
University of Twente

Faculty of EEMCS

MSc Human Media Interaction

3D Interactive Visualisation
Framework for Simulated Systems in

Large Scale Print System Design

Author:
Yannick Donners

Supervisors:
ir. H. Koppelman

dr.ir. H.J.A. op den Akker
ir. E. Schindler PDEng

July 4, 2017

Abstract

Even with the digitalisation of today’s culture, development in advanced large-scale
print systems is a growing activity at Océ. In the design of the large-scale print
systems multiple disciplines work together to produce quality products. The multi-
disciplinary teams in Océ combine their knowledge to define the print system and its
behaviour. Present challenges in supporting the Océ engineers in their productivity
through visualisations are caused by the lack of a single visualisation framework that
facilitates the different disciplines. Overcoming these challenges can be achieved by
presenting a novel visualisation framework, that is optimized in terms of user experi-
ence and productivity, to aid the Océ engineers in multiple disciplines. In this report
we present the development and evaluation of such a novel visualisation framework.
The evaluation of the visualisation framework is done using the System Usability Scale
(SUS) followed by a semi-structured interview. The results from the SUS indicated
that, with a SUS score of 78, the visualisation framework is well within the range
of acceptable (70-100). In addition, the participants (N = 6) rated the visualisation
framework with a 7.3 out of 10 indicating the visualisation framework performed as
expected but requires improvements to fulfil all their needs. Overall, the visualisation
framework proved sufficient in supporting the engineers in configuring and observing
simulators throughout the print system design.

1

Acknowledgements

This thesis presents the work done during my graduation project at the University
of Twente. I am thankful I had the opportunity to do my graduation project at Océ
technologies. My deepest gratitude goes to all people that supported and accompanied
me throughout the project.
Firstly, I would like to thank my supervisors: Herman Koppelman, Rieks op den
Akker; and my daily supervisor at Océ technologies: Eugen Schindler. Throughout
the process Herman and Rieks guided me in making the correct decisions with regards
to the users and strived for bettering my academic writing skills. Thank you for
the strong guidance throughout the project. Eugen, thank you for trusting in my
capabilities and allowing me to explore new territories throughout the project. You
motivated me to achieve higher goals.
I would also like to thank Joost van Pinxten for the advice throughout the project.
With the discussions for potential solutions, the project reached a higher level.
In addition, I would like to thank my family and girlfriend for their strong support
throughout the entire project.
Finally, on a personal note, I would like to thank my colleague and friend Roel van
der Tempel for our discussions during the 7 months of the project, which made the
journey towards graduation much more fun and memorable.

Yannick Donners
July 4, 2017

2

Contents

1 Introduction 5

2 Context 7
2.1 Printing Domain Background . 7

3 Prior Research on Design of
Graphical User Interfaces 10

4 Related Work on Contemporary Visualisation Systems 12

5 Work Method 14
5.1 Development Strategy . 14
5.2 Requirements . 18
5.3 Implementation of 3D Visualisation 21
5.4 Design Decisions . 24
5.5 Architecture . 26
5.6 Discussion of Requirements . 33

6 Evaluation and Results 35
6.1 Method . 35
6.2 Participants . 37
6.3 System . 37
6.4 Apparatus . 38
6.5 Results . 38

7 Discussion 41
7.1 Discussion of Results . 41
7.2 Project Discussion . 42

8 Conclusion 43

9 Future Work 44
9.1 Recommendations for Future Research 44

3

9.2 Recommendations for Further Development 45

Appendix A Questionnaire and Semi-Structured Interview 49

Appendix B User Tasks 52

Appendix C Requirements from Prior Research 53
C.1 Functional Requirements . 53
C.2 User Requirements . 55

4

1 | Introduction

In the contemporary era where a trend is present towards the digitalisation of print,
physical prints still have a place in the society [31]. Océ [6] is a multinational company
that manufactures and sells high performance printing solutions for businesses. They
aim to accelerate new digital print technologies and transform them into local printing
products and services for blue-chip multinationals around the globe and creative
studios around the corner. Within Océ the development of innovative print systems
is a growing activity.

In the early stages of software development in print system design, physical proto-
types are not present due to unknown hardware requirements and costs. The absence
of physical prototypes weighs down on the possibility to develop control software for
hardware components to make sure that the print system, after production, behaves
as it should. This challenge is overcome by modelling and simulating the print system
behaviour in a virtual environment. The software developed by engineers communi-
cates with software-generated models of physical components. An example is a piece
of software that controls the location of a simulated print head. This provides in-
sights into possible errors that might occur when running the software on a physical
prototype.

In a traditional scenario, engineers, designers and architects from chemistry, physics,
mechanical engineering, electrical engineering and software engineering would make
their own models to do individual specialistic analyses. However, within Océ multidis-
ciplinary teams are formed containing engineers from all disciplines. The engineers
provide models and simulations about possible print system behaviour specific to
their discipline. To aid the engineers within a team to communicate and collaborate
effectively, graphical representations, also known as visualisations, of print system
behaviour are used.

In the current situation, frameworks for physical visualisations and charts are
present for representing print system behaviour in Software-In-the-Loop and paper-
handling simulations and models. These visualisation frameworks provide physical
visualisations for sheet behaviour. The visualisation frameworks are built by the en-
gineers to fulfil their direct needs. Currently, first prototypes of visualisation frame-
works have been made, but the engineers have need for a more productive visualisation
framework. In addition, user experience and productivity of the present visualisation
frameworks are not considered in the development of these visualisation frameworks.

5

As the multidisciplinary teams rely on communicating concepts between disciplines, a
new, evolving visualisation framework based on modern technologies should be devel-
oped that provides a fluent and natural user experience and supports the productivity
of the Océ engineers in multidisciplinary teams.
Resulting from the goal of this report the following research question is stated:

• What visualisation and user interface does an expert require for configuring and
observing simulators (such as software-in-the-loop plant simulation, high-level
behaviour simulation and physics simulation) for the support of print system
design?

In this report, we design and develop a visualisation framework and through user
evaluations verify its capabilities of supporting the Océ engineers in configuring and
observing simulators in print system design. The research question above focuses on
determining the requirements and the implementation of the requirements. When the
requirements are implemented, we determine whether the visualisation framework is
suited to support the Océ engineers by answering the following research question:

• To what extent is the developed visualisation framework able to support the ex-
perts in configuring and observing simulators in print system design?

Prior to this research [15], we focused on developing an understanding of what
user interface aspects are required by the Océ engineers. Through two iterations in a
user study, multiple graphical user interface (GUI) prototypes were presented to the
engineers, resulting in useful insights on GUI aspects required by the Océ engineers
to aid their productivity.

This thesis focuses on the design, development and evaluation of a novel visu-
alisation framework that provides a natural and fluent user experience and aid the
Océ engineers of multiple disciplines to achieve increased levels of productivity. We
implement the GUI designed in the research prior to this report and develop the
functionalities as required by the Océ engineers.

In this report, we first recap on the discussed literature and results obtained in
Donners [15] in Chapter 3. In Chapter 4 related work is presented with similar goals
in terms of developing visualisation frameworks. Then, in Chapter 5 the development
of the visualisation framework is presented in terms of requirements, design decisions
and system architecture. Chapter 6 discusses the evaluation of our visualisation
framework within the workflow of the experts and presents the results. In Chapter
7 the overall development process and the evaluation of the visualisation framework
is presented. Then, a set of ideas is mentioned for future work on the visualisation
framework in Chapter 9. Finally, conclusions are made in Chapter 8 that verifies the
success of the visualisation framework.

6

2 | Context

In this chapter we discuss the struggles present to the Océ engineers, the current
solution for multi-disciplinary development in large-scale printing system design and
why it is relevant to resolve the problem. In addition, relevant terms and concepts
are explained in section 2.1.

In chapter 1 we already briefly presented the problem at hand and how a resolu-
tion to problem will be achieved. However, we first need to understand the current
situation of the Océ engineers in order to improve their workflow. Also mentioned in
chapter 1, the engineers use simulators to perform a behavioural analysis of the print-
ing system and work towards solution of behavioural errors. The different disciplines
among the engineers, mechanical, electrical and software, each use their own models
to perform such behavioural analyses. Because each discipline has their own models,
communication and collaboration among the disciplines is a challenge to overcome.

Currently, a 3D physical visualisation framework and a 2D visualisation frame-
work are present to these engineers. However, these frameworks are limited to a single
field, namely sheet behaviour, across the disciplines. There are other fields (e.g. ink
handling and fixation) which require a novel visualisation platform that stimulates
communication and collaboration across the mechanical, electrical and software en-
gineers. Such a platform can facilitate in the overall productivity as engineers can
easily explain their concepts through shared visualisations.

2.1 Printing Domain Background

In this section we will elaborate on Canon Océ as a multinational company, the
functioning of a large-scale printing system and the simulators used within the devel-
opment of these large-scale printing systems.

2.1.1 Océ

Océ, a Canon company, is a multinational company that manufactures and sells high
performance printing solutions for businesses. Océ operates a global network of R&D
centers to connect emerging digital print technologies to future markets. Spread
among the R&D centers, Océ has around 24,000 employees in 25 countries. The

7

Océ headquarters together with main R&D site is located in Venlo, the Netherlands.
Océ has document printing systems families as well as large format printing systems
product families. Document printing systems are usually multi-functional devices
which provide scanning, printing, and copying functionality. Large format printing
solutions are commonly used for printing blueprints or advertisements.

2.1.2 Large-scale Printing System

In figure 2.1 a decomposition of the VarioPrint i300 is shown. The VarioPrint i300
is the flagship cut-sheet printing system of Océ. This system is used for extremely
fast printing of black-and-white and color on A3 or A4 sheets. The figure shows
the different modules present in most contemporary business oriented printers. Each
of these modules fulfils a well-defined task and can be developed separately. The
modules are described in more detail below (numbering corresponds with the figure):

Figure 2.1: A decomposition of the VarioPrint i300. 1. Paper input module, 2. Paper
transport module, 3. Printing process module, 4. Fixation, 5. Paper output module

1. Paper input module (PIM): This module provides paper from the outside
world into the system.

2. Paper transport: This module is concerned with the transportation of a
paper sheet throughout the different modules in the printing system, taking into
account that the paper sheet is at the correct location at any given moment in
time.

3. Printing process unit: This module ensures the print head position and
correct conditions for effective printing to print ink onto the paper.

4. Fixation: This module takes care of the drying process of the ink on a paper
sheet.

8

5. Paper output module: This module provides a buffer before post-printing
operations such as stapling and binding can be performed in a finisher. Finishers
are usually attachable modules and multiple finisher modules can be chained
to achieve more complex post-printing operations. Once passed through the
attached finisher, the sheet moves to an output tray.

Each of the previously discussed modules is built up using hardware components.
These hardware components ensure the correct functioning of the module and are con-
trolled by software developed by the engineers. This means that predicting the func-
tioning of the hardware components is extremely important and is achieved through
simulators. In the following section we discuss the different simulators used in the
development process.

2.1.3 Simulators

Simulators are applications with the sole purpose of running simulations to predict
possible behaviour for input defined by the user. One of the more commonly applied
simulations within Océ is a software-in-the-loop simulation to examine the behaviour
of the embedded control software. Another simulation is concerned with the timing
of the sheets (i.e. ensuring that the sheets are at the correct locations at all times).
This section provides some context on the simulation environments used in Océ.

In a Software-In-the-Loop (SIL) simulation environment, the behaviour of a device
is examined [26] [17]. The simulation runs embedded software on simulated and
idealized hardware. The goal of the SIL environment is to test the behaviour of the
embedded control software. The simulation is not entirely realistic as mechanical
and other real-world problems do not occur. However, user-specified errors can be
induced manually to create such problems. The simulation gives a good indication of
general software behaviour under normal scenarios as well as scenarios that require
error recovery. As mentioned in 1, using simulators rather than physical prototypes
for testing, is very cost-effective and time-efficient since every engineer can have a
simulation set-up on their workstation compared to testing with only a limited amount
of physical prototype time available to such projects.

Another simulation environment is the Timing Design environment. This sim-
ulation environment is used within the early stages of the project to calculate and
animate the paper flow within the paper path. Embedded software nor hardware
interaction are prerequisites for the use of this type of simulation.

9

3 | Prior Research on Design of
Graphical User Interfaces

In the research prior to this report [15], we performed a study to better understand
the needs of the Océ engineers involved with print system development and work
together with them towards a graphical user interface (GUI) that would adhere to
their needs. In order to do so, a literature study was performed to understand what is
required when designing a GUI and a natural interaction according to Nielsen [22] and
Shneiderman and Plaisant [29]. In addition, state-of-the-art techniques for visualizing
3D elements were researched to understand how to implement a 3D visualisation into
a GUI. To develop a set of requirements for the visualisation framework and the GUI
of the tool, the knowledge acquired through the literature survey was combined with
an user analysis to properly understand their needs and preferences for a visualisation
framework. The requirements (found in Appendix C in this report) formed the basis
for a two-step, iterative process in designing a preferable GUI for the engineers. The
Océ engineers eligible for a new visualisation framework can be divided into two
disciplines: timing design and Software-In-the-Loop (SIL). Both disciplines require
different aspects to be visualized as well as feature to allow for an efficient workflow.
The timing design domain is mainly concerned with ensuring the correct location of a
sheet at each moment in time. Which requires focus on the visualisation of the sheets
and the paper path. SIL, on the other hand, is not specialized to a single domain, but
extends to multiple sub-domains concerning the behaviour of the sheets, behaviour
of moving parts and multiple other domains. Each of these sub-domains requires
different aspects of a printing system to be visualised. However, by combining the
visualisations of each sub-domain into a single visualisation, multiple disciplines can
work closely together as their disciplines are represented in every visualisation. In
both iterations the participants were presented with a set of mock-ups and through a
modified system usability scale (SUS) survey the results were measured [11],[10]. The
final outcome of the user study showed that they are quite satisfied with the designs
presented in the second iteration (Fig 3.1) however some improvements should be
made in order for the engineers to implement it in their workflow. The major changes
proposed by the engineers were the adjustability of the GUI in terms of resizing the
different GUI elements and additional features to the 3D viewport as well as the

10

additional features to the diagram.

Figure 3.1: The outcome of the graphical user interface used in the second iteration
of research performed previously to this thesis. The graphical user interface is di-
vided in five windows containing an overview of present objects in the visualisation,
a 3D visualisation, a diagramming facility, a table rendering facility and additional
information about variables relevant to the simulation.

11

4 | Related Work on Contemporary
Visualisation Systems

3D visualisations techniques are currently used in three fields of study, namely: biol-
ogy, geography and mechatronics. These areas benefit largely from providing visual
insight into large datasets created in these fields of study. Rego and Koes [25] and
Pettit and Marioni [23] provided novel and successful methods for visualizing biolog-
ical matters using WebGL. WebGL allows for the implementation of a 3D elements
in a web browser and thus losing operating systems restrictions as well as losing
restrictions for plug-ins for web browsers.

Rego and Koes [25] provided a visualisation as an alternative to existing visual-
isation frameworks for visualising interactive molecular data. The benefits of using
a WebGL visualisation systems are the easy implementation of their framework in
other websites, sharing the visualisation through a simple link and easy alteration of
the source code to adapt the framework to specific tasks. They proved that a WebGL
solution is comparable in performance as existing native applications in addition to
being compatible with all operating systems.

Pettit and Marioni [23] used a similar approach. Their main goal in the devel-
opment of the visualisation framework was to provide a free, cross-platform solution
accessible to non-expert users to provide essential insights in biological data. Thus
BioWeb3D is developed to be a simple and quick way to view 3D data focused on
biological applications. Using HTML5 capabilities of reading local data rather than
having to upload to a server and wait for the response, increases the ease of use for
the users. Although using a WebGL solution may have limitations in the rendering
power compared to native applications, it suffices in representing 3D data quickly in
a visualisation for non-expert users.

In another area, geography, using 3D visualisations is becoming more common.
In geography, there are 2 sub-areas in which visualisations are quite common: urban
planning and geographical information systems (GIS). Lloret et al. [20] introduced a
new method for visualising interactive 3D maps for urban planning. Combined with
data obtained through GIS procedures, a set of 3D icons (e.g. buildings) are devel-
oped and can be readily placed within Google Earth to provide a quick and low cost
visualisation of a possible urban planning scenario. By using Google Earth, the visu-

12

alisation can easily be distributed and shared among involved parties to the projects.
Another approach is provided by Pouke et al. [24], where an experimental visualisa-
tion framework is developed to better understand public transport in urban areas.
In their framework, Virtual Bus, they have opted to use WebGL for its easy access
to many users. Through a simple server-client pipeline, real-time information can be
obtained about the public transport and be directly visualised in their framework.

In the latter area, mechatronics, Dey et al. [14] developed a framework to en-
hance E-learning using virtual laboratories. These so-called virtual laboratories for
simulated mechatronical environments are gaining in popularity due to its worldwide
accessibility, easy implementation and reduction of high machinery or hardware costs.
In the framework, they opted for using a server independent web solution based on
WebGL for building the 3D geometry used in the visualisation. A model for simulat-
ing possible behaviour for the robotic arm used in their framework has be added to
the web solution rather than connecting to a server or local client.

Common among the discussed research is the use of WebGL for easy access and dis-
tribution of the visualisation framework. Comparing the literature mentioned above
to the literature on 3D visualisations reviewed in Donners [15], we can see a move
towards WebGL solutions for developing visualisation systems. It shows that WebGL
is capable of providing enough performance to deal with larger cities and molecular
structures. In addition, WebGL removes client side dependencies and thus increase
accessibility for the users. Data can be provided through either a server-client pipeline
or using the HTML5 file reading capabilities.

13

5 | Work Method

In this chapter the method applied for developing the novel visualisation framework
is discussed. Firstly, we present the development strategy applied to the development
of the visualisation framework. Then, we discuss the method applied for engineer-
ing the requirements that fits the development strategy chosen for the visualisation
framework. In Section 5.3 we present concepts used for the implementation of 3D
visualisation in the visualisation framework. In addition, we discuss the design deci-
sions that have been made throughout the development and the system architecture
of the visualisation framework. Finally, we reflect on the implementation of the re-
quirements.

5.1 Development Strategy

In Royce [27] three major development strategies are mentioned:

• Waterfall: In a waterfall development strategy, a sequential process is de-
scribed following a pre-determined set of stages. Most waterfall projects suffer
from inefficient integration and late discovery of design issues. In recent years,
a trend has developed in which people tend to move away from the traditional
waterfall development strategy.

• Iterative: In an iterative process cycle a set of demonstrable releases are
planned throughout the development of the software. This method is also re-
ferred to as a mini-waterfall model as every iteration requires to be fully com-
pleted before the next is started. Using an iterative method allows for exposing
design issues in early stages of development and resolving them in the next
iteration.

• Agile: The agile process aims to reuse available assets to kick-start the devel-
opment of the new application. Similarly to an iterative development process,
agile applies iterations throughout the development of the software. In ad-
dition, agile implements an incremental process in order to maintain working
software. Reusing assets and incrementally developing software allows the team

14

quickly develop deliverable products for testing, allowing to iterate effectively
and efficiently.

In recent years, a move from the conventional waterfall model towards agility is
being made among software development teams. When moving from a traditional
waterfall strategy towards an iterative strategy, the ease of revising functionalities
increases and the need for overhead planning reduces. Modern, iterative development
enables better insight into quality because system characteristics that are largely
inherent in the architecture (e.g. performance, fault tolerance, adaptability, inter-
operability, maintainability) are exposed earlier in the process where issues are still
correctable. The iterative approach forces integration into the design phase through
a progression of demonstrable releases, thereby exposing architectural uncertainties
early and allowing them to be resolved efficiently in the context of iterations. Pre-
senting the demonstrable releases early and often is also encouraged by Fullerton
et al. [16] and Lundgren [21] for the development of interactive software. By allowing
users to be involved early and often throughout the development of the system, we
can detect problems early and reduce the amount of scrap and rework. The result
is a more robust and maintainable product delivered with a higher probability of
success. As interactivity of the system is important as well as a high probability of
success, we apply an iterative development strategy to include the users early and
often throughout the development of the system.

In figure 5.1 an overview is shown of how an iterative development strategy is
executed. An initial plan and set of requirements are defined, followed by presenting
a design that adheres to the requirements. The design is then developed, tested and
sent to the user for evaluation. On the basis of the feedback received from the user,
a new cycle is started to implement the feedback into the design of the software. An
iterative design strategy is typically indicated by a subset of principles defined by
Royce [27]:

• Architecture-first approach: This principle aims for integrating a demon-
strable application in the design phase in order to expose and resolve significant
errors that might cause design breakage.

• Iterative life-cycle with early risk confrontation: It is hard to define the
entire problem, design the entire solution, build the software and test the end
product in sequence. Therefore, applying an iterative design strategy allows for
refining the problem, designing components of the entire solution and focus on
testing the components rather than the entire solution as shown in figure 5.1.

• Component-based development: Applying component-based development
reduces the amount of human-generated lines of code, as a component is pre-
defined structure that can be easily implemented into the software solution.

15

• Supporting round-trip engineering: This principle allows for redefining
and adding requirements throughout the process cycle in order to address the
problems arising during development.

• Addressing intermediate artefacts through a demonstration-based ap-
proach: By providing multiple demonstrable versions of the software solution
throughout the development cycle, the different functionalities can be tested.
During these tests, errors and feedback can be collected to redesign the func-
tionalities as required.

• Plan intermediate releases in groups of usage scenarios with evolving
levels of detail: This principle involves the user directly in the design process.
Each release of the software solution has an increased amount of functionali-
ties (i.e. increased levels of detail) and should be presented to the users for
evaluation within the operational context of the system.

Figure 5.1: The iterative design strategy.

These principles motivate the cyclic workflow as shown in figure 5.1 where users
are involved early and frequently throughout the development of software. The early
involvement of the users helps to identify issues early on components of the software
rather than the entire application and adjust the requirements towards their needs.
This type of requirements engineering is referred to as iterative requirement engineer-
ing. In most of the organizations reviewed by Cao and Ramesh [12] a high level of
adoption is present for iterative requirements engineering. In an iterative require-
ment engineering strategy only a set of critical requirements are defined before the
development of the software is started. Throughout the development of the software,

16

requirements are added, revised, extended or removed. Benefits of applying iterative
requirements engineering are [12], [18]:

• A higher level of customer satisfaction due to direct involvement in the devel-
opment of the software;

• requirements are clearer and more understandable due to the direct contact
with the customers;

• iterative requirements engineering facilitates joint (between developers and cus-
tomers) discovery of potentially interesting solutions.

However, iterative requirements engineering also present a set of challenges that
should be considered. These challenges are defined by Cao and Ramesh [12] and
Inayat et al. [18] as:

• Cost and schedule estimation as only a limited set of requirements are present
at the start of a project;

• neglecting of nonfunctional requirements as the focus in the early stages is on
ease of use rather than stability and security;

• minimal documentation due to the mainly verbal agreement on requirements.

Since the potential challenges that accompany iterative requirements engineering are
known beforehand, we are able to counter them early. From the start of the develop-
ment we define a scope to which this project has to adhere. Throughout the project,
we are able to extend to scope and add additional functionalities. Because we de-
fine the scope early, focus on stability and security is present even though the scope
might be extended. Finally, we create a set of requirements that are maintained and
extended throughout the development of the visualisation framework.

In the iterative design cycle, intermediate releases of the software are presented
to the users for immediate feedback resulting in the addition, extension or removal of
existing requirements. Throughout the project the list of requirements changes and
so do the priorities of these requirements. In Section 5.2 we present the requirements
as they are by the end of the development of the visualisation framework.

In research prior to this report [15], the first steps of an iterative design strategy
have been taken. At first, a user analysis was performed to which a set of initial
requirements were developed. From these requirements, two iterations of graphical
user interface (GUI) designs were developed. In this report, we continue on the basis
of the previously acquired GUI designs, and continue the iterative development of
a novel visualisation framework. Throughout the development of the visualisation
framework, a modular architecture is adopted (explained in more detail in Section
5.4.2) in order to breakdown the problem into smaller chunks. The smaller chunks

17

can then be translated into components of the system containing certain functionali-
ties. In addition, intermediate releases of the visualisation framework are tested in a
natural setting by a single user. The users is an expert with regards to timing design.
Although it being a single user in a single domain, errors and design breakage are
detected early before releasing a final version of the visualisation framework.

5.2 Requirements

In this section we present the list of requirements in the state current to the end of
the development of the visualisation framework. The requirements are formed based
on the feedback received from the user. We distinguish between functional and non-
functional requirements. In the research prior to this report we already stated a set of
functional and user requirements relevant to the visualisation framework [15]. These
can be found in Appendix C. We define functional requirements to contain informa-
tion about what the system should do, whereas nonfunctional requirements specify
how the system should perform a certain function. The requirements are formed
in accordance to the MoSCoW method [13], where priorities are defined through
must have’s, should have’s, could have’s and would have’s. In tables 5.1 and 5.2 the
functional and nonfunctional requirements that are defined throughout the iterative
development are presented. Each of the requirement contains a rationale explaining
why the requirement is important to the development of the system.

Functional Requirements
F1 The system must aid in the print system development.
Rationale Throughout the system data from simulators is visualized with the goal

to assist the users in understanding the outcome of certain scenarios.
Aiding the users is a reason to use the system.

F2 The system must run on Microsoft Windows.
Rationale Microsoft Windows is the most common operating system among the

users and therefore the application should function properly on this op-
erating system.

F3 The system must be extensible to use with different types of data from
models and simulators.

Rationale Frequently used simulators in print system design are Software-In-the-
Loop (SIL) simulators and timing design for verifying software and
sheet behaviour. The system must include the functionality of these
models and simulators, but not limit to these two.

F4 The system must provide an option to choose to which simulator will
be used.

Rationale Both simulators are to be connected to the same system and use differ-
ent types of input. Thus, an option for choosing the preferred simulator
must be present.

18

F5 The system must be able to load files.
Rationale Both simulators provide static information concerning the paper path

through XML and JSON files. In addition, the Timing Design simula-
tor provides information necessary for the visualization through XML
files.

F6 The system must be able to visualize a print system paper path.
Rationale The paper path is important to both simulators as it belongs to the core

of print system design. Therefore, the system must provide a visualiza-
tion of the paper path.

F7 The system must contain a 3D visualisation area.
Rationale A 3D visualisation allows for inspection of print system behaviour from

multiple angles and thus providing additional insights.
F8 The 3D visualisation must be interactive through keyboard and mouse

input.
Rationale Most common input devices for desktop computers are keyboard and

mouse. Allowing for keyboard and mouse to interaction with the 3D
visualisation is important, e.g. for changing the camera angle to closely
inspect component behaviour in the print system.

F9 The system must contain a diagramming facility.
Rationale Providing data obtained from the simulators in a diagram allows for

advanced data analysis.
F10 The system must contain a table rendering facility.
Rationale Displaying data obtained from the simulators in a table provides a quick

overview of the visualized data from the 3D visualisation area.
F11 The table rendering and diagramming facilities must be interactive

through mouse input.
Rationale Tables and diagrams are considered 2D visualisation elements and must

be interactive through mouse input. This allows for closely inspecting
data within the 2D visualisation.

F12 The system must be able to load 3D objects.
Rationale For SIL simulations, 3D models of the components of print systems are

used to visualize the behaviour of the components. For timing design,
it proves useful to better understand the relative location of the paper
sheet within the print system. As the solution is present in WebGL, a
JSON file is a natively supported format for loading files.

F13 The system must provide an overview of the present 3D objects in the
3D visualisation.

Rationale Providing an overview of 3D objects present in the 3D visualisation is
relevant information to the users because they need to know what is
visualized.

19

F14 Through a button or draggable source additional diagrams and tables
should be able to be added to the system by the user.

Rationale The option for displaying multiple diagrams and tables was highly re-
quested by the users. By allowing the users to manually add additional
diagrams and tables, they are not bound to a pre-set number of diagrams
and tables.

F15 The system should not affect the performance of the timing design or
Software-In-the-Loop simulators.

Rationale The simulators already require complex calculations that require high
performance. If performance is affected by the system, calculation
might take longer and thus reducing the real-time factor of the sim-
ulations because the system and simulations run on the same machine.

F16 The system should be based on open source software.
Rationale Using open source software increases the accessibility due to the reduc-

tion of costs. In addition, in open source software access to the source
code is available and thus can be tailored towards the specific needs of
the system.

F17 The system could be able to alter the colours of segments in a paper
path.

Rationale Allowing for indicating segments with different colours within the paper
path could increase the effectiveness of the visualisation.

F18 The system would be extensible for use with virtual reality.
Rationale In addition to traditional displaying methods, allowing for virtual reality

of the 3D visualisation could increase the immersion of the user with
the print system behaviour and allow for close inspection of the different
components.

Table 5.1: Iteratively defined functional requirements.

Nonfunctional Requirements
NF1 On every cycle data from the Software-In-the-Loop simulator must be

requested.
Rationale Requesting data on every cycle provides up-to-date information to the

user and a smooth visualisation of the simulated data.
NF2 Only information relevant to the 2D and 3D visualisations must be

requested from the Software-In-the-Loop simulator.
Rationale Only requesting data that is required for visualising 3D objects and data

present in the diagrams reduces processor load and increases perfor-
mances. A higher performance allows for a more smooth and direct
interaction with the system.

NF3 Navigation throughout the 2D and 3D visualisations must be smooth.

20

Rationale For a natural and pleasant user experience, it is important that naviga-
tion for the 2D and 3D visualisations is smooth and direct. Stuttering
of the animation might cause confusion as it impacts the visualisation
of the simulated print system behaviour.

NF4 Errors and warning encountered within the system should be logged
and be accessible to the user.

Rationale Logging errors and warning encountered throughout the visualisations
increases the serviceability of the system.

NF5 The system should have a modular design.
Rationale Applying a modular software architecture to the system allows for easy

maintainability of the system because only a single module requires
maintenance rather than the entire system. In addition, easy exten-
sibility of the system is achieved because additional modules can be de-
veloped and implemented without altering the core of the system.

NF6 Cross-platform support could be implemented.
Rationale Allowing the system to be accessed from any operating system increases

the accessibility of the system.

Table 5.2: Iteratively defined nonfunctional requirements.

5.3 Implementation of 3D Visualisation

In research prior to this report [15], we defined that it suits Océ engineers’ best interest
to allow for some abstraction concerning the 3D visualisation as well as high detailed
models of the actual physical models present in the printing systems. Considering
that definition, we discuss the use of geometric primitive objects for 3D visualisation
in this section as well as the use of the high-detail CAD models.

5.3.1 Geometric Primitives

In 3D modelling, geometric primitives are the simplest of geometric objects that the
system can handle. 3D objects such as a cube, cylinder and sphere are referred to as
geometric primitives. For remainder of this report when we refer to a primitive, we
talk about a geometric primitive. In this section we make a distinction between prim-
itives representing physical objects and primitives representing properties of physical
objects. The former primitives can be used to either provide a more user-friendly
approach to some abstract data or to bring down the vertex count opposed to us-
ing a high-detail CAD model. For some objects in the CAD model, e.g. sensors, it
might prove a more suitable solution to use a primitive to represent the behaviour of
a sensor. The second use of primitives is used to display additional information to
already present models by showing information such as text. Firstly, we discuss the
primitives relevant to a print system 3D visualisation:

21

• Coordinate System A coordinate system uses one or more numbers, often
referred to as coordinates, to uniquely determine the position of a point. A
distinction can be made between global and local coordinate systems. There
can only be a single global coordinate system present, whereas multiple local
coordinate systems can be present in a single global coordinate system. Local
coordinate systems work similar to global coordinate systems (i.e. a vertical
y-axis), but can be translated, rotated or scaled within the global coordinate
system. In figure 5.2 the relation between global and local coordinate systems
is shown.

– 3D Coordinate System A Cartesian coordinate system which describes
3 axes. These axes are referred to as x, y and z.

– Curve Coordinate System A local linear coordinate system, ranging
from zero to one, present to a curve. This coordinate system is based on a
per curve basis. Each curve has its own local coordinate system in which
an offset (in a range from zero to one) can be specified, and is translated
to a coordinate in the global coordinate system. In figure 5.3 the relation
between a curve and global coordinate system is shown.

• Coordinate A position describing a point in a coordinate system.

– Curve Coordinates A coordinate in the Curve Coordinate System is
defined by a curve identifier as well as a curve-relative position. The curve-
identifier provides information to which curve the coordinate is local. The
curve-relative position is determined by an offset from the start of the curve
in comparison to the relative length of the entire curve and is represented
by a single number. E.g. a curve coordinate of 0.5 is located halfway the
specified curve.

– 3D Coordinate A coordinate defined in a 3D Coordinate System. The
coordinate’s location is determined by x, y and z coordinates.

• Bodies This is a collection of all possible objects present in a 3D environment.
Bodies are defined by a set of parameters, shaping the body to a certain object.
We distinguish two types of bodies for the purpose of this 3D visualisation
framework.

– Curve Body This is a deformable object that is animated along a curve.
The object contains information on which curve it is located and its curve-
relative position. On the basis of the previously mentioned, the start and
end point of the object are determined and the vertices are placed on the
curve. The curve-relative position determines the position of the start of
the interval of the curve body, as well as the end of the interval. In between
the curve body is interpolated over the curve and when animated the curve

22

body will follow the flow of the curve. An example of a Curve Body is a
sheet of paper.

– Rigid Body This is a non-deformable object which appearance is defined
by a 3D mesh. Rigid Body transformations consist of translations, ro-
tations and scaling that can be applied. The distances between vertices
of this body maintain an equal ratio to one another. Examples of Rigid
Bodies are printer components.

Figure 5.2: A visualisation of a global and local coordinate system. In (a) an object is
placed within the global coordinate system with its own, local, coordinate system. In
(b) the object is rotated and the local coordinate system (of the object) thus rotates
along.

5.3.2 CAD Models

CAD objects belong to the primitive category of Rigid Bodies and are thus static
objects in the sense that the vertex ratios (the relative distance between the vertices)
remain unaltered throughout the visualisation. The objects acquired from the CAD
models are used for animation in terms of translation, rotation and altering the color
of the object. CAD models require a form of pre-processing in order to be presented
in the form of a set number of vertices. A CAD model is a representation of a 3D
model using surfaces rather than vertices. In order for a CAD model to be correctly
rendered by a rendering engine, a conversion to a vertex representation of the 3D
model is required. This is often achieved by exporting the CAD model to a standard
format such as Wavefront Obj or Filmbox (FBX).

23

Figure 5.3: (a) shows a curve coordinate (ranging from zero to one) on a curve. (b)
shows the curve coordinate converted to a coordinate in a global coordinate system.

5.4 Design Decisions

In this section we elaborate on important design decisions that are made during the
development of the visualisation framework. As discussed in the previous section
(section 5.1), the visualisation framework is developed as part of an iterative devel-
opment process. This method allowed for rapid development of experimental version
of the visualisation framework before choosing the best option.

5.4.1 Development Platform

In choosing the best framework upon which the visualisation framework is built,
multiple platforms were explored in order to find the best-fitting solution. One of the
big preferences of this project would be to use Open Source software to prevent any
licensing costs. In the exploratory phase for choosing the right platform, a number of
game development platforms were considered including Blender [3], Three.js [8], and
(although not Open Source): Unity [9]. In figure 5.4 we present a matrix outlining
the features of the before-mentioned game development platforms. In section 5.3
we defined the necessary geometric primitives and concepts that are required for a
successful 3D visualisation framework. When looking into the matrix (figure 5.4),
we can see that Three.js is the best fit for the 3D visualisation framework due to its
advanced implementation of the curve system.

In light of using Three.js as the rendering engine for the visualisation framework,
we reviewed related work using WebGL solutions creating 3D visualisations. WebGL
is a cross-platform, royalty-free web standard for a low-level 3D graphicas, exposed to
ECMAScript (i.e. Javascript is an implementation of ECMAScript) via the HTML5

24

Figure 5.4: A matrix displaying the benefits of each of the game development plat-
forms.

Canvas element [2]. By using WebGL as basis for the visualisation framework the
conditions for a cross-platform support, as stated in the requirement NF6, are met.

As Three.js is a WebGL solution for rendering 3D elements, it is the preferred op-
tion due to its accessibility and cross-platform support. In addition, Three.js showed
that it provides a rigid system for dealing with curves and curve bodies. A down-
side of WebGL might be performance as Javascript runs on a single thread in the web
browser. However, in Chapter 4 we found that WebGL only suffered from longer load-
ing times rather than overall performance issues [25]. In addition, since JavaScript is
only running on a single thread, it ensures it won’t take away from the performance of
any processes (e.g. simulations) running in the background. As system performance
will only slightly be affected by the visualisation framework, it conforms to functional
requirement F15. Using WebGL inherently means that the visualisation framework
will be implemented in a webpage using HTML and CSS. Due to connectivity to the
SIL simulator, which requires a native library for communication on the localhost, it
is not possible to run the visualisation in a web browser such as Google Chrome or
Mozilla Firefox. Therefore, a local server has to be hosted to which the SIL simulator
can connect. In order to achieve this in combination with WebGL, the visualisa-
tion framework should be converted to a ”native" application using Node.js [1] and
Electron [4]. Node.js hosts a local server whereas Electron allows the JavaScript
application to run in a windowed version as a native application to the operating
system.

25

5.4.2 Modular Architecture

In iterative development, a modular system architecture is part of the development
process as found in the principles presented by Royce [27] in Section 5.1. A modular
architecture splits the application into a number of components that can be linked
together through means of an interface. In one of the iterations, two experimental
versions of the visualisation framework were developed: timing design and Software-
In-the-Loop (SIL). However, with some minor alterations, the entire design could be
merged into a single visualisation framework being able to connect to multiple simu-
lators through interfaces. This is explained in more detail in section 5.5. A modular
architecture is present as requested in the requirements NF5, and thus increasing the
maintainability and extensibility of the system. The ease of maintaining the visu-
alisation framework in a modular design comes down to resolving issues in a single
component to ensure the functioning of the entire framework. Similarly, when ex-
tending the framework with additional features, the only requirement present is that
it provides the data in a similar way as the framework requires in order to function.
This would mean that if a component (e.g. the diagram) would take an array as
input, a new component linking to the diagram would need to output its data in the
form of an array.

5.4.3 Modular Graphical User Interface

Although the design of the GUI limited to the features provided by HTML and CSS,
an adjustable and modular design can be achieved through using JavaScript libraries
such as GoldenLayout [5] and React [7]. GoldenLayout provides a framework that
allows for the interface to be adjustable in terms of scaling, moving and docking
various elements. Combined together with React, each of the GoldenLayout elements
can be filled with a React component. A React component is an object containing
HTML elements. Characteristics of objects in programming are that instances of the
objects can be created. This characteristic also applies to the React components and
thus, multiple instances of a single React component can be created. An example
would be a GUI where a single 3D visualisation area is present and multiple diagrams
and tables as instances of diagram and table React components are present in the GUI.
Ultimately, we allow the user to create such instances of React components through
an action and add these to the GUI. In figure 5.5 the current implementation of this
feature is shown. Allowing users to manually add additional diagrams and tables to
the GUI is in line with the functional requirement F14.

5.5 Architecture

In this section we discuss the architecture of the visualisation framework. As discussed
in the previous section, a modular architecture is implemented which translates to

26

Figure 5.5: An additional table is added to the GUI by dragging the table icon in the
upper right corner onto the GUI.

using different components. The architecture of the visualisation framework consists
of the different components that will form the visualisation framework. Firstly, we
discuss the different components and their functionalities. Secondly, we discuss how
these components are deemed to connect. Finally, we present the overall architecture
of the visualisation framework in its context and how these compare to the require-
ments defined in Section 5.2.

First off, we define a set of components (in figure 5.6 the visual components are
presented) that are required for the visualisation framework in accordance to the
defined functional requirements:

• 3D visualisation area is a component that is required for rendering 3D ob-
jects. A rendering engine processes information about vertex locations and
translates this information into objects that fit within the coordinate systems.
This engine is also responsible for the animation of the objects throughout the
visualisation (F7).

• Diagram provides data in a two-dimensional graph. This component translates
data obtained from the simulator into a two-dimensional representation of a set
of selected variables (F9).

• Table This component provides the data obtained from the simulator in an
easy to read format in which only current (and thus real-time) information is

27

presented (F10).

• Simulators These components provide the information that requires visualisa-
tion (F3). In this report we discuss the use of two different simulators:

– Timing Design: This type of simulator is concerned with providing in-
formation about the sheet location at certain moments in time. The files
are generated beforehand and are provided as input for the visualisation
framework.

– Software-In-the-Loop: This simulator is concerned with the software
and hardware aspects of print system design. Software-In-the-Loop enables
engineers to test their software against a simulated form of hardware. This
means that the software thinks it is talking to hardware components, when
it is actually a simulator. This simulator provides real-time data as input
for the visualisation framework.

• Interface: This component translates the data obtained from either simulator
into a data format that is eligible for use with the previously mentioned com-
ponents. For each of the simulators an interface is required to be able to work
with the visualisation framework.

Figure 5.6: An outline of the visual components present in the visualisation frame-
work. 1) 3D visualisation area, 2) Table, 3) Diagram.

In fig 5.7 we present a schematic overview of how the previously mentioned com-
ponents work together. In the current design of the visualisation framework, a single
simulator component is connected to the framework. We defined that there are mul-
tiple simulator components that must work with the visualisation framework (F3).

28

In order to tell the visualisation framework which type of data is expected, a choice
is presented to the user to choose the preferred simulator (requirement F4). In figure
5.8 we present a GUI that provides the selection between two simulators: timing
design and SIL. Through an interface the data obtained from the simulator is con-
verted to a format that is eligible to work with the 3D visualisation area, diagram and
table. Since the aforementioned are developed as components in a modular architec-
ture, the maintainability and extensibility of the visualisation framework is increased.
Generally errors are likely to only occur in a single component which then requires
repairing rather than the entire framework. In addition, new simulators can more
easily be implemented as the components have predefined input formats to which an
interface between the new simulator and the 2D and 3D visualisation components
must adhere. Similarly, 2D and 3D visualisation components can be added by alter-
ing the interface between the simulator and visualisation components to take the new
component into account.

Figure 5.7: A schematic overview of the component-based system architecture with
a single simulator connecting to the visualisation framework. Blocks represent com-
ponents in the system and arrows represent a data-flow.

29

Figure 5.8: A GUI that presents options for choosing a simulator.

Mentioned above, the simulators have their own interfaces within the visualisation
framework due to the differences in what format the data is provided. In the require-
ments we stated that the timing design and SIL simulators had to be implemented in
the visualisation framework, therefore we discuss how these simulators are connected
to the visualisation framework. Both simulators provide information about the state
of objects (e.g. sheets or print carriages), but are unaware of the print system itself
in terms of paper path layout or relative position of the objects to one another. The
information about the paper path and the relative positions of the objects is present
in predefined files. These files come in the form of XML and JSON files, and require
to be loaded by the system (F5). In figure 5.9 we show how these files are loaded
into the visualisation framework. These files are then parsed and presented in forms
of 3D visualized objects such as the paper path (in accordance to requirement F6)
as shown in figure 5.11. In addition for the SIL simulator, information about the
components of the physical printer (print carriage, input models, etc.) is provided in
a JSON file containing 3D models with relative positions to each other. Thus loading
the 3D models adheres to requirement F12. In figure 5.10 imported 3D objects into
the 3D visualisation area of a print system are shown.

30

Figure 5.9: A GUI that allows the user to define the files containing static information
about the layout of the paper path and other print system components.

Figure 5.10: Static components with information about relative positions are loaded
into the 3D visualisation area.

31

Figure 5.11: A paper path loaded in the 3D visualisation area.

Once the static data is loaded, the dynamic data can be visualized. Recall that for
each simulator an interface was developed in order to obtain the data and visualize it
within the visualisation framework. The timing design simulator provides information
about the sheet behaviour on an interval basis and thus requires linear interpolation
between the presented data points. The interpolation is required otherwise the visu-
alisation would only present data that is already known from the input file. In figure
5.13 we present a schematic overview on how the data is presented and translated
through linear interpolation to a usable visualisation. In the left area of figure 5.13
the data provided by the timing design data is presented as the red points and the
linear interpolation done by the visualisation area as the dotted blue line between the
red points. The red points correspond to sheet locations in the paper path, whereas
the blue line in the paper path are the interpolated positions of the sheet in the paper
path. Without the linear interpolation only limited information would be present in
the visualisation framework. The interpolated areas provided valuable insights to the
Océ engineers.

Data in the SIL simulator is calculated real-time. In order to access the data
from the SIL simulator, a transfer protocol is required. This transfer protocol allows
for sending and requesting commands that contain additional information. In figure
5.12 we present a schematic overview of the communication between the visualisation
framework and the SIL simulator. In addition, the information from the SIL simulator
needs to be requested as often as possible to provide an accurate representation of the
simulate data in the visualisation framework. Therefore, on every refresh cycle in the
visualisation framework a request is sent to the SIL simulator to request information
about variables. In requirement NF2 we stated that only information relevant to
the 2D and 3D visualisations should be requested to maintain an acceptable level of
performance. Therefore, internally in the visualisation framework the variables that

32

are required within the 2D and 3D visualisation are stored and only those variables
are requested from the SIL simulator.

Figure 5.12: A schematic overview of a potential communication between the visual-
isation framework and the Software-In-the-Loop simulator.

Figure 5.13: A schematic overview of the interpolation of the data provided by the
timing design simulator. Point A in the diagram corresponds to the sheet location in
the paper path. Similarly, point B in the diagram corresponds to sheet location B in
the paper path. The dotted line presents the interpolated locations between points
A and B in both the diagram and paper path.

5.6 Discussion of Requirements

Although most requirements have been implemented one way or the other, a few
requirements are only partially met or not met at all. The only functional requirement
that is not implemented in the current version of the visualisation framework is F18.

33

Due to the prioritization of the requirements in accordance to the MoSCoW method,
this requirement was deemed a nice additional feature but not important to the system
design. Although, adding a layer of virtual reality to the 3D visualisation area might
provide insight into sheet behaviour that is otherwise harder to understand, it will
also cause to lose out on additional information that is now presented through tables
and diagrams.

Among the nonfunctional requirements NF2 and NF3 are conditionally met. This
means that they are met under certain conditions. Whether NF3 is met is based on
the success of NF2. If the system deems a lot of information relevant to the visu-
alisation (either through input files or user choices), the processing power required
for requesting data from the simulator to the visualisation framework increases. An
increase in processing load in the visualisation framework leads to stuttering in the
2D and 3D visualisation and thus failing to meet requirement NF3. However, when
only little data is required, visualisations run smooth and NF3 is met. Finally, non-
functional requirement NF6 is currently only met for the implemented timing design
simulator. The visualisation framework is implemented through a WebGL system
and thus in core a website that is not limited to operating systems. The Software-
In-the-Loop (SIL) simulator only operates on a Microsoft Windows operating system
and thus the SIL visualisation will not work. The timing design simulator generates
files that are operating system independent and thus available cross-platform.

34

6 | Evaluation and Results

In this chapter the evaluation of the visualisation framework is discussed. Through an
evaluation consisting of a user study we aim to answer the following research question:

• To what extent is the developed visualisation framework able to support the ex-
perts in configuring and observing simulators in print system design?

In the research question we define experts as the user of the developed visualisation
framework. The experts are specialists to their domains in specific stages of the
project. The number of experts present at any given time is rather small and thus
limit the number of participants to the user evaluation. As their tasks are specific to
their domain, it is near impossible to address potential scenarios for each participant
in a controlled setting. In [15], we were testing for specific interactions with the
graphical user interface (GUI) rather than testing the effectiveness of supporting the
Océ engineers in their workflow to design print systems. Therefore, we need to apply
a different strategy in evaluating the effectiveness of the visualisation framework in
supporting the Océ engineers in print system design.

6.1 Method

In the contemporary era of software development, it becomes more common to test
the application in the natural setting with either little or no control imposed on the
participants’ activities with the application. This form of evaluation is referred to
as a field study [28]. By applying a field study, the evaluation will more closely
resemble a real-world setting in which the interactions of the users can be interrupted
or overlapped by other actions. This will provide a setting in which the application
would be ultimately used in and thus provides a better sense of how successful the
application will be in everyday use. However, it is harder to test for specific hypotheses
or provide the same degree of certainty on the interactions of the users with the
application compared to a controlled setting.

As the visualisation framework is intended to be used within the workflow of the
Océ engineers, it should also be tested in a similar environment. This can be achieved
through a field study. The field study is implemented over a time period of a week
and aims to verify the success of the visualisation framework. As not every task of

35

the engineers requires the use of the visualisation framework, providing a time frame
of a week will more likely induce the use of the visualisation framework in a natural
setting, rather than a shorter period of time (e.g. a day or less).

The visualisation framework is completely novel and shares little or no similarities
with the previously available visualisation frameworks, the engineers are provided
with an explanation of the visualisation framework beforehand. In addition, a help-
page is available to the engineers which explains most features in detail. However,
if the engineers still struggle throughout their experience, they are encouraged to
contact the researcher for additional explanations regarding their problems. Before
the engineers are encouraged to use the visualisation framework within their daily
workflow, they are asked to log any issues or feedback they encounter during the
field study. If only little feedback is received midway through the field study, the
engineers are reminded to log their feedback. If, and only if, the users were not able
to use the visualisation framework throughout the time period of a week, the users are
presented with a set of tasks tailored to either timing design or Software-In-the-Loop
users (these tasks can be found in Appendix B. By the end of the time period, we
will visit the engineers in their natural setting and provide them with a questionnaire
combined with a short interview regarding their user experience with the visualisation
framework. The questionnaire is composed of the System Usability Scale (SUS) in
its full length [11]. Alternatives to the SUS are the System Usability Measurement
Inventory (SUMI) [19] and the Web Analysis and MeasureMent Inventory (WAMMI)
[]. In contrast to SUS, the SUMI and WAMMI require a participant count of over 20 in
order to provide valuable insights into the working of a system. The SUS proves to be
a rigid method for testing the user experience of a system even in a small sample [30].
In table 6.1 the thresholds for each user experience level are provided as determined
by Bangor et al. [10]. The SUS is focused on determining the overall usability of the
visualisation framework. Therefore, following the questionnaire, a semi-structured
interview is performed to acquire additional information about the frequency of use
and feedback on functionalities of the visualisation framework. Through the semi-
structured interview we can determine how the SUS score compares in frequency of
use and the ease of use in terms of completion of tasks and encountered errors. In
Appendix A, the questionnaire and semi-structured interview can be found. Results
from the user evaluation can be found in Section 6.5.

Table 6.1: Comparison of original SUS threshold and new SUS thresholds

SUS Threshold User Experience Level
0-50 Not acceptable
50-70 Marginal
70-100 Acceptable

36

6.2 Participants

The participants are divided into two groups: timing design and Software-In-the-
Loop users. Each of the groups is respectively user of the simulator according to their
domain. Timing design users mainly concern with the sheet behaviour in print system
design. Software-In-the-Loop users concern with the behaviour of the entire print
system. The sample size of this evaluation is 6 and consist of 2 timing design users
and 4 Software-In-the-Loop (SIL) users. In evaluation, we do not distinct between
the two user groups, in reviewing the results we distinct between the two user groups
if we see fit. This questionnaire is solely focused on rating the overall usability of the
visualisation framework and its total functionality. In addition, the questions from
the semi-structured interview are also applicable to both user groups as the discussed
functionalities are shared between the different systems.

6.3 System

The evaluation of the visualisation framework consists of testing the proof-of-concept
developed throughout this report. In figure 6.1 both domains of the visualisation
framework are presented. The visualisation framework uses the Three.js engine to
visualize 3D objects and requires a NodeJs native module to connect to the simu-
lators on local machines and is implemented in an Electron shell. The visualisation
framework runs on Microsoft Windows machines.

Figure 6.1: The two instances of the visualisation framework presented next to each
other. On the left the timing design environment and on the right the Software-
In-the-Loop environment. The two user interfaces are mostly similar but differ with
regards to the control buttons in the 3D visualisation area and informative text in the
menu bar indicating a connection state with the Software-In-the-Loop environment.

37

6.4 Apparatus

The evaluation is performed on the local desktop computers of the participants op-
erating on Microsoft Windows operating system. User participants use mouse and
keyboard throughout the field study in order to interact with the visualisation frame-
work.

6.5 Results

6.5.1 Results from System Usability Scale

We present the results on a per question basis and the overall mean score of the
visualisation framework. Figure 6.2 shows a box plot displaying the median scores
for each of the questions as well as the standard deviation. On each box, the central
mark indicates the median (red), and the bottom and top edges of the box indicate
the 25th and 75th percentiles (blue), respectively. The whiskers (dotted vertical line)
extend to the most extreme data points not considered outliers, and the outliers are
plotted individually using the ’+’ symbol. The questions have not been normalized, as
they have to be in order to calculate the overall SUS score, and represent the values
as obtained from the questionnaire. Higher scores in the odd questions and lower
scores in the even questions indicate that the visualisation framework was friendly in
use. In figure 6.3 the overall scores the users rated the visualisation framework are
shown. The box plot shows scores ranging from 70 to 88 with a mean of 78.

Figure 6.2: A box plot containing the results on a per question basis. The results
are not normalized and thus directly correspond with the results obtained from the
questionnaire.

38

Figure 6.3: A box plot displaying the normalized overall scores as rated by the users
of the visualisation framework.

6.5.2 Results from Semi-Structured Interview

Throughout the field study the participants used the visualisation framework on av-
erage 3 times (low: 1, high: 15). They noted that the visualisations provide useful
insights, but are simply not necessary for every occasion. The users also mentioned
that their frequency of use would depend on the stage of the project they are working
on.

Mainly Software-In-the-Loop users noted that they were not able to complete
their task in all scenario’s. When the simulation ended, so would the visualisation
framework and thus losing the valuable insights. The timing design users encountered
less issues, however one user noted that in some cases there were issues with the input
files.

In addition, the Software-In-the-Loop users noticed that the overall interaction
with the visualisation framework was smooth, however when they tried to add addi-
tional diagrams and tables, the performance would drop and seemed to stutter.

All of the users were satisfied with the implementation of the visualisation of
3D objects in the visualisation framework. It provided useful insights that would
otherwise be hard to grasp, such as displaying sheet numbers and the front and rear
side of the sheet. Another example given was the insight into the print head movement
that was not fully completing its planned trajectory. In addition, the implementation
of an adjustable graphical user interface appealed to the users and allowed them to
focus on the task at hand by organizing the windows accordingly.

As the disciplines in which the users are active differ, all user provided different
suggestions for missing features. The Software-In-the-Loop would like to see a direct
connection between the different components of the visualisation. In addition, a direct

39

transformation from CAD model to importable file format to the 3D visualisation
would be a welcomed feature. The timing design users were mainly concerned with
displaying additional information with regards to sheet behaviour. They proposed
a feature for displaying information about inter-sheet relations and extension of the
diagramming facility to subtract values.

Among the participants, half of them would actively contribute to the development
of the visualisation framework to improve its capabilities to support the Océ engineers
in configuring and observing various simulators.

Finally, the participants were asked to rate the visualisation framework. The
visualisation framework scores an average of 7.3 out of 10 with the main comment
that it satisfies their direct needs but requires overall improvement.

40

7 | Discussion

In this chapter we discuss the results from the user evaluation in Section 7.1. In
Section 7.2 we reflect on the entire project.

7.1 Discussion of Results

The users evaluated the visualisation framework positively with an average SUS score
of 78 and average grade of 7,3 out of 10. If we look at the scores for the individual
questions in figure 6.2 we can see that the visualisation framework scored positively
throughout the various questions. Question 1 (min: 3, max: 4, median: 4), I would
like to use the system frequently, scored relatively high with 4 out of 5. However,
if we compare this to the results from the field study, we can see that throughout
the time frame of the field study they have rarely used the visualisation framework.
The participant also mentioned that the frequency of use is highly dependent on the
stage of the project and thus they might foresee more frequent use in the future.
Question 3 (min: 2, max: 5, median: 4) I thought the system was easy to use, shows
some disagreement, however not caused by the complexity of the system (question
2; min: 1, max: 2, median: 2) nor the fact that the users would need assistance
from a technical person (question 4; min: 1, max: 3, median: 1). In addition, the
users indicated that they did not need to learn a lot before they could use the system
(question 10; min: 1, max: 2, median: 2) nor that they would expect most people to
have troubles learning the system (question 7; min: 4, max: 5, median: 4). Finally,
all participants indicated that they felt confident in using the system (question 9;
min: 3, max: 5, median 4). Scores from the previously mentioned questions are not
in line with the scores in question 3. Only one user rated one questions (question
3) below the average score (a score of 3 marks the average) of the SUS. We expect
that this user in particular encountered an issue specific to his domain, looking at
the result from the semi-structured interview it is most likely the user missed a direct
connection between CAD models and the visualisation framework.

The remainder of the questions (5, 6 and 8) are with regards to integration of
functionalities and graphical appearance. In question 5 (min: 3, max 4, median:
4), I found the various functions of the system were well integrated, the participants
indicated that the features were well integrated. In the semi-structured interview

41

they indicated similarly, but saw a set of features missing from their required toolset.
The graphical appearance, as topic of the research to this report [15], was rated to be
consistent (question 6; min: 1.75, max: 2, median: 2) and did not appear cumbersome
to the participants (question 8; min: 1, max: 2, median: 2).

Overall, the visualisation framework scored positively in both the SUS and the
semi-structured interview. As the average score of the SUS (min: 70, max: 88;
median: 78) indicates, it is well within the range of acceptable (70-100), but can still
improve in order to achieve a higher level of user experience. Similar results were
obtained from the semi-structured interview, where the participants indicated to be
overall pleased with the visualisation framework but were missing certain features
that would complete their toolset.

7.2 Project Discussion

The results indicated that the users were satisfied with the visualisation framework as
an addition to their toolset for print system design. However, in order to fully support
the Océ engineer’s improvements and extensions of specific functionalities are needed.
These weaknesses only came to light when a larger user group was involved in testing
the features. During the development of the visualisation framework, focus to the
improvement and extension of these features could have been resolved by including
a larger user group during the iterative development of the software. In the current
situation (mentioned in Section 5.1), a single user presented his personal needs for
improvement of the visualisation rather than a larger pool that would provide in-
sights on structural changes required. When extending the user pool for intermediate
releases, more time has to be dedicated to retrieving and analysing feedback rather
than developing the tool.

As already mentioned, the users that participated in the user study showed interest
in using the visualisation framework. But, a relatively small user group participated in
the user study which causes the results to be inaccurate. A larger user group would
provide a better indication in the overall adoption of the visualisation framework
throughout the disciplines. An issue with increasing the user group, however, would
be that users other than specialists would also be included which in turn might provide
results that do not reflect on the main goal of the current version of the visualisation
framework. Extending the visualisation with additional features and functionalities
(possibilities for these features and functionalities are presented in Chapter 9), to not
only adhere to specialists, would increase the effective user group.

42

8 | Conclusion

In this report a visualisation framework for print system development at Océ technolo-
gies was developed and evaluated, resulting in adoption of the visualisation framework
in the workflow of the Océ engineers.

In the research prior to this report [15], we developed an understanding of what
visualisations and graphical user interface (GUI) aspects are needed by the Océ en-
gineers. In this report we focused on developing the visualisation and the features
accompanying the GUI developed in the research prior to this report.

During the development of the visualisation framework we adopted an iterative
development strategy. The benefits of applying an iterative development strategy are:
the detection of design breakage early on, applying a modular architecture; and early
and frequent involvement of the users in the development process. Because the users
were involved early and frequently in the early stages when determining the initial
requirements focussing on the overall user experience, and a single user throughout the
development of the visualisation framework, requirements were removed, extended or
added while the development of the visualisation framework was ongoing. This proved
extremely powerful as many of the requirements were not known before the project
started. In the design of the visualisation framework a modular architecture was
adopted to increase maintainability and extensibility. Through an interface simulators
can connect to the visualisation framework which is componentized into components
each with their dedicated task. Components such as a 3D visualisation area, diagram
and table were developed to aid the Océ engineers.

To verify that the developed visualisation framework was in accordance with the
expectations of the Océ engineers and indeed supports the engineers in configuring
the simulators, we applied a field study. In the field study we provided the engineers
with the visualisation framework and encouraged them to apply it in their daily
workflow. Throughout the field study we received feedback with regards to certain
features or design errors that could require fixing. We present possible solutions to
these weaknesses in Chapter 9.

Results from the evaluation showed that the engineers were generally pleased
with the visualisation framework and proved to be a rigid solution to implement in
their workflow. Therefore, we can conclude that the visualisations and user interface
present in the visualisation framework proves sufficient to support the engineers in
configuring and observing simulators throughout print system design.

43

9 | Future Work

The visualisation framework was generally well received, but software development
is never finished. Therefore, we present recommendations for further research and
recommendations for further development of the visualisation framework.

9.1 Recommendations for Future Research

As we noted in Chapter 7, there are improvements possible regarding the inclusion of
the users throughout the project. For future work, we therefore recommend increasing
the user pool used throughout the development of the system. A larger pool results
in more variety in feedback and provides insight in structural improvements within
the system.

Similarly, we discussed that the results may or may not be accurate for a larger user
group. Therefore, we suggest increasing the scope of the visualisation framework and
thus increasing the effective user group that can be used to evaluate the effectiveness
of the visualisation framework in supporting the Océ engineers in configuring and
observing simulator for print system development.

We now implemented the field study over a time period of a week. This resulted
in only a limited use of the visualisation framework by many of the participants of
the field study. By applying the field study to a stage of development in which the
visualisations add to the productivity of the Océ engineers and increasing the time
frame in which the field study takes place should also increase the accuracy of the
results.

Finally, other domains should be research to which a visualisation framework could
provide support. Potential areas within Océ which could benefit from an extension
of the current visualisation framework are maintenance and training and analysing
data obtained from customers. In addition, a virtual reality implementation to the
previously mentioned extensions could improve the effectiveness with which the data
can be analysed.

44

9.2 Recommendations for Further Development

In the current state of the visualisation framework, there is support for two types
of simulators: timing design and Software-In-the-Loop (SIL). However, within Océ
many more simulators and models are used for print system development. There-
fore, additional interfaces could be implemented to support more simulators and thus
extend the accessibility of the visualisation framework to more disciplines.

Similarly, with the addition of more simulators, more or extended visualisation
components or are required to fulfil the needs of the Océ engineers. Therefore, we
propose that particularly the present 2D visualisation components are extended to
support a wider variety of data representations. In addition, specific features re-
quested by the Océ engineers include additional information on inter-sheet behaviour
and a work flow to import CAD files directly to the visualisation framework.

A downside of the modular architecture is that the components are currently in-
dependent of the other components. However, users noted that interaction between
the different components would highly increase the effectiveness of the visualisation
framework. An example would be that users can select an object in the 3D visuali-
sation area, resulting in selecting the accompanying variable and displaying this in a
diagram.

Finally, we already mentioned this in section 5.6 that under certain conditions the
performance of the visualisation framework decreases. Therefore, in order to main-
tain a smooth visualisation throughout, the performance regarding the requesting of
variables from the SIL simulator could use a boost.

45

Bibliography

[1] Node.js. https://nodejs.org/en/.

[2] Webgl. https://www.khronos.org/webgl.

[3] Blender. https://www.blender.org/.

[4] Electron. https://electron.atom.io/.

[5] Goldenlayout. https://golden-layout.com/.

[6] Océ. http://oce.com/.

[7] React. https://facebook.github.io/react/.

[8] Three.js. https://threejs.org/.

[9] Unity. https://unity3d.com/.

[10] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual
sus scores mean: Adding an adjective rating scale. Journal of usability studies,
4(3):114–123, 2009.

[11] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[12] Lan Cao and Balasubramaniam Ramesh. Agile requirements engineering prac-
tices: An empirical study. IEEE software, 25(1), 2008.

[13] Dai Clegg and Richard Barker. Case method fast-track: a RAD approach.
Addison-Wesley Longman Publishing Co., Inc., 1994.

[14] Ujjal Dey, Pabitra K Jana, and CS Kumar. Modeling and kinematic analysis of
industrial robots in webgl interface. In Technology for Education (T4E), 2016
IEEE Eighth International Conference on, pages 256–257. IEEE, 2016.

[15] Yannick Donners. 3d interactive print visualisation. Internal Report Research
Topics, University of Twente, 2017.

46

[16] Tracy Fullerton, Chris Swain, and Steven Hoffman. Game design workshop:
Designing, prototyping, & playtesting games. CRC Press, 2004.

[17] L. Soumers H. Hunnekens, E. Schindler. Multidisciplinair modelleren dageli-
jkse praktijk. https://www.bits-chips.nl/artikel/multidisciplinair-
modelleren-dagelijkse-praktijk-46100.html.

[18] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahabod-
din Shamshirband. A systematic literature review on agile requirements engi-
neering practices and challenges. Computers in Human Behavior, 51:915–929,
2015.

[19] Jurek Kirakowski and Mary Corbett. Sumi: The software usability measurement
inventory. British journal of educational technology, 24(3):210–212, 1993.

[20] J Rodríguez Lloret, Nancy Omtzigt, Eric Koomen, and FS De Blois. 3d visu-
alisations in simulations of future land use: exploring the possibilities of new,
standard visualisation tools. International Journal of Digital Earth, 1(1):148–
154, 2008.

[21] Sus Lundgren. Cover story: Designing games: Why and how. interactions, 15
(6):6–12, November 2008. ISSN 1072-5520. doi: 10.1145/1409040.1409042. URL
http://doi.acm.org/10.1145/1409040.1409042.

[22] Jakob Nielsen. Heuristic evaluation. Usability inspection methods, 17(1):25–62,
1994.

[23] Jean-Baptiste Pettit and John C Marioni. bioweb3d: an online webgl 3d data
visualisation tool. BMC bioinformatics, 14(1):185, 2013.

[24] Matti Pouke, Timo Koskela, Şan Güneş, Matti Matero, Karri Ojala, Jukka Pa-
jukangas, Niko Pietikäinen, and Timo Ojala. 3d visualization of a public trans-
portation system. In Proceedings of the 15th International Conference on Mobile
and Ubiquitous Multimedia, pages 377–379. ACM, 2016.

[25] Nicholas Rego and David Koes. 3dmol. js: molecular visualization with webgl.
Bioinformatics, 31(8):1322–1324, 2015.

[26] N. Roos. Multidisciplinair software ontwikkelen op een virtuele printer.
https://www.bits-chips.nl/artikel/multidisciplinair-software-
ontwikkelen-op-een-virtuele-printer-45358.html.

[27] Walker Royce. Improving software economics. Application development trends,
2009.

[28] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction design: beyond
human-computer interaction, 4th edition. 2015.

47

[29] Ben Shneiderman and Catherine Plaisant. Designing the user interface: Strate-
gies for effective human-computer interaction. ACM SIGBIO Newsletter, 9(1):6,
1987.

[30] Thomas S Tullis and Jacqueline N Stetson. A comparison of questionnaires for
assessing website usability. In Usability Professional Association Conference,
pages 1–12. Citeseer, 2004.

[31] Yin Zhang and Sonali Kudva. E-books versus print books: Readers’ choices and
preferences across contexts. Journal of the Association for Information Science
and Technology, 65(8):1695–1706, 2014. ISSN 2330-1643. doi: 10.1002/asi.23076.
URL http://dx.doi.org/10.1002/asi.23076.

48

49

A | Questionnaire and Semi-Structured
Interview

50

51

HappyFlow

1. Load the PaperPath2D, TimingExport and Route3D.

2. Disable the visibility of the PointsOfInterest.

3. Start the visualization.

4. At timestamp 19 seconds, stop the animation.

5. Inspect the relation in time-distance between sheet 4 and 12 in

the diagram.

6. Add a diagram to the graphical user interface.

7. Select the velocity variable from sheet 31 in the newly added

diagram.

8. Step through the animation until timestamp 21.

9. Find the position of sheet 45 in the table.

10. Add a table to the graphical user interface.

11. Define the distance between sheet 38 and 50.

12. Resume the visualization.

13. When the visualization has ended, reset the visualization.

14. Start the visualization at animation speed 4.

Software-In-the-Loop

1. Load the FakeTanto 3D objects and the corresponding

VariableMapping.

2. Disable the visibility of the ground plane.

3. Start the SIL simulation (background process).

4. Connect the visualization to the SIL simulation.

5. In the diagram select the variable ECMotion.car_enc_x.

6. Add a diagram to the graphical user interface.

7. Select the variable ZMA_HMOR.stepSpeed in the newly added

diagram.

8. Terminate the SIL simulation.

B | User Tasks

52

C | Requirements from Prior Research

Below the requirements are presented as found prior research ([15]). These requires
have been subject to change throughout the development of the novel visualisation
framework.

C.1 Functional Requirements

Functional Requirements
Integration
F.REQ_001 Integration with multiple simulators.
Rationale Multiple simulators must be able to connect to the visualisation.

Within the embedded software department, multiple simulators are
used to understand the designed printing behaviour. In order to re-
duce the learning curve and maintainability of the visualisation tool,
multiple simulators are to connect to one tool with a single codebase.

F.REQ_002 Flexibility in using multiple printing systems.
Rationale Throughout Océ multiple printing systems are designed and require

thorough testing. Therefore, the visualisation tool must be able to
use the paperpath from different printing systems.

F.REQ_003 Load/Save Configuration file
Rationale It must be possible to save the configuration state of the visualisation

tool to a configuration file which can be loaded into the visualisation
tool again on startup.

2D Visualisation
F.REQ_004 Add multiple attributes to a plot.
Rationale It must be possible to display multiple attributes in a single plot.

The number of attributes which can be added to a plot should not be
limited.

F.REQ_005 Support for multiple scales on a plot.

53

Rationale Add the possibility to apply multiple scales on a plot widget. When
two attributes with huge varying scales are displayed in single plot
it is impossible to see them both. Therefore multiple scales to a plot
could be added.

F.REQ_006 Assign multiple plots to a visualisation area.
Rationale A visualisation area is a base where plots are to be displayed. It

should be possible to allowing multiple plots to be shown simultane-
ously in a single visualisation area. This allows for easy comparison
of multiple attributes with different scales.

F.REQ_007 Crosshair support
Rationale Within a plot the cursor should be changed to a cross-hair allowing

for exploration of attributes. The crosshair should also provide the
option to zoom in on a selection and resume it’s normal behaviour
on a selected area.

F.REQ_008 Hide/Show attributes in a plot.
Rationale It must be possible to hide/show attributes in a plot.
F.REQ_009 Auto/Manual scaling in plot widget.
Rationale A toggle should be present to alter between automatic and manual

scaling of plot.
F.REQ_010 Make data on visualisation area persistent.
Rationale Present plots in a visualisation area could be stored persistent. When

the visualisation tool is closed and started again, visualisation area
should be in the same exact state as on closing the visualisation tool.

3D Visualisation
F.REQ_011 Keyboard and mouse navigation
Rationale The 3D visualisation must be able to be controlled with a keyboard

and mouse. The required navigations contains zooming, rotating and
panning the 3D visualisation.

F.REQ_012 Loading objects
Rationale On the basis of a set of a pre-generated files, 3D objects must either

be created or loaded into the 3D visualisation. E.g. CAD files must
be able to be loaded into 3D visualisation.

F.REQ_013 Hide/Show objects
Rationale In the 3D visualisation objects must have a toggle to either hide or

show them. Allowing to do so will allow to remove potential clutter
for certain tasks.

F.REQ_014 Select objects through the 3D visualisation.
Rationale One might want to select an object in 3D visualisation by simply

clicking on the object. This could then lead to allow for other actions
to be performed (e.g. Hiding/Showing of the object).

F.REQ_015 Direct link between 3D visualisation and 2D visualisation.

54

Rationale When an object is selected in the 3D visualisation, it could directly
translate to displaying the attributes of that object in the 2D visual-
isation area. E.g. on selection of a pinch (rubber roller for trans-
portation of a sheet), the linked attributes are displayed in the plot.

F.REQ_016 Altering the transparency of objects.
Rationale To create a better overview of the 3D visualisation, one might prefer

to alter the transparency of certain objects to see-through and explore
objects behind or within.

C.2 User Requirements

User Requirements
Interaction
U.REQ_001 Fluid Interaction
Rationale Users must experience a fluid interaction with direct feedback to their

actions. E.g. when they navigate through the 3D visualisation, there
must be an immediate response to their action.

U.REQ_002 Shortcuts
Rationale To increase efficiency with which frequent users can navigate through

the GUI a set of shortcuts must be defined.
U.REQ_003 Clear link between actions in different windows
Rationale When a users performs an actions in a window, this action should

also reflect in other windows. E.g. an user toggles a visibility param-
eter in the list of objects in a certain which should cause an object
in the 3D visualisation to either hide or show.

Appearance
U.REQ_004 Consistency
Rationale Throughout the Graphical User Interface (GUI) consistency must to

present in colors, icons and actionable elements. Consistency will
decrease the confusion users might experience.

U.REQ_005 Adjustable layout
Rationale The different interface elements could be resizable, draggable and

preferably dockable. This allows the user to choose their own pre-
ferred layout for their specific task.

U.REQ_006 Adjustable GUI
Rationale Allowing the user to choose a color scheme to their liking. E.g. a

dark color scheme or a light.

55

