
27-06-2017

MASTER THESIS

COMPRESSIVE SENSING
IN DYNAMIC SCENES

Nick Doornekamp

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

Programme: Applied Mathematics
Chair: Hybrid Systems

Exam committee:
Prof.dr. A.A. Stoorvogel (UT)
Dr. M. Bocquel (UT/Thales)
Dr. P.K. Mandal (UT)
Dr. D.J. Bekers (TNO)
Dr. J.C.W. van Ommeren (UT)
Dr. M. Podt (Thales)



Abstract

In recent years, the Compressive Sensing (CS) framework has received considerable attention.
Most of its applications are found in static problems, such as the reconstruction of images
from seemingly incomplete data. In this report we ask ourselves whether the CS framework
can also be of use in a dynamic scene. In particular, we consider the task of tracking multiple
targets. For this task, the class of Bayesian filters is optimal, but in some cases computationally
expensive. We consider two alternative approaches, one that uses only CS, the other combines
CS with a Particle Filter. These are hoped to improve on Bayesian filters in a situation where
computational resources are constrained. For both approaches we propose alterations to the
algorithms from the literature. We provide numerical results of the comparison between the
proposed algorithms and the algorithms from literature they are based on. Furthermore we
provide directions towards a comparison of the proposed algorithms and algorithms from the
class of Bayesian filters.

I



Contents

1 Introduction 1
1.1 The CS framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dynamic CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 CS combined with Bayesian filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research goal and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Simulation description 7
2.1 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Relation to a radar use-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Rayleigh resolution criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Association of estimates to true targets . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Optimal Subpattern Assignment Metric . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Algorithm efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Dynamic Compressive Sensing 16
3.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 YALL1 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 YALL1 parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Dynamic CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Dynamic Mod-BPDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Dynamic Mod-BPDN with nonzero weights: Dynamic Mod-BPDN+ . . . . . 19
3.2.4 Dynamic Mod-BPDN with weights from dynamic model: Dynamic Mod-BPDN* 20

4 Combination of PF and CS 22
4.1 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Bayesian framework for solving the filtering problem . . . . . . . . . . . . . . 23
4.1.2 Multi-target Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Extracting a point estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Trigger criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Numerical results and analysis 30
5.1 Numerical settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Dynamic CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II



5.2.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 HPFCS trigger criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Towards a proper comparison of PF, HPFCS and dynamic CS . . . . . . . . . . . . . 41

5.4.1 Limitations of presented numerical results . . . . . . . . . . . . . . . . . . . . 42
5.4.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.3 Measures of algorithm efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Extensions and alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.1 Interplay between PF and CS in the HPFCS . . . . . . . . . . . . . . . . . . 44
5.5.2 Alternative PF/Bayesian filter implementations . . . . . . . . . . . . . . . . . 45
5.5.3 Alternatives to convex optimization . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.4 Alternative procedures for determining Dynamic BPDN+ and Dynamic BPDN*

weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.5 Adaptive CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions and recommendations 48

Appendices 53

A Information Criteria 54

B Influence of the quality of the initial distribution in a hybrid multi-target PF 57

C Analysis of single-target Sequential Bayesian framework implementations 64

D Theoretical growth orders of memory and run-time 66

III



Abbreviations and nomenclature

Abbreviations
CS Compressive Sensing
BP Basis Pursuit
BPDN Basis Pursuit Denoising
PF Particle Filter
SNR Signal-to-Noise ratio
IC Information Criterion
RC Rayleigh Cell
OSPA Optimal Subpattern Assignment
YALL1 Your ALgorithms for L1 optimization
FAR False Alarm Rate
HPFCS Hybrid combination of PF and CS
SIR Sequential Importance Resampling
MC Monte Carlo
KLD Kullback-Leibler Distance

Nomenclature
f ∈ Cn Original signal
Φ ∈ Cm×n Compression matrix
fc ∈ Cm Compressed signal
Ψ ∈ Cn×n Basis
x ∈ Cn State vector recovered in CS framework
x̂ ∈ Cn Estimated state in the context of CS
A ∈ Cm×n Sensing matrix
ρ ∈ R Weighting parameter in BPDN
y ∈ Cm Noisy compressed signal (also measurement)
Niter ∈ N Number of YALL1 iterations
A(r) ∈ R Amplitude of component r

Â(r) ∈ C Estimated amplitude and phase-shift of component r
F (r) ∈ R Frequency of component r
R ∈ N Number of components
ε ∈ R Stopping tolerance parameter in YALL1
N Support of x

xN̂C Elements of x outside of the estimated support N̂
ωk ∈ C Realization of the process noise at timestep k
σω Standard deviaton of the process noise
νk ∈ C Realization of the measurement noise at timestep k
σν Standard deviaton of the measurement noise
s State vector in the context of PF
Np ∈ N Number of particles

IV



1. Introduction

Compressive Sensing (CS) is a framework for the acquisition and processing of signals that are (ap-
proximately) sparse when expressed in a suitable basis. That is, when the signal is expressed in this
basis only a few of the coefficients of its expansion are not (approximately) zero. This assumption
holds for many signals encountered in practice and many classical compression techniques also rely
on this. The classical approach to signal acquisition is to sample the signal at the Nyquist rate,
which is guaranteed to be sufficient for a complete representation of the signal. However, in many
situations a complete representation is not necessary. Instead, a compressed version of the signal is
used, which is much smaller than the Nyquist-sampled data in many situations.

For example, when a picture is taken with a digital camera, dozens of megabytes of data are collected.
However, it turns out that when this image is transformed to e.g. the wavelet domain (as is done by
the well-known JPEG1 compression method) only a relatively small number of wavelet coefficients
are large; the others are approximately zero. In other words: much of the information can be
captured using a small number of wavelets. Mathematically speaking, the image is approximately
sparse in the wavelet domain. As a result, only the large coefficients have to be saved, while the
quality of the image reconstructed from these coefficients is still close to the original. While this
is useful, it also raises the question whether it is truly necessary to sample at a high rate if only a
small amount of this data ends up being used in the final representation. With the CS framework
the answer to this question is ‘no’: with CS, signals that are sparse in some domain can be recovered
from a number of measurements that is small compared to what the Nyquist rate suggests. Instead
of sampling the original signal directly, only a compressed version of it is acquired.

1.1 The CS framework

In the CS framework, the compressed signal is a linear function of the original signal f ∈ Cn. The
compressed signal, fc ∈ Cm, can therefore be expressed as the product of f and a matrix Φ ∈ Cm×n:
fc = Φf . We will refer to Φ as the compression matrix. Given the compressed signal the CS frame-
work recovers the state x ∈ Cn, which is related to the original signal through basis Ψ ∈ Cn×n:
f = Ψx. E.g. if Ψ is the Fourier basis, then x contains the Fourier coefficients of f . In that case, if
f is the sum of a few sine functions, only a few elements of x need to be nonzero: x is sparse.

With the CS framework it is possible to obtain f by first solving x from

ΦΨx = fc, (1.1)

and then computing f = Ψx. Whether this is actually done depends on the situation: in the context
of this report it is not necessary to reconstruct f . Instead, the desired information is extracted
from x directly. In the example where Ψ is the Fourier basis and f the sum of a few sines, this
means the following: Instead of sampling f at or above the Nyquist rate, in the CS framework one
would acquire only fc. By solving ΦΨx = fc for x, the x that underlies the original signal f is

1Joint Photographic Experts Group

1



obtained. With this x, it would be easy to obtain f . If instead of obtaining f the goal is for example
to determine which frequencies the sines in f have, this is not necessary: this information can be
extracted from x directly. In some areas, when the CS framework is applied without reconstructing
f , this technique is referred to as sparse sensing instead of CS.

In the following we will denote the product of the compression matrix Φ and basis Ψ as A ∈ Cm×n
and refer to it as the sensing matrix. The CS framework is particularly interesting when m is much
smaller than n. That is, the dimension of the acquired measurement is much smaller than the
dimension of the original signal. In that case, denoted m � n, the sensing matrix will have many
more columns than rows. Therefore system (1.1) is underdetermined, i.e. it has infinitely many
solutions. Therefore, the key to CS lies in finding the right x from the under-determined system
(1.1). Since the solution is assumed to be sparse, one way to proceed would be to select the sparsest
solution that satisfies (1.1). This problem can be formalized as

x̂ = argmin
x∈Cn

{‖x‖0 s.t. Ax = fc}, (1.2)

where ‖x‖0 denotes the number of nonzero elements in x. In words, this problem is the minimization
of the number of nonzero elements in x that can still describe fc perfectly. This problem is com-
binatorial, since each combination of nonzero positions in the solution vector has to be considered,
which makes finding its solution intractable. However, it has been proven that the `0-norm2 in (1.2)
can be replaced by the `1-norm in the sense that (1.2) and

x̂ = argmin
x∈Cn

{‖x‖1 s.t. Ax = fc} (1.3)

have the same solution under certain conditions. For details on these conditions, the reader is re-
ferred to the work of Candès et al. [10] or the work of Donoho [13]. In other words: the solution
to (1.3) can be used to recover sparse vectors from (1.1). This is one of the fundamental results of
CS. After all, since (1.3) is a convex problem, it is generally much easier to solve than (1.2). While
solving such a problem for large inputs can still be expensive, much is known about how to do so
and many efficient solvers are available. The problem in (1.3) is often referred to as Basis Pursuit
(BP).

By demanding that Ax = fc it assumes noiseless measurements. If this assumption does not
hold (i.e. y = Φ(f + ν), where ν denotes the measurement noise) Basis Pursuit Denoising (BPDN)
is more appropriate:

x̂ = argmin
x∈Cn

{‖x‖1 +
1

2ρ
‖Ax− y‖22}. (1.4)

This problem can be interpreted as a trade-off between sparsity (first term) and signal fidelity (sec-
ond term), where the relative weights of these two objectives is determined by ρ.

Without any prior knowledge or assumptions about the signal of interest, classical signal pro-
cessing theory like the Shannon-Nyquist theorem only guarantees perfect recovery when the number
of measurements is more than twice the maximum frequency. Naturally, when prior information is
available, as is the case with CS, this bound is pessimistic. In particular, it is shown that the number
of compressive measurements m that is required to recover x perfectly in BP (1.3) is proportional
to S log(n), where S denotes the number of nonzero entries of x. For the case of BPDN a bound on
the reconstruction error (i.e. ‖x − x̂‖) can be provided. Again, for details of this proof and other
theoretical results we refer to [10] and [13].

2Note that even though the notation suggests otherwise, ‖ · ‖0 is, mathematically speaking, not a norm.

2



Applications for CS can be found in many areas. For example, Friedlander et al. [17] apply CS to
reconstruct the original audio from compressive measurements. CS can also be applied to (radar-)
estimation problems, such the work by Bekers et al. [4], who apply CS to determine the Direction
Of Arrival of a single target. In this report we will consider only estimation problems: estimating
certain parameter that underlie the measured signal.

However, most of the research into CS focuses on application in the area of imaging. A promi-
nent example is magnetic resonance imaging (MRI), where the number of measurements required
for such a scan, and therefore the amount of time a patient has to spend lying as still as possible,
can be reduced by CS. An introduction to CS applied to MRI is provided by Lustig et al. [14].
Another interesting application of CS is the single-pixel camera project of Rice University. This
project shows that useful (recognizable) images can be acquired with very limited hardware and a
number of papers have been published on this topic, such as the work of Duarte et al. [16].

1.2 Dynamic CS

The CS theory and applications that have been discussed so far all consider static scenes. Mea-
surements are collected once to estimate x or reconstruct f once. However, in many situations of
interest the state x might change over time: a dynamic scene. The simplest way to deal with such
a situation is to take a snapshot at certain points in time and treat these snapshots as if they were
static scenes. But it is clear that there is something to gain if information could be compounded
over time. Therefore, we ask ourselves:

How can we make use of CS in dynamic scenes?

One of the tasks that might come with a dynamic scene is the tracking of targets, which is the task
that is considered in this report.

An existing and versatile solution for the problem of tracking targets is offered by Bayesian fil-
ters, such as the Kalman filter and the Particle filter (PF). PFs are known to be optimal3 from a
Bayesian perspective as the number of particles tends to infinity, as is also described later in this
report. However, one usually needs a large numbers of particles to make the numerical approxima-
tion of a PF satisfactory, so that it requires a lot of computational resources.

We will explore two approaches to make use of CS in a dynamic scene. The first is a ‘CS-only’
approach, which aims to use information from the previous timestep to speed up or improve the
accuracy of the CS algorithm at the current timestep. We will refer to such ‘CS-only’ solutions as
Dynamic CS. The second approach is to combine CS with a Bayesian filtering algorithm, or more
specifically: a PF. The choice for the PF is motivated by its asymptotic optimality for a very general
class of situations. The following two sections introduce Dynamic CS and the combination of CS
with Bayesian filters, after which an overview of the rest of the report is presented.

The intuition behind Dynamic CS is that the outcome of the algorithm at the previous timestep
can help the algorithm at the current timestep. This could be interpreted as providing the CS
algorithm with prior information, where the prior information was gathered during the previous
timesteps. In this section we describe a number of ways to incorporate prior information into the
CS framework. Once we can make use of prior information the introduction of Dynamic CS is a

3By ‘optimal’ we here mean that the estimated posterior distribution is as close to the truth as possible (i.e. no
estimation method could provide an estimated posterior that is closer) not that the PF is the best solution in any
situation. For example, as we will discuss later as well, in the case of a linear measurement model, linear dynamic
model and Gaussian noise, a Kalman filter should be preferred over a PF.

3



matter of introducing a time-index.

One way to incorporate prior information into the CS framework is described in the work of
Vaswani and lu [40]. They assume prior information on the support is available, where the support
is defined as the positions where x is nonzero or above a certain threshold in the cases of sparse and
approximately sparse states respectively. The support is denoted N = {i|xi > α}, where α = 0 in
the case of a sparse state. In other words, they assume that some of the possible target locations
are in fact known target locations.
In the following, we always regard a situation with noisy measurements4. The prior information
about the support of, in the form of an estimated support N̂ , is introduced into BPDN by slightly
changing the problem:

x̂ = argmin
x∈Cn

{‖xN̂C‖1 +
1

2ρ
‖Ax− y‖22} (1.5)

Here xN̂C is used to denote the elements of x outside the estimated support N̂ . Considering the
`1-norm is used as a substitute for the `0-norm, this can be interpreted as follows: the number of
nonzero elements outside of areas where nonzero elements were found earlier is penalized, instead of
the number of nonzero elements in general. Vaswani and Lu [40] refer to the version of this problem
without noise as Modified-CS or simply Mod-CS. Therefore (1.5) is referred to as Mod-BPDN. As
noted by Friedlander et al. [17], the problem of sparse signal recovery with knowledge about the
support was introduced in at least three papers: von Borries et al. [8], Vaswani and Lu [40] and
Khajehnejad et al. [22]. All three make use of a weighted `1-norm to incorporate the support
knowledge into the optimization problem. This norm is defined as:

‖x‖1,w =
∑
i

wi|xi|, (1.6)

where wi is the weight of entry i of the support. Vaswani and Lu [40] and von Borries et al. [8]
set the weights of the estimated support entries to zero while the rest of the weights are one. Kha-
jehnejad et al. [22] and Friedlander et al. [17] propose a slightly more general approach, where the
weights of the estimated support entries are allowed to be nonzero. Both do require that there are
at most two different groups of weights, so all weights are either a ∈ [0,∞) or b ∈ [0,∞).

CS algorithms that use prior information can be adapted to be dynamic by using the outcome
of the previous timestep as the prior information of the current one. For example, Lu and Vaswani
[26] describe ‘Dynamic Mod-BPDN’, where the Mod-BPDN problem is solved with the support
estimated in the previous time-step.

x̂t = min
xt∈Cn

{‖(xt)N̂Ct−1
‖1 +

1

2ρ
‖Axt − yt‖22} where N̂t−1 = {i|x̂t−1 > α}. (1.7)

We will refer to (1.7) as Dynamic Mod-BPDN and CS algorithms that use information from the
previous timestep(s) in general as Dynamic CS.

1.3 CS combined with Bayesian filters

Instead of trying to transfer information between pulses using only CS as in the previous section,
another possibility is to deal with the dynamics of the scene with a Bayesian filter and let CS assist
in some other way. In this section, a number of methods from the literature that use this approach

4To obtain an expression for the situation without noise, the term 1
2ρ
‖Ax − y‖22 is replaced by Ax = y as a

constraint.

4



are discussed.

Ohlsson et al. [32] consider a situation where neither the measurement equation nor the dynamic
model is required to be linear. Since the CS framework described earlier this chapter requires the
measurement equation to be linear, Nonlinear Compressive Sensing (NLCS) - see e.g. [5] - is used
in this situation. Nonlinear CS is combined with a particle filter, resulting in what they call the
Nonlinear Compressive Particle Filter (NCPF). They show that the combination is necessary in their
testcase, since (nonlinear) CS alone does not take the temporal relationship between measurements
into account and their implementation of PF alone performs poorly due to the high state dimension.
The combination they propose is a particle filter with a fixed cardinality that can be updated through
Nonlinear CS. By default the particle filter with fixed cardinality is used at each timestep. If the like-
lihood of the signal estimated by this particle filter falls below a threshold, indicating that elements
outside the currently assumed support are nonzero (i.e. there is a mismatch between the support
used by the particle filter), the CS algorithm is used to detect which elements should be added to
the support. Elements are removed from the current support when they fall below a threshold for a
number of time steps. The idea of a PF with fixed cardinality that is updated through CS will be
explored in section 4 and was implemented and tested during this project.

Ning et al. [30] combine a PF with CS for a Direction of Arrival problem where the targets are
assumed to be on a grid. They use a CS algorithm to determine the initial locations of the targets
and use this to create the (Gaussian) initial distribution for a PF. The idea of using CS to initialize
a PF is discussed in section B.

Particle Filtered Modified Compressive Sensing (PaFiMoCS) by Das et al. [12] aims to deal with
situations where the support does not necessarily change slowly over time, but does evolve according
to a dynamic model. It does so by using a particle filter based on a dynamic model to provide the
Mod-CS algorithm with a number of ‘close enough’ support-guesses (particles), sampled from the
dynamic model. For each of these guesses the Mod-CS problem is solved to obtain an estimate of the
signal value. They show that the PaFiMoCS performs better than a PF alone, single-snapshot CS
at every timestep and Mod-CS alone. However, they do not consider the computational resources,
which can be expected to be much higher for PaFiMoCS than for any of the other methods con-
sidered: Clearly solving the Mod-CS optimization problem for each of the PaFiMoCS particles will
take much more computational resources than solving only the Mod-CS problem once or running a
basic PF with the same number of particles.

1.4 Research goal and contributions

The goal of this research is to explore ways to make use of CS in dynamic scenes. Clearly there
are many possible tasks in dynamic scenes where CS could be of use, but in this report we consider
the task of tracking multiple targets. We discuss two approaches that use CS to perform this task:
Dynamic CS and a combination of CS and a PF. For both approaches we propose adaptions of the
algorithms described in the literature to make them more suitable for the situation that we consider.

In chapter 2 we start our treatise by describing the situation to which the approaches are applied.
The applicability of the methods discussed is certainly not restricted to this situation, but the in-
troduction of a concrete situation makes the discussion of the other methods more comprehensible.
In this chapter we also describe how the performance of the methods will be measured. After that
Dynamic CS and the combination of CS and PF are discussed in chapters 3 and 4, respectively. In
particular, we discuss a way to include a dynamic model on the state in dynamic CS (in section
3.2.4) and a different trigger criterion for running CS in the combination of CS and PF (introduced in
section 4.2.2). These adaptations are compared to the original algorithms in numerical simulations,

5



including their use of computational resources.

One way to proceed is to compare these methods to a multi-target PF, to see if these methods
result in a gain, for example in terms of computational resources. However, as they are presented
in this report, the assumptions and conditions of Dynamic CS and the combination of CS and PF
differ too much from that of a multi-target PF to draw a sound conclusion from such a comparison.
Therefore we provide directions towards a proper comparison of all three methods (section 5.4).

6



2. Simulation description

To make the methods comprehensible we first describe the situation to which they are applied. In
the situation that we consider, at each timestep a signal pulse is generated. This pulse is the sum
of an unknown number of frequency components. In section 2.1 this signal, denoted yk at time k,
is described in more detail. The objective of each of the methods is to determine an estimate of
the state (which we will denote ŝk) of the system: the number of components, their amplitudes,
and their frequencies. Finally these estimates are evaluated by a number of performance measures,
which are described in section 2.2. These steps are illustrated by figure 2.1.

Signal generation

Method 1

Method 2

Method N

Performance evaluation

yk

yk

yk

ŝk

ŝk

ŝk

. . .

Figure 2.1: Schematic overview of the simulation

2.1 Signal description

The original signal f that is considered in this report is a sum of complex exponentials. Noise
is added to f before it is compressed to obtain the compressed signal y. We will consider only
compression matrices Φ whose rows are a subset of the rows of an identity matrix. So to obtain the
compressed signal from the noisy signal, m of the n measurements in the noisy signal are selected.
This signal generation is illustrated by figure 2.2.

0 0.5 1

Time [s]

-5

0

5

R
ea

l p
ar

t o
f f

Original signal

0 0.5 1

Time [s]

-5

0

5

R
ea

l p
ar

t o
f f

+
n

Noisy signal

0 0.5 1

Time [s]

-5

0

5

R
ea

l p
ar

t o
f y

n

Noisy signal
Compressed signal

Figure 2.2: An illustration of the original, noisy and compressed signal consisting of a single frequency
component

Note that these plots show only the real part of the respective signals while the signals considered

7



in this report also have an imaginary part.

A single pulse is described by the following expression:

y = Φ

(
R∑
r=1

A(r)e2πiF (r)t+iξ(r) + n

)
, where n ∼ CN (0, σ2). (2.1)

Here R denotes the number of components and each component r has amplitude A(r) ∈ R, frequency
F (r) ∈ R and phase-shift ξ(r) ∈ [0, 2π]. The estimated amplitude is complex, so that it contains both
the real amplitude and the phase shift. The notation CN (0, σ2) is used to denote a complex Gaussian
distribution with mean 0 and variance σ2. The term 2πF (r)t+ iξ(r) will be referred to as the phase.
When a series of pulses is considered, a time-index will be added. The amplitude, frequency, and

phase-shift of component r of pulse k are then denoted A
(r)
k , F

(r)
k , and ξ

(r)
k , respectively. Unless it

is necessary, the index k will dropped to improve readability. Throughout this report, ‘component’
and ‘target’ are used interchangeably and a timestep this refers to the index k. In the context of
radar, what is referred to as a timestep or pulse in this report, is referred to as ‘slow time’. The time
within a pulse is then referred to as ‘fast time’. In this report such a distinction is not necessary; a
timestep refers to ‘slow time’.

In this report, σ = 1 and the amplitudes of the components are determined by the specified
Signal to Noise Ratio (SNR). The SNR is defined as the ratio between the power of the signal and
the power of the noise. The SNR is usually denoted in dB. The amplitude A of a signal with an
SNR of x dB is then

√
σ2 · 10

x
10 .

The PF and the CS algorithms that are compared and combined in this report make use of the
same input signal. To be able to compare them, they have to generate outputs that essentially
contain the same information. Buts described in section 4.1.3, a PF will have an estimated posterior
density as its output, while CS provides a single point estimate. Therefore, we extract a point
estimate from the estimated posterior and determine the performance of the PF based on this point
estimate.
This point estimate of the state contains the amplitudes and frequencies of the estimated components:
ŝ = [A(1)F (1)...A(R)F (R)]. The output x̂ of the CS algorithms are related to the grid that is used,
which could be interpreted as a number of frequency bins. For example, when a grid between 0.5
Hz and 10.5 Hz with a grid cell of 1 Hz is used, the information ‘one component with amplitude
1.5 and frequency 5 Hz, one component with amplitude1 2.5 and frequency 7 Hz, both with phase-
shift zero’, would be presented as x̂ = [0 0 0 0 1.5 + 0i 0 2.5 + 0i 0 0 0] in the output of CS. In
words that is a response of 1.5 in the frequency bin 4.5 Hz-5.5 Hz and a response of 2.5 in the
frequency bin 6.5 Hz - 7.5 Hz. The same information would be in the point estimate of the PF as
ŝ = [1.5 + 0i, 5, 2.5 + 0i, 7]. In section 3.1.3 the conversion of x̂ to the format of ŝ is discussed.

During the internship that preceded this graduation project [15]2 the idea of running a PF on
compressive measurements was explored. One of the challenges when working with compressive mea-
surements is dealing with the correlations between measurements that the compression can cause.
Note that it depends on the type of compression whether correlations are introduced at all. An
example of a type of compression that introduces correlations is one that sums the signal values
over an interval to obtain a compressed measurement. When two compressed measurements have
overlapping intervals, they will be correlated. In [15] two methods of dealing with these correlations
are investigated: updating the covariance matrix to include these correlations and using a prewhiten-
ing transformation.The latter transforms the noisy signal y so that it has uncorrelated noise again.

1In practical situations, the amplitude will have a unit. In a radar use-case this could be Volt, for example.
However, since we assume the noise level to be known (see also 5.4.1), we will divide any signal by this noise level so
that the noise level of the signal becomes one (dimensionless). Therefore we will not denote any unit for amplitude
in this report.

2The report that is referred to here is not publicly available, but can be requested with the author

8



This is useful since, when applying CS methods, one often assumes uncorrelated measurement noise.
While this is not necessary for running a CS algorithm, it is a common assumption in the deriva-
tion of many recovery guarantees. In this report we will use only types of compression that do not
introduce correlations. As mentioned earlier, we will consider compression matrices whose rows are
a subset of the rows of an identity matrix.

2.1.1 Relation to a radar use-case

As a motivation for considering the signal described in equation (2.1), we relate this signal to the
range estimation in Frequency Modulated Continuous Wave (FMCW) radar. In this type of radar,
an on-going sequence of pulses with a linear phase is transmitted. That is, the transmitted frequency,
denoted ftransmit, linearly increases within each pulse. The difference between the highest and lowest
frequency in a pulse is the bandwidth, denoted B and the average frequency is referred to as the
carrier frequency, denoted fc. The duration of a pulse is denoted τ . The signal that is received after
it is reflected by an object is the same, only delayed by ∆t. This is is illustrated by figure 2.3.

- /2 - /2 + t /2Time
fc - B/2

fc

fc + B/2

F
re

qu
en

cy

Transmitted frequency
Received frequency
Carrier frequency

Figure 2.3: An illustration of the transmitted and received frequencies in an FMCW radar

ftransmit(t) = fc +
B

τ
t where − τ

2
< t <

τ

2
. (2.2)

Consequently, the phase of the transmitted signal, denoted φtransmit, is quadratic over time:

φ(t) = 2π

∫
ftransmit(t)dt = 2πfct+ π

B

τ
t2. (2.3)

That is, the phase at time t is the integral of frequency times 2π. Therefore the transmitted signal
stransmit is

stransmit(t) = a · e2πifct+πi
B
τ t

2

. (2.4)

This transmitted signal travels through the air until it is reflected by an object. Provided this object
is stationary, the signal received by the radar receiver is then

sreceive(t) = a′ · e2πifc(t−∆t)+πi
B
τ (t−∆t)

2

. (2.5)

Here a′ denotes the amplitude of the received signal, which is determined by a number of factors
such as the distance between the target and the radar (denoted r in this subsection). If the wave

9



travels at speed c - usually the speed of light in a radar context - then ∆t = 2r
c . For the purpose of

this section, the value of a′ is not important, but in practice it is given by the radar equation, which
can be found in any introduction to radar principles. If the goal is to determine r, the next step is
to mix the two signals. This operation is defined for a pair of two signals s1 and s2 as smix = s∗2s1,
where s∗2 is the complex conjugate of s2. If the received signal is mixed with the transmitted signal,
we obtain what is referred to as the beat signal (denoted sbeat):

sbeat(t) = a′′ · e(2πifc(t−∆t)+πi
B
τ (t−∆t)

2)−(2πifct+πi
B
τ t

2) = a′′ e2πifc∆t+2πi
B∆t
τ t−πiB(∆t)

2

τ = a′′ · eφ(t)

(2.6)
Now, all that is required to obtain r is to determine the (constant) frequency of the beat signal:

fbeat(t) =
1

2π

dφ

dt
=
B∆t

τ
=
B

τ

2r

c
. (2.7)

If there are multiple objects that reflect the transmitted wave, the received signal will be the sum of
these signals. In that case, the beat signal contains multiple frequencies, which results in a signal of
the form described in equation 2.1. There are other examples of relationships between the frequency
of the beat signal and distance to a target or its velocity in other radar types, but these will not be
discussed here.

2.1.2 Scenario

The considered algorithms will be applied in three scenarios, which are illustrated in figure 2.4.

20 40 60

Pulse

9

9.5

10

10.5

11

F
re

qu
en

cy

Scenario 1

Target 1
Target 2

20 40 60

Pulse

9

9.5

10

10.5

11

F
re

qu
en

cy

Scenario 2

Target 1
Target 2

20 40 60

Pulse

9

9.5

10

10.5

11

F
re

qu
en

cy
Scenario 3

Target 1
Target 2

Figure 2.4: A graphical representation of the two scenarios considered

Scenario 1 considers two targets at a distance (i.e. frequency difference) of 0.5 Hz from each other,
in scenario 2 this distance is 0.25 Hz. This distance can be varied more to determine how far targets
need to be apart before they are distinguished consistently by an algorithm. Then these scenarios
could be used to determine the resolution as the smallest distance where the algorithm can distin-
guish the two targets in at least a given fraction of the Monte Carlo (MC) runs.

In scenario 3 two targets first have the exact same frequency for 10 pulses, after which one
moves away from the other at a rate of 0.01Hz per pulse. With this scenario at least two aspects
of the algorithm performance can be evaluated at once. During the first 10 pulses the two targets
are ‘on top of each other’, so that there is no way to distinguish them. Since the methods using
CS prefer sparser solutions, they can be expected to estimate the number of targets to be one.
The posterior distribution of a PF is expected to reflect that it is not possible to distinguish the
targets: the hypotheses ‘one target’ and ‘two targets’ are then equally likely. If a point estimate
would be extracted from this posterior distribution, one could include a preference for a sparser
solution as well, for example by including some Information Criterion (IC), as described in sec-
tion 4.1.2. From pulse 11 onward the targets steadily move apart, so that it intuitively becomes less

10



difficult to distinguish them. So, the sooner an algorithm can distinguish the two targets, the better.

In all scenarios the amplitude and phase-shift from equation (2.1), and therefore the complex
estimate that is estimated as well, are constant but not known to the algorithm.

2.2 Performance evaluation

The state that is estimated by the different algorithms consists of an estimated number of targets and
their locations. Since all of the numerical results in this report come from simulations, the ground
truth is known and these estimates can be compared to that. Clearly, the closer the estimate is to the
truth, the better the estimate. In a situation where there is always one true target and one estimate,
defining what the distance between the estimate and the true target is, is fairly straightforward.
However, since the true number of targets is not known a-priori, the estimated number of targets
does not necessarily match the true number of targets. Therefore, in a situation where the number
of targets is also estimated, the definition of the distance between the estimated state and the true
state is not obvious. This is illustrated by figure 2.5: it is not intuitively clear which of the three
estimated states is the ‘closest’ to the true state.

True target
Estimated target

Figure 2.5: Different estimates of a situation with two true targets. Figure based on fig. 1 of [35]

In this section we first introduce the Rayleigh resolution criterion, which puts a handle on the
maximum distance between a target and an estimate for which we still allow them to be associated
to each other. After that, we discuss two approaches to measuring how close the estimated state is
to the truth, which make use of this Rayleigh criterion. In the first a number of statistics such as the
number of true targets that was correctly identified and the number of false alarms is considered.
The second approach considers the distance between the estimated state and the true state to be a
combination of the distance between the estimates and the true targets and the difference between
the estimated number of targets and the true number of targets.

2.2.1 Rayleigh resolution criterion

To declare whether a true target is found by the algorithm, one needs to specify how close an esti-
mate needs to be to a true target in order to be associated to that target. For this purpose, we will
make use of the Rayleigh cell (RC), which has its origins in optics. It is defined as the distance be-
tween two point-sources of equal amplitude where the principal intensity maximum of one coincides
with the first intensity minimum of the other [7]. When two true targets are at least one RC apart,
they can be distinguished according to the Rayleigh resolution criterion. Therefore, it seems reason-
able to relate the maximum distance where an estimate can be associated to a true target to this RC.

The Rayleigh resolution criterion can be applied to the context of this report (i.e. distinguishing
different frequency components in a pulse) as well. In particular, the Fourier transform of a pulse
with a constant frequency is a sinc-function, shown in figure 2.6. In this figure we also see that the

11



longer the pulse is, the narrower the principal peak of the Fourier transformed pulse is.

0 T

Time

0

A

A
m

pl
itu

de

Pulse in time domain

Frequency

R
es

po
ns

e

Fourier transformed pulse

0 2T

Time

0

A

A
m

pl
itu

de

Pulse in time domain

Frequency

R
es

po
ns

e

Fourier transformed pulse

Figure 2.6: Pulses with a constant frequency of different lengths and their Fourier transform

This width is important because when two components are close to each other in terms of frequency,
their corresponding sinc-functions will overlap too much, as is illustrated by figure 2.7. There we
see that components close to each other results in one large peak (rightmost plot) instead of two
distinguishable peaks (leftmost plot). The principal peak of the sinc has its first zero at a distance
of 1

T from the middle, so that the Rayleigh criterion is at 1
T as well. If the targets are further away

we declare them to be resolved, if they are closer together they are declared unresolved.

Frequency

R
es

po
ns

e

Resolved

Frequency

R
es

po
ns

e

Rayleigh criterion

Frequency 1
Frequency 2
Frequency 1 + frequency 2

Frequency

R
es

po
ns

e

Unresolved

Figure 2.7: Sums of Fourier transformed pulses of different constant frequency components

2.2.2 Association of estimates to true targets

One way to characterize the performance is via the association of estimates to true targets. After
that, a number of statistics (which will be introduced later in this section) can be extracted, which
can be used to characterize the performance. In e.g. the work of Bekers et al. [4] and the work of
Zhu [44].

12



With the definition of the RC from the previous subsection, the following rules are applied for
the association of estimated targets to true targets:

• Estimates further than half a RC away from the true target are not associated to this target.
So each true target has a window around it with the width of a RC and only estimates inside
that window can be associated to this target.

• At most one estimate can be associated to each target.

• Estimates that are outside all windows are considered to be false alarms.

• Estimates are associated to true targets in the way that has the smallest total Euclidean
distance.

After the estimates have been associated to the true targets, a number of statistics can be extracted:

• Number of true targets that was found (i.e. have an estimate associated to it);

• Number of true targets missed;

• Number of false alarms;

• Number of estimates inside at least one window but not associated to a true target.

These four statistics together can provide an impression of the performance. Depending on the
situation, one statistic might be more important than the other. When analyzing the ability of the
algorithm to distinguish two targets, the number of targets missed largely determines the perfor-
mance. However, an algorithm that consistently finds both targets but produces many false alarms
and estimates not associated to a target, is undesirable in many practical situations. The relative
importance of these statistics depend on the situation at hand.

An exhaustive search over all possible associations of estimates to true targets is performed. The
result of this search is the set of associations which has the smallest total Euclidean distance of those
where the maximum number of estimates is associated to a true target. This procedure is detailed
by the examples in section 2.2.4.

2.2.3 Optimal Subpattern Assignment Metric

The statistics described in the previous subsection do not provide much information about the ac-
curacy of the different methods. In a sense, accuracy is embedded in the requirement that estimates
more than half a RC away from the target cannot be associated to that target, but this requirement
does not distinguish between the estimate being close to the target or just barely within the RC
around the target. To get a more complete picture of the performance of the different methods, an-
other metric will be included in the analysis: The Optimal Subpattern Assignment (OSPA) metric,
proposed by Schuhmacher et al. [35].

The OSPA metric considers both the accuracy of the estimated target locations and the estimated
number of targets. It makes use of a distance between a given estimate and a given true target similar
to the one in the previous subsection. They define the distance with cut-off c between two frequencies
F (j) and F (i) to be d(c)(F (j), F (i)) = min(c, ‖F (i) − F (j)‖1). Then, given the vector of estimated
target locations F̂ = [F̂ (1), ..., F̂ (n)] and the vector of true target locations F = [F (1), ..., F (m)], the
OSPA of order p with cut-off c is defined as

OSPA(c)
p (F, F̂ ) =


1
R

∥∥∥(minπ∈Πn Σmi=1d
(c)(F̂ (π(i)), F (i)), cp(n−m)

)∥∥∥
p

m ≤ n

OSPA
(c)
p (F̂ , F ) m > n

(2.8)

Here Πn is the set of permutations of {1, 2, ..., n} and ‖ · ‖p is the Lp-norm: ‖(x, y)‖p =

(|x|p + |y|p)
1
p . The first term considers the sum of the ‘cut-off’-distances between the true tar-

gets and estimates, the second term considers the difference between the number of true targets and

13



the number of estimated targets. With this definition, c is the penalty that is given to estimates
that are more than c away from any of the true targets.

The parameter c is interpreted as the maximum distance between an estimate and a true target at
which the estimate can be assigned to that target. As suggested at the start of this section, we will
take this to be half a RC, i.e. c = 1

2T . The order parameter p determines how sensitive the metric
is to estimates far from any of the true targets. The higher p, the more sensitive the metric is to
such estimates. Schuhmacher et al. suggest using p = 2, which is what we will do here as well. An
important advantage of taking p = 2 is that the association of targets within a RC of a true target
in the previous subsection will correspond to the same pairs of estimates and true targets as the
permutation π of minπ∈Πn Σmi=1d

(c)(F̂ (π(i)), F (i)).

2.2.4 Examples

This subsection presents some examples that illustrate the procedure of associating estimates to true
targets. It is recommended to look at these pictures in color rather than in grayscale.

10 10.3 10.7

Target 1
Window 1
Target 2
Window 2
Estimate

Figure 2.8: Two targets, one estimate

Figure 2.8 shows a situation where there are two true targets, but only one estimate. This estimate
can be associated to both of the true targets, but will be associated to the closest true target: target
1 in this case. So in this case we have one missed target and one target found. The OSPA in this
example is

√
0.32 + 0.52 ≈ 0.58.

9.6 10 10.3 10.7

Target 1
Window 1
Target 2
Window 2
Estimate 1
Estimate 2

Figure 2.9: Two targets, two estimates

In figure 2.9 we have two estimates that are both inside at least one window. Since estimate 1 is
outside the window of target 2 the distance between them is infinite by our definition. Therefore in
the association with the smallest total distance estimate 2 is associated to estimate 1 while estimate
1 is associated to target 2, even though estimate 2 is closer to target 1 than to target 2. The OSPA
in this example is

√
0.42 + 0.42 ≈ 0.57

In figure 2.10 a third estimate is added. Since this estimate is outside both windows, it is considered
to be a false alarm. The two remaining estimates are associated as in the previous example. The
OSPA in this example is

√
0.42 + 0.42 + 0.52 ≈ 0.75.

14



9.6 10 10.3 10.7 11.25

Target 1
Window 1
Target 2
Window 2
Estimate 1
Estimate 2
Estimate 3

Figure 2.10: Two targets, three estimates

9.6 10 10.3 10.7 10.9

Target 1
Window 1
Target 2
Window 2
Estimate 1
Estimate 2
Estimate 3

Figure 2.11: Two targets, three estimates

Figure 2.11 shows what happens if the third estimate is closer to target 2. In this case estimate
3 will be associated to target 2 and estimate 2 is associated to target 1. Estimate 1 cannot be
associated to any of the targets, but since it is inside at least one window, it will not be classified as
a false alarm. Such a situation might arise when one true target results in more than one estimate
or in a cluttered scene where objects might be mistaken for targets. The OSPA in this example is√

0.32 + 0.22 + 0.52 = 0.62.

As a last example we consider the situation where two estimates are equally far from a true
target: a tie. In the case of a tie, the entry that comes last in its row/column will be used. Since the
vector will be ordered by frequency in the context of this report, this will be the one with the highest
frequency. Ties might occur when grid-based methods like CS are used, while the probability of a
tie is zero for methods like the PF, whose estimates can be anywhere in the continuous state space.

2.3 Algorithm efficiency

In many dynamic scenes it is not only of importance to obtain an accurate estimate of the state, but
also to obtain it quickly. There is usually a trade-off between speed and accuracy. Both CS and a PF
have parameters that can be changed to shift the balance between accuracy and computational re-
sources, which are introduced in sections 3.1.2 and 4.1.1 respectively. If a better accuracy/resolution
is desired, more computational resources will be required. These parameters can be tuned so that all
algorithms have the same performance (e.g. in terms of ability to distinguish two targets), so that
the amount of resources can be compared. This provides an answer to the question how efficient
these algorithms are.

A practical measure of the efficiency is the empirical run-time, i.e., the time between handing
the input to the algorithm and receiving the output. It should be noted that this measure depends
strongly on factors that have nothing to do with the algorithm in principle. For example, the
run-time strongly depends on the way an algorithm is implemented, whether the machine that the
algorithm runs on, whether algorithm allow for parallel processing, what programming language is
used, and how well it suits the algorithm. An alternative measure of algorithm efficiency is offered
by the theoretical growth orders of memory and run-time. This measure is discussed in Appendix
D.

15



3. Dynamic Compressive Sensing

In this chapter we investigate different variants of Dynamic CS. These variants are based on the same
optimization problem as static CS, namely BPDN (as discussed in section 1.1). As an introduction
to the different variants, we first describe in section 3.1 the specific convex optimization algorithm
that we will use to solve BPDN. The main section of this chapter is section 3.2, in which we
discuss Dynamic CS and the proposed variants. In particular, the variants of the Dynamic Mod-
BPDN algorithm described in the literature are proposed in sections 3.2.3 and 3.2.4. The difference
between these variants is in how they make use of information from the previous timesteps. But
they are all motivated by the idea that information from previous timesteps can help to speed up
the optimization algorithm.

3.1 Optimization

In this subsection, we discuss algorithms that can be used to solve the (L1 relaxation) optimization
problems such as the (variants of) BPDN from equations (1.4) and (1.7). The focus of this section is
on the solver that will be used: YALL1. Besides the algorithm that this solver uses, we also discuss
its most important parameters and how they are tuned for our purpose.

3.1.1 YALL1 algorithm

The solver that was used during this project is ‘Your ALgorithms for L1 optimization’ (YALL1)
[42, 43], which is a Matlab solver that can be used to solve a variety of `1-minimization problems.
The algorithm is grid-based in the sense that the estimated state always lie on a pre-specified grid.
It is assumed that the measurements are a linear function of the underlying state plus uncorrelated
Gaussian noise (i.e. y = Ψx+ ν).

To solve the optimization problem efficiently it relies on the Alternating Direction Method (ADM).
In the ADM, problems of the following form are considered:

min
x,y
{F1(x) + F2(y)|Ax+By = b}. (3.1)

where F1 and F2 are convex functions. The property of such problems that ADM exploits is that the
variables x and y are only coupled through the constraint, but they are separated in the objective.
A classic way to solve this problem is the augmented Lagrangian method. In this method, the
augmented Lagrangian, denoted L, of the problem would be minimized iteratively. In each iteration
the augmented Lagrangian is minimized for a fixed value of the Lagrange multiplier λ, with respect
to x and y simultaneously. This joint minimization is what makes the classic augmented Lagrangian
method expensive and inefficient. The key to the efficiency of ADM is in this separability of the
variables involved: the costly joint minimization of x and y is replaced by two simpler sub-problems.
More specifically: in each iteration of ADM L is minimized first with respect to x, given the values
of y and λ from the previous iteration. Then, with this value for x, L is minimized with respect

16



to y. And then finally, with the new values for x and y, also with respect to λ. A more elaborate
description of the ADM applied to BPDN (equation (1.4)) can be found in the work of Yang and
Zhang [41]. In this work, they also compare its performance to other `1-solvers, and conclude that
YALL1 is “efficient and robust” and “competitive with other state-of-the-art algorithms” [41].

3.1.2 YALL1 parameters

Weight of signal fidelity

As mentioned in the introduction of this report, the problem that is solved by YALL1 in the context
of this project - see equations (1.4) and (1.7) - aims to balance sparsity and signal fidelity. The
relative importance of these two factors is determined by the parameter ρ, where the weight for
signal fidelity is inversely proportional to ρ. A larger ρ means a smaller weight for signal fidelity
and therefore a larger relative weight of sparsity. Therefore, the larger ρ, the sparser the solution.

Since different values of ρ usually lead to different solutions of the optimization problem, choosing a
proper value for ρ is important. For the purpose of this project we will set ρ based on a noise-only
simulation. In this simulation, a noise-only signal is fed into YALL1, for a range of values for ρ.
For each of these values of ρ the fraction of MC runs where at least one target was found is used to
approximate the false alarm rate (FAR) corresponding to this ρ.

2.6 2.8 3 3.2

Weighting parameter ( )

10-4

10-3

10-2

F
ra

ct
io

n 
of

 M
C

 r
un

s 
w

ith
 a

 fa
ls

e 
al

ar
m

Figure 3.1: Fraction of MC runs with a false alarm for varying ρ

In this figure the ρ corresponding to the desired FAR can be found.

Table 3.1: ρ’s corresponding to given false alarm rates

Noise-only FAR 10−2 10−3 10−4

ρ 2.55 3.01 3.33

Stopping tolerance

The YALL1 algorithm has two stopping criteria, which are checked every two iterations. The first
concerns the relative change:

‖xi − xi−1‖
‖xi‖

< (1− q)ε. (3.2)

Here xi denotes the estimated state x after the ith YALL1 iteration. In the YALL1 code q is hard-
coded to be 0.1. If this first criterion is not satisfied, the second criterion is checked. This consists

17



of three inequalities and all three have to be satisfied. The first of these concerns the same relative
residual as equation (3.2):

‖xi − xi−1‖
‖x‖

< (1 + q)ε (3.3)

The other two concern the difference between the primal and dual solutions (referred to as the du-
ality gap) and the size of the norm of the residual relative to the norm of the current estimate of
the state (referred to as the relative residual). For more details we refer to the work of Yang and
Zhang [41]. The choice of ε affects the number of iterations that are required to meet the stopping
criterion, where a smaller ε corresponds to more iterations.

Without going into too much detail we also mention here the parameter γ, which determines
the step length in the iterations of YALL1. By default it is set to 1, but that turned out to cause
some problems with convergence in the context of this report. In previous work with YALL1, TNO
experienced the same issues. These problems did not arise when γ = 0.9, as was done during this
project.

3.1.3 Post-processing

As mentioned in section 2.1 the output of YALL1 has a different way of presenting the information
about the state than the PF. In particular, the output of YALL1 is related to a grid: the output
corresponds to the intensity of the response for each of the grid-points. The post-processing proce-
dure converts the YALL1 output to a format that can be compared to the point estimate produced
by the PF. For on-grid targets this conversion is straightforward, since each nonzero corresponds
to an estimated target. The only post-processing that is required is a low threshold to weed out
nonzero elements caused by machine-accuracy issues. In this report we will only consider on-grid
targets. The main reason for this assumption is the extra post-processing that will be needed for
off-grid targets. This is illustrated by the figure below. In section 5.4 the case of off-grid targets is
discussed in some more detail.

Frequency

R
es

po
ns

e

On-grid target

Frequency

R
es

po
ns

e

Off-grid target

Figure 3.2: An illustration of what the true response of on-grid and off-grid targets might look like

3.2 Dynamic CS

In section 1.2 Dynamic CS was defined as a CS algorithm that uses information from previous pulses
during the current pulse. Clearly there are many ways of doing so, four of which will be discussed
in this section.

18



3.2.1 Initial condition

One way to provide prior information to CS is via its initial condition (i.e. the initial condition for
YALL1). By default, the initial condition of YALL1 is x0 = A∗y, where A∗ denotes the conjugate
transpose of the sensing matrix A. Alternatively, one could use the previous state estimate as initial
condition. Intuitively that makes sense if the state does not change much between consecutive
pulses. Then, unless the realization of the noise at this or the previous pulse was unfortunate,
YALL1 already starts close to the minimum of the objective function, so the number of iterations
that is required to converge is likely to be small.

3.2.2 Dynamic Mod-BPDN

As described in section 1.2, Vaswani and Lu [40] proposed to use the estimated state from the
previous timestep to change the weights in the objective function at the current timestep, in what
they called Dynamic Mod-BPDN. In their algorithm the weights in the weighted `1-norm (see
equation (1.6)) are used to introduce the prior information. Their way of providing prior information
to the next pulse is illustrated by the figure below. This and the other figures in this section are
just illustrations, not examples of weights that were actually used in the numerical simulations.

Estimated state at time k-1

F1 F2

Frequency

A1

A2

A
m

pl
itu

de

Weights used by CS at time k

F1 F2

Frequency

0

1
W

ei
gh

t

Figure 3.3: A graphical representation of the procedure determining the Dynamic Mod-CS weights

More precisely, the bins where targets were found in the previous pulses, are not penalized. This
approach only makes sense if the locations where targets are present, are interpreted as ‘known’
target locations in the next timesteps, without any uncertainty. With this interpretation, Dynamic
Mod-BPDN is expected to work well in situations where the targets do not move to other bins, but
other (new) targets might pop up. However, the interpretation is not justified if the ‘known’ target
locations were in fact false alarms or when targets may have moved to a different bin in the mean
time.

3.2.3 Dynamic Mod-BPDN with nonzero weights: Dynamic Mod-BPDN+

When the interpretation of previously estimated as ‘known’ target locations is not justified, setting
their weights to zero might lead to problems. Once a weight is set to zero - even if it originated from
a false alarm or a target that has moved in the meantime - it offers the optimization algorithm an
unpenalized degree of freedom to describe the measurements. As a result, the optimization algorithm
is likely to include more targets than justified by the measurements. Therefore we propose Dynamic
Mod-BPDN+, using the ‘+’ to indicate that the weights at ‘known’ target locations are strictly
positive, so not exactly zero as in Dynamic Mod-BPDN. The weights at ‘known’ target locations
can now be interpreted as ‘probable’ target locations. With this interpretation, it makes sense that
the weight at a location relates to the probability of a target being at that position. One way to
proceed is to use the rule of thumb that targets with a high amplitude (i.e. a high SNR) are more

19



likely to be found. Then the weight could therefore be set inversely proportional to the estimated
amplitude of the target at that location. This procedure is represented graphically by figure 3.4.

Estimated state at time k-1

F1 F2

Frequency

A1

A2

A
m

pl
itu

de

Weights used by CS at time k

F1 F2

Frequency

1/A2

1/A1W
ei

gh
t

Figure 3.4: A graphical representation of the procedure determining the Dynamic BPDN+ weights

In words, if the state estimate at time k − 1 was ŝk−1 = [A1
k−1, F

1
k−1, A

2
k−1, F

2
k−1], the weights

used at time k will be 1
1+Ark−1

for the bin containing F rk−1 (where r = 1, ... , R̂k−1) and one else-

where. With this definition the weight tends to one as the estimated target amplitude tends to zero
and the weight tends to zero as the estimated target amplitude tends to infinity.

Finally we mention that there are alternatives to the rule of thumb that is used in this subsection.
One specific alternative is described in our recommendations in section 5.5.1.

3.2.4 Dynamic Mod-BPDN with weights from dynamic model: Dynamic
Mod-BPDN*

While the methods described so far all make use of information from previous timesteps, none of
them takes into account the dynamics of the targets. To do that, the PF described in section 4.1
makes use of a dynamic model for the state: sk = g(sk−1) + ωk, where ωk ∼ CN (0, σω). We
propose Dynamic Mod-BPDN*, which incorporates this same dynamic model in to the Dynamic
Mod-BPDN procedures. The dynamic model can be integrated through the weights, similar to how
the previous estimate determines the weights for Dynamic Mod-BPDN. A graphical representation
of this procedure is shown in figure 3.5.

Estimated state at time k-1

F1 F2

Frequency

A1

A2

A
m

pl
itu

de

A-priori estimate of the state at time k

g(F1) g(F2)
Frequency

D
en

si
ty

Weights used by CS at time k

g(F1) g(F2)
Frequency

1/A2

1/A1W
ei

gh
t

Figure 3.5: A graphical representation of the procedure determining the Dynamic Mod-BPDN*
weights

In words, given the estimated state at time k, ŝk (leftmost plot in figure 3.5), the dynamic model
dictates that the prior distribution of the state (middle plot) at the next timestep should be

20



CN (g(ŝk), σω). As in Dynamic Mod-BPDN+, the distribution of the location of target r is then
scaled between 0 and 1

1+Ârk−1

and subtracted from an all-ones vector to obtain the weights used

at time k (rightmost plot). Note that Dynamic Mod-BPDN+ is a special case of the procedure
described in this paragraph. More specifically, Dynamic Mod-BPDN* reduces to Dynamic Mod-
BPDN+ when g(sk) = sk−1 and ωk = 0.

21



4. Combination of PF and CS

Whereas the previous chapter considered a ‘CS-only’ approach to CS in dynamic scenes, this chap-
ter considers a combination of CS and PF: the Hybrid combination of PF and CS (HPFCS). This
combination is inspired by the Compressive Particle Filter proposed by Ohlsson et al. [32]. In the
Compressive Particle Filter, a PF with a fixed cardinality is used to track a variable number of
targets over time. Clearly, when the cardinality used by the PF does not match the true number of
targets, there is a model mismatch. The HPFCS aims to detect this model mismatch by checking
a trigger criterion at every timestep. When this criterion is met, CS is performed. Based on the
output of CS, the cardinality of the PF can be (but is not necessarily) updated. At the next timestep
the PF with the (possibly) new cardinality takes over again. Our implementation of HPFCS makes
use of Sequential Importance Resampling (SIR) and YALL1, which are discussed in sections 4.1 and
3.1.1 respectively, but these could be replaced by other PF and CS algorithms respectively.

The motivation for using an algorithm like the HPFCS in this context is to reduce computational
resources with respect to a ‘PF-only’ solution. The advantage of this method compared to a multi-
target PF alone is that only one PF is run at all times, instead of multiple in parallel. In a situation
where computational resources are restricted, running a number of PFs in parallel might not be
feasible while running only one still is. This is especially true when each of the particle filters is
required to have many particles, for example because the state dimension is high.
However, not gathering information over time for any cardinality hypothesis other than the one
used at that moment is a clear disadvantage. This disadvantage is twofold. Firstly, by gathering
information over time the preference for a different cardinality might be confirmed sooner than by
waiting for the trigger criterion and then running CS. And secondly, when the cardinality of the PF
is changed, a ‘new’ PF with the updated cardinality is started. Whereas each of the filters running
in parallel would have already gathered the information from earlier pulses, this ‘new’ PF would
have to start from nothing.

In this chapter we first provide a description of the PF and its mathematical background. This
description also includes the multi-target PF that we would ultimately like to compare to Dynamic
CS and the HPFCS. The aspect of the HPFCS that we will focus on in this report is the trigger
criterion, which will be discussed in section 4.2. The Compressive PF by Ohlsson et al. [32] uses
a trigger criterion that is based on likelihood. In subsection 4.2.2 we propose an alternative trigger
criterion, which is based on a measure of autocorrelation within the residual.

22



4.1 Particle Filtering

The theoretical foundation of the PF is the Bayesian framework for solving the filtering problem.
Therefore that problem will be the starting point for the introduction of the mathematical back-
ground of the PF. The step to a multi-target PF, as described in subsection 4.1.2 mostly concerns
implementation of such an algorithm in the context of this report. An important aspect of using
a multi-target PF in this context is the extraction of a point estimate, which will be discussed in
subsection 4.1.3. We note that single- and multi-target PFs have a rich history in the literature, see
for example [23], [2], [28] and references therein.

4.1.1 Bayesian framework for solving the filtering problem

In this section we provide a summary and restate the most important results of the mathematical
description of particle filtering in the internship report [15], in which some preparatory work for this
project was done. This part of the internship report was largely based on the work of Candy [11]
and Arulampalam et al. [2]. The filtering problem is the problem of determining p(sk|z1:k), i.e., the
distribution of the unknown state sk given all measurements up to that time. This distribution is
often referred to as the filtering distribution, posterior distribution, or simply posterior.

The state dynamics and measurements are described by:

Dynamic model: sk = g(sk−1) + ωk

Measurement model: zk = h(sk) + νk
(4.1)

Here g and h are (possibly nonlinear) functions, and ωk and νk will be referred to as process- and
measurement noise, respectively. In addition to these models, two more assumptions are made to
derive a solution to the filtering problem:

The state is Markov: p(sk|s0:k−1, z1:k−1) = p(sk|sk−1)

Measurements only depend on the current state: p(zk|z1:k−1, s1:k) = p(zk|sk)
(4.2)

The filtering problem can then be solved by using the following equations sequentially:

Prediction: p(sk|z1:k−1 =

∫
p(sk|sk−1)p(sk−1|z1:k−1)dsk−1

Update: p(sk|z1:k) ∝ p(zk|sk)p(sk|z1:k−1).

(4.3)

Here p(sk|sk−1) is defined by the dynamic model in equation (4.1). These two equations offer an op-
timal solution to the filtering problem. However, using these equations to solve the filtering problem
is only feasible in restricted cases. For example, the case where the dynamic- and measurement mod-
els are linear and Gaussian, in which case this sequential Bayesian framework results in the Kalman
filter. Whenever the analytical solution is intractable, some kind of approximation is required. For
example, even when the dynamic- and measurement models are not linear, one can still approximate
them using a linear model, after which the Kalman filter can be applied to the linearized model.
This approach is referred to as the Extended Kalman filter. Another kind of approximation is used
by a particle filter, in which the posterior is approximated numerically. Instead of approximating
the posterior using a pre-determined shape (in the case of an extended Kalman filter: a Gaussian
distribution), a particle filter approximates it by a set of Np particles:

p(sk|z1:k) ≈
Np∑
i=1

wikδ(sk − sik). (4.4)

23



Here sik is the state of particle i at timestep k and wik is its respective weight, Np denotes the
number of particles, and δ(x) is a Dirac delta. This Dirac delta can be thought of as an indicator
‘function’, which is zero everywhere except at x and integrates to unity1. In a particle filter the
particles and weights are updated recursively. Figure 4.1 shows an example of a distribution and
approximations by a Gaussian distribution (as is done in an extended Kalman Filter) and a set
of particles. The approximation of the latter can be made arbitrarily good by simply increasing
the number of particles. An infinite number of particles would describe the original distribution
perfectly and therefore the approximation in equation (4.4) becomes arbitrarily good. In that case
the framework described here is an optimal solution to the filtering problem. In practice however,
the number of particles is restricted by computational resources and time, so that the approximation
in equation (4.4) remains an approximation.

(a) Original distribution (b) Distribution approximated
by a Gaussian distribution (as in
an extended Kalman Filter)

(c) Posterior approximated by a
set of particles

Figure 4.1: Different approximations of a distribution (reprinted from [6])

The particle weights in equation (4.4) are determined using Importance Sampling (IS). IS is the
principle of estimating a target distribution p(s), which we cannot sample from, based on samples
from some other distribution, q(s), usually referred to as the importance distribution. To compensate
for the discrepancy between p(s) and q(s), weights are introduced. This principle is also applied in
the particle filter algorithm that we will discuss later. If IS is applied to the posterior we obtain (see
e.g. [2] for the full derivation):

p(sk|z1:k) ≈
Np∑
i=1

wikδ(sk − sik), where wik ∝
p(sik|z1:k)

q(sik|z1:k)
. (4.5)

Now if the importance density q is chosen so that q(sk|s0:k−1, z1:k) = q(sk|sk−1, zk) and q(sk|z1:k) =
q(sk|sk−1, z1:k)q(sk−1|z1:k−1), it can be shown (see e.g. [2] for the full derivation) that the weight
update in (4.5) can be written as:

wik ∝ wik−1

p(zk|sik)p(sik|sik−1)

q(sik|sik−1, zk)
. (4.6)

With this expression, it is possible to construct a recursive algorithm for approximating the posterior
in only two steps:

1. Draw sik ∼ q(sk|sik−1, zk)

2. Assign weights according to (4.6)

1Note that this is not a formal definition: the Dirac delta is not strictly speaking a function, since a function that
is nonzero at only one point cannot have a nonzero integral. But for now this characterization will suffice.

24



In practice, this algorithm leads to a situation where only a few particles have a significant weight
while all others have a very small weight. This problem is called (particle) depletion and a common
solution is to include a resampling step. In resampling, a new set of particles is drawn from the
discrete approximation of the filtering distribution. In other words, particles with a high weight are
duplicated while particles with a low weight are discarded. After resampling, all particles are given
weight 1

Np
, since they are independent, identically distributed samples from the estimated posterior.

The particle filtering algorithm that is used during this project is the Sequential Importance
Resampling (SIR) algorithm. The SIR algorithm follows from the aforementioned two-step procedure
of approximating the posterior by choosing the following:

• The proposal distribution is taken to be q(sk|sik−1, zk) = p(sk|sk−1)

• Resampling is applied at every timestep

With these choices, equation (4.6) simplifies to wik ∝ p(zk|sk). Therefore the SIR algorithm can
be summarized as in Algorithm 1, where sik is used to denote the state of particle i at time k.
Many different resampling algorithms are available; the one used during this project is systematic
resampling [2].

Algorithm 1 Sequential Importance Resampling (SIR)

- Initialization: Sample Np particles from initial distribution si0 ∼ p(s0)
For time steps k = 1, 2, ...,K
- Prediction: draw Np particles from p(sk|sik−1)
- Weight update: set wik ∝ p(zk|sik)

- Normalize weights: wik =
wik∑Np
j=1 w

j
k

- Resampling: draw Np particles with repetition from
∑Np
i=1 w

i
kδ(sk − sik)

End For

The PF is just one of the many ways to implement the sequential Bayesian framework. In ap-
pendix C an alternative approach to this framework is discussed. In particular, sequential Maximum
Likelihood Estimation (MLE) with a deterministic and with a stochastic dynamic model are con-
sidered.
Also, the SIR PF that is considered here is just one of the many ways to implement the PF. In this
report we will not consider other PFs than the SIR PF, but the reader should be aware that there
are many other types of PF, which might be better suited for a given situation. For example, the
SIR PF is known to suffer from depletion when the SNR becomes high. In particular, the high SNR
results in a high but narrow peak in the likelihood function, so that only a few particles in the SIR
PF end up with a significant weight. However, other types of PFs can deal with high SNRs just fine.

4.1.2 Multi-target Particle Filtering

This subsection discusses the implementation of a multi-target PF. To deal with the (possibly)
multi-target scene, a number of PFs with different cardinalities will be used in parallel. The number
of targets is now one of the dimensions of the posterior distribution estimated by the multi-target
PF. Since a point estimate is required in the context of this project, each PF determines its point
estimate of the state given its cardinality, denoted R. Then some Information Criterion (IC) is
used to determine which of these point estimates is the final output. Much like the BPDN problem
considered in the context of CS, this IC tries to balance signal fidelity and sparsity. The cardinality
corresponding to the minimum of the IC and its corresponding state estimate is the output of the
filter. Therefore the IC is of great importance to the performance of the multi-target PF. Therefore,
a selection of ICs that could be used is discussed in appendix A, including a recommendation of

25



which IC to use in the context of this report.

Figure 4.2 shows an overview of a multi-target filter, with the obtained signal y as input and the
point estimate of the state ŝ as output, which includes the estimated number of targets.

Figure 4.2: A graphical representation of the multi-target PF

The state that these filters estimate at timestep k consists of a frequency and an amplitude for each
of the components: sk = [A1

k, F
1
k , ..., A

Rtrue

k , FRtrue

k ], where Rtrue is the true number of targets. It
should be noted that setting the range of possible cardinalities a-priori provides the algorithm with
prior information (‘the number of targets is between Rmax and Rmin’). Also, if the true number of
targets is outside this range (i.e. Rmin > Rtrue or Rmax < Rtrue), there is no way to get the correct
answer.

In the SIR algorithm described in section 4.1.1, there are still three distributions that have to
be specified specified: the initial distribution p(s0), the transition distribution p(sk|sk−1), and the
likelihood p(zk|sk). We will specify them as follows:

The initial distribution is a uniform distribution covering the frequency bandwidth. The transition
distribution follows directly from the dynamic model in (4.1):

p(sk|sk−1) = N (g(sk−1), σω). (4.7)

The likelihood of particle i follows from equation (2.1):

L(sik|y) = e−ln(|πC|)− 1
2 (yest(s

i
k)−y)HC−1(yest(s

i
k)−y). (4.8)

In this equation |πC| denotes the determinant of the matrix πC, C is the covariance matrix of the
noise and yest(s

i
k) is what the (noiseless) signal is supposed to look like if the state hypothesized by

particle sik was the true state. More precisely, if si = [Â(1)F̂ (1), ..., Â(R̂)F̂ (R̂)], then

yest(s
i) = Φ

 R̂∑
r=1

Â(r)e2πiF̂ (r)t

 . (4.9)

We note here that we have considered also another multi-target PF. With this PF we investigated
the effect of an improved initial distribution on the convergence properties in particular. Such an
initial distribution can be obtained by e.g. a CS algorithm. The main finding is that a correct
cardinality estimation is more important than a precise initial distribution for the target locations.
The discussion of these findings can be found in appendix B.

4.1.3 Extracting a point estimate

The extraction of the point estimate is of great importance when the performance of a particle filter
is evaluated using the performance measure that was defined in section 2.2. The full joint prob-
ability distribution is estimated by a PF. In the case of multiple targets this distribution is often

26



multi-modal, so that one should be careful when extracting a point estimate from it. For example,
the mean of a bi-modal distribution is likely to be somewhere between the two modes, in an area
where the posterior probability is not necessarily high (or in extreme situations perhaps even zero).

This problem is caused by the fact that the likelihood (see equation (4.10)) of a particle is
permutation-invariant: [A1, F 1, A2, F 2] has the exact same likelihood as [A2, F 2, A1, F 1]. In other
words, the target corresponding to component j of a given particle is not necessarily the same target
as component j of another particle. This is a well-known problem in multi-target particle filters,
which is often referred to as the mixed-labeling problem. A possible way to deal with this problem
is apply a type of clustering to ‘order’ the targets within particles. For example, Kreucher et al. [23]
use k-means clustering. In this report, we will deal with this problem by sorting the components in
a particle by frequency, which could be interpreted as one-dimensional clustering. While simple and
cheap in terms of computational load, it has proven to be sufficient for our purpose. As a result,
the posterior distribution of each of the components individually will be (at least close to) unimodal
and symmetric, so that the weighted average can be used to extract a point estimate.

Instead of clustering the particles’ states the mixed-labeling problem could be dealt with by
using a different point estimate, such as the Maximum A Posteriori (MAP) estimate (as suggested
in e.g. [34]). However, computing the MAP is a bit more involved than computing the mean of
the estimated posterior and the mixed-labeling problem can be circumvented by using the simple
one-dimensional clustering step. Therefore, the weighted average will be used in this project.

4.2 Trigger criterion

With the computational resources in mind, we would like to run CS only when we expect it may
actually change the cardinality. As long as we suspect the PF has the correct cardinality, we wish
the trigger criterion is not satisfied. In other words, we aim to detect whether there is a mismatch
between the cardinality used by the PF and the true number of targets. This goal is illustrated by
figures 4.3 and 4.4. In these figures, the residual is the difference between the noisy signal and the
fitted signal.

0 0.2 0.4 0.6 0.8 1

Time

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

Noisy signal
Noiseless signal

0 0.2 0.4 0.6 0.8 1

Time

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

Noisy signal
Fitted signal

0 0.2 0.4 0.6 0.8 1

Time

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

Residual

Figure 4.3: An illustration of the noisless signal and the noisy signal (leftmost plot), the same noisy
signal and the fitted signal (middle plot) and the residual

Figure 4.3 shows an example of a situation where the cardinality of the PF matches the number
of components of the true signal. Specifically, the true signal and the signal according to the state
estimate of the PF, yest in equation (4.9) (the fitted signal) both consist of one component. In figure
4.4 however, the true signal contains two components, while the fitted signal contains only one.
We now discuss two trigger criteria, that aim to detect this mismatch between the true number of
components and the cardinality of the PF based on the residual.

27



0 0.2 0.4 0.6 0.8 1

Time

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

Noisy signal
Noiseless signal

0 0.2 0.4 0.6 0.8 1

Time

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

Noisy signal
Fitted signal

0 0.2 0.4 0.6 0.8 1

Time

-3

-2

-1

0

1

2

3

A
m

pl
itu

de

Residual

Figure 4.4: As figure 4.3, but for a mismatched model instead of a matched model

4.2.1 Likelihood

The criterion used by Ohlsson et al. in their Nonlinear Compressive PF is based on the likelihood.
Given the measurements y, the likelihood of the point estimate of the PF at the current timestep,
ŝk, is computed in the same manner as the likelihood of a particle. Specifically:

L(ŝk|y) = e−ln(|πn|)− 1
2 (yest(sk)−y)H(yest(sk)−y) ∝ e−(yest(sk)−y)H(yest(sk)−y). (4.10)

The intuition behind this criterion is clear. A mismatched cardinality leads to a large residual
(yest(sk) − y) and therefore a low likelihood. So if the likelihood of ŝk is low, that indicates that
the current cardinality of the PF does not match the true number of targets. Therefore, when the
likelihood is below a certain threshold, CS should be started. What this threshold should be depends
on the situation at hand. One way to tune the threshold is to look at the FAR in the case of a
perfectly matched model. Then we set the threshold so that in a certain (acceptable) fraction of the
MC runs, using a PF with the correct cardinality, the criterion is met.

4.2.2 Autocorrelation

An alternative way to detect a model mismatch is via autocorrelation within the residual. If the
cardinality of the PF is too low, the residual still contains a periodic signal, as illustrated by figure
4.4. Provided the frequency of this periodic signal is not too high with respect to the sampling rate,
the residual will then have a high autocorrelation. When the cardinality of the PF matches the true
number of components the residual is only noise, which should have no autocorrelation at all, as
illustrated by figure 4.3.

A measure for sample autocorrelation can be borrowed from the Ljung-Box test [25], which tests
the null-hypothesis that the data are independently distributed against the alternative that they
exhibit correlation. The statistic that is used in this test is:

LB = m(m+ 2)

h∑
j=1

ρ̂2
j

m− j
. (4.11)

Here n is the sample size, h is the number of lags, and ρ̂j denotes the j-lag sample autocorrelation,
which is defined as:

ρ̂j =

m−j∑
t=1

(rt − r̄)(rt+j − r̄), (4.12)

where rt is the tth entry of the residual vector: r = y−yest and r̄ is the average residual. The Ljung-
Box test has its origins in time-series analysis, where the number of lags h that is incorporated in
the computation of the statistic is normally determined according to seasonality in the data. In that

28



case the maximum lag is usually set to twice the length of the seasonal pattern. For the signals
that are considered in this report this rule of thumb suggests setting h ≈ 10. The threshold for this
criterion can be tuned using the same procedure as the likelihood criterion in the previous paragraph.

29



5. Numerical results and analysis

In this chapter, we first present and analyze the numerical results concerning the variants of Dynamic
CS and the HPFCS trigger criteria, in sections 5.2 and 5.3 respectively. The settings used to obtain
these numerical results are discussed in section 5.1. The limitations to the extent to which these
results may be generalized are discussed in subsection 5.4.1.
Then, in section we provide directions towards a proper comparison of Dynamic CS, the HPFCS
and a multi-target PF. Finally we discuss alternatives and extensions of the research in this report
in section 5.5.

5.1 Numerical settings

All simulations were performed under Windows 10 Enterprise 64-bit on a desktop PC with Intel R©

CoreTM i7-6700 CPU @ 3.40Ghz and 8,00GB of Random Access Memory (RAM), running Matlab
2016b.

For the simulations concerning Dynamic CS (subsection 5.2) an SNR of 30 dB was used and 500
MC runs were performed. For the simulations concerning the HPFCS trigger criteria (subsection
5.3) the SNR was 10 dB and 104 MC runs were performed. For Dynamic CS a stopping tolerance
(ε) of 10−4 and a step length (γ) of 0.9 was used. The weighting parameter ρ was set according to
the FAR simulation results in table 3.1, which suggest to use ρ = 3.01 for a noise-only FAR of 10−3.
For the simulations concerning the HPFCS, 1000 particles were used.

The original signal contains n = 256 measurements, sampled at 256 Hz, so that the integration
time T is 1 second. Therefore the RC has a width of 1 Hz, and the cut-off distance in the OSPA
metric is 0.5 Hz. The compression matrix consisted of a random subset of 32 rows of an 256× 256
identity matrix, which was the same for all simulations. The bandwidth regarded was 8.73 Hz to
11.28 Hz, so that one grid-cell for CS spans 0.01 Hz. In both scenarios Dynamic Mod-BPDN* and
the HPFCS will use the following dynamic model:

sk = sk−1 + ωk. (5.1)

This model does not attempt to describe the targets’ movements, so no assumptions have to be
made about e.g. the shape of their trajectories. It is only assumed that they will not move too far
with respect to their previous position. The difference between consecutive states should be small
enough to be covered by the process noise ωk. Therefore, the process noise on the frequency should
at least by larger than the difference in frequency between consecutive pulses, which is 0.01 Hz in
scenario 3. In the simulations σω = 0.05 for frequency and 0.5 for amplitude is used.

5.2 Dynamic CS

In this subsection, the numerical performance of a number of variants of Dynamic CS is compared.
We regard the following variants of Dynamic CS:

30



• Dynamic BPDN, i.e., weight zero at ‘known’ target locations

• Dynamic BPDN+, i.e., weight inversely proportional to the estimated amplitude at ‘known’
target locations

• Dynamic BPDN*, i.e., weights following from the estimated state propagated through the
dynamic model

In addition to these three, we include static CS (i.e. single-snapshot CS at every timestep) as a
benchmark. If the other variants make use of the prior information effectively, they should outper-
form static CS. For each of these four we also look at the version ‘with initial condition’. Which
means that the initial condition for the optimization algorithm (YALL1) is taken to be the estimated
state at the previous timestep. The other variants use x = A∗y as their initial condition. Thus, a
total of eight variants of (Dynamic) CS is considered.

In section 2.1.2, three scenarios were defined: scenarios 1 and 2, where two targets are at a
constant distance from each other, and scenario 3 where they are ‘on top of each other’ during the
first 10 pulses and then move apart for the next 50 pulses, at a rate of 0.01 Hz per pulse. In scenarios
1 and 2 we consider two distances between the two targets: 0.5 Hz and 0.25 Hz respectively.

5.2.1 Scenario 1

Figures 5.1 through 5.4 show the numerical results that were obtained from scenario 1, with a dis-
tance of 0.5 Hz between the two targets. In figure 5.1 we see the classifications of the association of
estimates to true targets (as discussed in section 2.2.2) for each of the eight variants of (Dynamic)
CS. Here we see that at this distance between targets, static CS (with or without initial condition)
was able to distinguish the two targets (i.e. never miss one of them) in all the MC runs. The same
holds for Dynamic BPDN*, but for none of the other five variants. After one pulse all variants
are still equivalent, since there is no prior information yet. After that, Dynamic BPDN, Dynamic
BPDN+, and their variants with initial condition, as well as Dynamic BPDN* with initial condition,
start to miss true targets while at the same time introducing false alarms.

For Dynamic BPDN these false alarms may be explained by the fact that the weights of frequency
bins where targets were found during previous pulses are set to zero. This setting of weights changes
the optimization problem significantly, since the weight on sparsity for these locations becomes zero.
That is, there is an unpenalized degree of freedom and even if this unpenalized frequency is not close
to any of the true targets, the optimization algorithm can use it. Intuitively this should work fine
if the ‘known target locations’ (i.e. the positions of the zero-weights) are at the correct position.
However, in practice this is not always the case, especially when the grid is fine, as is the case in these
simulations. Then, the estimated location might well be off by a couple of frequency cells (which
are 0.01 Hz wide here). At the next pulse this location is then no longer penalized: the optimiza-
tion algorithm can use this degree of freedom without increasing the `1-norm part of the objective
function. However, the algorithm can also still add another location, at the original penalty. This
can explain the extra targets, both the targets inside an RC but not associated and the false alarms,
introduced by Dynamic BPDN after the first pulse. The behavior of the association classifications
of Dynamic BPDN+ is (roughly) similar to that of Dynamic BPDN. This makes sense since the
methods are indeed very similar. Especially when the SNR is high, as in the simulations here. With
an SNR of 30 dB and the noise level normalized to one, the target amplitude is

√
1030/10 ≈ 31.6.

If the estimated amplitudes are roughly the same, the weights at the locations where targets were
found, will be the reciprocal of this.

Whereas Dynamic BPDN and Dynamic BPDN+ are not able to consistently distinguish the
two targets, Dynamic BPDN* was, and without introducing spurious estimates. The uncertainty
about the precise target location that is incorporated by propagating the estimated state through

31



5 10 15 20

Pulse

0

1

2

3

N
um

er
 o

f t
ar

ge
ts

Static CS

5 10 15 20

Pulse

0

1

2

3

N
um

er
 o

f t
ar

ge
ts

Static CS + initial conditon

5 10 15 20

Pulse

0

1

2

3

N
um

er
 o

f t
ar

ge
ts

Dynamic BPDN

5 10 15 20

Pulse

0

1

2

3

N
um

er
 o

f t
ar

ge
ts

Dynamic BPDN and initial condition

5 10 15 20

Pulse

0

1

2

3

N
um

er
 o

f t
ar

ge
ts

Dynamic BPDN+

5 10 15 20

Pulse

0

1

2

3
N

um
er

 o
f t

ar
ge

ts
Dynamic BPDN+ and initial condition

5 10 15 20

Pulse

0

1

2

3

N
um

er
 o

f t
ar

ge
ts

Dynamic BPDN*

Targets found
False alarms
Inside at least one RC but not associated
Targets missed

5 10 15 20

Pulse

0

1

2

3

N
um

er
 o

f t
ar

ge
ts

Dynamic BPDN* and initial condition

Figure 5.1: Results of the association of estimates to true targets in scenario 1, averaged over all
MC runs

the model, apparently helps to solve the problems of Dynamic BPDN and Dynamic BPDN+ that
were described above. However, this does not seem to hold when the estimated state is provided to
Dynamic BPDN* as initial condtion. Since the only difference is the initial condition, this shows
that the optimization problem does not have a unique minimum and that this initial condition leads
the optimization algorithm to a significantly different (local) minimum. This is hard to explain,

32



because the state does not change in this scenario. Therefore, if the estimated state at the current
timestep is close to the true state at the current timestep, it will also be close to the true state at
the next timestep.

In figure 5.2, the eight ‘number of targets found’-plots from figure 5.1 are plotted together in one
figure. Here we see that indeed, static CS and Dynamic BPDN* consistently found both targets,
while the other variants do not.

2 4 6 8 10 12 14 16 18 20

Pulse

0

0.5

1

1.5

2

A
ve

ra
ge

 n
um

be
r 

of
 ta

rg
et

s 
fo

un
d

Static CS
Static CS and initial condition
Dynamic BPDN
Dynamic BPDN and initial condition
Dynamic BPDN+
Dynamic BPDN+ and initial condition
Dynamic BPDN*
Dynamic BPDN* and initial condition

Figure 5.2: Average number of targets found in scenario 1. The plots for static CS are covered by
the plot of Dynamic BPDN*.

Figure 5.3 shows the OSPA metric, which leads to largely the same conclusion. Static CS and
Dynamic BPDN* do approximately equally well, while the others fall behind. Compared to the
average number of targets found, we see here that while Dynamic BPDN (with or without initial
condition) had a high number of targets found, while Dynamic BPDN+ (with or without initial
condition) has a slightly better OSPA. This indicates that while Dynamic BPDN found more tar-
gets, the locations of the targets that Dynamic BPDN+ found were estimated more accurately. The
only difference between these variants is the weight being either 0 or the reciprocal of the estimated
amplitude, which therefore explains where the difference comes from. The zero weights in Dynamic
BPDN lead to more, but less accurate estimates. This makes sense, since the algorithm is more
likely to use the previously estimated target location since it is unpenalized, even when its location
could be better.

33



2 4 6 8 10 12 14 16 18 20

Pulse

0

0.1

0.2

0.3

0.4

O
S

P
A

Static CS
Static CS and initial condition
Dynamic BPDN
Dynamic BPDN and initial condition
Dynamic BPDN+
Dynamic BPDN+ and initial condition
Dynamic BPDN*
Dynamic BPDN* and initial condition

Figure 5.3: OSPA metric in scenario 1

The CPU-times, shown in figure 5.4, do lead to a different picture: Dynamic BPDN* requires less
CPU-time than static CS. Since their performance in terms of number of targets found and OSPA
are close, this indicates that Dynamic BPDN* makes use of the prior information that is provided.
One of the striking features of this plot is the oscillating behavior of the OSPA of some of the vari-
ants. As is shown in figure 5.4, the average CPU-time also shows oscillating behavior. Specifically,
when the OSPA is high for this timestep, the CPU-time is low at this timestep. This observation in-
dicates that the optimization algorithm somehow terminated prematurely at these timesteps. Since
the general behavior of these variants is not satisfactory, we will not further investigate this behavior.

2 4 6 8 10 12 14 16 18 20

Pulse

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 C
P

U
 ti

m
e Static CS

Static CS and initial condition
Dynamic BPDN
Dynamic BPDN and initial condition
Dynamic BPDN+
Dynamic BPDN+ and initial condition
Dynamic BPDN*
Dynamic BPDN* and initial condition

Figure 5.4: Average CPU times in scenario 1

Figures 5.1 through 5.4 show that both variants of Dynamic BPDN and Dynamic BPDN+ as
well as Dynamic BPDN* with initial condition all show unsatisfactory results; they do not distin-
guish the two targets consistently. This scenario is the simplest of the three scenarios considered.
The only variant of Dynamic CS that shows the desired behavior is Dynamic BPDN*, which shows
what was hoped for: it can distinguish the two targets at lower computational costs than static CS,
indicating that it makes use of prior information. Static CS shows the desired behavior, but at a
higher computational cost.
To provide a more legible overview of the results, the numerical results for the next two scenarios will
no longer show static CS with initial condition, Dynamic BPDN, Dynamic BPDN+ and Dynamic
BPDN* with initial condition. Since the performance of static CS with initial condition is the same
as with initial condition, we will only consider the variant without initial condition so that only

34



static CS and Dynamic BPDN* remain.

5.2.2 Scenario 2

Compared to the scenario in the previous subsection, the only difference is that the two targets are
closer together. The distance between the two targets is 0.25 Hz instead of 0.5 Hz. This is expected
to make it more difficult to distinguish them. Figures 5.5 and 5.6 show that that is indeed the
case, since the number of targets found is lower. Specifically: the average number of targets found
is roughly 1.8 for both static CS and Dynamic BPDN*, which can be interpreted as a detection
probability of 90%. This was 100% in scenario 1. Another striking difference between the two
scenarios are the false alarms that are produced by Dynamic BPDN*. These false alarms may be
explained by the fact that the tuning of ρ was done in static CS, where all weights in the weighted
`1-norm of equation (1.6) are one. In Dynamic BPDN* the weights depend on the estimated number
of targets and many of them may differ from one. As a result the balance between sparsity and
signal fidelity in the optimization problem is shifted.
This explanation also indicates possible directions to improve Dynamic BPDN*. One way to do so
could be to adjust ρ for the reduced weights. Another way could be to scale the weights so that
their sum is unchanged with respect to the weights in static CS.

5 10 15 20

Pulse

0

0.5

1

1.5

2

N
um

be
r 

of
 ta

rg
et

s

Static CS

5 10 15 20

Pulse

0

0.5

1

1.5

2

N
um

be
r 

of
 ta

rg
et

s
Dynamic BPDN*

Targets found
False alarms
Inside at least one RC but not associated
Targets missed

Figure 5.5: Results of the association of estimates to true targets in scenario 2, averaged over all
MC runs

35



2 4 6 8 10 12 14 16 18 20

Pulse

0

0.5

1

1.5

2

A
ve

ra
ge

 n
um

be
r 

of
 ta

rg
et

s 
fo

un
d

Static CS
Dynamic BPDN*

Figure 5.6: Average number of targets found in scenario 2

In figure 5.7 the OSPA metric for scenario 2 is shown. Here we see that while in scenario 1 the
OSPA of Dynamic BPDN* and static CS was approximately the same, now the OSPA of static CS
is lower. This difference is caused by the spurious estimates that Dynamic BPDN* has, while static
CS has almost none.

2 4 6 8 10 12 14 16 18 20

Pulse

0

0.05

0.1

0.15

0.2

0.25

O
S

P
A

Static CS
Dynamic BPDN*

Figure 5.7: OSPA metric in scenario 2

Figure 5.8 shows that Dynamic BPDN* is still faster than static CS, but by a narrower margin
than in the previous scenario. In particular, Dynamic BPDN*s CPU-time increased, while that of
static CS has decreased compared to scenario 1. The decreased CPU-time of static CS is counter-
intuitive, since we consider this scenario to be more difficult than the previous. On the other hand,
the decrease in CPU-time does come together with a decrease in accuracy, which does agree with
intuition. Another striking feature in this figure is the peak in CPU time at the second pulse for
Dynamic BPDN*. This peak coincides with a slight increase in false alarms and number of targets
found. We think that the cause for these behaviors is found in the stopping criterion. It seems that
this scenario takes a different effect on the stopping criterion of the optimization algorithm than the
previous. To indicate a more sound cause for this behavior more research into the stopping criterion
is required.

36



2 4 6 8 10 12 14 16 18 20

Pulse

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 C
P

U
 ti

m
e

Static CS
Dynamic BPDN*

Figure 5.8: Average CPU times in scenario 2

5.2.3 Scenario 3

In the scenario considered in the previous two subsections, the scene was not actually dynamic yet:
the target frequencies did not change over time. In this subsection we consider scenario 3, where the
frequency of one of the targets does change, starting from pulse 11 onwards. Since one of the targets
moves away from the other, it is expected that it becomes increasingly less difficult to distinguish
the two.

Figures 5.9 and 5.10 show a lot of the expected behavior in static CS and Dynamic BPDN*. The
number of targets found is one during the first 10 pulses, and after 30 pulses for Dynamic BPDN*
and 40 pulses for static CS, the two targets are distinguished consistently.

The two features that stand out for static CS are the ‘dip’ in the number of targets found around
pulse 30 and the spurious estimates (inside at least one RC but not associated) around pulse 45.
We suspect that these features are caused by interference between the two frequencies, but without
further research this suspicion is not easily confirmed. Once the distance between targets is larger
than 0.35 Hz, static CS can distinguish the two targets consistently.
Dynamic BPDN* can distinguish the two targets consistently at a smaller distance, approximately
0.15 Hz. Apparently it suffers less from the interference that suspectedly caused the aforementioned
‘dip’ for static CS. However, as is shown by figure 5.10, it does take a couple of pulses longer before
it reacts to the targets splitting up. Furthermore we see that Dynamic BPDN* produces more false
alarms than static CS. After the targets start moving apart, immediately two false alarms appear
(on average). After Dynamic BPDN* has started to distinguish the two targets consistently, one
false alarm remains. As in scenario 2, these false alarms might be explained by the shifted balance
between sparsity and signal fidelity caused by the reduced weights in the weighted `1-norm.

37



10 20 30 40 50 60
Pulse

0

0.5

1

1.5

2

N
um

be
r 

of
 ta

rg
et

s

Static CS

Targets found
False alarms
Inside at least one RC but not associated
Targets missed

10 20 30 40 50 60
Pulse

0

0.5

1

1.5

2

N
um

be
r 

of
 ta

rg
et

s

Dynamic BPDN*

Figure 5.9: Results of the association of estimates to true targets in scenario 3, averaged over all
MC runs

5 10 15 20 25 30 35 40 45 50 55 60

Pulse

0

0.5

1

1.5

2

A
ve

ra
ge

 n
um

be
r 

of
 ta

rg
et

s 
fo

un
d

Static CS
Dynamic BPDN*

Figure 5.10: Average number of targets found in scenario 3

Figure 5.11 shows the OSPA for this scenario, in which we can recognize some of the striking
behaviors from figures 5.9 and 5.10. For example, we recognize the peak of ’estimates inside at least
one RC but not associated’ of static CS between pulses 40 and 50 and the sudden increase of false
alarms for Dynamic BPDN* at pulse 10 and then dropping again after the number of false alarms
reduces to one after pulse 20. After that, the estimated number of targets of Dynamic BPDN* does
not change anymore, so that its steadily decreasing OSPA can only be explained by its frequency
estimate becoming more accurate. This makes sense, since the scenario becomes easier because the
targets move apart.

38



5 10 15 20 25 30 35 40 45 50 55 60

Pulse

0

0.2

0.4

0.6

0.8

O
S

P
A

Static CS
Dynamic BPDN*

Figure 5.11: OSPA metric in scenario 3

The CPU-times in figure 5.12 show that although the difference is smaller than in the previous
two scenarios, Dynamic BPDN* still takes less CPU-time than static CS. What is interesting to see
is that between pulses 10 and 20, when the distance between the two targets has just started to
increase, the CPU-time of Dynamic BPDN* has a short increase, while the CPU-time of static CS
decreases strongly. A possible explanation for this is that for Dynamic BPDN* there is not much
‘news’ besides this area. At first, it perceives only one stationary target, after they only slowly move
apart. There seems to be correlations between the peaks and drops in CPU-time and the number
of false alarms starting and/or the number of estimates in a RC but not associated, but without
further research we do not dare to claim that any of these relationships is causal.

10 20 30 40 50 60

Pulse

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 C
P

U
 ti

m
e

Static CS
Dynamic BPDN*

Figure 5.12: Average CPU times in scenario 3

5.3 HPFCS trigger criteria

In chapter 4 we introduced an algorithm that combines PF and CS, called HPFCS. In this section
we zoom in on the trigger criterion that the HPFCS uses to determine whether it will run CS or
not. Before the trigger criterion can be used in practice, a threshold has to be set in the algorithm.
When setting this threshold, one has to find a suitable balance between single-target FAR (i.e. how
often the criterion is met when there is in fact no mismatch) and sensitivity (i.e. how strong does the
model mismatch need to be before the criterion is met). Note that the single-target FAR is not yet
the FAR of the HPFCS. This will ultimately be determined by the CS algorithm. The single-target
FAR only indicates how often CS is performed while there is in truth no model mismatch. Therefore,
this single-target FAR can be allowed to be higher than the desired FAR of the HPFCS.

39



5 10 15 20

Pulse

20

40

60

80

100

120

- 
lo

g 
lik

el
ih

oo
d

Likelihood

FAR 10-1
FAR 10-2
FAR 10-3

5 10 15 20

Pulse

0

1000

2000

3000

4000

Lj
un

g-
B

ox
 s

ta
tis

tic

Autocorrelation

FAR 10-1
FAR 10-2
FAR 10-3

5 10 15 20

Pulse

0

1

2

A
ve

ra
ge

 C
P

U
-t

im
e

×10-4

Likelihood
Autocorrelation

Figure 5.13: Output value and average CPU time of the trigger criteria in a single-target scenario
with a single-target PF

Figure 5.13 shows the results of a single-target simulation with a single target PF. The two
leftmost plots show the 90th, 99th and 99.9th percentile of the statistics’ values observed in this sim-
ulation. That is, in respectively 90%, 99% and 99.9% of the MC runs the statistic was lower than
the value of the corresponding line in figure 5.13. Therefore, given a desired single-target FAR, this
figure provides a threshold that will achieve it. The rightmost figure shows the average CPU-times
of the computation of the two statistics.

In the two leftmost subplots of this figure we see that both statistics, the -log likelihood and the
Ljung-Box statistic, start off high at the first pulse but then quickly converge to a constant level.
This can be explained by the fact that the PF starts with an initial distribution that is relatively
wide with respect to the likelihood. Table 5.1 shows the thresholds that are extracted that way.

Table 5.1: Thresholds corresponding to different single-target FARs

Single-target FAR 10−1 10−2

Likelihood threshold 37.8 44.7
Ljung-Box threshold 370 530

The rightmost plot of figure 5.13 shows that the computation of the Ljung-Box statistic required
less CPU-time than the computation of the -log likelihood. More specifically, the computation of
the Ljung-Box statistic is roughly two times as fast. Since both statistics use the residual, the dif-
ference between their CPU-times is made in the remaining calculation. For the likelihood criterion,
this calculation consists of a multiplication of the complex conjugate of the residual, the covariance
matrix and the residual itself. For the Ljung-Box statistic, a sum of m scalar products is calculated
for each of the 10 lags. Since in this case m is significantly larger than 10, it makes sense that the
computation of the Ljung-Box statistic is faster.
It should be noted that the covariance matrix is an identity matrix in this case, so that multiplication
by it does not change anything and it can therefore be left out. If that is done, the computation of the
likelihood criterion is likely to be faster than the numerical results suggest. Another thing to take into
account is that the autocorrelation criterion requires the noise to be uncorrelated. Therefore, in the
case of correlated measurements, these measurements will have to be prewhitened, which should be
taken into account when analyzing the computational resources used by the autocorrelation criterion.

Next, the thresholds from table 5.1 are applied in scenario 3 (i.e. two targets on top of each
other for 10 pulses, then one target moving away from the other for the remaining 50 pulses), with
a single target PF. As the targets move further apart the model mismatch becomes stronger, since
it becomes clearer that there are two targets. Figure 5.14 shows the fraction of MC runs where the
trigger criterion exceeded the threshold per pulse.

40



10 20 30 40 50 60

Pulse

10-2

10-1

100
F

ra
ct

io
n 

of
 M

C
 r

un
s Likelihood

Autocorrelation

10 20 30 40 50 60

Pulse

10-1

100

F
ra

ct
io

n 
of

 M
C

 r
un

s Likelihood
Autocorrelation

10 20 30 40 50 60

Pulse

0

0.5

1

1.5

2

A
ve

ra
ge

 C
P

U
-t

im
e

×10-4

Likelihood
Autocorrelation

Figure 5.14: Fraction of MC runs where the trigger criterion was met for a single-target FAR of
10−2 and 10−1

As expected, this fraction is approximately 1% and 10% during the first 10 pulses, corresponding
to the single-target FARs. After that, the fraction increases for both statistics, where the likelihood
criterion has a slightly higher fraction than the autocorrelation criterion. Since there is indeed a
model mismatch after pulse 10, we would like to perform CS to (attempt to) fix that. Therefore,
based on these fractions, the likelihood criterion is more sensitive than the autocorrelation. There-
fore, if computational costs are not taken into account, the likelihood criterion is preferred over the
autocorrelation criterion.

Which one of these two criteria is preferred in practice depends largely on the situation at hand.
In the case of uncorrelated measurements, the computation of the likelihood criterion is lower than
that of the current implementation of the autocorrelation criterion. However, in this case the mul-
tiplication by the covariance matrix in the computation of the likelihood could actually be left out
altogether.
In the case of correlated measurements it depends on whether the signal has been prewhitened or
not. If the signal has to be prewhitened specially for computing the Ljung-Box statistic, the compu-
tation costs of this statistic increase significantly. However, if CS is performed afterwards, the signal
is preferably prewhitened for that anyway. On the other hand, if the signal has been prewhitened the
covariance can be left out of the computation of the likelihood criterion. Therefore, if it is optimized
for the situation at hand, the likelihood criterion will require less computational resources than the
autocorrelation criterion.

To summarize: the likelihood criterion seems to be slightly more sensitive than the autocorrela-
tion criterion. Moreover, while the numerical results that were presented here suggest the opposite,
we expect the autocorrelation criterion to require more computational resources than the likelihood
criterion if the implementation is optimized.

5.4 Towards a proper comparison of PF, HPFCS and dy-
namic CS

As mentioned in the introduction, the goal of this project was to determine whether there was
something to gain by using CS in a tracking algorithm. While some steps towards this goal were
presented in this report, it is not yet clear if there is indeed something to gain. As also mentioned
earlier, we think that to determine whether there is, one should compare the algorithms introduced
in this report to a multi-target PF. In this section we discuss a number of points of attention for
future research towards that goal.

41



5.4.1 Limitations of presented numerical results

The numerical results discussed in sections 5.2 and 5.3 were obtained in simulations of a certain
scenario (described in subsection 2.1.2). This scenario has some properties that limit the extent to
which conclusions from these numerical results may be generalized. These properties are discussed
in this subsection.

Targets of equal amplitude The scenarios that were used to compare the different types of
Dynamic CS both have two targets with equal amplitudes. Provided each of the individual targets
still has a sufficient SNR, there does not seem to be an intuitive reason why Dynamic CS would deal
badly with targets with unequal amplitudes.

Known noise level In this report, the noise level was assumed to be known. The standard
deviation of the noise is used to set the weight of signal fidelity in BPDN and in the likelihood
function of the PF. The assumption that the noise level is known is common in the context of
radar signal processing. A possible way to achieve this in practice is to collect (a large number of)
measurements in a scene that has no targets.

Empirical run-time As discussed earlier in this report, the comparison of empirical run-times has
its drawbacks. For the different types of Dynamic CS this is not an issue, since all are based on the
same implementation of YALL1. For the trigger criteria however, their respective implementations
might influence the run-time significantly. It is difficult to say if either of the implementations can
be dramatically improved.

5.4.2 Assumptions

The next point of attention is the set of assumptions. In particular: the set of assumptions of the
PF is less restrictive than that of Dynamic CS and the HPFCS in a number of aspects. Future
researchers should be aware that every difference between the sets of assumptions will weaken the
conclusion that can be drawn from the comparison.
For example, if Dynamic CS and a multi-target PF are compared in a scenario with linear mea-
surements and white Gaussian noise, the conclusion could be that Dynamic CS is more efficient.
However, Dynamic CS makes use of the assumptions of linearity and Gaussianity while the PF does
not. If it would, the PF would reduce to the Kalman filter, which is optimal in the linear Gaussian
case. Therefore it can be argued that the PF should not have been applied in this scenario in the first
place. Vice versa, if the same two algorithms are compared in a nonlinear, non-Gaussian scenario,
it can be argued that Dynamic CS should not have been used, since its assumptions do not hold.
Therefore we discuss the differences in the sets of assumptions of the three methods in this section
and indicate possibilities for dealing with these differences. For brevity we refer to the algorithms
that use the CS framework (i.e. Dynamic CS and the HPFCS) as just ‘CS’ in this section.

Nonlinear measurements The CS algorithms that were used during this project all assume that
the measurements are a linear function of the state and measurement noise. In a PF however, the
measurement model may be nonlinear. While a large majority of papers related to CS focus on
linear measurements, there are variations which do allow for nonlinear measurements, which are
briefly introduced below.
Ohlsson et al. [31] discuss the case where the measurement model is quadratic and argue that a
second-order Taylor approximation of the measurement model suffices in many (though not all) situ-
ations. Furthermore, they extend the classical CS framework for these quadratic measurements and
develop an algorithm to solve the corresponding optimization problem: Quadratic Basis Pursuit.
As its name suggests, this is closely related to the BP and BPDN problems that were introduced in
section 1.2.

42



Blumensath [5] shows that the Iterative Hard Thresholding (IHT) can be used with nonlinear mea-
surements. Furthermore, he introduces an adaption of the theory that underlies the guarantees that
the CS framework offers for the case of nonlinear measurements. A comparison of three nonlinear
optimization algorithms with a constraint on sparsity is presented by Beck and Eldar [3].

Uncorrelated noise The PF can deal with correlated noise through the likelihood: if the co-
variance matrix of the noise is known, the likelihood function can incorporate this without much
effort. As discussed in section 1.3, the measurements can be prewhitened so that the assumption of
uncorrelated noise holds once again. Doing so is not strictly necessary to run a CS algorithm, but
the assumption of uncorrelated (Gaussian) noise is used in many derivations of recovery guarantees.

Off-grid targets As discussed in subsection 3.1.3, we assumed targets to be on grid during this
project. A possible way to deal with off-grid targets is discussed in the work of Bekers et al. [4].
They use a combination of pruning, clustering and interpolation: the responses that exceed a certain
threshold are clustered, where each cluster corresponds to a target. Then the largest response in the
cluster and its maximum neighbor are interpolated to arrive at an estimate of the location of this
target.

Prior knowledge on cardinality The multi-target PF described in this report uses prior knowl-
edge about the number of targets (i.e. the cardinality is between Rmin and Rmax) - prior information
that is not incorporated in CS. One way to deal with this is to incorporate this constraint into CS,
for example by replacing the BPDN problem (equation (1.4)) by

x̂ = argmin
x∈Cn

{ 1

2ρ
‖Ax− y‖22 s.t. Rmin ≤ ‖x‖0 ≤ Rmax}. (5.2)

However, it seems inevitable that the optimization algorithm would then always end up with
R̂ = Rmax. Furthermore, this problem formulation is not easily translated to a convex relaxation
such as BPDN. Another option would be to adjust the multi-target PF algorithm so that it does
not require a range of cardinalities as an input. Which of these two options is favorable depends on
the situation at hand (i.e. whether prior information on the cardinality is available).

Assuming that the original signal is sparse, as is done in CS, is also a form of providing prior
information. In particular, in a situation where two hypotheses about the number of targets are
equally likely according to the posterior distribution estimated with a PF, this prior information
would lead us to prefer the smallest of the two. This prior information could be integrated into a
PF via its prior distribution.

Prior knowledge on the state Both PF and (algorithms using) CS require prior knowledge on
the state. For a PF the initial distribution should cover the truth and for CS the truth should be
covered by the grid. In the context of the problem description of this project that means that they
both require a bandwidth for frequency: CS to place its grid, PF to place its initial distribution.
However, to guarantee that the initial distribution covers the truth, the PF also needs such a band-
width for amplitude. A rough estimate of the amplitude could be enough to set such a bandwidth.
But that estimation should then be included in the overall analysis.

5.4.3 Measures of algorithm efficiency

Another important point of attention is the measure of algorithm efficiency will be used. Such a
measure will have to be taken into account in a comparison between CS and PF, since if it is not
included it can be argued that the PF can be used with an arbitrarily large number of particles
and will therefore be arbitrarily close to being optimal from the Bayesian perspective. The variants
of Dynamic CS and the HPFCS are clearly further from optimal when it comes to integration of

43



information over time: Dynamic CS only passes on a small part of the available information on to the
next timestep and the HPFCS does not integrate information over time for any of the hypotheses
other than the one used at the current timestep. Therefore the only way to beat the PF is on
algorithm efficiency: the PF is only asymptotically optimal. The choice of the measure of efficiency
should be considered carefully, since an empirical measure will most likely depend on many external
factors, as discussed in section 2.3. A possible way to avoid relying only on an empirical measure of
algorithm efficiency and the issues that come with it, is discussed appendix D

5.5 Extensions and alternatives

Since the goal of finding ways to make use of CS in a dynamic scene was too broad for this project,
we restricted ourselves to finding out whether there is something to gain by using CS in a tracking
algorithm. That is still an open problem: in a situation where computational resources are limited,
Dynamic CS or the HPFCS might be more efficient than a PF. However, this is not the only way
to make use of CS in a dynamic scene. What is more, since the PF has been proven to be optimal
with unrestricted resources one could expect it not to be too far from optimal in a situation with
restricted (but still reasonable) amount of resources. If this is true, then if there is something to be
gained by using CS in a tracking algorithm, it will not be much. Alternative ways to make use of
CS in dynamic scenes were not explored much during this project but we advise future researchers
to do so.

5.5.1 Interplay between PF and CS in the HPFCS

In the HPFCS described in section , after the trigger criterion is met, the output of CS is used to
determine how the PF should continue at the next timestep. So far it was only mentioned that the
PF will use the cardinality that is estimated by CS. If that is indeed the only information that is
provided to the ‘new’ PF, it will have to start with only its initial distribution p(s0): an uniform
distribution spanning the bandwidth in the context of this report. It seems there might be ways to
do better, since there are at least two sources of information available: the estimated posterior from
the PF and the state estimate of CS. In this section we discuss these sources of information and how
they could be used in the HPFCS.

Estimated posterior from the PF In figure 5.15 we see two rows corresponding to two (hypo-
thetical) situations where the estimated number of targets by the algorithm might change, from 1
on the left to 2 on the right.

44



Frequency
A

m
pl

itu
de

Frequency

A
m

pl
itu

de

Target 1
Target 2
Estimated single-target posterior

Frequency

A
m

pl
itu

de

Frequency

A
m

pl
itu

de

Figure 5.15: Two examples of situations where the trigger might go off.

In the situation at the top there are two targets of equal amplitude which are moving apart. In this
case, the single-target PF is likely to place its estimate between the two targets. In the situation
in the bottom row the single-target converged on the larger target while the other target increases
in strength. In both situations the trigger criterion might be satisfied so that CS can identify that
there are two targets instead of one. In the second situation there is useful information in the
estimated posterior, since this has converged on the larger target. This estimated posterior contains
information from previous pulses as well, so that it is likely to provide an accurate estimate of the
state of this target. In the first situation however, it is probably better to ignore the estimated
posterior altogether, since the information it contains is wrong.

State estimate of CS If CS is performed and a new PF is started, the initial distribution of the
‘new’ PF could be based on the state estimate of CS. To do so, the point estimate of CS has to be
converted to a probability distribution. What kind of probability distribution that should be is not
immediately clear. One way to proceed is to determine what type of probability distribution can be
used to describe the error of the state estimated by CS. A distribution of this type can then be used
as the initial distribution of the ‘new’ PF.

5.5.2 Alternative PF/Bayesian filter implementations

The main reason for using the SIR PF during this project was its simplicity. Future researchers
should be aware that there are known issues with the SIR, which are alleviated by using a different
implementation of a PF. For example, the SIR is known to have issues with depletion when the
likelihood function is narrow compared to the prior distribution. That might happen e.g. when the
SNR is high. There are other PF algorithms that deal with such situations more efficiently. The same
holds for situations where the dimension of the state vector is high. These algorithms were outside
the scope of this project, but we do mention here Markov Chain Monte Carlo (MCMC) algorithms,
which offer a possible solution to the aforementioned issues with the SIR. Another aspect of the
implementation of a multi-target PF is pruning the hypotheses. The multi-target PF algorithm
described in this report has a fixed range of cardinalities, for each of which a PF is executed. An
alternative to this is to prune the filters that have an unlikely cardinality and/or start up PFs with
new cardinalities if necessary.

45



5.5.3 Alternatives to convex optimization

During this project, only the approach that uses convex relaxation (i.e. replacing the `0−norm by
the `1−norm) is investigated. As stated before, this relaxation was necessary since the problem (1.2)
is combinatorial. However, there are ways to solve that problem without relaxing the `1−norm. Here
we briefly introduce some of these alternatives.

One of these approaches is to use greedy algorithms. Many of these are based on Matching
Pursuit (MP), introduced by Mallat and Zhang in [27]. The intuition behind MP is to iteratively
choose components from a dictionary to greedily reduce the approximation error. At each itera-
tion we choose the component that allows for the greatest reduction in approximation error. This
is achieved by choosing the dictionary entry with the largest inner product with the signal. The
approximation of the signal using only this one dictionary entry is then subtracted from the signal.
This process is repeated until some convergence criterion is satisfied.
A popular extension is Orthogonal Matching Pursuit (OMP) [33, 39], which can lead to better con-
vergence than MP at the cost of increased computational complexity. This is achieved by projecting
the signal onto the set of dictionary entries selected so far and updating all the coefficients extracted
accordingly. As a result, the residual will be orthogonal to the approximation of the signal after each
iteration, while this is not guaranteed in MP. The application of OMP to compressive measurements
is discussed in e.g. [29]. Intuitively, a greedy approach might do well in situations like the one
considered in this report (i.e. one or two on-grid targets in a small bandwidth with a high SNR),
since the algorithm might find the two grid-points with a target quite quickly.

Ji et al. [20] consider the recovering of the original signal from compressive measurements from
the Bayesian perspective. Whereas the other algorithms that were discussed here all provide a
point-estimate of the sparse state x, Bayesian Compressive Sensing provides an estimated posterior
density. With this, instead of providing only a point estimate of the reconstructed signal, BCS
can also provide what they refer to as “error bars”. As discussed in subsection 5.5.1 , one of the
challenges in combining CS with a PF is that CS only provides a point-estimate, while a PF requires
an initial distribution. Therefore, some kind of transition has to be included. With Bayesian CS
however, its output could be used as the initial distribution for the PF directly. This would make
the interplay between CS and a PF more natural.

5.5.4 Alternative procedures for determining Dynamic BPDN+ and Dy-
namic BPDN* weights

The procedures for determining the weights in Dynamic BPDN+ and Dynamic BPDN* are mo-
tivated by intuition and the rule of thumb that the locations of targets with a large estimated
amplitude are found more accurately. While these procedures might work in certain situations,
their current presentation lacks a mathematical foundation. Since we are dealing with uncertainties,
an alternative procedure for setting the weights is to connect the weights of a frequency bin directly
to the estimated probability that a target will be in this bin. In Dynamic BPDN* this is done to
some extent, by using the shape of the distribution of the target locations based on the estimated
target locations in the previous timestep. However, the value of the weight does not have a direct
connection with the probability that a target is present in this bin, only with the estimated ampli-
tude at the previous timestep.
A possible starting point for such a connection between probability and weights could be the work of
Khajehnejad et al., who describe a relationship between weights and a priori probabilistic informa-
tion. They do so for the case where the weights can come from one of two sets, where the probability
of an entry being nonzero is different for each set. They note that “while it is in principle possible to
extend [their] techniques to models with more than two categories of [weights], the analysis becomes
increasingly tedious ...”. This suggests that their techniques could be extended to the case where
the weights are linked to the estimated state of the previous timestep propagated through a dynamic

46



model.

5.5.5 Adaptive CS

In this report we only considered using a constant sensing matrix in the methods that use the
CS framework. However, performance can be improved by adjusting the sensing matrix to the
situation at hand. This is shown by e.g. Haupt et al. [18], who propose a sequential procedure for
signal support recovery from noisy measurements. The signal of interest is assumed to be sparse and
constant over time, but a different sensing matrix is used for each measurement. In this approach the
dimension of the search space is reduced over time. In other words: the sensing effort is focused on
dimensions where components are likely to be present. It is shown that with this adaptive approach,
much weaker signals’ support can be recovered than with non-adaptive approaches. While they
only consider a signal of interest that is constant over time, it might be worthwhile to extend this
approach to dynamic scenes.

47



6. Conclusions and recommendations

At the beginning of this report, we set out to explore ways to make use of CS in a dynamic scene.
The specific task we considered was tracking multiple targets, which we hoped to do more efficiently
than existing algorithms (Bayesian filters) in terms of computational resources, by making use of
CS. To do so, we discussed, tested, and proposed variations for two approaches: Dynamic CS and
HPFCS.

Of the variants of Dynamic CS, only Dynamic BPDN* did better than static CS in certain ways,
which shows that not every method of transferring prior knowledge to the next timestep in a CS
algorithm is suitable. Dynamic BPDN* did outperform static CS for at least one of the scenarios
considered, where it achieved the same accuracy as static CS, but using less computational resources.
In the other two scenarios the lower CPU-time of Dynamic BPDN* came at the cost of extra false
alarms. From this we conclude that it is possible to gain something with respect to static CS by
using (a variant of) Dynamic CS. There are still open questions and research opportunities for this
approach, which indicated that devising an appropriate dynamic CS algorithm and proper tuning is
no straightforward task.

The other approach that was considered, is to combine CS with a Bayesian filter, such as a PF.
We described the HPFCS, which uses a PF to track the targets over time and CS to update the
cardinality of this PF when a trigger criterion is met. The numerical results concerning this trigger
criterion show that in the specific situation considered, the autocorrelation trigger criterion proposed
in this report requires less computational resources than the likelihood criterion proposed in the lit-
erature. On the other hand, the likelihood criterion was also found to be slightly more sensitive,
which could be an advantage. Furthermore, we have proposed a change in the implementation of
the likelihood criterion that could improve its computational resources. Whether these conclusions
will also be valid in practical situations needs verification with measurement data.

If the next goal is to determine whether there is something to gain by using an algorithm like
HPFCS or a variant of Dynamic CS for tracking, a comparison to a suitable Bayesian filter is in-
evitable. In the case of nonlinear measurements and correlated, possibly non-Gaussian noise, this
suitable filter would be a PF. Therefore we provide directions toward a proper comparison of the
algorithms discussed in this report and a PF in sections 5.4 and 5.5. These directions show that
there are many changes that need to be made to the algorithms presented in this report before such
a comparison is proper. However, all of them concern techniques that are already known, so that
performing these changes is a matter of implementation.

For now, the question whether there is something to gain in terms of computational resources
with respect to a PF by using an algorithm that either combines CS with a PF or uses only CS,
is still open. Considering the results in this report, we think HPFCS has the potential to improve
on more classical PF implementations in terms of computational resources. Future developments in
Dynamic CS need a thorough look at the choice of CS algorithm. As described in section 5.5, types
of CS other than solving BPDN using YALL1, such as Bayesian CS, may shed another light on our

48



conclusions regarding Dynamic CS. Additionally, any conclusion about a comparison of algorithms
based on computational resources will be weakened by the fact that these resources depend on many
factors other than the algorithm itself. Furthermore, we think that if there is anything to gain, these
gains will be small. After all, the class of Bayesian filters will always be (asymptotically) optimal if
computational resources are not taken into account.

49



Bibliography

[1] H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–
188, 2002.

[3] A. Beck and Y. C. Eldar. Sparsity Constrained Nonlinear Optimization: Optimality Conditions
and Algorithms. Society for Industrial and Applied Mathematics, 23(3):1480–1509, 2013.

[4] D. Bekers, W. Rossum, B. Jacobs, M. Heiligers, L. Anitori, E. Stolp, L. Cifola, and M. Podt.
On Pre-Whitening and Accuracy in DOA Estimation by Sparse Signal Processing on Beam-
formed Data. 4th Int. Workshop on Compressed Sensing on Radar, Sonar, and Remote Sensing
(CoSeRa), pages 202–206, 2016.

[5] T. Blumensath. Compressed Sensing with Nonlinear Observation and Related Nonlinear Opti-
mization Problems. IEEE Transactions on Information Theory, 59(6), 2013.

[6] Y. Boers. Particle Filters en Niet-Lineair Schatten. Technical report, Thales Nederland.

[7] M. Born and E. Wolf. Principles of Optics. Cambridge University Press, 1999.

[8] R. V. Borries, C. J. Miosso, C. Potes, and E. Paso. Compressed Sensing Using Prior Informa-
tion. 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, pages 121–124, 2007.

[9] K. Burnham and D. Anderson. Model Selection and Multimodel Inference (2nd edition).
Springer, 2008.

[10] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Transactions on Information Theory,
52(2):489–509, 2006.

[11] J. V. Candy. Bayesian Signal Processing. John Wiley & Sons, Inc., 2009.

[12] S. Das and N. Vaswani. Particle Filtered Modified Compressive Sensing (PaFiMoCS) for track-
ing signal sequences. Conference Record - Asilomar Conference on Signals, Systems and Com-
puters, 2(2):354–358, 2010.

[13] D. L. Donoho. For most large underdetermined systems of linear equations the minimal l1-norm
solution is also the spartest solution. Comm. on Pure and Applied Math, 59(6):797–829, 2006.

[14] D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed Sensing MRI. IEEE Signal Processing
Magazine, (March 2008):72–82, 2008.

[15] N. Doornekamp. Internship report ‘Compressive Sensing in Dynamic Scenes’. Technical report,
Thales Hengelo, 2016.

50



[16] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G.
Baraniuk. Single-Pixel Imaging via Compressive Sampling. IEEE Signal Processing Magazine,
25(2):83–91, 2008.

[17] M. P. Friedlander, H. Mansour, R. Saab, and Ö. Yilmaz. Recovering compressively sampled sig-
nals using partial support information. IEEE Transactions on Information Theory, 58(2):1122–
1134, 2012.

[18] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak. Sequentially designed compressed sensing.
2012 IEEE Statistical Signal Processing Workshop, SSP 2012, pages 401–404, 2012.

[19] C. M. Hurvich and C.-L. Tsai. Regression and Time Series Model Selection in Small Samples.
Biometrika, 76(2):297, 1989.

[20] S. Ji, Y. Xue, and L. Carin. Bayesian Compressive Sensing papers. IEEE Transactions on
Signal Processing, 56(6):2346–2356, 2008.

[21] S. Kay. Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Prentice
Hall, 1993.

[22] M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi. Weighted l1 minimization for
sparse recovery with prior information. IEEE International Symposium on Information Theory
- Proceedings, pages 483–487, 2009.

[23] C. Kreucher, K. Kastella, and A. O. Hero III. Tracking Multiple Targets Using a Particle Filter
Representation of the Joint Multitarget Probability Density. IEEE Transations on Aerospace
and Eletronic Systems (AES), 2004.

[24] S. Kullback and R. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951.

[25] G. M. Ljung and G. E. P. Box. On a Measure of Lack of Fit in Time Series Models. Biometrika,
65(2):297, 1978.

[26] W. Lu and N. Vaswani. Regularized Modified BPDN for Noisy Sparse Reconstruction with Par-
tial Erroneous Support and Signal Value Knowledge. IEEE Transactions on Signal Processing,
60(1):182–196, 2012.

[27] S. G. Mallat and Z. Zhang. Matching Pursuits With Time-Frequency Dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993.

[28] V. Maroulas and P. Stinis. Improved particle filters for multi-target tracking. Journal of
Computational Physics, 231(2):602–611, 2012.

[29] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

[30] F. Ning, D. Gao, J. Niu, and J. Wei. Combining compressive sensing with particle filter for
tracking moving wideband sound sources. 2015 IEEE International Conference on Signal Pro-
cessing, Communications and Computing, ICSPCC 2015, 2015.

[31] H. Ohlsson, S. S. Sastry, A. Y. Yang, R. Dong, and M. Verhaegen. Quadratic Basis Pursuit.
Technical report, 2012.

[32] H. Ohlsson, M. Verhaegen, and S. S. Sastry. Nonlinear compressive particle filtering. Proceedings
of the IEEE Conference on Decision and Control, (c):7054–7059, 2013.

51



[33] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: recursive func-
tion approximation with applications to wavelet decomposition. Proceedings of 27th Asilomar
Conference on Signals, Systems and Computers, pages 1–5, 1993.

[34] S. Saha, Y. Boers, H. Driessen, P. Mandal, and a. Bagchi. Particle based MAP state estimation:
A comparison. 2009 12th International Conference on Information Fusion, pages 278–283, 2009.

[35] D. Schuhmacher, B. T. Vo, and B. N. Vo. A consistent metric for performance evaluation of
multi-object filters. IEEE Transactions on Signal Processing, 56(8 I):3447–3457, 2008.

[36] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, 2008.

[37] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der Linde. Bayesian Measures of Model
Complexity anf Fit. Journal of the Royal Statistical Society Series B (Statistical Methodology),
64(4):583–639, 2002.

[38] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van der Linde. The deviance information
criterion: 12 years on. Journal of the Royal Statistical Society. Series B: Statistical Methodology,
76(3):485–493, 2014.

[39] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666, 2007.

[40] N. Vaswani and W. Lu. Modified-CS : Modifying Compressive Sensing for Problems with
Partially Known Support. IEEE Transactions on Signal Processing, 58(9):1–12, 2010.

[41] J. Yang and Y. Zhang. Alternating direction algorithms for compressive sensing. Society for
Industrial and Applied Mathematics, 33(1):250–278, 2011.

[42] Y. Zhang, W. Deng, J. Yang, and W. Yin. YALL1: Your ALgorithms for L1,
http://yall1.blogs.rice.edu.

[43] Y. Zhang, J. Yang, and W. Yin. User’s Guide for YALL1 : Your ALgorithms for L1 Optimiza-
tion. CAAM Technical report TR09-17, 2009.

[44] X. Zhu. Very High Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring.
PhD thesis, Technischen Universität München, 2011.

52



Appendices

53



A. Information Criteria

In the multi-target PF described in section 4.1.2, the task of the Information Criterion (IC) is to
decide which of the PFs running in parallel is using the most plausible model (i.e. the most plausible
number of components). Since the performance according to the measures described in chapter 2
is determined based on a point-estimate only and for a large part by the decision whether a single-
target or a dual-target model is preferred, the task of the IC is of great importance. In this section
we aim to first give an intuitive motivation of this task, after which the underlying theoretical
basis, the Kullback-Leibler Distance [24] (denoted KLD, also sometimes referred to as Kullback-
Leibler information, discrepancy, divergence or number instead of distance) is briefly introduced. A
more elaborate discussion and the corresponding mathematical derivations of the ‘quick and dirty’
introduction of the KLD in this section can be found in e.g. chapter 2 of Burnham and Anderson [9].

The intuitive motivation for the use of an IC is that usually the fit of the model to the data
becomes better as more parameters are estimated by a model. The more components may be used
to describe the observed signal, the better the description will be. Therefore, without penalizing the
introduction of extra parameters, the best model would in many cases be the one with the larger
number of estimated parameters. This idea is easily understood in the context of regression: If we
have n random data points from the two-dimensional plane, fitting a quadratic function is going
to provide a better fit than a linear function and a cubic function will be better than a quadratic
function, etc. And in the extreme, using a polynomial curve of degree n− 1 can be found so that it
fits the data perfectly. Therefore, when choosing the order of a model, looking only at how well it
fits the data will always favor a model of higher order.

The theoretical basis for (most of the) the ICs that are discussed in this section is the KLD. The
KLD of a candidate model with respect to the truth is a measure of ‘how much information is lost
when the model is used instead of the truth’. Naturally, models that minimize the loss of information
are preferred: we want to select the candidate model with the minimal KLD to the truth, so that
the lower the KLD of a candidate model, the better. The problem with this objective is that the
truth is unknown in the situations of interest. It turns out however that the KLD can still be used
to compare candidate models of the same truth used since, as Burnham and Anderson [9] phrase it
”the truth drops out as a constant”. In other words: it is possible to compute the KLD−C, where
C is a constant that depends only on the truth. Since this truth is the same for every candidate
model, the quantity KLD−C can be computed and used to rank the models.

To compute the KLD of a given model, the parameters of the model must be set. These parameters
are of course unknown, so that they have to be estimated. Therefore the KLD of the model is also
an estimate and instead of minimizing the true KLD, the IC is actually minimizing expected KLD
[9]. The challenge in estimating the expected KLD is in correcting for the bias that is introduced
by evaluating the model using the data that were also used to fit its parameters. As is discussed in
the next section, there are multiple ways of estimating this bias.

54



A.1 Comparison

As discussed in chapter 2, the performance of the multi-target PF will be measured by its ability to
correctly identify whether it is dealing with a single-target or dual-target scene. Therefore the IC has
a huge influence on the performance: the IC decides at whether the single-target or the dual-target
model is preferred. In this section a number of criteria are listed, which all aim to estimate the KLD
but differ in their estimate of the aforementioned bias term.

Akaike Information Criterion The Akaike1 Information Criterion (AIC) [1] of a model is defined
as

AIC = 2k − 2log(L̂), (A.1)

where k is the number of parameters that are estimated by the model and L̂ is the likelihood of this
model with maximum likelihood parameters. The AIC has been shown to become biased towards
more complex models as the sample size becomes large relative to the number of parameters [19].
In other words: the AIC tends to overfit when the sample size is small. Therefore a second-order
bias correction is introduced in the corrected AIC, denoted AICc:

AICc = AIC +
2k(k + 1)

n− k − 1
. (A.2)

As a rule of thumb, Burnham and Anderson [9] propose to use AICc instead of AIC when n
k < 40.

Since the AICc converges to the AIC as n becomes large with respect to k, it could also be argued
to always use AICc over AIC: the difference between the two is only significant in situations where
you would prefer the AICc over the AIC according to this rule of thumb.

Deviance Information Criterion The Deviance Information Criterion (DIC) was introduced
by Spiegelhalter et al. [37]. In the DIC the constant penalty on the number of parameters in AIC is
replaced by a data-dependent bias correction. Intuitively this makes sense, since parameters that are
heavily constrained by prior information do not constitute a ‘degree of freedom’. Therefore instead
of simply counting the number of parameters, the effective number of parameters is estimated.
This effective number of parameters is then used as penalty term. Note that in the case of an
uninformative prior or no prior information at all, the number parameters is equal to the effective
number of parameters. While it is quite popular (over 8000 citations according to Google Scholar),
there are some known issues with the DIC. This was also recognized by their original authors, who
discuss the limitations in [38].

Bayesian Information Criterion Whereas the AIC, AICc and the DIC all aim to estimate the
KLD, the Bayesian Information Criterion (BIC) is derived from a Bayesian framework instead [9].
The BIC is defined as

BIC = log(n)k − 2log(L̂), (A.3)

where n is the number of data points. The difference between AIC and BIC is in the weight of the
penalty term k, which is 2 in the AIC and log(n) in the BIC.

1Akaike originally intended the ‘A’ in AIC to mean ‘an’, as in ’an information criterion’ [1], but it is common
practice to refer to the AIC as the Akaike Information Criterion.

55



A.2 Conclusion: Selecting an IC

With the properties of the ICs described in subsection A.1 in mind, one of the criteria has to be
chosen. To make this choice we consider the following:

• The prior information in the problem described in chapter 2 is the bandwidth in which all
targets are assumed to be. This is a uniform distribution, which is wide relative to the likelihood
functions that were observed. Therefore, in the light of choosing an IC, we could assume this
prior information to be uninformative. As a result, the number of parameters in a model is
equal to the effective number of parameters, so that it does not need to be estimated. Therefore
methods that do encompass such an estimation (such as DIC) will not be needed.

• The sample size is quite small with respect to the number of parameters. As discussed in
chapter 5: n = 32, while k is either 2 or 4 and therefore AICc is preferred over AIC.

With these considerations in mind, the choice between AICc and BIC remains. There does not
seem to be an obvious winner; the use of either can be justified. The difference between BIC and
AICc is in the penalty term, which is larger for the BIC. Therefore, when the two prefer different
answers, the model suggested by the BIC will have less parameters than the model suggested by
AICc. In other words: when a low false-alarm rate is important the BIC will do better, when a high
detection probability is important the AICc is. Because emphasis in the performance evaluation is
on identifying the second target, and therefore less on avoiding false alarms, we choose to use the
AICc.

It should be noted that besides the criteria discussed in this report, there is what Spiegelhalter
et al. [38] describe as a ”bewildering alphabet of information criteria: BPIC, CIC, EIC, FIC, NIC,
TIC, ...”. But since there do not seem to be any reasons not to use AICc or BIC in the context of
this project, they will not be included in our comparison. One reason to look at other criteria would
be that all the criteria discussed in this section use a point estimate to characterize the posterior
estimated by the model. This is not a problem if the estimated posterior is symmetric and unimodal
as in our example, but might cause problems otherwise. Criteria such as the Watanabe-Akaike IC
(WAIC) can deal with such situations.

56



B. Influence of the quality of the initial dis-
tribution in a hybrid multi-target PF

During this project, a multi-target PF different from the one described in section 4.1.2 was inves-
tigated. In this multi-target PF the number of components hypothesized by a particle can change
over time, according to a transition matrix. There are a number of fundamental issues with this ap-
proach, in particular with the transition matrix. The dynamic model (which includes this transition
matrix in this case) is supposed to be a model of reality and therefore this transition matrix should
have some kind of physical interpretation. With this transition matrix however, it is not clear what
kind of probabilities should be in it. At the same time, these probabilities will have a significant
impact on the overall performance. If one wishes to model a situation where targets might appear
and/or disappear, a better way to do so is to include target births and deaths in the model. This
approach is not discussed in this report.

The motivation for investigating the multi-target PF described above was to find out whether
it is useful to make an effort to obtain information that can be included in the PF during the
initialization. In particular, if we make an extra effort to determine the number of targets and their
positions at the first timestep, for example by using a CS algorithm, how much do we gain by that?
Since the results that were obtained with the PF using a transition matrix might still offer some
insights into (the initialization of) multi-target PFs, we will discuss this PF and some numerical
results in this appendix. In particular, section B.1 describes the state and state transition model in
this PF and section B.2 discusses the initial distribution that it uses. Then, before the results are
presented in section B.4, the performance measure and the Cramer-Rao bound for this measure is
discussed in section B.4.

B.1 Description of state and state transition distribution

The state of the system at time k is sk = [A1
k, F

1
k , ..., A

R
k , F

R
k ], where R is the true number of

targets. Meanwhile the state of a particle sik = [A
1,(i)
k , F

1,(i)
k , ..., A

R̂ik,(i)
k , F

R̂ik,(i)
k ], where R̂ik is number

of targets hypothesized by this particle. In other words, a particle represents a hypothesis about
the multi-target state, which consists of the number of targets and their respective amplitudes and
frequencies. This estimated number of targets changes according to a Markov chain with a symmetric
transition matrix and a maximum number of targets of 3:

The transition distribution, which in the SIR particle filter that was used for this project also
serves as the importance distribution, can be described in words by the following rules:

• The number of targets hypothesized by particle i at time step k (denoted R̂ik) is drawn from
the Markov chain described in figure B.1.

• If R̂ik−1 > R̂ik one of the R̂ik−1 targets is removed at random and the rest is propagate through
the dynamic model (described in (4.1)). Here we distinguish two situations:

57



R = 0 R = 1 R = 2 R = 3

0.1 0.1 0.1

0.10.10.1

0.9

0.80.8

0.9


0.9 0.1 0 0
0.1 0.8 0.1 0
0 0.1 0.8 0.1
0 0 0.1 0.9


(B.1)

Figure B.1: Transition model of the number of targets

– If R̂ik−1 = 2 and R̂ik = 1, the state of the particle at time k will be
[
A1
k−1 +A2

k−1,
F 1
k−1+F 2

k−1

2

]
propagated through the dynamic model.

– Otherwise the state of the particle at time k will be the state of the particle at time k− 1
with the randomly selected target removed, propagated through the dynamic model

• If R̂ik−1 = R̂ik the number of targets remains unchanged and all targets are propagated through
the dynamic model.

• If R̂ik−1 < R̂ik an extra target is drawn from p(s0). All targets, including the new one, are then
propagated through the dynamic model.

B.2 Initial distribution

The initial distribution is defined as follows. For each particle s(i) at time zero

s
(i)
0 ∼ U(s0 + ε− 3σs0 , s0 + ε+ 3σs0), where ε ∼ N (0, σε). (B.2)

That is: the initial distribution is uniform around s0 + ε, where ε is a normally distributed bias,
which is the same for all particles. This bias is introduced to simulate the error that an algorithm
that is used to obtain an initial distribution inevitably makes. The larger the error of this algorithm,
the larger the bias in the initial distribution. Note that in the following both s0 and ε are usually
multi-dimensional vectors. This artificial initial distriubtution is illustrated in figure B.2, where the
magnitude of the bias corresponds to σε and the width of the inital distribution corresponds to σs0 .
Figure B.2 shows two situations (subfigures B.2c and B.2d) where the initial distribution does not
cover the true state. This might occur when the error of the point estimate from the algorithm that
is used to obtain the initial distribution is larger than expected, so that it is large with respect to
the (chosen) width of the distribution. Even though the particle filter might still converge to the
true state since the distance to the true state might eventually be covered by the process noise, this
situation should be avoided.

In the multi-target case, the particles are first distributed over the hypotheses about the number
of targets. In the following two ways to do this are discussed: uniformly over the possible hypotheses
and ‘clairvoyantly’ (i.e. all particles are initialized with the correct hypothesis about the cardinality).

B.3 Performance evaluation

In this section we summarize the result from the internship report [15] concerning the Cramer-Rao
bound (CRB). A more elaborate discussion of the CRB can be found in e.g. the work of Kay [21].

To evaluate the performance in the case of a single target we will look at the Mean Squared
Error (MSE). The CRB is a lower bound on the variance of an unbiased estimator. Therefore, when
comparing MSE to the CRB, it is assumed that the estimator is unbiased. In this subsection we
state the CRB for the estimation of a vector of parameters with complex Gaussian noise. The CRB
is defined via the Fisher Information matrix I(θ):

58



9 9.5 10 10.5 11 11.5 12

Frequency

1.5

2

2.5

3

A
m

pl
itu

de

Particles
True state

(a) Small bias - narrow distribution

9 9.5 10 10.5 11 11.5 12

Frequency

1.5

2

2.5

3

A
m

pl
itu

de

Particles
True state

(b) Small bias - wide distribution

9 9.5 10 10.5 11 11.5 12

Frequency

1.5

2

2.5

3

A
m

pl
itu

de

Particles
True state

(c) Larger bias - narrow distribution

9 9.5 10 10.5 11 11.5 12

Frequency

1.5

2

2.5

3

A
m

pl
itu

de
Particles
True state

(d) Large bias - wide distribution

Figure B.2: Examples illustrating the possible combinations of error magnitude and width of the
initial distribution

[I(θ)]i,j = 2Re

([
∂f

∂θi

]H
C−1

[
∂f

∂θj

])
+ Tr

(
C−1 ∂C

∂θi
C−1 ∂C

∂θj

)
. (B.3)

Here Re(z) denotes the real part of complex number z and Tr(A) is the trace of matrix A. According
to the CRB, the covariance matrix of the estimated θ satisfies

Cθ̂ − I
−1(θ) ≥ 0. (B.4)

That is, the matrix Cθ̂ − I
−1(θ) is positive semi-definite. This equation also provides lower bounds

on the variances of the separate θi:

var(θi) = [Cθ̂]i,i ≥ [I−1(θ)]i,i (B.5)

B.4 Numerical results and analysis

B.4.1 Single target

Figure B.3 shows the MSE for each number of pulses for different error standard deviations (denoted
σε, as in section B.2). In this figure, each line represents a width of the initial distribution (denoted
σs0).

59



5 10 15 20 25 30 35 40

Pulse

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
M

S
E

)

10-4

Cramer-Rao bound
 = 0.1, 

s
0

=0.1

 = 0.1, 
s

0

=0.2

 = 0.1, 
s

0

=0.4

 = 0.1, 
s

0

=1

(a) σε = 0.1

5 10 15 20 25 30 35 40

Pulse

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
M

S
E

)

10-4

Cramer-Rao bound
 = 0.2, 

s
0

=0.1

 = 0.2, 
s

0

=0.2

 = 0.2, 
s

0

=0.4

 = 0.2, 
s

0

=1

(b) σε = 0.2

5 10 15 20 25 30 35 40

Pulse

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
M

S
E

)

10-4

Cramer-Rao bound
 = 0.4, 

s
0

=0.1

 = 0.4, 
s

0

=0.2

 = 0.4, 
s

0

=0.4

 = 0.4, 
s

0

=1

(c) σε = 0.4

Figure B.3: MSE per number of pulses for varying σε and σs0

60



In figure B.3c the lines for σs0 = 0.1 and σs0 = 0.2 are outside the chosen window. Based on this
figure we can make the following observations:

• For a large σε in combination with a small σs0 , the MSE does not (always) converge. In
particular: if the initial distribution is

• When the MSE does converge, it always converges to the same level. That is, the quality of
the initial distribution, provided it is good enough to let the filter converge at all, does not
affect the precision after convergence. It only determines the number of timesteps required to
get to that level.

• The fastest convergence is achieved when σs0 is equal to σε. If σs0 > σε the initial distribution
will cover the true state, so that the PF will converge. But the larger σs0 , the longer this takes.
If σs0 < σε however, the true state could be outside the initial distribution. If the distance to
the true state is not too large, the PF will still converge, but if it is too far all particles would
have a likelihood of practically zero. In that case the PF will not converge at all.

B.4.2 Multiple targets

In all the multi-target PF results, σs0 is proportional to σε.
In figure B.4 we see the detection probabilities for two targets, 0.07 Hz apart. For figure B.4a a

uniform initial distribution over the number of targets was used, for figure B.4b all particles started
with the (correct) hypothesis that there were two targets. Each line represents a different error
standard deviation (σε in equation (B.2)). Based on this figure B.4 we can make the following
observations:

• Since we have coupled σs0 to σε, the larger σε, the lower the detection probability in the first
pulses.

• Like for the single-target case, the error in the initial distribution does not affect the level to
which the detection probability converges over time.

• With a perfect initial distribution, the detection probability starts off high but drops a little
in the first pulses. That is caused by the perfect initial distribution: all particles start with
the (correct) hypothesis of two targets.

If we combine lines from these two figures, as in B.5, we can make an additional observation:
a perfect initial distribution of the number of targets gives a higher detection probability than a
uniform initial distribution over the number of targets in the first pulses even if the latter has no
error in the targets’ location while the former has a large error in the target’s location.

Figure B.6 shows a comparison of perfect initial distributions over the number of targets (denoted
with a ’+’) and uniform initial distributions over the number of targets (denoted with a ’o’). Based
on this figure we can observe that for a given distance between targets, the perfect and uniform
initial distributions over the number of targets eventually result in the same detection probability
after a number of pulses.

From these results we conclude that when trying to improve the initialization of the multi-target
PF considered in this appendix, it is more important to provide the PF with a correct estimate of
the number of targets than to provide a precise location.

61



5 10 15 20 25 30 35 40 45 50

Pulse

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

(D
et

ec
tio

n)

Error 0
Error stdev 0.1 Hz
Error stdev 0.2 Hz
Error stdev 0.4 Hz

(a) Uniform initial distribution

5 10 15 20 25 30 35 40 45 50

Pulse

0.8

0.85

0.9

0.95

1

P
(D

et
ec

tio
n)

Error 0
Error stdev 0.1 Hz
Error stdev 0.2 Hz
Error stdev 0.4 Hz

(b) Perfect initial distribution

Figure B.4: Detection probabilities for different initial distributions over the number of targets
(distance between targets 0.07 Hz)

62



5 10 15 20 25 30 35 40 45 50

Pulse

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(D

et
ec

tio
n)

Perfect initialization of number of targets - location error stdev 0.4 Hz
Uniform initialization of number of targets - location error 0

Figure B.5: Comparison of a perfect initial distribution over the number of targets with σε = 0.4 to
a uniform distribution over the number of targets with σε = 0

5 10 15 20 25 30 35 40 45 50

Pulse

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(D

et
ec

tio
n)

Distance 0.050 - perfect initialization
Distance 0.060 - perfect initialization
Distance 0.070 - perfect initialization
Distance 0.050 - uniform initialization
Distance 0.060 - uniform initialization
Distance 0.070 - uniform initialization

Figure B.6: Comparison of different intial distributions over the number of targets for different
distances between targets, σε = 0.2

63



C. Analysis of single-target Sequential Bayesian
framework implementations

In the first phase of this project we investigated several implementations of the sequential Bayesian
framework. The one that is most important for this project, the particle filter, was already discussed
in quite some detail. This appendix describes the implementations that are not essential in this report
but might still help to gain insight in the framework and thereby the particle filter.

Deterministic dynamic model

During the internship that preceded this graduation project we have shown that (sequential) Maxi-
mum Likelihood Estimation (MLE) is a special case of the sequential Bayesian framework [15]. This
case is obtained when a deterministic dynamic model (i.e. the process noise ωk = 0 in equation (4.1))
is assumed, the initial distribution p(s0) is uniform and the point estimate is extracted by selecting
the grid point with the maximum likelihood. Equivalently, the sequential MLE can be obtained
from the SIR particle filter by taking a non-adaptive grid (i.e. no resampling and a deterministic
dynamic model) and extracting a point estimate by selecting the maximum likelihood particle. The
differences between the two become even smaller when the sequential MLE uses a weighted average
to obtain its point estimate. Doing so alleviates some of the issues caused by the ‘grid-basedness’1.
In figure C.1 the sequential MLE with a weighted average as point estimate and sequential MLE
with the most likely gridpoint as point estimate a SIR PF. The number of grid points was equal to
the number of particles: 500.

5 10 15 20 25

Pulse

0

0.5

1

1.5

2

2.5

M
S

E

10-4

Cramer-Rao bound
Sequential MLE
Sequential MLE with weighted average
Particle filter

Figure C.1: MSE of sequential MLE with and without weighted average and a PF - 500 particles/grid
points

In figure C.1 we see that the adaptive grid of the PF allows it to converge to a lower MSE than
the sequential MLE with or without a weighted average.

1That is, in sequential MLE where the point estimate is the most likely grid point, the estimation error is bounded
from below by the distance between the true state and the closest grid point. When a weighted average is used it is
possible to get closer.

64



Mismatched deterministic dynamic model

If a deterministic dynamic model is assumed, but this assumption turns out to be wrong, the
dynamic model is mismatched. The figure below shows the MSE of sequential MLE and non-
sequential MLE for an example of such a case. More specifically: the frequency linearly drifts away
from the deterministic dynamics:

Dynamic model: sk = f(sk−1)

Truth: sk = f(sk−1) + drift
(C.1)

5 10 15 20 25 30 35 40

Pulse

0

0.5

1

1.5

2

M
S

E

10-4

Cramer-Rao bound
Sequential MLE - drift 0.00005
Sequential MLE - drift 0.0001
Sequential MLE - drift 0.0002
Sequential MLE - drift 0.0003
Sequential MLE - drift 0.0005
Sequential MLE - drift 0.001
Static MLE (independent of drift)

Figure C.2: MSE of sequential MLE and non-sequential MLE for various amounts of drift

If one encounters a situation like this, a possible fix could be to choose a fixed number of pulses
as memory. E.g. in figure C.2, if we expect the drift with respect to the deterministic dynamic
model to be less than 0.001 we could limit the history that is used to compute the sequential MLE
to 5 pulses.

65



D. Theoretical growth orders of memory
and run-time

In section 2.3 it was explained that the empirical run-time, which is the measure of algorithm ef-
ficiency that was used during this project, has the problem that it is influenced by many factors
outside the algorithm itself. This problem can be avoided by using a more theoretical approach to
analyzing the efficiency of an algorithm: the memory- and run-time growth orders of an algorithm.
These growth orders tell us how the algorithms’ memory usage and run-time will scale as the inputs
grow in size. This is independent of the outside factors that have a great influence on practical
measures: it only depends on the algorithm, which is the main advantage of this method. Growth
orders of algorithms are commonly denoted using the Big-O notation. This notation will not be
explained here; readers new to it could take a look at e.g. Chapter 2 of [36], which offers a very
readable introduction to it. The most common use of the Big-O notation is with inputs that depend
on one parameter. For example, multiplying two vectors with n entries has a run-time of O(n),
multiplying an n×n matrix with a vector of length n has O(n2), etc. The run-time can also depend
on multiple parameters. For example, multiplying an n×m matrix by an m×p matrix has run-time
O(nmp). For analyzing the algorithms used during this project the growth orders will be expressed
in terms of the input sizes n and m.

An important drawback of growth orders is that they are not necessarily useful when the input
sizes are still relatively small. For example, an algorithm that runs in T (n) = 0.001n3 = O(n3)
will run faster than an algorithm that runs in T (n) = 1000n2 = O(n2) for any n < 106. However,
when for example n = 1012 the constants in the T (n)’s in this example will be negligible and the
second algorithm is much faster than the first. Therefore describing an algorithms efficiency using
growth orders does not need to give an accurate indication of the efficiency in practice, but will be
increasingly accurate as the input sizes grow. When comparing the growth orders of algorithms we
will look at what happens between the moment the algorithm receives its input (y) and the moment
it provides its output (ŝ), since that is the part where the algorithms might differ. In the rest of this
subsection we analyze the theoretical growth orders of the memory and run-time of a PF, Dynamic
CS and the HPFCS.

PF

The memory usage of a PF scales linearly with the number of particles: the state of each of the
particles and their weights have to be saved explicitly. Moreover, this is the case for each of the
PFs that is used in parallel. These are all constant multiplicative factors of the growth order of
memory and will therefore not impact the growth order. The memory usage of a PF does not
depend directly on the size of the bandwidth, but it is likely that more particles are needed as the
bandwidth increases in size. The only factor that depends on the size of the input is the storage of
the measurement, which has memory growth of order O(m). However, the memory used by the PF
is likely to be dominated by storing the particle cloud in practice, since each of the particles has to
be saved explicitly.

66



Like for the memory, the order is affected by the size of the measurements m, as in y ∈ Cm:
when computing the likelihood of a particle (which is done through equation (4.10)), each of the m
entries of the measurement is compared to the signal corresponding to the state as hypothesized by
this particle. This is done for each particle, so in practice the number of particles plays the most
important role for the run-time. The overall run-time growth order of the PF is O(Npm). Further-
more, if the covariance matrix has to be taken into account because of correlated measurements,
the computation of the likelihood involves the matrix-vector multiplication of the residual and the
covariance matrix. This would increase the run-time to O(Npm

2).

Dynamic CS

Since the post-processing of the YALL1 output and determining the Mod-BPDN weights is simple
in terms of computational costs, the memory and run-time of Dynamic CS is dominated by the
YALL1 iterations. For the order of memory growth of YALL1 it should be noted that Ψ and Φ (and
therefore also A), do not need to be stored as full matrices in all situations. For example, when Ψ
is the Fourier basis, storing the full matrix in memory can be avoided by specifying the parameters
of the transformation that multiplying by Ψ effectively performs. In the case where the rows of Φ
are a subset of the rows of an identity matrix, only the m indices of these rows have to be saved.
This is important for the memory usage of the algorithms that use CS, since the memory usage of
these algorithms increases from O(n) to O(n2) when all these matrices are saved in full. Because of
the iterative character of YALL1, the memory usage does not increase over the number of pulses or
iterations.

The run-time is largely determined by the iterations of the ADM. Like with the order of mem-
ory growth, an important aspect of the order of run-time growth is the matrix A. In each of the
Niter iterations of the YALL1 algorithm that is used for this project, a number of matrix-vector
multiplications is performed, which has a run-time of order O(nm). And again it might be possible
to avoid this matrix-vector multiplication by defining an operation to replace it. For the exam-
ple where Φ is a subset of the rows of an identity matrix, the multiplication could be replaced
by simply selecting the entries of the vector that correspond to the nonzero elements of Φ. With
the matrix-vector multiplication, the growth order of the run-time of YALL1 is of order O(Niternm).

HPFCS

Since the HPFCS is a combination of CS and PF, it inherits their run-time and memory growth
orders. As discussed in chapter 4, an important advantage of the HPFCS is that it does not use
multiple PFs in parallel, as would be the case for a ‘PF-only’ solution. Another important factor
in the run-time of the HPFCS is how often CS is executed. This depends on the sensitivity of the
trigger criterion. Again, there is a trade-off: the more often CS is executed, the less likely it is to
miss an opportunity where CS could have identified the second target but the more expensive the
algorithm as a whole becomes. To determine the order of run-time growth however, this factor does
not play a role. The situation where CS is never executed can be disregarded since then the HPFCS
will never identify the second target. Therefore the order of run-time growth does not depend on
how often CS is executed. Instead it depends only on the run-times of the PF and CS, where the
order of run-time growth is the maximum of the two: O(max(n,m)) = O(n).

The two different trigger criteria both only make use of the residual, which makes their memory
growth order O(m). Both perform a number of multiplications with these residuals, making both
their run-time growth orders O(m). However, the Ljung-Box statistic calculates the sample auto-
correlation for each of the h lags, each of which has run-time of order O(m). The likelihood criterion
requires only one such computation, but does involve the multiplication by the covariance matrix,

67



which increases its run-time order to O(m2). Note that the autocorrelation criterion requires the
signal to be uncorrelated or whitened. This should be taken into account when investigating the
computational resources used by this criterion: if the autocorrelation criterion is used the signal
has to be prewhitened at every timestep (before the Ljung-Box statistic is calculated). While in a
situation where the likelihood criterion is used, prewhitening is only necessary when CS is actually
performed.

68


	assignment
	Graduation Project Report

