	ML	methods	 can	 learn	 from	 very	
large	data	sets,	the	models	can	be	applicable	to	very	large	patient	populations	too.	For	example,	
if	a	very	complex	but	correct	ML	system	would	be	set	up	 in	such	manner	 that	 it	 learned	 from	
every	new	patient	in	a	hospital,	the	system	would	not	only	encompass	the	entire	hospital	popu-
lation,	but	keep	learning	and	therefore	adapting	to	slow	epidemiological	changes	as	well.	

This	step	towards	ML	may	be	the	first	in	a	paradigm	shift	away	from	classical	medical	statis-
tics.	This	shift	will	probably	take	many	years,	if	not	decades.	Classical	medical	statistics	will	prob-
ably	never	cease	to	exist,	because	their	 relative	simplicity	and	 interpretability	will	always	have	
applications	and	preference	where	understanding	of	a	model	is	required.	

Before	advanced	predictive	modelling	methods	can	be	applied	to	vital	signs	data	from	wear-
able	monitors	such	as	HealthPatch	MD,	it	must	be	ensured	that	this	type	of	data	contains	rele-
vant	information.	The	hypothesis	that	HealthPatch	MD	data	can	predict	the	EWS	or	risk	of	dete-
rioration	 in	 the	 surgical	population	 remains	 to	be	 investigated.	Only	 then	 this	 information	can	
become	 knowledge	 about	 early	 recognition	 of	 adverse	 events	 in	 recovering	 postoperative	 pa-
tients	in	and	out	of	the	hospital.	



	

	

	

77	

Chapter	7. Discussion	and	conclusion	

This	chapter	concludes	this	thesis.	Table	8	summarises	the	main	conclusions	of	every	chapter’s	
research	questions.	

Table	8	‒	The	research	questions	studied	in	this	thesis	and	their	conclusions	are	summarised.	

Chapter	 Research	questions	 Conclusion	
Chapter	2.	Health-
Patch	MD	by	Vital	
Connect	

What	is	HealthPatch	
MD,	what	does	it	do	
and	how	does	it	work?	

The	validation	status	of	HealthPatch	MD	
for	use	in	clinical	practice	is	unknown.	

Chapter	3.	Simulation	
experiment	with	
HealthPatch	MD	

How	well	does	Health-
Patch	MD	perform	in	
simulated	patients?	

HealthPatch	MD	can	accurately	measure	
simulated	heart	rate,	but	not	respiratory	
rate	due	to	different	simula-
tion/measurement	principles.	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD		

How	are	measurements	
with	HealthPatch	MD	
performed	in	clinical	
practice?	

Measurements	are	done	easily	and	pa-
tients	reported	no	to	little	perceived	bur-
den.	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD		

How	can	data	from	
HealthPatch	MD	be	
acquired?	

Reliability	of	raw	data	acquisition	was	
good.	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD	on	a	clinical	
ward	

How	can	data	from	
HealthPatch	MD	be	
stored	and	pre-
processed	for	further	
analysis?	

A	versatile	database	was	set	up	to	store,	
extract	and	pre-process	both	HealthPatch	
MD	and	Spacelabs	XPREZZON	data.	

Chapter	4.	Measure-
ments	with	Health-
Patch	MD	on	a	clinical	
ward	

What	methods	are	
available	to	measure	
agreement	between	
measurement	methods	
of	time	series?	

The	agreement	analyses	by	Bland	and	
Altman	are	applicable	to	the	data	in	this	
study,	Bland-Altman	analysis	for	repeated	
measurements	is	the	basis	for	the	data	
analysis	in	this	thesis.	

Chapter	5.	Data	anal-
ysis:	agreement	of	
HealthPatch	MD	with	
Spacelabs	XPREZZON	

What	do	heart	rate	and	
respiratory	rate	meas-
urements	by	Health-
Patch	MD	look	like?	

A	case	study	of	one	participation	showed	
that	a	postoperative	deteriorating	patient	
shows	changes	in	vital	signs	measured	by	
HealthPatch	MD.	

Chapter	5.	Data	anal-
ysis:	agreement	of	
HealthPatch	MD	with	
Spacelabs	XPREZZON	

How	well	do	Health-
Patch	MD	signals	agree	
with	the	bedside	refer-
ence	standard?	

Heart	rate	is	measured	acceptably	accu-
rate,	but	respiratory	rate	is	not.	However,	
extreme	values	are	measured	less	accu-
rately.	

Chapter	6.	Predicting	
risk	of	adverse	events	

How	is	risk	of	deterio-
ration	in	the	surgical	
patient	measured?	

Early	Warning	Scores	may	be	used	in	pre-
diction	modelling	of	risk	of	adverse	
events.	About	one	in	four	measured	Early	
Warning	Scores	was	3	or	higher.	

Chapter	6.	Predicting	
risk	of	adverse	events	

How	can	risk	time	se-
ries	be	predicted	based	
on	other	time	series?	

Various	contemporary	methods	for	pre-
diction	modelling	are	described;	machine	
learning	is	a	potential	candidate	to	predict	
risk	of	deterioration	from	the	complex	
patterns	seen	in	vital	signs.	
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§7.1 Discussion	
For	 the	 purpose	 of	 evaluating	 HealthPatch	MD	 as	 a	 near-continuous,	 automatic,	 non-invasive	
and	wearable	vital	signs	monitor	in	postoperative	patients,	the	device	was	studied	on	a	number	
of	subjects	in	this	Master	thesis.	These	subjects	were	the	technical	specifications,	simulated	per-
formance,	measurements	 in	 clinical	 practice	on	 a	 surgical	medium	care	ward,	 data	 processing	
(acquisition,	storage,	pre-processing,	graphing),	agreement	analysis	with	the	practical	reference	
and	prediction	modelling	of	risk	of	postoperative	decline.	

This	chapter	concludes	this	thesis	and	discusses	all	topics	from	the	previous	chapters.	These	
chapters	each	have	a	discussion	section	too,	where	many	topics	have	already	been	addressed.	

§7.1.1 Wearable	vital	signs	monitoring	technology	in	literature	
In	short,	there	is	little	literature	about	the	use	of	wearables	for	the	purposes	of	this	thesis.	Many	
studies	are	focused	on	the	engineering	of	wearable	vital	signs	monitoring	technology	[46,81,82].	
Other	studies	promise	clinical	validity	while	performing	measurements	in	very	limited	or	healthy	
populations,	or	their	methods	are	in	controlled	environments,	or	their	data	analyses	have	limita-
tions	or	violate	assumptions	being	made	[36–38,41,42,83–86].	This	leads	to	the	belief	that	there	
is	little	evidence	about	the	validity	of	current	developments	in	this	field.	This	study	is	the	first	to	
perform	 a	 validation	 of	 a	wearable	 vital	 signs	monitor	 by	 performing	 long-term,	 spontaneous	
measurements	 in	 a	 true	 clinical	 setting	with	 a	 realistic	 patient	 population	 and	using	 a	 passive	
measurement	protocol,	i.e.,	not	performing	controlled	measurements.	Although	one	monitoring	
system,	 EarlySense	 (EarlySense	 ltd,	 Ramat-Gan,	 Israel),	 does	 have	 quite	 extensive	 validation	
studies	in	clinical	practice,	it	is	not	a	wearable	system	and	consequently	unfit	for	truly	continu-
ous	monitoring	of	vital	signs	[87–90].	

§7.1.2 Strengths	and	limitations	

Benchmark	for	wearable	vital	signs	monitors	

The	 simulation	 experiment	 clearly	 showed	 where	 knowledge	 and	 practical	 possibilities	 were	
lacking	to	test	a	wearable	vital	signs	monitor.	For	example,	respiratory	rate	could	not	be	simu-
lated	for	the	methods	the	HealthPatch	uses	measure	it.	For	future	research	with	wearable	vital	
signs	 monitors,	 some	 technical	 experimental	 setup	must	 be	 available	 to	 assess	 such	 devices.	
With	such	a	setup,	it	would	be	possible	to	put	these	devices	to	the	test	before	they	are	applied	
in	patient	measurements.	Extreme	physiology,	accuracy,	wear	and	lifespan	can	be	tested	in	such	
experiments.	 Because	 no	 benchmark	 exists	 for	 wearable	 vital	 signs	 monitors,	 it	 would	 be	 a	
unique	benefit	to	have	one	available.	With	this	benchmark	 it	would	be	possible	to	analyse	the	
performance	of	many	manufacturers’	wearable	devices	for	clinical	and	non-clinical	applications,	
for	both	research	purposes	and	as	a	service	to	third	parties.	

ECG	electrode	ageing	

In	 this	 study,	 it	was	not	 investigated	 if	 an	ageing	effect	 is	present	 in	 the	HealthPatch	MD	ECG	
electrodes	and	whether	or	not	it	influences	its	measurements.	It	is	known	typical	ECG	electrodes	
used	 in	 clinical	 practice	 show	 an	 ageing	 effect	when	 applied	 to	 the	 skin.	 This	 is	 usually	 not	 a	
problem,	because	these	electrodes	are	regularly	 replaced	 (based	on	experiences	 from	nurses).	
By	protocol,	 regular	ECG	electrodes	 should	be	 replaced	every	48	hours.	However,	HealthPatch	
MD	and	other	similar	devices	are	designed	to	be	attached	to	the	skin	continuously	for	prolonged	
times	up	to	days.	 In	theory,	what	could	happen	 is	that	both	skin	contact	electrodes	age	differ-
ently.	 As	 a	 consequence,	 the	 electrical	 specifications	 of	 the	 patch	 change	 over	 the	 course	 of	
days.	
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If	and	how	electrode	ageing	affects	HealthPatch	MD	ECG	recordings	and	further	calculations	
of	 physiological	 parameters	 needs	 further	 investigation.	 In	 this	 research,	 it	 was	 assumed	 the	
ageing	effect	had	negligible	influence,	which	was	a	limitation.	

Tailored	database	

A	strength	in	this	study	was	the	database	design	(§4.2.2)	and	implementation	in	MATLAB	(§4.3).	
The	database	was	set	up	to	reflect	reality.	This	allowed	for	easy	interpretation	of	the	digital	envi-
ronment	in	this	study	due	to	its	similarity	to	reality.	Patients	could	participate	in	multiple	partici-
pations,	 participations	 could	 contain	 any	 number	 of	measurement	 by	 any	 number	 of	 devices,	
etc.	The	difficulty	in	this	is	that	programming	such	a	system	requires	some	experience	with	writ-
ing	software,	which	we	did	not	have	very	much	at	the	beginning	of	this	research,	but	gained	a	
little	through	writing	the	database	and	many	trials	and	errors15.	It	will	therefore	not	be	easy	to	
keep	using	the	database	in	continuation	of	this	research	with	wearables,	unless	future	research-
ers	have	experience	with	writing	software	or	are	willing	to	learn	it.	However,	with	such	a	data-
base	 it	 is	possible	 to	acquire,	 store,	pre-process	and	explore	data	 in	 future	studies.	Minor	and	
major	adjustments	and	enhancements	are	possible	with	a	tailored	database	system.	

Artefact	rejection	and	reduction	

No	 explicit	 artefact	 rejection	 or	 reduction	 techniques	 were	 applied	 to	 the	 data	 in	 this	 study.	
Some	 artefacts	 were	 removed	 in	 the	 pre-processing	 steps,	 such	 as	 outlier	 removal	 in	 the	
downsampling	process	with	an	anti-aliasing	filter,	but	no	attempts	to	remove	particular	artefacts	
were	made.	This	 is	 a	 limitation,	because	 it	was	 clearly	 visible	many	measurement	errors	were	
present	in	the	data.	

Mainly	Spacelabs	data	showed	large	variability	in	both	heart	rate	and	especially	respiratory	
rate	 measurements.	 These	 samples	 were	 obviously	 artefacts,	 because	 their	 values	 were	 not	
plausible.	 For	 example,	 sometimes	 the	 respiratory	 rate	 algorithm	 of	 the	 Spacelabs	 monitor	
would	 pick	 up	 heart	 rate.	Of	 course,	 a	 respiratory	 rate	 of	 greater	 than	 50	brpm	 is	 quite	 rare,	
especially	when	it	is	just	one	sample	and	all	others	in	the	vicinity	have	more	logical	values.	Also,	
very	 low	 values	 (below	 2	brpm)	 were	 see	 often	 too.	 These	 values	 emerged	 when	 patients	
breathed	very	superficially,	e.g.	when	sleeping,	and	Spacelabs	missed	a	breath.	

A	 reason	 for	 not	 performing	 artefact	 rejection	 was	 the	 resampling	 method.	 The	 current	
resampling	method	was	not	robust	 for	gaps	 in	the	data	(see	also	§4.3.2).	Rejecting	an	artefact	
would	mean	inducing	a	gap,	which	is	undesirable	for	the	resampling	method.	Instead	of	remov-
ing	a	sample	as	an	artefact,	it	can	be	replaced	with	an	estimated	value.	However,	such	practices	
are	always	risky,	because	one	might	be	manufacturing	their	own	data	and	results	with	or	with-
out	 knowing.	Moreover,	 assuming	outliers	 are	 artefacts	 can	be	dangerous	 in	 situations	where	
physiology	 is	actually	extreme.	 In	§4.4,	another	 reason	to	keep	measurements	with	 their	arte-
facts	is	given:	when	comparing	methods,	measurements	including	artificial	flaws	are	to	be	used.	
It	was	therefore	decided	no	artefact	removal	techniques	would	be	applied	besides	the	artefact	
reduction	incorporated	in	some	of	the	pre-processing	methods	of	Chapter	4.	

Spacelabs	XPREZZON	is	not	a	gold	standard	

In	validation	studies	a	comparison	of	the	method	being	validated	with	a	gold	standard	is	typical.	
In	Chapter	5	a	comparison	of	HealthPatch	MD	vital	signs	was	made	with	the	same	vital	signs	as	
measured	by	the	Spacelabs	XPREZZON	bedside	monitoring	system.	For	both	heart	rate	and	res-
piratory	rate	the	Spacelabs	data	was	not	a	gold	standard.	

																																																													
15	Especially	errors,	certainly	thousands	
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The	ECG-based	heart	rate	monitor	of	Spacelabs	may	be	near	gold	standard	validity,	but	the	
data	consisted	of	one	sample	per	minute.	This	makes	Spacelabs	to	some	degree	an	impractical	
reference	standard	for	near-continuous	heart	rate	measurement.	

For	respiratory	rate,	capnography	is	the	gold	standard.	However,	capnography	is	impractical	
to	 perform	 in	 a	 continuous	 postoperative	 setting.	 An	 alternative	would	 be	 respiratory	 induct-
ance	plethysmography,	in	which	stretchable	conducting	coils	are	strapped	around	the	patient’s	
chest	and	abdomen.	Because	the	Spacelabs	monitoring	system	was	the	most	practical	bedside	
reference	standard	 in	clinical	practice	 in	the	UMCU,	 its	respiratory	rate	signals	were	chosen	as	
the	reference	for	the	comparison	analyses.	

Because	of	 these	 reasons,	 the	 comparison	 study	was	 limited	by	 the	 limited	 validity	of	 the	
reference	monitor.	This	 is	always	the	case	 in	Bland-Altman	analysis,	but	the	agreement	 is	 low-
ered	by	the	Spacelabs	monitor	probably	having	a	 larger	variability	of	 its	respiratory	rate	meas-
urements.	

Generalisability	of	this	study’s	results	is	limited	

Because	not	all	research	goals	in	this	thesis	have	been	fully	addressed,	the	potential	for	Health-
Patch	MD	to	be	used	as	a	diagnostic	tool	for	early	recognition	of	deteriorating	patients	is	not	yet	
known.	The	studied	population	was	chosen,	because	it	was	expected	many	abnormal	vital	signs	
would	be	measured	and	that	some	adverse	outcomes	would	be	observed.	However,	 there	are	
different	settings	and	populations,	e.g.	at	home,	where	the	potential	of	a	system	such	as	Health-
Patch	may	be	different.	Furthermore,	because	the	included	population	is	relatively	ill,	the	effects	
of	 specific	 comorbidities,	 medication	 use	 and	medical	 interventions	 during	 participation	 have	
been	measured,	but	have	not	specifically	been	studied.	How	a	wearable	system	such	as	Health-
Patch	MD	will	behave	 in	other	 settings	and	populations	 is	 a	matter	of	performing	many	more	
measurements	in	various	situations	to	gain	experience	and	find	more	evidence.	

Failure	to	transmit	in	HealthPatch	MD	measurements	was	variable	

The	survival	analyses	presented	in	Appendix	B	show	that	failure	to	transmit	was	common	during	
measurements	with	HealthPatch	MD.	However,	most	patches	did	not	lose	any	data,	while	others	
lost	 relatively	 large	amounts.	 It	 seems	 the	HealthPatch	 system	 is	prone	 to	 complete	 failure	 to	
transmit	once	 the	preconditions	 for	 failure	 are	met.	 The	battery	phenomenon	as	described	 in	
§4.5.2	was	a	main	cause	of	the	complete	failure	of	some	measurements.	However,	other	influ-
ences	on	data	transmission	are	yet	to	be	investigated.	For	example,	in	an	ambulatory	setting	at	
home,	the	connection	with	a	relay	device	(e.g.	iPad)	cannot	be	guaranteed.	

§7.1.3 Early	Warning	Scores	may	be	used	 to	estimate	sample	sizes	 for	 future	
studies	
In	Chapter	6,	measurements	of	the	Early	Warning	Score	(EWS)	were	presented	 in	a	histogram.	
From	this	histogram,	the	distribution	of	EWS	values	as	seen	on	the	surgical	medium	care	in	the	
UMCU	can	be	estimated.	When	EWS	is	greater	than	or	equal	to	3,	the	UMCU	protocol	is	to	acti-
vate	a	doctor	for	further	assessment	of	the	patient.	If	a	similar	activation	system	could	be	estab-
lished	using	a	wearable	vital	signs	monitor	such	as	HealthPatch	MD,	then	patient	safety	may	be	
enhanced	 in	 and	out	of	 the	hospital.	However,	more	observations	of	 complications	 and	other	
adverse	events	are	needed	before	patient	outcomes	can	be	estimated	or	predicted	using	meas-
urements	by	such	a	device.	

The	EWS	distribution	allows	to	do	a	recommendation	for	future	research.	In	the	histogram	it	
can	be	seen	that	about	25%	of	EWS	values	are	3	or	greater.	This	means	that	about	one	in	four	
EWS	measurements	requires	activation	of	a	doctor.	These	25%	of	observations	can	be	of	interest	
to	 investigate	 into	more	 detail	with	HealthPatch	measurement.	 If	 the	 vital	 signs	measured	 by	
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HealthPatch	contain	information	that	can	be	used	to	estimate	that	EWS	is	high,	this	information	
can	also	be	used	to	activate	a	doctor.	 If,	for	example,	a	future	study	would	want	to	witness	50	
doctor	activations,	then	about	200	EWS	measurements	are	expected	to	have	to	be	witnessed	for	
this	number	of	values	to	be	3	or	higher.	Compared	to	the	current	study,	about	30–40	participa-
tions	will	be	required	to	observe	these	EWS	values.	

Note	that	the	surgical	medium	care	ward	measures	EWS	values	once	per	nurse	shift	by	pro-
tocol.	However,	on	regular	wards,	it	is	probable	that	true	EWS	values	are	lower	on	average,	but	
EWS	measurements	are	mostly	done	when	a	high	value	is	suspected.	How	many	samples	would	
be	needed	on	such	a	ward	to	observe	enough	outcomes	of	interest	is	more	difficult	to	say.		

§7.2 Conclusion	
To	conclude	this	Master	thesis,	we	return	to	the	original	research	question.	

Can	 HealthPatch	 MD	 be	 used	 in	 clinical	 practice	 for	
early	recognition	of	the	deteriorating	surgical	patient?	

The	answer	has	not	been	definitively	given	nor	found	in	this	study.	However,	many	steps	were	
taken	towards	answering	parts	of	the	question.	The	HealthPatch	MD	system	was	analysed	thor-
oughly	based	on	technical	specifications,	simulation	of	physiology,	measurements	in	the	postop-
erative	 population	 and	 early	 validation	 by	 a	 comparison	 with	 the	 clinical	 bedside	 reference	
standard.	From	these	studies,	it	can	be	concluded	the	HealthPatch	MD	system	is	able	to	meas-
ure	 heart	 rate	 with	 a	 marginally	 acceptable	 agreement	 and	 respiratory	 rate	 with	 acceptable	
agreement	in	a	more	advanced	comparison	analysis.	These	agreements	may	improve	if	properly	
validated	heart	rate	and	respiratory	rate	monitors	are	used	instead,	which	do	not	have	the	limi-
tations	of	the	reference	monitor	used	in	the	current	study.	

The	 amount	 of	 data	 loss	 in	 the	 current	 study	 is	 debatable.	 Some	 measurements	 by	 the	
HealthPatch	MD	system	proved	reliable,	but	others	suffered	from	complete	failure.	The	current	
system	is	still	too	prone	to	transmission	failure	to	be	used	reliably	in	clinical	practice.	

An	 overview	 of	methods	 for	 the	 predictions	 of	 risk	 of	 adverse	 events	 based	 on	 the	 Early	
Warning	Score	chart	was	presented.	Various	methods	from	different	sciences	may	prove	useful	
to	model	 adverse	 events	 based	 on	wearable	 vital	 signs	monitors.	 It	 will	 be	 interesting	 to	 see	
what	value	techniques	such	as	machine	learning	add	to	the	future	of	this	research.	
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Appendix	A. Bland-Altman	Analysis	in	a	MATLAB	implementation	

The	methods	 used	 for	 agreement	 analysis	 of	 HealthPatch	MD	 and	 Spacelabs	 XPREZZON	 vital	
signs	signals	are	described	in	§4.4.2.	Because	all	analyses	were	performed	in	MATLAB,	an	imple-
mentation	 of	 Bland-Altman	 Analysis	(BAA)	 was	 required	 for	 the	 specific	 type	 of	 data	 in	 this	
study.	Basic	BAA	 implementations	are	available	online16,	but	none	 implement	methods	 for	 the	
various	 cases	 of	 repeated	measurements	 (equal/unequal	 number	 of	 replicates,	 assuming	 con-
stant	or	variable	true	values),	nor	any	of	the	other	more	advanced	methods	found	in	literature	
from	Bland,	Altman	and	others	on	the	subject.	Therefore,	a	MATLAB	implementation	was	written	
and	published	on	GitHub	[91].	

The	 latest	main17	 and	development18	 releases	 are	 available	 for	download.	 This	 software	 is	
still	under	development	and	is	in	an	early	release	stage	where	some	desired	functionality	has	not	
yet	been	implemented.	Nonetheless,	it	is	already	a	versatile,	customisable	and	very	fast	piece	of	
software	(the	calculations	in	§4.4.2	take	about	four	seconds).	

																																																													
16	https://mathworks.com/matlabcentral/fileexchange/?term=bland	(accessed	24	October	2016)	
17	https://github.com/erikhuizinga/Bland-Altman-Analysis/releases/latest	
18	https://github.com/erikhuizinga/Bland-Altman-Analysis/archive/develop.zip	

Figure	27	–	 Some	of	 the	graphical	capabilities	of	 the	Bland-Altman	analysis	 tool	programmed	 in	
MATLAB	are	shown.	Note	the	data	tips	added	to	the	graph	show	additional	information	about	the	
lines	or	 individual	data	points.	For	example,	 the	regression	 line	 coefficients	are	given,	 the	mean	
and	difference	are	shown,	the	subject	number	and	number	of	observations	are	given.	
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The	version	used	for	the	analyses	of	this	thesis	has	been	labelled	as	the	TM	(telemonitoring)	
release19.	The	features	are	supported	by	the	TM	release	are	listed	below.	A	demonstration	of	the	
graphical	output	is	shown	in	Figure	27.	
	

• Regular	BAA	is	supported	
o Various	agreement	statistics	between	the	two	methods	are	supported	

§ Difference	(default)	
§ Ratio	
§ Standard	deviation	(of	either	method,	or	their	difference)	
§ Pearson	correlation	(with	𝑝-value)	

o Limits	of	agreement	(LOA)	are	calculated	
§ LOA	confidence	intervals	(CI)	at	a	configurable	significance	level	are	cal-

culated	
o Bias	(mean	difference)	is	calculated	

§ Bias	CI	at	a	configurable	significance	level	is	calculated	
o Various	statistics	of	the	input	data	are	calculated	

§ Standard	deviation	of	the	agreement	statistic	
§ Spearman	rank	correlation	of	the	agreement	statistic	with	mean	(with	𝑝-

value)	
§ Regression	of	the	statistic	on	the	mean	(with	mean	squared	error	(MSE))	

• Creation	of	various	graphs	is	supported	
o Mean-agreement	statistic	plot	(e.g.	mean-difference	plot)	
o Pearson	correlation	plot	between	the	two	methods	
o Various	statistics	can	be	added	to	the	graphs,	such	as	LOA,	bias,	correlation,	re-

gression,	etc.	
o Various	plot	customisation	options	are	supported,	such	as	setting	the	names	of	

the	methods	
o The	graph	can	be	configured	to	be	very	concise,	or	to	be	very	information-dense	

• BAA	for	repeated	measurements	is	supported	
o Equal	number	of	replicates	are	supported	
o Unequal	number	of	replicates	are	supported	
o Assuming	either	a	constant	or	varying	true	value	is	supported	
o Additional	statistics	for	the	repeated	measurements	situation	are	calculated	

§ Least-squares	simple	linear	regression	line	of	bias	and	LOA	
• With	and	without	assumption	of	constant	residual	variance	

§ Within-subject	variances	are	calculated	
• Transformation	of	the	input	data	is	supported,	e.g.	logarithmic	
• Exclusion	of	individual	samples	is	support,	e.g.	to	study	the	influence	of	(removal	of)	out-

liers	
• A	demonstration	of	the	methods	and	data	of	Bland	and	Altman’s	1999	and	2007	articles	

is	implemented	[51,53].	The	articles	contain	many	tables	of	example	data	from	true	ex-
periments.	These	data	and	the	published	results	were	used	to	validate	the	implementa-
tion	of	this	software	

																																																													
19	https://github.com/erikhuizinga/Bland-Altman-Analysis/tree/TM	



	

	

	

III	

Appendix	B. Survival	analysis	of	HealthPatch	measurements	

In	 an	 early	 stage	 of	 this	 thesis	 research,	 it	 was	 planned	 to	 perform	 reliability	 analysis	 of	 the	
HealthPatch	MD	measurements.	Reliability	was	to	be	expressed	as	amount	of	data	loss	and	time	
to	failure.	The	first	is	already	listed	in	Chapter	4,	but	the	latter	is	not	yet	defined	or	shown.	Time	
to	failure	was	defined	as	the	duration	of	a	measurement	until	it	contained	a	large	enough	gap	to	
be	 considered	 as	 unacceptable.	 After	 all,	 to	 enhance	 patient	 safety	 a	 measurement	 must	 be	
somewhat	continuous	and	gaps	may	not	be	large.	

To	assess	the	survival	of	measurements,	 it	can	be	analysed	with	Kaplan-Meier	analysis	[92]	
and	Cox	regression	[93].	In	an	early	stage	of	the	reliability	analysis	a	survival	plot	(Kaplan-Meier)	
was	made,	shown	in	Figure	28.	Censoring	was	applied	when	a	measurement	ended	due	to	an-
other	reason	than	failure	to	transmit	data,	i.e.,	when	the	measurement	ended	before	the	patch	
could	not	transmit	any	more	it	was	censored.	

Multiple	thresholds	were	used	in	the	analysis,	ranging	from	two	minutes	to	four	hours.	The	
threshold	determined	how	 long	 the	duration	of	a	gap	was	allowed	 to	be	before	 the	measure-
ment	was	considered	a	failure.	As	can	be	seen,	with	a	threshold	of	two	minutes	less	than	50%	of	
the	 HealthPatch	measurement	 ‘survive’.	 After	 24	 hours,	 about	 40%	 have	 already	 failed.	 Even	
with	a	four-hour	threshold	about	20%	fail.	

A	 two-minute	 threshold	 is	 strict,	but	only	allows	 the	HealthPatch	 to	have	 short	periods	of	
data	loss.	This	may	be	practical	in	clinical	practice,	where	a	threshold	of	hours	is	unacceptable.	

Figure	 28	 –	 Survival	 analysis	 of	 the	 first	 24	 HealthPatch	measurements.	When	 signal	 loss	
lasts	longer	than	one	of	the	various	threshold	times	(see	legend	in	hours:minutes	format),	it	
counts	as	a	failure.	
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However,	in	a	situation	at	home	or	outside,	it	may	not	be	realistic	to	require	gaps	in	the	data	to	
be	shorter	than	a	few	minutes.	There,	a	less	strict	threshold	would	be	preferable.	

The	 same	analysis	was	 redone	with	 all	 available	HealthPatch	measurements	at	 the	end	of	
this	study,	the	results	of	which	can	be	seen	in	Figure	29.	It	is	clear,	although	no	significance	has	
been	calculated,	 that	HealthPatch	measurements	survived	 longer	 in	 the	 last	12	measurements	
than	in	the	first	24.	The	main	difference	between	the	graphs	is	the	amount	of	censoring	is	great-
er	 in	 the	 second	 figure,	 which	 shows	 there	 were	 relatively	 fewer	 failures	 among	 the	 last	 12	
measurements.	This	can	also	be	seen	in	the	general	shape	of	the	survival	lines,	which	is	generally	
the	same;	this	indicates	most	failures	occurred	in	the	first	24	measurements.	In	this	second	anal-
ysis,	 the	 results	 a	much	 better	 than	 in	 the	 first.	 About	 85%	 survived	 the	 entire	measurement	
with	a	 threshold	of	 two	or	 four	hours,	which	 is	 a	10%	and	5%	 increase	 respectively.	 The	 two-
minute	threshold	24-hour	survival	increased	from	60%	to	70%.	

In	both	analyses,	the	large	fraction	of	censored	measurements	induces	a	large	bias	when	try-
ing	 to	 assess	 how	 long	 the	 HealthPatch	 can	measure.	 In	 theory,	 the	 patch	 should	 be	 able	 to	
measure	96	hours.	Most	measurements	ended	well	before	this	mark,	so	we	cannot	tell	if	these	
patches	would	 have	made	 it	 to	 the	 96	 hour	mark,	 or	 that	 they	would	 have	 failed.	 A	 practical	
reason	for	this	was	that	measurements	took	place	only	on	the	medium	care	ward	and	could	not	
be	continued	on	the	wards	where	patients	were	dismissed	to.	

Figure	29	–	Survival	analysis	of	all	36	HealthPatch	measurements.	When	the	signal	loss	lasts	
longer	 than	 one	 of	 the	 various	 threshold	 times	 (see	 legend	 in	 hours:minutes	 format),	 it	
counts	as	a	failure.	
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Appendix	C. Plots	 of	 all	 participations’	 vital	 signs	 as	measured	 by	
HealthPatch	MD	and	Spacelabs	XPREZZON	

This	appendix	contains	plots	of	all	participations.	The	HealthPatch	MD	and	Spacelabs	measure-
ments	have	been	pre-processed	as	described	in	§4.3,	i.e.,	the	data	has	been	uniformly	sampled,	
resampled	 (to	one	 sample	per	minute),	 synchronised	 (HealthPatch	 to	 Spacelabs)	 and	 trimmed	
(samples	before	start	and	after	end	of	the	other	measurement	device	are	removed).	

Because	for	some	measurements	there	was	no	data	due	to	missing	data	files,	these	partici-
pations	have	been	excluded	from	this	section.	

Note	 that	 all	 figures	 in	 this	 appendix	 show	 participation	 numbers	 from	 8	 onwards.	 These	
numbers	correspond	to	the	numbers	in	the	database	and	are	used	here	for	reference.	The	first	
seven	 participations	were	 excluded	 from	 this	 study,	 because	 they	were	measured	 in	 previous	
research	using	different	measurement	protocols.	
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Appendix	D. Tables	

Note	 that	all	 tables	 in	 this	appendix	 show	participation	numbers	 from	8	onwards.	These	num-
bers	correspond	to	the	numbers	in	the	database	and	are	used	here	for	reference.	The	first	seven	
participations	were	excluded	from	this	study,	because	they	were	measured	in	previous	research	
using	different	measurement	protocols.	
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Table	9	–	The	number	of	samples	of	the	raw	data	obtained	from	participations	are	listed.	

Participation	№	
Number	of	samples	in	raw	data	

Spacelabs	XPREZZON	 HealthPatch	MD	
Heart	rate	 Respiratory	rate	 Heart	rate	 Respiratory	rate	

8	 2608	 2800	 19710	 19710	
9	 6215	 5581	 80564	 80564	
10	 4114	 4124	 37683	 37683	
11	 2308	 2323	 21966	 21966	
12	 1686	 1691	 20707	 20707	
13	 3170	 3179	 28642	 28642	
14	 0	 0	 69470	 69470	
15	 0	 0	 17232	 17232	
16	 0	 0	 2980	 2980	
17	 1327	 1344	 16081	 16081	
18	 4079	 3992	 46868	 46868	
19	 2566	 2683	 18067	 18067	
20	 0	 0	 3784	 3784	
21	 0	 0	 61375	 61375	
22	 2676	 2592	 41045	 41045	
23	 1166	 1138	 5844	 5844	
24	 1755	 1762	 20522	 20522	
25	 5161	 5169	 73604	 73604	
26	 3619	 3235	 38892	 38892	
27	 2141	 2143	 24788	 24788	
28	 2239	 2499	 16646	 16646	
29	 3047	 3105	 35282	 35282	
30	 5500	 5408	 112716	 112716	
31	 2224	 2232	 19085	 19085	
32	 2951	 2956	 42058	 42058	
33	 3119	 3278	 41653	 41653	
34	 2452	 2469	 35304	 35304	
35	 4711	 5281	 81767	 81767	
36	 0	 0	 62759	 62759	
37	 1826	 2364	 23314	 23314	
38	 0	 0	 26062	 26062	
39	 0	 0	 102725	 102725	
40	 0	 0	 64562	 64562	
41	 5541	 5543	 97091	 97091	
42	 1111	 1117	 22535	 22535	

Total	 79312	 80008	 1433383	 1433383	
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Table	10	–	The	number	of	samples	and	total	duration	of	the	uniformly	sampled	data	obtained	from	participations	
are	listed.	𝒏:	number	of	samples.	hh:mm:ss:	hours:minutes:seconds.	

Participation	
№	

Number	of	samples	and	duration	of	uniformly	sampled	data	
Spacelabs	XPREZZON	 HealthPatch	MD	

Heart	rate	 Respiratory	rate	 Heart	rate	 Respiratory	rate	
𝑛	 hh:mm:ss	 𝑛	 hh:mm:ss	 𝑛	 hh:mm:ss	 𝑛	 hh:mm:ss	

8	 2479	 47:57:00	 2479	 47:57:00	 20307	 23:37:56	 20307	 23:37:56	
9	 6078	 109:24:00	 6078	 109:24:00	 83204	 92:26:52	 83204	 92:26:52	
10	 4091	 71:57:00	 4091	 71:57:00	 38744	 43:02:52	 38744	 43:02:52	
11	 2289	 41:14:00	 2289	 41:14:00	 23012	 25:44:56	 23012	 25:44:56	
12	 1682	 28:09:00	 1682	 28:09:00	 21702	 25:19:52	 21702	 25:19:52	
13	 3154	 56:55:00	 3154	 56:55:00	 30091	 33:26:00	 30091	 33:26:00	
14	 0	 00:00:00	 0	 00:00:00	 71211	 82:08:52	 71211	 82:08:52	
15	 0	 00:00:00	 0	 00:00:00	 17698	 35:36:28	 17698	 35:36:28	
16	 0	 00:00:00	 0	 00:00:00	 2928	 07:59:28	 2928	 07:59:28	
17	 1309	 22:54:00	 1309	 22:54:00	 15517	 25:39:12	 15517	 25:39:12	
18	 4016	 95:57:00	 4016	 95:57:00	 48997	 114:25:32	 48997	 114:25:32	
19	 2489	 47:58:00	 2489	 47:58:00	 18558	 20:37:16	 18558	 20:37:16	
20	 0	 00:00:00	 0	 00:00:00	 3669	 04:04:56	 3669	 04:04:56	
21	 0	 00:00:00	 0	 00:00:00	 60794	 67:32:52	 60794	 67:32:52	
22	 2621	 47:57:00	 2621	 47:57:00	 41214	 47:14:41	 41214	 47:14:41	
23	 1148	 23:01:00	 1148	 22:47:00	 5912	 12:15:28	 5912	 12:15:28	
24	 1745	 36:56:00	 1745	 36:56:00	 20502	 22:46:56	 20502	 22:46:56	
25	 5123	 95:57:00	 5123	 95:57:00	 73379	 81:31:52	 73379	 81:31:52	
26	 3537	 71:57:00	 3537	 71:57:00	 38564	 42:50:52	 38564	 42:50:52	
27	 2088	 39:11:00	 2088	 39:11:00	 24525	 27:14:56	 24525	 27:14:56	
28	 2122	 47:58:00	 2122	 47:58:00	 16542	 19:16:20	 16542	 19:16:20	
29	 2997	 71:57:00	 2997	 71:57:00	 35025	 38:54:56	 35025	 38:54:56	
30	 5472	 142:06:00	 5472	 142:06:00	 111825	 124:14:56	 111825	 124:14:56	
31	 2209	 47:57:00	 2209	 47:57:00	 18989	 21:05:52	 18989	 21:05:52	
32	 2884	 59:11:00	 2884	 59:11:00	 42179	 46:51:52	 42179	 46:51:52	
33	 3007	 57:44:00	 3007	 57:44:00	 41580	 46:11:56	 41580	 46:11:56	
34	 2427	 46:03:00	 2427	 46:04:00	 35051	 38:56:52	 35051	 38:56:52	
35	 4289	 96:01:00	 4289	 96:01:00	 81119	 90:07:52	 81119	 90:07:52	
36	 0	 00:00:00	 0	 00:00:00	 62190	 69:05:56	 62190	 69:05:56	
37	 1621	 43:29:00	 1621	 43:30:00	 23355	 25:57:56	 23355	 25:57:56	
38	 0	 00:00:00	 0	 00:00:00	 25844	 28:42:52	 25844	 28:42:52	
39	 0	 00:00:00	 0	 00:00:00	 102725	 114:09:56	 102725	 114:09:56	
40	 0	 00:00:00	 0	 00:00:00	 64035	 71:08:56	 64035	 71:08:56	
41	 5504	 94:59:00	 5504	 94:59:00	 96569	 107:17:52	 96569	 107:17:52	
42	 1076	 23:57:00	 1076	 23:57:00	 22544	 25:02:52	 22544	 25:02:52	

Total	 77457	 1568:46:00	 79270	 1568:34:00	 1440100	 1702:44:45	 1440100	 1702:44:45	
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Table	 11	 –	 The	 number	 of	 samples	 and	 total	 duration	 of	 the	 ensemble	 (HealthPatch	 and	 Spacelabs	 resampled,	
synchronised	 and	 trimmed	 to	 each	 other)	 participations	 are	 listed.	 𝒏:	 number	 of	 samples.	 hh:mm:ss:	
hours:minutes:seconds.	

Participation	
№	

Number	of	samples	and	duration	of	ensemble	data	
Spacelabs	XPREZZON	 HealthPatch	MD	

Heart	rate	 Respiratory	rate	 Heart	rate	 Respiratory	rate	
𝑛	 hh:mm:ss	 𝑛	 hh:mm:ss	 𝑛	 hh:mm:ss	 𝑛	 hh:mm:ss	

8	 1183	 23:27:00	 1381	 23:28:00	 1328	 23:26:00	 1328	 23:26:00	
9	 5230	 92:23:00	 4585	 92:26:00	 5544	 92:23:00	 5546	 92:25:00	
10	 2435	 43:02:00	 2452	 43:02:00	 2582	 43:01:00	 2581	 43:00:00	
11	 1414	 25:44:00	 1440	 25:44:00	 1516	 25:44:00	 1508	 25:36:00	
12	 1429	 23:57:00	 1438	 23:57:00	 1438	 23:57:00	 1438	 23:57:00	
13	 1903	 33:26:00	 1920	 33:26:00	 2007	 33:26:00	 2007	 33:26:00	
14	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
15	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
16	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
17	 547	 09:39:00	 561	 09:33:00	 580	 09:39:00	 574	 09:33:00	
18	 3198	 82:23:00	 3141	 82:23:00	 2975	 82:22:00	 2975	 82:22:00	
19	 1103	 20:27:00	 1208	 20:28:00	 1228	 20:27:00	 1229	 20:28:00	
20	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
21	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
22	 1913	 35:10:00	 2317	 44:04:00	 2096	 35:10:00	 2014	 33:48:00	
23	 375	 06:17:00	 361	 06:00:00	 362	 07:59:00	 373	 08:10:00	
24	 1357	 22:45:00	 1361	 22:46:00	 1351	 22:44:00	 1349	 22:42:00	
25	 4266	 81:31:00	 4280	 81:31:00	 4889	 81:28:00	 4888	 81:27:00	
26	 2306	 42:50:00	 1930	 42:50:00	 2571	 42:50:00	 2571	 42:50:00	
27	 1312	 22:31:00	 1352	 22:31:00	 1352	 22:31:00	 1352	 22:31:00	
28	 1113	 19:06:00	 1126	 19:08:00	 1068	 19:06:00	 1068	 19:06:00	
29	 2113	 36:23:00	 2181	 36:23:00	 2184	 36:23:00	 2184	 36:23:00	
30	 4791	 93:21:00	 4687	 93:22:00	 5601	 93:20:00	 5601	 93:20:00	
31	 1122	 18:56:00	 1126	 18:57:00	 1136	 18:55:00	 1136	 18:55:00	
32	 2356	 43:01:00	 2392	 43:01:00	 2582	 43:01:00	 2582	 43:01:00	
33	 2307	 45:53:00	 2557	 45:58:00	 2754	 45:53:00	 2757	 45:56:00	
34	 2001	 38:42:00	 2031	 38:42:00	 2309	 38:41:00	 2309	 38:41:00	
35	 3948	 90:07:00	 4892	 90:07:00	 5407	 90:06:00	 5407	 90:06:00	
36	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
37	 912	 25:33:00	 1537	 25:57:00	 1514	 25:33:00	 1533	 25:52:00	
38	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
39	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
40	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	 0	 00:00:00	
41	 5501	 94:59:00	 5507	 94:59:00	 5700	 94:59:00	 5700	 94:59:00	
42	 741	 13:57:00	 758	 13:56:00	 838	 13:57:00	 837	 13:56:00	

Total	 56876	 1085:30:00	 58521	 1094:39:00	 62912	 1087:01:00	 62847	 1085:56:00	
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Appendix	E. Honeycomb	plots	in	a	MATLAB	implementation	

Because	honeycomb	plots	were	beneficial	for	the	visualisation	of	data	in	Bland-Altman	analysis	
in	 this	 study	 (see	 §5.2),	 it	 was	 practical	 to	 use	 a	MATLAB	 implementation.	 A	 thorough	 search	
yielded	in	two	implementations	(31	March	2017):	

1. ‘hexscatter.m’	by	Gordon	Bean20	
2. ‘Hexagonal	Scatter	Plot’	by	Salman	Mashayekh21	

Unfortunately,	these	releases	were	of	no	use,	because	one	of	them	was	implemented	incorrectly	
and	 the	other	had	different	use	cases.	Hence,	a	honeycomb	plot	 implementation	was	written,	
tested	and	published.	No	fully	functional	release	is	available	yet,	but	version	0.1	 is	released	on	
GitHub22	and	published	on	the	MATLAB	File	Exchange23	and	provides	all	basic	 functionality	[94].	
Some	customisation	options	are	available,	such	as	specifying	the	number	of	bins	in	the	horizon-
tal	or	vertical	direction.	

Release	 v0.1	 was	 integrated	 into	 the	 Bland-Altman-Analysis	 implementation	 presented	 in	
Appendix	A	to	enable	optional	plotting	of	honeycomb	plots	instead	of	regular	scatter	plots.	

																																																													
20	https://mathworks.com/matlabcentral/fileexchange/45639-hexscatter-m	
21	https://mathworks.com/matlabcentral/fileexchange/39486-hexagonal-scatter-plot	
22	https://github.com/erikhuizinga/honeycomb/releases/tag/v0.1	
23	https://mathworks.com/matlabcentral/fileexchange/62355-honeycomb	





	

	

Summary	

After	major	surgery,	patients	are	at	 increased	risk	of	adverse	outcomes,	such	as	complications	
and	 increased	hospital	 length	of	 stay	and	 they	have	 increased	morbidity	and	mortality.	To	en-
hance	patient	safety,	vital	 signs	 (e.g.	heart	 rate	and	respiratory	rate)	are	monitored.	However,	
when	patients	move	from	high	care	wards	(e.g.	intensive	or	medium	care)	to	regular	wards,	the	
frequency	 and	quality	 of	monitoring	decrease.	As	 a	 consequence,	 patient	 safety	may	be	 com-
promised.	After	discharge	from	the	hospital,	monitoring	is	virtually	unavailable	and	the	probabil-
ity	of	timely	recognition	of	deterioration	 increases	substantially.	However,	because	 it	 is	known	
that	certain	vital	signs	can	show	early	changes	before	adverse	events	occur,	patient	safety	may	
be	enhanced	during	hospital	admission	and	after	discharge	if	these	were	monitored.	

To	monitor	in	an	accessible	manner	while	not	encumbering	patients,	caregivers	and	medical	
personnel,	it	could	be	a	solution	to	use	portable,	wireless	and	non-invasive	sensors	called	wear-
ables.	This	study	has	investigated	one	such	wearable,	HealthPatch	MD	by	Vital	Connect,	by	per-
forming	measurements	with	it	on	the	surgical	medium	care	ward	at	the	UMC	Utrecht.	The	goal	
was	to	study	the	principles	that	such	a	wearable	uses,	assess	its	performance	in	clinical	practice	
and	comparing	 its	measurements	with	a	regular	patient	monitor	(Spacelabs	XPREZZON).	Meas-
urements	were	 done	 in	 35	 participations.	 Using	 Bland-Altman	 analysis	 for	 repeated	measure-
ments,	 it	was	found	that	heart	rate	accuracy	 is	acceptable	compared	to	Spacelabs.	Respiratory	
rate	 is	not	measured	accurately	enough	 to	be	considered	acceptable.	However,	 it	 remains	un-
known	if	Spacelabs	is	a	good	reference	for	respiratory	rate,	because	this	monitor	is	not	the	gold	
standard.	

To	use	this	type	of	data,	obtained	by	a	wearable	monitor,	for	early	recognition	of	the	deteri-
orating	patient,	a	model	needs	to	be	developed	to	predict	a	measure	of	risk	of	decline.	The	Early	
Warning	Score	 (EWS)	 is	 such	a	measure	 that	 is	 currently	used	 in	 clinical	practice.	 If	 EWS	were	
predictable	 using	 a	wearable	 vital	 signs	monitor,	 that	monitor	may	 be	 able	 to	 predict	 patient	
decline	 as	well.	 Because	 in	 this	 study	 not	 enough	 data	was	 obtained	 collected,	 such	 a	model	
could	not	be	developed.	However,	various	prediction	modelling	techniques	that	can	be	applied	
to	this	type	of	data	are	described	in	this	thesis.	
	 	



	

	

Samenvatting	

Patiënten	na	grote	chirurgie	hebben	verhoogd	 risico	op	slechte	uitkomsten,	 zoals	 complicaties	
en	verlengde	opnameduur	en	hebben	een	verhoogde	morbiditeit	en	mortaliteit.	Om	de	patiënt-
veiligheid	te	vergroten	wordt	monitoring	van	vitale	functies,	zoals	hart-	en	ademhalingsfrequen-
ti,	 ingezet.	 Echter,	 wanneer	 patiënten	 van	 een	 bewaakte	 afdeling	 (bijv.	 intensive	 of	 medium	
care)	naar	een	reguliere	afdeling	gaan,	neemt	de	frequentie	en	kwaliteit	van	monitoring	af.	Pati-
entveiligheid	kan	hierdoor	in	het	geding	komen.	Na	ontslag	is	monitoring	nagenoeg	afwezig	en	
stijgt	de	kans	op	het	niet	of	te	laat	herkennen	van	verslechtering	nog	verder.	Juist	omdat	het	is	
aangetoond	 dat	 bepaalde	 vitale	 functies	 afwijkingen	 kunnen	 vertonen	 voordat	 negatieve	 uit-
komsten	plaatsvinden,	zou	de	patiëntveiligheid	vergroot	kunnen	worden	tijdens	opname	en	na	
ontslag	als	deze	wel	gemonitord	worden.	

Om	te	kunnen	monitoren	op	laagdrempelige	wijze	en	zonder	de	patiënt	en	medisch	perso-
neel	/	verzorgers	te	belemmeren,	zouden	draagbare,	draadloze	en	niet-invasieve	sensoren	inge-
zet	kunnen	worden,	zogeheten	wearables.	Dit	onderzoek	heeft	één	zo'n	wearable,	HealthPatch	
MD	van	Vital	Connect,	onderzocht	door	er	metingen	mee	te	verrichten	op	de	medium	care	van	
chirurgie	 in	het	UMC	Utrecht.	Het	doel	was	het	verkrijgen	van	 inzicht	 in	de	principes	waarmee	
zo'n	wearable	werkt,	hoe	een	dergelijke	wearable	in	de	medische	praktijk	presteert	en	het	ver-
gelijken	van	de	metingen	met	de	reguliere	monitor	(Spacelabs	XPREZZON).	Er	zijn	metingen	ge-
daan	 in	 35	 deelnames.	Met	 behulp	 van	 Bland-Altman	 analyse	 voor	 herhaalde	metingen	werd	
bevonden	 dat	 HealthPatch	 MD	 in	 vergelijking	 met	 de	 Spacelabs	 monitor	 hartfrequentie	 met	
acceptabele	precisie	meet.	Ademhalingsfrequentie	wordt	niet	acceptabel	genoeg	gemeten.	Ech-
ter,	 het	 is	 onduidelijk	 of	 Spacelabs	 een	 betrouwbare	 referentiewaarde	meet,	 aangezien	 deze	
monitor	geen	gouden	standaard	is.	

Om	met	dit	soort	data,	gemeten	door	een	wearable	monitor,	vroegtijdig	achteruitgang	van	
de	patiënt	te	kunnen	herkennen,	dient	een	model	te	worden	ontwikkeld	dat	een	maat	voor	risi-
co	op	achteruitgang	kan	voorspellen.	De	Early	Warning	Score	(EWS)	is	zo'n	maat	die	reeds	in	de	
kliniek	 gebruikt	 wordt.	 Als	 EWS	 voorspeld	 zou	 kunnen	 worden	 a.d.h.v.	 metingen	 met	 een	
wearable,	dan	zou	met	de	wearable	mogelijk	ook	het	risico	op	negatieve	uitkomsten	voorspeld	
kunnen	worden.	Omdat	in	deze	studie	nog	onvoldoende	data	verzameld	is	om	risico	op	negatie-
ve	uitkomsten	 te	voorspellen,	wordt	geen	voorspelmodel	ontwikkeld.	Echter,	wel	worden	ver-
schillende	beschikbare	methoden	uiteengezet	waarmee	dit	bereikt	zou	kunnen	worden.	
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