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Chapter 1

Introduction

ba;h;nea dea!

We introduce this Thesis by going through the significant terms used in the title: Homoclinic,
saddle to saddle-focus transitions and 4D systems. We then lay down a research statement and
summarise the work done.

1.1 Homoclinic orbits

If we consider the flow generated by

ẋ =
dx

dt
= f(x, α), x ∈ Rn, α ∈ Rm, (1.1)

where f is smooth, then we can speak about its phase portrait near invariant sets for fixed pa-
rameter values. The invariance here means that solutions x(t) starting from points on such a set
would remain in the set ∀t ∈ R. The simplest example of such a set is an equilibrium x0 where
f(x0, α) = 0 for some α = α0.

In this Thesis we are mostly concerned with a specific kind of invariant set, namely homoclinic
orbits. The corresponding solutions x(t) have the property

lim
t→±∞

x(t) = x0, (1.2)

where x0 is an equilibrium at some parameter value α = α0. Homoclinic orbits to hyperbolic
equilibria, whose eigenvalues λi are such that Re(λi) 6= 0, ∀i, are of specific interest, as they are
structurally unstable.

When there exists a homoclinic orbit Γ0 to a hyperbolic equilibrium x0, upon perturbing the
system by changing one of the parameters αi, i = 1, 2, ...,m, this homoclinic orbit generically dis-
appears. There is then a topological nonequivalence of the local phase portrait upon changing
parameters. This is called a bifurcation. As there is just one parameter which controls the onset
of the bifurcation, it is said to have codimension 1.

Codimension 1 homoclinic bifurcations

For n-dimensional systems, in most cases the analysis of homoclinic bifurcations is restricted to
that on the homoclinic center manifold, a k-dimensional invariant manifold such that the tan-
gent space of this manifold at the equilibrium is spanned by eigenvectors corresponding to leading
eigenvalues, given that certain genericity conditions are satisfied. Here k is the number of leading
eigenvalues of x0. Leading eigenvalues are the union of the stable eigenvalues with largest real
part, and the unstable eigenvalues with smallest real part.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The homoclinic bifurcation in the saddle case in the plane. We see the appearance of
a periodic orbit in the case where the bifurcation parameter β < 0.
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Figure 1.2: Configurations of leading eigenvalues λ (red). Gray area denotes non-leading eigen-
values.

For different configurations of the leading eigenvalues, the nature of these bifurcations is different.
In Figure 1.2, we see three such configurations for which we have a detailed understanding of the
bifurcations occurring close to the critical saddle and the homoclinic orbit.

For example in the saddle case, a single periodic orbit appears, see Figure 1.1 for a planar illustra-
tion. However, in the saddle-focus case, infinitely many periodic orbits can exist. This happens
when the saddle quantity σ0, defined by the sum of real parts of the leading unstable and stable
eigenvalues, is positive. Note that in the saddle-focus case, we could assume that the leading
unstable eigenvalue is complex by applying time-reversal if necessary.

1.2 Saddle to saddle-focus transitions

In this section we discuss two types of transitions from saddle to saddle-focus case. One is the
standard Belyakov case [5] and the other is a newly observed transition whose analysis is done in
the Thesis.

Standard saddle to saddle-focus transition: Belyakov bifurcation

Belyakov [5] and Kuznetsov et al. [13] analysed the interesting case where there is a transition
from saddle to saddle-focus upon changing parameters, along a two-parameter curve of homoclinic
orbits. This transition corresponds to a codimension 2 situation. Here, for σ0 > 0 the bifurcation
diagram is complex, see Figure 1.4. This is the standard, well-known saddle to saddle-focus tran-
sition.

The eigenvalue configurations are shown in Figure 1.3. Here the pair of leading complex eigen-
values approach the real axis and split into two distinct real eigenvalues. At the transition there
exists a double real eigenvalue.
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Figure 1.3: Eigenvalue (λ) configurations of the Belyakov transition along a curve of homoclinic
orbits; α is the parameter along the homoclinic curve and the bifurcation occurs at α = 0. Arrows
point in the direction of generic movement of eigenvalues. The green marker indicates a double
real eigenvalue. The gray area denotes non-leading eigenvalues, leading eigenvalues are marked
red and non-leading eigenvalues are marked black.

In [4],[5],[13] a description of the bifurcations close to the transition and the homoclinic connection
has been presented. We briefly go through some of the results here. The main observations are:

(B.1) There exists an infinite set of period doubling (PD) and limit point (LP) curves close
to the transition and the corresponding homoclinic connection.

(B.2) These curves have the same structure and accumulate onto the curve of primary
homoclinic orbits.

(B.3) There exists an infinite set of secondary homoclinic curves, close to the transition
and the corresponding primary homoclinic connection. ‘Secondary’ refers to the homoclinic
orbit making one additional global passage before returning to the saddle.

Figure 1.4: Bifurcations sets close to the Belyakov bifurcation (at 0). Here {t(1)n } refers to the set

of primary limit point curves, {f (1)n } refers to the set of primary period doubling curves and {h(2)n }
refers to the set of secondary homoclinic curves. The parameters µ1 and µ2 control the eigenvalue
configurations and the appearance of the homoclinic orbit respectively. Figure taken from [13].

In order to analyse the Belyakov transition, a two-parameter model return map was constructed
on a cross section close to the saddle. The two parameters in this case are µ1 and µ2, which
control the transition and the existence of the primary homoclinic connection, respectively. For
µ1 we have three cases:

• µ1 < 0: The stable leading eigenvalues are real and simple.
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• µ1 = 0: We are at the transition. Here stable leading eigenvalue is a double real.

• µ1 > 0: The stable leading eigenvalues are complex.

The primary homoclinic curve exists only when µ2 = 0.

In Figure 1.4 the results can be seen. The plots show bifurcation diagrams of the model map.
These are meant to give a description of the bifurcations expected close to the transition. In [13],
these results are confirmed by observations of the Belyakov bifurcation in a system of ODEs.
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Figure 1.5: Eigenvalue (λ) configurations of the saddle to saddle-focus transition as observed in
Meijer and Coombes [14]; the scalar bifurcation parameter along the curve is α. Arrows point in
the direction of generic movement of eigenvalues. There is a codimension 2 situation at α = 0,
when the leading stable eigenspace becomes 3-dimensional. The gray area denotes non-leading
eigenvalues, leading eigenvalues are marked red and non-leading eigenvalues are marked black.

A new saddle to saddle-focus transition in 4D systems

In Meijer and Coombes [14], an interesting transition is observed. It involves a 4-dimensional
system of ODEs arising from a travelling wave study of a neural field model. In this system we
have one or three equilibria, ulow, umid and uhigh. At a particular parameter value, the hyperbolic
equilibrium ulow possesses a homoclinic orbit. Along the two-parameter curve of homoclinic orbits
we see that there is a saddle to saddle-focus transition, giving rise to a codimension 2 situation,
which is different from the standard Belyakov case, see Figure 1.5.

Here the real eigenvalue exchanges its position with the pair of complex eigenvalues, giving rise
to a situation where the stable leading eigenspace is three dimensional. Thus at the transition
there exist two complex eigenvalues and one real eigenvalue with the same real part. All leading
eigenvalues are simple.

In Figure 1.6, real parts of eigenvalues along the homoclinic curve mentioned above are plotted
against one of the parameters β. In (A) we see the new transition, where the pair of complex
stable eigenvalues cross the stable real eigenvalue transversally, giving rise to a codimension 2
situation. The leading stable eigenspace at this transition is three dimensional. However, in [14]
the transition is observed only in the tame case (σ0 < 0).

1.3 Research statement

The new transition mentioned in the previous section, observed in Meijer and Coombes [14] in
the tame case is the motivation for this Thesis. We would like to understand phase portraits
close to the critical saddle and the homoclinic orbit at the tame and wild transition, for small
perturbations of the flow.

What is the goal of this work?
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Figure 1.6: Plot of the real part of the eigenvalues vs. a parameter β along a curve of homoclinic
orbits, as obtained from the ODE system in [14]. In (A), we see that the branches corresponding
to stable complex and real eigenvalues (red and black curves) cross transversally. At the crossing
point, the stable leading eigenspace is 3-dimensional. In (B), we see the Belyakov transition where
a pair of complex eigenvalues (black curve) split into two distinct real eigenvalues (black and blue
curves). The leading stable eigenspace at the Belyakov bifurcation is 2-dimensional.

We aim to give a detailed description of bifurcations occurring in a small fixed neighbourhood of
U = Γ0 ∪x0 where Γ0 is the homoclinic orbit and x0 is the saddle, at the transition, i.e. when the
stable (unstable) leading eigenspace is three dimensional.

How will this goal be met?

• In order to observe the phase portrait of the transition under small, two-parameter pertur-
bations, we consider a 4-dimensional system satisfying the transition conditions and some
genericity conditions. We then introduce cross-sections, close to the critical saddle and
transversal to the flow. By looking at orbits departing and returning to the cross-sections,
we obtain a model map on the cross-section.

• Fixed points of this map correspond to periodic orbits, and bifurcations of these fixed points
correspond to bifurcations of periodic orbits. Thus, analysis of this map gives us an under-
standing of bifurcations of periodic orbits close by.

• We also derive a model map for secondary homoclinic orbits with the above technique and
analyse the same.

Note: For the remainder of the Thesis we will be dealing with 4-dimensional ODE systems only.
By applying time-reversal when necessary, we can assume without loss of generality for the re-
mainder of the Thesis, that at the bifurcation, the leading stable eigenspace is 3-dimensional and
the leading unstable eigenspace is 1-dimensional. From here on we refer to this transition point, as
the 3DL (3-dimensional leading) transition, for convenience. The corresponding bifurcation
and saddle are referenced in the same way too.

1.4 Organisation and summary

The Thesis begins with an introduction to homoclinic orbits in Chapter 2. Then we briefly
outline theorems describing bifurcations of hyperbolic homoclinic orbits in the saddle and saddle-
focus cases. We also discuss center manifold theorems, which describe how the understanding of
these bifurcations in higher dimensional systems can be reduced to looking at generic two, three
or four dimensional systems.
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Figure 1.7: Summary of bifurcations occurring close to the 3DL transition. µ1 controls the eigen-
value configuration. For µ1 < 0 we have the saddle case, for µ1 = 0 we have the 3DL saddle and
for µ1 > 0 we have the saddle-focus case. The primary homoclinic connection exists only when
µ2 = 0. In (A) PD and LP horns of the scalar model map are plotted. In (B) the spring area
at the tip of the horn is shown. In (C) secondary homoclinic ‘parabolas’ and their corresponding
turning points are plotted. In (D) a single PD/LP horn of the 3D model map is plotted, along
with several codimension 2 points found along it.

In Chapter 3, we introduce Poincaré maps close to the 3DL saddle in a general 4-dimensional
system with a homoclinic connection. A three-dimensional model return map is formulated in the
same spirit as for the Belyakov transition, which can be further reduced to a scalar map. The
scalar map obtained is different from other model maps (saddle, saddle-focus and Belyakov cases).

In Chapter 4 we look into 4 topics:

1. We analyse the scalar map for its fixed points, which gives information about bifurcations
of cycles occurring close to the critical saddle and its homoclinic orbit. Here we obtain an
infinite sequence of PD and LP curves accumulating onto the primary homoclinic curve.
However, the nature of accumulation is very different from that in the Belyakov case, e.g.
Figure 1.7. The PD/LP curves form horns, which are characterised by codimension 2 bi-
furcation points and subtle structures (called spring (saddle) areas, see [15]) close to such
points.

2. From the scalar map, we derive expressions describing the asymptotic behaviour of codimen-
sion 1 bifurcation curves. The asymptotics agree with the results obtained from numerical
continuation and provide a deeper understanding of the bifurcation sets.

3. We derive and analyse a scalar model map for secondary homoclinic orbits occurring close
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to the bifurcation. In this case too, there exists an infinite set of bifurcation curves cor-
responding to secondary homoclinic orbits, that accumulate onto the primary homoclinic
curve. These curves also have a structure that is different from the Belyakov case. Each
curve forms a horizontal parabola and possesses a turning point. The sequence formed by
these points approaches the 3DL bifurcation point asymptotically.

4. We provide analytical expressions describing the asymptotic behaviour of the set of secondary
homoclinic curves. The results agree well with those obtained from numerical continuation.

In Chapter 5, the full 3-dimensional model map is analysed numerically. The structure of PD/LP
curves is the same as that in the scalar case. The spring area is observed here too. The difference
from the scalar case is that more cascades of codimension 2 points are observed, such as fold-flip
and strong resonances. The 1:1 and 1:2 resonance points are connected via a primary Neimark-
Sacker (NS) curve.

We note that the spring area in the 3D case does not imply that the same phenomenon exists in the
scalar case or vice-versa. It must also be noted here that the model map for secondary homoclinic
curves is scalar and no higher dimensional map needs to be derived from the considered model flow.

We end the thesis with a summary in Chapter 6, where we also discuss how the results differ
from the Belyakov case. We briefly note some ideas that can be explored in future, to obtain
better knowledge of bifurcation sets near the 3DL transition.



Chapter 2

Homoclinic bifurcations and
transitions

2.1 Bifurcations in continuous and discrete-time dynamical
systems

Consider a vector field,

ẋ = f(x, α), x = (x1, x2, ..., xn) ∈ Rn, α ∈ Rm. (2.1)

Then x0 is an equilibrium at α = α0 for this system if f(x0, α0) = 0. Let J = fx(x0, α0) be the
matrix of the linearisation around this equilibrium at α0. We introduce the notion of hyperbolic
equilibria.

Definition 2.1.1. An equilibrium x0 of (2.1) is said to be hyperbolic if none of the eigenvalues of
J have zero real part.

We can define the same concept for fixed points of iterated maps. Consider

x 7→ f(x, α), x = (x1, x2, ..., xn) ∈ Rn, α ∈ Rm, (2.2)

at α = α0. Then x0 is a fixed point of this system if f(x0, α0) = x0. Let J = fx(x0, α) be the
Jacobian matrix of (2.2) evaluated at the fixed point. The multipliers of this map at x0 are defined
as the eigenvalues of J .

Definition 2.1.2. A fixed point x0 of (2.2) is said to be hyperbolic if none of the multipliers µ of
x0 are such that |µ| = 1.

Hyperbolic equilibria and fixed points are interesting because of their structural stability. It is
then possible to point out when the phase portraits around these equilibria (or fixed points) differ
topologically, based on the eigenvalues (or multipliers) of the Jacobian evaluated at the equilibria
(or fixed points). To make this argument more precise, we discuss the results on topological equiv-
alence in brief.

Topological equivalence

Two vector fields are said to be topologically equivalent if there exists a homeomorphism (a con-
tinuous invertible map with a continuous inverse) mapping orbits of one vector field onto those of
the other. The same definition holds for iterated maps.

We have the following result regarding topological equivalence local to the equilibrium x0 of (2.1):

Theorem 2.1.1. Let x0 and y0 be two hyperbolic equilibria of system (2.1). Then the vector fields
around these two equilibria are locally topologically equivalent if the linearisations around these
two equilibria have the same number of positive and negative eigenvalues.

8
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Equivalently, for an equilibrium x0 at α0 of (2.1), the phase portrait around the equilibrium x1
obtained after a small change of parameter α0 7→ α0+ε, for small ‖ε‖, is locally topologically equiv-
alent to the phase portrait around x0 if the linearisations J1 = fx(x0, α0) and J2 = fx(x1, α0 + ε)
have the same number of positive and negative eigenvalues.

We have a similar result for fixed points x0 of (2.2):

Theorem 2.1.2. Let x0 and y0 be two hyperbolic fixed points of system (2.2). Then the phase
portraits around these two fixed points are locally topologically equivalent if the linearisation around
these two fixed points have the same number of multipliers µ satisfying

1. |µ| < 1 and |µ| > 1.

2. The signs of the products of all the multipliers with |µ| < 1 and |µ| > 1 are the same for
both fixed points.

The loss of local topological equivalence between two equilibria/fixed points of the same system
obtained upon small change of parameters is called a bifurcation. From the theorems on local topo-
logical equivalence, we can already expect that a bifurcation must be associated with a change in
the number of positive and negative eigenvalues in case of ODEs. In the case of maps, we expect
a bifurcation to occur when the number of multipliers with modulus greater than 1 (or smaller
than 1) changes.

We present a result here describing the structural stability of hyperbolic equilibria.

Theorem 2.1.3. A hyperbolic equilibrium is structurally stable under smooth perturbations.

This means that under sufficiently small perturbations to the vector field in terms of small changes
in parameters, the corresponding equilibria remain hyperbolic. This would imply that a bifurca-
tion of an equilibrium is associated with the loss of hyperbolicity. The result is analogous in the
case of fixed points.

The simplest bifurcation is observed in the scalar (one-dimensional) vector field

ẋ = f(x, α), x, α ∈ R.

As there is only one eigenvalue λ = fx(x0, α0), the equilibrium would become nonhyperbolic if
λ = fx(x0, α0) = 0. This bifurcation is called the fold bifurcation, and occurs for vector fields of
dimension n ≥ 1. In planar (2-dimensional) vector fields, as there are two eigenvalues, the loss
of hyperbolicity is associated with a pair of complex eigenvalues crossing the imaginary axis or a
real eigenvalue becoming 0, upon varying parameters. The former is called the Hopf bifurcation
and the latter is the fold bifurcation.

2.1.1 Topological normal forms

To explain how phase portraits change (with respect to topological equivalence), we introduce the
concept of topological normal forms.

Consider

ẋ = f(x, α), x ∈ Rn, α ∈ Rm, (2.3)

with equilibrium x0 = 0 which undergoes a bifurcation at α = 0. Let there be k conditions for
the bifurcation to occur. This value k is called the codimension of the bifurcation. Let us also
consider

ẏ = g(y, β, σ), x ∈ Rn, β ∈ Rk and σ ∈ Rl, (2.4)

where g is polynomial in y. At β = 0 we have an equilibrium at y = 0 which undergoes a bifur-
cation and the parameter k is the codimension from before. The coefficients of the polynomial
g(y) constitute σ. They usually assume a fixed number of integral values, as we shall see in an
example, ahead.
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Definition 2.1.3. System (2.4) is said to be a topological normal form for the corresponding bifur-
cation if any system (2.3) satisfying certain genericity conditions is locally topologically equivalent
to system (2.4) near the equilibrium x0 = 0 for some values of the coefficients σ.

The genericity conditions are inequalities that allow the parameters to ‘unfold’ the singularity
(the equilibrium at the bifurcation) in a general fashion and guarantee nondegeneracy.

Figure 2.1: Fold bifurcation of an equilibrium of a scalar ODE ẋ = f(x, α). We see that as we
change α (the bifurcation parameter in the normal form) from negative to positive, two equilibria
collide and disappear.

Example: Normal form of fold bifurcation

To illustrate, we consider the simple fold bifurcation which was introduced earlier. The fold bi-
furcation in a scalar system is associated with an eigenvalue of any of its equilibria becoming 0.

Let us consider that the ODE

ẋ = f(x, α), x ∈ R, α ∈ R, (2.5)

with f smooth, has an equilibrium x0 = 0 which undergoes a fold bifurcation at α = 0. The
bifurcation condition is

fx(0, 0) = 0.

Via smooth coordinate transformations and introducing a new parameter it can be shown that
(2.5) is generically smoothly equivalent to the ODE

ẏ = β + y2 +O(y3), (2.6)

where β is a new scalar parameter and s = ±1, see [12]. In order to transform (2.5), Implicit
Function Theorem is used multiple times to eliminate the linear term and obtain the constant s.
There are genericity conditions for the fold bifurcation. In order to transform (2.5) to (2.6), we
need the following (generic) assumptions:

(F.1) fxx(0, 0) 6= 0.

(F.2) fα(0, 0) 6= 0.

Finally, it can also be shown [12] that (2.6) is locally topologically equivalent near the origin to
the system

ẏ = β + y2. (2.7)

Therefore (2.7) is a topological normal form for the fold bifurcation, near the corresponding equi-
librium. Now that we have the normal form, we can analyse this system to understand the local
phase portrait at the bifurcation point for small perturbations.
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We see that, for β < 0, there exist two equilibria y± = ±√β. For β > 0, there exist no equilibria.
At the equilibrium y = 0 for β = 0, we see that the corresponding eigenvalue is zero. This is the
fold bifurcation. Thus, upon changing β = −ε to β = ε for ε sufficiently small and positive, the
equilibria y± collide and disappear.

Therefore for any system (2.5) where a fold bifurcation occurs, two equilibria collide and disappear
upon perturbing the vector field, nearby. Such a system must also obey the genericity conditions
F.1-2.

It must be noted that such normal forms do not exist for all bifurcations and in many cases, the
truncated normal form does not provide a complete understanding of the local phase portrait.
However, their existence has a universal meaning, since any generic system satisfying the bifur-
cation conditions would have the local phase portrait around the singularity, as described by the
corresponding normal form.

2.1.2 Bifurcations of equilibria in n− dimensional systems

The fold bifurcation may occur in an n−dimensional system. If we consider the system

ẋ = f(x, α), x = (x1, x2, ..., xn) ∈ Rn, α ∈ R, (2.8)

then a fold bifurcation occurs at equilibrium x = 0 for parameter α = 0 if any one of its eigenvalues
become zero.

Here too, two equilibria collide and disappear, in the same way as in the scalar (n = 1) case.
This is explained by the reduction of n−dimensional systems to 1−dimensional center manifolds.
These manifolds are invariant, attracting and have the property that the dynamics of structural
instability of the n−dimensional system can be determined by the restriction of the flow on the
1−dimensional manifold.

In general the center manifold is k−dimensional, were k is the number of eigenvalues of the sin-
gularity lying on the imaginary axis.

Let T c be the eigenspace defined by the corresponding eigenvectors of such eigenvalues. We have
the following result.

Theorem 2.1.4. (Center Manifold Theorem) There is a locally defined smooth k−dimensional
invariant manifold W c

loc(0) of (2.8) that is tangent to T c at x = 0. Moreover, there is a neigh-
bourhood U of x0 = 0, such that if the orbit x(t) ∈ U for t ≥ 0, then x(t) → W c

loc(0) for t → ∞.
The manifold W c

loc(0) is called the center manifold.

The results also hold when time is reversed. It is possible to change basis and collect noncritical
and critical states as follows {

u̇ = Au+ f(u, v),
v̇ = Bv + g(u, v),

(2.9)

where A ∈ Rk × Rk is such that all its eigenvalues lie on the imaginary axis. The matrix B ∈
Rn−k×Rn−k is such that none of its eigenvalues lie on the imaginary axis. The functions f and g
are at least quadratic in Taylor expansions. From the theorem above, we are guaranteed a center
manifold. This manifold W c is the of the form

W c = {(u, v) : v = V (u)},

such that V (u) = O(‖u‖2) due to the tangent property. Then we have the following reduction
principle.

Theorem 2.1.5. (2.9) is locally topologically equivalent near the origin to the system{
u̇ = Au+ f(u, V (u)),
v̇ = Bv.

(2.10)
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For non-unique center manifolds, all resulting systems (2.10) are locally smoothly equivalent, which
is to say that there exists a homeomorphism mapping orbits of (2.9) to (2.10) while preserving the
direction of time.

It is clear that (2.10) is uncoupled. As the eigenvalues of B are away from the imaginary axis,
the dynamics of v are structurally stable and the structural instability of (2.8) is essentially deter-
mined by the dynamics of u in (2.10). This means that in order to understand the nature of the
local phase portrait close to the bifurcation under small perturbations, the restriction of the flow
on the center manifold gives complete information, thereby simplifying the problem by reducing
dimensionality and allowing the bifurcation to exist in the same way for higher dimensional sys-
tems, irrespective of the dimension.

So far, we fixed the parameter α. It can also be shown that there exist parameter dependent
center manifolds. Let us consider {

α̇ = 0,
ẋ = f(x, α).

where f is from (2.8). The system has a nonhyperbolic equilibrium at (α, x) = (0, 0). From
Theorem 2.1.4, there exists a center manifold W c. The set Πα0

= {(α, x) : α = α0} is invariant
with respect to the above flow. Therefore we can consider the invariant manifolds

W c
α = W c ∩Πα,

which foliate the center manifold W c. Now for each small |α|, we can restrict the flow (2.8) to the
invariant manifold W c

α to obtain the system

u̇ = Φ(u, α). (2.11)

We have the following result

Theorem 2.1.6. System (2.8) is locally topologically equivalent to the system u̇ = Φ(u, α),
v̇ = −v,
ẇ = w,

where u ∈ Rk, v ∈ Rn− and w ∈ Rn+

. Here n+(n−) is the number of eigenvalues with positive
(negative) real part. Moreover, (2.11) can be replaced by any locally topologically equivalent system.

Thus all essential events near the bifurcation parameter value occur on W c
α and can be determined

by the k−dimensional system (2.11).

Example: Fold bifurcation in n-dimensional systems

Let us consider the fold bifurcation in an n−dimensional system. It is characterized by one of the
eigenvalues becoming zero. However, Theorem 2.1.4 and Theorem 2.1.6 guarantee the existence
of a parameter dependent local invariant manifold W c

α near the bifurcation. This manifold is
one-dimensional and we can determine the nature of the phase portraits by restricting the flow on
this manifold. The restriction is topologically equivalent to the normal form (2.7), which proves
that the fold bifurcation would have the same behaviour in the phase portrait, irrespective of the
value of n. Thus topological normal forms can explain bifurcations in generic higher dimensional
systems.
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(A) (B)

Σ ξ1 ξ00

Figure 2.2: An impression of a periodic orbit. In (A), we see a stable periodic orbit. In some
tubular ε−neighborhood around this periodic orbit, all orbits converge onto the cycle. In (B),
we see how Poincaré maps are used to analyze the behavior of periodic orbits. The red curve is
a cycle, passing through the cross-section Σ at ξ = 0. Thus ξ = 0 is a fixed point of the return
map from Σ to itself. The black orbit corresponds to a non-periodic solution. It first meets Σ at
ξ = ξ0. However, when the orbit returns back, it meets Σ at ξ = ξ1 6= ξ0. Thus the non-periodic
orbit corresponds to an ordinary point (not a fixed point) of the return map defined on Σ.

2.2 Periodic orbits and global bifurcations

Let us consider (2.1) again, i.e.

ẋ = f(x, α), x = (x1, x2, ..., xn) ∈ Rn, α ∈ Rm.

Then, a solution x(t) of the above system is said to be a periodic if

x(t+ T ) = x(t), ∀t, (2.12)

for some T > 0. The minimal T is called the period of the periodic solution. Orbits corresponding
to periodic solutions are called periodic and are also referred to as (limit) cycles. A stable periodic
orbit can be seen in Figure 2.2. Just like fixed points (equilibria) of iterated maps (ODEs), peri-
odic orbits also undergo bifurcations. The simplest bifurcation is the fold bifurcation for cycles,
which involves two cycles colliding and disappearing (Figure 2.3).

Understanding global bifurcations with Poincaré maps

Interestingly, the analysis of cycles can be reduced to that of fixed points, for which we already
have a catalogue of results [12]. This is done by the Poincaré map technique, where we consider a
hyperplane in the neighbourhood of a point on the cycle, such that the hyperplane is transversal
to the flow. An example of this cross section Σ an be seen in Figure 2.2. Thus, the Poincaré
map transforms the point of departure of the orbit on Σ to the point of return back to Σ. If we
define a coordinate ξ on this cross section, then we can quantitatively describe the behavior of
this periodic orbits upon perturbing the vector field.

For example, let Π be the Poincaré map defined on Σ with coordinate ξ, then a stable (unstable)
fixed point (ξ = 0) corresponds to a stable (unstable) periodic orbit, see Figure 2.2. If we consider
an orbit on Σ under iterations of the map Π, then a closed invariant orbit of Π would be a periodic
orbit in the ODE system and aperiodic otherwise. Closed invariant orbits include fixed points
and cycles with n > 1 elements. A cycle of the map Π with n elements would correspond to
a periodic orbit in the ODE system, making n global turns. It is therefore possible to describe
global dynamics of periodic orbits to an extent, with the Poincaré map technique.

This concept can then also be used to study bifurcations of periodic orbits. For example, the
aforementioned fold bifurcation of cycles can be translated to the fold bifurcation for fixed points
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Figure 2.3: Fold bifurcation of cycles. As we change α (the bifurcation parameter in the normal
form) from negative to positive, we see that two fixed points on the Poincaré cross section collide
and disappear, corresponding to a fold bifurcation of fixed points.

of Π, the Poincaré map defined on Σ. For small changes in a parameter around ξ = 0, we see
that two fixed points of Π collide and disappear. This then translates to two cycles, colliding and
disappearing, see Figure 2.3.

Bifurcations of periodic orbits in higher dimensional systems

Theorem 2.1.4 is analogous in the case of fixed points. If we consider a map Π such that at x = 0
and α = 0 we have a fixed point then an eigenvalue µ is a critical eigenvalue if |µ| = 1. If k is
the number of critical eigenvalues, then we are guaranteed a center manifold W c of dimension k
which is tangent to the critical eigenspace T c at x = 0 [12]. Therefore the problem of structural
instability of periodic orbits upon perturbing the vector field can be reduced to looking at the
dynamics of the restriction of the return map Π : Σ 7→ Σ on the center manifold W c for small
changes in parameter values, where Σ is a hyperplane transversal to the critical periodic orbit.
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Figure 2.4: A homoclinic orbit to a saddle in the plane. Taken from [12]

2.3 Bifurcation theory and homoclinic orbits

Once again, we consider the system of ODEs

ẋ = f(x, α), x = (x1, x2, ..., xn) ∈ Rn, α ∈ Rm. (2.13)

A solution Γ0 (and the corresponding orbit γ0(t)) for the flow (2.13) is said to be homoclinic to
the equilibrium x0 if

lim
t±∞

γ0(t) = x0. (2.14)

A planar homoclinic orbit is sketched in Figure 2.4. Let

W s(x0) =
{
y ∈ Rn | x(0) = y, ẋ = f(x, α0) and lim

t→∞
x(t) = x0

}
, and

Wu(x0) =

{
y ∈ Rn | x(0) = y, ẋ = f(x, α0) and lim

t→−∞
x(t) = x0

}
, (2.15)

be the stable and unstable manifolds of x0 respectively. Therefore by definition of a homoclinic
orbit,

Γ0 ∈Wu(x0) ∩Ws(x0).

Note that homoclinic orbits exist for both hyperbolic and non-hyperbolic equilibria. However, in
this Thesis, we are concerned only with homoclinic orbits to hyperbolic equilibria, see Figure 2.4.
These homoclinic orbits are of interest as they are structurally unstable, which means that they
disappear for small perturbations of the vector field. This is then a bifurcation of the vector
field, since the perturbed and unperturbed phase portraits are topologically non-equivalent to
each other. We will now briefly outline the proof of the structural instability of orbits homoclinic
to hyperbolic equilibria.

Structural stability of homoclinic orbits

Theorem 2.3.1. Consider (2.13). Let there exist a homoclinic orbit Γ0 to a hyperbolic equilibrium
x0 of the system, at α = 0. Then this homoclinic orbit is structurally unstable.

Proof. From transversality theory, we have the following statements:

(T.1) Two manifolds M,N ∈ Rn intersect transversally if there exist at least n linearly
independent vectors in Rn that are tangent to at least one of those manifolds at the point
of intersection.

(T.2) If the intersection of M and N is transversal, the intersection will remain transversal
for small C1 perturbations of these manifolds. If it is non-transversal, the manifolds no
longer intersect upon generic small perturbations.

Now, we have a homoclinic orbit Γ0 to the equilibrium x0. As the equilibrium is hyperbolic, we
have

n = n+ + n−,
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Figure 2.5: A homoclinic orbit to a hyperbolic equilibrium x0. Σ is a cross section defined
transversal to the stable manifold and ξ is the coordinate defined on it. β is the splitting function.
We can observe here the structural instability of the homoclinic orbit, quantified by the splitting
function β. Figure taken from [12]

(a) Saddle (2-D system) (b) Saddle-focus (3-D system)

Figure 2.6: Configurations of eigenvalues in the complex space of the critical saddle which possesses
a homoclinic orbit.

where n+ is the number of eigenvalues at x0 with positive real part. n− is the number of eigen-
values with negative real part. The orbit Γ0 ∈ Wu(x0) ∩Ws(x0). As dim(Wu(x0)) = n+ and
dim(Ws(x0)) = n− from the Local Stable Manifold Theorem [12], the intersection will have at
most n+ + n− − 1 = n − 1 linearly independent tangent vectors, implying that the intersec-
tion cannot be transversal. Hence the intersection is non-transversal and the homoclinic orbit is
structurally unstable.

In Figure 2.5 we see the splitting of the homoclinic orbit. As the orbit returning along the stable
manifold ‘misses’ the unstable manifold, we can define a cross-section transversal to the unstable
manifold which quantifies the magnitude of the splitting depending on parameters. For a cross
section Σ transversal to the stable manifold W s, we define the coordinate ξ along it. The split
function β is then defined by the value of ξ where the returning orbit along the unstable manifold
Wu intersects the cross-section Σ. Clearly, at ξ = 0, the orbit returns to W s via a non-transversal
intersection between Wu and W s and we have a homoclinic orbit.

Types of homoclinic bifurcations

So far we know that homoclinic orbits to hyperbolic equilibria are structurally unstable. As we
make C1 perturbations to the corresponding vector field, the connection breaks. The resulting
phase portrait is topologically inequivalent to the previous one, and thus we have a bifurcation.
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Figure 2.7: The geometric construction of cross sections for the Andronov-Leontovich Theorem
(Theorem 2.3.2).

In the planar case, this is completely characterized by the Andronov-Leontovich Theorem. In the
3-dimensional case, Shil’nikov theorems explain the dynamics for different configurations of the
eigenvalues.

In the forthcoming sections we discuss the nature of phase portraits for two configurations of the
eigenvalues, see Figure 2.6. In the end, the Homoclinic Center Manifold Theorem describes how
the results in 2 or 3-dimensional systems apply to general higher dimensional systems where a
homoclinic orbit exists to a saddle equilibrium.

2.3.1 Homoclinic orbit to a saddle

An equilibrium x0 of (2.1) is called a saddle, if it has at least one pair of eigenvalues such that
their real parts are opposite in sign. Moreover, the leading stable eigenvalue, which is the negative
eigenvalue with smallest absolute real part, must be real. In the case that the leading stable
eigenvalue is complex, we call the corresponding equilibrium a saddle-focus.

Theorem 2.3.2. (Andronov-Leontovich) Let us consider a planar system with a single param-
eter

ẋ = f(x, α), x ∈ R2, α ∈ R, (2.16)

such that f is smooth and let us assume that there exists a homoclinic orbit Γ0 to a hyperbolic
equilibrium x0 = 0 with eigenvalues λ1(0) < 0 < λ2(0). We make the following assumtions for
genericity:

1. The saddle quantity σ0 = λ1(0) + λ2(0) 6= 0.

2. β′(0) 6= 0, where β(α) is the split function dependent on the parameter α.

Then, for sufficiently small α, there exists a neighborhood U0 around Γ0∪x0 where a periodic orbit
P (β) bifurcates, dependent on the splitting function. The stability of P (β) depends on the value
of β and σ0:

• For β > 0 and σ0 < 0 the periodic orbit is stable.

• For β < 0 and σ0 > 0 the periodic orbit is unstable.



18 CHAPTER 2. HOMOCLINIC BIFURCATIONS AND TRANSITIONS

y

z z = Π(y), β > 0

z = Π(y), β = 0

z = Π(y), β < 0
z = y

y

z

Figure 2.8: Plots of Π(y) vs. y from (2.18). We see that fixed points exist in accordance with
Theorem 2.3.2. On the left, σ0 = 1.6 and on the right, σ0 = 0.6.

The Theorem essentially describes the existence and stability of a periodic orbit as a hyperbolic
equilibrium of a planar vector field undergoes a homoclinic bifurcation. We lay down a brief sketch
of the proof.

Proof. It can be shown that there exists a C1 equivalence of the flow defined by system (2.16) to
that its linearisation around the equilibrium x0 = 0, see [12]. Thus we consider the linear system{

ẋ = λ1x,
ẏ = λ2y.

(2.17)

By scaling x and y, we can assume that the homoclinic orbit Γ0 passes through (1, 0) and then
returns back through (0, 1). We define a cross section Σs = {x = 1} across the stable manifold
and observe how the orbit returns back to this cross section. We define another cross section
Σu = {y = 1}. As we are interested in the existence of a periodic orbit, we try to obtain a
mapping from Σs to itself, see Figure 2.7. A fixed point of the obtained map Π would then
correspond to a periodic orbit in system (2.17). We do this by defining two maps:

Πloc : Σs 7→ Σu,

and
Πglob : Σu 7→ Σs.

Then,
Π = Πloc ◦Πglob.

For Πloc we use the flow (2.17) to obtain a mapping from Σs to Σu. Thus

Πloc : y 7→ yν ,

where ν = −λ1/λ2 is defined as the saddle index. For σ0 < 0, ν > 1 and for σ0 > 0, ν < 1. The
global return map Πglob is a general map mapping (1, 0) to (0, 1) for β = 0.

Πglob : x 7→ β + C1x+O(x2).

The affine linear term β is the splitting function. The parameter C1 > 0 as orbits cannot intersect
each other. Clearly, for β = 0, Πglob maps (1, 0) to (0, 1), both part of the homoclinic orbit Γ0. A
composition of the two maps gives us the Poincaré map,

Π : y 7→ β + C1y
ν +O(y2ν).

As we analyse the behavior close to the equilibrium x0 = 0, we neglect the higher order terms.
The final model map we consider is thus

Π : y 7→ β + C1y
ν . (2.18)

In Figure 2.8 we observe when fixed points exist, depending on β and ν. Via cobweb analysis, we
can clearly see that for σ0 < 0, the periodic orbit, when it exists, is stable and for σ0 > 0, the
periodic orbit, when it exists is unstable.
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Figure 2.9: Consequence of the Andronov-Leontovich Theorem (2.3.2) for saddle quantity σ0 > 0.
As the homoclinic connection breaks, we see that an unstable periodic orbit exists for β < 0,
whereas no periodic orbit exists for β > 0. This is in line with figure Figure 2.8 where via cobweb
analysis we can determine that for β > 0 and σ0 < 0 we have a stable periodic orbit and, for β < 0
and σ0 < 0 we have an unstable periodic orbit. Figure taken from [12].

2.3.2 Homoclinic orbit to saddle-focus

We now consider, using the same approach as in the saddle case, homoclinic orbits in 3-dimensional
systems. There are thus, two possibilities, either all eigenvalues are real (saddle case) or there
exists a pair of complex eigenvalues (the saddle-focus case). If the unstable leading eigenvalue is
complex, then by reversing time, we can get the stable leading one to be complex. Thus in general
the analysis for a pair of complex eigenvalues in a 3-dimensional system would correspond to the
analysis of a saddle-focus.

We do not consider the case where we have three real eigenvalues. The results are the same for
σ0 < 0 as in the Andronov-Leontovich Theorem, while in the case of σ0 > 0, the existence of a
periodic orbit depends on the sign of the bifurcation parameter and the topology of the unstable
manifold. We do not discuss it further.

Theorem 2.3.2 explains the homoclinic bifurcation in a planar system, where both eigenvalues
are real. As a pair of complex eigenvalues in a planar system would correspond to either stable,
unstable or non-hyperbolic equilibria, there would be no hyperbolic homoclinic bifurcations in
that case. However in the 3-dimensional case, a pair of complex eigenvalues and a real eigenvalue
give rise to a saddle-focus, to which homoclinic orbits may exist and undergo bifurcations.

Theorem 2.3.3. Consider

ẋ = f(x, α), x ∈ R3, α ∈ R, (2.19)

such that f is smooth. Let us assume that this system has a saddle-focus equilibrium at x0 = 0 with
eigenvalues λ1(0) > 0 > Re(λ2,3) > 0 and a homoclinic orbit Γ0. We define the saddle quantity
σ0 = λ1(0) +Re(λ2,3) > 0. We have two cases:

1. (σ0 < 0): Genericity condition: β′(0) 6= 0, where β is the split function and λ2(0) 6= λ3(0).
Then (2.19) has a unique and stable periodic orbit in a neighborhood of Γ0∪x0 for sufficiently
small |β|.

2. (σ0 > 0): Genericity condition: λ2(0) 6= λ3(0). Then (2.19) has an infinite number of saddle
limit cycles in a neighborhood of Γ0 ∪ x0 for all sufficiently small |β|.

In Case 1, the results are similar to that of the saddle case (Theorem 2.3.2). The interesting thing
to note is the infinite number of periodic orbits that appear in the σ0 > 0 case (also called the
wild case), a proof of which we give here.
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Figure 2.10: Geometric construction for the proof of Theorem 2.3.3.

Proof. (Case 2) The proof is in the same spirit as that of Theorem 2.3.2. The geometric con-
struction can be seen in Figure 2.10. We consider a 3-D system ẋ1 = λx1 + ωx2 + f1(x),

ẋ2 = −ωx1 + λx2 + f2(x),
ẋ3 = γx3 + f3(x),

(2.20)

where λ < 0, ω > 0 and γ > 0, such that the equilibrium x = 0 possesses a homoclinic orbit. The
Taylor expansions of fi have zero linear part, for all i. At the critical equilibrium the eigenvalues
are λ± iω and γ. Let us also assume that the homoclinic orbit passes through the points (0, 0, 1)
and (1, 0, 0). Near the singularity, we consider the linear system, ẋ1 = λx1 + ωx2,

ẋ2 = −ωx1 + λx2,
ẋ3 = γx3,

since the flow of (2.20) is C1 equivalent near the saddle-focus to the flow of the linearisation.
Consider Figure 2.10. We construct cross sections Σs and Σu close to the saddle-focus, transversal
to the stable and unstable manifolds respectively. Here

Σs = {x : x2 = 0},

and
Σu = {x : x3 = 1}.

Proceeding in the same way as in the saddle case, we formulate the return map Π : Σs 7→ Σs by
taking the composition of maps Πloc : Σs 7→ Σu and Πglob : Σu 7→ Σs which are the local and
global return maps respectively.

Let us consider point xs = (xs1, 0, x
s
3) ∈ Σs and xu = (xu1 , x

u
2 , 1). Then the local map Πloc is given

by

Πloc :

(
xs1
xs3

)
7→

xs1(xs3)ν cos
(
−ωγ lnxs3

)
xs1(xs3)ν sin

(
−ωγ lnxs3

) ,
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Figure 2.11: Plots of the function (2.21) for ν < 1 and ν > 1. The parameter µ shifts the curve
up (down) for positive (negative) values. In the case ν < 1, we see that there exist infinitely many
fixed points (and thus periodic orbits) at µ = 0 (the homoclinic orbit) for small values of x. For
|µ| sufficiently small, the infinitely many fixed points persist. In the case ν > 1, for µ = 0 the only
fixed point is x = 0. For |µ| and x > 0 sufficiently small,it is possible to see finitely many more
fixed points, or none at all.

where ν = −λ/γ is the saddle index from before.

The global return map Πglob is taken as a general C1 map from Σu to Σs such that (0, 0, 1)
is mapped to (1, 0, β), where β is the splitting function as defined before. Thus, at β = 0,
the returning orbit intersects nontransversally with the stable manifold and becomes homoclinic.
Therefore,

Πglob :

(
xu1
xu2

)
7→
(

1 + axu1 + bxu2
µ+ cxu1 + dxu2

)
+O(‖xu‖2),

such that ad− bc 6= 0 to guarantee local invertibility. Composing the two maps we get

Π :

(
xs1
xs3

)
7→

1 +Axs1(xs3)ν sin
(
−ωγ lnxs3

)
µ+Bxs1(xs3)ν sin

(
−ωγ lnxs3

)+O(‖xs‖2).

Thus we have formulated a Poincaré map from Σs to itself. The fixed points of this map reveal
the bifurcations occuring in a small neighbourhood of Γ0 ∪ x0. Therefore the condition for fixed
points is: (

xs1
xs3

)
=

1 +Axs1(xs3)ν sin
(
−ωγ lnxs3

)
µ+Bxs1(xs3)ν sin

(
−ωγ lnxs3

)+O(‖xs‖2).

Upon replacing the value of xs1 in the equation for xs3, we get

x = µ+ xν sin

(
−ω
γ

lnx

)
,

where the higher order terms are dropped as we want to observe small ‖x‖ effects. Also, the
(sub)superscripts were dropped. This is the scalar fixed point condition for the saddle-focus case.
Note that while performing fixed point analysis we fix ν, γ and ω. We choose small |µ|. We define
the map F (x, µ):

F : x 7→ µ+ xν sin

(
−ω
γ

lnx

)
. (2.21)

We readily observe that for ν < 1 (σ0 > 0), infinitely many fixed points exist and for ν > 1
(σ0 < 0) there are finitely many (at least one) fixed points, for all values of µ sufficiently small,
see Figure 2.11.
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2.3.3 Homoclinic Center Manifold

In the previous sections we saw how the one-dimensional fold normal form can be used to ex-
plain the fold bifurcation in higher dimensional systems too, with the help of Theorem 2.1.4 and
Theorem 2.1.6. The result is different in the case of homoclinic orbits, which can be structurally
unstable only in the case of homoclinic orbits to nonhyperbolic equilibria.

Central eigenvalues are defined by the union of the stable and unstable leading eigenvalues. Let
us consider

ẋ = f(x, α), x = (x1, x2, ..., xn) ∈ Rn, α ∈ R.

such that there exists a homoclinic orbit Γ0 to the equilibrium x0 = 0 at α = 0.. Let the
corresponding solution be x0(t). We define the following linear subspaces:

Euu(t0) =

{
v0 : lim

t→−∞

v(t)

‖v(t)‖ ∈ T
uu

}
,

Ess(t0) =

{
v0 : lim

t→+∞

v(t)

‖v(t)‖ ∈ T
ss

}
,

Ecu(t0) =

{
v0 : lim

t→−∞

v(t)

‖v(t)‖ ∈ T
c ⊕ Tuu

}
,

Ecs(t0) =

{
v0 : lim

t→+∞

v(t)

‖v(t)‖ ∈ T
c ⊕ T ss

}
,

Here, Tuu(T ss) is the nonleading unstable (stable) eigenspace and T cu(T cs) is the leading unstable
(stable) eigenspace. The function v(t) is a solution of the linearisation around Γ0 ∪ x0{

v̇ = fx(x0(t), 0)v + fα(x0(t), 0)µ,
µ̇ = 0.

with starting data v = v0 and t = t0. Finally, we define

Ec(t0) = Ecu(t0) ∩ Ecs(t0).

Then, under the conditions,

˙x0(0) ∈ Ec(0), and

Euu(0)⊕ Ec(0)⊕ Ess(0) = Rn,

there exists a parameter dependent center manifold Mα defined in a small neighbourhood of Γ0∪x0
for sufficiently small |α|, such that the manifold is attracting within the neighbourhood and the
tangent space for all t0 is Ec(t0). The manifold Mα is called the homoclinic center manifold. In
general, it is only C1 smooth.

Once again, we are able to determine the essential changes in the phase portrait as the homoclinic
orbit splits for small perturbations of the field, by reducing the problem to looking for the dynam-
ics on the homoclinic center manifold, which is of lower dimension.

Thus, the saddle (saddle-focus) cases presented before can be extended too higher dimensional
systems with saddle (saddle-focus) leading eigenvalue configurations. By studying two, three or
four dimensional systems with different eigenvalue configurations, we can in principle describe the
dynamics of the homoclinic bifurcation in higher dimensional systems too.



Chapter 3

The near-to-saddle model map

In Chapter 1 we introduced the 3DL transition, which is characterised by a specific transition in the
leading eigenvalue configurations along a curve of primary homoclinic orbits. These configurations
are presented in Figure 3.1.

Re(λ)

Im(λ)

(a) α < 0

Re(λ)

Im(λ)

(b) α = 0

Re(λ)

Im(λ)

(c) α > 0

Figure 3.1: 3DL transition: leading eigenvalue configurations

In this chapter we derive a model map that describes bifurcations occurring close to the transition.
We consider a generic 4D system with a homoclinic orbit and a 3DL transition, and perform a
two-parameter perturbation study on it.

Using Poincaré map techniques, similar to the saddle and saddle-focus cases we are able to derive
a model return map describing bifurcations of periodic orbits and secondary homoclinic orbits
close to the transition. The map obtained is different from the saddle, saddle-focus or Belyakov
cases.

3.1 Construction

We start with a result by Belitskii [3] that will be useful in the derivation.

Theorem 3.1.1. (Belitskii) There exists a C1 equivalence of the flow corresponding to a sys-
tem in Rn to the flow generated by its linear part near a hyperbolic equilibrium with eigenvalues
λ1, λ2..., λn such that

Re λi 6= Re λj + Re λk,

for all combinations of i, j, k = 1, 2, ..., n.

In this derivation we make the following assumptions about the 3DL transition,

(A.1) The eigenvalues of the linearisation at the critical 3DL saddle are

γ0, γ0 ± iω0 and β0,

where γ0 < 0, ω0 > 0 and β0 > 0.

23



24 CHAPTER 3. THE NEAR-TO-SADDLE MODEL MAP

(A.2) There exists a primary homoclinic connection Γ0 to this 3DL-saddle.

(A.3) The homoclinic orbit Γ0 satisfies the following genericity condition: The tangent
vector v0 to the portion of Γ0 which is ε-close to the 3DL saddle is either completely spanned
by the unstable eigenvector, or spanned by the eigenvectors corresponding to the stable real
and complex eigenvalues, with non-zero components.

Without loss of generality, we assume that β0 is small positive number. This helps us later in the
asymptotic analysis of the map we construct.

Now, we describe the model flow, and the Poincaré map close to the 3DL transition, that we will
use for a two-parameter perturbation study.

The model flow

For any system satisfying the assumptions (A.1-3), we can transform this system near the critical
saddle via a linear transformation to

ẋ1 = γ(µ)x1 − x2 + f1(x, µ, ω),
ẋ2 = x1 + γ(µ)x2 + f2(x, µ, ω),
ẋ3 = (γ(µ)− µ1)x3 + f3(x, µ, ω),
ẋ4 = β(µ)x4 + f4(x, µ, ω).

(3.1)

The components of µ = (µ1, µ2) are small parameters, where µ2 is a ‘splitting parameter’ and
µ1 is a small parameter that controls which stable eigenvalue leads. For µ1 > 0, the stable lead-
ing eigenvalue is complex (saddle-focus case) and for µ1 < 0 the stable leading eigenvalue is real
(saddle case). Functions f1, f2 and f3 are nonlinear such that fi(0, µ, ω) = 0 for i = 1, 2, 3, 4 and
∀µ, ω. The functions γ, ω and β all depend on µ.

The 3DL saddle exists at µ = 0 and the primary homoclinic connection to all saddles (saddle,
3DL, saddle-focus) exists along the curve µ2 = 0. The role of µ2 will become clear later. Thus,

γ(0) = γ0, ω(0) = ω0 and β(0) = β0. (3.2)

For µ1 sufficiently small, we can use Belitskii’s Theorem to get a C1 equivalence of the flow (3.1)
to its linear part, around the equilibrium O = (0, 0, 0, 0). Therefore we consider the following
linear system for the rest of the chapter,

ẋ1 = γ(µ)x1 − x2,
ẋ2 = x1 + γ(µ)x2,
ẋ3 = (γ(µ)− µ1)x3,
ẋ4 = β(µ)x4.

(3.3)

Motivating the use of flow (3.3)

The return of the homoclinic orbit to the saddle is illustrated in Figure 3.3, for three values of
the control parameter µ1. Here the stable part of (3.3) is plotted. The flow corresponding to the
stable part of (3.3) is composed of its first three equations. For,

• µ1 < 0: leading stable eigenspace is real and 1-dimensional (saddle case),

• µ1 = 0: leading stable eigenspace is 3-dimensional (3DL case), and

• µ1 > 0: leading stable eigenspace is complex and 2-dimensional (saddle-focus case).

As the orbits approach the origin we observe rotational effects (in the plane spanned by x1 and x2)
and exponential effects (along x3). These shapes are based on the nature of leading eigenvalues,
which are γ − µ1 and γ ± i.

For example, when µ1 = −0.05 < 0, the leading eigenvalue is real. We see that the oscillations
produced by the variables x1 and x2 (corresponding to complex eigenvalues) decay faster than the
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Figure 3.2: The geometric construction of cross sections close to the critical 3DL-saddle at
(0, 0, 0, 0) and the homoclinic connection Γ0, in order to obtain the map Π : Σs 7→ Σs. Here
Σu is defined by the cross section x4 = 1 and Σs is the cross section x3 = 0. The homoclinic
connection is assumed to pass through the points ys = (1, 0, 1, 0) and yu = (0, 0, 0, 1). The stable
and unstable eigenspaces are Es and Eu respectively.
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Figure 3.3: Orbits in the stable manifold of the linear system (3.3) for different values of µ1.
Note that the system is decoupled. The parameter µ1 controls the transition from saddle (S) to
3DL-saddle and, to saddle-focus (SF). All orbits begin from the same point in the stable manifold,
close to the origin. In the time series plots, x1 (blue) x2 (red) and x3 (yellow) are plotted against
time for the three cases of µ1.
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exponentially decreasing x3 (corresponding to a real eigenvalue). Thus the homoclinic orbit in this
case returns locally along a 1-dimensional manifold, which locally corresponds to the Andronov-
Leontovich theorem (Theorem 2.3.2). In the case µ1 > 0, the reverse happens, x3 decays faster
than the oscillatory x1 and x2. Thus the homoclinic orbit in this case approaches the origin lo-
cally along a two dimensional manifold. This is the saddle-focus case and locally corresponds to
Theorem 2.3.3.

However, in the case µ1 = 0, the leading eigenspace is three dimensional, and all variables x1, x2
and x3 decay at the same rate. Locally, the homoclinic orbit approaches the origin (3DL saddle)
along a three-dimensional manifold.

To summarise, our goal in this chapter is to use flow (3.3) to explain the phase portraits close to
the 3DL saddle and the homoclinic orbit, for small perturbations. We do so by introducing cross
sections close to the saddle, and deriving a map on these cross sections.

Introducing cross sections

Figure 3.2 gives an impression of the homoclinic connection to a 3DL-saddle in the four-dimensional
flow. As we are interested in understanding the bifurcations close to the saddle and the homoclinic
orbit, we define two Poincaré cross sections close to this saddle,

Σs = {(x1, x2, x3, x4)|x2 = 0} ,
Σu = {(x1, x2, x3, x4)|x4 = 1} ,

and assume that the homoclinic orbit passes through both of these cross sections at ys = (1, 0, 1, 0)
and yu = (0, 0, 0, 1) respectively.

Clearly, both cross sections are transversal to the flow and to the stable and unstable eigenspaces.
Thus, by computing orbits beginning from Σs to Σu and back to Σs we are able to define a three-
dimensional map Π mapping Σs to itself. This map can then be used to study periodic orbits and
secondary homoclinic orbits closeby.

We shall construct the map Π in two parts, Πloc : Σs 7→ Σu and Πglob : Σu 7→ Σs giving us

Π = Πglob ◦Πloc.

So far, we have geometrically described a map on a cross section close to the 3DL-saddle. There
are two parameters, µ1 and µ2 which control the assumptions (A.1-2). Moving µ1 makes the
saddle change from saddle to 3DL-saddle to saddle focus and vice-versa, while µ2 controls the
orientation of the stable manifold. We have a homoclinic connection only for µ2 = 0. Thus, with
the help of these two parameters we can understand the dynamical behaviour at the 3DL-saddle,
by observing what happens for small perturbations of the saddle and the homoclinic connection.

3.2 Derivation of the map

We begin by computing the orbit of the flow (3.3) starting from an arbitrary point in Σs, close
to ys. This will help us to define the map Πloc. The local map Πloc is thus the mapping from
(xs1, 0, x

s
3, x

s
4) ∈ Σs to a point (xu1 , x

u
2 , x

u
3 , 1) on Σu close to yu. The orbit at time t starting from

(xs1, 0, x
s
3, x

s
4) is thus 

x1(t)

x2(t)

x3(t)

x4(t)


=



xs1e
γt cos t

xs1e
γt sin t

xs3e
(γ−µ1)t

xs4e
βt


.
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We then compute the time t = Tloc to reach Σu (where x4 = 1), which is

Tloc = − 1

β
log xs4.

The map Πloc is given by

Πloc :


xs1

xs3

xs4

 7→

xs1(xs4)ν cos

(
−1
β log xs4

)
xs1(xs4)ν sin

(
−1
β log xs4

)
xs3(xs4)ν+µ1/β

 . (3.4)

where ν = −γ/β is defined as the saddle index.

For the global return map Πglob : Σu 7→ Σs, we cannot use the flow (3.3) to define the dynamics on
Σu after making a global turn away from the critical saddle. Instead we use a general approxima-
tion of the flow from (0, 0, 0, 1) to (1, 0, 1, µ2). Here µ2 is the aforementioned splitting parameter.
It controls the return of the orbit to the critical saddle. For µ2 = 0 only, we have a homoclinic
connection.

Thus, the following approximation for Πglob is used

Πglob :


xu1

xu2

xu3

 7→


1

1

µ2

+


a11 a12 a13

a21 a22 a23

a31 a32 a33



xu1

xu2

xu3

+


O((xu1 )2)

O((xu2 )2)

O((xu3 )2)

 , (3.5)

where the constants ai are dependent on µ. For A = [aij ] we also have the condition det(A(0)) 6= 0
which guarantees invertibility of Πglob for µ small enough.

Now, (3.4) and (3.5) in combination give us the full return map Π. As Π = Πglob ◦Πloc,

Π :


xs1

xs3

xs4

 7→


1 + b1x
s
1(xs4)ν cos

(
−1
β log xs4 + θ1

)
+ b2x

s
3(xs4)ν+µ1/β

1 + b3x
s
1(xs4)ν sin

(
−1
β log xs4 + θ2

)
+ b4x

s
3(xs4)ν+µ1/β

µ2 + b5x
s
1(xs4)ν sin

(
−1
β log xs4 + θ3

)
+ b6x

s
3(xs4)ν+µ1/β

 , (3.6)

where the small O(‖x‖2ν) terms have been truncated. Also,

sin θ1 = −a12√
a211+a

2
12

, cos θ2 = a22√
a221+a

2
22

, cos θ3 = a32√
a231+a

2
32

,

b1 =
√
a211 + a212, b3 =

√
a221 + a222, b5 =

√
a231 + a232,

b2 = a13, b4 = a23, and b6 = a33.

Next, we make the smooth invertible transformation xs4 7→ xs4 exp (θ3β) to eliminate θ3. We get
the map

Π :


x1

x3

x4

 7→


1 + α1x1x
ν
4 cos

(
−1
β log x4 + φ1

)
+ α2x3x

ν+µ1/β
4

1 + α3x1x
ν
4 sin

(
−1
β log x4 + φ2

)
+ α4x3x

ν+µ1/β
4

µ2 + C1x1x
ν
4 sin

(
−1
β log x4

)
+ C2x3x

ν+µ1/β
4

 , (3.7)
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where

φ1 = θ1 − θ3, φ2 = θ2 − θ3, α1 = b1 exp(θ3βν),

α2 = b2 exp((ν + µ1/β)θ3β), α3 = b3 exp(θ3βν) α4 = b4 exp((ν + µ1/β)θ3β),

C1 = b5 exp(θ3βν) and C2 = b2 exp((ν + µ1/β)θ3β).

We have dropped the superscript ‘s’ from the coordinate variables for convenience. This is the
final form of the map that we will work with ahead.

Now, to analyse periodic orbits close to the homoclinic connection with respect to the critical
3DL-saddle, we look for fixed points of the map (3.7). As explained in Chapter 2, these fixed
points would correspond to periodic orbits in the original ODE system. Bifurcations of these fixed
points would describe the various local bifurcations of the corresponding periodic orbits.

The fixed point condition for map (3.7) is
x1

x3

x4

 =


1 + α1x1x

ν
4 cos

(
−1
β log x4 + φ1

)
+ α2x3x

ν+µ1/β
4

1 + α3x1x
ν
4 sin

(
−1
β log x4 + φ2

)
+ α4x3x

ν+µ1/β
4

µ2 + C1x1x
ν
4 sin

(
−1
β log x4

)
+ C2x3x

ν+µ1/β
4

 . (3.8)

For non-degeneracy, we require that C1 and C2 be non-zero real constants. We justify this ahead.
Substituting the expressions for x1 and x3 from (3.8) in the expression for x4 we get

x4 = µ2 + C1(x4)ν sin

(−1

β
log x4

)
+ C2(x4)ν+µ1/β +O(‖x‖2ν), (3.9)

as our one-dimensional fixed point condition. As we observe behavior close to (1, 0, 1, 0) on the
cross section Σs, we consider only the leading terms of (3.9) and get the following scalar model
return map:

F (x, µ) : x 7→ µ2 + C1x
ν sin

(−1

β
log x

)
+ C2x

ν+µ1/β . (3.10)

Note that the presence of the extra additive term C2x
ν+µ1/β is what makes this map different

from the the scalar model maps describing the saddle, saddle-focus and Belyakov cases.

Genericity conditions

If we were to set C1 to zero, then we would obtain finitely many fixed points for all values of
ν, µ1, β, µ2 and C2. If we set C2 to zero, we get the saddle-focus model map. Thus for genericity,
we keep C1 and C2 non-zero.

The following genericity conditions are required for this bifurcation:

(G.1) (from assumption (A.3)) The tangent vector v0 to the portion of Γ0 which is ε-close
to the 3DL saddle is either completely spanned by the unstable eigenvector, or spanned by
the eigenvectors corresponding to the stable real and complex eigenvalues, with non-zero
components.

(G.2) The coefficients C1 and C2 of the map (3.10) are non-zero constants.

(G.3) The Jacobian det (dΠ) must be non-zero for ‖µ‖ sufficiently small, to ensure invert-
ibility.

In the coming chapter we analyse maps (3.10) and (3.7) for bifurcations of their fixed points and
present a qualitative bifurcation diagram, supporting the numerical observations with asymptotic
results.



Chapter 4

Analysing the scalar model map

In this chapter we use iterations of map (3.10) to obtain a detailed picture of the bifurcations of
their fixed points. To stay close to the 3DL saddle, we only analyse the bifurcations for small
values of x and µ. We look at two bifurcation sets broadly:

• Primary period doubling (PD) and limit point (LP) bifurcations

• Secondary homoclinic orbits

4.1 PD/LP bifurcations in the scalar model map

Intuitive understanding of the scalar model map

In Figure 4.1 we show plots of the scalar map (3.10) for different values of ν, µ1 and µ2. These
parameters affect the shape of the curve differently:

• The parameter ν governs the existence of fixed points. We see that for ν > 1, we have at
least one fixed point, for all values of β,C1, C2, µ1 and µ2. For ν < 1, we obtain infinitely
many fixed points.

• The function F (x, µ) is linearly dependent on µ2 that shifts the whole curve up or down.

• The role of µ1 is interesting. It governs the shape of the function y = F (x, µ) with respect
to the line y = x. For positive µ1 the structure of the curve does not change much, but we
observe significant change in its trend away from the line y = x for µ1 < 0.

On fixing µ1, we can immediately conclude the existence of a PD and LP bifurcation if there exist
fixed points of F (x, µ). This is achieved by varying µ2 such that the derivative of F (x, µ) with
respect to x at the fixed point is −1 or 1. This is possible due to the sinusoidal nature of the
curve y = F (x, µ). For each trough and crest, we obtain a pair of PD and LP points. As we have
infinitely such pairs of troughs and crests, we expect to obtain infinitely many PD and LP curves.

The case ν < 1 is interesting, as we obtain infinitely many fixed points (periodic orbits) and expect
to get infinitely many bifurcation curves too. For ν > 1, finitely many fixed points exist, which
may or may not be for µ1 sufficiently small. Thus for the remainder of the thesis we consider only
the case ν < 1 (called the wild case).

Results and observations from continuation

Upon continuing the infinitely many PD and LP points in the µ1 − µ2 parameter space using
the continuation package MatcontM [9] we obtain infinitely many PD and LP curves, which form
interesting structures. The curves can be seen in Figure 4.2. We make the following observations:

(P.1) The curves exhibit a repeating behaviour: two branches of one PD or LP curve meet
to form a horn. Infinitely many such horns exist. The sequence of these horns in the µ1−µ2

space appear to approach µ2 = 0 asymptotically, which is the curve of primary homoclinic
orbits. Also, the tip of the horns always exist entirely in either the second, or third quadrant
of the µ1 − µ2 space.
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Figure 4.1: Plots of F (x, µ) − x (from (3.10)) vs. x for different ν, µ1 and µ2. We fix C1 = 1.7,
C2 = −0.3 and β = 0.2. In (A), we see that there are infinitely many fixed points (close to zero)
when ν < 1. For ν > 1 there exists at least one fixed point away from zero. In (B) we see the
effect of negative µ1 on the existence of fixed points when ν < 1. For all positive values of µ1

we obtain infinitely many fixed points. When µ1 < 0 we obtain finitely many fixed points for µ2

sufficiently small. In (C.1) we see how infinitely many PD and LP points are obtained. We keep
µ1 fixed and ν < 1. As we decrease µ2, we locate PD and LP points almost simultaneously for
smaller values of x. This can be seen clearly in (C.2), where the derivative of F (x, µ) changes
quickly.

(P.2) The PD and LP curves appear to coincide on visual inspection, and there exist GPD
and cusp points in the vicinity of the tip of the horn.

(P.3) The tip of the horn in each of the LP curves is characterised by a cusp point. These
cusps always exist, for all values of C1 and C2 and form a sequence that appears to approach
the origin µ = 0.

(P.4) Upon closer inspection, we observe that there exists either of two subtle structures
at the top of every PD/LP horn. One is a spring area, where the PD curve forms a loop
around the LP cusp before returning. The other is a saddle area, where the PD curve makes
a sharp turn close to the LP cusp, see Figure 4.3. The spring area is always (generically)
accompanied by two GPD points along the PD loop. These points are absent in a saddle
area. Mira et al. [15] discuss in detail the spring and saddle areas, including transitions from
one case to the other and genericity.

(P.5) The global behaviour of this set of curves depends on parameters C1 and C2, which
are non-zero.

(P.5.1) For example, by switching the sign of C2, the set of curves move from the
second to the third quadrant of the µ1 − µ2 space, or vice-versa.
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Figure 4.2: Primary PD and LP curves obtained by continuation, for the map (3.10) for a fixed
choice of parameters. In (A) we plot 4 of these curves. All of them have the same global structure.
There are two types of codimension 2 points that can be found along these curves: Cusp (in the
case of LP curves) and GPD (in the case of PD curves). In (B) we see what happens when we
switch the sign of C2, the horns move from µ2 > 0 to µ2 < 0. In (C) we see one example of a
PD/LP curve and spring area (inset).

(P.5.2) The presence of saddle areas or spring areas depend on the parameters C1 and
C2. The exact domains of separation are not clear.

In the sections ahead we support most of the observations (P.1-5) by looking at analytical expres-
sions of the asymptotics of (3.10). The strategy is to look for expressions describing approximate
solutions of the PD and LP conditions and use them to justify the observations above for different
cases of parameters C1 and C2.

4.1.1 Asymptotics: PD/LP curves

In this section we derive approximate solutions to the PD and LP conditions, and use them to
justify observations (P.1-5). As we are interested in solutions close to the 3DL bifurcation point
(µ1, µ2) = (0, 0) we assume that x, µ1 and µ2 are sufficiently small. As we observe only the wild
case we also have the condition

ν < 1.
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Figure 4.3: Plots of spring and saddle areas for the map (3.10) for different values of C1 and C2.

Asymptotic curves

The PD and LP conditions are given by, F (x, µ) = x,

Fx(x, µ) = −1,

(PD) and

F (x, µ) = x,

Fx(x, µ) = 1,

(LP) (4.1)

where F (x, µ) is given by (3.10). Thus we have,µ2 + C1x
ν sin

(
− 1
β log x

)
+ C2x

ν+µ1/β = x,

xν−1
[
νC1 sin

(
− 1
β log x

)
− C1

β cos
(
− 1
β log x

)]
+ C2 (ν + µ1/β)xν+µ1/β−1 = −1,

(4.2)

for the PD condition andµ2 + C1x
ν sin

(
− 1
β log x

)
+ C2x

ν+µ1/β = x,

xν−1
[
νC1 sin

(
− 1
β log x

)
− C1

β cos
(
− 1
β log x

)]
+ C2 (ν + µ1/β)xν+µ1/β−1 = 1,

(4.3)

for the LP condition.

If we multiply the second equations of (4.2) and (4.3) by x1−ν 6= 0, we get

νC1 sin

(
− 1

β
log x

)
− C1

β
cos

(
− 1

β
log x

)
+ C2 (ν + µ1/β)xµ1/β + x1−ν = 0, (PD)

and

νC1 sin

(
− 1

β
log x

)
− C1

β
cos

(
− 1

β
log x

)
+ C2 (ν + µ1/β)xµ1/β − x1−ν = 0. (LP)

(4.4)

Here, the term x1−ν is very small compared to the rest of the terms as x is small and ν < 1. Thus
the leading terms of both, PD and LP conditions are the same. This explains observation (P.2)
that the PD and LP curves appear to coincide. We can write both conditions of (4.4) together asµ2 + C1x

ν sin
(
− 1
β log x

)
+ C2x

ν+µ1/β = x,

νC1 sin
(
− 1
β log x

)
− C1

β cos
(
− 1
β log x

)
+ C2 (ν + µ1/β)xµ1/β = 0.

(4.5)
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As x is small, − 1
β log x will be a large positive number. Thus, we let

− 1

β
log x = πn+ θ, (4.6)

with n ∈ N sufficiently large and θ ∈ (−π/2, π/2). Therefore (4.5) becomesµ2 + C1e
−νβ(πn+θ) [(−1)n sin θ + C2e

−µ1(πn+θ)
]

= e−β(πn+θ),

C1(−1)n
[
ν sin θ − 1

β cos θ
]

+ C2 (ν + µ1/β) e−µ1(πn+θ) = 0.

(4.7)

Consider the second equation of (4.7). We divide both sides by C1(−1)nν 6= 0, giving

sin θ − 1

νβ
cos θ = (−1)n+1C2

C1

ν + µ1/β

ν
e−µ1(πn+θ). (4.8)

Here we make two approximations, assuming µ1 is chosen to be sufficiently small. Firstly, it follows

that the ratio ν+µ1/β
ν ≈ 1 and secondly, e−µ1(πn+θ) ≈ 1. Thus (4.8) becomes,

sin θ − 1

νβ
cos θ = (−1)n+1C2

C1
. (4.9)

We can compute sin θ from here, which is

sin θ =
β2ν2C2

2 (−1)n+1 ±
√
C2

1 (β2ν2 + 1)− β2ν2C2
2

C1 (β2ν2 + 1)
. (4.10)

Recall that in the previous chapter we assumed β to be a small positive number. This assumption
helps in the asymptotics. As ν < 1, the term βν is a small positive fraction too. Thus the
expression for sin θ in (4.10) is dominated by the square root term. Thus we get two values of θ,

θ± ≈ ± arcsin

(√
C2

1 (β2ν2 + 1)− β2ν2C2
2

C1 (β2ν2 + 1)

)
. (4.11)

Without loss of generality, we take

θ± = ± arcsin

(√
C2

1 (β2ν2 + 1)− β2ν2C2
2

|C1| (β2ν2 + 1)

)
. (4.12)

Now that we have θ, we get two branches for every n,

µ
(n,θ±)
2 = −e−νβ(πn+θ±)

[
(−1)nC1 sin θ± + C2e

−µ1(πn+θ±)
]

+ e−β(πn+θ±). (4.13)

Choosing the correct n

Next we locate the correct values of n. We observe that for every alternate value of n ∈ N the

two branches µ
(n,θ±)
2 intersect, and approximate a single PD/LP curve. This can be seen in figure

Figure 4.4. Here, the two branches together approximate one horn of the set of PD/LP curves.
However, the choice of n (n = 2k + 1 or n = 2k, k ∈ N) depends on the parameters C1 and
C2. The dependency can be seen in the way two branches approximating a single PD/LP curve
intersect.

Let us consider branches µ
(n,θ+)
2 and µ

(n,θ−)
2 which approximate one PD/LP curve. The condition

for their intersection is

µ
(n,θ+)
2 = µ

(n,θ−)
2 , (4.14)

where θ± are obtained from (4.12). From (4.6) we know that the corresponding values of x are
given by

x+ = e(−β(πn+θ+)), and x− = e(−β(πn+θ−)) = e(−β(πn−θ+)). (4.15)
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Using the expressions x+ and x−, we combine (4.13) and (4.14) to get

− xν+
[
(−1)nC1 sin θ+ + C2x

µ1/β
+

]
= −xν−

[
(−1)n+1C1 sin θ+ + C2x

µ1/β
−

]
,

=⇒ (−1)n+1C1 sin θ
(
xν+ + xν−

)
+ (x+ − x−) = C2

[
x
ν+µ1/β
+ − xν+µ1/β

−

]
. (4.16)

Now, we know that

x− = e−β(πn−θ+)

= e−β(πn+θ+−2θ+)

= x+e
2βθ+ .

Replacing the above equation for x− in (4.16) we get,

(−1)n+1C1 sin θxν+(1 + e2νβθ+) + x+(1− e2βθ+) = C2x
ν
+x

µ1/β
+

(
1− e2νβθ+e2µ1θ+

)
,

and we find

(−1)n+1C1

C2
sin θ

(
1 + e2νβθ+

1− e2νβθ+
)

+
x1−ν+

C2

(
1− e2βθ+
1− e2νβθ+

)
= x

µ1/β
+ , (4.17)

where e2µ1θ+ is assumed to be 1 for µ1 sufficiently small. Now the term on the left is dominated

by (−1)n+1C1

C2
sin θ

(
1+e2νβθ+

1−e2νβθ+

)
as x1−ν+ is small. Also, the RHS is positive, implying that

(−1)n+1C1

C2
sin θ︸︷︷︸
>0

<0︷ ︸︸ ︷(
1 + e2νβθ+

1− e2νβθ+
)
> 0.

Thus n must be chosen in a way that (−1)n+1C1

C2
< 0. We get

n = 2k +
1

2

(
1− sgn

(
C1

C2

))
, (4.18)

where k ∈ N. Equations (4.12),(4.13) and (4.18) give the asymptotic approximation to the set of
PD/LP curves obtained from fixed points of the map (3.10).

Explaining observations (P.1-5)

Now that we have the asymptotics, we can explain some of the observations (P.1-5). Clearly, as

k ∈ N, we obtain an infinite sequence of horns. Consider (4.13). In the limit n→∞, µ
(n,θ±)
2 → 0,

as,
lim
n→∞

x = lim
n→∞

e−β(πn+θ±) = 0.

This implies that the set of PD/LP curves approach the curve of primary homoclinic orbits µ2 = 0.
Thus we are able to explain observation (P.1).

In Figure 4.2 we also observed that upon switching the sign of C2, the horns move from the second
quadrant to the third quadrant or vice-versa. Indeed, if we combine (4.13) and (4.17), we get

µ
(n,θ+)
2 ≈ −xν+

[
C1(−1)n sin θ + (−1)n+1C1 sin θ

(
1 + e2νβθ+

1− e2νβθ+
)]

+ x+,

as the expression for the value of µ2 where two PD/LP branches intersect. Here we drop the small
x1−ν term. By simplifying the expression, we get

µ
(n,θ+)
2 = xν+(−1)n+1C1 sin θ

[
1 +

(
1 + e2νβθ+

−1 + e2νβθ+

)]
+ x+,
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Figure 4.4: Plots of asymptotic curves and PD/LP curves (obtained from continuation). In (A)
we see how successive asymptotic curves in k approximate the set of PD/LP curves. Here, cusps
are obtained by performing Newton iterations to the defining system of the cusp bifurcation with
starting points as the asymptotic cusps. In (B), convergence of the asymptotic cusps to the actual
cusps is observed. The corresponding values of k in both plots are k = 10, 11..., 90.
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≈ xν+︸︷︷︸
>0

(−1)n+1C1 sin θ︸︷︷︸
>0

[
1 +

(
1 + e2νβθ+

−1 + e2νβθ+

)]
︸ ︷︷ ︸

>0

,

as the first xν term dominates x. Thus, the sign of µ
(n,θ+)
2 depends on the sign of (−1)n+1C1.

From (4.18), we know that

(−1)n+1C1

C2
= −

∣∣∣∣C1

C2

∣∣∣∣ ,
=⇒ (−1)n+1C1 = −C2

∣∣∣∣C1

C2

∣∣∣∣ .
Thus, if we switch the sign of C2, the horns move from µ2 > 0 to µ2 < 0 or vice-versa. This
explains observation (P.5.1).

4.1.2 Asymptotic sequence of cusp points

In this section we formulate an asymptotic sequence of cusp points by looking at solutions of the
defining system for the cusp bifurcation

F (x, µ) = 0,

Fx(x, µ)− 1 = 0,

Fxx(x, µ) = 0,

(4.19)

where F (x, µ) = 0 is from (3.10). Consider Fxx(x, µ) = 0. Dividing both sides by xν−2 6= 0 we
get,

C1

(
ν(ν − 1)− 1

β2

)
sin

(
− 1

β
log x

)
− C1

β
(2ν − 1) cos

(
− 1

β
log x

)
+C2x

µ1/β(ν + µ1/β)(ν + µ1/β − 1) = 0. (4.20)

As before, we use the substitution for x,

− 1

β
log x = πn+ θ, (4.21)

where n ∈ N is sufficiently large and θ ∈ (−π/2, π/2). Replacing and simplifying (4.20), we get

sin θ − β(2ν − 1)

β2ν(ν − 1)− 1
cos θ = (−1)n+1C2

C1
e−µ1(πn+θ)

(
(βν + µ1/)(β(ν − 1) + µ1)

β2ν(ν − 1)− 1

)
. (4.22)

From this equation, we would like to obtain a concise expression for θ. For µ1 sufficiently small,
we may assume

e−µ1(πn+θ) ≈ 1, and

(
(βν + µ1)(β(ν − 1) + µ1)

β2ν(ν − 1)− 1

)
≈
(

β2ν(ν − 1)

β2ν(ν − 1)− 1

)
.

Thus, (4.22) becomes

sin θ − β(2ν − 1)

β2ν(ν − 1)− 1
cos θ = (−1)n+1C2

C1

(
β2ν(ν − 1)

β2ν(ν − 1)− 1

)
. (4.23)

From this expression we obtain sin θ:

sin θ ≈ ±
√

(β − 2βν)2 (C2
1 (β2(ν − 1)2 + 1) (β2ν2 + 1)− β4C2

2 (ν − 1)2ν2)

C1 (β2(ν − 1)2 + 1) (β2ν2 + 1)
, (4.24)
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where O(β4ν4) terms from the numerator were ignored. Clearly, as βν is a small positive number,
| sin θ| < 1. We pick positive θ from (4.24), as we are interested in one cusp point for every LP
curve. Thus,

θ = arcsin

(√
(β − 2βν)2 (C2

1 (β2(ν − 1)2 + 1) (β2ν2 + 1)− β4C2
2 (ν − 1)2ν2)

|C1| (β2(ν − 1)2 + 1) (β2ν2 + 1)

)
. (4.25)

Now that we have θ, we obtain µ1 and µ2 from the first two equations of (4.19). Replacing
x = e−β(πn+θ) in Fx(x, µ) = 1 from (4.19), we get (4.8) once again:

(−1)n+1C2

C1

ν + µ1/β

ν︸ ︷︷ ︸
≈1

e−µ1(πn+θ) = sin θ − 1

νβ
cos θ,

=⇒ µ1 = − 1

πn+ θ
log

[
(−1)n+1C1

C2

(
sin θ − 1

νβ
cos θ

)]
, (4.26)

and from F (x, µ) = x we get

µ2 = −e−νβ(πn+θ)
[
(−1)nC1 sin θ + C2e

−µ1(πn+θ)
]

+ e−β(πn+θ). (4.27)

This gives a sequence of asymptotic cusp pointsµ(n)
1

µ
(n)
2

 =

 − 1
πn+θ log

[
(−1)n+1C1

C2

(
sin θ − 1

νβ cos θ
)]

−e−νβ(πn+θ)
[
(−1)nC1 sin θ + C2e

−µ1(πn+θ)
]

+ e−β(πn+θ)

 . (4.28)

Choosing the correct value of n

It remains to be verified if the expression in the log term for µ
(n)
1 is positive. From the verification

we also obtain the correct choice for the sequence of naturals, n. Thus we need to check if

(−1)n+1C1

C2

(
sin θ − 1

νβ
cos θ

)
> 0.

We know that sin θ is obtained from (4.23). If we replace sin θ above, by the expression for sin θ
from (4.23), we get, upon simplifying, the condition[

(−1)n+1C1

C2
cos θ

]
(1 + β2ν2) + β3ν(ν − 1)

νβ(β2ν(ν − 1)− 1)
> 0. (4.29)

As 0 < ν < 1, the condition reduces to

(−1)n+1C1

C2
cos θ < 0. (4.30)

This results in the same choice for n as in the case of asymptotic PD/LP curves,

n = 2k +
1

2

(
1− sgn

(
C1

C2

))
, (4.31)

where k ∈ N.

Cusps asymptotically approach µ = 0

The results can be seen in Figure 4.4. In plot (B), the actual and asymptotic cusps appear
to converge in relative norm. Thus, for large values of k, the asymptotic cusps are numerically
demonstrated to be a good approximation of the actual cusps. This confirms that the sequence
of cusps converge to the origin (3DL bifurcation), as the limit of the sequence (4.28) as k →∞ is
µ = 0. Thus we have an explanation for observation (P.3).
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4.1.3 Spring area to saddle area transition

We know that generically, presence of a spring area is accompanied by two GPD points and these
points disappear when there is a saddle area [15]. Thus insight about spring area to saddle area
transitions may be obtained by analysing the defining system for the GPD bifurcation:

F (x, µ) = 0,

Fx(x, µ) + 1 = 0,

1
4 (Fxx(x, µ))

2
+ 1

6Fxxx(x, µ) = 0.

(4.32)

This would answer observation (P.5.2). However, we do not investigate this in the work presented
here.
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Figure 4.5: Poincaré map for the secondary homoclinic solution Γ1. Upon leaving yu along the
unstable manifold, the corresponding orbit makes two global turns and returns to the origin.

4.2 Secondary homoclinic orbits

In this section we describe the behaviour of a particular type of homoclinic orbit, namely the
secondary homoclinic orbit, which, after leaving the saddle along the unstable manifold, makes
two global turns and returns to the saddle.

We look at the existence and behaviour of these homoclinic orbits close to the primary homoclinic
orbit, upon perturbing the system with parameters µ1 and µ2. The existence of the orbits is a
codimension 1 situation and would correspond to a curve in the µ1−µ2 space. As before, we look
for these curves in the wild case, where ν < 1.

Consider Figure 4.5. The secondary homoclinic orbit Γ1 leaves the point yu = (0, 0, 0, 1) ∈ Σu,
along the unstable manifold and meets Σs at y1 = (1, 0, 1, µ2). From this point, the orbit leaves
again and this time returns along the stable manifold to approach the origin. The orbit crosses
Σs at ys = (1, 0, 1, 0). Using the map Π from (3.7), the condition is,

Π


1

1

µ2

 =


1

1

0

 ,

which gives us the equation

µ2 + C1µ
ν
2 sin

(
− 1

β
logµ2

)
+ C2µ

ν+µ1/β
2 = 0. (4.33)

We define

G(µ) = µ2 + C1µ
ν
2 sin

(
− 1

β
logµ2

)
+ C2µ

ν+µ1/β
2 .

Note that here µ2 must be positive. The shape of G(µ) = 0 is similar to the curve F (x, µ) = 0
(from (3.10)). For positive µ1, it is possible to obtain infinitely many solutions of (4.33) for µ2

sufficiently small. That is not the case when µ1 < 0, as there are only finitely many or no non-
trivial solutions for µ2 sufficiently small, see Figure 4.6.

In Figure 4.7 the non-trivial solutions are continued with respect to the parameters µ1 and µ2 for
two different sets of values of C1 and C2. We observe three things:
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(A) C1 = −0.7, C2 = −0.3, µ1 = 0.02
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(B) C1 = −0.7, C2 = −0.3, µ1 = −0.03
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(C) C1 = 0.5, C2 = 1.3, µ1 = −0.001

Figure 4.6: Plots ofG(µ) against µ2 for fixed µ1, C1 and C2. The blue curve is y = G(µ) and the red
dots indicate non-trivial solutions to the equation G(µ) = 0, which correspond to parameter values
where secondary homoclinic curves exist. In (A) we see infinitely many non-trivial solutions, in
(B) we see finitely many non-trivial solutions and in (C) we see no non-trivial solution, for small
values of µ2.

(S.1) There are independent secondary homoclinic curves which form horizontal parabolas
and these parabolas approach the primary homoclinic curve µ2 = 0 asymptotically.

(S.2) These parabolas possess turning points where the two corresponding secondary ho-
moclinic branches collide and disappear. The sequence of turning points obtained from
successive parabolas appear to approach the origin asymptotically.

(S.3) For different values of C1 and C2, the sequence of turning points exist strictly either
in the first or second quadrant.

4.2.1 Asymptotics

The observations above can be explained to some extent by obtaining asymptotic expressions for
the parabolas and the corresponding turning points.

‘Parabolas’

From (4.33), we have

µ2 + C1µ
ν
2 sin

(
− 1

β
logµ2

)
+ C2µ

ν+µ1/β
2 = 0. (4.34)

Also, µ2 > 0. Let

− 1

β
logµ2 = πn+ θ,

for n ∈ N large and θ ∈ (−π/2, π/2). On dividing both sides by µν2 , (4.34) becomes

e−(1−ν)β(πn+θ) + (−1)nC1 sin θ + C2e
(−µ1(πn+θ)) = 0. (4.35)

As ν < 1, the first term in (4.35) is relatively small for large n. Thus we consider only the leading
terms, which gives

(−1)nC1 sin θ + C2e
−µ1(πn+θ) = 0,

=⇒ sin θ ≈ (−1)n+1C2

C1
e−µ1πn, (4.36)

for n sufficiently large. We observe that it is not always possible to find solutions θ to (4.36).
Suppose |C2| > |C1|. Then, solutions of (4.36) would only exist if µ1 > 0. Thus, the set of
secondary homoclinic curves would exist only in the first quadrant. If |C2| < |C1|, solutions of
(4.36) can exist for µ1 < 0, but for |µ1| sufficiently small, because of the exponential term.
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Figure 4.7: Secondary homoclinics near the 3DL bifurcation in the wild case (ν < 1). In (A),
multiple secondary homoclinic curves are obtained via continuation in Matcont, for two sets of
parameter values. The exact turning points (red points) are obtained by performing Newton
iterations starting from asymptotic turning points. The corresponding values of k are k = 4, 5, 6, 7.
In (B), exact turning points (blue stars) are plotted along with the corresponding asymptotic
curves. The corresponding values of k are k = 15, 16, .90. We observe that there are discontinuities
in the asymptotic curves. This happens when | sin θ| > 1, where sin θ is obtained from (4.43). In
(C), the distances of turning points from the origin (3DL bifurcation) are plotted against k, in
log scale. Here also, the values of k are k = 4, 5, ..90.
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This also implies that for |C2| > |C1|, the turning points would exist entirely in the first quadrant,
and in the case |C2| < |C1|, the turning points would be located entirely in the second quadrant.
This explains observation (S.3).

From (4.36), we get the following set of branches,

µ2 = e(−β(πn+θ)), (4.37)

where sin θ = (−1)n+1C2

C1
e−πnµ1 .

For each n, we get a branch that is strictly increasing or decreasing. Two branches corresponding
to consecutive values of n combine to form one asymptotic approximation of the parabola. This
can be seen directly from the derivative

∂

∂µ1
e−β(πn+θ) = −β︸︷︷︸

<0

>0︷ ︸︸ ︷
e−β(πn+θ)

>0︷ ︸︸ ︷
1√

1− θ2
(−1)n

C1

C2︸ ︷︷ ︸
±1

>0︷︸︸︷
πn

>0︷ ︸︸ ︷
e−µ1πn . (4.38)

Upon increasing n, the corresponding branches get closer to the axis µ2 = 0. To approximate the
parabola, we choose

n1 = 2k,

n2 = 2k − sgn(C1/C2), (4.39)

where k ∈ N, to get one asymptotic secondary homoclinic curve.

Clearly as n → ∞, the corresponding asymptotic branches µ
(n)
2 = e−β(πn+θ) approach µ2 = 0,

which is the curve of primary homoclinic curves. Thus observation (S.1) can be explained.

In Figure 4.7 (B), asymptotic curves along with two successive curves from continuation are
plotted together. The asymptotics agree well with actual continuation curves. However, we
observe discontinuities in the asymptotic curves, close to the turning point. This happens when
there exists no real solution to (4.43), i.e. when | sin θ| > 1.

Turning points

It is possible to get the sequence of turning points by solving the defining system by Newton iter-
ations. However, deriving the asymptotics for the turning points gives explanation to observation
(S.2).

From (4.34) we have

µ2 + C1µ
ν
2 sin

(
− 1

β
logµ2

)
+ C2µ

ν+µ1/β
2 = 0,

=⇒ 1 + C1µ
ν−1
2 sin

(
− 1

β
logµ2

)
+ C2µ

ν+µ1/β−1
2 = 0, (4.40)

as µ2 6= 0. The condition for the turning point is

d

dµ2
µ1(µ2) = 0.

Taking the total derivative of G(µ) = 0 with respect to µ2 we get

d

dµ2
G(µ) = 0,

=⇒ ∂

∂µ1
G(µ)

d

dµ2
µ1︸ ︷︷ ︸

=0

+
∂

∂µ2
G(µ) = 0,
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=⇒ (ν − 1)C1 sin

(
− 1

β
logµ2

)
− C1

β
cos

(
− 1

β
logµ2

)
+ C2(ν + µ1/β)µ

µ1/β
2 = 0. (∵ µν−12 6= 0)

(4.41)

We separate the various solutions by letting

− 1

β
logµ2 = πn+ θ,

for n ∈ N and θ ∈ (−π/2, π/2). The substitution gives us

(−1)nC1

(
(ν − 1) sin θ − 1

β
cos θ

)
+ C2(ν + µ1/β)e−µ1(πn+θ) = 0,

=⇒ sin θ − 1

β(ν − 1)
cos θ = (−1)n+1C2

C1

(ν + µ1/β)

ν − 1︸ ︷︷ ︸
≈ ν

ν−1

e−µ1(πn+θ)︸ ︷︷ ︸
≈1

,

=⇒ sin θ − 1

β(ν − 1)
cos θ = (−1)n+1C2

C1

ν

ν − 1
, (4.42)

for µ1 sufficiently small. From here we derive the expression for sin θ,

sin θ ≈ ±
√
C2

1 (β2(ν − 1)2 + 1)− β2ν2C2
2

C1 (1 + β2(ν − 1)2)
,

where the O(β2ν2) terms were dropped from the numerator. Without loss of generality, we choose
θ such that sin θ > 0. Thus,

θ = arcsin

(√
C2

1 (β2(ν − 1)2 + 1)− β2ν2C2
2

|C1| (1 + β2(ν − 1)2)

)
. (4.43)

Now that we have θ, we can use (4.34) to get µ1. Replacing the expression for µ2 in terms of θ
and n in (4.34) gives

e−(1−ν)β(πn+θ) + (−1)nC1 sin θ + C2e
−µ1(πn+θ) = 0,

=⇒ − 1

C2
e−(1−ν)β(πn+θ) + (−1)n+1C1

C2
sin θ = e−µ1(πn+θ), (4.44)

where θ is obtained from (4.43). As the RHS is positive, we need to choose values of n in such a
way that the term is always positive. As e−(1−ν)β(πn+θ) is small for n sufficiently large, the LHS
of (4.44) is dominated by the sine term and we can determine the sign of the LHS by looking at
the sign of C1/C2. Thus, we require

(−1)n+1C1

C2
> 0. (4.45)

From this we get the expression for n:

n = 2k +
1

2

[
1 + sgn

(
C1

C2

)]
, (4.46)

where k ∈ N. By choosing n as above, the LHS of (4.44) is positive and real solutions can be
obtained. Continuing the derivation from (4.44), we take the natural logarithm on both sides to
get

µ1 =
−1

(πn+ θ)
log

[−1

C2

(
e−(1−ν)β(πn+θ) + (−1)nC1 sin θ

)]
.

To summarise, the sequence of asymptotic turning points
(
µ
(n)
1 , µ

(n)
2

)
is given by,

µ(n)
1

µ
(n)
2

 =

 −1
(πn+θ) log

[
−1
C2

(
e−(1−ν)β(πn+θ) + (−1)nC1 sin θ

)]
e−β(πn+θ)

 , (4.47)
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where n = 2k + 1
2

[
1 + sgn

(
C1

C2

)]
and θ is obtained from (4.43).

As n→∞, the sequence (4.47) converges to (µ1, µ2) = (0, 0). Thus we conclude that the turning
points indeed approach the 3DL bifurcation point µ = 0 asymptotically. This explains observation
(S.2).

Note that (4.41) along with (4.33) form the defining system for the turning points. With suitable
scaling of the variables µ1 and µ2, it is possible to obtain the exact turning points via Newton
iterations, by starting the iterative procedure at the asymptotic turning points, given by (4.47).
The turning points presented in Figure 4.7 are obtained this way.



Chapter 5

Analysing the 3D model map

In this chapter we collect bifurcations of periodic orbits observed close to the 3DL transition as
described by the full 3D model map (3.7). The results are similar to that of the scalar model
map, except for higher dimensional codimension 2 points that are observed in the 3D case. These
points numerically appear to approach the 3DL transition point asymptotically.

We also observe that presence of spring (saddle) areas do not occur for the same parameter values
of C1 and C2 in the 3D map as they do in the scalar case.

Observations from continuation

Let us define

G(x, µ) :


x1

x2

x4

 7→


1 + α1x1x
ν
4 cos

(
−1
β log x4 + φ1

)
+ α2x2x

ν+µ1/β
4

1 + α3x1x
ν
4 sin

(
−1
β log x4 + φ2

)
+ α4x2x

ν+µ1/β
4

µ2 + C1x1x
ν
4 sin

(
−1
β log x4

)
+ C2x2x

ν+µ1/β
4

 . (5.1)

We look for fixed points of this map and the various codimension 1 curves, as we did with the
scalar model map (3.10). In Figure 5.1, we see the PD and LP curves obtained from continuation
of this map for a chosen set of parameters. Here C1 = −1, C2 = 1, αi = 1,∀i and φ1 = φ2 = π/6.
We immediately observe similarities with respect to the scalar case:

1. We can see that the global structure of these curves is the same as in the scalar case. We
also observe spring and saddle areas as in the scalar case.

2. The PD and LP horns are accompanied by Cusp points and/or GPD points (depending on
saddle or spring area).

3. The horn structure repeats itself and accumulates onto the primary homoclinic curve µ2 = 0,
as in the scalar case.

This is expected as the scalar map is an asymptotic representation of the 3-dimensional case.

However there are two main differences with respect to the scalar model map which can be at-
tributed to the higher dimension of the 3D map:

1. There exists two NS curves in a very small domain between the PD and LP curves. The end
points of the NS segment are resonance points.

2. Along the PD, LP and NS curves we observe many higher dimensional codimension 2 points.
These points are:

• Cusp: Along the LP curve.

• GPD (Generalised Period Doubling): Along the PD curve (only in the case of spring
area).
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• R1:1 (Resonance 1:1): Along the PD curve.

• R1:2 (Resonance 1:2): Along the LP curve.

• LPPD (Fold-Flip): Along the LP curve.

• R1:3 (Resonance 1:3): Along the NS curve.

• R1:4 (Resonance 1:4): Along the NS curve.

These points appear to numerically approach the origin µ = 0 (3DL transition). The end-
points of the NS curve are points R1 and R2, as can be seen in Figure 5.1 (B). For a detailed
discussion on the various codimension 2 points and their normal forms, see [12].

We do not observe a significant difference in the behaviour of the PD/LP curves upon changing
the coefficients αi and φj . This can be attributed to the effect of the corresponding terms in (5.1)
to the dynamics of x4. These terms are O(‖x‖2ν) in the fixed point equation for x4.

Codimension 2 points along LP, PD and NS curves

As stated before, there exist multiple codimension 2 points along the PD, LP and NS curves.
These points appear to approach the origin µ = 0 asymptotically. In Figure 5.2 we present the se-
quence of codimension 2 points found on successive PD/LP curves of Figure 5.1. These sequences
are obtained via detection along PD/LP curves from continuation. GPD points are absent as they
are generally hard to detect along continuations, due to large test function values and absolute
gradients. They are approximated in practice by noting where the sign of the scalar GPD test
function changes.

Note that codimension 2 points such as R1, R2 and LPPD were observed more than once on a
single PD/LP curve. The tables for each detection is computed separately.

Spring and saddle areas

For the scalar map we observed that there exist transitions between spring and saddle areas. These
transitions can be explained by observing the appearance and disappearance of GPD points, as
they exist generically on the PD loop in a spring area, and do not exist in the case of a saddle area.

In the 3D case too, we numerically observe such transitions. However when there is a spring
(saddle) area in the 3D case, it does not imply that the same structure would exist in the 1D map
for the same choice of parameters C1 and C2. This is shown in Figure 5.3.
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Figure 5.1: Primary PD and LP curves obtained by continuation, for the map (5.1) for a fixed
choice of parameters C1 and C2. The curves have almost the same global structure, as can be
seen in (A). In (B) we see one such curve, along with the multiple codimension 2 points that
are found along it. In Inset (1) we see the previously described spring area made up by the PD
and LP curves. Three codimension 2 bifurcation points are observed, two corresponding to the
generalised period doubling (GPD) bifurcation and one corresponding to the Cusp bifurcation. In
Inset (2) we see the interaction between the 1:2 resonance (R2) point on the PD curve and the
1:1 resonance point on the LP curve, via the primary NS curve. On this curve we find two more
codimension 2 bifurcation points, 1:3 resonance (R3) and 1:4 resonance (R4).
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Table 5.1: Cusp

µ1 µ2

−0.04827775 −0.04773564

−0.04285354 −0.02357456

−0.03838913 −0.01179054

−0.03471637 −0.00596640

−0.03166789 −0.00304826

−0.02910762 −0.00156918

−0.02693127 −0.00081256

−0.02506011 −0.00042273

−0.02343464 −0.00022073

−0.02200947 −0.00011560

Table 5.2: R1 (1)

µ1 µ2

−0.022885016 −0.011329596

−0.020339780 −0.005892797

−0.018309568 −0.003084872

−0.016651283 −0.001621763

−0.015270744 −0.000855070

−0.014103227 −0.000451779

−0.013102731 −0.000239073

−0.012235644 −0.000126665

−0.011476831 −6.7172703 · 10−5

−0.010807113 −3.5650007 · 10−5

Table 5.3: R1 (2)

µ1 µ2

−0.000491070 −5.2368318 · 10−5

−0.000485291 −8.9357361 · 10−5

−0.000472811 −2.924643 · 10−5

−0.000446309 −1.5962248 · 10−5

−0.000418299 −8.611892 · 10−6

−0.000391533 −4.6189982 · 10−6

−0.000366963 −2.4699226 · 10−6

−0.000344774 −1.3186873 · 10−6

−0.000324856 −7.0350767 · 10−7

−0.000306980 −3.7517618 · 10−7

Figure 5.2: Table of codimension 2 points found along successive PD/LP curves for C1 = −1, C2 =
1, αi = 1, φ1 = φ2 = π/6,∀i.
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Table 5.4: R2 (1)

µ1 µ2

−0.023104053 −0.011454847

−0.020441356 −0.005925675

−0.018357592 −0.003093697

−0.016674314 −0.001624164

−0.015281911 −0.000855730

−0.014108689 −0.000451962

−0.013105423 −0.000239124

−0.012236979 −0.000126679

−0.011477496 −6.7176657 · 10−5

−0.010807446 −3.5651115 · 10−5

Table 5.5: R2 (2)

µ1 µ2

−0.000734733 −0.000134556

−0.000610792 −6.5156479 · 10−5

−0.000530855 −3.2871209 · 10−5

−0.000474690 −1.6990978 · 10−5

−0.000432269 −8.9039388 · 10−6

−0.000398451 −4.7019541 · 10−6

−0.000370410 −2.4935164 · 10−6

−0.000346506 −1.3254274 · 10−6

−0.000325720 −7.0541284 · 10−7

−0.000307415 −3.7571786 · 10−7

Table 5.6: LPPD (1)

µ1 µ2

−0.025100238 −0.012679658

−0.022290657 −0.006566350

−0.020062324 −0.003428503

−0.018247704 −0.001799398

−0.016739195 −0.000947643

−0.015464156 −0.000500275

−0.014371585 −0.000264567

−0.013424514 −0.000140101

−0.012595437 −7.4267094 · 10−5

−0.011863435 −3.9401153 · 10−5

Table 5.7: LPPD (2)

µ1 µ2

−0.006872844 −0.001480276

−0.006187132 −0.000783903

−0.005623142 −0.000415956

−0.005152068 −0.000220997

−0.004753167 −0.000117515

−0.004411273 −6.2525452 · 10−5

−0.004115103 −3.3281613 · 10−5

−0.003856121 −1.7721099 · 10−5

−0.003627768 −9.4381076 · 10−6

−0.003424932 −5.0276577 · 10−6

Figure 5.2 (Cont.): Table of codimension 2 points found along successive PD/LP curves for C1 =
−1, C2 = 1, αi = 1, φ1 = φ2 = π/6,∀i.
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Figure 5.3: Plots of spring and saddle areas in the scalar map (3.10) and 3D map (3.7). In all
plots µ2 is scaled for convenience. In (A) we see that there exists a saddle area in the 3D case,
where GPD points are absent. (B) and (C) are plotted for the same value of C1 and C2, but
with respect to the 3D map (3.7) and 1D map (3.10) respectively. We see that the existence of
the spring area in the 3D map does not imply the existence of the same in the 1D map.



Chapter 6

Discussion and outlook

In this chapter we collect all results on the 3DL bifurcation together and note the differences and
similarities to the Belyakov case. We also highlight some of the ideas that can be explored ahead
to make the understanding of this bifurcation richer.

6.1 Novelties

The 3DL bifurcation is a codimension 2 bifurcation that occurs generically in 4D systems. From
the Homoclinic Center Manifold theorem we know that this bifurcation may also be observed in
systems with dimension n ≥ 4. It is characterised by the transition from a saddle to saddle-focus
along a two-parameter curve of primary homoclinic orbits in such a way that at the transition,
the critical stable (unstable) leading eigenspace is three dimensional, making it different from the
Belyakov case.

By considering a generic 4D system with 3DL transition, we are able to obtain a two-parameter
model return map which describes the bifurcations occurring close to the transition. Analysis of
fixed points of these model maps gives information of global bifurcations occurring close to the
transition in the ODE system. We see that when the saddle index ν is less than 1, there exist
infinitely many bifurcation curves. We concentrate only on the bifurcation sets obtained in the
case ν < 1 (wild case). The model maps (equations) describe the following bifurcations:

• Period Doubling (PD) bifurcation.

• Limit Point (LP) bifurcation.

• Secondary homoclinic bifurcation.

We have the following model maps (equations):

Π(x, µ) :


x1

x2

x3

 7→


1 + α1x1(x3)ν cos
(
−1
β log x3 + φ1

)
+ α2x2(x3)ν+µ1/β

1 + α3x1(x3)ν sin
(
−1
β log x3 + φ2

)
+ α4x2(x3)ν+µ1/β

µ2 + C1x1(x3)ν sin
(
−1
β log x3

)
+ C2x2(x3)ν+µ1/β

 , (6.1)

and

F (x, µ) : x 7→ µ2 + C1x
ν sin

(
− 1

β
log x

)
+ C2x

ν+µ1/β , (6.2)

that describe bifurcations of periodic orbits (PD, LP and NS) and

G(µ2) = µ2 + C1µ
ν
2 sin

(
− 1

β
logµ2

)
+ C2µ

ν+µ1/β
2 = 0, (6.3)

that describes secondary homoclinic bifurcations. Here µ1 controls the eigenvalue configurations
and the homoclinic connection exists only for µ2 = 0. For µ1 < 0 we have the saddle case, for
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Figure 6.1: Summary of bifurcations occurring close to the 3DL transition. µ1 controls the eigen-
value configuration. For µ1 < 0 we have the saddle case, for µ1 = 0 we have the 3DL saddle and
for µ1 > 0 we have the saddle-focus case. The primary homoclinic connection exists only when
µ2 = 0. In (A) PD and LP ‘horns’ of the scalar model map are plotted. In (B) the spring area
at the tip of the horn is shown. In (C) secondary homoclinic ‘parabolas’ and their corresponding
turning points are plotted. In (D) a single PD/LP horn of the 3D model map is plotted, along
with several codimension 2 points found along it.

µ1 = 0 we are at the 3DL transition and for µ1 > 0 we have the saddle-focus case. These maps
(equations) are very different from the known model maps (equations) in the saddle, saddle-focus
or Belyakov cases. The presence of the additional term C2x

ν+µ1/β in (6.2) is the most significant
difference from all other model maps.

In Figure 6.1 some of the bifurcation curves with respect to parameters µ1 and µ2 are plotted.
We make the following observations:

(3DL.1) There exist infinitely many PD, LP, NS and secondary homoclinic curves, that
accumulate onto the curve of primary homoclinic orbits.

(3DL.2) Each PD and LP curve has a ‘horn’ composed of two branches. Close to the
horn’s turning point these two curves interact via spring and saddle areas. Transitions
between saddle and spring areas are observed upon changing parameters C1 and C2. Each
secondary homoclinic curve forms a horizontal parabola. These parabolas may exist only in
the quadrant {µ1 > 0, µ2 > 0} depending on parameters C1 and C2.

(3DL.3) Several codimension 2 points are found along each of the PD, LP and NS curves.
In the scalar case, we observe GPD (along PD) and cusp (along LP) points. Secondary
homoclinic curves have turning points where two secondary homoclinic orbits collide and
disappear. In the 3D case we observe:
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• Cusp (along LP).

• GPD (along PD).

• fold-flip (along PD and LP).

• Resonance 1:1 (along LP).

• Resonance 1:2 (along PD).

• Resonance 1:3 (along NS).

• Resonance 1:4 (along NS).

We were able to prove in the scalar case analytically that the cusp points asymptotically
approach the 3DL transition point. The same is done in the case of secondary homoclinic
turning points. In the 3D model map it appears numerically that all the above codimension
points approach the 3DL transition point.

(3DL.4) When µ1 is fixed to be negative (saddle case), there exist only finitely many
bifurcation curves for µ2 sufficiently small. However, when µ1 is fixed as positive (saddle-
focus case), there exist infinitely many bifurcation curves for µ2 sufficiently small. This is
analogous to the saddle and saddle-focus homoclinic bifurcations, where single and infinitely
many periodic orbits emerge respectively. This highlights the robustness of the model map.

Limitations of a model map

It must be noted that the formulation of the model map is based on obtaining C1 equivalence to
the linear system due to Belitskii’s theorem. In principle we can only trust results based on first
derivatives, such as the PD and LP curves, and not cusp points, for example, which are based on
third derivatives of the map. However this can be worked around in two ways:

• We can impose non-resonant conditions

Reλi 6= p Reλj + q Reλk,

where λ’s are eigenvalues and p, q > 1. This increases the smoothness of the equivalence and
we can proceed with the treatment which would be valid generically.

• We can try to prove that the model map derived in the Thesis correctly approximates the
actual Poincaré map close to the critical saddle in (3.1).

We will leave these matters for future work.

6.2 3DL transition and the Belyakov bifurcation

In the previous section we mentioned that the 3DL transition is different from the Belyakov tran-
sition. But how so?

As mentioned in Chapter 1, the Belyakov transition is the only other analysed saddle to saddle-
focus transition. This occurs generically in a 3D system. A pair of leading stable (unstable)
complex eigenvalues approach the real axis and split into two distinct real eigenvalues. At the
transition point, there exists a double real stable leading eigenvalue.

This is different from the 3DL case where the pair of complex eigenvalues exchange their position
relative to the real eigenvalue such that at the critical parameter values there exists a three di-
mensional stable (unstable) leading situation at the transition point. This occurs generically in a
4D system.

There are further more differences in the bifurcation sets close to the transition point. To motivate
them we introduce the model return map in the Belyakov case and the bifurcation diagram in the
case of PD, LP and secondary homoclinic cases.
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The model map in the case of the Belyakov bifurcation is 2-dimensional and can further be reduced
to a scalar map. The two maps are:

ΠB :

y1
y2

 7→
1 + A√

µ1
y1y

ρ
2 cos

(
−
√
µ1

λ ln y2 + Θ
)

µ2 + B√
µ1
y1y

ρ
2 sin

(
−
√
µ1

λ ln y2

)
 , (6.4)

and

FB(y, µ) : y 7→ µ2 +
B√
µ1
yρ sin

(
−
√
µ1

λ
ln y

)
. (6.5)

Here µ1 is non-negative and controls the eigenvalue configurations. µ2 controls the existence of
the primary homoclinic connection. For µ1 = 0 we are at the Belyakov bifurcation (double real
eigenvalue) and for µ1 > 0 we have complex leading stable eigenvalues. The primary homoclinic
connection exists for µ2 = 0 only. A, B and Θ are constants. Note that for secondary homoclinics,
the equation is just

FB(µ2, µ) = 0. (6.6)

In Figure 6.2 we show the PD, LP and secondary homoclinic bifurcation curves that occur close

Figure 6.2: Bifurcations sets close to the Belyakov bifurcation (at 0). Here {t(1)n } refers to the set

of primary limit point curves, {f (1)n } refers to the set of primary period doubling curves and {h(2)n }
refers to the set of secondary homoclinic curves. The parameters µ1 and µ2 control the transition
of the saddle to the Belyakov case and the appearance of the homoclinic orbit respectively. Figure
taken from [13].

to the transition point for maps (6.5) and (6.6). Although we obtain infinitely many PD, LP and
secondary homoclinic curves, the structure of these curves is very different from that of the 3DL
case. We highlight some of the differences :

1. The curves in the Belyakov case are characterised by single branches which have the same
structure for all three bifurcations. These branches do not form local structures like horns,
loops or knots. For the 3DL case, these curves behave differently. The PD/LP curves form
horns, where the PD curves make sharp turns (spring area) or loops (saddle area) and the
LP curves are possess cusps. The secondary homoclinic curves form parabolas.

2. The bifurcation curves in the Belyakov case have no codimension 2 points along them. In
the 3DL case we observe GPD and Cusp points in the scalar map, and fold-flip and strong
resonances in the 3D case. These codimension 2 points (appear to) approach the 3DL
bifurcation point asymptotically.
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3. The bifurcation curves have infinite order tangency at the transition point in the Belyakov
case and do not exist in the saddle case (when µ1 < 0). However in the 3DL case these
curves exist also when µ1 < 0. Moreover, most of the interesting localised structures like
spring areas, saddle areas and turning points (in the case of secondary homoclinic orbits)
occur when µ1 < 0.

6.3 Unexplored areas

From this Thesis we obtain a model return map which gives us information about primary PD,
LP and NS bifurcations, along with secondary homoclinic bifurcations occurring close to the 3DL
transition. However there are more ideas that we feel can be explored to obtain knowledge of
further more bifurcations occurring close to the saddle.

Higher order periodic orbits and chaotic domains

From the 3D model map (6.1) it would be possible to describe bifurcations of higher order peri-
odic orbits, that make multiple global passages before returning to the equilibrium. It would be
interesting to see the structures higher order period doubling curves form, and to see if there exist
chaotic domains.

A toy model

So far we describe the bifurcations close to a 3DL transition by means of a model map. However
we would also like to find such a transition in a system of ODEs and confirm our results. Either
we can try and look for an example in the numerous ODE models constructed for applications in
ecology, neuroscience, physics etc. or we can try to construct a toy model. A detailed discussion
on constructing ODEs with homoclinic orbits can be found in [6].

16 18 20 22 24 26 28 30 32 34

−1.5

−1

−0.5

0

0.5

1

β

R
e(
λ
)

(A) τ = 4.4: 3DL transition
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(B) τ = 4.5: Possible codimension 3 situation
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(C) τ = 4.6: Belyakov transition

Figure 6.3: A possible 3DL to Belyakov transition as seen in the ODE system (6.7), along a three-
parameter continuation (β, c and τ). Here real parts of the 4 eigenvalues are plotted against β,
along a curve of primary homoclinic orbits (continued in β − c). On changing τ , 3DL transition
(in figure (A)) and Belyakov transition (in figure (C)) are observed. Around τ ≈ 4.5 (in figure
(B)), we see that two Belyakov bifurcations occur almost simultaneously, giving rise to a possible
triple-real stable leading situation. Continuation performed in Matcont [7].

Belyakov to 3DL transition

In the same way we construct and derive the model map for the 3DL transition, it would be
interesting to see if a three-parameter model map describing the Belyakov to 3DL transition can
be derived. This codimension 3 situation was also observed in [14] in the tame case (ν > 1). The
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corresponding ODE system is,
u̇ = −(u− ψ + a)/c,

φ̇ = φ,

ψ̇ = f(u)+f ′(u)(−u+ψ+a)/ν−2cφ/ν−ψ
c2/ν2−1 ,

ȧ = −(a− κu)/(cτ),

(6.7)

where f(u) = (1+exp (β(u− θ))−1. The parameters β, τ, κ, θ and c are positive, while ν−1 is kept
zero. Figure 6.3 shows the transition.
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